
A NEURAL OPERATOR-BASED SURROGATE SOLVER
FOR FREE-FORM ELECTROMAGNETIC INVERSE

DESIGN

A PREPRINT

Yannick Augenstein1, Taavi Repän2, and Carsten Rockstuhl1,3

1Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe,
Germany

2Institute of Physics, University of Tartu, Tartu 50411, Estonia
3Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

March 29, 2023

ABSTRACT

Neural operators have emerged as a powerful tool for solving partial differential
equations in the context of scientific machine learning. Here, we implement and
train a modified Fourier neural operator as a surrogate solver for electromagnetic
scattering problems and compare its data efficiency to existing methods. We further
demonstrate its application to the gradient-based nanophotonic inverse design of
free-form, fully three-dimensional electromagnetic scatterers, an area that has so
far eluded the application of deep learning techniques.

1 Introduction

Tools for solving Maxwell’s equations are essential in nanophotonics for modeling light-matter
interaction at the wavelength scale and, in extension, for designing new optical devices. Some
of the most established methods for this purpose are finite element solvers (FEM) [1, 2] in the
frequency domain and finite difference solvers for both frequency (FDFD) [3, 4] and time domain
(FDTD) [5–7]. As full-wave Maxwell solvers, these methods represent the most general and accurate
class of tools for modeling electromagnetic systems. However, full-wave solutions often involve
significant time and computational cost, placing a practical limit on the scale of problems that can
be tackled. This is exacerbated in problems such as inverse design [8–12], where typically on the
order of hundreds of simulations have to be performed to reach reasonable solutions. While there are
ongoing developments in the search for faster full-wave solvers [13, 14], there exist also a variety of
semi-analytical methods [15–18] that can potentially offer order-of-magnitude speedups. However,
such methods make specific physical assumptions, and their applicability is, therefore, generally
limited to certain problem classes.

A more recent development has been the use of machine learning-based surrogate models [19–21] to
approximate solutions to partial differential equations (PDEs). Such models can – during inference
– be as fast or faster than semi-analytical methods and can, in principle, be tailored to suit a wide
variety of problems because of their property as universal approximators [20, 22]. Machine learning
has garnered significant momentum in nanophotonics in recent years [23, 24], and surrogate solvers
have been applied to both forward modeling and inverse design [25–29]. Of course, such models
bring their own challenges and limitations, among which the main ones are loss of accuracy and data
efficiency. As data efficiency implies using less data to achieve more, these two quantities have an
inverse relationship – at the cost of using more data, a model can generally be trained to produce

ar
X

iv
:2

30
2.

01
93

4v
2

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
8

M
ar

 2
02

3

A neural operator-based surrogate solver for free-form electromagnetic inverse design

higher accuracy predictions, and vice versa. As high-quality training data is usually generated using
classical methods, e.g. full-wave solvers, it is crucial to consider this trade-off in any application that
uses surrogate solvers since they quickly lose their edge over conventional methods when the cost of
generating training data limits them. This is exacerbated by the fact that surrogate models can not
serve as a general-purpose tool for solving scattering problems – instead, they are limited in scope
to the type of problem modeled in the training data. It is, therefore, essential to increase the data
efficiency of such models and find applications where the use of surrogate solvers can maximally
offset the cost of data generation.

The key to improving the data efficiency of surrogate solvers lies in the development and application
of new models in the context of scientific machine learning. One aspect that has proven effective
is imparting some partial physical knowledge to the surrogate model [30]. This can either be done
by explicitly including governing equations into the model formulation, such as in the case of
physics-informed neural networks (PINNs) [31, 32] or implicitly via penalizing unphysical solutions
during training [29, 33]. The latter is not tied to specific models and can generally be applied when
the governing equations (or some of their properties) are known. Parallel to the incorporation of
physics information into machine learning models has been the development of new classes of model
architectures. In particular, learning operator mappings between function spaces using deep neural
networks has been repeatedly shown to outperform previous approaches on PDE-constrained problem
sets [34–37]. Such models include graph kernel networks (GKN) [34], deep operator networks
(DeepONets) [20, 38], and Fourier neural operators (FNO) [35], among others.

However, even the most data-efficient models can not offset the cost of data generation if the problem
at hand requires only a handful of simulations in the first place. Therefore, we identify inverse
design [39–42] – specifically gradient-based – as a discipline that is well-suited to benefit from
the speed of surrogate models and suffers little from their drawbacks [29, 43]. In gradient-based
inverse design, a functional element is optimized by incrementally maximizing some figure of merit.
Gradients of this figure of merit with respect to incremental changes in the geometry are then used to
refine the device until an optimum is found iteratively. Conventional inverse design, e.g. topology
optimization [44], typically takes a few hundred iterations to converge, where each iteration entails
two full-wave simulations – one for evaluating the figure of merit and one for obtaining its gradients
via the adjoint method. Depending on the problem, a single optimization in 3D can easily take
days to complete, and the solutions generally depend strongly on the initial conditions, i.e. ideally,
many such optimizations should be performed to judge the quality of the optimization. Further,
such optimizations generally can not be parallelized, as the incremental updates are serial in nature.
As such, the only remaining possibility to accelerate the inverse design process is to speed up the
individual simulations.

Neural network-based surrogate solvers seem ideally suited to tackle this challenge – their inference
time is negligible when compared to full-wave simulations, training samples are independent and
can be generated in parallel, and they are inherently differentiable, meaning they can generally be
used as a drop-in replacement for differentiable Maxwell solvers [4, 45] in existing gradient-based
optimization pipelines. At the same time, their drawbacks are mitigated to an extent. During an
optimization, the simulation parameters are generally fixed, and only the device geometry varies,
meaning that it is feasible to use specialized models trained on as little data as possible and stay within
the training distribution during optimization. Furthermore, for many inverse design problems, high
numerical accuracy is often not crucial to reach a feasible solution, especially considering fabrication
uncertainty that is typically on the order of a few percent. In cases where high accuracy is required, an
initial device design (obtained using low numerical accuracy) can often be refined using high-accuracy
methods within a few additional iterations.

In this work, we implement a modified version of FNO as a surrogate solver for electromagnetic
scattering problems. The model is trained on a diverse set of free-form electromagnetic scatterers.
We compare its performance to a state-of-the-art convolutional architecture (UNet) in a simplified
two-dimensional setting. We show that FNO requires significantly less data to reach the same accuracy
as UNet. In the inverse design section, we use this model for the gradient-based inverse design of
free-form scatterers in three dimensions from many different initial conditions, a task that is extremely
computationally demanding using full-wave solvers.

We provide full access to our code as well as training datasets and model weights in accordance with
the FAIR data principles [46], see the data availability section for further details.

