
Artificial Intelligence for Spectral Analysis:
a Comprehensive Framework

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von der KIT-Fakultät für
Elektrotechnik und Informationstechnik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M.Sc. Xiang Xie
geb. in Anhui, VR China

Tag der mündlichen Prüfung: 31.01.2023
Hauptreferent: Prof. Dr. rer. nat. Wilhelm Stork
Korreferent: Prof. Dr. Michael Beigl

Abstract

Spectral analysis is widely utilized in various academic as well as industrial
domains to extract relevant element information. Qualitative analysis requires
accurate identification of existing elements, whereas in quantitative analysis, the
concentrations of all relevant elements should be determined precisely. Although
current state-of-the-art approaches deployed in commercial products can achieve
excellent results on element quantification tasks, they still face some major lim-
itations: high computational time especially for complex tasks; labor-intensive
manual element identification procedure; expensive device calibration costs.

In this dissertation, a comprehensive neural-network-based framework for large-
scale spectral analysis is proposed. To set up a new and proper baseline covering
the most common elements (up to 28), extensive experiments are conducted to
examine the required training data size, select feasible network architecture and
discuss problem-specific configurations. On quantification tasks, compared to
classic methods, the proposed approach achieves the same level of error rate
with a significant speed-up of over 400x. Similarly, for the qualitative analysis,
the classification of elements is automated with excellent accuracy of over 99%
on real measurements, where the input data dimension is greatly reduced in an
explainable way.

Besides, since neural networks usually require huge computational as well as
storage resources, the application may face latency, memory footprint, storage
size and power consumption issues, especially on low-power edge devices. To
address this real-world problem, a hybrid approach is developed to optimize and
accelerate the neural network execution while consistently preserving the final
performance. Results on various target hardware platforms show that this hybrid

i

approach can achieve up to 52x mode size compression and 600x speedup with
even better performance in most cases, which enables low-lost deployment on
edge devices.

Finally, to overcome the last hurdle of the calibration problem towards large-
scale deployment on a vast number of devices in industry, a meta-learning-based
approach is proposed to achieve excellent calibration results at minimal cost
by learning to calibrate. The general spectral analysis problem is formulated
as a multi-device multi-configuration task and it achieves the best pre-and post
calibration error rate across different unknown devices. Besides, compared to the
baseline approaches with calibration, it performs on par even without calibration,
which is practical in the real-world scenario where an unknown device needs to
be deployed without reference samples available for calibration. Moreover, the
resource analysis indicates that the approach requires significantly less expenditure
to deploy large-scale devices in industry, which contributes to a huge saving and
growth potential.

ii

Zusammenfassung

Die Spektralanalyse wird in diversen akademischen und industriellen Bereichen
eingesetzt, um relevante Elementinformationen zu extrahieren. Bei der qualita-
tiven Analyse ist eine genaue Identifizierung der vorhandenen Elemente erforder-
lich, und bei der quantitativen Analyse, die Konzentrationen aller relevanten
Elemente müssen präzis bestimmt werden. Obwohl die aktuellen kommerziellen
Ansätze hervorragende Ergebnisse bei der Elementquantifizierung liefern kön-
nen, stoßen sie immer noch an ihre Grenzen: hohe Rechenzeit (insbesondere bei
komplexen Aufgaben), personalintensive manuelle Elementidentifizierung und
erhebliche Kosten für die Gerätekalibrierung.

In dieser Dissertation wird ein umfassendes, auf neuronalen Netzen basierendes
System für die Spektralanalyse in großemMaßstab entworfen. Um eine neue und
angemessene Baseline zu erstellen, wobei die meisten gängigen Elemente (bis
zu 28) abdeckt werden können, werden umfangreiche Experimente durchgeführt,
um die erforderliche Trainingsdatengröße zu untersuchen, geeignete Netzwerkar-
chitekturen auszuwählen und problemspezifische Konfigurationen zu analysieren.
Bei den Quantifizierungsaufgaben erreicht der vorgestellte Ansatz im Vergleich
zu den klassischen Methoden die gleiche Fehlerquote mit einer signifikanten
Geschwindigkeitssteigerung um einen Faktor von über 400. Auch für die quali-
tative Analyse wird die Klassifizierung von Elementen mit einer ausgezeichneten
Genauigkeit von über 99% bei realen Messungen automatisiert, wobei die Di-
mension der Eingabedaten auf einer interpretierbaren Weise stark reduziert wird.

Darüber hinaus erfordern neuronale Netze in der Regel große Rechen- und Spe-
icherressourcen, so dass dieAnwendungmit Problemen inBezug aufLatenzzeiten,
Speicherplatzbedarf und Stromverbrauch konfrontiert sein kann, insbesondere

iii

Zusammenfassung

bei Endgeräten mit geringer Leistung. Um dieses Problem zu lösen, wurde
ein hybrider Ansatz entwickelt, der die Ausführung neuronaler Netze optimiert,
beschleunigt und dennoch die endgültige Leistung beibehält. Die Ergebnisse auf
verschiedenen Zielhardwareplattformen zeigen, dass dieser hybride Ansatz in den
meisten Fällen eine bis zu 52-fache Komprimierung der Modellgröße und eine
600-fache Beschleunigung mit sogar besserer Performanz erreichen kann, was
den Einsatz auf Edge-Geräten mit geringen Kosten ermöglicht.

Um schließlich die letzteHürde desKalibrierungsproblems auf demWeg zu einem
großflächigen Einsatz auf einer großen Anzahl von Geräten in der Industrie zu
überwinden, wird ein auf Meta-Learning basierender Ansatz entwickelt, um her-
vorragende Kalibrierungsergebnisse mit minimalen Kosten zu erreichen, indem
die neuronale Netze lernen zu kalibrieren. Das allgemeine Spektralanalyseprob-
lemwird alsMulti-Geräte-Multi-Konfigurationsaufgabe formuliert und es erreicht
die beste Fehlerrate vor und nach der Kalibrierung bei verschiedenen unbekannten
Geräten. Im Vergleich zu den Basisansätzen mit Kalibrierung, schneidet es auch
ohne Kalibrierung gleich gut ab, was in einem realen Szenario sehr praktisch ist,
wo ein unbekanntes Gerät ohne verfügbare Referenzproben für die Kalibrierung
eingesetzt werden muss. Darüber hinaus zeigt die Ressourcenanalyse, dass der
Ansatz deutlich weniger Ressourcen für den industriellen Einsatz erfordert, was
zu einem enormen Einsparungs- und Wachstumspotenzial beiträgt.

iv

Acknowledgements

This work is done during the time I worked as research assistant as well as Ph.D.
student at the Institute for Information Processing Technologies (ITIV) of the
Karlsruhe Institute of Technology (KIT). It was a wonderful journey through my
last few years, even during the unusual pandemic time.

Prof. Dr. rer. nat. Wilhelm Stork, or Willy as we usually call, provides me the
great opportunity of doing Ph.D. study in the area which I truly love. Under his
thoughtful supervision, I was able to make great progress and explore the broad
academic world without any limitations. In the first place, I would like to thank
Willy for his guidance, encouragement and inspiration. Besides, I also want to
thank Prof. Dr. Michael Beigl for kindly accepting to be the second reviewer of
my dissertation. Moreover, a special thank belongs to the Helmut-Fischer-Stiftung
for the financial support.

Furthermore, I want to thank my colleges for their unconditional help, generous
support and precious discussions. I would like to thank Lars, Malte, Olli and
Rainer for helping me understand the physics more deeply and reviewing my
manuscript. I also want to thanks Anqi, Con, Marius, Nana, Simon and Toni for
their suggestions and inspirations during my Ph.D. study. Besides, I want to thank
the students I supervised for the great teamwork and cooperation.

Finally, I want to give a big thanks to my family in China for being with me all
the time, even at such a far distance. Spiritually, I am not alone during the long
long journey.

v

Table of Contents

Abstract . i

Zusammenfassung . iii

Acknowledgements . v

1 Introduction . 1
1.1 Overview of spectral analysis . 1
1.2 Current problems and limitations 3

1.2.1 Problems in qualitative analysis 3
1.2.2 Problems in quantitative analysis 4
1.2.3 Additional challenges in spectral analysis 6

1.3 Motivation of deep-neural-network based framework for
spectral analysis . 6

1.4 Contributions and outline . 7

2 Preliminaries . 13
2.1 Physics in spectral analysis . 13

2.1.1 Laser-induced breakdown spectroscopy 13
2.1.2 X-ray fluorescence spectroscopy 15
2.1.3 Generic abstract physical model in spectral analysis 16

2.2 Fundamentals in artificial intelligence 17
2.2.1 Definition of neural networks 17
2.2.2 Common neural network architectures 24
2.2.3 Hyperparameter, overfitting and underfitting 27
2.2.4 Tensorflow: a machine learning platform 29

vii

Table of Contents

3 Concept and design of the framework 31
3.1 Requirements for the framework 31

3.1.1 Functional requirements . 32
3.1.2 Non-functional requirements 33

3.2 Concept, design of the comprehensive framework 34
3.2.1 Overview . 34
3.2.2 Details of the framework components 35

4 Element quantification . 41
4.1 Current status and related work 41
4.2 Task definition and network architecture 45
4.3 Experiments and results . 46

4.3.1 Appropriate size of training dataset 46
4.3.2 Selection of model topology 47
4.3.3 Selection of hyperparameter 51
4.3.4 Evaluation on real measurements 52

5 General feature selection . 57
5.1 Introduction . 57
5.2 Background and related work . 61

5.2.1 Bayes error rate . 61
5.2.2 Kernel density estimation 62
5.2.3 Spearman’s rank correlation coefficient 62
5.2.4 Information-theoretic concepts 63

5.3 Watermelon feature selection . 65
5.4 Experiments . 69

5.4.1 Experiment setup . 70
5.4.2 Results and analysis of experiments 71
5.4.3 Discussion . 73

6 Element identification with interpretable dimension reduction 77
6.1 Introduction . 77
6.2 Related work and preliminary . 80

6.2.1 Task definition . 80
6.2.2 Related work . 81

viii

Table of Contents

6.3 Comprehensive element identification with interpretable
dimension reduction . 82
6.3.1 Data preprocessing . 82
6.3.2 Network architecture and evaluation metrics 83
6.3.3 Feature selection for dimension reduction 83
6.3.4 Other dimension reduction approaches 83

6.4 Experiments and results . 85
6.4.1 Experiment setup . 85
6.4.2 Classification results on simulation data 86
6.4.3 Comparison of dimension reduction methods 88
6.4.4 Evaluation on real measurements 90
6.4.5 Comparison of model sizes 92

7 Efficient network pruning via feature selection 95
7.1 Introduction . 96
7.2 Related works and preliminary . 98
7.3 Model pruning via feature selection 101

7.3.1 Feature selection score . 101
7.3.2 Network pruning and fine-tuning 103
7.3.3 Handling cross-layer connections structure 104

7.4 Experiments . 106
7.4.1 Experiment setup . 106
7.4.2 VGGNet on CIFAR10 . 107
7.4.3 DenseNet on CIFAR10 and ImageNet 109

8 Real-time low-cost spectral analysis 111
8.1 Introduction . 112
8.2 Real-time low-cost spectral analysis via a hybrid approach 114

8.2.1 Data reduction using feature selection 115
8.2.2 Network size reduction via efficient network pruning 116
8.2.3 Network quantization via Tensorflow Lite 116

8.3 Experiments . 117
8.3.1 Experiment setup . 117
8.3.2 Application of feature selection 119
8.3.3 Network pruning . 121

ix

Table of Contents

8.3.4 Network quantization . 122
8.3.5 Comparison on different hardware platforms 124
8.3.6 Overall comparison . 125

9 Minimal cost device calibration via meta learning 127
9.1 Introduction . 127
9.2 Related work . 131

9.2.1 Transfer learning and meta learning 131
9.3 DNN-based minimal cost device calibration via meta learning . . . 133

9.3.1 Problem definition . 133
9.3.2 Meta learning based calibration 133
9.3.3 Choice of baseline methods 134

9.4 Experiment . 135
9.4.1 Experiment setup . 135
9.4.2 Performance evaluation . 138
9.4.3 Resource analysis . 144

10 Conclusion and future work . 145
10.1Conclusion . 145
10.2 Future work . 148

10.2.1Future work in fundamental research 148
10.2.2Future work in practices . 149

Abbreviations and Symbols . 151

List of Figures . 153

List of Tables . 159

Publications . 161
Journal paper . 161
Conference paper . 161

Bibliography . 163

x

1 Introduction

This chapter briefly introduces the current status, problems and challenges in the
domain of spectral analysis. Besides, it gives the motivation and the overview of
this dissertation to set up a comprehensive framework based on artificial intelli-
gence.

1.1 Overview of spectral analysis

In general, spectral analysis refers to the analysis of the properties of a spec-
trum measured with a spectrometer. Since the physical characteristics of different
samples are diverse and distinct, various spectrometers are needed to meet the
measurement objectives and eventually get the feasible spectra. These spectrom-
eters usually vary from the light sources, the optical systems and the detectors.
However, their principles are similar and can thus be unified to a certain extent,
which will be further discussed in Chapter 2. Representative spectrometers are
e.g. fluorescence spectroscopy [1, 2], gamma-ray spectrometer [3] and laser-
induced breakdown spectroscopy [4,5] to name a few. In addition, in Fig. 1.1, the
spectra of various samples measured with different spectrometers are illustrated.
It demonstrates that across the spectral analysis domains, the spectra, which are
one-dimensional data, share similar properties, even though the samples and the
measurement systems differ a lot.

Due to the broad data source of spectra, spectral analysis is therefore by nature
a widely utilized analytical technology in various academic as well as industrial
domains, where the information of relevant elements needs to be extracted and

1

1 Introduction

(a) A bronze alloy measured
by laser-induced breakdown
spectroscopy [6]

(b) A cement sample measured
with prompt gamma neutron
activation analysis [7]

(c) Stellar spectrum measured by
LAMOST telescope [8], the
bottom one is pre-processed.

Figure 1.1: Examples of spectra of various samples measured on different spectrometers

processed. Commonly, the scope of work can be divided into two subgroups:
qualitative and quantitative analysis. Qualitative analysis usually refers to the
identification of present elements given a measured sample spectrum, whereas in
quantitative analysis, the concentration of each element needs to be determined
precisely.

An example of pure qualitative analysis is the stellar spectral classification, where
the stars need to be classified into different classes. In the meanwhile, drinking
water analysis might prefer a quantitative result to examine whether all the indi-
cators are within the given thresholds. As for many applications in the real world,
both analysis tasks are often conducted together to obtain a more comprehensive
outcome. To demonstrate the need for spectral analysis in different communities,
a short list of related applications is shown as follows:

• trace biometal analysis [1, 4, 9]

• metal element analysis [2, 3, 5–7, 10–12]

• drinking water analysis [13, 14]

• blood serum analysis for cancer diagnosis [15]

• soil and rock quality assessment [16–18]
• gas analysis [19]

• bone properties analysis [20]
• stellar spectral classification [8, 21]

2

1.2 Current problems and limitations

• isotope identification [22]

• solar radio spectrum classification [23]
• mineral classification [24]

It is clear, not only from the literature mentioned above but also from the ob-
servation in the industrial sections, that metal element analysis is quite an active
application field. In addition, it also covers a wide range of task settings, where
very complex samples with a high number of elements are within the scope of
work. Therefore, this dissertation focuses on the unified task formulation based
on metal element analysis, aiming to provide a generalized framework for most
spectral analysis applications, which are more domain-specific with yet a narrower
scope of work.

1.2 Current problems and limitations

In the first place, the preliminary input of spectral analysis is the captured spectra of
high quality, which can be improved with the appropriate choice of spectrometers
and proper measurement conditions. However, when it comes to the analysis part,
difficulties appear in both sub-task domains.

1.2.1 Problems in qualitative analysis

In qualitative spectral analysis, the element composition should be determined.
However, current state-of-the-art approaches deployed in the industry (i.e. the
analysis tools in the commercial products) do not provide a one-click solution
for element classification. It is required that the elements need to be identified
manually by an expert who has domain-specific knowledge, therefore, it is labor-
intensive, costly and not error-free.

Besides, since qualitative analysis is usually a preliminary step for the following
quantitative analysis, it may lead to unexpected biased results if, e.g., the element
classification is not correct. In such cases, the quantitative analysis will fail

3

1 Introduction

to obtain the results on these elements that are not identified in the first step.
Moreover, if the qualitative result is not available, which often occurs in the real
world when no experts are on site, the results of quantitative analysis are also
negatively affected due to their own limitations.

1.2.2 Problems in quantitative analysis

As for quantitative analysis, limitations are also obvious. The construction of
spectra can be, in general, precisely formulated by a complex physical model
(e.g., the use of fundamental methods [25] and Monte Carlo simulations [26]),
given all relevant parameters known. An abstract formulation of the model can
be described by Eq. 1.1,

S = P (Φ) (1.1)

where the spectrum S is a nonlinear function P (.) of Φ, and Φ denote all the
variables that are to be determined, i.e., the concentration of all relevant elements
and the thickness of the layers (if applicable). The ultimate goal of quantitative
analysis is thus to determine Φ from a measurement spectrum given specific
measurement conditions with a known device, for which the inverse function
P−1(S), denoted in Eq. 1.2, is needed.

Φ = P−1(S) (1.2)

However, an analytical solution to Eq. 1.2 does not exist and it is not possible to
retrieve the relevant parameters directly from a spectrum. To solve such problems,
classic methods try to adopt certain optimization methods and utilize an iterative
solver to fit a feasible set of Φ∗ as the final solution. The process starts with a
randomized set of parameters Φ0, and the physical model P (.) will generate a
simulated spectrum with respect to Φ0. The difference between the simulation
and the measurement will be fed into the iterative solver, which determines the

4

1.2 Current problems and limitations

Guess 𝚽

Simulate
spectrum
using 𝑃

Simulation
= Input?

Output 𝚽Spectrum
YN

Classic method with iterative solver

Figure 1.2: The workflow of classic method

update ofΦ for the next iteration. The whole process stops when it converges to a
stable stage or meets the stop criteria. This procedure is illustrated in Fig. 1.2 for
a better understanding. Although this approach can obtain a very accurate result
and has been successfully deployed in the industry, it still faces the following
limitations:

• Since there is no closed-form solution and an optimization process is in-
volved, this approach can not obtain a deterministic result. Instead, local
optima with certain error rates are expected.

• The processing time is high and not stable, due to the fact that a varying
number of iterations are required for the iterative solver to converge.

• The performance of this approach depends on the task complexity. Al-
though for simple tasks with only several elements involved, it can get an
accurate result within a reasonable time, as the number of elements in-
creases, it faces the curse of dimensionality and the search space may get
too large for the solver to converge to a local optimum. Therefore, the
computational time of the method increases exponentially and it eventually
fails.

• Besides, to obtain a valid result, the classicmethod requires further informa-
tion regarding the measurement condition, e.g., the measurement voltage,
the type of filter in the device, etc. Therefore, it is not possible to analyze

5

1 Introduction

a sample with unknown measurement conditions, which is a noticeable
disadvantage in the real world.

1.2.3 Additional challenges in spectral analysis

The problems and limitations discussed above hold implicitly the assumption that
the spectral analysis is conducted on a single measurement device that never de-
grades. However, in the real world, especially in industrial applications, typically
numerous devices are to be deployed in different environments, which introduces
two additional factors: calibration and re-calibration.

The physical characteristics of the measurement differ a lot if they are built
in different product lines, mainly because the components of the devices may
be totally different. However, even in the same product line and the devices
consist of the exactly same components, they will also show small but diverse
characteristics, which result from the difference among the hardware components
due to the production tolerance. Therefore, an initial calibration is needed before
the products are shipped to the customers to ensure performance. Later, as the
device is in operation for awhile, the hardware degrades physically and the analysis
results will shift from the actual ones, which leads to performance degradation.
Thus, re-calibration is needed at regular time intervals. The calibration costs are
enormous in terms of labor, hardware and time costs, which has a negative effect
both for the manufacturers and the end customers.

1.3 Motivation of deep-neural-network based
framework for spectral analysis

To address all the problems discussed in Section 1.2, this dissertation proposes
a deep-neural network-based comprehensive framework for large-scale spectral
analysis. The motivation for the utilization of deep neural networks (DNN) is
intuitive since by design, DNN is a data-driven approach that can represent any

6

1.4 Contributions and outline

complicated non-linear functions precisely. The universal approximation theorem
shows that if the weights of a neural network are properly set, it can approximate
the target inverse function of the physical model P−1(S) defined in Eq. 1.2. To
obtain the proper weights, the network needs to be trained on a sufficiently large
dataset, which can be, satisfyingly, generated by the physical model.

Besides, DNNs also perform well on classification tasks across many domains,
e.g., image classification, object detection and so on. It also results from the
characteristics of DNNs that they can learn the implicit relationship between the
data and its high-level information. In the context of spectral analysis, it refers
to the ability to identify the elements when the spectra data is given. Thus, in
principle, both quantitative and qualitative spectral analysis tasks can be solved
by the DNNs.

Moreover, this dissertation focuses on not only a general solution for spectral
analysis that is academically sound, but it also pays attention to the deployment
of the whole framework in the real world, especially in large-scale industrial
scenarios. As a full replacement of the existing classic approaches, the framework
needs to be comprehensive in many perspectives, e.g., the coverage of the whole
procedure from data generation to the final results, the coverage of user cases, the
efficiency of the analysis and the deployment in the real world. Hence, advanced
optimization techniques for DNNs are also within the scope of work of this
dissertation.

1.4 Contributions and outline

The outline of the dissertation reflects the development phases of the whole
framework. After this introduction Chapter 1, in Chapter 2, the preliminaries in
the spectral analysis as well as in the domain of neural networks are presented.
The concept of the framework is given in Chapter 3 to provide a clear overview
of all contributions of the dissertation.

The contributions and the corresponding chapters are summarized as follows:

7

1 Introduction

• Element quantification

The most significant problem of the current SOTA solution in the industry
is the high processing time in quantitative analysis, as stated in Section
1.2.2.

As a starting point of this dissertation, a general deep-neural network-
based fundamental framework for large-scale quantitative spectral analysis
is proposed. As a first comprehensive approach is this domain, extensive
experiments to examine the required data size, select feasible network
architecture and discuss problem-specific configurations. The approach
covers all the relevant elements (a total number of 28) that are involved in the
spectral analysis, and it delivers a constant time performance regardless of
the task complexity. Compared to classic methods, the approach performs
on par and achieves a speedup of 400x under a normal task complexity
setting. Besides, additional information on measurement conditions is no
longer needed, which simplifies the analysis process.

This part is presented in Chapter 4, where a more detailed discussion
of related work, the design of the framework and the evaluation of the
approach on simulation and measurement data are given.

• Element classification

The qualitative task of element classification (i.e., the identification of
present elements) is so far not yet addressed by the classic methods and
manual labor-intensive work is needed, as discussed in Section 1.2.1.

Therefore, the framework proposed for element quantification is adopted
and the whole design procedure is performed to identify the most common
elements precisely and efficiently. The approach achieves up to more than
99% accuracy on simulation datasets and real measurements from the in-
dustry. Besides, to reduce the computational and data storage cost under
big data industrial settings, the proposed approach utilizes feature selection
to select important features to reduce the data dimension while maintaining

8

1.4 Contributions and outline

the prediction performance and interpretability. Compared to other dimen-
sion reduction baseline methods, this approach outperforms by achieving
the best prediction accuracy and providing the most intuitive data reduction
result. The application of the feature selection method can reduce 80%
parameters and 96.9% FLOPs (floating point operations, a measurement of
computational cost) of neural networks with even better test accuracy on
real-world data.

Thework on element classification is presented inChapter 6with all relevant
details and evaluation results. Besides, the feature selectionmethod utilized
in this part is proposed separately in Chapter 5 as a general approach
in the domain of machine learning. The effectiveness of this method is
demonstrated by the extensive evaluation with other competitors on various
task fields, e.g., text classification, and image classification to name a few.

• Accelerated neural network execution

After solving the two major tasks in spectral analysis, the deployment of
DNNs on the products is expected. SinceDNNs require huge computational
as well as storage resources, their application may face latency, memory
footprint, storage size and power consumption issues, especially on low-
power edge devices. To address this problem, this dissertation proposes
a first hybrid approach to optimize and accelerate the neural network exe-
cution while consistently preserving the final performance. First, feature
selection is performed to reduce the data dimension and guarantee an effi-
cient input throughput. Then, after the neural network training, the DNNs
are further pruned to obtain a more compact network architecture. Finally,
the networks will be quantized to reach a higher compression ratio with
low-cost operations for edge devices. Extensive experiments on various
target hardware platforms are conducted to demonstrate the effectiveness of
this approach, and results show that, compared to the original framework
developed in Chapter 6, it can achieve up to 52x mode size compression and
600x speedup with even better performance in most cases. As a representa-
tive example, it successfully deploys a DenseNet with only a 0.1 MBmodel

9

1 Introduction

size and 0.9 ms inference time on a Raspberry Pi, which enables real-time
on-site spectral analysis for industrial and commercial applications.

This part of the work focuses on the optimization of the DNN utilization in
real-world settings. The overall hybrid approach is presented in Chapter 8.
Among the techniques adopted in the approach, the feature selectionmethod
is already discussed in Chapter 5. As for the network pruning method, it
is thoroughly presented in Chapter 7. Independent of the task definitions
in spectral analysis, the method is compared with other SOTA network
pruning algorithms on famous large-scale image dataset benchmarks to
ensure a fair comparison.

• Efficient calibration with meta learning

As mentioned in Section 1.2.3, another critical issue that appears in the
production is the high calibration costs, which also applies to the proposed
DNNs framework. In the previous chapters, DNNs achieve excellent and
efficient performance, but one DNN only works on one specific device
that it was trained on. Thus, to deploy the models in industry to achieve
a commercial-level performance on a vast number of devices, enormous
DNNs have to be trained for every device.

To avoid such costs, this dissertation proposes a meta-learning-based ap-
proach to achieve excellent calibration results at minimal cost by learning
to calibrate. First, the general spectral analysis problem is formulated as a
multi-device multi-configuration task that consists of various basic tasks.
Then, a meta network is trained based on large-scale datasets with a basic
task-aware design. Finally, the network is calibrated with a few measure-
ments (few-shot) on an unknown device to optimize the device-specific
performance. Extensive experiments show the effectiveness and efficiency
of this approach over baseline methods by achieving the best pre- and after-
calibration error rates across different unknown devices. Besides, compared
to baselines after calibration, the approach performs on par even without
calibration. This makes the zero-shot setting feasible, which is practical
in the real-world scenario where an unknown device needs to be deployed

10

1.4 Contributions and outline

without reference samples available for calibration. Moreover, the resource
analysis shows that this approach requires significantly less expenditure to
deploy large-scale devices in industry, which contributes to a huge saving
and growth potential.

This part serves in this dissertation as the last step towards the efficient
deployment of DNNs in industry via minimal cost device calibration. The
details along with the real-world comparison are presented in Chapter 9.

After proposing the comprehensive framework covering the most important as-
pects in spectral analysis, Chapter 10 concludes this dissertation with a short
summary and an outlook addressing the current limitations of the dissertation.

11

2 Preliminaries

In this chapter, the basic principles in the domain of spectral analysis and artificial
intelligence (to be specific, DNNs) are introduced to give a brief overview of the
fundamentals of this dissertation.

2.1 Physics in spectral analysis

In this section, the basic physics of spectral analysis is briefly introduced. Since
the systems themselves are very complex and are not the focus of this dissertation,
the introduction will not go too deep into details. Instead, two representative
techniques, laser-induced breakdown spectroscopy (LIBS) and X-ray fluorescence
(XRF) spectroscopy, are discussed in the following two sections and a generic
physical model is derived in Section 2.1.3.

2.1.1 Laser-induced breakdown spectroscopy

The LIBS is atomic emission spectroscopy that utilizes a pulsed laser beam as
its energy source. As shown in Figure 2.1, the pulsed laser with high energy
will go through an optical system consisting of mirrors and lenses, so that it can
be transmitted to the sample in a desired angle and direction. Then, a small
portion of the sample will be removed (known as laser ablation) and a high-
temperature plasma is initiated. Shortly after that, during the cooling process,
the excited electrons of the atoms fall to the ground states, thus emitting light
with unique characteristics (i.e. wavelengths). The light will be captured by

13

2 Preliminaries

Figure 2.1: The schema of LIBS [27]

the detector through another part of the optical system, resulting in the spectrum
measurement.

Iij(λ) =
1

4π
n0Aij

giexp
−Ei/kBT

U(T)
I(λ) (2.1)

The intensity of the spectrum can be described by Eq. 2.1[28], where Iij is the
emission rate density of photons (in m−3sr−1s−1), n0 is the number of neutral
atoms in the plasma (in m−3), Aij is the transition probability between level i
and level j (in s−1), gi is the degeneracy of the upper level i (2J + 1), U(T) is
the partition function (in s−1), Ei is the energy level of the upper level i (in eV),
kB is the Boltzmann constant (in eV/K), and T is the temperature (inK).

I(λ) is the line profile such that Eq. 2.2 is fulfilled, with λ being the wavelength
(in nm).

∫ ∞

−∞
I(λ)dλ = 1 (2.2)

Besides, the partition function U(T) is the statistical occupation fraction of every
level k of the atomic species as shown in Eq. 2.3.

U(T) =
∑
j

gj exp
−Ej/kBT (2.3)

14

2.1 Physics in spectral analysis

Figure 2.2: The work principle of XRF [29]

2.1.2 X-ray fluorescence spectroscopy

The whole system of XRF spectroscopy works similarly to LIBS, where the major
difference is that the source used here is an X-ray instead of a pulsed laser.

In an XRF spectroscopy, the X-ray radiation beam focuses on a spot on the sample
surface, and the electrons from the inner shell will be knocked out. Afterward,
electrons from outer shells fall naturally into the inner shells, emitting therefore
the so-called fluorescence radiation. Similar to LIBS, the fluorescence spectrum
is also atom-related due to the unique energy difference of electrons between
shells. Therefore, conducting the spectral analysis can find the composition of the
sample qualitatively or quantitatively.

IEi,fl
(x) =

∫ x

0

dx′IE0
· exp[− µi,E0

sinψin
ρix

′]

· (τi,E0
ωXi

gl,Xi

jXi
− 1

jXi
ρi

1

sinψin
)

· exp[−
µi,Ei,fl

sinψout
ρix

′] · ΩDet

4π
· εDet,Ef l

(2.4)

15

2 Preliminaries

Table 2.1: Overview of the parameters for quantitative analysis with XRF

Parameter Explanation
IEi,fl

intensity of the measurable fluorescence radiation of element i with photon energy Ei,fl

IE0
intensity of the incident radiation with photon energy E0

µi,E0
absorption coefficient of the element i at photon energy E0

ψin angle of incidence of the exciting radiation
ρi density of the element i
τi,E0

photoelectric absorption cross-section of the element i for a photon of energy E0

ωXi
fluorescence yield of the absorption edge Xi

gl,Xi
transition probability of the fluorescence line l belonging to the absorption edge Xi

jXi jump ratio of the absorption edge Xi

µi,Efl
absorption coefficient of element i at fluorescence energy Efl

ψout angle of observation/angle in which direction the detector is located
ΩDet effective solid angle of the detector
εDet,Efl

efficiency of the detector at the photon energy Efl

One possible solution for the quantitative analysis is given in Eq. 2.4[30], whereas
the overview of all the parameters is given in Table 2.1. It is clear to see that on
one hand, both LIBS and XRF are similar in terms of building the spectrometers
and measuring the spectra. However, the underlining physics is quite different,
complicated, and yet not perfectly described.

Therefore, this requires the classic methods tomake great efforts to make the phys-
ical modeling precise for each type of spectrometer, which is resource-demanding.
However, for DNNs, such processes can be easily worked around by implicitly
learning the modeling with data. As shown in the next section as well as the rest
of the dissertation, a general solution can be built on a generic physical model,
which is not bound by a specific spectrometer type.

2.1.3 Generic abstract physical model in spectral
analysis

The previous sections demonstrate that the physics behind different spectrometers
is complex and distinct. However, from a high-level perspective, they share a

16

2.2 Fundamentals in artificial intelligence

similar philosophy: a spectrum is one-dimensional data that represents the obser-
vation (intensity of the light) of the target object (the sample). The observation is
related to the unique structure of the target (the composition and the concentra-
tions) in a nonlinear way. Apart from the sample itself, as described in Chapter
1, the process of measurement (e.g., measurement conditions) also contributes to
the final observation. Therefore, in this dissertation, a generic abstract physical
model for spectral analysis is given in Eq. 2.5, which is appropriate to represent
most spectrometers without mentioning spectrometer-specific configurations.

S = P (θ,T,λ,K)

θ = [θ11, θ12, ...θ1j ; θ21, θ22, ...θ2j ; ...; θi1, θi2, ...θij]

T = [T1, T2, ..., Tj]

(2.5)

here, S corresponds to the spectrum, θij denotes the concentration of ith element
in the jth layer (if applicable, e.g. for coating layers), Tj is the thickness of the
jth layer, λ is a set of parameters with respect to measurement conditions and
K represent the characteristics of the measurement device. The ultimate goal
of spectral analysis is thus to determine θ and T from a measurement spectrum
given λ and K, for which the inverse function P−1(S) is needed.

2.2 Fundamentals in artificial intelligence

To provide a better understanding of the dissertation, in this section, the basic
concepts regarding artificial intelligence, particularly neural networks, are intro-
duced.

2.2.1 Definition of neural networks

An (artificial) neural network, as the name suggests, is a network consisting of
(artificial) neurons. In artificial intelligence, the idea of neural networks comes

17

2 Preliminaries

Input layer Hidden layer Output layer

Figure 2.3: The basic architecture of neural networks

from biology and mimics the function of the human brain: the biological neurons
connect with others to pass signals, process signals and make decisions.

2.2.1.1 Architecture of Multilayer Perceptrons

For simplicity, the definitions related to the neural networks are given based on the
most vanilla neural network architecture: fully-connected neural network, which
is also known as Multilayer Perceptrons (MLP). In general, an MLP consists of
an input layer, several hidden layers and an output layer, as visualized in Fig. 2.3.
Each layer then consists of many neurons, denoted as circles in the figure. The
data are passed and processed in the network in a feed-forward fashion, i.e., the
output of the previous neurons is the input of the next neurons.

18

2.2 Fundamentals in artificial intelligence

2.2.1.2 Activation function

The output of each neuron is a non-linear function of its input. As shown in Fig.
2.3, suppose a neuron has three inputs from the neurons of the previous layer,
denoted as x1, x2, x3, the neuron will assign three different weights w1, w2, w3

to each input along with a shared bias b. To put it in matrix form, a linear output
for linear regression problems will be wTx + b. However, in this way, the stack
of numerous layers, i.e., the stack of linear operations, does not bring any benefit
and is equivalent to the result of a network with only one layer. To avoid such
problems, non-linearity is introduced so that a deep neural network can represent
a very complex non-linear function. The universal approximation theorem shows
that if the weights are properly given, a neural network can approximate any inter-
esting function within arbitrary errors. This is the motivation for utilizing neural
networks in many domains where an implicit relationship between observations
and target outcomes exists, but it is not mathematically, or analytically solvable.

Therefore, the output of a neuron is defined in Eq. 2.6 and this non-linear function
ϕ is called activation function.

y = ϕ(wTx+ b) (2.6)

There are many choices of activation functions and neither of them outperforms
the others in all scenarios. It depends on the applications and the performance is
also related to other components used in the neural networks. Fig. 2.4 visualizes
several popular activation functions that are defined in Eq. 2.7. In this dissertation,
the ReLU is the default choice if not otherwise stated.