2

A neural operator-based surrogate solver for free-form electromagnetic inverse design

2 Fourier neural operator for electromagnetic field inference

��W

Rm�
���

�

�

�w p

n

������ ���

��������
���
	

����� ������

Figure 1: Illustration of the FNO architecture. The input is expanded via a linear layer to w channels
and then zero-padded by p pixels. Data is then passed through a series of n “Fourier blocks”, each
containing a linear layer and a convolution in Fourier space using the learned kernel Rm, a batch
normalization layer as well as a GELU nonlinearity. Finally, the padding is removed, and the channel
dimensions are reduced via a linear layer to the desired output dimensions.

We begin with a brief description of the vanilla Fourier neural operator (FNO) introduced in Li et al.
[35] and outline some architectural choices particular to this work. The core idea behind the FNO
architecture is learning a kernel parametrized in Fourier space, where each Fourier layer in the FNO
performs a global convolution on its input. First, the input v(x), where x denotes a location on the
computational mesh, is lifted to a higher dimensional representation y(x) with

y(x) = Cin(v(x)) ∈ Rw , (1)

where Cin : Rdin → Rw is a transformation parametrized by a linear layer with the input dimension
din and the output dimension w. While the dimension of the input d is determined by the problem
and is typically small, the output dimension w is a hyperparameter termed “width” of the FNO and
corresponds to the number of kernels (feature channels) in each Fourier layer. After lifting the input
dimension, the data is passed through a sequence of n “Fourier blocks”. Each such block consists
of the Fourier layer κm(y), a linear update, and a batch normalization layer [47] followed by an
activation function (ReLU) σBN:

u(y) = σBN

(
F−1(Rm · F(y))︸ ︷︷ ︸

κm(y)

+Wy + b

)
, (2)

with the Fourier transform F , its inverse F−1, and the trainable parameters Rm, W , and b. Together,
W and b form the linear layer update, where W is a weight matrix that acts locally on y, and b is the
bias vector. The complex-valued tensor Rm represents the kernel matrix of the convolution in Fourier
space. After the Fourier blocks, y is mapped to the desired output dimensionality dout via a linear
layer:

z(x) = Cout(y(x)) ∈ Rdout . (3)

A defining feature of FNOs is that the Fourier layer κm(y) truncates the Fourier series at the
m-th Fourier coefficient, i.e. Rm only contains entries up to the frequency index of that mode.
This truncation has some important implications on the expressiveness of an FNO network. Most
importantly, it acts as a low-pass filter by construction, and high-frequency spatial components are
strongly suppressed in the output, leading to relatively smooth outputs (depending on the choice of
m). It turns out that this is advantageous in the context of many PDEs that describe physical systems,
in particular for systems that have wave-like solutions such as Maxwell’s equations. This makes
FNOs uniquely suited to model these systems, as this property is an inherent part of the architecture
and does not need to be enforced through other means, such as explicitly smoothing the output
or modifying the loss function – both approaches are technically feasible but introduce additional
complexity. Moreover, approaches that modify the loss function, such as the ones used in Chen et al.
[29] or Lim and Psaltis [33], which aim to make the model predictions more self-consistent with
Maxwell’s equations, can be readily incorporated in the training of FNOs if necessary. Here, we are
only concerned with establishing a baseline performance for FNOs in the context of electromagnetic
scattering problems.

3

A neural operator-based surrogate solver for free-form electromagnetic inverse design

In practice, vanilla FNOs use feature expansion on the inputs to achieve good accuracy [35–37].
The canonical choice is to add a Cartesian coordinate grid as an additional input feature, i.e. the
coordinates in each spatial dimension are added to the input channels, and the input dimensionality
becomes, e.g. , Rd → Rd+3 in three dimensions. We have found that similar accuracy can be
achieved by zero-padding the input (p = 2) before passing it through the Fourier blocks and removing
the padding again before the final layer of the network, eliminating the need for feature expansion.
Further, we use the Gaussian Linear Error Unit (GELU) activation function [48] instead of ReLU,
which we have empirically found to lead to slightly lower prediction errors. A pictorial representation
of the FNO architecture used here is shown in Fig. 1.

3 Results

Our aim is to use FNOs as surrogate solvers for Maxwell’s equations in place of full-wave methods
such as the finite-difference time-domain (FDTD) method for some particular scattering problem. To
do this, we define the input of the FNO to be a dielectric material distribution that is discretized on a
regular grid, meaning that the number of input features din = 1. The output should then contain the
complex electromagnetic field components of interest, where each field component uses two output
channels for the real and imaginary parts, respectively. The FNOs discussed in this work are fully
described by the set of hyperparameters in Table 1.

Table 1: Hyperparameters describing the FNO architecture. The column “value” contains the
parameter values for the networks discussed in this work (both in 2D and 3D).

Parameter Description Value

n No. of Fourier blocks 10
m Fourier modes (truncation order) 12
w Hidden channels (width) 32
p Zero-padding in each spatial direction 2

To train the models, we generate datasets of scatterers and fields using a full-wave Maxwell solver. A
detailed description of the data generation is given in the data generation section. As a training and
evaluation metric, we use the normalized Lp loss

Lp(ŷ,y) =
1

n

n∑
i=1

‖yi − ŷi‖p
‖yi‖p

(4)

throughout. The models are trained on the normalized L2 loss, i.e. normalized root mean square error.
However, we will generally refer to the normalized L1 loss for evaluation and discussion due to its
more intuitive interpretability as the absolute error between two samples. Further, we note that the
discrepancy between L1 and L2 is minimal for the examples in this work, and in practice, the two can
be used almost interchangeably. For evaluation, we use a separate test set containing 400 samples not
included in the training data (neither for training nor validation). When referring to specific models,
we use the name “FNO-2D” for models trained on two-dimensional data and “FNO-3D” for models
trained on three-dimensional data. For remarks and observations that apply more generally, we will
use the term “FNO” as before.

3.1 Field inference

Previous works have focused on UNet-like [49] convolutional architectures for electromagnetic field
inference [27, 29, 33]. To make an objective comparison between UNet and FNO performance for this
task, we use the UNet architecture from Chen et al. [29] as a reference implementation and train both
models on datasets of simulations of a diverse set of random scatterers in two dimensions and vary
the number of training samples to judge their respective data efficiency, i.e. the number of training
samples needed to reach a certain prediction accuracy. Here, both networks use two output channels
that contain the real and imaginary parts of the z-component Ez of the electric field, respectively.
Both models are trained under the same conditions, and details of the training procedure are given in
the FNO & UNet training section.

4

A neural operator-based surrogate solver for free-form electromagnetic inverse design

0 10 20 30 40

L1 (%)

1024

2048

4096

8192

16384

N
u

m
b

er
o

f
tr

a
in

in
g

sa
m

p
le

s

a

FNO

UNet

0 5 10 15 20 25

L1 FNO-2D (%)

0

5

10

15

20

25

30

35

40

L
1

U
N

et
(%

)

b

Samples

1024

2048

4096

8192

16384

Figure 2: a Raincloud plot [50] of the normalized L1 errors on a test set with 400 samples for FNO-2D
and UNet trained on varying training set sizes. Each set of training samples shows a kernel density
estimate (top, using Scott’s rule for bandwidth estimation [51]), a box plot of the distribution with
a notch indicating the median (middle), as well as a categorical scatter plot containing all samples
(bottom). b Comparative scatter plot of the L1 errors for all test samples and training set sizes of
FNO-2D and UNet. The dashed gray line indicates where UNet and FNO-2D errors are equal.