ϕ(.) =



Sigmoid: 1

1 + e−x

tanh: tanh(x)
ReLU:max(0, x)

Leaky ReLU:max(0.1x, x)

(2.7)

19

2 Preliminaries

−10 −5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0
O

ut
pu

t
Sigmoid

−10 −5 0 5 10
−1.00
−0.75
−0.50
−0.25

0.00
0.25
0.50
0.75
1.00

tanh

−10 −5 0 5 10
Input

0

2

4

6

8

10

O
ut

pu
t

ReLU

−10 −5 0 5 10
Input

0

2

4

6

8

10
Leaky ReLU

Figure 2.4: Some popular activation functions

For simplicity, the function of the Lth layer is denoted as ϕL. Thus, the output
(forward pass) of a neural network y with respect to the input x is given in Eq.
2.8.

y = ϕL · ϕL−1 · ...ϕ1(x) (2.8)

2.2.1.3 Loss function and evaluation metrics

A neural network is utilized to perform certain tasks, such as regression or clas-
sification tasks. In a regression problem, the network makes predictions for
continuous values, such as the temperature of a city, the stock prices and so on.
As for classification problems, the target values are discrete and the data need to
be classified into different categories, e.g., classification of objects in images (cat,
dog, people ...), spam emails detection (spam or not spam).

20

2.2 Fundamentals in artificial intelligence

To evaluate the performance of a neural network on such tasks, a proper evaluation
method should be chosen to compare the predictions and the ground truth values
(often called labels in the machine learning domain), which is also essential to
train the neural network. In general, for regression problems, usually the mean
squared error (MSE), a popular statistical measurement, is used to assess the
goodness of the prediction. Given the labels y and the predictions ŷ, the MSE is
defined as Eq. 2.9. A lower MSE indicates then a better prediction performance.

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.9)

For classification problems, the labels are binary values of either 0 (the object
does not belong to the class) or 1 (the object belongs to the class) for a given class.
The binary cross-entropy (BCE) is often used to find out whether the predictions
fit the true labels.

BCE =
1

n

n∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi) (2.10)

These estimators calculate the error rates that a neural network makes, given the
current parameters θ of the network. Therefore, they are typically called the
loss function l(x,θ). The general concept of neural network training is thus to
adapt the parameters of the network given training data so that the values of the
loss function can be minimized with better parameter sets θ∗, which is formally
described by Eq. 2.11.

θ∗ = argmin
θ

n∑
i=1

l(xi,θ) (2.11)

To evaluate the performance of a neural network under different task settings,
there are also various metrics that monitor the results with their own focuses. For
instance, the mean absolute error (MAE), defined in Eq. 2.12, has the same unit

21

2 Preliminaries

as the labels and provides thus an intuitive description of the error rate, which is
often used in the real world regression problems.

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.12)

For classification problems with multiple classes, the F1 score examines the
balanced prediction performance. The F1 score is defined as follows, which is
the harmonic mean of the precision and recall:

F1Score = 2 · Precision×Recall
Precision+Recall

Recall =
TP

TP + FN

Precision =
TP

TP + FP

(2.13)

To explain the notation using the element identification problem as an example, TP
denotes True Positive and stands for a prediction being positive (e.g., the element
Au is present) and true. Similarly, FN and FP stand for False Negative and False
Positive. Recall assesses effectively how many "should be found" elements are
"found", and the precision indicates how many "found" elements are correct. In
the multi-class and multi-label case, where there are more than multiple classes
(number of elements) and multiple labels (one sample contains more than one
element), the average F1 score across all classes is used in this dissertation.

Besides, the accuracy metric, defined in Eq. 2.14, is also widely applied in many
classification problems, although it may lead to biased results when the class
distribution is unbalanced. For instance, assume that 99% of people do not have
a specific disease. In this case, a simple model that always outputs 0 (i.e., not ill)
can achieve an accuracy of 99% without any true prediction power.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.14)

22

2.2 Fundamentals in artificial intelligence

2.2.1.4 Back propagation and optimizer

The neural networks only work when the right weights are assigned. Therefore,
they need to be trained with respect to the problems, or more precisely, to the
training data. Since the loss functions are designed for neural networks, they
can be theoretically trained using a classic optimization method such as gradient
descent. However, unlike many classic optimization problems, neural networks
often have significantly bigger parameter space (e.g., billions of parameters) and
they are also non-convex and have thus many local minimums. Therefore, the
technique of back propagation (BP) is adopted to compute the gradient of the
network.

Due to the lengthy mathematical description, this section does not cover the whole
process of BP, which can be found inmany famous textbooks/courses about neural
networks. In short, the unique idea of BP is that the gradient is calculated layer-
wise, instead of globally, from the last layer to the first layer using the chain rule.
In this way, an efficient calculation is possible with powerful modern graphics
cards (GPU).

After obtaining the gradient with respect to the loss function, an update of the
network parameters is needed. There are many optimizers that are widely used in
this domain, such as stochastic gradient descent (SGD) and Adam[31].

SGD is a modification of the vanilla gradient descent method that updates only
with a subset (called batch) of the whole training data. The major reason for the
modification is that the training data, especially for the large-scale image datasets,
are often too large even to fit in the memory for computation. Therefore, the
parameters θ are updated at a slower but feasible convergence speed to the local
optimum. In Eq. 2.15, each update step t is referred to as one iteration, and the
α is the update step size.

θt+1 = θt − α
1

n

n∑
i=1

∇θl(xi,θt) (2.15)

23

2 Preliminaries

Adam is an advanced optimization method involving two additional moment
parameters in the update loop. The update procedure is defined in Eq. 2.16 and
it outperforms SGD in most cases with default parameter settings, although at a
higher computational cost.

gt = ∇θl(xi,θt−1)

mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β2) · g2t
m̂t = mt/(1− βt

1)

v̂t = vt/(1− βt
2)

θt = θt−1 − α · m̂t/(
√
v̂t + ϵ)

(2.16)

For these optimizers, the update step size α is called the learning rate, and
it represents how fast a neural network should update its weights towards the
desired direction in the search space.

2.2.2 Common neural network architectures

In addition to MLP, this section introduces several other popular neural network
architectures, which are also evaluated in this dissertation. An overview illustra-
tion of the architectures is shown in Fig. 2.5.

2.2.2.1 Convolutional neural networks

Convolutional neural networks (CNN) have been widely utilized in many appli-
cation domains such as image classification [32] and object detection [33].

The architecture of a classic CNN AlexNet [34] is visualized in Fig. 2.6. The input
data are 227×227×3 images with the same pixel widthW and heightH of 227,
and since there are 3 color channels for R, G, and B values, the data has a depthD
of 3. To exploit the spatial information in the input data, one convolutional layer

24

2.2 Fundamentals in artificial intelligence

a) MLP b) CNN c) DenseNet

Input layer

Dense layer

Dense layer

Dense layer

Output layer

D
en

se b
lo

ck

Input layer

Conv layer

Conv layer

Pooling layer

Output layer

Dense layer

Dense layer

Conv layer

Conv layer

Pooling layer

Flatten layer

Input layer

Conv layer

Output layer

GA

Pooling layer

Conv layer

Conv layer

Conv layer

Conv layer

Pooling layer

Dense block

d) Autoencoder

Input layer

Dense layer

Dense layer

Dense

layer

Output layer

Dense layer

Dense layer

E
n
co

d
er

D
eco

d
er

Figure 2.5: Overview of neural network architectures

(Conv layer) consists of several filters, each of them is a 3-dimensional tensor,
e.g., 11× 11× 3 with learnable weights. During the forward pass, the filters are
slid across the weight and width axis of the data, outputting the dot product of
the filters and the local input data, which is the reason for the name convolutional
layer.

The output dimension of a Conv layer depends on the configuration of how the
convolutional operations are executed. With a given input size ofW1×H1×D1,
number of filters K, kernel size of F , the stride (step size of the convolution) S
and the zero padding size (zero-filling of the image borders) P , the output size
W2 ×H2 ×D2 is thus given in Eq. 2.17. For instance, given input data size of
227× 227× 3,K = 96, F = 11, P = 0, the output size is then 55× 55× 96.

W2 = (W1 − F + 2P)/S + 1

H2 = (H1 − F + 2P)/S + 1

D2 = K

(2.17)

25

2 Preliminaries

227x227x3

10004096 4096

27x27x256
13x13x384

13x13x256
13x13x256

55x55x96

Input data
Conv1

Conv2

Conv3

Conv4

Conv5 FC6 FC7
FC8

Figure 2.6: AlexNet architecture, visualization based on [35]

Other layers that are designed for CNNs are e.g. Pooling layer and Flatten layer.
The Pooling layer does not contain any parameters but simply calculates and
outputs the max (Maxpooling) or mean (Averagepooling) values of a local region.
The Pooling layers are utilized to reduce the data volume without losing too much
information. The Flatten layer is used to, as the name suggests, flatten the output
of Conv layers to 1-d data so that the fully-connected layer (Dense layer) can be
connected to the Conv layers. Therefore, it is placed between the last Conv layer
and the first Dense layer.

The Conv layers are expected to function as feature extractors, the first Conv
layers extract some low-level features from the input data, and the deeper layers
build high-level features based on the low-level features. Followed by several
fully connected layers, the CNNs perform significantly better than MLPs on
classification/regression tasks where spatial information is important.

2.2.2.2 Densely connected convolutional networks

Densely connected convolutional network (DenseNet) [36] is a recently proposed
architecture that outperforms most other convolutional networks on image clas-
sification benchmark tasks. The unique feature of DenseNet is the introduction
of Dense block, as visualized in Fig. 2.5 (c). Within a Dense block, all Conv

26

2.2 Fundamentals in artificial intelligence

layers are directly connected and one layer outputs effectively the aggregation of
all previous Conv layers. This feature allows a deeper layer to get access to a much
shallower layer, which makes the network more compact and efficient. Compared
to classic CNNs, DenseNets have significantly fewer parameters and require thus
fewer storage resources.

2.2.2.3 Autoencoder

Autoencoder is another popular neural network architecture that is often used for
feature transformation, anomaly detection and denoising. The architecture of a
plain vanilla Autoencoder is described in Fig. 2.5(d) with a similar structure as
an MLP. The primary feature of an Autoencoder is that the number of neurons
in each layer decreases in the beginning and then increases, aiming to reconstruct
the original input data without loss of information (i.e., output = input). This
design of a bottleneck in the middle of the neural network allows it to learn low-
dimensional yet high-level features, which makes it feasible for feature reduction.
Therefore, the output of the bottleneck layer given input spectra is then the
transformed features with reduced dimension.

2.2.3 Hyperparameter, overfitting and underfitting

In the domain of artificial intelligence, the term hyperparameter is used nearly
everywhere. The hyperparameters refer to the parameters related to the model
(e.g., a neural network) and the training process that can not be determined with
a clear, deterministic procedure.

For instance, when designing the neural network architecture, it is necessary to
choose the number of layers, the number of neurons in each layer, the type of
activation function, the size of a filter, and so on. Similarly, during training,
the learning rate (and how to decrease the learning rate, if any), the number of
the batch size and training iterations are also crucial for the final performance.
However, there are no such methods that choose the suitable values of these

27

2 Preliminaries

parameters to achieve the best result. Therefore, they are called hyperparameters
and can only be determined empirically. Moreover, depending on task settings,
one set of hyperparameters may work well on one task but not for another task.

Like the optimization problem of the neural network training itself, the search
for appropriate hyperparameters is time-consuming and usually ends up with a
local optimum. For example, the grid search evaluates the hyperparameters from
an exhaustive combination of finite candidate sets; a random search tests the
hyperparameters with randomly generated values; evolutionary search utilizes
evolutionary algorithms to search for a better hyperparameter set.

During the hyperparameter search, it is necessary to assess the performance of the
neural networks to make a solid choice. The values of the loss functions and other
metrics are good indicators to monitor performance. Note that the assessment
should be unbiased, otherwise a choice might be less feasible. Here, the concept
of underfitting and overfitting play an important role.

Orange: underfitting
Black: just good
Green: overfitting

(a) Goodness of the model, based on [37]

Error rate

!

Blue: training error
Red: test error

iterations

Underfitting Overfitting

(b) Error curve, based on [38]

Figure 2.7: Visualization of overfitting and underfitting

Assume a neural network is trained to classify the objects into two classes (red
and blue) and it uses a nonlinear line to separate different classes, as shown in Fig.
2.7a. At the beginning, the network does not perform well and the classification
line (orange) can not properly separate the two classes. Later, as the training
goes on, the black classification line can correctly classify most objects, which is
superior. Although some outlines do exist and are not correctly classified, it is

28

2.2 Fundamentals in artificial intelligence

expected not to. However, if the network is further trained to develop the green
classification line, which perfectly classifies all the objects it has observed (i.e.,
the training data). But if it is tested on an unknown, yet the data from the same
distribution (the test data), the error rate will tend to be larger than that on the
training data.

This phenomenon is described as the transition from underfitting, where themodel
still needs to improve its performance, to overfitting, where the model is skewed
to the training data and can not perform well on other data. Fig. 2.7b depicts the
error curves of a model on training data and test data, respectively.

2.2.4 Tensorflow: a machine learning platform

The implementation, training and deployment of neural networks require high
efficiency, robustness, usability and portability. In this dissertation, theTensorflow
[39] framework is utilized as the platform to build, train and test the neural
networks.

Tensorflow is free and open-source, it covers most aspects that are required to
develop and deploy DNN applications. It provides both Python and C++ APIs
and GPU support for the acceleration of intensive matrix operations. Besides,
the models can be easily deployed on Web (Tensorflow.js), mobile and edge
devices (TensorLite), this multi-platform functionality is a huge plus for large-
scale industrial applications where both the development and the deployment are
crucial and need to be consistent.

29

3 Concept and design of the
framework

Before diving into the details of all the contributions of this dissertation, this
chapter gives a high-level overview of the architecture of the dissertation. First,
the requirements for the framework are briefly defined, from which the right
solutions should be derived. Afterward, the concept of the framework design is
visualized and each module of the framework, which fulfills the corresponding
requirement, will be addressed in the following chapters 4 to 9, respectively.

3.1 Requirements for the framework

In this section, the requirements are divided into two subgroups: functional
and non-functional requirements. Functional requirements describe what the
framework should achieve to successfully accomplish the tasks, whereas non-
functional requirements guide how the framework should do to solve the problem
in a better way.

For a better understanding of the requirements addressing the existing problems,
in this section, a thorough description of the overall spectral analysis procedure
with classic methods is visualized in Fig. 3.1.

The workflow begins with a sample pool and the samples (A, B, C...) in the pool
need to be analyzed. Then, a suitable device (1, 2, 3...) is selected to measure the
sample with a feasible measurement condition (a, b, c...). Afterward, the classic

31

3 Concept and design of the framework

D
ev

ic
e

1

Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Sample A

Sample B

Sample C

Sample F

Sample…

Spectrum A-1-a

Measurement

Spectrum A-1-b

Spectrum A-1-c

Spectrum A-1-…

Sample pool Spectral analysis

Guess 𝚽

Simulate
spectrum
using 𝑃

Simulation
= Input?

Output 𝚽Spectrum
YN

Classic method with iterative solver

Sample D

Sample E

D
ev

ic
e

n

Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Spectrum …-n-a

Spectrum …-n-b

Spectrum …-n-c

Spectrum …-n-…

Figure 3.1: The workflow of classic method

method begins to analyze the sample (e.g., Spectrum-A-1-a) with all available in-
formation (sample composition, device information and measurement condition),
where the iterative solver adapts the element parameters Φ until convergence.

The limitations of the procedure are obvious: the sample composition is needed
to constrain the parameter space Φ; the device information and measurement
condition are needed to obtain a precise physical model; the solver takes many
iterations to converge, which is dependent on the complexity of the tasks.

3.1.1 Functional requirements

In the domain of spectral analysis, The most essential functional requirements fo-
cus on two major problems: qualitative and quantitative analysis. Since in current
classic solutions, qualitative analysis is conducted manually in an inefficient man-
ner due to the absence of feasible algorithms, the requirement for the qualitative
analysis is then a first solution towards automatic element identification with high
accuracy.

• FR1.1: automatic identification of element composition

• FR1.2: high accuracy for element identification

32

3.1 Requirements for the framework

As for quantitative analysis, the major limitations of classic methods with iterative
solvers are the long and unstable computational time, which is correlated to the
number of relevant elements. To demonstrate this issue, assume that a solver
needs 10 iterations to search in the space of 0% to 100% for a pure element
sample to achieve an accuracy of 1%. Accordingly, the number of iterations
needed for a sample with 10 elements will be 1010 to obtain similar performance.
All else being equal, the search time increases exponentially and it will eventually
collapse and can not converge. Therefore, the requirement for quantitative analysis
is straightforward: high precision and low computational time.

• FR2.1: low error rate for element quantification

• FR2.2: low, robust computational cost

3.1.2 Non-functional requirements

Based on functional requirements, the functionality of the framework is con-
cretely described. As for non-functional requirements, they essentially define the
optimizations that have to be conducted to make the framework efficient, practical
and user-friendly for the final deployment.

The first non-functional requirement regarding real-world applications is there-
fore the related hardware cost. The neural networks are powerful, yet consume
enormous hardware resources. Hence, minimizing the hardware demand plays an
important role in cost reduction. Since the cost of neural networks is dependent
on the input data dimension as well as its own architecture, it is thus desirable to
reduce the data throughput and the network size without losing performance on
the tasks.

• NFR1.1: low data dimensionality without performance degradation

• NFR1.2: compact neural network architecture without performance degra-
dation

33

3 Concept and design of the framework

Besides, in the actual deployment of the framework, different target platforms
may be involved, including professional workstations, mobile devices and low-
power edge devices. Budget platforms possess less computational power and
thus require further execution optimization. To ensure the robust performance
of the proposed framework under various scenarios, considerations regarding
cross-platform functionality are crucial.

• NFR2.1: consistent performance with respect to different target hardware
platforms

Apart from cross-platform ability, cross-device performance is also essential in
real-world applications where numerous devices are in use. By default, calibra-
tion costs increase linearly with the number of devices in deployment, which
contributes to a significant variable cost. Therefore, it is beneficial if such costs
can be reduced by a large ratio.

• NFR3.1: minimal cost of device calibration

3.2 Concept, design of the comprehensive
framework

3.2.1 Overview

Based on the consideration mentioned in Section 3.1, the framework is proposed
in a way that all the requirements can be fulfilled. With preliminaries related
to neural networks being introduced in Chapter 2, in this section we explain
the general idea of the DNN-based framework and demonstrate how the whole
framework is built step by step until it is mature to be deployed in the industry.

The backbone of the framework focuses on the functional requirements and serves
as the minimum viable product. The modules of the backbone realize the func-
tionality of element quantification and identification to prove the concept of the

34

3.2 Concept, design of the comprehensive framework

Table 3.1: Overview of the requirements on the framework addressed in the dissertation

Requirements Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Functional
requirements

FR1.1 x
FR1.2 x
FR2.1 x
FR2.2 x

Non-functional
requirements

NFR1.1 x x
NFR1.2 x x
NFR2.1 x
NFR3.1 x

framework. Afterward, further development and optimizations complete the
framework with a generalized solution at lower costs. The details of the modules
are visualized in Section 3.2.2 and an overview regarding which chapters cover
which part of the framework, is given in Table 3.1.

3.2.2 Details of the framework components

3.2.2.1 Element quantification and identification

First, the functional requirements regarding element identification and quantifica-
tion should be met. Therefore, for each task, we conduct thorough research with
extensive experiments in two separate chapters.

In this dissertation, the framework starts with a solution to element quantification
problems. As shown in Fig. 3.2, to avoid using iterative solvers that take a long
time to compute, we propose a DNN-based approach to simplify the analysis
by directly estimating the inverse system function P−1(S) with a prediction
network. Besides, to eliminate the effects of various measurement conditions,
a scale network is introduced for compensation. Therefore, compared to classic
methods, the framework directly feeds the spectrum to the neural networks and
can get the results at once.

35

3 Concept and design of the framework

DNN approach with scale network

D
ev

ic
e

1

Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Sample A

Sample B

Sample C

Sample F

Sample…

Spectrum A-1-a

Measurement

Prediction
network

Scale
network

Spectrum A-1-b

Spectrum A-1-c

Spectrum A-1-…

Sample pool Spectral analysis

Guess 𝚽

Simulate
spectrum
using 𝑃

Simulation
= Input?

Output 𝚽Spectrum
YN

Classic method with iterative solver

Spectrum
Scaled

Spectrum
Output 𝚽

Sample D

Sample E

D
ev

ic
e

n

Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Spectrum …-n-a

Spectrum …-n-b

Spectrum …-n-c

Spectrum …-n-…

Figure 3.2: The workflow of element quantification

Similarly, the element identification can be solved in the same way, whereas the
differences and modifications compared to element quantification are discussed
in the corresponding chapter in detail. As for now, the functional requirements
FR1.1, FR1.2, FR2.1 andFR2.2 can be fulfilledwith the current framework shown
in Fig. 3.3.

DNN approach

D
ev

ic
e

1

Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Sample A

Sample B

Sample C

Sample F

Sample…

Spectrum A-1-a

Measurement

Spectrum A-1-b

Spectrum A-1-c

Spectrum A-1-…

Sample pool Spectral analysis

Sample D

Sample E

D
ev

ic
e

n

Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Spectrum …-n-a

Spectrum …-n-b

Spectrum …-n-c

Spectrum …-n-…

Element
Quantification

Element
Identification

Figure 3.3: Framework with element quantification and identification

36

3.2 Concept, design of the comprehensive framework

DNN approach
D

ev
ic

e
1

Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Sample A

Sample B

Sample C

Sample F

Sample…

Spectrum A-1-a

Measurement

Spectrum A-1-b

Spectrum A-1-c

Spectrum A-1-…

Sample pool Spectral analysis

Sample D

Sample E

D
ev

ic
e

n

Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Spectrum …-n-a

Spectrum …-n-b

Spectrum …-n-c

Spectrum …-n-…

Element
Quantification

Element
Identification

Optimization
Feature Selection

Network Pruning

Network Quantization

Figure 3.4: Framework with optimization

3.2.2.2 Optimization of the framework

After the functional requirements are all met, the framework will be further
optimized to fulfill the non-functional requirements. To reduce the hardware as
well as the computational costs, the following aspects are taken into consideration.

• The spectral data, as demonstrated in Chapter 1, have plenty of redundant
information that is less relevant to the problems. Thus, if only important
spectral features are selected as the final input data, the cost of DNNs will
significantly decrease because they are input dependent. Therefore, we
introduce a feature selection method to accomplish this task.

• Obviously, the cost of a DNN also depends on its own architecture and size.
Hence, if the inverse system function can be represented by a smaller neural
network without performance degradation, it can then greatly reduce the
hardware demand that the DNNs may require. To address this aspect, we
propose a network pruning method to slim the DNNs while maintaining
their performance on the given problems.

• When it comes to real-world applications, different platforms, especially
low-power edge devices, are involved in the deployment. The execution
of a DNN may suffer from huge latency issues or may not be possible at
all due to limited hardware resources. Therefore, specific configurations of

37

3 Concept and design of the framework

DNN approach

D
ev

ic
e

1

Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Sample A

Sample B

Sample C

Sample F

Sample…

Spectrum A-1-a

Measurement

Spectrum A-1-b

Spectrum A-1-c

Spectrum A-1-…

Sample pool Spectral analysis

Sample D

Sample E

D
ev

ic
e

n

Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Spectrum …-n-a

Spectrum …-n-b

Spectrum …-n-c

Spectrum …-n-…

Element
Quantification

Element
Identification

Optimization
Feature Selection

Network Pruning

Network Quantization

DNN approach

Element
Quantification

Element
Identification

Optimization
Feature Selection

Network Pruning

Network Quantization

(a) Framework in real-world applications

DNN approach with meta learning

MeasurementSample pool Spectral analysis

Element
Quantification

Element
Identification

Optimization
Feature Selection

Network Pruning

Network Quantization

D
ev

ic
e

1

Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Sample A

Sample B

Sample C

Sample F

Sample…

Spectrum A-1-a

Spectrum A-1-b

Spectrum A-1-c

Spectrum A-1-…

Sample D

Sample E

D
ev

ic
e

n

Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Spectrum …-n-a

Spectrum …-n-b

Spectrum …-n-c

Spectrum …-n-…

(b) Generalized framework in real-world applications

Figure 3.5: Framework overview before and after cross-device consideration

DNNs with light operations are introduced to solve such problems. In this
dissertation, we utilized the network quantization technique to decrease the
requirements on edge devices.

With all the optimizations integrated into the framework, the framework fulfills
NFR1.1, NFR1.2 and NFR2.1 to provide a highly efficient solution that is feasible
in the industrial context.

38

3.2 Concept, design of the comprehensive framework

3.2.2.3 Cross-device calibration

Note that so far, the proposed framework focuses on the solution on a specific
device, whereas in reality, the framework should work on enormous measurement
devices with various characteristics, as visualized in Fig. 3.5a. It essentially
means that DNNs must be re-trained for each device, leading to a significant
calibration cost.

To address this problem, the dissertation formulates the spectral analysis problem
in amore general form, and theDNNs in the framework are trained in a generalized
manner by explicitly taking the difference between devices into consideration. As
demonstrated in Fig. 3.5b, the sample pool and device pool are treated as a unified
task pool, and the generalized DNNs are trained based on this formulation. This
approach enables a fast calibration of the DNNs on an unknown device, and thus
meets the last non-functional requirement NFR3.1.

39

4 Element quantification

As stated in Section 1.4, in this dissertation, the first step is to set up a proper
baseline framework for quantitative spectral analysis. This chapter begins with
the formulation of the element quantification task, then related work is discussed
to demonstrate the limitations of previous work. Afterwards, the framework is
developed and evaluated on both simulation data and measurement data.

4.1 Current status and related work

Onemajor challenge of quantitative spectral analysis is how to retrieve information
from measurements in a robust, fast and accurate manner. Recall that in Section.
2.1.3, the generic abstract physical model that describes a spectrum is defined as
Eq. 4.1:

S = P (θ,T,λ,K) (4.1)

where S corresponds to the spectrum, θ denotes the concentration of relevant
elements, T is the thickness of the layers, λ is a set of parameters with respect to
measurement conditions and K represent the characteristics of the measurement
device. The ultimate goal of spectral analysis is thus to determine θ (andT) from
a measurement spectrum given λ and K, for which the inverse function P−1(S)

is needed.

Classic analytical methods utilize fundamental methods [25] and/or Monte Carlo
simulations [26] to build the physical modeling. By doing so, one can generate
simulation spectra with given input parameters θ, T, λ and K. Optimization

41

4 Element quantification

0 200 400 600 800 1000
Channels

0

50

100

150

200

250

In
te

ns
ity

(a) Spectra of pure Ag sample using different devices
Device A
Device B
Device C
Device D
Device E
Device F

0 200 400 600 800 1000
Channels

0

100

200

300

400

500

600

700

In
te

ns
ity

(b) Spectra of pure Ag sample under different measurement conditions
Measurement condition a
Measurement condition b
Measurement condition c
Measurement condition d
Measurement condition e

Figure 4.1:Measured spectra of one pure Ag sample using (a) different devices under the same
measurement condition or (b) different measurement conditions on the same device. The
spectra are easily distinguishable by their intensity and characteristics of peaks. For
instance, in (a), device B has the largest peaks in the range of 200-400 but much lower
peaks in the range of 600-800, respectively.

methods can be used to find a suitable set of parameters so that the simulation
spectrum and measurement spectrum will eventually fit. As a result, the quanti-
tative results are obtained. Still, there are critical limitations of such methods: 1)
the simulation is not perfectly precise due to the complexity of physical modeling,
which leads to systematic errors during the fitting process; 2) the computational
time on these methods, particularly the Monte Carlo simulation, is high. On the
one hand, the improvement in the quality of the simulated spectrum leads to an
increase in the computation time; on the other hand, usually many iterations are
required for an optimization method to find the proper parameter set. Therefore,
real-time analysis is often not feasible, especially for complex spectra.

Recently, neural-network-based approaches[2, 4–7,17, 19] are proposed for spec-
tral analysis and are claimed to be effective due to the ability of neural networks
to approximate a nonlinear function very precisely. Compared to classic analyt-
ical methods, neural networks can directly serve as the desired inverse function
P−1(S) when properly trained. However, related works [1, 2, 6, 17] show quan-
tification results in different application domains with up to 20% test error rate,
which is only considered to be "relatively accurate".

42

4.1 Current status and related work

The major cause of not satisfying results is that the data for network training is
not sufficiently large. Typically a few tens of or hundreds of, at maximum several
thousands of spectra are used for training, whereas one single spectrum can
contain more than 6000 features (or referred to as channels, or data points). These
high-dimensional data with yet few instances available are difficult to train, and
overfitting problems often occur. To optimize the training process, some previous
works utilize feature selection to reduce the input dimension. For instance, [1,2,5]
use empirical strategy to select regions of element peaks manually as input, [4]
use a wrapper algorithm to select features. However, the overall goodness of
performance is still limited, particularly for empirical strategy. As illustrated in
Fig. 4.1, for different devices and/or measurement conditions, the spectra of one
identical sample can be significantly different regarding the overall amplitude and
existence/absence of certain peaks. Therefore, the manual selection of certain
regions of interest is not applicable in terms of generalization. Moreover, some
previous works use normalization during data preprocessing, which is in most
cases not feasible to train a more general neural network for mainly two reasons:
1) Unlike image data which have a specific value range (typically 0 − 255) and
can thus easily be normalized (e.g., to 0− 1), spectra data have unlimited range,
and it is hence only applicable under constant measurement device settings. 2)
The utilization of normalization compensates for the effect of λ,K andT, which
makes the quantification of layer thickness an unsolvable task. These reasons also
explainwhy so far, the application of neural networks in spectral analysis is limited
to a single device, single measurement condition and element quantification only.

The main limitations of previous works are summarized as follows:

• There is usually only a limited number of spectra available for neural
network training, which leads to performance drop and overfitting problems.

• The scope of application is narrow. Besides the constraint of a single device,
single measurement condition and element quantification only, the neural
network is designed and trained for a specific task, in which the quantitative
results of a few known elements are to be determined.

43

4 Element quantification

• Potential for improvement regarding the usage of neural network technique
is huge. Misuse and/or vanilla use of preprocessing (feature selection, nor-
malization), network design (shallow network architecture) and evaluation
(evaluation metrics) can be optimized.

Table 4.1: Summary of all relevant elements

Atomic Number Name Atomic Number Name
14 Si 45 Rh
15 P 46 Pd
16 S 47 Ag
24 Cr 48 Cd
25 Mn 49 In
26 Fe 50 Sn
27 Co 51 Sb
28 Ni 73 Ta
29 Cu 74 W
30 Zn 77 Ir
31 Ga 78 Pt
33 As 79 Au
42 Mo 82 Pb
44 Ru 83 Bi

In this chapter, a large-scale spectral analysis framework using deep neural net-
works is proposed. We generate a huge number of simulation spectra based on an
existing analytical model (which is currently deployed in commercial products)
and exploit the power of neural networks. We show that the performance of neural
networks is robust, accurate and significantly faster compared to state-of-the-art
analytical methods. Besides, we illustrate that the data needed for training is
related to the complexity of the systems (i.e., the number of elements), and to
obtain a well-generalized neural network, a certain reasonable number of spectra
is required. In short, we set up a baseline covering most use cases as an all-in-one
solution in the broad domain of quantitative spectral analysis.

The rest of the chapter is organized as follows: Section 4.2 formally defines the
task of spectral analysis and gives a short introduction to relevant neural network
architectures. In Section 4.3 we conduct comprehensive experiments to construct
our baseline framework.

44

4.2 Task definition and network architecture

4.2 Task definition and network architecture

As discussed in Section 4.1, element concentration θ and layer thickness T need
to be determined given measurement spectrum S, measurement condition λ and
device characteristicsK. In this chapter, we holdT constant because the inclusion
of layer systems requires a more complicated discussion and is out of the scope
of work. Spectrum S is in our case a one-dimensional vector of 1024 channels
and we define 28 most relevant elements (see Table 4.1) as the size of θ. Thus,
we have S ∈ R1×1024 and θ ∈ R1×28.

BothT and λ contribute approximately as nonlinear multipliers of the spectrum.
Therefore, we can rewrite Eq. 4.1 as:

S ≈M t(T)Mλ(λ)P ′(θ|K) (4.2)

where M t(T) and Mλ(λ) represent the nonlinear contribution of T and λ,
respectively.

The tasks of this chapter are hence considered as follows:

1. Since there has been no comprehensive, comparable work before, we focus
on the fundamental problems of using neural networks in spectral analysis
and set up a general baseline covering the most relevant elements.

2. Due to the complexity and limited pages, we hold firstly T, λ and K

constant and search for the most feasible network architecture for complex
spectral analysis.

3. Then, we extend to variable λ to construct the whole baseline framework
and discuss the effect of K.

For our baseline framework, we examine the MLP, CNN and DenseNet as a
representation of the most popular DNN architectures, which are visualized in
Fig. 4.2(a), (b) and (c).

45

4 Element quantification

In
p

u
t

la
y

er

D
en

se
 l

ay
er

D
en

se
 l

ay
er

D
en

se
 l

ay
er

O
u

tp
u

t
la

y
er

a) MLP

b) CNN

c) DenseNet

In
p

u
t

la
y

er

C
o

n
v

 l
ay

er

C
o

n
v

 l
ay

er

P
o

o
li

n
g

 l
ay

er

O
u
tp

u
t

la
y

er

D
en

se
 l

ay
er

D
en

se
 l

ay
er

C
o

n
v

 l
ay

er

C
o

n
v

 l
ay

er

P
o

o
li

n
g

 l
ay

er

In
p

u
t

la
y

er

C
o

n
v

 l
ay

er

O
u

tp
u

t
la

y
er

D
en

se
 l

ay
er

D
en

se
 l

ay
er

D
en

se
 b

lo
ck

C
o

n
v

 l
ay

er

P
o

o
li

n
g

 l
ay

er

D
en

se
 b

lo
ck

C
o

n
v

 l
ay

er

P
o

o
li

n
g

 l
ay

er

D
en

se
 b

lo
ck

P
o

o
li

n
g

/

F
la

tt
en

 l
ay

er

C
o

n
v

 l
ay

er

C
o

n
v

 l
ay

er

C
o

n
v

 l
ay

er

C
o

n
v

 l
ay

er

Dense block

F
la

tt
en

 l
ay

er

Spectrum

Prediction

Network

Result

Scale

Network

Scaler factor
Scaled

Spectrum

d) Framework

Figure 4.2: Network architecture and overall workflow

4.3 Experiments and results

4.3.1 Appropriate size of training dataset

Before going through a comprehensive comparison of different network architec-
tures with various hyperparameters, we use an MLP with a reasonable hidden
layer size of {512, 512, 512} to determine the number of spectra that are needed
to train a neural network properly. The spectra are generated based on a random
approach, in which the number of elements (varying from 2 to 28) and the con-
centration of each element (from 0% to 100%) are freely chosen. For training,
we use SGD with a weight decay of 1e-4 and a Nesterov momentum of 0.9. The
initial learning rate is set to 1e-5 and it is divided by 0.1 after 80 and 120 epochs
(160 epochs in total). We train the MLP from scratch with varying sizes of train-
ing datasets and test the performance on a separate test dataset consisting of 40k
spectra.

The results are illustrated in Fig. 4.3. In (a) and (b), with the increased number
of spectra, the overall test loss (mean squared error (MSE)) reduces gradually
and stays stable when approaching 160k spectra. Furthermore, as we discussed
before, overfitting occurs when the size of the training dataset is relatively small
and test loss is much higher than training loss. To address this point, we plot the

46

4.3 Experiments and results

final test loss - train loss after 160 epochs in (b). One can see that the phenomenon
of overfitting is significant with a low number of spectra and it disappears when
the data get sufficient. Hence, it indicates that for a complex spectral analysis task
containing 28 elements, 100k to 150k spectra are a reasonable starting point for
good training. We use 140k spectra in the rest of the chapter, if not otherwise
mentioned.

0 20 40 60 80 100 120 140 160
Epoch

0

5

10

15

20

25

30

35

40

Te
st

 lo
ss

(a) Test loss of using different # of spectra
of spectra: 10k
of spectra: 20k
of spectra: 30k
of spectra: 40k
of spectra: 50k
of spectra: 60k
of spectra: 70k
of spectra: 80k
of spectra: 90k
of spectra: 100k
of spectra: 110k
of spectra: 120k
of spectra: 130k
of spectra: 140k
of spectra: 150k
of spectra: 160k

10
k

20
k

30
k

40
k

50
k

60
k

70
k

80
k

90
k
10

0k
11

0k
12

0k
13

0k
14

0k
15

0k
16

0k

of spectra

0

1

2

3

4

Te
st

 lo
ss

(b) Final loss after 160 epochs
Final test loss after training
Test loss - Train loss

5 10 15 20 25
of element

10k
20k
30k
40k
50k
60k
70k
80k
90k

100k
110k
120k
130k
140k
150k
160k

of

 sp
ec

tra

(c) # of spectra needed to achieve same test MAE

Figure 4.3: Performance of MLP using different data sizes, all else being equal. In (a), the overall
test loss at all training steps reduces as the data size increases. Here, the learning rate
reduces at epoch 80 and 120, respectively. In (b), the final test losses after 160 epochs
using varying data sizes are plotted in blue circles. To illustrate the overfitting effect,
the differences between test loss and train loss are plotted in orange x. In (c), with an
increased number of involved elements, the required data size to train a neural network
also rises.

4.3.2 Selection of model topology

In this section, we evaluate the performance of MLP, CNN and DenseNet with
varying topologies and sizes. The neural networks are trained and tested on
the same training/test dataset. From an application perspective, we use mean
absolute error (MAE) as our evaluation metric since the element concentrations
are the final results that need to be determined. Besides, inference time is also an
important criterion, especially for real-time applications.

For MLP, we use vanilla grid search to construct MLPs with {2, 3, 4, 5, 6, 7, 8}
hidden layers and all layers consist of {32, 64, 128, 256, 512} neurons, which

47

4 Element quantification

results in a total number of 35 MLP candidates. Table 4.2 gives a brief summary
of the networks. For instance, MLP_1 has {32, 32} neurons in the two hidden
layers.

Table 4.2: Summary of MLP candidates

#layers
#neurons 32 64 128 256 512

2 MLP_1 MLP_2 MLP_3 MLP_4 MLP_5
3 MLP_6 MLP_7 MLP_8 MLP_9 MLP_10
4 MLP_11 MLP_12 MLP_13 MLP_14 MLP_15
5 MLP_16 MLP_17 MLP_18 MLP_19 MLP_20
6 MLP_21 MLP_22 MLP_23 MLP_24 MLP_25
7 MLP_26 MLP_27 MLP_28 MLP_29 MLP_30
8 MLP_31 MLP_32 MLP_33 MLP_34 MLP_35

For CNN, we adopt the classic VGGNet [32] and vary the size of networks
accordingly. The candidates are described in Table 4.3, where each Conv block
represents two Conv layers followed by a Maxpooling layer. The architecture
of CNN_1 is then {2x(Conv layer with 32 filters), Maxpooling layer, 2x(Conv
layer with 64 filters), Maxpooling layer, Flatten layer, 2x(Dense layer with 128
neurons)}.

Table 4.3: Summary of CNN candidates

CNN
candidate Conv_1 Conv_2 Conv_3 Dense_1 Dense_2 Dense_3

CNN_1 32 64 N.A. 128 128 N.A.
CNN_2 64 128 N.A. 256 256 N.A.
CNN_3 128 256 N.A. 512 512 N.A.
CNN_4 32 64 64 128 128 128
CNN_5 64 128 128 256 256 256
CNN_6 64 128 128 512 512 512
CNN_7 128 256 256 512 512 512

For DenseNet, we make some major adaptions based on DenseNet-40 to obtain
good performance due to the application in quantitative problems (i.e., element
quantification in our case) rather than qualitative problems (e.g., classification of
images). We increase the number of filters in the first conv layer, use different

48

4.3 Experiments and results

growth rates (i.e., howmany filters each layer contains) and switch the last Pooling
layer to Flatten layer while increasing the size of the final fully connected layers.
The configurations are listed in Table 4.4 where only DenseNet_1 uses the Pooling
layer for comparison purposes. The number of DBlock represents the number of
layers in each Dense block.

Table 4.4: Summary of DenseNet candidates

DenseNet candidate Conv_1 DBlock_1 DBlock_2 DBlock_3 DBlock_4 growth_rate pooling/flatten Dense_1 Dense_2
DenseNet_1 24 12 12 N.A. N.A. 12 pooling 256 256
DenseNet_2 96 12 N.A. N.A. N.A. 12 flatten 512 512
DenseNet_3 128 6 6 6 6 12 flatten 256 256
DenseNet_4 128 6 6 6 6 18 flatten 256 256
DenseNet_5 128 6 6 6 6 24 flatten 256 256
DenseNet_6 128 6 6 6 6 12 flatten 512 512
DenseNet_7 128 6 6 6 6 18 flatten 512 512
DenseNet_8 128 6 6 6 6 24 flatten 512 512

After training, we evaluate the networks on the test dataset and the results are
illustrated in Fig. 4.4. To get a better overview of our evaluation criteria, we
plot the test MAE against the number of parameters, the number of floating-point
operations (FLOPs) and the inference time of neural networks in (a), (b) and (c),
respectively. Note that for all X-axes, logarithmic scales are applied.

105 106 107

of parameters

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

te
st

 M
A

E

DenseNet with Pooling layer

(a) Summary of model parameters
CNN
MLP
DenseNet

105 106 107 108 109

of FLOPs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

te
st

 M
A

E

DenseNet with Pooling layer

(b) Summary of model FLOPs
CNN
MLP
DenseNet

10−3 10−2

Inference time(s) per spectrum

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

te
st

 M
A

E

DenseNet with Pooling layer

(c) Summary of model inference time
CNN
MLP
DenseNet

Figure 4.4: Comparison of different neural network architecture and sizes. All x-axes use logarithmic
scales. In general, enlarging the network can improve the performance, although the
marginal gain decreases. Note that DenseNet with the Pooling layer does not perform
well while requiring the same level of storage and computational resources as others in
which Flatten layers are applied.

49

4 Element quantification

The number of parameters of one network determines the model’s size, which
needs to be stored in a data storage device. In (a), it is clear thatMLPs require fewer
parameters in most cases because of the plain architecture, whereas CNNs and
DenseNets (using Flatten layer) contain a much larger number of parameters since
the Flatten layer is the main cause of parameter growth. Note that DenseNet_1
has a comparable parameter size to MLPs as it utilizes a Pooling layer instead of
Flatten layer. However, its test MAE is much higher than other DenseNets, while
the FLOPs and inference time are in the same order of magnitude. We observe a
general trend that regardless of network architecture, using larger networks usually
improves the performance until it saturates at some point, which is intuitive.

The number of FLOPs indicates the required operations for a neural network to
execute and it is directly related to the computational time of a neural network.
As shown in (b) and (c), compared to parameter size, there is a much larger
FLOPs and inference time gap between MLPs and CNNs & DenseNets since
the convolutional layers have a higher computational cost than fully-connected
layers. In (c), we calculate the inference time using a batch size of 1 to simulate
real-world scenarios where each spectrum is separately analyzed. We observe
slight differences between theoretical (FLOPs) and real computational time:

1. The execution time of MLPs is not perfectly correlated to their FLOPs.
We believe the reason is that there are other overheads (e.g., I/O, matrix
computation for evaluation, etc.) that lead to a similar time performance
among MLPs (1− 2ms per spectrum).

2. DenseNets need more computational time than CNNs, even with similar
FLOPs. One reason is that for DenseNets, the output of layers needs to be
concatenated for further computation, which contributes to a higher total
time.

It is clear that CNNs and DenseNets can achieve better test MAE than MLPs
and all of them have excellent time performance (up to 20ms per spectrum).
Nevertheless, some MLPs also have good performance and require less storage
and computational resources, which is practical for low-power devices. Therefore,
from each category, we choose one network with the least test MAE (which is

50

4.3 Experiments and results

also the largest network) as the final candidates. We denote them as MLP, CNN
and DenseNet for simplicity.

4.3.3 Selection of hyperparameter

Aside from the neural network architecture, there are still many other hyperpa-
rameters that can be carefully tuned to obtain better performance. In this section,
we discuss several major aspects regarding hyperparameter selection, namely the
choice of optimizers, batch sizes and learning rates.

Adam
_1

Adam
_2

Adam
_3

Adam
_4

Adam
_5

Adam
_6

Adam
_7

Adam
_8

Adam
_9

Adam
_10

Adam
_11

Adam
_12

Adam
_13

Adam
_14
SGD_1

SGD_2
SGD_3

SGD_4
SGD_5

SGD_6
0.0

0.1

0.2

0.3

0.4

0.5

te
st

 M
A

E

(a) Optimizer with different hyperparaters

8 16 32 64 128 256 512 1024 2048
batch size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

te
st

 M
A

E

(b) batch size and learning rate
1e-3
1e-4
1e-5

Figure 4.5: Comparable results of hyperparameters. In (a), Adam outperforms SGD in most cases.
In (b), we find that using a learning rate of 1e-4 and batch size of 64 can achieve good
results.

4.3.3.1 Choice of optimizer

The choice of a proper optimizer is a crucial part for neural network training
because the optimizer determines the update steps of network parameters. SGD
and Adam [31] are the most popular optimizers among others, and there has been
plenty of discussion on the choice of a good optimizer. Some [40, 41] claim that
SGD has better stability and less generalization error over Adam, whereas there is
also argument [42] that Adam could outperform when properly tuned. In this sec-
tion, we evaluate both SGD and Adam with various hyperparameters. For Adam,

51

4 Element quantification

we use two learning rates (1e-4 and 1e-5) and vary the value of hyperparameter
epsilon from 1e-1,1e-2 to 1e-7, which leads to 14 distinct configurations. Since
SGD can not converge with a learning rate of 1e-4, we use only 1e-5 and choose
a momentum of 0.5, 0.7 and 0.9 with Nesterov set to True and False, respectively.
Thus, we evaluate 6 SGD settings in total.

Fig. 4.5 illustrates the results of optimizer comparison. In (a), we notice that
for our specific context, Adam outperforms SGD by a large margin concerning
test MAE. The best test MAE of SGD is 0.34, whereas Adam achieves a better
value of 0.21 with the same learning rate and 0.07 with a higher learning rate.
Therefore, we choose to use Adam as our default optimizer.

4.3.3.2 Batch size and learning rate

Batch size and learning rate usually have a joint effect on network training, i.e.,
when batch size is changed, the learning rate should also be adjusted accordingly.
In this section, we test all the combinations of batch size {8, 16, 32, 64, 128,
256, 512, 1024, 2048} and learning rate {1e-3, 1e-4, 1e-5}. In Fig. 4.5 (b),
the comparable results are presented. When using a small learning rate (1e-5),
enlarging the batch size leads to worse performance due to reduced parameter
update steps within the same training epochs. For the large learning rate (1e-3),
increasing the batch size improves test MAE in the beginning since a large batch
size provides better stability for the parameter update with a large learning rate.
Later, the test MAE gradually rises with the batch size. For our task, 1e-4 is a
feasible learning rate that delivers a better and more robust performance within a
large range of batch sizes. Thus, we choose the combination of 1e-4 learning rate
and 64 batch size for training.

4.3.4 Evaluation on real measurements

To make an extensive evaluation of our approach in the real-world scenario,
we collect various samples measured using three different measurement devices

52

4.3 Experiments and results

Table 4.5: Summary of measurement spectra and evaluation results

Device Sample # repeat
Element concentration in % Reference Ours

Au Ag Pt Cu Zn Sn Pb Fe Ni Mn Pd In Ir Ta MAE (%) Time (s) MAE (%) Time (s)

device 1

sample_1 10 89.75 8.70 1.47 0.02 0.01 0.06±0.01 21.00±4.15 0.12±0.01

0.049±0.002

sample_2 10 61.42 35.63 0.13 2.51 0.15 0.06 0.14±0.00 13.09±7.12 0.14±0.00
sample_3 10 60.00 38.80 0.65 0.50 0.02 0.01 0.13±0.01 17.13±5.75 0.22±0.01
sample_4 10 88.40 3.42 4.42 4.16 0.09 0.16 0.14±0.00 14.77±7.35 0.15±0.01
sample_5 10 69.00 0.10 0.01 0.01 0.61 30.22 0.82 0.60±0.03 2.46±0.40 0.70±0.01
sample_6 10 85.30 0.01 9.07 1.98 3.37 0.15±0.01 19.88±5.86 0.08±0.01
sample_7 10 77.10 0.26 7.16 14.80 0.02 0.49 0.87±0.01 12.96±9.87 0.90±0.01

device 2

sample_8 200 57.83 29.98 12.19 0.11±0.02 0.85±0.20 0.17±0.02
sample_9 200 74.83 4.84 20.33 0.13±0.02 0.90±0.17 0.07±0.01
sample_10 200 33.09 12.44 38.66 15.81 0.20±0.02 0.97±0.18 0.25±0.02
sample_11 200 58.59 4.49 36.92 0.15±0.01 0.94±0.18 0.16±0.01
sample_12 200 95.01 2.48 2.51 0.04±0.01 0.83±0.22 0.04±0.02

device 3
sample_13 10 2.00 58.00 3.35 2.00 32.90 1.50 0.24±0.01 17.48±2.15 0.24±0.00
sample_14 10 55.60 24.40 1.00 14.00 1.00 3.70 0.20 0.50±0.00 16.63±7.68 0.51±0.01
sample_15 10 74.00 14.50 1.50 3.30 5.50 1.00 0.10 0.10 0.10±0.01 11.22±9.01 0.15±0.00

(Device_1, Device_2 and Device_3) under different measurement conditions. A
summary of these samples is given in Table 4.5. The exact element concentrations
are shown in% and each sample is measured several times (see column "# repeat")
to avoid possible bias caused by the random measurement noises. The average
performance of the reference analytical method and our approach is listed in the
table, which will be discussed in detail later.

Until this section, this work focuses on training neural networks using simulation
spectra where λ andK are constant, which is only applicable when the measure-
ment condition and measurement device hold constant. However, as mentioned
in section 4.1 and 4.2, when evaluating a real measurement under different mea-
surement conditions and/or measurement devices, the spectrum will differ from
the training dataset and thus lead to inaccurate results.

According to Eq. 4.2, the effect of λ can be roughly treated as a linear scale
factorMλ(λ) of the original spectrum. Therefore, if the measurement spectrum
is properly re-scaled, this effect can be compensated and the neural network can
still achieve good performance.

The determination of Mλ(λ) can be calculated mathematically as long as the
element concentrations are known, which is however not our case. Instead, we
introduce one additional neural network to predict the scale factor of a given
spectrum. The original training data will be scaled with a randomly generated

53

4 Element quantification

Table 4.6: Performance comparison on measurement spectra measured with different devices. The
MAE values are shown in %.

D1 data D2 data D3 data
MLP CNN DenseNet MLP CNN DenseNet MLP CNN DenseNet

D1 model

No scale 20.86 12.11 21.14 41.45 27.44 42.79 69.09 49.62 71.11
MLP_scale 0.39 0.36 0.33 1.31 1.26 1.35 0.63 0.52 0.68
CNN_scale 0.39 0.34 0.33 1.31 1.26 1.35 0.63 0.52 0.68
Reference 0.30 - -

D2 model

No scale 7.02 3.60 7.34 11.91 5.29 11.88 20.55 12.11 20.62
MLP_scale 0.96 1.03 1.03 0.29 0.15 0.19 0.53 0.38 0.47
CNN_scale 0.95 1.00 1.03 0.29 0.14 0.19 0.53 0.42 0.47
Reference - 0.13 -

D3 model

No scale 6.04 5.91 6.10 4.65 6.00 4.60 1.16 1.25 1.11
MLP_scale 0.89 0.85 0.87 0.41 0.20 0.27 0.40 0.35 0.30
CNN_scale 0.89 0.81 0.87 0.41 0.39 0.27 0.40 0.35 0.30
Reference - - 0.28

scale, and we train an MLP and a CNN (denoted as MLP_scale and CNN_scale)
to predict the corresponding scales using the same architecture as selected before.
We train the networks with the same approach as given in the previous section
and compare the results with mathematical solutions. Omitting some details, we
find that both MLP and CNN networks perform well and have a test MAE of scale
factor at about 0.03, which is very precise.

Therefore, our whole proposed framework (as shown in Fig. 4.2 (d)) consists
of two neural networks: one scale network and one prediction network. The
spectrum will be fed into a scale network to obtain the corresponding scale, then
it will be re-scaled and the prediction network gives the final result.

We evaluate the prediction performance of final candidates MLP, CNN and
DenseNet on measurement data from all three devices, with and without scale
network. Besides, we also compare the results of the classic analytical method,
which is denoted as the reference. To illustrate the effect of parameterK which is
determined by individual measurement device characteristics, we generate three
simulation datasets based on Device_1, Device_2 and Device_3, respectively.
Then, we train the neural networks using each simulation data and denote the net-
works as D1 model, D2 model and D3 model. Finally, the networks are tested on

54

4.3 Experiments and results

real measurements from Device_1 (D1 data), Device_2 (D2 data) and Device_3
(D3 data).

Table 4.6 summarizes the comparable results. Examining the performance of
the D1 model on D1 data, the D2 model on D2 data and the D3 model on D3
data, it is noticeable that without a scale network, the test MAE of the prediction
network is high due to differentmeasurement conditionsλ between simulation and
measurement. In comparison, the introduction of the scale network dramatically
improves the final performance, regardless of which combination of the prediction
network and scale network is tested. Moreover, CNN and DenseNet outperform
MLP constantly.

Comparing the results of neural networks across different devices, we notice that
D1 models trained on D1 data perform the best on real measurements from the
same device (D1 data). The same applies to the D2 model on D2 data and D3
model on D3 data. In other cases, the performance of neural networks is worse
due to the difference in datasets with unique device characteristics K. Besides,
we observe that CNN and DenseNet often have better generalization ability and
better test MAE on unknown datasets than MLP.

The results of the reference method are also listed in Table 4.6. Since it can
only evaluate data from the same device, only three test MAEs are given. The
performance of the analytical method is negligibly better than our methods by
0.03%, 0.01% and 0.02%, respectively. However, as shown in Table 4.5, its
computational time is up to 400x slower than our approach (21.00s compared to
0.049s). Nevertheless, the unstable time performance (different evaluation times
on different samples) is still one big concern. For instance, the reference method
needs on average 21 seconds to obtain the quantification results on sample_1,
whereas sample_8 requires only about 1 second. This is primarily because the
reference method needs different iterations to achieve good local minima for
different spectra.

Table 4.5 also gives more detailed comparable results on each sample. It is
noticeable that neither the reference method nor our method can outperform
the other in terms of test MAE. However, our approach achieves a much better

55

4 Element quantification

and more robust inference time performance and is thus feasible for real-time
applications.

56

5 General feature selection

Chapter 4 proposes a baseline framework for quantitative spectral analysis and
outperforms the commercial solutions with the same level of precision with a
significant speedup. Before applying the framework to the qualitative spectral
analysis, we will discuss in this chapter the concept of feature selection as an
intermediate step because in the next chapter, we want to not only extend our
framework for element identification but also come to a solution that is efficient
in terms of the computational cost. As we will see later in Chapter 6, spectral data
do have redundant information that can be safely removed without performance
degradation.

Therefore, we propose in this chapter a feature selection method watermelon that
outperforms most SOTA competitors. Note that this method is a general approach
and it is not limited to the domain of spectral analysis. Based on the evaluation
of text data, face image data, biological data, and so on, this method proves to be
powerful and efficient, which eliminates the potential bias if it is only examined
on spectral data.

5.1 Introduction

In the era of big data, classification techniques are often facedwith challenges from
the enormously growing amount of high-dimensional data in different domains.
Thus, selecting a small subset of features while minimizing the generalization
error has become a focus in such scenarios. Feature selection methods can
be categorized according to different perspectives [43], one common approach

57

5 General feature selection

is to partition them into three groups concerning different selection strategies:
wrapper, filter and embeddedmethods [44]. Wrappermethods evaluate the feature
subsets by directly training them with a predefined learning algorithm, thus, they
are in general very computationally expensive for high-dimensional data and rarely
applied in real-world problems. Meanwhile, embedded methods interact with the
learning algorithm during the training process to select a subset of features, which
are usually more time efficient than wrapper methods. Nevertheless, they are still
slower than filter methods and the performance depends highly on the learning
algorithm. In contrast, filter methods are independent of any learning algorithm
and score the features by analyzing the properties of data. They consume in
general less time and can avoid overfitting problems in most cases, however, may
fail to select the best subset of features [45].

In the past several decades, more than one hundred different feature selection
methods have been proposed and most of them are filter methods due to their
time efficiency [43]. Due to the fact that finding the global best feature subset is
generally NP-hard, most algorithms apply therefore sub-optimal approaches based
on forward/backward sequential search strategies by adding/removing features
one by one. Regarding the evaluation criteria, these algorithms can be roughly
grouped into the following subgroups: similarity-based, sparse-learning-based,
statistical-based and information-theoretical-based methods [43].

Similarity-based methods assign more importance to the features which can better
preserve data similarity than others. Fischer Score [46] and Trace Ratio Criterion
[47] select those features in which the values are similar within the same class but
dissimilar across different classes. ReliefF [48] selects features that can separate
instances from different classes. As the name indicates, sparse-learning-based
methods use sparse regularization terms to remove task-irrelevant features. Liu et
al. [49] use l2,1-norm regularization to obtain a subset of features andEfficient and
Robust Feature Selection [50] employs a joint l2,1-norm minimization on both the
loss function and the regularization. Meanwhile, statistical-based methods such
as f_score [51] and Gini Index [52] use different statistical measures to determine
whether a feature can separate instances from different classes properly.

58

5.1 Introduction

As for information-theoretical-based methods, the general approach is to maxi-
mize feature-class relevance while minimizing feature-feature relevance, which is
actually thought of as redundancy, based on information-theoretic concepts, e.g.
mutual information (MI). Mutual information can measure any kind of linear or
nonlinear relationship between different variables and is invariant under transfor-
mations in the feature space [45]. Hence it has been widely used in this family
of methods to score the features. Concretely, they use feature-class relevance as
the reward term and feature-feature relevance as the penalty term. In the last few
decades, many algorithms have been proposed, they are for instanceMutual Infor-
mation Maximization (MIM) [53],Mutual Information Feature Selection (MIFS)
[54],Minimum Redundancy Maximum Relevance (MRMR) [55], Conditional In-
fomax Feature Extraction (CIFE) [56], Joint Mutual Information (JMI) [57, 58],
Conditional Mutual Information Maximization (CMIM) [59, 60], Double Input
Symmetrical Relevance (DISR) [61] and Fast Correlation-Based Filter (FCBF)
[62]. One motivation for using mutual information in these algorithms is that the
Bayes error rate, which indicates the lowest possible error rate for any classifier,
can be bounded by the mutual information [45] (more details in Section 5.2).

This kind of approach has been proven to be powerful in many real-world prob-
lems. However, there are still some limitations. One major problem is that the
score term(s) and the penalty term(s) are usually not comparable and one term
often becomes negligible w.r.t. other term(s). Addressing this problem, some
approaches (e.g. Hall and Smith [63], Estévez et al. [64]) suggest the use of nor-
malized mutual information (NMI) to quantitatively scale the mutual information
to the range of zero to one, where zero means no mutual information and one
means perfect correlation.

A further problem is, as Guyon And Elisseeff [44] suggest, that a significant
relevance between features does not necessarily impact the performance of a
classifier and may, on the contrary, provide more information and reduce the
noise. Fig. 5.1 illustrates that while features with perfect monotonic correlation
are truly redundant, using highly relevant features may still bring more gain due
to their great complementarity.

59

5 General feature selection

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(a) monotonic correlation

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

(b) non-monotonic relevance

Figure 5.1: Two examples of different kinds of relevance. In (a), there is no improvement by using two
features instead of only one. However, in (b), a quasi-perfect separation can be achieved
in the two-dimensional space.

Inspired by the discussions above, in this chapter we propose a filter method
Watermelon in a wrapper manner, which scores individual features by directly
estimating the corresponding Bayes error rate based on kernel density estimation
and generates the feature subset using forward search. This idea is effectively
applying a simple wrapper method that selects features greedily based on the
performance of an ideal classifier. Besides, compared to other algorithms, our
approach interprets the effects of relevance quantitatively in a different way. It
rewards significant feature-feature relevance, which is usually considered as re-
dundancy by other methods and penalizes only significant monotonic correlation
between features. For simplicity, in this chapter, we use the word correlation
for monotonic relationships and relevance for non-monotonic relationships if not
specified.

To evaluate our method, we compare our approach with other state-of-the-art
feature selection algorithms (including all the methods mentioned above) on var-
ious classification benchmarks [43]. Overall our approach outperforms other
competitors and achieves top performance across different tasks.

60

5.2 Background and related work

The rest of the chapter is organized as follows: Section 5.2 introduces some
preliminary concepts and related literature. In Section 5.3 our approach will be
presented and Section 5.4 illustrates the performance of the proposed method
through experiments.

5.2 Background and related work

5.2.1 Bayes error rate

Consider a classification problem where a data vector x needs to be classified
into one of L classes. Let P (ci) denote the a priori class probability of class
i, i = 1, 2, ...L, p(x|ci) denote the class likelihood, which is the conditional
probability density of x given that it belongs to class i. And the a posteriori
probability P (ci|x), which is the probability that a data vector belongs to class i,
is:

P (ci|x) =
p(x|ci)P (ci)∑L
i=1 p(x|ci)P (ci)

(5.1)

A Bayes classifier assigns then a data vector x to class i if class i has the highest
posterior. The error rate of such classifiers is Bayes error rate (BER), which is
defined as [65]:

BER(x) = 1−
L∑

i=1

∫
Ci

P (ci)p(x|ci)dx (5.2)

where Ci is the region where class i has the highest posterior.

61

5 General feature selection

5.2.2 Kernel density estimation

Kernel density estimation (KDE) is a non-parametric approach to estimating the
probability density function and the general form is:

p̂(x) =
1

n

n∑
i=1

KH(x− xi) (5.3)

where KH(.) denotes the kernel function and H is a d × d bandwidth matrix for
the d-dimensional data x with n instances.

Then, the class probability P̂ (ci) and the conditional probability p̂(x|ci) can be
defined as [66]:

P̂ (ci) =
nci
n

(5.4)

p̂(x|ci) =
1

nci

∑
i∈Ici

KH(x− xi) (5.5)

where nci is the number of instances that belong to class i and Ici is the indices
of these instances.

5.2.3 Spearman’s rank correlation coefficient

Slightly different from the most well-known Pearson coefficient, which measures
the linear relationship of two variables, Spearman’s rank correlation coefficient
(Cor) assesses monotonic relationships and is formally defined as:

Cor(x, y) = ρ =
Sxy

SxSy
=∑n

i=1(R(xi)−R(x))(R(yi)−R(y))√∑n
i=1(R(xi)−R(x))2

∑n
i=1(R(yi)−R(y))2

(5.6)

where R(x) and R(y) are the ranks of variables, R(x) and R(y) are the corre-
sponding mean ranks. Then we have Cor(x, y) ∈ [−1, 1] and there is a perfect

62

5.2 Background and related work

positive (negative) monotonic correlation if Cor(x, y) is 1(-1). A zero means the
absence of correlation.

5.2.4 Information-theoretic concepts

Entropy gives the uncertainty of a random discrete variable X with the mass
probability P (xi), xi ∈ X . It is mathematically defined as:

H(X) = −
∑
xi∈X

P (xi) log(P (xi)) (5.7)

Given another discrete random variable Y , the conditional entropy which de-
scribes the uncertainty of X given Y is:

H(X|Y) = −
∑
yj∈Y

P (yj)
∑
xi∈X

P (xi|yj) log(P (xi|yj)) (5.8)

where P (yi) denotes the prior probability of yi and P (xi|yi) denotes the condi-
tional probability of xi given yi.

Mutual information, which measures the amount of information that two discrete
variables X and Y share, can be defined as:

I(X;Y) = H(X)−H(X|Y)

=
∑
xi∈X

∑
yj∈Y

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)

(5.9)

Mutual information is symmetric and is zero when X and Y are statistically
independent.

63

5 General feature selection

As mentioned in Section 5.1, the Bayes error rate regarding X is bounded above
and below byMI as Eq. 5.10, and the Bayes error rate is minimized when I(X;Y)

is maximized [45].

1− I(X;Y)+log 2
log |Y | ≤ BER(X) ≤ 1

2
(H(Y)− I(X;Y)) (5.10)

The term normalized mutual information (NMI) is not standardized and there are
several possibilities to normalize mutual information [64, 67, 68]:

NMI(X;Y) =



I(X;Y)
min(H(X),H(Y))

I(X;Y)√
H(X)H(Y)

I(X;Y)
max(H(X),H(Y))

2I(X;Y)
H(X)+H(Y)
I(X;Y)
H(X,Y)

(5.11)

Then, conditional mutual information gives the mutual information shared by
discrete variables X and Y given discrete variable Z:

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) =∑
zk∈Z

P (zk)
∑

xi∈X

∑
yj∈Y

P (xi, yj |zk) log
(P (xi, yj |zk)

P (xi|zk)P (yj |zk)
(5.12)

As shown in [43, 69], most of the information-theoretical-based feature selection
methods, including MIM, MIFS, MRMR, CIFE, JMI, CMIM and DISR, can be
unified by a conditional likelihood maximization framework:

J(Xk) = I(Xk;Y) +
∑

Xj∈S

g[I(Xj ;Xk), I(Xj ;Xk|Y))] (5.13)

where S denotes the current selected feature set,Xj ∈ S is a feature in the current
S and g(.) is a linear or nonlinear function w.r.t. I(Xj ;Xk) and I(Xj ;Xk|Y).
J(.) represents a feature selection criterion for a unselected feature Xk. The

64

5.3 Watermelon feature selection

higher (or the less) the value of J(Xk) is, the more important the feature Xk is.
As we explained in Section 5.1, the feature-feature relevance I(Xj ;Xk) is used
as the penalty term and the feature-class relevance I(Xj ;Xk|Y) is used as score
term.

5.3 Watermelon feature selection

We pose the feature selection problem as follows: Given a dataset X =

{X1, X2, ...Xd} ∈ Rn×d with n instances and d features and the corresponding
class vector Y ∈ Rn with L classes, find subset S ⊂ F withm features that max-
imizes the performance of a classifier, where F = {f1, f2..., fd} is the original
feature set.

For binary classification, we estimate the BER(fk) for each individual feature
fk based on KDE. As for multi-class problem, instead of directly estimating the
BER(fk), we divide the classification problem into

(
L
2

)
binary classification

problems and estimate BER(ci, cj |fk) of feature fk for each class-pair (i, j) ∈
L, i ̸= j. In this way, our approach gets more information about the performance
of feature fk regarding each class, hence it is able to select a new feature that
improves the classification error of a specific class. Moreover, it also circumvents
the issues of efficiency and overfitting brought bymultinomial estimations [65,70].
Using Eq. 5.2 and 5.5, the estimated pairwise BER can be defined as:

BER(ci, cj |fk) = 1−
∫
Ci

P̂ (ci)p̂(Xk|ci)dx

−
∫
Cj

P̂ (cj)p̂(Xk|cj)dx
(5.14)

where BER(ci, cj |fk) ∈ [0, 1]. We use the sum of BERs as the score function
Q(fk), thus, a lower score indicates a better feature.

Q(fk) =
∑

i,j∈L,i̸=j

BER(ci, cj |fk) (5.15)

65

5 General feature selection

Due to the difficulty of the multi-dimensional integral of multivariate density
functions [65], our approach simply estimates the BERs for each individual feature
as a base score and, as we explained in Section 5.1, assesses the relevance and
correlation between features and updates their scores dynamically. The criteria
are described as follows:

• if a feature is significantly correlated with any selected feature, it should be
penalized.

• if a feature is significantly relevant (but not correlated) to any selected
feature, it should be rewarded.

The adaption will be applied to both the selected features and the new feature.
For simplicity of notation, we only show the update of the new feature and the
update of selected features follows the same schema.

Consider the situation that we have already selected one feature f ′ and now
evaluate a new feature fk. If fk is highly correlated with f ′, i.e., Cor(f ′, fk) is
significant, the score of fk will be penalized. And if |Cor(f ′, fk)| = 1, which
means a perfect correlation and fk can not bring any improvement, we have
effectively BER(ci, cj |fk) = 1 for every class-pair.

For general case, the penalty function of BER(ci, cj |fk) is defined as Eq. 5.17.
The BER(ci, cj |fk) of feature fk increases with the highest absolute correlation
coefficient between fk and any feature f ′ in S, and it will be penalized to one
(i.e. upper_bound = 1) if there is a perfect correlation. We apply an activation
functionAF (x, th) to the absolute value of the correlation coefficient to suppress
the effect of weak correlation because in this situation, we consider it as not
correlated. AF (x, th) is zero if x is under the threshold and grows to one when
x is also one.

AF (x, th) =

{
0 if x ≤ th

1
1−th (x− th) if x > th

(5.16)

66

5.3 Watermelon feature selection

penalty(BER(ci, cj |fk)) = BER(ci, cj |fk)+
(upper_bound−
BER(ci, cj |fk))AF (max

f ′∈S
|Cor(f ′, fk)|, thcor)

(5.17)

Besides, high relevance should be rewarded. We useNMI tomeasure the relevance
and in this chapter, it is defined in Eq. 5.18. How to quantify the improvement
brought by significant relevance is still an open question. The effects can be
very task-specific and in this chapter we assume that if two features are perfectly
relevant (i.e. NMI(f ′k, fk) = 1), one feature should perform at least as well as
the other one because one feature is a non-redundant representation of another
feature and this representation brings extra information. Based on this assumption
we can make a worst-case update defined in Eq. 5.19.

NMI(X;Y) =
2I(X;Y)

H(X) +H(Y)
(5.18)

reward(BER(ci, cj |fk)) = BER(ci, cj |fk)−
max(0, (BER(ci, cj |fk)−
BER(ci, cj |f ′k))AF (NMI(f ′k, fk), thnmi))

(5.19)

Wenotice thatNMI also captures correlation andwe onlywant to reward relevance.
Although the values ofNMI andCor are in the same range, they are still not directly
comparable. Since high Cor leads to high NMI but not vice versa, we consider
Cor as a dominant term and update the BER(ci, cj |fk) in two steps: reward
relevance and then penalize correlation. For a new feature fk and each feature
f ′ ∈ S, the BER(ci, cj |f) will be updated by Eq. 5.20. Note that for f ′ ∈ S,
the upper_bound in Eq. 5.17 should be the original value of itself.