The evaluation results on the 400-sample test set are visualized in Fig. 2, and numerical results are
provided in Table 2.

Table 2: Median normalized L1 and L2 errors as measured over 400 test samples
for networks trained on a varying number of training samples. The lowest error
achieved on each training set size is marked bold.

Samples Network L1 (%) L2 (%) σ(L2) (%) Time per epoch (s)*

1024
FNO-2D 11.18 12.07 4.39 8.31
UNet 22.64 24.42 6.80 10.15

2048
FNO-2D 7.19 7.72 3.15 10.10
UNet 16.68 18.01 5.59 13.24

4096
FNO-2D 4.32 4.64 2.12 13.72
UNet 11.09 11.92 4.15 18.96

8192
FNO-2D 2.48 2.65 1.30 21.13
UNet 7.10 7.58 2.88 30.92

16384
FNO-2D 1.59 1.68 0.89 35.81
UNet 4.52 4.84 1.99 55.26

* Timing was performed on a single NVIDIA A100 SXM4 GPU.

While both network architectures see a significant reduction in test error for an increasing number of
training samples, we observe that FNO-2D consistently outperforms UNet. Not only does FNO-2D
have significantly better prediction accuracy, but the distribution of errors on the test set shows a much

5

A neural operator-based surrogate solver for free-form electromagnetic inverse design

tighter spread around the mean, indicating that FNO-2D not only has a higher prediction accuracy
overall but also generalizes better to samples that are far from the dataset mean. This is particularly
remarkable considering that FNO-2D has only 5 909 250 trainable parameters in total, compared
to UNet, which has 23 617 970 trainable parameters, meaning that FNO-2D is significantly more
parameter-efficient. To reach a test error of around 5%, FNO-2D requires 4096 training samples,
whereas UNet requires four times as many to reach a comparable value. As shown in Fig. 2a, this
observation holds over the whole range of training set sizes that we considered, where UNet generally
lags behind FNO-2D performance by a factor of four with respect to training set size. We note
that these comparative results are broadly in line with previous findings on benchmarking FNO and
UNet performance on PDE-constrained problem sets [35, 36]. Furthermore, for the same number of
samples, FNO-2D training is roughly 30% faster than UNet, with the gap widening slightly for a
larger number of training samples. This is, however, mostly because FNO-2D has significantly fewer
parameters than UNet – in fact, it is slower than UNet when training time is considered per parameter.

It is worth investigating whether the lower test error of FNO-2D holds for all samples or if, while
having a lower error on average, some samples are nonetheless better predicted by UNet. Such a
scenario might indicate that for specific geometries, choosing UNet over FNO-2D could still be
advantageous. A comparison between FNO-2D and UNet L1 losses for each test sample and all
training runs is visualized in the scatter plot in Fig. 2b, where the dashed line marks the line where
FNO-2D and UNet errors are equal. From this, we can clearly see that FNO-2D outperforms UNet
for all test samples irrespective of training set size.

-2.5 0 2.5

x (µm)

−2.5

0

2.5

y
(µ

m
)

FDTD
a

UNet
b

d

FNO
c

e

−10

0

10

R
(E

z
)

10−2

10−1

100

|Ê
z
−

E
z
|

Figure 3: Real part of the a ground truth, b UNet predicted, and c FNO-2D predicted electric field
Ez for a random scatterer drawn from the test set. Also shown are the absolute errors between the
predicted fields and the ground truth for the d UNet prediction and e FNO-2D prediction. FNO-2D
has a normalized L1 error of 1.58%, and the UNet model has a normalized L1 of 4.29% on the
sample. Both networks were trained on the same dataset containing 16k training samples. The outline
of the scatterer is shown in all plots. The samples are illuminated with a plane-wave source impinging
from the negative y-direction.

Figure 3 shows a typical sample drawn from the test set, evaluated on the FNO-2D and UNet models
trained on 16k samples. The sample is chosen to be as close as possible to the median FNO-2D
L1 error on the test set and has a relative L1 error of 1.58% for the FNO-2D prediction and an
error of 4.29% for the UNet prediction. We can see a good qualitative agreement between the fields
in Figs. 3a to 3c for both models. This picture changes, however, when we consider the absolute
error maps between the ground truth and the field predictions in Figs. 3d and 3e. We observe that
the UNet prediction has a significantly higher deviation throughout, which of course, is already clear
from the data presented. Somewhat more interestingly, we note that the error map produced by
the FNO-2D model in Fig. 3e shows less spatial noise when compared to the one produced by the
UNet model in Fig. 3d, i.e. the map appears smoother overall. This is in line with what one would
expect from these two architectures – while convolutional neural networks perform pixel-wise local

6

A neural operator-based surrogate solver for free-form electromagnetic inverse design

convolutions, FNO instead performs global convolutions and explicitly discards Fourier components
above a certain order by design. Essentially, the priors built into the FNO architecture force the model
to learn continuous solutions, a property that is later reflected in its output.

3.2 Inverse design

We will now demonstrate the inverse design of free-form, three-dimensional nanophotonic devices
using an FNO model trained on a dataset of 8192 pairs of volumetric scatterers and fields. The data
generation and FNO-3D training are detailed in the data generation section and the FNO & UNet
training section. After 100 epochs of training, the normalized L1 loss of the FNO-3D model on the
400-sample test set is 5.05%.

zEncoder Decoder
μ

σ
FNO

...

Objective

Figure 4: Flowchart of the iterative inverse design procedure. The decoder of a pre-trained variational
autoencoder (dashed gray box) is used to generate scatterers from the latent vector z (red box). The
electric field is then obtained via the FNO model, from which the loss is calculated. Gradients of the
objective with respect to the latent variables are obtained via backpropagation, from which they are
then iteratively updated until the optimization converges.