BER∗(ci, cj |fk) = penalty(reward(BER(ci, cj |fk))) (5.20)

This update schema realizes effectively the following procedure: in the first step,
if features are relevant, all the BERs will reduce to the same class-pair-specific

67

5 General feature selection

minimum. And in the second step, if features are furthermore correlated, the
BERs of selected features increase back to their original values and the BERs of
the new feature will be all penalized to one.

Algorithm 1Watermelon feature selection
Require: X ∈ Rn×d, Y ∈ Rn, L,m
1: init S ← ∅
2: for k = 1 : d do
3: for i, j = 1 : L, i ̸= j do
4: calculate BER(ci, cj |fk)
5: end for
6: calculate score function Q(fk)
7: end for
8: f∗k = argmin

fk∈F
Q(fk), S ← S ∪ f∗k

9: while |S| < m do
10: for all fk ∈ F \ S do
11: calculate Q(S; fk)
12: end for
13: f∗k = argmin

fk∈F\S
Q(S; fk), S ← S ∪ f∗k

14: update all score functions
15: end while
16: return S

Note that we only actually apply the update after a new feature is selected. To
determine which feature should be selected, we evaluate the sum of all the updated
scores Q(S; fk), which is defined in Eq. 5.21, if a specific feature fk is selected.
Then the fk, which leads to the lowest Q(S; fk), will be selected and the update
will be applied. The whole procedure of our algorithm is shown in Algorithm 1.

Q(S; fk) =
∑

f∈S∪fk

∑
i,j∈L,i̸=j

BER∗(ci, cj |f) (5.21)

68

5.4 Experiments

Table 5.1: Summary of feature selection methods

Category Method

similarity-based
fischer_score[46]

refiefF[48]
trace_ratio[47]

sparse-learning-based
ll_l21[49]
ls_l21[49]
RFS[50]

statistical-based f_score[51]
gini_index[52]

information-theoretical-based

CIFE[56]
CMIM[59,60]
DISR[61]
FCBF[62]
ICAP[71]

JMI[57][58]
MIFS[54]
MIM[53]

MRMR[55]

5.4 Experiments

In this section, we compare our approach with seventeen popular feature selection
algorithms, which are listed in Table 5.1, on seventeen classification benchmarks.
To fairly evaluate all the algorithms, we choose various datasets (collected by Li et
al. [43]) with continuous or discrete values from different domains. They are text
data, face image data, handwritten image data, spoken letter recognition data and
biological data with up to 40 classes and 11340 features. Note that some datasets
contain only very few instances, which is very challenging for the algorithms.
Table 5.2 shows the summary of the datasets.

69

5 General feature selection

Table 5.2: Summary of experiment datasets

Data Type Dataset #instances #features #classes
text data PCMAC 1943 3289 2

face image data

COIL20 1440 1024 20
ORL 400 1024 40

orlraws10P 100 10304 10
warpAR10P 130 2400 10
warpPIE10P 210 2420 10

Yale 165 1024 15
handwritten
image data

USPS 9298 256 10
Gisette 7000 5000 2

spoken letter
recognition data Isolet 1560 617 26

biological data

CLL_SUB_111 111 11340 3
Colon 62 2000 2

GLIOMA 50 4434 4
Lung 203 3312 5

Lymphoma 96 4026 9
nci9 60 9712 9

TOX_171 171 5748 4

5.4.1 Experiment setup

All the datasets will be preprocessed and standardized to zero mean and unit
variance. For the comparative algorithms, we use the implementation by Li et al.
[43]. In order to quantitatively assess the algorithms’ ability to choose essential
features, we consider the protocol of [72, 73] and let all the algorithms use the
preprocessed data to select the first 200 most important features for each dataset.
Then we train a linear Support Vector Machine (SVM) (implemented by scikit-
learn [74]) with different cardinalities of features to evaluate their performance.
To avoid overfitting and ensure reproducibility, we split the datasets into 10
different train sets (80%) and test sets (20%) using 10 fixed seeds. Finally,
we use the average accuracy of the 10 splits as the performance metric of the
SVM on the selected feature subsets. For a fair comparison, we do not tune any
hyperparameters of the algorithms (if any) or SVM and keep them as they are.
For our approach, we keep thcor = 0.5, thnmi = 0.3.

70

5.4 Experiments

Table 5.3: Average accuracy results of dataset COIL20

#Features
Method 10 25 50 75 100 125 150 175 200
fischer
_score 21.9 52.5 86.2 90.2 90.6 92.1 93.0 93.1 94.9

gini_index 56.0 77.0 86.8 86.4 88.5 89.0 93.3 94.4 94.1
ICAP 67.9 78.1 78.9 78.9 78.2 79.4 83.2 85.4 89.6
JMI 65.1 73.6 75.6 80.3 79.9 80.3 82.3 86.1 88.4
l1_l21 35.0 60.0 73.2 78.1 81.5 83.2 89.2 90.2 91.1
MIFS 26.2 39.2 46.3 54.1 59.1 65.1 67.2 69.7 73.8
MIM 49.1 72.5 83.6 84.6 86.2 87.6 88.4 89.0 89.3

MRMR 67.8 85.1 88.6 92.5 93.7 93.6 94.2 94.3 94.9
reliefF 38.5 71.6 80.7 83.1 86.0 89.1 91.5 94.0 94.8
RFS 61.8 74.7 81.2 81.9 83.6 84.9 87.5 87.8 89.4
CIFE 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7
CMIM 67.9 78.1 78.9 78.8 78.1 79.5 83.2 85.4 89.5
DISR 54.8 75.2 87.5 91.1 92.8 95.0 95.5 95.9 96.2
f_score 21.9 52.5 86.2 90.3 90.6 92.2 93.0 93.0 94.8

trace_ratio 21.9 52.4 86.1 90.2 90.6 92.1 93.0 93.1 94.9
ls_l21 26.2 68.8 85.9 90.1 93.0 94.2 95.1 95.0 95.7
FCBF 19.4 19.4 19.4 19.4 19.4 19.3 19.4 19.4 19.4

Watermelon 83.6* 94.2* 96.4* 97.5* 97.8* 98.3* 98.3* 98.4* 98.4*

5.4.2 Results and analysis of experiments

As an example, table 5.3 presents the evaluation results on the dataset COIL20.
The bold values with an asterisk indicate the best performance achieved among
all the competitors. Our approach clearly outperforms all the other algorithms,
regardless of how many features are used by the classifier. Besides, our approach
shows its great efficiency by achieving an average accuracy of 83.6% with only
10 features while the best performance of other algorithms is only 67.9%. This
phenomenon applies also to other benchmarks in most cases. In table 5.4 we
present a summary of all the results by averaging the average accuracy obtained
by SVM with the first 10, 25, 50, 75, 100, 125, 150, 175 and 200 features, which
are selected and ordered by the corresponding feature selection methods. In the
last column, we show the average ranks of the algorithms regarding the accuracy
obtained on each benchmark. Our approach is noticeably better than any other
method by obtaining an average rank of 1.9, while the average rank of the next

71

5 General feature selection

Table 5.4: Summary of evaluation results. Accuracy is the average accuracy obtained while varying
the cardinality ([10, 25, 50, 75, 100, 125, 150, 175, 200]) of selected features. The last
column lists the average ranks of the methods on all the benchmarks.

Method CLL_
SUB_111 COIL20 Colon GLIOMA Isolet Lung Lymphoma nci9 ORL orlraws10P PCMAC TOX_171 USPS warpAR10P warpPIE10P Yale Gisette Avg. Rank

Watermelon 76.4 95.9* 84.9* 78.0* 86.4* 91.9 87.0 76.4* 90.6* 95.8* 89.5 85.3* 92.1* 93.5* 98.9* 74.9* 93.7* 1.9
DISR 64.6 87.1 83.6 65.2 72.1 89.5 90.3 71.9 79.5 75.1 89.9 73.0 82.2 86.1 96.2 65.7 93.2 6.2
ICAP 63.8 80.0 81.1 63.8 70.1 89.1 91.3* 71.9 83.7 67.8 89.7 83.8 87.0 82.3 96.6 60.8 92.5 7.2

fischer_score 58.6 79.4 79.0 77.6 74.0 88.9 86.3 73.9 81.4 80.2 88.5 79.7 86.6 84.2 97.6 66.2 92.8 7.6
JMI 62.3 79.1 83.5 64.0 69.3 90.5 91.2 70.5 78.6 91.4 89.6 67.8 88.2 84.5 97.5 61.9 92.7 7.41

f_score 58.6 79.4 79.0 77.6 74.0 88.9 86.3 74.6 81.4 80.2 88.5 79.7 86.6 84.2 97.6 66.2 82.3 7.8
trace_ratio 58.6 79.4 79.0 77.6 74.0 88.9 86.3 74.5 81.4 80.2 88.5 79.7 86.5 84.2 97.6 66.3 92.4 7.8
MRMR 55.1 89.4 79.0 68.2 77.3 86.6 91.3 70.6 82.7 72.4 90.5* 62.2 73.3 85.0 98.3 59.3 92.2 8.0
CMIM 63.8 79.9 81.3 63.8 70.0 89.1 91.3* 69.9 83.7 67.8 89.7 71.5 87.0 82.3 96.6 60.8 91.9 8.2
MIM 63.9 81.1 78.5 71.6 59.0 87.6 87.3 67.8 60.9 85.3 89.7 74.3 86.9 83.1 94.8 59.3 92.9 9.1
reliefF 62.5 81.0 83.2 71.4 63.2 90.4 80.2 60.1 76.8 77.8 73.4 76.8 88.0 85.8 95.5 55.9 92.8 9.1

gini_index 79.0* 85.1 79.7 76.4 60.2 89.9 66.5 39.4 77.9 65.2 89.9 69.2 79.4 72.4 94.8 45.9 92.8 10.3
RFS 74.4 81.4 58.2 32.0 73.0 92.7* 79.6 34.4 51.4 51.6 86.6 85.1 89.3 68.5 95.4 34.6 91.0 11.2
l1_l21 58.4 75.7 80.7 68.8 68.6 90.7 82.4 45.2 56.0 49.3 84.5 81.5 83.5 80.5 95.8 42.7 83.4 11.9
ls_l21 42.1 82.7 60.9 48.7 79.5 69.0 47.5 26.0 84.6 61.9 70.7 57.6 90.4 73.8 95.0 59.1 78.3 12.7
MIFS 54.6 55.6 78.5 48.3 64.9 84.1 85.1 46.1 79.1 77.6 86.3 55.7 72.1 63.0 95.6 46.9 84.7 13.8
FCBF 50.9 19.4 83.1 37.0 21.8 81.0 86.7 70.6 9.3 19.5 87.3 22.3 30.8 19.6 26.2 12.1 84.7 15.1
CIFE 41.7 38.7 79.8 48.0 61.4 70.7 63.3 24.3 25.4 63.5 82.0 30.0 32.7 26.2 92.8 20.3 87.6 16.0

best method DISR is only 6.2. It proves the effectiveness and robustness of our
approach by outperforming other competitors with a significant leading rank and
achieving the highest accuracy in 13 of 17 benchmarks.

Subsequently, followingBrown et al. [69], we useFriedman test and thenNemenyi
post-hoc test to validate whether our approach is statistically significantly better
than other algorithms based on the ranks. The analysis results are presented in
Fig. 5.2 as a Significant Dominance Partial Order Diagram. Every bold line
connecting two algorithms indicates a significant difference (In our case, since
we order the algorithms from top to bottom with ascending values of ranks, this
difference means that the upper one is better than the lower one) at the 99%
confidence level, every dashed line at the 95% level and every dotted line at
the 90% level. This diagram illustrates that in our experiments, our approach
is significantly superior to MIM, reliefF, gini_index, RFS, l1_l21, ls_l21, MIFS,
FCBF and CIFE with 99% confidence, to CMIM with 95% confidence and to
f_score, trace_ratio and MRMR with 90% confidence, which agrees with the
observation on the average ranks. Moreover, we find that MIFS, FCBF, and CIFE
are in general less powerful compared to other methods. Note that the absence
of a connection does not mean that there is no significant difference, but that the
number of datasets is not enough for the Nemenyi test to make a decision [69,75].

72

5.4 Experiments

Watermelon

DISR

ICAP

fischer_score

JMI

f_score

trace_ratio

MRMR

CMIM

MIM

reliefF

gini_index

RFS

l1_l21

ls_l21

MIFS

FCBF

CIFE

Figure 5.2: Significant Dominance Partial Order diagram. Methods are placed top to bottom regarding
their ranks, and a connection between any two methods indicates a statistically significant
difference using the Nemenyi post-hoc test at the corresponding confidence level. For
instance, watermelon is superior to MIM with 99% confidence.

5.4.3 Discussion

The results of the experiments show that our method outperforms others by a large
margin. To better explain what is the key to achieving the advantage, we re-run the
experiments with two modified versions of the proposed method: watermelon-B
and watermelon-B-S. Watermelon-B scores and selects a feature subset purely
based on the BERs and does not adjust the scores according to feature redundancy
or relevance. Watermelon-B-S uses the BERs as base scores and takes the feature
redundancy into consideration, however, feature relevance is ignored.

73

5 General feature selection

Table 5.5: Comparison of different versions of watermelon. The first two columns show the average
accuracy and rank achieved by the methods over all the benchmarks, and the last column
shows the overall ranks among all the competitors. The comparison is based on the two
runs of the whole experiment using a linear SVM and random forest.

Classifier Method Avg. Acc Avg. Rank Overall Rank

SVM
watermelon-B 79.4 7.4 7
watermelon-B-S 86.3 2.8 1
watermelon 87.7 1.9 1

random
forest

watermelon-B 82.0 8.8 8
watermelon-B-S 87.3 3.7 1
watermelon 89.7 2.7 1

We keep other experiment setups constant and repeat the same procedure as
before. The corresponding results are summarized in the first three rows of table
5.5. In the first two columns, we list the average accuracy and rank achieved by
the methods over all the benchmarks. Besides, the overall ranks of the methods
among all the competitors are shown in the last column.

Thewatermelon-B, which only uses the BERs as feature scores, obtains an average
rank of 7.4 with 79.4% average accuracy over all the datasets and takes the 7th
place out of 18 competitors. It shows that scoring and selecting the feature subset
by purely estimating the Bayes error rate is already a very competitive approach,
although it does not achieve absolute state-of-the-art performance. One major
problem of the simple approach is the ignorance of feature interaction.

Watermelon-B-S takes the feature redundancy into consideration and thus gets sig-
nificant improvements by achieving an average accuracy and rank of 86.3(+6.9)%
and 2.8(-4.6), respectively. Besides, it already outperforms other competitors
with the 1st place overall rank. Hence it is clear that removing redundant features
is a crucial part of feature selection, as many algorithms claimed. In this paper
we further constrain the definition of redundancy: only monotonic relationships
should be penalized. Besides, we state that feature relevance, which is defined as
a non-monotonic relationship, brings extra benefits due to the complementarity
of features. This statement is also proved by the experiments. Compared to
watermelon-B-S, the average accuracy and rank of the original watermelon are
further improved by 1.4% and 1.1 through rewarding relevant features.

74

5.4 Experiments

In addition, before making a final conclusion, it is essential to check whether
the evaluation is skewed by the specific choice of the classifier (linear SVM).
Thus, we repeat the whole experiment again with a random forest while holding
all other settings constant for a fair comparison. We use the implementation
of the random forest also from scikit-learn with default hyperparameters and
show the final results in the last three rows of table 5.5. The performance of
random forest is overall better than SVM on all the benchmarks in most cases,
which is also as expected since the random forest is most likely to be the best
compared to other classifiers [76]. As Table 5.5 shows, the original version of
watermelon and watermelon-B-S still outperform others regarding their overall
ranks, which again proves the effectiveness and robustness of our approach. Note
that the average ranks using random forest are slightly lower than SVM due to
the fact that random forest is not only a powerful classifier but also an embedded
feature selection method. Thus, the proposed performance is actually the result of
“feature selection of feature selection", which makes up the performance margin
between watermelon and others. That is also the main reason why we do not
use random forest in our main experiment: it introduces extra factors and thus
disrupts the evaluation.

75

6 Element identification with
interpretable dimension
reduction

This chapter, based on the framework proposed in Chapter 4, focuses on the
qualitative spectral analysis. This chapter begins with the same approach as in
the quantitative part to extend the baseline framework for element identification.
Besides, to further improve the non-functional performance, i.e., the costs of
the framework, this chapter applies the watermelon feature selection method
proposed in Chapter 5, and compares it with several dimension reduction methods
to demonstrate its superiority. This is the initial motivation for the development
of the hybrid approach for real-time low-cost spectral analysis in Chapter 8,
which builds the linkage between academic research (make it work) and industrial
applications (make the work efficient) that are all within the scope of work of this
dissertation.

6.1 Introduction

Fast, automatic and accurate qualitative spectral analysis is an essential part in
many application domains where the presence of certain elements needs to be
determined given measured spectral data. The identification task traditionally
requires a well-trained expert to conduct a labor-intensive workflow manually,
which is very time-consuming.

77

6 Element identification with interpretable dimension reduction

To accomplish such objectives automatically, neural network-based approaches for
element identification have been proposed since the late last century [3] starting
with the usage of shallow MLPs. Following work applies further techniques to
improve the performance of neural networks, such as a much deeper network, the
utilization of CNNs [9, 77, 78], feature reduction [12, 79], batch normalization
and dropout [22]. These methods are proven to be effective in terms of prediction
accuracy [77].

Despite the progress achieved previously, there are still certain limitations and
potential for improvement:

• The scope of work is usually limited to identifying only a small number
of elements (typically 3-7 [12, 22, 77]) with one neural network being
responsible for the prediction of each element, which is not feasible when
a more generalized solution is required, especially for large-scale industrial
applications with big data involved. As the task complexity increases,
the cost of data preparation, network training, storage, transmission and
deployment also raises exponentially.

• In many cases, the training dataset is not sufficient to train a neural network
with good performance [9,79] and there are fewer real-world measurements
for a solid evaluation, which is also a major reason for the limited scope of
work.

• The application of feature reduction often requires prior knowledge. For
instance, one needs to manually choose features where spectral peaks
are present to select regions of interest (ROI) [79], which is not feasible
across different application types or even different measurement conditions.
Therefore, it is not applicable in real-world industrial applications.

To address the problems mentioned above, in this chapter, the framework for
element quantification is extended for element identification. First, we compare
different neural network architectures and train the networks using large-scale
simulation data, where most of the relevant elements (the complete list of 28
elements is summarized in Table 4.1 in Chapter 4) are covered by a single network.

78

6.1 Introduction

Results on measurement data show that CNN-based networks outperform MLPs
in most cases, whereas MLPs require fewer computational resources and are
also competitive in certain cases. Besides, to enable an efficient workflow and
minimize the computational cost with high-dimensional spectral data, the feature
selection methodwatermelon is adopted to perform feature selection to reduce the
data dimension. Comparable results with other data reduction methods show that
this approach achieves better accuracy and provides more intuitive interpretable
results, and tests on measurement data illustrate that neural networks trained on
a small feature subset (32 from 1024 original features) can achieve even better
prediction accuracy. Moreover, due to the reduced input data dimension, the
network size can be reduced to 19.82% and 3.17% of the original size regarding
the number of parameters and floating-point operations (FLOPs), respectively.

The main contributions of this chapter can be summarized as follows:

• The extended framework significantly improves the performance of DNN-
based approaches on large-scale spectral identification with a thorough
evaluation of various network architectures and sizes.

• By introducing feature selection for high-dimensional spectral data, the
proposed approach reduces the computational demand by a large ratio
with even better prediction performance. Compared to other dimension
reduction techniques, watermelon outperforms on real measurement data
and provides better interpretability for explainable AI (XAI), which is
crucial for industrial applications.

• Besides, the test on simulation data and measurement data suggests that
dimension reduction provides in general a better real-world performance
against noises and overfitting for high-dimensional data, which is an impor-
tant best practice for other relevant domains.

The rest of the chapter is organized as follows: In Section 6.2 we give a brief task
definition and an introduction to related work. Then, the extended framework
with interpretable dimension reduction is proposed in Section 6.3, and Section
6.4 presents the experiment results with further discussion.

79

6 Element identification with interpretable dimension reduction

6.2 Related work and preliminary

6.2.1 Task definition

Recall that the generic physical model for spectral analysis is formulated as fol-
lows:

S = P (θ,T,λ,K) (6.1)

0 200 400 600 800 1000
Channels

0

1000

2000

3000

4000

5000

6000

In
te

ns
ity

Spectra of different pure elements
Au
Ag
Pt
Pd
Cu
Zn
Sn
Pb
Fe
Cr
Ni

Mo
Co
Rh
Ru
In
Ir
W
Bi
Mn
Ga
Cd

Figure 6.1:Measured spectra of different pure elements. Although each element has unique peaks,
they often overlap with the peaks of other elements, which makes it hard to identify a
wide range of elements without error.

similar to Chapter 4, we have S ∈ R1×1024 in our case and θ ∈ R1×28 determine
the presence and relative amplitudes of peaks in a spectrum (see Fig. 6.1). For a
spectral identification task, the target is then the qualitative analysis of the element
concentrations (i.e., θ ∈ {0, 1}), as shown in Eq. 6.2:

θ = P−1(S|T,λ,K) (6.2)

80

6.3 Comprehensive element identification with interpretable dimension reduction

6.2.2 Related work

Early neural-network-basedworksmainly adopt shallowMLPs to perform spectral
identification tasks with few spectra at hand. For instance, [21] trains an MLP
with one hidden layer to classify stellar spectra, and the dataset is relatively small,
with only 213 spectra available. In order to reduce the data dimension, principal
component analysis (PCA) is applied. As for gamma-ray spectra analysis, [79]
collects 409 spectra and also trains an MLP with one hidden layer. To better train
the network with few samples, feature reduction is performed. It selects element
peaks based on the second-order derivative of the spectra, where the thresholds for
peak identification are manually set. In addition, this approach requires manually
determined reference peaks to match. [22] trains an MLP on simulation data and
utilizes the dropout method to achieve better performance while minimizing the
overfitting effects. The simulated spectra contain up to 5 elements and the MLP
is trained to identify only one element. [12] applies MLPs with linear activation
functions to identify up to 7 elements, and the optimal linear associative memory
(OLAM) approach is applied to train the network. To reduce the feature space,
one spectrum is divided into subparts and the area under the curve of each part is
used as the transformed feature.

Recently, CNN models have been introduced in the domain of spectral analysis.
[77] applies CNNs to the whole spectra to identify different radionuclides. One
major disadvantage of this work is that a dedicated CNN is trained for each
element, which leads to significant time and resource demands. To train the
CNNs, they generate synthetic data based on the Monte Carlo simulation. Still,
this approach is slow, and the spectra’ quality is not ideal. [9] uses single-
layer multiple-kernel-based CNN to classify different biological sample groups.
However, only 360 spectra are available for training.

81

6 Element identification with interpretable dimension reduction

a) MLP b) CNN c) DenseNet

Input layer

Dense layer

Dense layer

Dense layer

Output layer

D
en

se b
lo

ck

Input layer

Conv layer

Conv layer

Pooling layer

Output layer

Dense layer

Dense layer

Conv layer

Conv layer

Pooling layer

Flatten layer

Spectrum

CNN

Result

Compression

e) Comparable Framework

Input layer

Conv layer

Output layer

GA

Pooling layer

Conv layer

Conv layer

Conv layer

Conv layer

Pooling layer

Dense block

Feature

selection

Feature

transformation

MLP DenseNet

Preprocessed

spectrum

d) Autoencoder

Input layer

Dense layer

Dense layer

Dense

layer

Output layer

Dense layer

Dense layer

E
n

co
d

er
D

eco
d

er

D
im

en
sio

n

red
u

ctio
n

A
rch

itectu
re

co
m

p
ariso

n

Figure 6.2: Illustration of different network architectures and the framework of our approach. To set
up a new proper baseline for large-scale element identification, we conduct extensive tests
on MLPs, CNNs and DenseNets with varying hyperparameters. Besides, compared to
other dimension reduction methods (compression and feature transformation), our feature
selection-based approach outperforms with better performance and interpretability.

6.3 Comprehensive element identification with
interpretable dimension reduction

In this section, the overall framework for an efficient comprehensive element iden-
tification with interpretable dimension reduction is proposed. As illustrated in
Fig. 6.2 (e), following the same approach of Chapter 4, we first propose a baseline
for large-scale spectral identification by evaluating different neural network archi-
tectures. Then, we adopt feature selection to reduce the data dimension for an
efficient workflow. To demonstrate the effectiveness of this procedure, we com-
pare our approach with other dimension reduction methods on both simulation
data and measurement data from the industry.

6.3.1 Data preprocessing

Since we focus on the identification of elements but not the exact concentrations
of elements, the absolute amplitude of spectra is irrelevant to our scope of work.
Instead, information needs to be extracted to predict the presence/absence of

82

6.3 Comprehensive element identification with interpretable dimension reduction

elements. Thus, we apply l2-norm to preprocess the spectral data S for better
training performance.

Xi =
Si√∑
i S

2
i

(6.3)

6.3.2 Network architecture and evaluation metrics

In this chapter, we also evaluate MLP, CNN and DenseNet with varying architec-
ture hyperparameters (e.g., number of layers, filters) on a large-scale dataset. As
for performance evaluation, there are various metrics to evaluate neural networks
on classification problems, as stated in Section 2.2.1.3 of Chapter 2. In this chap-
ter, we use F1 score to examine the balanced prediction performance because the
spectral analysis task is a multi-label multi-class problem.

6.3.3 Feature selection for dimension reduction

In real-world applications, high-dimensional data is common but hard to handle.
For our scope of work, the spectral data also contain much redundant information
as shown in Fig. 6.1. To achieve an interpretable result for dimension reduction,
previous work usually manually selects ROIs, which is not feasible for large-
scale applications. To automate this process, we choose our work watermelon
(proposed in Chapter 5) to select the most important features.

6.3.4 Other dimension reduction approaches

To obtain a solid evaluation result of dimension reduction on spectral data, we
also consider the usage of other feature reduction techniques to reduce the input
data dimension: compression and feature transformation.

83

6 Element identification with interpretable dimension reduction

6.3.4.1 Compression

As mentioned in Sec. 6.1, related work [12] in this domain adopts simple data
reduction techniques to reduce the input size. Since our work is already beyond
the scope of work of previous works, a direct comparison with them under our
task setting is not possible. Therefore, we test a similar method to serve as the
baseline for a fair comparison. Here we utilize a straightforward approach to
reduce the input dimension by averaging consequent k data points evenly, which
is defined by Eq. 6.4.

X ′
j =

ki+k−1∑
j=ki

Xj

k
, i ∈ 0, 1, 2, ...[

1024

k
] (6.4)

In this way, we can compress the spectrum by a factor of k without the need for
prior knowledge, which is superior compared to previous work.

6.3.4.2 Feature transformation

Another class of approaches is transforming the original high-dimensional fea-
tures into low-dimensional latent ones while preserving as much information as
possible. Previous works utilize a well-known classic method of principal com-
ponent analysis (PCA)[1, 18]. Similarly, in this chapter, we adopt a more popular
neural network-based method, i.e., Autoencoder, due to its excellent performance
on feature transformation. The architecture of a plain vanilla Autoencoder is
described in Fig. 6.1(d) with a similar structure as an MLP.

84

6.4 Experiments and results

6.4 Experiments and results

6.4.1 Experiment setup

In order to identify up to 28 elements under a large-scale task setting, we generate
140k simulation spectra to train our neural networks and 40k spectra as the test
dataset. The number of elements and the concentrations of elements are randomly
chosen for each spectrum.

105 106 107

of parameters

0.88

0.90

0.92

0.94

0.96

0.98

1.00

te
st

 F
1

sc
or

e

(a) Summary of model parameters

CNN
MLP
DenseNet

105 106 107 108 109

of FLOPs

0.88

0.90

0.92

0.94

0.96

0.98

1.00
te

st
 F

1
sc

or
e

(b) Summary of model FLOPs

CNN
MLP
DenseNet

Figure 6.3: Performance of MLP, CNN and DenseNet with different network sizes, the x-axis is
logarithmic. CNNs and DenseNets outperform MLPs by a noticeable margin.

Besides, to determine the feasible network size, we test each network architecture
with various configurations. The MLPs consist of 2 to 8 layers, while all the
layers in one network have the same neuron size, varying from {32, 64, 128, 256,
512}. Therefore, there are 35 MLP candidates in total. For CNNs, following the
architecture shown in Fig. 6.2 (b), seven networks with different filter sizes (from
32 to 128) and neuron sizes (from 128 to 512) are evaluated. As for DenseNet,
based on the original DenseNet-40 architecture, we also train seven networks with
varying filter sizes and growth rates.

85

6 Element identification with interpretable dimension reduction

Table 6.1: Summary of network performance

Network F1 Score #parameter #FLOPs
MLP 0.9828 1.60M 3.19M
CNN 0.9976 20.27M 2456.00M

DenseNet 0.9967 1.35M 613.60M

The networks are all trained using an Adam optimizer with a learning rate of 1e-4
for 120 epochs, where the learning rate decreases by a factor of 0.1 after 60 and
90 epochs. Besides, a weight decay of 1e-4 is applied and binary cross-entropy
is used as the loss function. Since this is a multi-label multi-class problem, the
sigmoid activation function is applied at the output layer.

6.4.2 Classification results on simulation data

The comparable results of the network candidates on the test dataset are visualized
in Fig. 6.3. The test F1 scores of all the networks (Y-axis) are plotted against the
parameter sizes and FLOPs sizes (X-axis) in (a) and (b), respectively. It shows that
as the network size increases, the performance improves until a later saturation
stage. Besides, CNNs andDenseNets have generally achieved better test F1 scores
than MLPs, even with similar parameter sizes.

For the following part of the work, we choose one network for each network
architecture considering its performance and resource demand. An overview of
the networks is summarized in Table 6.1. The MLP consists of 8 hidden layers
with 512 neurons in each layer. The CNN has a structure of {2x(Conv layer with
128 filters), Maxpooling layer, 2x(Conv layer with 256 filters), Maxpooling layer,
2x(Conv layer with 256 filters), Maxpooling layer, Flatten layer, 3x(Dense layer
with 512 neurons)}. As for DenseNet, the DenseNet-40 with a growth rate of 12
is chosen.

Regarding the network size, we note that MLP and DenseNet have a similar level
of parameter number at about 1.5 million. At the same time, CNN is significantly

86

6.4 Experiments and results

larger in terms of both the number of parameters and FLOPs (20M and 2456M,
respectively).

0 100 200 300 400 500
0

50

100

150

200

250

51
2

fe
at

ur
es

(a) Compression

0 100 200 300 400 500
0

50

100

150

200

250

(b) Watermelon index order

0 100 200 300 400 500
0

50

100

150

200

250

(c) Watermelon score order

0 100 200 300 400 500

−40

−20

0

20

40

(d) Autoencoder

0 50 100 150 200 250
0

50

100

150

200

250

25
6

fe
at

ur
es

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
−80
−60
−40
−20

0
20
40
60
80

0 20 40 60 80 100 120
0

25
50
75

100
125
150
175

12
8

fe
at

ur
es

0 20 40 60 80 100 120
0

50

100

150

200

250

0 20 40 60 80 100 120
0

50

100

150

200

250

0 20 40 60 80 100 120
−80
−60
−40
−20

0
20
40
60
80

0 10 20 30 40 50 60
0

20

40

60

80

100

64
 fe

at
ur

es

0 10 20 30 40 50 60
0

50

100

150

200

250

0 10 20 30 40 50 60
0

50

100

150

200

250

0 10 20 30 40 50 60

−100

−50

0

50

100

0 5 10 15 20 25 30
0

20

40

60

80

100

32
 fe

at
ur

es

0 5 10 15 20 25 30
0

50

100

150

200

250

0 5 10 15 20 25 30
0

50

100

150

200

250

0 5 10 15 20 25 30
−200
−150
−100

−50
0

50
100
150
200

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

20

40

60

80

16
 fe

at
ur

es

0.0 2.5 5.0 7.5 10.0 12.5 15.0

50

100

150

200

250

0.0 2.5 5.0 7.5 10.0 12.5 15.0

50

100

150

200

250

0.0 2.5 5.0 7.5 10.0 12.5 15.0
−200

−150

−100

−50

0

50

100

150

Visualization of feature reduction results

Figure 6.4: Visualization of reduced features by (a) compression, (b) and (c) watermelon, (d) Au-
toencoder. In (b), the features are ordered by their original indices and in (c), the most
important features are the most left ones. Both compression and watermelon preserve the
shape of spectra, and watermelon performs better, especially when the number of features
is limited. In contrast, Autoencoder produces latent features that are hard to interpret.

87

6 Element identification with interpretable dimension reduction

0 200 400 600 800 1000
Channels

0

1000

2000

3000

4000

5000

6000

In
te

ns
ity

Visualization of feature selection result using watermelon
Au
Ag
Pt
Pd
Cu
Zn
Sn
Pb
Fe
Cr
Ni

Mo
Co
Rh
Ru
In
Ir
W
Bi
Mn
Ga
Cd

Figure 6.5: First 16 selected features by watermelon, the major peaks are automatically detected.

6.4.3 Comparison of dimension reduction methods

To obtain less demanding networks and better interpret the results, we further
examine the effects of different feature reduction methods. For compression,
we use k ∈ {2, 4, 8, 16, 32, 64} which leads to a final input spectrum size of
{512, 256, 128, 64, 32, 16}. This approach is straightforward, intuitive and can
preserve the shape of spectrawith a reasonable choice ofk. To illustrate the results,
the compressed spectra of the mixture of all relevant elements are displayed in Fig.
6.4(a). Note that the most significant peaks are still visually distinguishable until
k = 8, i.e., with 128 features remaining. However, as k grows, a large portion of
information gets lost due to the fusion of major peaks.

Similarly, for feature selection, we use watermelon to select the most important
{512, 256, 128, 64, 32, 16} features using the original spectra dataset. To show
the efficiency of this method, Fig. 6.5 depicts the 16 most important features in
green lines. Note that most major peaks are selected as ROI automatically and
precisely, which outperforms the traditional ROI selection approaches that require
prior knowledge and cost of time. The results of all selected feature subsets are
visualized in Fig. 6.4(b) and (c). In (b), the selected features are ordered by their
original indices and in (c), the feature selection scores are used where the most
left features are the most important features.

88

6.4 Experiments and results

16 32 64 128 256 512 1024
features

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

F1
 S

co
re

(a) Performance of feature reduction methods on MLP

Watermelon+MLP
Compression+MLP
Autoencoder+MLP

16 32 64 128 256 512 1024
features

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

F1
 S

co
re

(b) Performance of feature reduction methods on CNN

Watermelon+CNN
Compression+CNN
Autoencoder+CNN

16 32 64 128 256 512 1024
features

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

F1
 S

co
re

(c) Performance of feature reduction methods on DenseNet

Watermelon+DenseNet
Compression+DenseNet
Autoencoder+DenseNet

Figure 6.6: Performance of MLP, CNN and DenseNet using different feature reduction methods.
Watermelon achieves overall best performance and Autoencoder is feasible at a low
number of features, whereas compression is more suitable for higher feature sizes.

In (b), we notice that compared to compression, watermelon can preserve more
information with a much sharper spectrum structure, especially as the number of
remaining features decreases. For the target final feature numbers of 32 and 16,
watermelon keeps twice the peaks as compression does. In (c), the peaks with the
highest intensity are firstly selected, which agrees with Fig. 6.5.

As for feature transformation using Autoencoder, the number of neurons in the
bottleneck layer is also {512, 256, 128, 64, 32, 16}, respectively. The latent fea-
tures are shown in (d) and in contrast to the other two approaches, it is hard to
interpret the output of the Autoencoder.

We re-train the networks with the same configuration based on the reduced fea-
tures. The comparable results are illustrated in Fig. 6.6. In each subplot, the
performance of three feature reduction methods is tested with MLP, CNN and
DenseNet, respectively.

For CNN and DenseNet, we find that watermelon outperforms the other two
methods in all cases, especially when the number of features is low. This agrees
with the visualization of reduced features where watermelon effectively preserves
the most important features. Similarly, the difference between watermelon and
compression convergences as the number of features grows to 128 since starting
from128 features, compression can also output spectrawith distinguishable peaks.
In contrast, the performance of Autoencoder saturates at an early stage, leaving
a large F1 score gap with the other two methods. When examining the results

89

6 Element identification with interpretable dimension reduction

with MLP, Autoencoder outperforms others in most cases, while watermelon is
still superior with the least and most features (16 and 512). Besides, compression
always leads to the worst F1 score.

We consider the main cause of different evaluation results as the existence/ab-
sence of spatial information. Compression and watermelon maintain the spec-
trum structure while Autoencoder does not. Moreover, CNN and DenseNet
can take advantage of spatial information of input data and build high-level fea-
tures that are utilized to make the final prediction, whereas MLP does not have
such ability. Therefore, the combination of spatial information capable networks
(CNN&DenseNet) andmethods (compression&watermelon) deliver the best over-
all performance. In comparison, although Autoencoder is preferred for MLP, the
F1 scores are generally lower than others.

6.4.4 Evaluation on real measurements

In the previous sections, we evaluate the networks on simulation data. To assess
the performance of our approach in real-world scenarios, we collect 15 complex
samples measured on different measurement devices that are summarized in Table
6.2, where each sample is measured for #repeat times. Theoretically, elements
with lower concentrations are harder to identify. Thus, to provide a better overview
of the distribution of concentrations, the elements are marked as trace (<1%),
very low (1-10%), low (10-30%), medium (30-70%), high (70-90%) and very
high (>90%), respectively. Since the neural networks predict the presence of all
28 elements, whereas there are only 13 elements involved in the measurement
data, it will lead to an F1 score of zero for the elements that are not present at
all. To properly assess the performance of the models on real data, we calculate
the accuracy instead. Then, the accuracies of MLP, CNN and DenseNet using
varying numbers of features are presented in Table 6.3. Overall, our approach
performs also very well on measurement data with an accuracy of up to 0.9911.

Across different combinations of neural networks and feature reduction tech-
niques, we find that similar to the results on simulation data, CNN-based models

90

6.4 Experiments and results

Table 6.2: Summary of measurement spectra. The elements are marked as trace (<1%), very low
(1-10%), low (10-30%), medium (30-70%), high (70-90%) and very high (>90%)

Sample # repeat Element
Au Ag Pt Cu Zn Sn Pb Fe Ni Mn Pd In Ir

sample_1 10 high very low very low trace trace
sample_2 10 medium medium trace very low trace trace
sample_3 10 medium medium trace trace trace trace
sample_4 10 high very low very low very low trace trace
sample_5 10 medium trace trace trace trace medium trace
sample_6 10 high trace very low very low very low
sample_7 10 high trace very low low trace trace
sample_8 200 medium low low
sample_9 200 high very low low
sample_10 200 medium low medium low
sample_11 200 medium very low medium
sample_12 200 very high very low very low
sample_13 10 very low medium very low very low medium very low
sample_14 10 medium low trace low trace very low trace
sample_15 10 high low very low very low very low trace trace

(CNN and DenseNet) outperform MLP on real data by a large margin in most
cases.

A major difference between simulation and measurement data is that on measure-
ment data, the accuracy does not decrease consistently as the number of features
decreases. It forms a quasi U-shape curve and the best accuracy is gained with
only 32 features selected by watermelon (also see Fig. 6.7 for illustration). To
explain such phenomena, we consider the following possible causes:

• Different from simulation data, random noise will be captured during the
measurement and the signal-to-noise ratio (SNR) is relatively high at low-
intensity channels. Therefore, we observe the performance difference be-
tween simulation and measurement data. Until the number of features
decreases to a certain degree, the useful information and the noises are
proportionally reduced. Since there are fewer features available, the perfor-
mance drops as well.

• As the compression rate gets higher, most low-intensity features are filtered
as shown in Fig. 6.4 and the overall SNR is thus improved. Therefore,
neural networks will not learn from noises that may lead to overfitting
problems. As a result, performance is improved.

91

6 Element identification with interpretable dimension reduction

Table 6.3: Summary of comparable results using different dimension reduction techniques, the accu-
racy on real measurement data using different feature sizes is presented.

Method Compression Watermelon Autoencoder
feature MLP CNN DenseNet MLP CNN DenseNet MLP CNN DenseNet
1024 0.9394 0.9813 0.9770 0.9394 0.9813 0.9770 0.9394 0.9813 0.9770
512 0.9438 0.9748 0.9717 0.9629 0.9755 0.9661 0.9816 0.9772 0.9777
256 0.9484 0.9810 0.9881 0.9417 0.9618 0.9673 0.9806 0.9767 0.9862
128 0.9664 0.9893 0.9842 0.9520 0.9717 0.9861 0.9762 0.9841 0.9880
64 0.9644 0.9892 0.9884 0.9443 0.9886 0.9884 0.9874 0.9878 0.9873
32 0.9724 0.9591 0.9666 0.9592 0.9911 0.9867 0.9882 0.9856 0.9874
16 0.7687 0.8435 0.8265 0.9569 0.9561 0.9398 0.9748 0.9711 0.9769

• For watermelon, the accuracy is lower than others at the middle point.
It is mainly because its algorithm tries to gather as many good but also
uncorrelated features as possible. Therefore, it is less robust than others
where useful, but correlated features contribute to a stable result. Still, it
achieves the best performance with only 32 features.

• Last but not least, since the measurements only contain a subset of all
the elements that neural networks can identify, the performance might be
different on more complex spectra, where the number of different samples
is higher and all possible elements are covered.

6.4.5 Comparison of model sizes

In Section 6.4.3, different feature reduction techniques are introduced to reduce the
overall resources needed. In Fig. 6.7, we compare themodel sizes concerning their
performance using CNNs as an example. The accuracies (Y-axis) of models using
different approaches against the number of model parameters (X-axis, logarithmic
scale) are plotted in (a), while the number of FLOPs is shown in (b). The number
of parameters indicates the required physical size to store the network, and FLOPs
represent the computational cost needed for the network execution.

From the figure, we note that dimension reduction methods can significantly
reduce the model sizes with even better identification results. Using 32 features

92

6.4 Experiments and results

1074×106 6×106 2×107

parameters

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

A
cc

ur
ac

y

(a) Performance of CNNs with different input features

Watermelon
Compression
Autoencoder

108 109

FLOPs

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

A
cc

ur
ac

y

(b) Performance of CNNs with different input features

Watermelon
Compression
Autoencoder

Figure 6.7: Performance and size comparison of CNNs on real measurements, x-axis uses the log-
arithmic scale. Similar to simulation results, watermelon still obtains the best accuracy
with a lower model size.

selected by watermelon, the number of parameters is only 19.82% of the original
model and the number of FLOPs is reduced to 3.17%. Besides, the parameter and
FLOPs size of the Autoencoder approach is always larger than compression and
watermelon because except for the prediction network, Autoencoder itself also
introduces extra parameters and FLOPs since it is also a neural network.

Overall, our approach with watermelon achieves the best accuracy on real-world
measurement data with significantly reduced data dimension, computational, and
storage costs.

93

7 Efficient network pruning via
feature selection

The findings in Chapter 6 show that for the spectral analysis tasks, the DNNs can
achieve excellent performance with only a small portion of the input data, leading
to an attractive solution for the practical deployment in industrial applications,
where the computational resources are expensive and not unlimited.

This inspires ongoing thinking of what else could be done to further optimize the
whole framework. Note that in this workflow (input-model-output), the feature
selection focuses on the input part and greatly reduces the data volume that has to
be processed by the model. A further step, after the data are given, is to investigate
whether the cost of the model itself can be improved. DNNs are known to be
powerful but also computationally intensive, therefore, an enormous saving may
be achieved if the size of DNNs can be slimmed without significant performance
degradation.

This chapter, similar to Chapter 5 where the watermelon feature selection is
introduced, proposes a network pruning method that compresses the network size
for efficient execution. Based on the watermelonmethod, this innovative approach
prunes a network from a feature selection perspective. Besides, to demonstrate its
generalization ability, the approach is proposed as a general method for DNNs and
is not bounded by the spectral analysis domain. Experiment results on large-scale
image classification tasks, which are the golden benchmarks in the domain of
machine learning, validate its efficiency, and in Chapter 8, it will be examined on
the spectral data to focus on the specific topic of spectral analysis.

95

7 Efficient network pruning via feature selection

7.1 Introduction

In the past few decades, deep CNNs have been successfully utilized in many
application fields, such as image classification [34], semantic segmentation [80],
object detection [33] and natural language processing [81]. Large-scale datasets
[82] promote the development of deeper and larger CNN networks from classic
AlexNet [34] and VGGNet [32] to ResNet [83] and DenseNet [36] with up to
billions of parameters and hundreds of layers.

Although these networks are powerful, they demand a large memory footprint,
considerable hardware storage and huge computational resources. Thus, the
acceleration of CNNs using network pruning [84, 85] has become a focus in the
past years. Network pruning approaches can be empirically divided into two
groups: unstructured and structural pruning. Unstructured methods prune the
weight parameters in the neural network and can achieve a very high compression
rate [86–89]. However, since the network structure does not change and the
sparse weights have to be stored with extra overhead, which often requires specific
libraries and/or hardware, the actual computational cost is not significantly reduced
compared to the impressive compression rate of parameters.

In contrast, structural methods directly remove neurons, filters and/or layers to
gain a more compact network. As the network gets slimmed, fewer FLOPs are
required for the network training and inference, which is superior to unstructured
methods. These approaches typically use certain criteria to select less important
parts of the network and among them, the utilization of regularization terms is
an active sub-domain. Different norms (l1/2-norm, l1-norm and l2-norm) are
applied directly or indirectly to the layer weights to train a sparse network and
redundant filters are pruned [90–93].

Besides, some approaches assess the importance of filters based on statistical
information, such as l1-norm of weights [94], average feature map ranks [95],
expected output values [96] and gradient-based scores [89,97]. Another group of
network pruning methods try to minimize the reconstruction error after pruning
to obtain a good sub-network based on various concepts, including l1-norm and

96

7.1 Introduction

LASSO [92], second-orderweights information [98,99] and greedy strategy [100].
Moreover, techniques from other domains are also introduced to prune deep
CNNs: meta learning [93, 101], reinforcement learning [102] and generative
adversarial learning [103] to name a few. Note that some methods do not belong
to only one category, for instance, FilterSketch [98] uses second-order information
and aims to minimize the reconstruction error.

Many of these algorithms need to train a network from scratch or retrain the
network during pruning, which is time-consuming, especially for large networks
on large datasets. Additionally, apart from reducing the reconstruction error,
numerous approaches [93, 101, 104–107] select sub-networks based on their per-
formance (e.g. accuracy, loss) after pruning. However, we find that pruning with
huge reconstruction errors or a zero post-pruning prediction ability is feasible.
Moreover, although various methods assess the importance of filters based on
certain rules, few of them explicitly utilize feature selection methods. To our
best knowledge, only NISP [108] adopts a feature selection method but it also
minimizes the reconstruction error.

Therefore, in this chapter, we propose a network pruning method from a pure
feature selection perspective based on watermelon (introduced in Chapter 5).
We show that ignoring the huge reconstruction error can also lead to excellent
pruning results by preserving important internal high-level features. Inspired by
the common brief that the Conv layers serve as feature extractors of input data, we
evaluate the outputs of the last Conv layer as latent features and perform feature
selection on it. Then, backward from the last Conv layer to the first Conv layer,
each layer determines which filters of the previous layer will be removed based on
their redundancy. Afterward, if there are other following dense layers except for
the last prediction layer, feature selection will also be applied to select the neurons
to be pruned. Finally, we retrain the network to retain the prediction performance.

We evaluate our method on CIFAR10 [109] and ImageNet [82] using VGGNet
(VGG-16) and DenseNet (DenseNet40, DenseNet121). We achieve state-of-the-
art performance without the need for training networks from scratch or training
to prune. We show that our method is intuitive, straightforward, and effective on

97

7 Efficient network pruning via feature selection

different CNN architectures. Also, we provide a new view of network pruning:
find important features while ignoring the reconstruction error.

In summary, the main contributions of this chapter are twofold:

1. We propose a network pruning method from a pure feature selection per-
spective, and our approach is competitive with other state-of-the-art meth-
ods;

2. Different from many approaches that minimize the reconstruction error, we
show that it is not an essential criterion by achieving excellent results with
significant reconstruction errors.

7.2 Related works and preliminary

Early works on network pruning are mainly unstructured methods. A represen-
tative work [86] zeros out weights with very small magnitudes, which leads to a
very sparse weights matrix. Although it achieves an impressive parameter com-
pression rate, the actual computational cost is not significantly reduced due to the
constant network topology. [87] prunes parameters based on [86] and retrain the
network with the corresponding initial weights (called winning ticket). A follow-
ing work [96] of structural pruning prunes filters/neurons with the least expected
post-activation values and retrains the networks with reinitialization.

As for other structural pruning methods, network slimming [90] applies scaling
factors to filters inConv layers and uses l1-norm regularization to train the network.
Afterward, filters with small scaling factor values are removed. Similarly, [91]
prunes an untrained network with a custom regularization term. SCOP [110]
generates the knockoff data from training data, which have a similar distribution to
training data but no ground-truth information. After training, it prunes filters with
high scaling factors on the knockoff data. CCPrune [111] uses l1 regularization
to both the Conv layer and batch-normalization (BN) layers. Besides, it jointly
evaluates the importance of the filters based on the weights of Conv layers and the

98

7.2 Related works and preliminary

scaling factors of BN layers. FETS [112] measures the influence of a filter based
on the average output. It applies group Lasso to force the FLOP-relevant sparsity
regularization terms to be small during training, thus removing less important
filters.

Similarly, SSL [113] utilizes group Lasso regularization to prune network struc-
tures. [92] uses l1-norm and solves Lasso to minimize the reconstruction error
and prune unimportant filters. ThiNet [100] iteratively prunes filters by mini-
mizing the reconstruction error of layer output based on a greedy strategy. NISP
[108] performs feature selection on the final response layer and propagates the
“importance score" to each layer, aiming to minimize the reconstruction error of
the whole network. [114] leverages the correlation between filters in the same
Conv layer as regularization terms and trains to push strongly correlated filters to
highly correlated. Then, redundant filters are removed.

Different from training to prune, some approaches prune a network before training.
SynFlow [115], SNIP [89] and GraSP [97] use gradient-based scores to prune
networks before training. Similar to these property-based methods, OBD [116],
OBS [117] and L-OBS [99] prune networks based on the second-order derivatives.
HRank [95] assesses the quality of filters based on the average rank of feature
maps of the filters. [118] uses Fischer information to evaluate the importance
of filters and prune the least important ones. [119] estimates the distribution of
channel saliency in the BN layers using variational technique and thus prunes
redundant filters.

Combined with techniques from other domains, EPruner [120] applies affinity
propagation to select essential filters. [121] builds graphs to assess the redundancy
of layers and prunes filters with the smallest absolute weights. FilterSketch [98]
uses second-order information of layer weights and prunes the network with the
frequent direction method.

A meta-learning-based approach MetaPruning [101] trains a meta-network to
predict the weights of given network architecture. To search for the best sub-
network, an evolutionary procedure is applied. One following work DHP [93]
develops a hypernetwork with latent vectors to generate sub-network candidates

99

7 Efficient network pruning via feature selection

and uses proximal gradient with l1 regularization for the network search to get rid
of the usage of evolutionary algorithms. [107] introduces l1/2 norm to the BN
layers during training for sparse learning and applies a genetic algorithm to select
the best sub-network according to their fitness scores.

Parallel to evolutionary algorithms, LWP [102] utilizes a reinforcement learning-
based approach to select good sub-networkswith high rewards. GAL [103] applies
generative adversarial learning to learn a new network with soft masks that can
generate similar output to the original network. l1 regularization is used to make
the new network sparse and ready to be pruned. [105] directly trains a neural
network to predict the accuracy of sub-networks and find an optimal sub-network.
EagleEye [104] adapts the BN layers to estimate the post-pruning accuracy of
sub-network candidates by removing filters with small l1-norm. [106] uses a
polynomial to estimate the accuracy of network candidates. Besides, it prunes a
network from three dimensions (filter, layer and input).

[108], [114] and [121] are the most similar works to our approach. However, our
method is different and new for the following reasons:

1. Although [108] also utilizes a feature selectionmethod on the response layer,
our concept differs. We show that keeping important and less redundant
latent features leads to good pruning results even with a huge reconstruction
error, which is the main objective function to be minimized in [108] as well
as many other methods mentioned above.

2. While [114] assess the redundancy of filters in the same layer (so does
[121]) using Pearson correlation coefficient, we use Spearman’s rank cor-
relation coefficient to find redundant filters in the previous layer based on
the filters in the current layer. In short, we find redundancy from a feature
selection perspective but not in a statistical information-based way. Be-
sides, Spearman’s coefficient is preferred in terms of finding monotonic
relationships, which can better determine the feature redundancy. Also,
[114] needs to retrain the network during pruning, whereas ours does not.

100

7.3 Model pruning via feature selection

7.3 Model pruning via feature selection

Our approach performs filter pruning on conv layers and neuron pruning on dense
layers from a feature selection perspective. Given a CNN network, for the cth
conv layer lc, c ∈ [1,# conv layers], we denoteWc ∈ Rk×k×fc−1×fc as the kernel
weights and Xc ∈ Rwc×hc×fc as the output feature maps. Here, k × k is the
kernel size, fc is the number of filters in cth conv layer, wc and hc are the weight
and height of the feature map respectively. For simplification of notation, we
ignore the bias weights.

7.3.1 Feature selection score

7.3.1.1 Neuron score

For all dense layers and the last conv layer (or the following flatten layer), their
output can be observed as features F given training datasetD with L classes. We
use watermelon as our feature selection criterion to evaluate these features, which
estimates the Bayes error rate on each feature and penalizes feature redundancy
while rewarding feature relevance. It follows a greedy search to add the next
best feature into the selected feature subset N incrementally. The corresponding
Neuron score Q(N ;Fn) (lower is better) given a new neuron n is defined as
Eq. 7.1, where the estimated Bayes error rate BER(ci, cj |Fn) with respect to
class i and j is dynamically adjusted according to the redundancy and relevance
among features (defined as BER∗(ci, cj |Fn) in Eq. 7.2). The Spearman’s rank
correlation coefficient and normalized mutual information are applied to calculate
such relationships, and an activation functionAF is introduced to compensate for
the effect of weak relationships. For more details, please refer to Chapter 5.

Q(N ;Fn) =
∑

Fk∈N∪Fn

∑
i,j∈L,i̸=j

BER∗(ci, cj |Fk) (7.1)

BER∗(ci, cj |Fn) = penalty(reward(BER(ci, cj |Fn))) (7.2)

101

7 Efficient network pruning via feature selection

7.3.1.2 Filter score

Because of the massive number of conv layers in deep CNNs, performing feature
selection on each conv layer is time-consuming. Thus, we follow the philosophy
of watermelon to detect redundancy using Spearman’s rank correlation coefficient
in a data-free way.

For each filter in cth conv layer, its weights have a size of (k, k, fc−1) and we
calculate the Spearman’s rank correlation coefficient (defined as Cor in Eq. 7.4)
of weights corresponding to every two filters fi, fj in (c-1)th conv layer. For the
convenience of math, we reshape the weights into (k ∗ k, fc−1). Then we set a
threshold thrcor and use a binary step activation function BAF , as defined in
Eq. 7.3, to indicate whether two parameter sets are significantly correlated. A
significant correlation means that one filter in the current conv layer uses highly
correlated parameters to process the output of two previous filters. Therefore,
these filters are considered redundant.

BAF (x, thr) =

{
1 if x ≥ thr
0 if x < thr

(7.3)

Qic = BAF (max
i,j∈fc−1,i̸=j

|Cor(Fi, Fj)|, thrcor) (7.4)

Qi =

fc∑
c=1

Qic (7.5)

The Filter score Qi of ith filter in previous conv layer lc−1 is thus defined as the
accumulation of individual score Qic of all the filters in current conv layer lc.

102

7.3 Model pruning via feature selection

Figure 7.1: Pruning strategy of conv layers using filter scores. For illustration purpose, filter size
fc, fc−1, fc−2 = 3 and thrvoting = 0.5, thrcor = 0.7. 1) For conv layer lc,
the weights of each filter are reshaped from (k, k, fc−1) to (k ∗ k, fc−1) and Qic is
calculated. 2) The filters in lc−1 will be marked (as blue) if Qi > fc · thrvoting . 3)
Marked filters in lc−1 and corresponding weights in lc will be pruned.

7.3.2 Network pruning and fine-tuning

Based on the scores introduced in Section 7.3.1, we describe the general pruning
process in this section. Since the conv layers function as high-level feature
extractors, we begin the feature selection and network pruning from the last conv
layer, which is usually connected to a flatten layer (VGGNet) or a pooling layer
(DenseNet). For simplicity, we use the flatten layer for description.

The size of the flatten layer is wc ∗ hc ∗ fc since the last conv layer lc it connects
to has a size of (wc, hc, fc). We define a global ratio threshold thrsparsity across
all layers to determine a certain percentile of neurons or filters to be removed
(#neurons · thrsparsity). The neuron scores are calculated based on the flatten
layer output given the training dataset to find and mask out redundant or irrelevant
“features of features". Then, the filters in conv layer lc will be removed as long as
their mapped outputs in the flatten layer are all removed.

After that, based on the remaining filters in the last conv layer lc, we calculate
the filter scores to prune filters of the previous conv layer lc−1 given thrsparsity.
To exploit the advantage of feature selection and prevent filters with positive

103

7 Efficient network pruning via feature selection

contributions from being over-pruned due to the fixed threshold, we further use
a threshold thrvoting to determine whether a filter is to be pruned or not. A
filter in conv layer lc−1 will be pruned only if 1) its filter score Qi is greater than
thrvoting · fc and 2) ratio threshold thrsparsity is not reached. By repeating these
steps as shown in Fig. 7.1, we can prune all conv layers backward.

Moreover, the flatten layer is also the starting point of the following dense layers.
First, because the flatten layer is partially masked out, the weights of the next
dense layer should also be pruned. Then, similar to the flatten layer, the outputs
of each dense layer are evaluated based on neuron scores, and neurons with the
highest scores will be removed entirely. Finally, the network will be retrained to
retain its performance. The whole procedure is summarized in Algorithm 1.

7.3.3 Handling cross-layer connections structure

Till now, we can prune classic plain CNN architectures like AlexNet and VG-
GNet, where pruning of one layer only affects its neighborhood layer. However,
DenseNet connects each layer to every other layer by concatenating the outputs
of conv layers within a dense block. Besides, it replaces the flatten layer with a
global average pooling layer, and there is only one dense layer at the end of the
network. To adapt for DenseNet, we modify our method as follows:

first, we also start from the last conv layer and similar to the flatten layer, feature
selection will be performed on the pooling layer. Since the output of the pooling
layer is the concatenation of all filters of all conv layers in the last dense block,
we can easily apply a direct mapping from the pooling layer output to each filter.
In this way, we can prune a whole dense block at once. For the conv layer in
transition blocks, it is not possible to calculate the redundancy because 1 × 1

kernel is used, and the weights of the conv layer have the shape of (1, 1, fc−1, fc).
Instead, we evaluate the l1-norm of weights of the current conv layer lc and prune
the corresponding filters of the previous conv layer lc−1 with the smallest values,
which means that they are not effectively used by the current conv layer and
therefore are considered as redundancy (see Fig. 7.2). Repeating this, all the

104

7.3 Model pruning via feature selection

Algorithm 2Watermelon model pruning

Require: NetworkM ,D ∈ Rn×d and labels Y ∈ Rn, thrspar, thrcor, thrvoting

1: Q← ∅, N ← ∅, F ← #neurons for flatten layer
2: X = D ×Mtill_flatten_layer
3: while #N < #neurons · thrspar do
4: for all Fn ∈ F \N do
5: calculate Q(N ;Fn) given X and thrcor
6: end for
7: Q← Q(N ;Fn), N ← N ∪ argmin

Fn∈F\N
Q(N ;Fn)

8: end while
9: mask out N in flatten layer, update last conv layer lc
10: for all li ∈ [c, c− 1, c− 2, ...2] do
11: init C ← ∅, Q← ∅
12: for all j ∈ [1, 2, ..., fi−1] do
13: calculate Qj , Q← Q ∪Qj

14: end for
15: while#C < fi−1 · thrsparandmax

j
Q ≥ fi · thrvoting do

16: C ← C ∪ argmax
j

Q, Q← Q \ argmax
j

Q

17: end while
18: remove filters C in layer li−1

19: end for
20: for all dense layers do
21: update weights according to previous layer
22: repeat step 1-8 to remove N neurons
23: end for
24: retrain the network
25: return M

conv layers can be pruned backward. As for the dense layers (if applicable), the
approach is the same as mentioned in Section 7.3.2.

For DenseNet-B and DenseNet-BC, the additional bottleneck layer with 1 × 1

convolution is applied before each 3× 3 conv layer to cut down the feature maps
size, which can be pruned using the same mechanism as for transition layers.

105

7 Efficient network pruning via feature selection

Figure 7.2: Illustration of pruning on conv layer with 1× 1 kernel size. The weights have a shape of
(1, 1, fc−1, fc) and we reshape the weights to (fc−1, fc). l1-norm will be calculated
and filters with the smallest values will be pruned.

7.4 Experiments

7.4.1 Experiment setup

We empirically evaluate our approach on a variant of VGGNet and DenseNet40
withCIFAR10. As for the large-scale dataset ImageNet, we useDenseNet121. We
implement our approach in Tensorflow [39] and adopt the original implementation
of watermelon feature selection from [122]. For efficient computation, we utilize
the simplified version watermelon-B.

To compensate for the effects of different frameworks and make a fair comparison
with other methods, we adopt the same data augmentation and hyperparameter
configurations if possible. As evaluation metrics, we report the results with rel-
ative accuracy drop, compression rate of parameters and FLOPs. Since different
methods use different compression schema and target compression rates, it is
hard to compare the performance due to different network sizes. To make the
results more comparable, we define Accuracy/Parameter Drop Ratio and Accu-
racy/FLOPs Drop Ratio as the accuracy drop divided by the parameter drop or
FLOPs drop as our additional evaluation criteria, which is helpful to compare
different approaches with similar but different compression rates.

7.4.1.0.1 CIFAR10 CIFAR10 dataset consists of 60000 32× 32 color images
in 10 classes, of which 50000 are training images and 10000 are test images. On

106

7.4 Experiments

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
Accuracy drop

20

30

40

50

60

70

80

90

100

Pa
ra

m
et

er
s d

ro
p

Comparable results on parameters drop with respect to accuracy drop

ours
Zhao et al. [45]
Wang et al. [32]
SSS [50]
Hrank [20]
GAL [28]
FETS [38]
Epruner [46]
CCPrune [37]

Figure 7.3: Pruning results of our approach at different ratios compared to other SOTAmethods using
VGG-16 on CIFAR10. Points at top left are better than those at bottom right.

CIFAR10, we test a variant ofVGG-16 adopted from [90,94] for a fair comparison.
The VGG-16 has only two dense layers (512 and 10 for 10 classes), and we use
the same data augmentation scheme by shifting and horizontally mirroring the
images. To train the baseline model, we use 160 epochs with a batch size of 64.
We set the initial learning rate to 0.1 and it decreases by 1/10 after 80 and 120
epochs. SGD with 0.0001 weight decay and Nesterov momentum of 0.9 is used.

7.4.1.0.2 ImageNet ImageNet is a large-scale dataset of 1000 classes that
contains 1.2 million training images and 50000 validation images. We also adopt
the standard data augmentation, which scales the image size so that the small
side has a pixel width of 256. Then we apply random crop and horizontal flip
for training and only center crop for validation. The validation accuracy of the
pre-trained model is 73.30%.

7.4.2 VGGNet on CIFAR10

To better compare to other methods, we prune the network at different ratios.
The hyperparameters of our approach are kept constant and we use thrcor = 0.5

107

7 Efficient network pruning via feature selection

and thrvoting = 0.4 for all our experiments. As for fine-tuning, the network is
retrained for 40 epochs, where the learning rate reduces from 0.001 to 0.0001
after 20 epochs. We summarize our experiments in Tab. 7.1 and the results are
listed in ascending order in terms of the FLOPs pruning ratios (column∆FLOPs).
Results show that our approach outperforms others in most cases with a smaller
accuracy drop at different parameters and FLOPs compression ratios. To visualize
the efficiency of our method, we plot the comparable results in Fig. 7.3 where the
Y-axis and X-axis present the parameters drop ratios (∆Par.) and accuracy drop
ratios (∆Acc.), respectively. In this figure, points at top left are superior to others,
and our method builds a clear borderline that divides most of the other competitors
into the bottom right group. Note that up to a parameter compression ratio of
92.9%, our approach always obtains accuracy improvement, which most likely
results from removing less critical and/or highly redundant internal features. By
doing so, the overfitting phenomenon (training accuracy is above 99.9% whereas
the test accuracy is under 95%) is greatly improved and the pruned network can
find a better local minimum with higher test accuracy.

Moreover, after the network is pruned, we find that the network has almost no
prediction ability without retraining and behaviors like a fresh initialized network
(e.g., accuracy is 0.1 for CIFAR10 with 10 classes), especially when pruning
the conv layers. This is generally considered a bad signal by other approaches
[92, 100, 108] where the reconstruction error is the primary objective function
to be minimized. However, the network can recover its full power within only
several epochs of retraining. We compare the test accuracy of a pruned network
with pre-trained weights and a fresh initialized model with the same network
structure. Both of them have 0.1 validation accuracy initially, but the pruned
network achieves a good performance (to 91.27% accuracy) after one epoch of
training, while the fresh network can only get convergence at a lower accuracy
(about 78.69%) after 20 epochs. We believe that it is because the network has
already learned internal features that are essential for the classification task. Due
to the dramatically changed network topology, the output of the layers is shifted
and/or biased and therefore leads to zero prediction power, which can be, however,

108

7.4 Experiments

recovered in a very short time. From a feature selection perspective, it indicates
that keeping essential internal features might be a key for network pruning.

7.4.3 DenseNet on CIFAR10 and ImageNet

To illustrate the efficiency of our method on modern CNNs, we also evaluate the
compact yet very effective CNN architecture DenseNet on CIFAR10. We use
DenseNet40 and prune it at different target ratios while skipping the first two conv
layers. After pruning, we retrain the network for 40 epochs and reduce the learning
rate from 0.01 to 0.001 after 20 epochs. The comparable results are shown in
Tab. 7.1, and we manage to prune 62% of the parameters and 63% of the FLOPs
with only a negligible accuracy loss of 0.54%. Moreover, the comprehensive
comparison validates our method’s competitive performance compared to other
state-of-the-art methods.

Additionally, we also validate our approach on the large-scale dataset ImageNet
with DeseNet121. We prune the network with various pruning ratios, and the first
two conv layers stay unchanged. Afterward, we retrain the pruned network for
30 epochs with decreased learning rates of 0.01, 0.001 and 0.0001 for 10 epochs
each.

The results in Tab. 7.1 show that for the complex classification task, our approach
manages to achieve a better Acc./Parameters and Acc./FLOPs drop compared
to other competitors in most cases, too. Likewise, we again observe a huge
post-pruning reconstruction error (high loss and low accuracy) on the large and
compact DenseNet architecture with 121 Conv layers. However, the final perfor-
mance is still very competitive with other reconstruction errorminimization-based
approaches, which validates the concept of network pruning from a pure feature
selection perspective.

109

7 Efficient network pruning via feature selection

Table 7.1: Comparable results on CIFAR10 (VGG-16, DenseNet40) and ImageNet (DenseNet121) at
different pruning ratios. A negative value means an accuracy improvement after pruning.
The results are sorted in ascending order w.r.t. FLOPs pruning ratios (∆FLOPs) and our
results are in bold.

Network Method Orig. acc ∆Acc ∆Par. ∆FLOPs ∆Acc./Par. ∆ Acc./FLOPs

VGG16
/CIFAR10

SSS[123] 93.96 0.33 66.70 36.30 0.0049 0.0091
ours 93.44 -0.62 79.39 36.62 -0.0078 -0.0169

Zhao et al.[119] 93.25 0.07 73.34 39.10 0.0010 0.0018
GAL[103] 93.96 0.19 77.60 39.60 0.0024 0.0048
SSS[123] 93.96 0.94 73.80 41.60 0.0127 0.0226

Wang et al.[107] 93.78 -0.38 84.30 43.40 -0.0045 -0.0088
GAL[103] 93.96 0.54 82.20 45.20 0.0066 0.0119
FETS[112] 93.94 -0.14 77.32 50.00 -0.0018 -0.0028

Wang et al.[91] 93.44 -0.19 - 50.00 - -0.0038
Hrank[95] 93.96 0.53 82.90 53.50 0.0064 0.0099

ours 93.44 -0.07 92.90 55.51 -0.0008 -0.0013
Hrank[95] 93.96 1.62 82.10 65.30 0.0197 0.0248

ours 93.44 0.21 94.46 69.44 0.0022 0.0030
CCPrune[111] 93.80 0.41 94.90 73.68 0.0043 0.0056
FETS[112] 93.94 0.34 94.66 75.61 0.0036 0.0045
EPruner[120] 93.02 -0.06 88.80 76.34 -0.0007 -0.0008
Hrank[95] 93.96 2.73 92.00 76.50 0.0297 0.0357
CFP[114] 93.49 0.26 - 80.36 - 0.0032

ours 93.44 0.82 95.92 81.03 0.0085 0.0101
CFP[114] 93.49 0.51 - 81.93 - 0.0062
FETS[112] 93.94 1.46 97.33 83.33 0.0150 0.0175

ours 93.44 1.25 96.62 85.75 0.0129 0.0146
FETS[112] 93.94 1.86 98.00 87.50 0.0190 0.0213

DenseNet40
/CIFAR10

ours 94.44 0.05 22.85 22.20 0.0022 0.0023
Liu et al.[90] 94.81 0.00 36.50 32.80 0.0000 0.0000
GAL[103] 94.81 0.20 35.60 35.30 0.0056 0.0057

ours 94.44 0.06 35.50 35.96 0.0017 0.0017
Hrank[95] 94.81 0.57 36.50 40.80 0.0156 0.0140

Zhao et al.[119] 94.11 0.95 59.67 44.78 0.0159 0.0212
ours 94.44 0.31 47.76 46.81 0.0065 0.0066

GAL[103] 94.81 0.31 56.70 54.70 0.0055 0.0057
Liu et al.[90] 94.81 0.46 66.30 57.60 0.0069 0.0080
FETS[112] 94.31 -0.30 68.25 59.68 -0.0044 -0.0050
Hrank[95] 94.81 1.13 53.80 61.00 0.0210 0.0185

ours 94.44 0.54 61.67 62.91 0.0088 0.0086
GAL[103] 94.81 1.58 75.00 71.40 0.0211 0.0221

ours 94.44 1.25 71.46 72.39 0.0175 0.0173
FETS[112] 94.31 0.50 79.34 77.22 0.0063 0.0065

ours 94.44 1.96 80.84 81.16 0.0242 0.0241

DenseNet121
/ImageNet

ours 73.30 0.16 30.43 30.20 0.0053 0.0053
DBP[124] 75.01 6.93 66.00 37.00 0.1050 0.1873

ours 73.30 0.96 44.17 44.35 0.0217 0.0216
Wang et al.[106] 75.01 1.33 48.00 51.00 0.0277 0.0261
Liu et al.[90] 75.01 1.43 51.00 51.00 0.0280 0.0280

Zhang et al.[102] 74.65 1.84 35.21 54.67 0.0523 0.0337
ours 73.30 1.71 56.60 56.28 0.0302 0.0304

110

8 Real-time low-cost spectral
analysis

Chapter 6 demonstrates that the computational cost of DNNs can be reduced
significantly via feature selection (proposed in Chapter 5) while providing an
interesting insight into what input data are important to DNNs, which makes
the DNN-based framework explainable to some extent. In addition, the network
pruning method introduced in Chapter 7 shows that the size of DNNs can also be
greatly compressed without noticeable performance drop.