The inverse design process is relatively straightforward, as we use FNO-3D in place of a Maxwell
solver – the objective function can still be an arbitrary (differentiable) function of the fields. However,
our formulation differs from the typical density-based approach to inverse design in how the scatterers
are parametrized. Instead of optimizing the scatterers directly on the computational grid, they are
represented in the latent space of a pre-trained variational autoencoder (VAE) [52]. The reason for this
is the gradient-based nature of the design process – parametrizing the scatterers directly on the grid
would lead to continuous variations in the permittivity of the scatterer. However, we train FNO-3D
only on binary data, meaning that field inference will fail for scatterers with permittivities outside of
this range. While it is straightforward to include more permittivity values in the training data, this
would require a fine sampling between the lowest and highest permissible permittivity for continuous
inverse design, which would lead to a significant increase in dataset size, defeating the purpose
of using a specialized surrogate solver for fast inverse design. Instead, we train a convolutional
VAE that generates random scatterers from the same distribution from which the training set was
generated. Afterward, the device of interest can be optimized directly in the latent space of the VAE.
Crucially, the latent space vector can be continuously updated, and the VAE decoder will map this to
(approximately) binary geometries for which FNO-3D can give accurate predictions. The encoder
part of the VAE is only needed during training and is not used during inverse design. Note that
data generation for VAE training is very cheap as there is no simulation involved – in fact, the data
is generated on-the-fly during training. Details of the VAE architecture and training are given in
the VAE setup & training section. Note that the VAE parametrization is not a requirement for using
FNO for inverse design – in principle, any parametrization that yields binary scatterers can be used,
e.g. an explicit geometrical or boundary parametrization. A pictorial representation of the inverse
design pipeline is shown in Fig. 4.

7

A neural operator-based surrogate solver for free-form electromagnetic inverse design

0

10

20
O

b
je

ct
iv

e
(a

.u
.)

a

0 100 200 300
Iteration

0

2

4

O
b

je
ct

iv
e

(a
.u

.)

e

x

z

b

x

y

c

x

z
f

x

y

g

0.0 0.5 1.0

|E |2 (a.u.)

d

h

Figure 5: Inverse-design using FNO-3D of (a-d) a nanophotonic device that focuses into a single spot
and (e-h) a nanophotonic device that focuses into four focal spots under plane-wave illumination. We
show the (a, e) respective optimization histories of 64 optimizations for each device with different
random initial conditions. The red line marks the best final device. Slices of the electric field intensity
|E|2 for the best devices as obtained from full-wave FDTD simulations are shown in the (b, f) x-z
plane as well as in the (c, g) focal x-y plane. Images d and h show three-dimensional views of
both devices along with a volume rendering of the field intensity thresholded such that only the
highest-intensity regions are visible.

As a demonstration, we optimize two nanophotonic devices using FNO-3D. We define a simple
objective function in terms of the electric field:

J(E) =
∑
D
|E(r)|2 ∀r ∈ D , (5)

where the domain D represents the spatial points at which we wish to maximize the electric field
intensity. For the first device, we maximize the intensity at a single focal spot centered in the x-y
plane, i.e. we design a simple nanophotonic lens. In the second example, we maximize the intensity
at four focal spots, each centered in one quadrant in the x-y plane. The plane wave illumination spans
the x-y plane and impinges from the top (z = 0 µm) and the focal plane lies at the opposite end at
z = 4.8 µm. We optimize both devices for 300 iterations using AdamW [53]. In principle, other
optimization algorithms such as L-BFGS-B [54] or MMA [55] can be used – however, we choose
AdamW here because of readily available GPU implementations and support for optimizing multiple
devices in parallel. The results for these optimizations are shown in Fig. 5.

Crucially, we run 64 trials using different initial conditions – random vectors drawn from a normal
distribution in the VAE latent space – to arrive at 64 different optimized devices for each problem,
from which we then choose the best performing one as the “champion device” (see Figs. 5a and 5e).
We see that many runs converge to values significantly worse than the best one, i.e. the optimization
is highly sensitive to the choice of initial parameters, which is a problem that any local optimization
faces. However, sampling many different initial configurations is often not feasible for an inverse
design using full-wave solvers, and only a few, if any, additional trials are typically performed. In
contrast, a single FNO-3D optimization takes around 10 minutes (≈ 2 seconds per iteration, NVIDIA
A100 SXM4 GPU), and two optimizations can be run in parallel on a single GPU. We run the

8

A neural operator-based surrogate solver for free-form electromagnetic inverse design

optimizations for all 64 trials in parallel on 32 GPUs so that each full optimization run still takes only
10 minutes. This, of course, depends on the computational facilities at hand, but even running all
optimizations serially would take just over 5 hours. For comparison, a single such optimization would
take several days (20 minutes per simulation, two simulations per iteration, see the data generation
section), rendering a sweep over many different initial conditions such as the one demonstrated here
practically infeasible.

We perform full-wave simulations to evaluate the performance of the final optimized devices. For the
lens shown in Fig. 5d, the L1 error between simulated and predicted field intensity |E|2 is 10.2%,
and for the 4-point lens in Fig. 5h, the same error is 9.1%. While this is slightly higher than the error
on the test set, it is still well within reasonable accuracy, in particular regarding the uncertainty of
microfabrication technologies, e.g. 3D laser nanoprinting, that would be used to realize devices like
this. The reason for the increased error when compared to the test error is simple - the error on the
squared absolute fields is necessarily larger. In fact, the L1 losses on |E| are in line with those of the
test set means – 5.8% for the single lens and 5.0% for the 4-point lens. Additionally, we note that
the error in the intensity comes mainly from the absolute numerical values of the field components –
the qualitative agreement between FDTD and FNO-3D fields remains high, and we can see that both
devices fulfill their respective design goals. All fields shown in Fig. 5 are taken from full-wave FDTD
simulations.

4 Discussion

An (on the surface) compelling advantage of using surrogate models for solving scattering problems is
the almost negligible inference time required when compared to running a full-wave solver. However,
there are some major concessions that lead to this speedup, and it requires careful consideration
whether this trade-off is acceptable for a given task or not. The most obvious caveats are perhaps
generalization and accuracy – outside of very specific cases [56], a surrogate solver trained on finite
data will not generalize to data that lies outside of the distribution that it was trained on, and the
inference error will only approach zero given sufficient network expressivity [57] as well as training
set size [58]. More concretely, this means that for optical simulations, a data-driven model can only
“solve” certain classes of scattering problems – namely those that it was trained on, e.g. specific source
distributions, materials, and domain sizes, to name a few. These limitations can generally be overcome
to a degree by choosing a suitable network architecture, increasing the variety of training samples, and
increasing the total amount of training data, leading to better generalization and increased accuracy.
However, if the cost of generating sufficient training data exceeds the cost of solving the task using
conventional methods, then there seems to be little practical benefit of training a surrogate model. As
long as data-driven methods rely on data that is generated by classical methods, the latter can neither
be “superseded” nor are they – in many cases – slower when considered in the proper context.

We illustrate this in Fig. 6, where we show the total time taken for both FDTD and FNO-3D
simulations and the time needed to generate FNO-3D training data. Note that timings can vary
considerably between different hardware and simulation setups, and the values shown in Fig. 6 should
only be seen within the context of this work. FNO-3D is indeed three orders of magnitude faster than
FDTD during inference – however, we argue that while this might be impressive when looked at in
isolation, it is not a particularly relevant metric when making comparisons to conventional solvers.
The bulk of the time spent lies in data generation, in addition to training and inference time, both of
which are practically negligible in comparison. An advantage of data-driven approaches lies in the
fact that individual samples are independent, i.e. data generation can happen in parallel and is only
practically limited by the computational resources at hand. As an upper bound, and including training
time, a surrogate model needs to be used for inference as many times as the number of samples
contained in the dataset that it was trained on to just break even with a full-wave solver. Beyond this
point, a surrogate solver becomes cheaper concerning both total time and computational resources,
i.e. energy. With respect to total time, this bound can be lowered considerably by generating samples
in parallel as we have done here, see the data generation section.