Therefore, in the context of this dissertation, especially with a focus on the
deployment in the real world, it is desired to apply these optimizations to the
proposed DNN-based framework to enhance the performance, so that a spectral
analysis task can be executed in real-time and at low cost. This is especially
important for edge devices since they usually do not have enough computational
and storage resources for largeDNNs, yet are largely used in industrial applications
due to the cost advantage over expensive GPUs.

This chapter integrates the results of Chapter 4, 5, 6 and 7 and thus makes the
proposed framework accurate, efficient and robust. With a specific focus on edge
devices, quantization techniques are also discussed to enable the smooth transition
of academic results to real-world applications.

111

8 Real-time low-cost spectral analysis

8.1 Introduction

Generally, although neural networks are powerful, they demand a considerable
amount of memory footprint, computational resources as well as hardware stor-
age. It is less of a concern when such models run on servers or dedicated
workstations with powerful graphics processing units (GPUs). However, a huge
expenditure on hardware is needed. Therefore, for the end users, the purchase of
high-performance computers is an enormous cost in addition to the already expen-
sive measurement device, which makes the DNN-based solution less attractive.
Similarly, for industrial applications, the deployment of DNNs in the production
lines contributes to a significantly higher fixed cost and a lower profit margin.

Besides, in real-world scenarios, on-site and/or on-device analysis is often re-
quired, where only limited computational power is available on edge devices.
Meanwhile, real-time execution is also an essential factor for many industrial
applications, e.g., quality control in mass production, where the analysis results
should be given within a certain time interval. Therefore, a real-time low-cost
solution for edge devices is required.

Previous related work in spectral analysis mainly focused on the application of
neural networks to solve the identification and quantification tasks. However, to
our best knowledge, none of them addressed the time and resources issues in
real-world scenarios. Hence, in this chapter, we propose a first hybrid strategy
for the comprehensive acceleration of network execution in spectra analysis. Our
approach focuses on the following three major points:

1. Input data dimension: the computational cost of a neural network is largely
influenced by the input data dimension, especially for the convolutional
layers, which also demand the most resources. Besides, the input data
size also affects the pre-processing and the data transmission in the whole
workflow, which leads to a large latency overhead.

2. Network size: in general, a larger network can achieve better performance
on a given task. However, the improvement will eventually saturate as the

112

8.1 Introduction

size increases and enlarging the network will only result in redundancy.
Therefore, a trade-off should be made between the network size and the
performance.

3. Network cost: apart from the network size, the computational cost of a
network also depends on its operation type and the target platform. By
default, neural networks mainly utilize 32-bit floating-point operations for
training and inference. Theoretically, the cost is accordingly reduced when
using 16-bit floating point, 16-bit integer or even 8-bit integers. However,
on the other side, the performance could degrade with lower precision
operations. Therefore, an appropriate choice is crucial to the final overall
results.

To address the issues mentioned above, our approach consists of three phases
across the whole training process. First, before training, we perform feature se-
lection on the spectral data to reduce the input data dimension without losing
important information. Then, after training the network on the datasets, we fur-
ther prune the network to obtain a slimmed network that requires fewer storage
and computational resources while still maintaining its performance. Finally,
the networks are quantized with low-bit operations and variables to gain extra
acceleration. We conduct the feature selection and network pruning based on
the methods proposed in Chapter 5 and Chapter 7. To show the feasibility of
our approach, we evaluate CNNs on large-scale simulation and real measurement
data. Moreover, to simulate real-world applications with edge devices, we con-
duct extensive experiments and compare the results on different target platforms.
Results show that our approach achieves excellent performance on edge devices
with significantly reduced network size and inference time. In the meanwhile, the
performance is even slightly better on real data in most cases.

The main contributions of this chapter can thus be summarized as follows:

• To achieve a real-time low-cost network execution on edge devices, we
are, to the best of our knowledge, the first to introduce network pruning
& network quantization and propose such a hybrid approach in the broad

113

8 Real-time low-cost spectral analysis

domain of spectral analysis, where the major aspects of the whole DNN-
based pipeline are taken into consideration.

• We successfully demonstrate the effectiveness of our approach under real-
world settings by innovatively reducing the input data size, network size
and network cost. The significant speedup and cost-saving enable the
deployment of DNNs on edge devices by achieving accurate analysis results
in real time.

• We show that our approach is modular, easy to adapt, and robust in most
cases. It thus sets up a new baseline framework and provides the best
practices for all related domains of interest in the IoT and big data applica-
tions/deployments, where the efficient utilization of DNNs is essential and
desired.

In this chapter, we skip the introduction to preliminary and related work since
they are already discussed in the previous chapters. Instead, the comprehensive
workflow of the approach is proposed directly in Section 8.2. We examine the
performance of the approach with extensive experiments and the results and
discussions are given in Section 8.3.

8.2 Real-time low-cost spectral analysis via a
hybrid approach

In this chapter, we propose a hybrid approach for real-time low-cost spectral
analysis to accelerate and compress neural networks from three perspectives:
input data dimension, network size and network cost. The whole workflow is
visualized in Fig. 8.1.

114

8.2 Real-time low-cost spectral analysis via a hybrid approach

Float16

Int8

Int16x8

Float16

Int8

Int16x8

Float16

Int8

Int16x8

Float16

Int8

Int16x8

Input processing and training Model pruning

1024

features

512

features

256

features

128

features

64

features

32

features

Model

F1024

CR00

Model

F512

CR00

Model

F256

CR00

Model

F128

CR00

Model

F64

CR00

Model

F32

CR00

Model

F1024

CR01

Model

F512

CR01

Model

F256

CR01

Model

F128

CR01

Model

F64

CR01

Model

F32

CR01

Model

F1024

CR02

Model

F512

CR02

Model

F256

CR02

Model

F128

CR02

Model

F64

CR02

Model

F32

CR02

Model

F1024

CR09

Model

F512

CR09

Model

F256

CR09

Model

F128

CR09

Model

F64

CR09

Model

F32

CR09

Model quantization

Float16

Int8

Int16x8

Float16

Int8

Int16x8

Float16

Int8

Int16x8

Float16

Int8

Int16x8

Float16

Int8

Int16x8

Float16

Int8

Int16x8

Float16

Int8

Int16x8

Float16

Int8

Int16x8

F
ea

tu
re

 s
el

ec
ti

o
n

Figure 8.1: The framework of our approach. Feature selection is performed on input data to select
desired feature subsets. Then, neural networks will be trained based on the data subsets
(F32, F64, ...). Afterward, network pruning with target ratios (CR01, CR02, ...) is
executed. Finally, the models will be quantized to various formats (float16, int8, ...).

8.2.1 Data reduction using feature selection

The reduction of input data dimension can contribute to network acceleration since
the corresponding operations decrease proportionally, which usually results in a
neural network with fewer parameters. Meanwhile, overfitting problems can be
suppressed since high-dimensional data tend to cause the curse of dimensionality.
Nevertheless, in the context of spectral analysis, we find that typical spectral
data contain a substantial amount of redundant information. Hence, the input
dimension can be reduced by a large ratiowith negligible performance degradation
while preserving the primary spatial structure.

Therefore, in the first step, we use watermelon feature selection on a large-scale
simulation dataset to select feature subsets with different sizes. Based on these
subsets, we train various CNN-based neural networks, which are denoted asModel
F1024, Model F512 and so on.

115

8 Real-time low-cost spectral analysis

8.2.2 Network size reduction via efficient network
pruning

Network pruning refers to a family of methods that applies certain criteria to given
large network architecture to localize such neurons, filters or parameters that con-
tribute the least to the final performance. To reduce the network size in the second
step, the trained neural networks are pruned to reduce their parameter sizes and
floating-point operations (FLOPs) sizes. The parameter sizes describe the storage
demand of a neural network, whereas the FLOPs represent the computational cost
for the network execution. To determine to which extent the networks can be
pruned without significant performance degradation, various target compression
ratios (CR) are tested. As visualized in Fig. 8.1, for all the networks obtained
with different feature sizes, we further prune them based on the proposed method
in Chapter 7 with the same set of CRs for a fair comparison.

8.2.3 Network quantization via Tensorflow Lite

Network quantization is an efficient approach to reducing the network size and the
computational demand. Standard neural networks mainly utilize 32-bit floating-
point operations for training and inference. Besides, the weights are also stored
in the 32-bit floating-point format. In network quantization, the operations and
weights are reduced to lower bit-depth floating and/or integer representations.
This is thus a convenient approach for applying neural networks on less powerful
edge devices, especially for those where only integer operations are supported.

Quantization can be roughly divided into two subgroups: quantization-aware
training and post-training quantization. Quantization-aware training [125, 126]
trains quantized neural networks and thus generally achieves better performance.
On the contrary, post-training quantization methods [127, 128] quantize already
trained neural networks and are, in most cases, a data-free approach.

To construct a smooth workflow from network training to the final deployment on
different platforms, in this dissertation, we utilize the Tensorflow [39] framework

116

8.3 Experiments

to build, train and quantize the neural networks. The built-in Tensorflow Lite
module provides various implementations for post-training network quantization.

The original network weights and input/output values are usually 32-bit floats.
Once converted to TensorFlowLite networks, the weights can be further quantized
to 16-bit floats, 8-bit ints as well as 8-bit ints with 16-bit activations.

For integer models, the input/output can also be fully converted to the respective
integer format to accelerate the execution. In such a case, floating-point values
are approximated by the Eq. 8.1. Here, an extra representative dataset is required
to calibrate the range for integer representation.

real_value = (int8_value− zero_point)× scale (8.1)

In the last step of our approach, all the networks obtained before are quantized to
gain further optimization, where different data formats are tested (Float16, Int8,
Int16x8). To achieve a better trade-off, a comprehensive comparison regarding
the model size, overall accuracy and inference time is needed. Since the results
may vary across platforms, we conduct our test on diverse hardware.

8.3 Experiments

8.3.1 Experiment setup

8.3.1.1 Dataset

We generate the training dataset based on a random approach, where the presence
of elements (up to 28 elements in total, the full list is shown in Table 4.1 of
Chapter 4) and the concentrations are independently determined. Therefore, for
a given spectra number N (in our case 100k), we have data D ∈ RN×1024 and
labels Y ∈ RN×28. As for validation, we generate a separate dataset with 20k
spectra.

117

8 Real-time low-cost spectral analysis

Besides, to validate the final performance of models in the real world, we collect
1100measurements of 15 various samples and each sample ismeasured by #repeat
times. Table 4.5 of Chapter 4 gives the detailed description of each sample.
The samples consist of up to 7 elements and they are measured under different
measurement conditions and/or on different devices, making the identification a
challenging task. Moreover, many element concentrations are very low and the
existence of such trace elements makes it more difficult to identify all elements.

8.3.1.2 Neural networks and hyperparameters

Regarding the choice of neural network architectures, we follow Chapter 4
and 6 since different networks and combinations of hyperparameters are al-
ready tested. Besides, comparable results can be obtained. In this chapter,
we mainly examine two CNN-based neural networks: classic VGG-like CNN
and DenseNet. The CNN has six conv layers (one maxpooling layer after ev-
ery two conv layers) and three fully-connected layers. The sizes of filters are
{128, 128, 256, 256, 256, 256} and each fully connected layer consists of 512
neurons. For DenseNet, the original configuration of DenseNet-40 is applied.
The networks are trained using an Adam optimizer for 120 epochs with a learning
rate of 1e-4, which decreases to 1e-5 and 1e-6 after 60 and 90 epochs, respectively.

8.3.1.3 Hardware

To test the overall performance of models in different scenarios, we simulate the
following use cases without the need for expensive GPUs:

• High-end workstation with powerful CPU (Desktop with i7-9700k).

• On-site spectral analysis with mobile devices (Microsoft Surface with i5-
8350U).

• Industrial application with embedded systems (Raspberry Pi 3B).

118

8.3 Experiments

1024 512 256 128 64 32
features

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
cc

ur
ac

y

(a) Evaluation results on simulation data
CNN
DenseNet

1024 512 256 128 64 32
features

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
cc

ur
ac

y

(b) Evaluation results on measurement data
CNN
DenseNet

Figure 8.2: Comparison of feature selection results on simulation and measurement data.

8.3.2 Application of feature selection

To perform feature selection on the training dataset, we adopt the original im-
plementation of watermelon to select {32, 64, 128, 256, 512}most important fea-
tures, denoted as {F32, F64, F128, F256, F512} in Fig. 8.1. With the feature
subsets, we train the neural networks with the same settings as described in the
last section.

The validation performance on simulation data (a separate validation dataset
containing 20k spectra) and measurement data are visualized in Fig. 8.2. On
simulation data, the test accuracies of both CNN and DenseNet decrease simul-
taneously as the size of feature subsets decreases, which is intuitive. As for
measurement data, it is interesting to note that the accuracies reduce at first but
then increase to even higher values. Chapter 6 suggested that it is potentially
because the overfitting problem usually arises when the feature space is high
dimensional. The low-intensity noisy features may mislead the neural network
to a better but unpractical local minimum. Besides, as the number of features
gets lower, it effectively applies a denoising mechanism for robust performance
on measurement data. Hence, in the following sections, we evaluate the models
based on their performance on real measurements.

119

8 Real-time low-cost spectral analysis

Table 8.1: Parameter compression ratio using feature selection and network pruning

CNN DenseNet

#CR
#F

1024 512 256 128 64 32 1024 512 256 128 64 32

00 100.00% 58.62% 37.93% 27.58% 22.41% 19.82% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
01 89.79% 53.37% 34.36% 26.25% 21.57% 19.25% 88.44% 89.31% 88.45% 88.88% 88.52% 88.52%
02 80.40% 48.83% 31.48% 25.02% 20.97% 18.84% 76.45% 76.92% 77.69% 75.85% 76.68% 75.45%
03 71.27% 44.26% 28.66% 23.81% 20.42% 18.54% 65.64% 64.67% 64.38% 64.08% 64.91% 64.67%
04 62.17% 39.95% 26.00% 22.65% 19.80% 17.91% 54.24% 53.32% 53.09% 53.11% 54.43% 54.27%
05 53.51% 35.79% 23.64% 21.43% 19.09% 17.20% 38.38% 38.08% 40.17% 38.09% 40.85% 41.85%
06 44.94% 31.51% 21.46% 20.34% 18.27% 16.49% 26.32% 25.08% 27.18% 28.56% 27.80% 28.43%
07 36.42% 27.29% 19.27% 19.15% 17.50% 15.77% 16.69% 15.72% 16.68% 17.51% 17.38% 17.34%
08 28.06% 22.99% 17.08% 17.92% 16.47% 14.81% 8.34% 8.54% 8.70% 8.83% 9.63% 9.58%
09 19.74% 18.81% 14.74% 16.31% 14.89% 13.68% 3.31% 3.22% 3.10% 3.09% 3.15% 3.06%

Table 8.2: FLOPs compression ratio using feature selection and network pruning

CNN DenseNet

#CR
#F

1024 512 256 128 64 32 1024 512 256 128 64 32

00 100.00% 50.02% 25.03% 12.54% 6.29% 3.17% 100.00% 50.00% 25.00% 12.50% 6.25% 3.13%
01 84.56% 45.02% 21.87% 12.11% 6.05% 3.06% 89.96% 45.47% 22.55% 11.28% 5.60% 2.80%
02 74.76% 43.38% 20.10% 11.83% 5.98% 2.99% 79.42% 39.97% 20.15% 9.80% 4.93% 2.43%
03 67.03% 41.69% 18.82% 11.60% 5.95% 2.97% 68.84% 34.05% 16.99% 8.48% 4.26% 2.12%
04 60.33% 41.03% 17.84% 11.46% 5.90% 2.89% 57.32% 28.19% 14.15% 7.06% 3.63% 1.79%
05 57.03% 40.85% 17.34% 11.31% 5.79% 2.82% 40.50% 20.32% 10.71% 5.09% 2.75% 1.39%
06 54.77% 40.43% 17.10% 11.26% 5.66% 2.75% 27.91% 13.77% 7.35% 3.82% 1.88% 0.97%
07 52.94% 40.12% 16.89% 11.12% 5.58% 2.68% 17.99% 8.73% 4.62% 2.39% 1.19% 0.60%
08 52.03% 39.59% 16.68% 10.98% 5.41% 2.58% 9.14% 4.74% 2.37% 1.23% 0.64% 0.33%
09 51.63% 39.40% 16.28% 10.65% 5.12% 2.46% 3.42% 1.75% 0.84% 0.42% 0.21% 0.10%

Aside from the identification ability, model size and the computational cost are
also major factors in this work. In Table 8.1 and 8.2, the compression ratios
of model parameters and FLOPs are presented (the rows with #CR = 00,
indicating no network pruning is performed). For CNN, the parameters are
significantly reduced to about 20% with a feature size of 32. However, there is no
improvement for DenseNet due to its unique structure. In a CNN network, the size
of the flatten layer and the fully-connected layers vary with the input data size.
Therefore, reducing feature numbers can lead to huge parameter compression
results. In contrast, DenseNet utilizes global-average pooling that produces input-
independent output, which results in the constant parameter number.

120

8.3 Experiments

105 106 107

parameters

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
cc

ur
ac

y

(a) Comparable performance with varying parameter sizes

CNN_F32
CNN_F64
CNN_F128
CNN_F256
CNN_F512
CNN_F1024

DenseNet_F32
DenseNet_F64
DenseNet_F128
DenseNet_F256
DenseNet_F512
DenseNet_F1024

106 107 108 109

FLOPs

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
cc

ur
ac

y

(b) Comparable performance with varying FLOPs sizes

CNN_F32
CNN_F64
CNN_F128
CNN_F256
CNN_F512
CNN_F1024

DenseNet_F32
DenseNet_F64
DenseNet_F128
DenseNet_F256
DenseNet_F512
DenseNet_F1024

Figure 8.3: Comparison of network pruning results on measurement data. Each line consists of 10
data points and represents the pruning result of one network at different compression
ratios (from CR00 (no pruning) to CR09 (pruning at a 90% target ratio)).

Nevertheless, both CNN and DenseNet require fewer FLOPs for compact datasets.
With a feature number of 32, only 3% of the original operations are needed for
the network inference. This is because the conv layers need fewer iterations to
finish the convolution operations on a reduced input space. With the same filter
sizes and smaller output shapes, the overall computational costs are minimized
by large ratios.

8.3.3 Network pruning

For each neural network in the previous section, we further perform network
pruning on all the conv layers with varying target pruning ratios from 10% to
90% (denoted as CR01, 02, CR03, ..., CR09 in Fig. 8.1). The pruning results
are presented in Table 8.1 and 8.2. To illustrate the effects of network pruning on
the model performance, the Accuracy - # pamameters and Accuracy - # FLOPs
comparisons are visualized in Fig. 8.3. Note that the X-axes use logarithmic
scales.

Overall, DenseNets achieve higher final compression ratios across all the config-
urations. Besides, it shows great efficiency in terms of the absolute parameter
number and FLOPs number due to its compact architecture. The network pruning

121

8 Real-time low-cost spectral analysis

approach performs better on DenseNets for mainly two reasons: 1) the fully-
connected layers in CNN are not pruned due to a high performance drop, which
contributes to the large parameter size. 2) There are hyperparameters set by the
network pruning method, which determine to which extent the filters are con-
sidered redundant and thus removed. We do not finetune these parameters for a
fair comparison, and the FLOPs compression ratio is thus not as significant as on
DenseNets.

Significant network compression ratios can be obtained by combining feature se-
lection and network pruning methods. Using 32 features and a target pruning ratio
of 90%, the final models have only 13.68% and 3.06% of the original parameter
sizes for CNN and DenseNet, respectively. Moreover, they require only 2.46%
(CNN) and 0.1% (DenseNet) of the original computational resources, which is
beneficial for low-power devices. Concerning the identification performance,
there is only a negligible accuracy drop of 0.001 and 0.004 compared to the global
maximum for CNN and DenseNet.

8.3.4 Network quantization

Finally, we apply the network quantization techniques to the neural networks to
gain further optimization. As shown in Fig. 8.1, we quantize each neural network
to the following formats:

• 16-bit floats

• 16-bit integer activations with 8-bit integer weights

• 8-bit integers

After quantization, we evaluate the storage sizes, execution time and accuracy
scores of all the converted networks. In Fig. 8.4, the comparison of neural net-
works with 32 features measured on a Raspberry Pi is visualized as representative
results. To make a cross-comparison between CNNs and DenseNets, the X- and
Y axes are shared.

122

8.3 Experiments

0

2

4

6

8

10

12

14

16

M
od

el
 si

ze
 in

 M
B

(a) Quantization results on CNN
float32
float16
16x8
int8

(b) Quantization results on DenseNet
float32
float16
16x8
int8

0

10

20

30

40

50

60

70

M
od

el
 in

fe
re

nc
e

tim
e

in
 m

s

float32
float16
16x8
int8

float32
float16
16x8
int8

00 01 02 03 04 05 06 07 08 09
CR

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

1.050

M
od

el
 a

cc
ur

ac
y

float32
float16
16x8
int8

00 01 02 03 04 05 06 07 08 09
CR

float32
float16
16x8
int8

Figure 8.4: Comparison of network quantization results on measurement data and the X- and Y-axes
are shared. Networks are trained on the dataset with 32 features. The time performance
is measured on a Raspberry Pi 3B.

8.3.4.1 Model size

From 32-bit float (float32) to 16-bit float (float16), all the model sizes are reduced
by roughly 50%. Similarly, from 16-bit float down to 16-bit int activations and
8-bit weights (16x8), as well as to fully 8-bit integers (int8), the overall sizes can
be further reduced by about another 50%. Here, the difference between 16x8 and
int8 is minimal.

123

8 Real-time low-cost spectral analysis

8.3.4.2 Inference time

The inference time is calculated based on the average value of 1000 samples. As
a general trend, the execution time of neural networks decreases as the bit depth
gets smaller. For instance, at CR = 00, the inference time of the CNN reduces
from 64.95ms (float32) to 17.55ms (int8), which results in a 3.7x speedup. As
the model gets smaller, the time improvement of quantization shrinks because of
other overheads in the whole computational pipeline that can not be compressed.
An anomaly that we notice is that the 16x8 quantization on CNN requires more
time than float16 on CNNs, which results from some issues with the experimental
quantization mechanism of the framework.

8.3.4.3 Final accuracy

We note that for CNNs, the final performance difference among quantization
methods is negligible, which indicates that the CNNs can be quantized and de-
ployed on edge devices without further optimization. Meanwhile, the accuracy of
DenseNets is not as stable as CNNs, particularly for 16x8 and int8 quantizations.
The performancewith int8 is generally better than 16x8 and bothmethods perform
worse than float models in most cases. There are also exceptions at CR = 04, 08

where int8 achieves better test accuracy. We believe that the reasons are primar-
ily: 1) DenseNet is more sensitive to quantization because of its compact and
interconnected layer structure. 2) Besides, the absolute number of parameters and
FLOPs is smaller than the number of CNNs, which makes it harder to quantize.
3) There are still experimental features in Tensorflow Lite and the results may get
improved at a later version.

8.3.5 Comparison on different hardware platforms

In this section, we compare the time performance of neural networks with dif-
ferent hardware to simulate various real-world scenarios. Tested hardware is one

124

8.3 Experiments

i7-9700k i5-8350U Raspberry Pi
hardware platform

0

500

1000

1500

2000

M
od

el
 in

fe
re

nc
e

tim
e

in
 m

s

(a) Time performance on dense
float32
float16
16x8
int8

i7-9700k i5-8350U Raspberry Pi
hardware platform

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
od

el
 in

fe
re

nc
e

tim
e

in
 m

s

(b) Time performance on DenseNet
float32
float16
16x8
int8

Figure 8.5: Comparison of time performance on different hardware platforms using 32 features.

high-end workstation equipped with i7-9700k, a mobile device Microsoft Surface
with i5-8350U, and an embedded system Raspberry Pi 3B. We summarize the
comparable results in Fig. 8.5 based on the models with 32 features as input. The
difference among hardware platforms is significant due to different computational
power. Notably, quantization techniques do not always bring execution acceler-
ation for any given hardware architecture. The models with integer quantization
(16x8 and int8) are much slower than the float models on the workstation and the
mobile device because the special instructions are not optimized on the x86_64
architecture. On the contrary, Raspberry Pi does gain optimization running quan-
tized models. Therefore, one should selectively choose quantization techniques
according to the target hardware.

8.3.6 Overall comparison

Finally, we give an overview of the improvement of our hybrid approach over the
previous baseline work. As a representative of edge devices, the results on the
Raspberry Pi are shown in Table 8.3. For instance, the original model size of
the DenseNet is 5.2 MB and each spectrum needs 540 ms inference time. With
a combination of three steps of our approach, we achieve up to 52x model size

125

8 Real-time low-cost spectral analysis

Table 8.3: Summary of the final performance of our approach. Time is measured on a Raspberry Pi
3B.

Method
Model CNN DenseNet

Model size (MB) Inference time (ms) Accuracy Model size (MB) Inference time (ms) Accuracy
Baseline 77.32 (1.0x) 886.89 (1.0x) 0.9815 5.20 (1.0x) 540.02 (1.0x) 0.9766

Feature selection 15.33 (5.0x) 64.95 (13.7x) 0.9907 5.20 (1.0x) 32.53 (16.6x) 0.9863
Network pruning 10.58 (1.5x) 40.77 (1.6x) 0.9890 0.20 (26.0x) 1.71 (19.0x) 0.9851

Network quantization 2.69 (3.9x) 13.57 (3.0x) 0.9876 0.10 (2.0x) 0.90 (1.9x) 0.9662
Overall acceleration 28.7x 65.4x - 52.0x 600.0x -

compression ratio and 600x network execution speedup on edge devices with
even slightly better in many cases. Besides, we find that the utilization of feature
selection and network pruning leads to the most significant resource reduction
(300x for inference time), which can easily be adopted in other related applications
without a domain- or hardware-specific modification, which is a huge advantage.
Moreover, the final time performance of 0.9 ms enables real-time analysis even
with other processing overheads being taken into consideration.

126

9 Minimal cost device calibration
via meta learning

In the previous chapters, the DNN framework for spectral analysis is proposed,
extended and optimized. It achieves SOTA performance with the cost-efficient
consideration of the application in industry. However, so far, the focus of previous
chapters is on the simplified scenario where only one specific measurement device
is involved. Therefore, when it comes to the mass-production manufacturing
industry, the framework faces the same challenge as the classic methods do:
device calibration. Intensive costs are required to ensure the performance and
consistency across a large number of devices, even as the devices begin to age,
which contributes to an undesired variable cost from the economic perspective.

This chapter aims to address this problem by providing a meta-learning-based
solution for minimal-cost device calibration of the DNN framework. In the rest
of the chapter, a more detailed description of the problem is given in 9.1 followed
by the related work in Section 9.2. The framework of our approach is presented
in Section 9.3. Afterward, we conduct extensive experiments to evaluate the
approach and discuss the comparable results with baseline methods in Section
9.4.

9.1 Introduction

As shown in previous chapters, the utilization of DNNs can significantly opti-
mize the spectral analysis procedure and enable real-time analysis at deployment.

127

9 Minimal cost device calibration via meta learning

0 200 400 600 800 1000
Channel

0

50

100

150

200
In

te
ns

ity

Spectra of a sample measured on different devices under various measurement conditions
Device 1, measurement condition a
Device 2, measurement condition b
Device 3, measurement condition c
Device 4, measurement condition d
Device 5, measurement condition e
Device 6, measurement condition f
Device 7, measurement condition g
Device 8, measurement condition h

Figure 9.1: Spectra of a reference sample consisting of 10% Au, 20% Ag, 20% Cu, 20% Cd, 20%
Fe and 10% Mo. Measured using different devices and under different measurement
conditions, the resulting spectra are also different.

However, there is still a major limitation for both classic methods and DNN
approaches: device calibration.

S = P (Φ,λ,K) (9.1)

Note that in Eq. 9.1, a spectrum is not only determined by the measured sample
itself, but also by the measurement conditions λ, which are set during the mea-
surement, and the characteristics of the measurement deviceK. Thus, the spectra
of a sample measured on different devices and/or under different measurement
conditions are also different regarding the absolute intensity, peak positions and
relative peak intensity ratios, as shown in Fig. 9.1.

For the classic methods, λ and K are considered within the physical model.
Nevertheless, to get a feasible and accurate result, calibration is needed for each
unique device, and a-prior information of λ must be given. Typically, the first
calibration will be done when the device is produced in the factory, where a large
size of reference samples needed to be measured under various measurement
conditions. Later after the initial deployment, it also requires a regular on-site

128

9.1 Introduction

DNN approach with scale network

D
ev

ic
e

1
Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Sample A

Sample B

Sample C

Sample F

Sample…

Spectrum A-1-a

Measurement

Prediction
network

Scale
network

Spectrum A-1-b

Spectrum A-1-c

Spectrum A-1-…

Sample pool Spectral analysis

Guess 𝚽

Simulate
spectrum
using 𝑃

Simulation
= Input?

Output 𝚽Spectrum
YN

Classic method with iterative solver

Spectrum
Scaled

Spectrum
Output 𝚽

Sample D

Sample E

D
ev

ic
e

n

Measurement condition a

Measurement condition b

Measurement condition c

Measurement condition …

Spectrum …-n-a

Spectrum …-n-b

Spectrum …-n-c

Spectrum …-n-…

Figure 9.2: Overview of the whole workflow for spectral analysis tasks. A sample will be measured
on different devices under various measurement conditions, resulting in different spectra.
Spectral analysis is done either using the classic method or the DNN approach. Note that
both methods work on one specific device. Therefore, device calibration is required and
leads to enormous resource demand, especially in the large-scale manufacturing industry.

calibration with a time interval of six to twelve months to maintain its accuracy,
which is time and labor-intensive.

As for the DNN framework, the parameterK is also not well taken into considera-
tion, instead, it is treated as constant. As a result, its cross-device result (see Table
4.6 in Chapter 4) shows that the DNNs trained on one device have larger error
rates on other devices. Therefore, for each device produced, dedicated DNNs have
to be trained to reach commercial-level performance, which makes the process
costly and resource-demanding for large-scale industrial applications.

An overview of the whole workflow is visualized in Fig. 9.2, which suggests that
the device calibration is crucial and costly for both classes of approaches. In this
chapter, we focus on the problems from the manufacturing industry perspective,
where a big number of product lines and products produced in each product line
are involved. More concretely, the challenges can be summarized as follows:

• As commercial products, the results of the spectral analysis must be very
precise. To guarantee that, device calibration is needed. However, this
leads to a huge cost to (a) the industry because the time and labor invested
increase significantly with the number of products manufactured per year,

129

9 Minimal cost device calibration via meta learning

which limits the growth potential; (b) the customer since regular calibration
is needed and to conduct a calibration, the cost of a large set of expensive
reference samples and the on-site technical support is huge.

• Therefore, the cost of calibration should be minimized (a) from the industry
side to enable a competitive and attractive pricing strategywhilemaintaining
a reasonable profit margin, and (b) from the customer side to reduce the
maintenance cost and improve the user experience to keep a long-term
growth of customer sizes.

To address the issues mentioned above, in this chapter, we propose the meta-
learning-based minimal-cost device calibration for DNN-based spectral analysis.
We formulate the spectral analysis with different λ andK as different basic tasks
and adopt themodel-agnosticmeta-learning (MAML) [129] to train amore general
meta network for fast calibration. We conduct extensive experiments with large-
scale simulation datasets as well as the real measurement of various samples on 20
measurement devices. Results show that the proposed approach outperforms the
original framework by achieving consistently excellent performance across various
evaluation datasets on unknown devices. Besides, compared to the original
framework after calibration, it performs on par without calibration, which enables
zero-shot device calibration. Moreover, to obtain better precision on one specific
device, our approach requires only a small amount of spectra to calibrate itself,
which is a huge improvement over classic methods.

The main contributions can thus be summarized as follows:

• To address the common calibration problems in the broad domain of spectral
analysis, we are, to the best of our knowledge, the first to propose meta
learning-based approach with domain-specific task formulations, where not
only the unique device characteristics but also the changing measurement
conditions are taken into consideration.

130

9.2 Related work

• We train our models on large-scale simulation datasets and evaluate the
performance on real-world measurements across different devices, demon-
strating the effectiveness of our approach as a new DNN baseline method
regardless of the need for calibration.

• While achieving better performance, we significantly reduce the calibration
time and the corresponding costs both for the industry and the customers,
which largely simplifies the overall procedure and contributes to the sector
growth.

9.2 Related work

9.2.1 Transfer learning and meta learning

The concept of transfer learning [130] has been proposed since the 1970s and
is still a hot topic in recent years. The general idea of transfer learning is to
pretrain a neural network for certain tasks, and then apply it to another unknown
but related task. A common example in the computer vision domain is to train
a large DNN on a large dataset (e.g. ImageNet with 1000 classes of objects).
Afterward, the main architecture (usually the conv layers) is adopted and kept
constant. By adding additional fully-connected layers, the model can be further
trained (referred to as finetuning) to classify images of other classes.

One major limitation of transfer learning is the performance degradation on un-
known tasks, especially when only a few data are available and overfitting prob-
lems are significant. To address such problems, meta learning has become popular
in the last few decades with an explicit design of “learning to learn". Although
there is no standard definition of meta learning, it typically refers to the process to
learn high-level meta information from various tasks, so that a network can adapt
quickly to a new unseen task.

The recent representative work model-agnostic meta-learning (MAML) [129]
proposes a general meta learning formulation, which is compatible with various

131

9 Minimal cost device calibration via meta learning

D
ev

ic
e

1 Measurement condition a

Measurement condition b

Measurement condition …

Real world configuration

D_1 MC_a

D_1 MC_b

D_1 MC_...

D_n MC_a

D_n MC_b

D_n MC_...

Meta network 𝑓

Repeat
Sample task 𝒯𝑖

Data points 𝐷𝑖 Data points 𝐷′𝑖

Cross task training Meta updateD
ev

ic
e

n Measurement condition a

Measurement condition b

Measurement condition …

U
n

kn
o

w
n

d

ev
ic

e
x Measurement condition a

Measurement condition b

Measurement condition …

D_x MC_...

𝑓 before
calibration

Calibration
data

Train to
calibrate

Measurement
data

Output
𝚽

Meta learning formulation Meta learning training

𝑓 after
calibration

Deploy

Le
ar

n
 t

o
 c

al
ib

ra
te

o
n

 k
n

o
w

n
d

ev
ic

es
C

al
ib

ra
ti

o
n

 o
n

u

n
kn

o
w

n
 d

ev
ic

es

Figure 9.3: Framework of our approach towards minimal cost device calibration. In our meta learning
procedure, the general spectral analysis problem is formulated as a collection of enormous
basic tasks, where each task corresponds to one specific device (D_1, D_2, ...) with one
fixed measurement condition (MC_a, MC_b, ...). The meta training will be performed on
the task pool based on all known devices. Later, at calibration time, the newmeasurements
on an unknown device under an unknown measurement condition will be used for post-
calibration training of the meta network and evaluation of the final performance.

neural network architectures and learning problems, as long as they are gradient
descent-based approaches. Given the task distribution p(T), the objective of
MAML is to train a model f in a way that the parameters θ of which are sensitive
to the changes of tasks. To realize that, for each task Ti ∼ p(T), random data
points D will be sampled to train an inner loop using Eq. 9.2, where the α and L
denote the gradient descent step size and the loss function, respectively.

θ′ = θ − α∇θLTi(fθ) (9.2)

Afterward, the meta update will be performed on separate sampled sets of data
points D′

i using Eq. 9.3, where β is the meta update step size. This training
mechanism results in a meta network, which is sensitive to task changes and can
thus adapt to an unknown task with less effort.

θ = θ − β∇θ

∑
Ti∼p(T)

LTi
(fθ′

i
) (9.3)

132

9.3 DNN-based minimal cost device calibration via meta learning

9.3 DNN-based minimal cost device
calibration via meta learning

In this section, we present the framework of our approach to realizing the minimal
cost device calibration based on meta learning. We aim to achieve the best pre-
calibration performance for zero-shot generalization and the best post-calibration
performance for few-shot minimal cost calibration.

9.3.1 Problem definition

Mathematically, the general solution of spectral analysis is Φ = P−1(S,λ,K),
and current solutions focus on the sub-problem of Φ = P−1(S|λ,K) or Φ =

P−1(S,λ|K) on one specific device. Therefore, to obtain a more generalized
meta network that can fast adapt and deploy on different devices under varying
measurement conditions, we formulate the meta learning task as a multi-device
multi-configuration problem.

The real-world problem setting is visualized in Fig. 9.3 in the upper left corner.
Here, multi-device refers to the task difference due to the variable K, which
mainly comes from a) the difference in overall design between product lines; b)
the change of hardware components within the same product line; and c) the
difference of the same hardware component between different product batches.

Meanwhile, multi-configuration refers to the different measurement conditions λ
for the real measurements, which are influenced by e.g. the reference voltage, the
controlled current, the applied filter and the measurement time.

9.3.2 Meta learning based calibration

Therefore, in our meta learning formulation, the most basic task Ti is then defined
as the spectral analysis on one device Kk under one measurement conditionλj .

133

9 Minimal cost device calibration via meta learning

Accordingly, the task distribution p(T) is then defined as a collection of enormous
sub-tasks, as shown in Eq. 9.4.

P−1(S|λj ,Kk) = Ti ∼ p(T) (9.4)

During the training phase, we collect various physical devices and generate large-
scale simulation datasets under different measurement conditions, where each
dataset represents one basic task. Then, we adopt the MAML method to train our
meta network by randomly sampling the tasks from the task pool. This step is
denoted as pre-calibration training on known devices and after this step, the meta
network can 1) achieve good performance across different tasks and 2) adapt fast
to new unknown tasks.

To evaluate the post-calibration performance, at the calibration phase, we collect
another set of devices as unknown devices and train the meta network with a few
new samples measured on them. To ensure a fair comparison, for each unknown
basic task P−1(S|λj ,Kk) (i.e., an unknown device with unknown measurement
condition), a fixed number of reference samples are measured and the spectra are
split into a small calibration dataset and the test measurement dataset with a fixed
seed. Then, the meta network will be calibrated (i.e. post-calibration training)
using the calibration data and the performance is evaluated on the measurement
dataset.

9.3.3 Choice of baseline methods

Since we are the first to introduce meta learning in the spectral analysis domain,
there is no previous work to compare to. To demonstrate the effectiveness and
efficiency of our approach, we set up two baseline methods for comparison.

134

9.4 Experiment

9.3.3.1 Vanilla training

First, since the framework proposed in Chapter 4 is the SOTA solution in this
domain, we choose it as one baseline work, denoted as the “vanilla training" to
evaluate the pre- and post-calibration performance, respectively. Note that for pre-
calibration training, we only use the simulation dataset from one device. Besides,
the post-calibration training is the same as the configuration in this chapter.

9.3.3.2 Transfer training

Anotherwidely used technique, as suggested in Section 9.2, is the transfer learning.
Therefore, we also adopt this approach to train a network on all known datasets
for pre-calibration training, and then finetune the network with the calibration
data for post-calibration training. In addition, for a fair comparison, the network
architecture used by all the methods is the same.

9.4 Experiment

9.4.1 Experiment setup

9.4.1.1 Data preparation

To validate our approach in the industry context, we collect in total 20 different
measurement devices for the experiment. Among them, 10 devices are used for
pre-calibration training and another 10 devices are for post-calibration training.
The measurement conditions are exhaustively selected as long as they are feasible
for measurement, and for each basic task P−1(S|λj ,Kk), we generate a simula-
tion dataset consisting of 100k spectra. Each spectrum has a length of 1024 and
a corresponding label is assigned to the spectrum, where the number of elements
varies from 2 to 28 and the corresponding concentrations are randomly chosen
between 0% and 100%. Thus, in each dataset, we have the dataD ∈ R100k×1024

135

9 Minimal cost device calibration via meta learning

Table 9.1: Details of samples for the real measurements

Sample # repeat Element concentration in %
Au Ag Pd Cu Zn Ni

sample_1 3 95.08 2.46 0 2.46 0 0
sample_2 3 74.99 10.18 0 14.83 0 0
sample_3 3 75.43 5.02 0 9.89 9.66 0
sample_4 3 58.08 4.89 0 37.03 0 0
sample_5 3 58.23 30.02 0 11.75 0 0
sample_6 3 33.46 12.55 0 39.48 14.51 0
sample_7 3 90.06 4.4 0 5.54 0 0
sample_8 3 75.03 14.86 0 10.11 0 0
sample_9 3 75.2 0 9.92 7.98 0 6.9
sample_10 3 58.56 27.68 13.76 0 0 0

and the label Y ∈ R100k×28. A full list of all relevant elements is summarized in
Tab. 4.1 of Chapter 4.

As for real measurement data regarding the performance evaluation in the real
world, we collect 10 different samples, denoted as sample_1 to sample_10, and
measure them on all of the 20 devices under randomly chosen measurement
conditions, denoted asData 1 toData 20. To obtain a reliable result, each sample
is measured three times. The details of the samples are shown in Tab. 9.1.

9.4.1.2 Network selection

For all the experiments of the vanilla training, the transfer learning and our
approach, we use the same network architecture for a fair comparison. According
to the results in Chapter 4, we choose the VGG-like CNN for faster training
without performance degradation.

The CNN consists of 6 convolutional layers with a fixed kernel size of 12, while
the number of filters grows from 128 to 256. After the Flatten layer, the 3 followed
dense layers have a fixed neuron size of 512. The network has in total over 20M
parameters and an overview of the architecture is displayed in Tab. 9.2. Besides,
for vanilla learning and transfer learning, a scale network is needed. Following

136

9.4 Experiment

Table 9.2: The network architecture

Layer name Filter size Output size # param.
Conv1 (1x12,128) (1024,128) 1664
Conv2 (1x12,128) (1024,128) 196736

MaxPooling (512,128)
Conv3 (1x12,256) (512,256) 393472
Conv4 (1x12,256) (512,256) 786688

MaxPooling (256,256)
Conv5 (1x12,256) (256,256) 786688
Conv6 (1x12,256) (256,256) 786688

MaxPooling (128,256)
Flatten (32768,)
Dense1 (512,) 16777728
Dense2 (512,) 262656
Dense3 (512,) 262656
Dense4 (22,) 11286

Chapter 4, anMLPwith 6 layers, each of which consists of 512 neurons is adopted.
As for our meta learning approach, no scale network is needed.

9.4.1.3 Training

The training process is divided into two parts: pre-calibration training and post-
calibration training. For pre-calibration training, the simulation datasets are used
to achieve the desired performance on large-scale spectral analysis tasks. To be
more concrete, for vanilla training, the network is trained on the dataset from
one specific device. Out of the 100k spectra of a single dataset, 80% are used as
training data and 20% are used as test data. As for transfer learning, the network
should theoretically be trained on all available datasets. However, heuristics show
that as the number of devices increases, the need for the size of each dataset
reduces. Approximately 20k spectra per dataset are sufficient, as long as the total
number of spectra exceeds 100k. Therefore, we reduce the size of a single dataset
during the experiment accordingly. For our meta learning-based approach, we
notice that the total data size is not dependent on the number of basic tasks (i.e.
the number of devices and measurement conditions) and the volume of the single
dataset can be proportionally reduced while the total data size stays at 100k.

137

9 Minimal cost device calibration via meta learning

The vanilla learning and the transfer learning both utilize the Adam optimizer
with an initial learning rate of 1e − 4. The networks are trained on the training
data for 120 epochs with a batch size of 64, and the learning rate is divided by 0.1
after 60 and 90 epochs, respectively.

As for meta learning training, an SGD with a learning rate (step size α) of 1e− 5

is used for inner loop training and an Adam with a learning rate (step size β) of
1e− 4 is applied for the meta update. Except for that, all other hyperparameters
are kept the same.

Later in post-calibration training, all the methods follow a uniform setting. Since
the focus of the work is on real-world deployment in the industry, we choose to
evaluate the pre- and post-calibration performance on real measurements. There-
fore, we choose 2 out of the 10 samples using a fixed seed as the calibration data
and train all the networks on them using an Adam with a learning rate of 1e− 5

for 20 epochs. Finally, we test the performance on the rest measurement data.

9.4.2 Performance evaluation

After the training as described in the last section, the models are evaluated on
all measurement data across different devices. Since 10 devices are used for
pre-calibration training and we train for each device a vanilla training model, we
obtain a total number of 10 models, denoted as V_1 to V_10. As for transfer
learning and meta learning, we train a model on all 10 devices, hence we have one
transfer learning model and one meta learning model, respectively.

Then, the models are evaluated on the reference samples measured on different
devices Data 1 to Data 20. Note that the devices of Data 11 to Data 20 are not
available during the pre-calibration training. The evaluation metric is chosen to
be theMean Absolute Error (MAE), which is a standard metric in the industry as
well as in the deep learning domain. The performance of pre- and post-calibration
training is summarized in Tab. 9.3 and 9.4, respectively.

138

9.4 Experiment

Table 9.3: Test MAE of real measurements from different devices on all the methods before calibra-
tion. For vanilla learning, 10 models (V_1 to V_10) are trained on 10 known devices.

Vanilla learning Transfer
learning

Meta
learningV_1 V_2 V_3 V_4 V_5 V_6 V_7 V_8 V_9 V_10

K
no
w
n
de
vi
ce

Data 1 0.33 0.71 0.35 0.53 0.35 0.74 0.56 0.55 0.32 0.80 0.36 0.27
Data 2 0.87 0.61 0.71 1.03 0.78 0.83 1.18 1.00 0.83 0.93 0.59 0.29
Data 3 0.42 0.73 0.34 0.61 0.39 0.74 0.70 0.58 0.35 0.80 0.39 0.29
Data 4 0.28 0.67 0.31 0.34 0.30 0.59 0.46 0.37 0.28 0.68 0.30 0.27
Data 5 0.41 0.81 0.38 0.56 0.39 0.79 0.62 0.59 0.36 0.86 0.39 0.26
Data 6 0.67 0.41 0.50 0.81 0.54 0.43 1.01 0.74 0.68 0.49 0.42 0.29
Data 7 0.55 1.21 0.68 0.60 0.59 1.02 0.35 0.79 0.52 1.11 0.41 0.28
Data 8 0.28 0.66 0.30 0.36 0.29 0.57 0.47 0.34 0.28 0.65 0.30 0.27
Data 9 0.42 0.92 0.41 0.57 0.42 0.84 0.59 0.60 0.35 0.91 0.37 0.26
Data 10 0.67 0.42 0.51 0.81 0.55 0.41 1.02 0.74 0.69 0.47 0.42 0.26

U
nk

no
w
n
de
vi
ce

Data 11 0.65 0.45 0.49 0.78 0.53 0.41 1.00 0.72 0.67 0.45 0.41 0.26
Data 12 0.67 0.41 0.50 0.81 0.54 0.43 1.01 0.74 0.68 0.49 0.42 0.29
Data 13 0.53 0.47 0.41 0.63 0.46 0.27 0.86 0.53 0.55 0.31 0.27 0.27
Data 14 0.62 0.44 0.45 0.74 0.50 0.42 0.95 0.69 0.63 0.47 0.39 0.27
Data 15 0.63 0.43 0.47 0.77 0.51 0.44 0.97 0.71 0.64 0.50 0.41 0.27
Data 16 0.67 0.42 0.50 0.80 0.54 0.44 1.00 0.74 0.68 0.50 0.44 0.29
Data 17 0.66 0.42 0.50 0.79 0.53 0.40 1.00 0.72 0.68 0.46 0.42 0.29
Data 18 0.54 0.46 0.43 0.65 0.46 0.26 0.88 0.53 0.57 0.28 0.27 0.26
Data 19 0.62 0.42 0.46 0.75 0.50 0.39 0.96 0.68 0.63 0.46 0.38 0.26
Data 20 0.57 0.44 0.44 0.67 0.47 0.26 0.91 0.57 0.59 0.29 0.26 0.28

To give a better overview of the performance comparison, we visualize the pre-
calibration results in the radar diagrams in Fig. 9.4 and each axis represents the
test MAE of measurement data on one specific device. Note that in this setting,
a smaller polygon outperforms a large polygon due to a smaller average error
rate. On the left side, the test MAEs on known devices (Data 1 to Data 10)
and unknown devices (Data 11 to Data 20) are depicted in the upper and lower
diagrams, respectively.

Overall, we can see from the diagrams that the transfer learning polygon inscribes
the normal learning polygons and the meta learning polygon is noticeably smaller
than the transfer learning polygon, which indicates that our approach is superior
to the two baseline methods, while the transfer learning is also generally better
than the vanilla learning baseline. This is intuitive since the vanilla model only

139

9 Minimal cost device calibration via meta learning

Table 9.4: Test MAE of real measurements from different devices on all the methods after calibration.
Bold values are the best.

Vanilla learning Transfer
learning

Meta
learningV_1 V_2 V_3 V_4 V_5 V_6 V_7 V_8 V_9 V_10

K
no
w
n
de
vi
ce

Data 1 0.23 0.32 0.25 0.23 0.24 0.31 0.23 0.22 0.25 0.31 0.22 0.16
Data 2 0.31 0.27 0.29 0.31 0.29 0.33 0.39 0.30 0.34 0.32 0.28 0.17
Data 3 0.23 0.32 0.23 0.23 0.23 0.31 0.25 0.22 0.24 0.32 0.22 0.17
Data 4 0.23 0.33 0.25 0.22 0.24 0.31 0.24 0.23 0.24 0.32 0.23 0.15
Data 5 0.24 0.32 0.25 0.23 0.23 0.33 0.24 0.23 0.25 0.33 0.23 0.17
Data 6 0.26 0.32 0.24 0.23 0.27 0.24 0.32 0.25 0.29 0.21 0.22 0.16
Data 7 0.28 0.38 0.32 0.26 0.29 0.39 0.26 0.29 0.33 0.40 0.23 0.16
Data 8 0.23 0.33 0.25 0.23 0.24 0.31 0.23 0.23 0.24 0.33 0.21 0.16
Data 9 0.25 0.33 0.24 0.23 0.23 0.33 0.24 0.24 0.23 0.35 0.22 0.16
Data 10 0.26 0.32 0.24 0.24 0.28 0.23 0.34 0.25 0.30 0.21 0.22 0.17

U
nk

no
w
n
de
vi
ce

Data 11 0.26 0.34 0.24 0.23 0.27 0.24 0.33 0.25 0.29 0.22 0.22 0.16
Data 12 0.26 0.32 0.24 0.23 0.27 0.24 0.32 0.25 0.29 0.21 0.22 0.16
Data 13 0.26 0.31 0.24 0.26 0.28 0.24 0.34 0.26 0.31 0.22 0.21 0.16
Data 14 0.25 0.33 0.24 0.23 0.27 0.25 0.33 0.25 0.29 0.22 0.22 0.16
Data 15 0.25 0.32 0.23 0.23 0.27 0.24 0.32 0.24 0.28 0.21 0.22 0.16
Data 16 0.26 0.31 0.24 0.23 0.28 0.25 0.33 0.25 0.30 0.21 0.22 0.16
Data 17 0.25 0.31 0.24 0.24 0.27 0.23 0.33 0.25 0.29 0.22 0.23 0.16
Data 18 0.26 0.31 0.24 0.26 0.27 0.24 0.33 0.25 0.31 0.21 0.22 0.15
Data 19 0.25 0.31 0.24 0.24 0.27 0.25 0.33 0.25 0.28 0.22 0.22 0.16
Data 20 0.26 0.31 0.25 0.26 0.28 0.24 0.33 0.25 0.30 0.22 0.22 0.15

trains on its specific device, whereas the other two methods are trained across
different devices. It is thus to be expected that the general performance of the
vanilla training is the worst. Also, our approach is designed to learn the device
differences, which contributes to the lower MAE compared to transfer learning.

Surprisingly, we find the vanilla learning on its specific device also does not
perform well on the measurement data compared to our approach and transfer
learning. We believe that it is largely due to the overfitting problem that occurred
during the training on the simulation datasets, where the model is exposed only
to one basic task P−1(S|λj ,Kk). At test time, the change of the measurement
condition and the noise captured during the measurement leads to a performance
shift of the vanilla model, while our approach and the transfer learning are less
affected due to the better variety of the training datasets.

140

9.4 Experiment

Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Data 7

Data 8

Data 9

Data 10

0.2

0.4

0.6

0.8

1.0

Pre-calibration performance on known device

V_1
V_2
V_3
V_4
V_5
V_6
V_7
V_8
V_9
V_10
Transfer learning
Meta learning

Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Data 7

Data 8

Data 9

Data 10

0.2

0.4

0.6

0.8

1.0

After-calibration performance on known device

Data 11

Data 12

Data 13

Data 14

Data 15

Data 16

Data 17

Data 18

Data 19

Data 20

0.2

0.4

0.6

0.8

1.0

Pre-calibration performance on unknown device
Data 11

Data 12

Data 13

Data 14

Data 15

Data 16

Data 17

Data 18

Data 19

Data 20

0.2

0.4

0.6

0.8

1.0

After-calibration performance on unknown device

Comparable results on various devices before and after calibration

Figure 9.4: Comparable results of different methods on various data. Each axis represents the test
MAE of the measurement spectra on different devices and the method with a smaller
polygon has thus better performance. Overall, our approach outperforms transfer learning,
which again outperforms vanilla learning on both known and unknown devices. Also, it
applies to both the pre- and after-calibration performance.

Another interesting observation is that regardless of the methods, the results
on known devices and unseen devices are similar. After further analysis, we
summarize the explanations as follows:

• For vanilla training, a model is expected to perform well only on its training
device. Therefore, for e.g. V_1, its test MAE on Data 2 to Data 20 should
be similar, because they are all unknown devices to the vanilla approach.

141

9 Minimal cost device calibration via meta learning

To validate that, we conduct a two-tailed t-test and the result indicates that
the MAE on Data 1 is statistically significantly smaller than the MAE on
other devices with a p-value<0.01.

• For transfer learning and our meta learning approach, since the models are
trained on the collection of 10 known devices, we believe that they have
learned the general task P−1(S,λ,K) and therefore perform well on the
measurement data from both known and unknown devices, which is also
agreed by the statistical test. For instance, the null hypothesis on Data 1
and Data 11 can not be rejected with a p-value of 0.22 and it indicates that
the models do not overfit on known devices. Moreover, to which extent
the methods learn the general task leads to the performance difference. As
shown in the figure, our approach outperforms transfer learning by learning
a more generalized meta network that can quickly adapt across basic tasks.

As for post-calibration performance, as mentioned before, we finetune all the
models on 2 of 10 samples and visualized the final performance on the rest 8
samples in Fig. 9.4 on the right side. It shows that after two-shot calibration,
all the models achieve a better performance compared to pre-calibration, and our
approach consistently outperforms the baseline methods by a clear MAE margin.

Additionally, we compare the overall performance of all the methods on unknown
devices in Fig. 9.5 to provide a better overview of the whole calibration process,
where the average test MAEs on Data 11 to Data 20 are shown in the figure.
We find that in general, the few-shot (i.e., two-shot) calibration can significantly
improve the performance of all themethods on an unknown device, and the vanilla
training is outperformed by transfer learning, which is again outperformed by our
approach.

Besides, we notice that the pre-calibration performance of our approach is on
par with the post-calibration performance of the vanilla learning, which shows
the great effectiveness of our approach. Therefore, our approach is also feasible

142

9.4 Experiment

Vanilla learning Transfer learning Meta learning
0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 M
A

E

Model performance on real measurements before and after calibration
Before calibration
After calibration

Figure 9.5: Comparable performance of all the methods on measurement spectra before and after
calibration. Our meta learning approach outperforms the baseline methods by a large
margin. Besides, our method performs before calibration on par with the vanilla learning
after calibration, which is advantageous for zero-shot calibration.

0 200 400 600 800 1000
of devices

105

106

107

108

of

 re
qu

ire
d

sp
ec

tra

of spectra required to deploy the devices in industry
Vanilla learning
Transfer learning
Meta learning

0 200 400 600 800 1000
of devices

104

105

106

Tr
ai

ni
ng

 ti
m

e
in

 s

Training time required to deploy the devices in industry
Vanilla learning
Transfer learning
Meta learning

Figure 9.6: The real-world resource analysis of device deployment in industry. The data are the
required spectra size and training time to achieve the best performance of each method,
respectively. Note that the y-axes are all logarithmic. At a large scale, our approach
demands significantly fewer resources compared to the baseline methods, leading to
minimal cost device calibration.

in a zero-shot calibration setting and this is very practical in real-world scenar-
ios, where no additional information is available for an unknown device and a
measurement spectrum needs to be analyzed immediately.

143

9 Minimal cost device calibration via meta learning

9.4.3 Resource analysis

So far, we discuss the performance of our approach as well as the baselinemethods
for the calibration problem. In this section, we conduct a resource analysis in
industry to demonstrate the efficiency of our method over the others. In Fig. 9.6
(a), we give the total number of spectra needed to deploy all the approaches on
varying numbers of devices at their best performance. And in (b), the total training
time including the calibration time is depicted. Note that for both sub-figures, the
y-axis is logarithmic.

When a new device is produced, vanilla learning needs a new simulation dataset
to train a separate model on the new device. Therefore, both the required number
of spectra and training time are huge. Compared to that, transfer learning requires
fewer spectra per device, which leads to a lower training time. However, it still
needs to re-train the model as the device size changes. As for our approach, the
total number of spectra is nearly constant (it is constant for zero-shot calibration
if no calibration data is needed) as the number of devices increases. Although
at an early stage when only several devices are involved, the training time of our
approach is longer than others due to the meta learning training design, it takes
less time when the number of devices exceeds 30, which is typically the case in
the industry. Moreover, the time demand is constant regardless of the number of
devices. Therefore, our approach consumes the fewest resources and provides the
best performance on large-scale problems, and the resource analysis indicates the
effectiveness and saving potential of our approach, especially in themanufacturing
industry.

144

10 Conclusion and future work

So far, all the aspects of thewhole framework are proposed in detail, which is ready
to be utilized in production as an AI-based alternative. This chapter concludes
the dissertation with a conclusion section and an outlook of future work.

10.1 Conclusion

In this dissertation, a DNN-based comprehensive baseline framework for large-
scale spectral analysis is proposed, which outperforms the current classic com-
mercial solution in most aspects. The effectiveness, applicability and usability of
the framework are demonstrated by extensive experiments on complex simulation
datasets and real measurements from more than 20 measurement devices, which
serve well as real-world scenarios.

The design of the whole framework starts with the two fundamental problems in
spectral analysis: quantification (quantitative analysis) in Chapter 4 and identifi-
cation (qualitative analysis) in Chapter 6.

The quantitative problem is first discussed mainly due to the fact that it is the
current focus of the market and the requirement on the result accuracy is high.
Compared to previous work, the proposed framework enlarges the element cover-
age from several specific elements to a broad range of 28 most relevant elements
as an all-in-one solution. In order to set up the new baseline with ideal perfor-
mance, the proper size of training data and network architecture are examined and
discussed. As a result, this framework extends the application to a more general

145

10 Conclusion and future work

scenario and compared to classic analytical methods, it achieves similar quantifi-
cation performance while requiring much less computational time by a factor of
400. Similarly, the work on qualitative analysis in Chapter 6 also achieves great
improvement over classic methods (which is essentially not capable of solving the
tasks) as well as previous work by a large margin.

Afterward, optimizations to the DNNs, which are the core of the framework, are
introduced to achieve an efficient workflow throughout the analysis pipeline: data
input, network execution and deployment.

To reduce the input data volume and release the throughput burden, the feature
selection method watermelon is proposed in Chapter 5 as a dedicated module to
demonstrate its generalization ability across machine learning domains. It shows
that directly using the estimated Bayes error rate as the score of individual features
is intuitive, straightforward and effective. We furthermore interpret the interac-
tion between features and illustrate that although monotonic correlation indicates
true redundancy, a non-monotonic relationship can bring more information and
improve the performance of a classifier, which is against the heuristic used by
many other popular algorithms. We quantify and apply the effects of correlation
and relevance into our approach based on Spearman’s rank correlation coefficient
and normalized mutual information. We validate our proposed method on various
real-world problems and the results show that our approach is very robust and
outperforms other state-of-the-art competitors.

Later in Chapter 6, the method is further examined on qualitative problems with
comparison to other dimension reduction techniques. Combinedwithwatermelon,
the framework achieves even better accuracy on real measurement data with 19%
and 3% of the original storage and computational costs, respectively. Moreover,
compared to other dimension reduction approaches, watermelon provides a more
interpretable result that is physically explainable, which is essential for industrial
applications. In addition, the experiment analysis provides several best practices
for related domains toward a better model deployment in real-world applications.

To further exploit the power of DNNs that require a considerable amount of hard-
ware resources, a network pruning method is introduced in Chapter 7 as a general

146

10.1 Conclusion

approach to slim the networks without losing performance. The importance and
redundancy of internal features in DNNs are evaluated, and this information is
utilized to guide the pruning process. The approach achieves impressive results
on different datasets and network architectures compared to other competitors.

Combined with feature selection, network pruning and additionally network quan-
tization, the proposed framework is further optimized for real-time low-cost net-
work execution on edge devices in Chapter 8. We apply feature selection to reduce
the input data size, perform network pruning on the trained networks to reduce the
network size and finalize the whole pipeline with quantization to optimize the net-
work cost. We evaluate our approach on various hardware platforms and achieve
up to 52x model size compression ratio and 600x network execution speedup on
edge devices. Moreover, we demonstrate that our approach consistently delivers
robust performance at all three steps, with even higher accuracy in most cases.
Overall, we show that our approach is effective and easy to adopt, even for complex
spectral analysis tasks. Besides, we suggest that care should be taken regarding
the application of quantization techniques on different target platforms. A transfer
to other IoT/big data domains is also straightforward and does not require further
modification.

As the last step, an approach towards minimal cost device calibration is integrated
into the framework in Chapter 9, which aims to reduce the calibration costs related
to the increasing number of devices in the long-term large-scale deployment. More
concretely, we formulate the general spectral analysis problem as a multi-device
multi-configuration task, which is a large collection of different basic tasks. Then,
we train a meta network based on large-scale datasets simulated with a basic task-
aware design. To calibrate on the specific device, the network is further finetuned
with a few measurements (few-shot) to achieve better performance. We conduct
extensive experiments and demonstrate that our approach outperforms the baseline
methods by a noticeable margin. Besides, our approach performs on par before
calibration compared to previous work after calibration, which makes the zero-
shot calibration feasible. It is thus a huge benefit in real-world scenarios where no
calibration data is available for unknown devices. Last but not least, the resource
analysis shows that our approach requires significantly less expenditure to deploy

147

10 Conclusion and future work

large-scale devices in industry, which contributes to a huge saving potential both
for the industry and the customers.

Overall, the proposed framework is comprehensive in the sense that it not only
solves the kernel problems that exist in the current status as an all-in-one solution,
but it also crosses through the whole product life cycle in the industry, namely
from problem to solution, from development to deployment, with economic costs
taken into consideration.

10.2 Future work

The future work of this dissertation is considered twofold: theoretical and practi-
cal.

10.2.1 Future work in fundamental research

Theoretically, or from the academic perspective, the potential for improvement
of the proposed framework is still large. To accomplish the two major tasks in
spectral analysis, further advanced neural network architectures can be tested, e.g.,
ResNet, Transformer, and so on. Besides, the optimizations of the framework are
worth deeper digging. For instance, for the watermelon method, we are going
to further investigate the influence of feature relevance in high dimensions, and
the use of more advanced optimization solutions instead of greedy search is also
of interest. And for the network pruning method, since we adopted a simplified
version of watermelon because of resource and time constraints, we believe that
the usage of the original version may improve the results due to its excellent ability
to identify the difference between redundancy and relevance, especially for a high
target ratio. Besides, we did not fine-tune the parameters of our approach (e.g., the
number of Conv layers to be skipped) and network settings, which is one of our
focuses for future work. Moreover, the implementation of the approach on other
CNN architectures is also our next step. Moreover, we consider the optimization

148

10.2 Future work

of the meta learning training process an important step. Distributed training and
continuous training can largely improve the efficiency of the whole workflow.

10.2.2 Future work in practices

Practically, especially for the industrial setting, there are also improvements that
are expected to be conducted. First, the analysis of samples with layers is an
important following work, which is not covered in this dissertation. For such
systems, we need to determine both the element concentrations and the layer
thicknesses, which adds up the complexity of the underlining physics model.
It leads, therefore, to the next key discussion on the limitations of the DNN
framework: can it do anything? Note that in the context of spectral analysis, there
are physical limitations due to the optical systems. For example, as the thickness
of the sample increases, the captured spectra will gradually saturate until there
is no difference between two samples with thicknesses of, e.g., 60 um and 70
um. Another type of problem occurs when it comes to multi-layer settings. A
sample with a structure of gold in the first layer and silver in the second layer may,
theoretically, have the same spectrum as another sample with silver in the first
layer and gold in the second layer, yet with different thicknesses. Hence, if the
input data are the same, how can this framework correctly output two different
results? Therefore, it is necessary to clarify the limitations of the framework and
such cases need to be identified during the analysis so that the results are unbiased
and meaningful.

Besides, although this dissertation realizes a cross-platform framework for the
deployment on various platforms, efficient maintenance of the framework is of
great interest to the industry. As the framework itself evolves, when new DNN
models are available and an update is required to be consistent and worldwide, a
well-functioning infrastructure plays a crucial role in these real-world scenarios.