All this is to say that data efficiency is crucial in the context of scientific machine learning in general
and for surrogate solvers in particular, and it needs to be addressed critically and transparently [59]. We
identify three aspects that should be considered when using deep learning in this context: architecture,
specialization, and application. By choosing a suitable model architecture, the amount of training
data required to reach sufficiently small test errors can be reduced significantly, as we demonstrate

9

A neural operator-based surrogate solver for free-form electromagnetic inverse design

100 102 104

Number of simulations

10−1

100

101

102

103

104

105

T
im

e
(m

in
u

te
s)

FDTD

FNO-3D

FNO total (serial)

FNO total (parallel)

Figure 6: Comparison of the time required for full-wave simulations (FDTD) and FNO-3D predictions
for a varying number of simulations. Time for a single simulation is assumed to be 20 minutes. Also
shown is the total time of FNO-3D inference in addition to sample generation (8192 samples) and
network training (≈ 24 hours) in the case of serial data generation (solid gray line) and parallel data
generation (dashed gray line) used in this work.

in the field inference section for an electromagnetic scattering problem, and similar observations
have been made across a variety of physical domains [38, 60]. Physics-informed approaches that
incorporate governing equations into the model’s loss function [29, 33, 61, 62] similarly contribute to
higher data efficiency. Secondly, it is practical to aim for model specialization, i.e. a surrogate solver
does not need to generalize to all possible problem configurations, as such generalization tends to
lead to unjustifiable data requirements. To keep data requirements minimal, it is expedient to limit
the scope of the model’s intended application. Lastly, the application needs to benefit from the use
of a surrogate solver in a way that justifies the cost of training. We demonstrate this in the inverse
design section by using a surrogate solver to perform a free-form, three-dimensional inverse design
of electromagnetic scatterers. Here, we train the model on a dataset of 8192 samples and run a total
of 128 independent optimizations with 300 iterations each. A comparable gradient-based approach
using the adjoint method would equate to running 128 · 300 · 2 = 76800 full-wave simulations, far
exceeding the number of simulations performed for generating the training data. Lastly, we would
like to stress that while surrogate models can be useful in many cases and will undoubtedly play
an important role in the future, fast “classical”, e.g. semi-analytical, methods should generally be
preferred if the problem at hand allows for their application as they often offer comparable speed at
much higher accuracy and have well-controlled error bounds.

In summary, we have demonstrated the use of a neural operator-based model for solving electro-
magnetic scattering problems and show that it outperforms current state-of-the-art by a significant
margin. As a data-driven method, the surrogate solver inherently suffers from a loss of accuracy and
generality when compared to full-wave solvers. Nonetheless, we demonstrate that this approach can
be used for complex tasks such as the free-form, gradient-based inverse design of three-dimensional
electromagnetic scatterers. Machine learning-based surrogate solvers have the potential to be highly
useful for applications in nanophotonics. However, it is essential to find efficient model architectures
and identify tasks well-suited for their application. We believe that our work contributes to both of
these aspects and look forward to future developments in this field.

5 Methods

5.1 Data generation

To generate a large number of random scatterer geometries, we employ the same method as presented
in Repän, Augenstein, and Rockstuhl [63]. We sample points from a random uniform distribution on

10

A neural operator-based surrogate solver for free-form electromagnetic inverse design

PMLSample

Figure 7: Illustration of the data generation process. A binary image is generated by smoothing and
thresholding an image drawn from a random uniform distribution. The image is then interpreted as a
material distribution and simulated with plane-wave illumination using FDTD. The sample for the
training set is then assembled from the scatterer (input) and the individual field components (target).

the interval [0, 1) on a regular square (cubic in 3D) grid with a side length of 128 px. A zero-padded
Gaussian blur (σ = 12 px) is then applied to the whole grid, and the result is thresholded at a value of
0.5. The zero-padding ensures that the scatterers are fully contained within the simulation domain
and do not extend into the boundaries. This procedure leads to a diverse set of smooth, random
geometries containing one or multiple scatterers. The whole data generation process is illustrated
in Fig. 7. We stress that the scatterers generated by this method can be almost arbitrarily complex,
and the size of the Gaussian smoothing kernel primarily determines this complexity. The size of the
smoothing is directly analogous to the “filtering” method when choosing a minimal feature size in
topology optimization [44, 64].

The generated random scatterers are interpreted as a material distribution, with 1 indicating the
presence of material (nhigh = 1.5) and 0 indicating air (nlow = 1), and illuminated using a plane-wave
source at a wavelength of λ0 = 1 µm. We choose nhigh = 1.5 as it corresponds roughly to the typical
polymers used in 3D laser nanoprinting. We run the simulations at a spatial resolution of 25 px µm−1,
which equates to a spatial extent of 5.12 µm along each axis. Additionally, the simulation domain is
surrounded by perfectly matched layers (PMLs) with a thickness of 0.5 µm on each side, increasing
the side length of the simulation domain to 6.12 µm. The dataset comprises pairs of steady-state
electric fields (excluding PML regions) and the corresponding scatterer. The simulations for both
the 2D and 3D datasets are performed using the open-source finite-difference time-domain (FDTD)
software package Meep [5]. A summary of the datasets is given in Table 3.

Table 3: Summary of the datasets of random scattering geometries used for training all models.
Type Samples Input data Output data Input shape Output shape

2D 17040 Scatterer pixels Ez 128× 128 2× 128× 128
3D 8720 Scatterer voxels Ex, Ey , Ez 128× 128× 128 6× 128× 128× 128

The total size of the 2D dataset is made up of 16384 (214) training samples, 256 validation samples,
and 400 test samples. Smaller 2D datasets used in the field inference section were sub-sampled from
this larger dataset.

11

A neural operator-based surrogate solver for free-form electromagnetic inverse design

The 3D dataset is made up of 8192 training samples, 128 validation samples, and 400 test samples.
Each sample took roughly 20 minutes (with some slight variations due to different scatterers) to
simulate on four cores of an Intel Xeon Platinum 8368 CPU (76 cores total). The data was generated
on 40 nodes of the HoreKa cluster, with each node simulating 19 samples in parallel at a time. In
total, the generation of the 3D dataset took just under four hours.

5.2 FNO & UNet training

Details on the FNO hyperparameters are given in Table 1. The UNet model consists of five downsam-
pling (max pooling) and five upsampling blocks, where each block comprises six convolutional layers
with batch normalization and ReLU activation. We do not implement UNet ourselves in this work,
instead, please refer to Chen et al. [29] for a detailed overview of the architecture. We deviate slightly
from their model by replacing the periodic padding in the convolutional layers with zero padding, as
we have found this to increase UNet performance on our dataset by ≈ 1% across all runs.