149

Abbreviations and Symbols

Abbreviations

CNN Convolutional Neural Network

DenseNet Dense Convolutional Network

DNN Deep Neural Network

FLOPs Floating Point Operations

SOTA State-Of-The-Art

LIBS Laser-induced breakdown spectroscopy

XRF X-ray fluorescence

MLP Multilayer Perceptrons

BCE Binary Cross-Entropy

MSE Mean Squared Error

BP Back Propagation

GPU Graphics Card

SGD Stochastic Gradient Descent

ROI Regions of Interest

PCA Principal Component Analysis

151

List of Figures

1.1 Examples of spectra of various samples measured on different
spectrometers . 2

1.2 The workflow of classic method . 5
2.1 The schema of LIBS [27] . 14
2.2 The work principle of XRF [29] . 15
2.3 The basic architecture of neural networks 18
2.4 Some popular activation functions 20
2.5 Overview of neural network architectures 25
2.6 AlexNet architecture, visualization based on [35] 26
2.7 Visualization of overfitting and underfitting 28
3.1 The workflow of classic method . 32
3.2 The workflow of element quantification 36
3.3 Framework with element quantification and identification 36
3.4 Framework with optimization . 37
3.5 Framework overview before and after cross-device consideration . . . 38
4.1 Measured spectra of one pure Ag sample using (a) different de-

vices under the same measurement condition or (b) different mea-
surement conditions on the same device. The spectra are easily
distinguishable by their intensity and characteristics of peaks. For
instance, in (a), device B has the largest peaks in the range of
200-400 but much lower peaks in the range of 600-800, respectively. . 42

4.2 Network architecture and overall workflow 46

153

List of Figures

4.3 Performance of MLP using different data sizes, all else being
equal. In (a), the overall test loss at all training steps reduces as
the data size increases. Here, the learning rate reduces at epoch 80
and 120, respectively. In (b), the final test losses after 160 epochs
using varying data sizes are plotted in blue circles. To illustrate
the overfitting effect, the differences between test loss and train
loss are plotted in orange x. In (c), with an increased number of
involved elements, the required data size to train a neural network
also rises. 47

4.4 Comparison of different neural network architecture and sizes.
All x-axes use logarithmic scales. In general, enlarging the net-
work can improve the performance, although the marginal gain
decreases. Note that DenseNet with the Pooling layer does not
perform well while requiring the same level of storage and com-
putational resources as others in which Flatten layers are applied. . . . 49

4.5 Comparable results of hyperparameters. In (a), Adam outper-
forms SGD in most cases. In (b), we find that using a learning
rate of 1e-4 and batch size of 64 can achieve good results. 51

5.1 Two examples of different kinds of relevance. In (a), there is no
improvement by using two features instead of only one. However,
in (b), a quasi-perfect separation can be achieved in the two-
dimensional space. 60

5.2 SignificantDominance PartialOrder diagram. Methods are placed
top to bottom regarding their ranks, and a connection between any
two methods indicates a statistically significant difference using
the Nemenyi post-hoc test at the corresponding confidence level.
For instance, watermelon is superior to MIM with 99% confidence. . . 73

6.1 Measured spectra of different pure elements. Although each ele-
ment has unique peaks, they often overlap with the peaks of other
elements, whichmakes it hard to identify a wide range of elements
without error. 80

154

List of Figures

6.2 Illustration of different network architectures and the framework
of our approach. To set up a new proper baseline for large-
scale element identification, we conduct extensive tests on MLPs,
CNNs and DenseNets with varying hyperparameters. Besides,
compared to other dimension reduction methods (compression
and feature transformation), our feature selection-based approach
outperforms with better performance and interpretability. 82

6.3 Performance of MLP, CNN and DenseNet with different network
sizes, the x-axis is logarithmic. CNNs and DenseNets outperform
MLPs by a noticeable margin. 85

6.4 Visualization of reduced features by (a) compression, (b) and (c)
watermelon, (d) Autoencoder. In (b), the features are ordered by
their original indices and in (c), the most important features are
the most left ones. Both compression and watermelon preserve
the shape of spectra, and watermelon performs better, especially
when the number of features is limited. In contrast, Autoencoder
produces latent features that are hard to interpret. 87

6.5 First 16 selected features by watermelon, the major peaks are
automatically detected. 88

6.6 Performance of MLP, CNN and DenseNet using different fea-
ture reduction methods. Watermelon achieves overall best perfor-
mance and Autoencoder is feasible at a low number of features,
whereas compression is more suitable for higher feature sizes. 89

6.7 Performance and size comparison of CNNs on real measurements,
x-axis uses the logarithmic scale. Similar to simulation results,
watermelon still obtains the best accuracy with a lower model size. . . 93

7.1 Pruning strategy of conv layers using filter scores. For illus-
tration purpose, filter size fc, fc−1, fc−2 = 3 and thrvoting =

0.5, thrcor = 0.7. 1) For conv layer lc, the weights of each
filter are reshaped from (k, k, fc−1) to (k ∗ k, fc−1) and Qic is
calculated. 2) The filters in lc−1 will be marked (as blue) if
Qi > fc · thrvoting . 3) Marked filters in lc−1 and corresponding
weights in lc will be pruned. 103

155

List of Figures

7.2 Illustration of pruning on conv layer with 1 × 1 kernel size. The
weights have a shape of (1, 1, fc−1, fc) andwe reshape theweights
to (fc−1, fc). l1-norm will be calculated and filters with the
smallest values will be pruned. 106

7.3 Pruning results of our approach at different ratios compared to
other SOTA methods using VGG-16 on CIFAR10. Points at top
left are better than those at bottom right. 107

8.1 The framework of our approach. Feature selection is performed on
input data to select desired feature subsets. Then, neural networks
will be trained based on the data subsets (F32, F64, ...). Afterward,
network pruning with target ratios (CR01, CR02, ...) is executed.
Finally, the models will be quantized to various formats (float16,
int8, ...). 115

8.2 Comparison of feature selection results on simulation and mea-
surement data. 119

8.3 Comparison of network pruning results on measurement data.
Each line consists of 10 data points and represents the pruning
result of one network at different compression ratios (from CR00
(no pruning) to CR09 (pruning at a 90% target ratio)). 121

8.4 Comparison of network quantization results on measurement data
and the X- and Y-axes are shared. Networks are trained on the
dataset with 32 features. The time performance is measured on a
Raspberry Pi 3B. 123

8.5 Comparison of time performance on different hardware platforms
using 32 features. 125

9.1 Spectra of a reference sample consisting of 10% Au, 20% Ag,
20%Cu, 20%Cd, 20% Fe and 10%Mo. Measured using different
devices and under different measurement conditions, the resulting
spectra are also different. 128

156

List of Figures

9.2 Overview of the whole workflow for spectral analysis tasks. A
sample will be measured on different devices under various mea-
surement conditions, resulting in different spectra. Spectral anal-
ysis is done either using the classic method or the DNN approach.
Note that both methods work on one specific device. Therefore,
device calibration is required and leads to enormous resource de-
mand, especially in the large-scale manufacturing industry. 129

9.3 Framework of our approach towards minimal cost device calibra-
tion. In our meta learning procedure, the general spectral analysis
problem is formulated as a collection of enormous basic tasks,
where each task corresponds to one specific device (D_1, D_2,
...) with one fixed measurement condition (MC_a, MC_b, ...).
The meta training will be performed on the task pool based on all
known devices. Later, at calibration time, the new measurements
on an unknown device under an unknown measurement condition
will be used for post-calibration training of the meta network and
evaluation of the final performance. 132

9.4 Comparable results of different methods on various data. Each
axis represents the test MAE of the measurement spectra on dif-
ferent devices and the method with a smaller polygon has thus
better performance. Overall, our approach outperforms trans-
fer learning, which again outperforms vanilla learning on both
known and unknown devices. Also, it applies to both the pre- and
after-calibration performance. 141

9.5 Comparable performance of all the methods on measurement
spectra before and after calibration. Our meta learning approach
outperforms the baseline methods by a large margin. Besides,
our method performs before calibration on par with the vanilla
learning after calibration, which is advantageous for zero-shot
calibration. 143

157

List of Figures

9.6 The real-world resource analysis of device deployment in industry.
The data are the required spectra size and training time to achieve
the best performance of each method, respectively. Note that the
y-axes are all logarithmic. At a large scale, our approach demands
significantly fewer resources compared to the baseline methods,
leading to minimal cost device calibration. 143

158

List of Tables

2.1 Overview of the parameters for quantitative analysis with XRF 16
3.1 Overview of the requirements on the framework addressed in the

dissertation . 35
4.1 Summary of all relevant elements . 44
4.2 Summary of MLP candidates . 48
4.3 Summary of CNN candidates . 48
4.4 Summary of DenseNet candidates 49
4.5 Summary of measurement spectra and evaluation results 53
4.6 Performance comparison on measurement spectra measured with

different devices. The MAE values are shown in %. 54
5.1 Summary of feature selection methods 69
5.2 Summary of experiment datasets . 70
5.3 Average accuracy results of dataset COIL20 71
5.4 Summary of evaluation results. Accuracy is the average accuracy

obtainedwhile varying the cardinality ([10, 25, 50, 75, 100, 125, 150, 175, 200])
of selected features. The last column lists the average ranks of the
methods on all the benchmarks. 72

5.5 Comparison of different versions of watermelon. The first two
columns show the average accuracy and rank achieved by the
methods over all the benchmarks, and the last column shows the
overall ranks among all the competitors. The comparison is based
on the two runs of the whole experiment using a linear SVM and
random forest. 74

6.1 Summary of network performance 86
6.2 Summary of measurement spectra. The elements are marked as

trace (<1%), very low (1-10%), low (10-30%),medium (30-70%),
high (70-90%) and very high (>90%) 91

159

List of Tables

6.3 Summary of comparable results using different dimension reduc-
tion techniques, the accuracy on real measurement data using
different feature sizes is presented. 92

7.1 Comparable results on CIFAR10 (VGG-16, DenseNet40) and Im-
ageNet (DenseNet121) at different pruning ratios. A negative
value means an accuracy improvement after pruning. The re-
sults are sorted in ascending order w.r.t. FLOPs pruning ratios
(∆FLOPs) and our results are in bold. 110

8.1 Parameter compression ratio using feature selection and network pruning120
8.2 FLOPs compression ratio using feature selection and network pruning 120
8.3 Summary of the final performance of our approach. Time is

measured on a Raspberry Pi 3B. 126
9.1 Details of samples for the real measurements 136
9.2 The network architecture . 137
9.3 Test MAE of real measurements from different devices on all the

methods before calibration. For vanilla learning, 10 models (V_1
to V_10) are trained on 10 known devices. 139

9.4 Test MAE of real measurements from different devices on all the
methods after calibration. Bold values are the best. 140

160

Publications

Journal paper

[1] W. Chen, W. Tian, X. Xie, and W. Stork, “Rgb image-and lidar-based 3d
object detection under multiple lighting scenarios,” Automotive Innovation,
pp. 1–9, 2022.

Conference paper

[1] X. Xie, Y. Gao, andW. Stork, “Pa-dcgan: Efficient spectrum generation using
physics-aware deep convolutional generative adversarial network with latent
physical characteristics and constraints,” in 2022 IEEE Symposium Series on
Computational Intelligence (SSCI), 2022.

[2] X. Xie andW. Stork, “Large-scale spectral analysis for element quantification
using deep neural networks,” in 2022 International Joint Conference on
Neural Networks (IJCNN), 2022, pp. 1–8.

[3] X. Xie, M. Jin, A. Chu, and W. Stork, “Minimal cost device calibration in
spectral analysis via meta learning: Towards efficient deployment of deep
neural networks in industry,” in 2022 IEEE International Conference on Big
Data (Big Data), 2022.

[4] X. Xie, T. Chen, and W. Stork, “Enabling real-time low-cost spectral analysis
on edge devices with deep neural networks: a robust hybrid approach,” in
2022 IEEE International Conference on Big Data (Big Data), 2022.

161

Conference paper

[5] X. Xie andW. Stork, “Watermelon: a novel feature selection method based on
bayes error rate estimation and a new interpretation of feature relevance and
redundancy,” in 2020 25th International Conference on Pattern Recognition
(ICPR). IEEE, 2021, pp. 1360–1367.

[6] X. Xie, T. Chen, A. Chu, andW. Stork, “Efficient network pruning via feature
selection,” in 2022 26th International Conference on Pattern Recognition
(ICPR), 2022.

[7] X. Xie and W. Stork, “Efficient comprehensive element identification in large
scale spectral analysis with interpretable dimension reduction,” in 2022 IEEE
International Conference on Big Data (Big Data), 2022.

162

Bibliography

[1] J. Okonda, K. Angeyo, J. Mangala, and S. Kisia, “A nested multivariate
chemometrics based calibration strategy for direct trace biometal analysis in
soft tissue utilizing energy dispersive x-ray fluorescence (edxrf) and scattering
spectrometry,” Applied Radiation and Isotopes, vol. 129, pp. 49–56, 2017.

[2] F. Li, Q. Hu, X. Xu, L. Ge, X. Tang, and Z. Chen, “Bp neural network based
on dropout applied to the edxrf quantitative analysis of heavymetal elements,”
in Proceedings of the 3rd International Conference on Computer Science and
Application Engineering, 2019, pp. 1–5.

[3] P. E. Keller and R. T. Kouzes, “Gamma spectral analysis via neural networks,”
in Proceedings of 1994 IEEE Nuclear Science Symposium-NSS’94, vol. 1.
IEEE, 1994, pp. 341–345.

[4] E. C. Ferreira, D. M. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-
Neto, “Artificial neural network for cu quantitative determination in soil using
a portable laser induced breakdown spectroscopy system,” Spectrochimica
Acta Part B: Atomic Spectroscopy, vol. 63, no. 10, pp. 1216–1220, 2008.

[5] P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative
study of laser induced breakdown spectroscopy analysis for element concen-
trations in aluminum alloy using artificial neural networks and calibration
methods,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 64, no. 1,
pp. 99–104, 2009.

[6] E. D’Andrea, S. Pagnotta, E. Grifoni, G. Lorenzetti, S. Legnaioli, V. Palleschi,
and B. Lazzerini, “An artificial neural network approach to laser-induced

163

Bibliography

breakdown spectroscopy quantitative analysis,” Spectrochimica Acta Part B:
Atomic Spectroscopy, vol. 99, pp. 52–58, 2014.

[7] K.-X. Peng, J.-B. Yang, X.-G. Tuo, H. Du, and R.-X. Zhang, “Research on
pgnaa adaptive analysis method with bp neural network,” Modern Physics
Letters B, vol. 30, no. 32n33, p. 1650386, 2016.

[8] K.Wang, P. Guo, and A.-L. Luo, “A new automated spectral feature extraction
method and its application in spectral classification and defective spectra
recovery,”Monthly Notices of the Royal Astronomical Society, vol. 465, no. 4,
pp. 4311–4324, 2017.

[9] W. B. Sohn, S. Y. Lee, and S. Kim, “Single-layer multiple-kernel-based
convolutional neural network for biological raman spectral analysis,” Journal
of Raman Spectroscopy, vol. 51, no. 3, pp. 414–421, 2020.

[10] J. Vrielink, R. M. Tiggelaar, J. G. Gardeniers, and L. Lefferts, “Applicability
of x-ray fluorescence spectroscopy as method to determine thickness and
composition of stacks of metal thin films: A comparison with imaging and
profilometry,” Thin Solid Films, vol. 520, no. 6, pp. 1740–1744, 2012.

[11] S. Arzhantsev, X. Li, and J. F. Kauffman, “Rapid limit tests for metal
impurities in pharmaceutical materials by x-ray fluorescence spectroscopy
using wavelet transform filtering,” Analytical chemistry, vol. 83, no. 3, pp.
1061–1068, 2011.

[12] M. Saritha and V. Nampoori, “Identification of spectral lines of elements
using artificial neural networks,” Microchemical Journal, vol. 91, no. 2, pp.
170–175, 2009.

[13] M. Bieroza, A. Baker, and J. Bridgeman, “Classification and calibration of
organicmatter fluorescence datawithmultiway analysismethods and artificial
neural networks: an operational tool for improved drinking water treatment,”
Environmetrics, vol. 22, no. 3, pp. 256–270, 2011.

164

Bibliography

[14] N. M. Peleato, R. L. Legge, and R. C. Andrews, “Neural networks for
dimensionality reduction of fluorescence spectra and prediction of drinking
water disinfection by-products,” Water research, vol. 136, pp. 84–94, 2018.

[15] E.A.Hernández-Caraballo and L.M.Marcó-Parra, “Direct analysis of blood
serum by total reflection x-ray fluorescence spectrometry and application of
an artificial neural network approach for cancer diagnosis,” Spectrochimica
Acta Part B: Atomic Spectroscopy, vol. 58, no. 12, pp. 2205–2213, 2003.

[16] M. Kaniu, K. Angeyo, A. Mwala, and F. Mwangi, “Energy dispersive x-
ray fluorescence and scattering assessment of soil quality via partial least
squares and artificial neural networks analytical modeling approaches,” Ta-
lanta, vol. 98, pp. 236–240, 2012.

[17] J. El Haddad, D. Bruyère, A. Ismaël, G. Gallou, V. Laperche, K. Michel,
L. Canioni, and B. Bousquet, “Application of a series of artificial neural
networks to on-site quantitative analysis of lead into real soil samples by
laser induced breakdown spectroscopy,” Spectrochimica Acta Part B: Atomic
Spectroscopy, vol. 97, pp. 57–64, 2014.

[18] T. F. Boucher, M. V. Ozanne, M. L. Carmosino, M. D. Dyar, S. Mahadevan,
E. A. Breves, K. H. Lepore, and S. M. Clegg, “A study of machine learning
regression methods for major elemental analysis of rocks using laser-induced
breakdown spectroscopy,” Spectrochimica Acta Part B: Atomic Spectroscopy,
vol. 107, pp. 1–10, 2015.

[19] Z. Zhong, S. Tang, G. Peng, and Y. Zhang, “A novel quantitative spectral
analysis method based on parallel bp neural network for dissolved gas in trans-
former oil,” in 2016 IEEE PES Asia-Pacific Power and Energy Engineering
Conference (APPEEC). IEEE, 2016, pp. 1979–1983.

[20] M. Unal and O. Akkus, “Raman spectral classification of mineral-and
collagen-boundwater’s associations to elastic and post-yieldmechanical prop-
erties of cortical bone,” Bone, vol. 81, pp. 315–326, 2015.

165

Bibliography

[21] H. P. Singh, R. K. Gulati, and R. Gupta, “Stellar spectral classification using
principal component analysis and artificial neural networks,”Monthly Notices
of the Royal Astronomical Society, vol. 295, no. 2, pp. 312–318, 1998.

[22] M. Kamuda, J. Stinnett, and C. Sullivan, “Automated isotope identification
algorithm using artificial neural networks,” IEEE Transactions on Nuclear
Science, vol. 64, no. 7, pp. 1858–1864, 2017.

[23] X. Yu, L. Xu, L. Ma, Z. Chen, and Y. Yan, “Solar radio spectrum classifi-
cation with lstm,” in 2017 IEEE international conference on multimedia &
expo workshops (ICMEW). IEEE, 2017, pp. 519–524.

[24] T. Salge, R. Neumann, C. Andersson, and M. Patzschke, “Advanced min-
eral classification using feature analysis and spectrum imaging with eds,” in
Proceedings: International Mining Congress and Exhibition, 23rd, Turkey,
UCTEA Chamber of Mining Engineers of Turkey, vol. 357, 2013.

[25] T. Schoonjans, A. Brunetti, B. Golosio, M. S. del Rio, V. A. Solé, C. Fer-
rero, and L. Vincze, “The xraylib library for x-ray–matter interactions. recent
developments,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 66,
no. 11-12, pp. 776–784, 2011.

[26] R. Sitko, “Quantitative x-ray fluorescence analysis of samples of less than
‘infinite thickness’: difficulties and possibilities,” Spectrochimica Acta Part
B: Atomic Spectroscopy, vol. 64, no. 11-12, pp. 1161–1172, 2009.

[27] [Online]. Available: https://www.princetoninstruments.com/learn/laser-
induced-breakdown-spectroscopy

[28] A. Miliolek, V. Palleschi, and I. Schechter, “Laser-induced breakdown spec-
troscopy: Fundamentals and applications,” 2006.

[29] [Online]. Available: https://www.helmut-fischer.com/techniques/basics-
of-xrf-x-ray-fluorescence-analysis

[30] [Online]. Available: https://de.wikipedia.org/wiki/RÃűntgenfluoreszenzan
alyse

166

https://www.princetoninstruments.com/learn/laser-induced-breakdown-spectroscopy
https://www.princetoninstruments.com/learn/laser-induced-breakdown-spectroscopy
https://www.helmut-fischer.com/techniques/basics-of-xrf-x-ray-fluorescence-analysis
https://www.helmut-fischer.com/techniques/basics-of-xrf-x-ray-fluorescence-analysis
https://de.wikipedia.org/wiki/Röntgenfluoreszenzanalyse
https://de.wikipedia.org/wiki/Röntgenfluoreszenzanalyse

Bibliography

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[32] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[33] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2014, pp.
580–587.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural information
processing systems, vol. 25, pp. 1097–1105, 2012.

[35] A. LeNail, “Nn-svg: Publication-ready neural network architecture
schematics,” Journal of Open Source Software, vol. 4, no. 33, p. 747, 2019.
[Online]. Available: https://doi.org/10.21105/joss.00747

[36] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 4700–4708.

[37] Chabacano. [Online]. Available: https://en.wikipedia.org/wiki/File:
Overfitting.svg

[38] Gringer. [Online]. Available: https://en.wikipedia.org/wiki/File:Overfitting
_svg.svg

[39] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous

167

https://doi.org/10.21105/joss.00747
https://en.wikipedia.org/wiki/File:Overfitting.svg
https://en.wikipedia.org/wiki/File:Overfitting.svg
https://en.wikipedia.org/wiki/File:Overfitting_svg.svg
https://en.wikipedia.org/wiki/File:Overfitting_svg.svg

Bibliography

systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[40] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better: Stabil-
ity of stochastic gradient descent,” in International conference on machine
learning. PMLR, 2016, pp. 1225–1234.

[41] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The marginal
value of adaptive gradient methods in machine learning,” Advances in neural
information processing systems, vol. 30, 2017.

[42] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl,
“On empirical comparisons of optimizers for deep learning,” arXiv preprint
arXiv:1910.05446, 2019.

[43] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu,
“Feature selection: A data perspective,” ACM Comput. Surv., vol. 50, no. 6,
Dec. 2017. [Online]. Available: https://doi.org/10.1145/3136625

[44] I. Guyon andA. Elisseeff, “An introduction to variable and feature selection,”
Journal of machine learning research, vol. 3, no. Mar, pp. 1157–1182, 2003.

[45] J. R. Vergara and P. A. Estévez, “A review of feature selection
methods based on mutual information,” Neural Computing and Applications,
vol. 24, no. 1, pp. 175–186, Jan. 2014. [Online]. Available:
https://doi.org/10.1007/s00521-013-1368-0

[46] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley
& Sons, 2012.

[47] F. Nie, S. Xiang, Y. Jia, C. Zhang, and S. Yan, “Trace ratio criterion for
feature selection.” in AAAI, vol. 2, 2008, pp. 671–676.

[48] M. Robnik-Šikonja and I. Kononenko, “Theoretical and empirical analysis
of ReliefF and RReliefF,” Machine learning, vol. 53, no. 1-2, pp. 23–69,
2003.

168

https://www.tensorflow.org/
https://doi.org/10.1145/3136625
https://doi.org/10.1007/s00521-013-1368-0

Bibliography

[49] J. Liu, S. Ji, and J. Ye, “Multi-task feature learning via efficient l2, 1-norm
minimization,” arXiv preprint arXiv:1205.2631, 2012.

[50] F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and robust feature selec-
tion via joint l2, 1-norms minimization,” in Advances in neural information
processing systems, 2010, pp. 1813–1821.

[51] S. Wright, “The interpretation of population structure by f-statistics with
special regard to systems of mating,” Evolution, vol. 19, no. 3, pp. 395–420,
1965.

[52] L. Ceriani and P. Verme, “The origins of the gini index: extracts from
variabilità e mutabilità (1912) by corrado gini,” The Journal of Economic
Inequality, vol. 10, no. 3, pp. 421–443, Sep. 2012. [Online]. Available:
https://doi.org/10.1007/s10888-011-9188-x

[53] D. D. Lewis, “Feature selection and feature extraction for text categoriza-
tion,” in Proceedings of the workshop on Speech and Natural Language.
Association for Computational Linguistics, 1992, pp. 212–217.

[54] R. Battiti, “Using mutual information for selecting features in supervised
neural net learning,” IEEE Transactions on neural networks, vol. 5, no. 4, pp.
537–550, 1994.

[55] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual informa-
tion criteria of max-dependency, max-relevance, and min-redundancy,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 27, no. 8, pp.
1226–1238, 2005.

[56] D. Lin andX. Tang, “Conditional infomax learning: an integrated framework
for feature extraction and fusion,” inEuropean conference on computer vision.
Springer, 2006, pp. 68–82.

[57] H. H. Yang and J. Moody, “Data visualization and feature selection: New al-
gorithms for nongaussian data,” in Advances in neural information processing
systems, 2000, pp. 687–693.

169

https://doi.org/10.1007/s10888-011-9188-x

Bibliography

[58] P. E. Meyer, C. Schretter, and G. Bontempi, “Information-theoretic feature
selection in microarray data using variable complementarity,” IEEE Journal
of Selected Topics in Signal Processing, vol. 2, no. 3, pp. 261–274, 2008.

[59] M. Vidal-Naquet and S. Ullman, “Object recognition with informative fea-
tures and linear classification.” in ICCV, vol. 3, 2003, p. 281.

[60] F. Fleuret, “Fast binary feature selection with conditional mutual informa-
tion,” Journal of Machine learning research, vol. 5, no. Nov, pp. 1531–1555,
2004.

[61] P. E. Meyer and G. Bontempi, “On the use of variable complementarity for
feature selection in cancer classification,” in Workshops on applications of
evolutionary computation. Springer, 2006, pp. 91–102.

[62] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast
correlation-based filter solution,” in Proceedings of the 20th international
conference on machine learning (ICML-03), 2003, pp. 856–863.

[63] M.A.Hall andL.A. Smith, “Feature selection formachine learning: compar-
ing a correlation-based filter approach to the wrapper.” in FLAIRS conference,
vol. 1999, 1999, pp. 235–239.

[64] P. A. Estévez,M. Tesmer, C.A. Perez, and J.M. Zurada, “Normalizedmutual
information feature selection,” IEEETransactions on neural networks, vol. 20,
no. 2, pp. 189–201, 2009.

[65] K. Tumer and J. Ghosh, “Bayes error rate estimation using classifier en-
sembles,” International Journal of Smart Engineering System Design, vol. 5,
no. 2, pp. 95–109, 2003.

[66] S. Xu, J. Dai et al., “Semi-supervised feature selection bymutual information
based on kernel density estimation,” in 2018 24th International Conference
on Pattern Recognition (ICPR). IEEE, 2018, pp. 818–823.

[67] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction

170

Bibliography

for chance,” Journal of Machine Learning Research, vol. 11, no. Oct, pp.
2837–2854, 2010.

[68] A. F. McDaid, D. Greene, and N. Hurley, “Normalized mutual informa-
tion to evaluate overlapping community finding algorithms,” arXiv preprint
arXiv:1110.2515, 2011.

[69] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional likelihood
maximisation: a unifying framework for information theoretic feature selec-
tion,” Journal of machine learning research, vol. 13, no. Jan, pp. 27–66,
2012.

[70] A. Pérez, P. Larrañaga, and I. Inza, “Bayesian classifiers based on kernel den-
sity estimation: Flexible classifiers,” International Journal of Approximate
Reasoning, vol. 50, no. 2, pp. 341–362, 2009.

[71] A. Jakulin, “Machine learning based on attribute interactions,” Ph.D. dis-
sertation, Univerza v Ljubljani, 2005.

[72] L. Yu, Y.Han, andM. E. Berens, “Stable gene selection frommicroarray data
via sample weighting,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 9, no. 1, pp. 262–272, 2011.

[73] G. Roffo, S. Melzi, and M. Cristani, “Infinite feature selection,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2015, pp.
4202–4210.

[74] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal ofMachine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[75] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006.

171

Bibliography

[76] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?” The
journal of machine learning research, vol. 15, no. 1, pp. 3133–3181, 2014.

[77] G. Daniel, F. Ceraudo, O. Limousin, D. Maier, and A. Meuris, “Automatic
and real-time identification of radionuclides in gamma-ray spectra: a new
method based on convolutional neural network trained with synthetic data
set,” IEEE Transactions on Nuclear Science, vol. 67, no. 4, pp. 644–653,
2020.

[78] M. Kamuda and C. J. Sullivan, “An automated isotope identification and
quantification algorithm for isotope mixtures in low-resolution gamma-ray
spectra,” Radiation Physics and Chemistry, vol. 155, pp. 281–286, 2019.

[79] E. Yoshida, K. Shizuma, S. Endo, and T. Oka, “Application of neural net-
works for the analysis of gamma-ray spectrameasuredwith a ge spectrometer,”
Nuclear Instruments and Methods in Physics Research Section A: Accelera-
tors, Spectrometers, Detectors and Associated Equipment, vol. 484, no. 1-3,
pp. 557–563, 2002.

[80] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 3431–3440.

[81] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal of
machine learning research, vol. 12, no. ARTICLE, pp. 2493–2537, 2011.

[82] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Ima-
geNet Large Scale Visual Recognition Challenge,” International Journal of
Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[83] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

172

Bibliography

[84] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quan-
tization for deep neural network acceleration: A survey,” Neurocomputing,
vol. 461, pp. 370–403, 2021.

[85] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the state
of neural network pruning?” Proceedings of machine learning and systems,
vol. 2, pp. 129–146, 2020.

[86] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” arXiv preprint arXiv:1506.02626,
2015.

[87] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[88] V. Sehwag, S. Wang, P. Mittal, and S. Jana, “Hydra: Pruning adversarially
robust neural networks,” Advances in Neural Information Processing Systems,
vol. 33, pp. 19 655–19 666, 2020.

[89] N. Lee, T. Ajanthan, and P. H. Torr, “Snip: Single-shot network pruning
based on connection sensitivity,” arXiv preprint arXiv:1810.02340, 2018.

[90] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient
convolutional networks through network slimming,” in Proceedings of the
IEEE International Conference on Computer Vision, 2017, pp. 2736–2744.

[91] Y. Wang, X. Zhang, L. Xie, J. Zhou, H. Su, B. Zhang, and X. Hu, “Pruning
from scratch,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 34, no. 07, 2020, pp. 12 273–12 280.

[92] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep
neural networks,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 1389–1397.

[93] Y. Li, S. Gu, K. Zhang, L. V. Gool, and R. Timofte, “Dhp: Differentiable
meta pruning via hypernetworks,” in European Conference on Computer
Vision. Springer, 2020, pp. 608–624.

173

Bibliography

[94] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[95] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao, “Hrank:
Filter pruning using high-rank feature map,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 1529–1538.

[96] C.M. J. Tan andM.Motani, “Dropnet: Reducing neural network complexity
via iterative pruning,” in International Conference on Machine Learning.
PMLR, 2020, pp. 9356–9366.

[97] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before training
by preserving gradient flow,” arXiv preprint arXiv:2002.07376, 2020.

[98] M. Lin, L. Cao, S. Li, Q. Ye, Y. Tian, J. Liu, Q. Tian, and R. Ji, “Filter sketch
for network pruning,” IEEE Transactions on Neural Networks and Learning
Systems, 2021.

[99] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks via
layer-wise optimal brain surgeon,” Advances in Neural Information Process-
ing Systems, vol. 30, 2017.

[100] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 5058–5066.

[101] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, and J. Sun,
“Metapruning: Meta learning for automatic neural network channel prun-
ing,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2019.

[102] X. Zhang, H. Liu, Z. Zhu, and Z. Xu, “Learning to search efficient densenet
with layer-wise pruning,” in 2020 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2020, pp. 1–8.

[103] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. Doermann,
“Towards optimal structured cnn pruning via generative adversarial learning,”

174

Bibliography

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2790–2799.

[104] B. Li, B. Wu, J. Su, and G. Wang, “Eagleeye: Fast sub-net evaluation
for efficient neural network pruning,” in European conference on computer
vision. Springer, 2020, pp. 639–654.

[105] S.Gao, F.Huang,W.Cai, andH.Huang, “Network pruning via performance
maximization,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 9270–9280.

[106] W. Wang, M. Chen, S. Zhao, L. Chen, J. Hu, H. Liu, D. Cai, X. He, and
W. Liu, “Accelerate cnns from three dimensions: A comprehensive pruning
framework,” in International Conference on Machine Learning. PMLR,
2021, pp. 10 717–10 726.

[107] Z. Wang, F. Li, G. Shi, X. Xie, and F. Wang, “Network pruning using
sparse learning and genetic algorithm,” Neurocomputing, vol. 404, pp. 247–
256, 2020.

[108] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance score
propagation,” inProceedings of the IEEEConference onComputer Vision and
Pattern Recognition, 2018, pp. 9194–9203.

[109] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from
tiny images,” 2009.

[110] Y. Tang, Y.Wang, Y. Xu, D. Tao, C. Xu, C. Xu, and C. Xu, “Scop: Scientific
control for reliable neural network pruning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 10 936–10 947, 2020.

[111] Y. Chen, X. Wen, Y. Zhang, and W. Shi, “Ccprune: Collaborative channel
pruning for learning compact convolutional networks,” Neurocomputing, vol.
451, pp. 35–45, 2021.

175

Bibliography

[112] Z. Guo, Y. Xiao, W. Liao, P. Veelaert, and W. Philips, “Flops-efficient
filter pruning via transfer scale for neural network acceleration,” Journal of
Computational Science, vol. 55, p. 101459, 2021.

[113] W.Wen, C.Wu, Y.Wang, Y. Chen, and H. Li, “Learning structured sparsity
in deep neural networks,” Advances in neural information processing systems,
vol. 29, 2016.

[114] P. Singh, V. K. Verma, P. Rai, and V. Namboodiri, “Leveraging filter
correlations for deep model compression,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2020, pp. 835–844.

[115] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning neural
networks without any data by iteratively conserving synaptic flow,” Advances
in Neural Information Processing Systems, vol. 33, pp. 6377–6389, 2020.

[116] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” Advances in
neural information processing systems, vol. 2, 1989.

[117] B. Hassibi and D. Stork, “Second order derivatives for network pruning:
Optimal brain surgeon,” Advances in neural information processing systems,
vol. 5, 1992.

[118] L. Liu, S. Zhang, Z. Kuang, A. Zhou, J.-H. Xue, X. Wang, Y. Chen,
W. Yang, Q. Liao, and W. Zhang, “Group fisher pruning for practical network
compression,” in International Conference on Machine Learning. PMLR,
2021, pp. 7021–7032.

[119] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, “Variational
convolutional neural network pruning,” in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2775–2784.

[120] M. Lin, R. Ji, S. Li, Y.Wang, Y.Wu, F.Huang, andQ.Ye, “Network pruning
using adaptive exemplar filters,” IEEE Transactions on Neural Networks and
Learning Systems, 2021.

176

Bibliography

[121] Z. Wang, C. Li, and X. Wang, “Convolutional neural network pruning with
structural redundancy reduction,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2021, pp. 14 913–14 922.

[122] [Online]. Available: https://github.com/Tzutori/watermelon-feature-
selection

[123] Z. Huang and N. Wang, “Data-driven sparse structure selection for deep
neural networks,” in Proceedings of the European conference on computer
vision (ECCV), 2018, pp. 304–320.

[124] W. Wang, S. Zhao, M. Chen, J. Hu, D. Cai, and H. Liu, “Dbp: discrimina-
tion based block-level pruning for deep model acceleration,” arXiv preprint
arXiv:1912.10178, 2019.

[125] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quan-
tized neural networks: Training neural networks with low precision weights
and activations,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6869–6898, 2017.

[126] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 2704–2713.

[127] M. Nagel, R. A. Amjad, M. Van Baalen, C. Louizos, and T. Blankevoort,
“Up or down? adaptive rounding for post-training quantization,” in Interna-
tional Conference on Machine Learning. PMLR, 2020, pp. 7197–7206.

[128] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, and Z. Zhang, “Improving neural
network quantization without retraining using outlier channel splitting,” in
International conference on machine learning. PMLR, 2019, pp. 7543–
7552.

[129] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in International conference on machine
learning. PMLR, 2017, pp. 1126–1135.

177

https://github.com/Tzutori/watermelon-feature-selection
https://github.com/Tzutori/watermelon-feature-selection

Bibliography

[130] S. Bozinovski, “Reminder of the first paper on transfer learning in neural
networks, 1976,” Informatica, vol. 44, no. 3, 2020.

[131] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized nonnegative
matrix factorization for data representation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 33, no. 8, pp. 1548–1560, 2010.

[132] D. Cai, X. He, Y. Hu, J. Han, and T. Huang, “Learning a spatially smooth
subspace for face recognition,” in 2007 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2007, pp. 1–7.

[133] K. Lang, “Newsweeder: Learning to filter netnews,” in Proceedings of the
Twelfth International Conference on Machine Learning, 1995, pp. 331–339.

[134] J. C. Davis and R. J. Sampson, Statistics and data analysis in geology.
Wiley New York et al., 1986, vol. 646.

[135] M. Lin, R. Ji, Y. Zhang, B. Zhang, Y. Wu, and Y. Tian, “Channel pruning
via automatic structure search,” arXiv preprint arXiv:2001.08565, 2020.

[136] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149, 2015.

[137] F. Chollet et al., “Keras,” https://keras.io, 2015.

[138] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning con-
volutional neural networks for resource efficient inference,” arXiv preprint
arXiv:1611.06440, 2016.

[139] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout sparsifies
deep neural networks,” in International Conference on Machine Learning.
PMLR, 2017, pp. 2498–2507.

[140] T. Schoonjans, V. A. Solé, L. Vincze, M. S. del Rio, K. Appel, and C. Fer-
rero, “A general monte carlo simulation of energy-dispersive x-ray fluores-
cence spectrometers—part 6. quantification through iterative simulations,”
Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 82, pp. 36–41, 2013.

178

https://keras.io

Bibliography

[141] V. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini, “A multiplatform
code for the analysis of energy-dispersive x-ray fluorescence spectra,” Spec-
trochimica Acta Part B: Atomic Spectroscopy, vol. 62, no. 1, pp. 63–68,
2007.

[142] F. Li, L. Ge, Z. Tang, Y. Chen, and J. Wang, “Recent developments on
xrf spectra evaluation,” Applied Spectroscopy Reviews, vol. 55, no. 4, pp.
263–287, 2020.

[143] Y. Shi, K. Davaslioglu, Y. E. Sagduyu, W. C. Headley, M. Fowler, and
G. Green, “Deep learning for rf signal classification in unknown and dynamic
spectrum environments,” in 2019 IEEE International Symposium onDynamic
Spectrum Access Networks (DySPAN). IEEE, 2019, pp. 1–10.

[144] Google. [Online]. Available: https://www.tensorflow.org/mobile/tflite

[145] [Online]. Available: https://github.com/Tzutori/watermelon-feature-
selection

[146] Y. Choi, J. Choi, M. El-Khamy, and J. Lee, “Data-free network quantization
with adversarial knowledge distillation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, 2020,
pp. 710–711.

[147] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural architec-
ture search via parameters sharing,” in International Conference on Machine
Learning. PMLR, 2018, pp. 4095–4104.

[148] Y. Chen, G. Meng, Q. Zhang, X. Zhang, L. Song, S. Xiang, and
C. Pan, “Joint neural architecture search and quantization,” arXiv preprint
arXiv:1811.09426, 2018.

[149] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang, and
C. Choi, “Learning to quantize deep networks by optimizing quantization
intervals with task loss,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 4350–4359.

179

https://www.tensorflow.org/mobile/tflite
https://github.com/Tzutori/watermelon-feature-selection
https://github.com/Tzutori/watermelon-feature-selection

Bibliography

[150] D. Zhang, J. Yang, D. Ye, and G. Hua, “