0 50 100

Epoch

10−2

10−1

100

L
2

(%
)

Training

0 50 100

Epoch

Validation

UNet 1024

UNet 2048

UNet 4096

UNet 8192

UNet 16384

FNO-2D 1024

FNO-2D 2048

FNO-2D 4096

FNO-2D 8192

FNO-2D 16384

Figure 8: Training and validation L2 loss curves for all UNet and FNO-2D training runs on different
dataset sizes.

All models are trained for 100 epochs using AdamW [53] with a one-cycle [65] learning rate policy
and a batch size of 32. We use the relative L2 error (Eq. (4), p = 2) as the training loss function and
monitor the relative L1 and L2 errors during validation at the end of each epoch with a validation
split size of 256 samples. Training and validation loss curves are shown in Fig. 8. The FNO-2D
and UNet models are trained on a single NVIDIA A100 SXM4 GPU. The training time per epoch is
summarized in Table 2 for each dataset size.

For training the FNO-3D model, we use the same effective batch size as for the 2D models. This
does not, however, fit into GPU memory during training, so we train the model in parallel across
two nodes with 4 GPUs each, where each GPU only operates on 4 data samples. To further reduce
memory requirements, we also use activation checkpointing [66] on the FNO blocks in the model.
After each iteration, the gradients are synchronized and averaged across all processes using PyTorch’s
DistributedDataParallel computing model [67]. The total training time for the FNO-3D model
was 11 hours. The training hyperparameters are summarized in Table 4.

Note that UNets are trained using a smaller learning rate than FNO – this is because UNet training
becomes unstable at a significantly lower learning rate than FNO. To perform a fair comparison, we
ran hyperparameter sweeps over multiple learning rates as well as learning rate schedulers for UNet.
The models presented herein always represent the best-performing networks that we found.

5.3 VAE setup & training

The VAE used in this work is based on a convolutional encoder-decoder type architecture. The
encoder contains five downsampling blocks that compress the input (a 128 × 128 × 128 image of

12

A neural operator-based surrogate solver for free-form electromagnetic inverse design

Table 4: Training hyperparameters used for the surrogate solver models.
Model Parameters Learning rate (min / max) Batch size Validation split

UNet 23 617 970 5× 10−5 / 5× 10−4 32 256
FNO-2D 5 909 250 1× 10−3 / 1× 10−2 32 256
FNO-3D 141 568 902 1× 10−3 / 1× 10−2 2x4x4* 128
* Trained on two nodes with 4 GPUs each and four samples per GPU (NVIDIA A100

SXM4).

the material distribution) into a latent space representation. Each downsampling block consists of a
3D convolution, a batch normalization layer, and SELU [68] activation. For the convolutional layers,
we use a kernel size of 5, a stride of 2, and a padding of 2 while doubling the number of channels in
each layer. The decoder mirrors the layers of the encoder, where the convolutional layers are replaced
with transposed convolutions [69] for upsampling. The VAE network contains 86 433 514 trainable
parameters in total.

The size of the latent space is, in principle, arbitrary and depends on the complexity of the geometries
that should be modeled – the more complex the geometries, the larger the latent space needs to be to
represent all possible topologies. We have found a latent space vector with 2048 elements to lead to
good results during optimization for our random scattering geometries. While VAEs with smaller
latent sizes (down to around 256 elements) still show good reconstruction capabilities during training,
we have found these to give worse results during inverse design, with less varied shapes and generally
lower fidelity. We suspect that while one might be able to reconstruct an input with a relatively small
latent space adequately, the separation of different geometries within that space might be rather large
and, thus, hard to reach for a gradient-based optimizer. Suppose one chooses a larger latent space
than what is strictly needed for reconstruction. In that case, the distance between different classes
of geometries shrinks in this higher dimensional space, and an optimization might reach them more
easily.

For training, we minimize the evidence lower bound (ELBO) [52] with an additional penalty term for
binarization:

LVAE(x, x̂) = γKL LKL(x, x̂)− LR(x, x̂)︸ ︷︷ ︸
ELBO

−γBLB , (6)

with the original image x, the reconstructed image x̂, the Kullback-Leibler divergence LKL, the
reconstruction loss LR and the binarization penalty LB:

LKL = Eq[log q(z|x)− log p(z)] (7)
LR = Eq[log p(x|z)] (8)

LB =
1

3
min

[
− log10

(
1

N

N∑
i

4xi(1− xi)

)
, 3

]
, (9)

where p is a standard normal distribution, q is the distribution parametrized by the encoder output
given a sample x, and z is a sample drawn from q. To balance the three terms of the VAE loss,
we introduce the annealing parameters γKL and γB which increase the weighting of LKL and LB at
different points in the training, respectively. The training loss curves are presented in Fig. 9.

We do not pre-generate a dataset for VAE training. Instead, we use the geometry sampling procedure
outlined in the data generation section to generate images of random scatterers on-the-fly during
training. The network is trained using a batch size of 64, for a total of 60 000 batches, resulting in a
total training time of 48 hours (single NVIDIA A100 SXM4 GPU).

6 Data availability

All code is made freely available under https://github.com/tfp-photonics/neurop_invdes.
This includes the code for data generation, network training, inverse design, as well as the model
implementations. We publish our research data under doi:10.35097/911, which includes the generated
datasets and model weights as well as the code and data used for generating Figs. 2, 3, 5, 6, 8 and 9.

13

https://github.com/tfp-photonics/neurop_invdes
https://doi.org/10.35097/911

A neural operator-based surrogate solver for free-form electromagnetic inverse design

−3

−2

−1

0

1

L
V

A
E

0.0
0.2

γ
K

L

0 30000 60000

Train batch

0
1

γ
B

0

10

20

30

L
K

L

−2

−1

0

1

L
R

0 30000 60000

Train batch

0.0

0.5

1.0

L
B

Figure 9: Total loss LVAE during training together with the annealed weight parameters γKL and γB
(left) as well as the individual components of LVAE for KL-divergence LKL, reconstruction LR, and
binarization LB (right).

7 Funding sources

This research has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy via the Excellence Cluster 3D Matter Made
to Order (EXC-2082/1, Grant No. 390761711). Y.A. acknowledges support from the Carl Zeiss
Foundation via the CZFFocus@HEiKA program. T.R. is supported by the Estonian Research Council
(Grant No. PSG716). The authors acknowledge support by the state of Baden-Württemberg through
bwHPC and the German Research Foundation (DFG) through grant no INST 40/575-1 FUGG
(JUSTUS 2 cluster). The computations involved in this work were partially also performed on the
HoreKa supercomputer funded by the Ministry of Science, Research and the Arts Baden-Württemberg
and by the Federal Ministry of Education and Research.

8 Acknowledgements

The authors kindly thank Lina Kuhn for helpful discussions regarding variational autoencoders.

References

[1] John Leonidas Volakis et al. Finite Element Method Electromagnetics: Antennas, Microwave
Circuits, and Scattering Applications. Wiley-IEEE Press, 1998.

[2] Jian-Ming Jin. The Finite Element Method in Electromagnetics. John Wiley & Sons, 2015.
[3] Yong-Jiu Zhao, Ke-Li Wu, and K-KM Cheng. “A compact 2-D full-wave finite-difference

frequency-domain method for general guided wave structures”. In: IEEE Transactions on
Microwave Theory and Techniques 50.7 (2002), pp. 1844–1848.

[4] Tyler W Hughes et al. “Forward-Mode Differentiation of Maxwell’s Equations”. In: ACS
Photonics 6.11 (2019), pp. 3010–3016.

14

A neural operator-based surrogate solver for free-form electromagnetic inverse design

[5] Ardavan F Oskooi et al. “MEEP: A flexible free-software package for electromagnetic simula-
tions by the FDTD method”. In: Computer Physics Communications 181.3 (2010), pp. 687–
702.

[6] Alessandro Vaccari et al. “Parallel Implementation of a 3D Subgridding FDTD Algorithm for
Large Simulations”. In: Progress in Electromagnetics Research 120 (2011), pp. 263–292.

[7] Allen Taflove, Ardavan Oskooi, and Steven G Johnson. Advances in FDTD Computational
Electrodynamics: Photonics and Nanotechnology. Artech house, 2013.

[8] Sean Molesky et al. “Inverse design in nanophotonics”. In: Nature Photonics 12.11 (2018),
pp. 659–670.

[9] Tyler W Hughes et al. “Adjoint Method and Inverse Design for Nonlinear Nanophotonic
Devices”. In: ACS Photonics 5.12 (2018), pp. 4781–4787.

[10] Philipp-Immanuel Schneider et al. “Benchmarking Five Global Optimization Approaches for
Nano-optical Shape Optimization and Parameter Reconstruction”. In: ACS Photonics 6.11
(2019), pp. 2726–2733.

[11] Yannick Augenstein and Carsten Rockstuhl. “Inverse Design of Nanophotonic Devices with
Structural Integrity”. In: ACS Photonics 7.8 (2020), pp. 2190–2196.

[12] Zin Lin et al. “End-to-end nanophotonic inverse design for imaging and polarimetry”. In:
Nanophotonics 10.3 (2020), pp. 1177–1187.

[13] Tyler W Hughes et al. “A perspective on the pathway toward full wave simulation of large area
metalenses”. In: Applied Physics Letters 119.15 (2021), p. 150502.

[14] Ho-Chun Lin, Zeyu Wang, and Chia Wei Hsu. “Fast multi-source nanophotonic simulations
using augmented partial factorization”. In: Nature Computational Science 2 (12 2022), pp. 815–
822.

[15] Lifeng Li. “New formulation of the Fourier modal method for crossed surface-relief gratings”.
In: Journal of the Optical Society of America A 14.10 (1997), pp. 2758–2767.

[16] Victor Liu and Shanhui Fan. “S4: A free electromagnetic solver for layered periodic structures”.
In: Computer Physics Communications 183.10 (2012), pp. 2233–2244.

[17] Momchil Minkov et al. “Inverse Design of Photonic Crystals through Automatic Differentia-
tion”. In: ACS Photonics 7.7 (2020), pp. 1729–1741.

[18] Dominik Beutel et al. “Efficient simulation of biperiodic, layered structures based on the
T-matrix method”. In: Journal of the Optical Society of America B 38.6 (2021), pp. 1782–1791.

[19] Raphaël Pestourie et al. “Physics-enhanced deep surrogates for PDEs”. Version 2. In:
arXiv:2010.08895 (2021). accessed 2023-03-22. arXiv: 2111.05841 [cs.LG].

[20] Lu Lu et al. “Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators”. In: Nature Machine Intelligence 3.3 (2021), pp. 218–229.

[21] Xinhai Chen et al. “An improved data-free surrogate model for solving partial differential
equations using deep neural networks”. In: Scientific Reports 11.1 (2021), p. 19507.

[22] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks
are universal approximators”. In: Neural Networks 2.5 (1989), pp. 359–366.

[23] Joshua Baxter et al. “Deep Learning for Engineering Optical Scattering from Plasmonic
Nanostructures”. In: Flat Optics: Components to Systems. Optical Society of America. 2021,
JW2D–4.

[24] Sergey Krasikov et al. “Intelligent metaphotonics empowered by machine learning”. In: Opto-
Electronic Advances 5.3 (2022), pp. 210147–1.

[25] Sensong An et al. “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface
Design”. In: ACS Photonics 6.12 (2019), pp. 3196–3207.

[26] Jiaqi Jiang and Jonathan A Fan. “Simulator-based training of generative neural networks for
the inverse design of metasurfaces”. In: Nanophotonics 9.5 (2019), pp. 1059–1069.

[27] Peter R Wiecha and Otto L Muskens. “Deep Learning Meets Nanophotonics: A Generalized
Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures”. In: Nano
Letters 20.1 (2019), pp. 329–338.

[28] Raphaël Pestourie et al. “Active learning of deep surrogates for PDEs: application to metasur-
face design”. In: npj Computational Materials 6.1 (2020), p. 164.

[29] Mingkun Chen et al. “High Speed Simulation and Freeform Optimization of Nanophotonic
Devices with Physics-Augmented Deep Learning”. In: ACS Photonics 9.9 (2022), pp. 3110–
3123.

15

https://arxiv.org/abs/2111.05841

A neural operator-based surrogate solver for free-form electromagnetic inverse design

[30] George Em Karniadakis et al. “Physics-informed machine learning”. In: Nature Reviews
Physics 3.6 (2021), pp. 422–440.

[31] Lu Lu et al. “Physics-Informed Neural Networks with Hard Constraints for Inverse Design”.
In: SIAM Journal on Scientific Computing 43.6 (2021), B1105–B1132.

[32] Salvatore Cuomo et al. “Scientific Machine Learning Through Physics–Informed Neural
Networks: Where we are and What’s Next”. In: Journal of Scientific Computing 92.3 (2022),
p. 88.

[33] Joowon Lim and Demetri Psaltis. “MaxwellNet: Physics-driven deep neural network training
based on Maxwell’s equations”. In: APL Photonics 7.1 (2022), p. 011301.

[34] Zongyi Li et al. “Neural Operator: Graph Kernel Network for Partial Differential Equations”.
Version 1. In: arXiv:2003.03485 (2020). accessed 2023-03-22. arXiv: 2003.03485 [cs.LG].

[35] Zongyi Li et al. “Fourier Neural Operator for Parametric Partial Differential Equations”.
Version 3. In: arXiv:2010.08895 (2021). accessed 2023-03-22. arXiv: 2010.08895 [cs.LG].

[36] Nikola Kovachki et al. “Neural Operator: Learning Maps Between Function Spaces”. Version 4.
In: arXiv:2108.08481 (2022). accessed 2023-03-22. arXiv: 2108.08481 [cs.LG].

[37] Lu Lu et al. “A comprehensive and fair comparison of two neural operators (with practical
extensions) based on FAIR data”. In: Computer Methods in Applied Mechanics and Engineering
393 (2022), p. 114778.

[38] Lu Lu et al. “Multifidelity deep neural operators for efficient learning of partial differential
equations with application to fast inverse design of nanoscale heat transport”. In: Physical
Review Research 4.2 (2022), p. 023210.

[39] Mahmoud MR Elsawy et al. “Multiobjective Statistical Learning Optimization of RGB Metal-
ens”. In: ACS Photonics 8.8 (2021), pp. 2498–2508.

[40] Charles Roques-Carmes et al. “Toward 3D-Printed Inverse-Designed Metaoptics”. In: ACS
Photonics 9.1 (2022), pp. 43–51.

[41] Peter R Wiecha et al. “Inverse design of nanophotonics devices and materials”. In: Photonics
and Nanostructures – Fundamentals and Applications 52 (2022), p. 101084.

[42] Wenjie Yao et al. “Trace formulation for photonic inverse design with incoherent sources”. In:
Structural and Multidisciplinary Optimization 65.11 (2022), p. 336.

[43] Mingkun Chen, Jiaqi Jiang, and Jonathan A Fan. “Algorithm-Driven Paradigms for Freeform
Optical Engineering”. In: ACS Photonics 9.9 (2022), pp. 2860–2871.

[44] Ole Sigmund and Kurt Maute. “Topology optimization approaches”. In: Structural and Multi-
disciplinary Optimization 48.6 (2013), pp. 1031–1055.

[45] Alec M Hammond et al. “High-performance hybrid time/frequency-domain topology opti-
mization for large-scale photonics inverse design”. In: Optics Express 30.3 (2022), pp. 4467–
4491.

[46] Mark D Wilkinson et al. “The FAIR Guiding Principles for scientific data management and
stewardship”. In: Scientific Data 3.1 (2016), pp. 1–9.

[47] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: International Conference on Machine
Learning. PMLR. 2015, pp. 448–456.

[48] Dan Hendrycks and Kevin Gimpel. “Gaussian Error Linear Units (GELUs)”. Version 4. In:
arXiv:1606.08415 (2020). accessed 2023-03-22. arXiv: 1606.08415 [cs.LG].

[49] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks for
Biomedical Image Segmentation”. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer. 2015, pp. 234–241.

[50] Micah Allen et al. “Raincloud plots: a multi-platform tool for robust data visualization”. In:
Wellcome Open Research 4.63 (2019).

[51] David W Scott. “On optimal and data-based histograms”. In: Biometrika 66.3 (1979), pp. 605–
610.

[52] Dan Hendrycks and Kevin Gimpel. “Auto-Encoding Variational Bayes”. Version 11. In:
arXiv:1312.6114 (2022). accessed 2023-03-22. arXiv: 1312.6114 [stat.ML].

[53] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization”. Version 3. In:
arXiv:1711.05101 (2019). accessed 2023-03-22. arXiv: 1711.05101 [cs.LG].

16

https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2108.08481
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1711.05101

A neural operator-based surrogate solver for free-form electromagnetic inverse design

[54] Ciyou Zhu et al. “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-
constrained optimization”. In: ACM Transactions on Mathematical Software 23.4 (1997),
pp. 550–560.

[55] Krister Svanberg. “The method of moving asymptotes – a new method for structural optimiza-
tion”. In: International Journal for Numerical Methods in Engineering 24.2 (1987), pp. 359–
373.

[56] Alethea Power et al. “Grokking: Generalization Beyond Overfitting on Small Algorithmic
Datasets”. Version 1. In: arXiv:2201.02177 (2022). accessed 2023-03-22. arXiv: 2201.02177
[cs.LG].

[57] Maithra Raghu et al. “On the Expressive Power of Deep Neural Networks”. In: International
Conference on Machine Learning. PMLR. 2017, pp. 2847–2854.

[58] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. accessed: 2023-03-22.
MIT Press, 2016.

[59] Rebekka V Woldseth et al. “On the use of artificial neural networks in topology optimisation”.
In: Structural and Multidisciplinary Optimization 65.10 (2022), p. 294.

[60] Shengze Cai et al. “DeepM&Mnet: Inferring the electroconvection multiphysics fields based
on operator approximation by neural networks”. In: Journal of Computational Physics 436
(2021), p. 110296.

[61] Sifan Wang, Hanwen Wang, and Paris Perdikaris. “Learning the solution operator of parametric
partial differential equations with physics-informed DeepONets”. In: Science Advances 7.40
(2021), eabi8605.

[62] Somdatta Goswami et al. “A physics-informed variational DeepONet for predicting crack path
in quasi-brittle materials”. In: Computer Methods in Applied Mechanics and Engineering 391
(2022), p. 114587.

[63] Taavi Repän, Yannick Augenstein, and Carsten Rockstuhl. “Exploiting geometric biases in
inverse nano-optical problems using artificial neural networks”. In: Optics Express 30.25
(2022), pp. 45365–45375.

[64] Fengwen Wang, Boyan Stefanov Lazarov, and Ole Sigmund. “On projection methods, conver-
gence and robust formulations in topology optimization”. In: Structural and Multidisciplinary
Optimization 43.6 (2011), pp. 767–784.

[65] Leslie N Smith and Nicholay Topin. “Super-convergence: very fast training of neural networks
using large learning rates”. In: Artificial Intelligence and Machine Learning for Multi-Domain
Operations Applications. Vol. 11006. SPIE. 2019, pp. 369–386.

[66] FairScale authors. FairScale: A general purpose modular PyTorch library for high perfor-
mance and large scale training. https://github.com/facebookresearch/fairscale.
accessed: 2023-03-22. 2021.

[67] Adam Paszke et al. “PyTorch: an imperative style, high-performance deep learning library”. In:
Advances in Neural Information Processing Systems 32 (2019), pp. 8026–8037.

[68] Günter Klambauer et al. “Self-Normalizing Neural Networks”. Version 5. In: arXiv:1706.02515
(2017). accessed 2023-03-22. arXiv: 1706.02515 [cs.LG].

[69] Matthew D Zeiler et al. “Deconvolutional Networks”. In: 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. IEEE. 2010, pp. 2528–2535.

17

https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://github.com/facebookresearch/fairscale
https://arxiv.org/abs/1706.02515

	1 Introduction
	2 Fourier neural operator for electromagnetic field inference
	3 Results
	3.1 field inference section
	3.2 inverse design section

	4 Discussion
	5 Methods
	5.1 data generation section
	5.2 FNO & UNet training section
	5.3 VAE setup & training section

	6 data availability section
	7 Funding sources
	8 Acknowledgements

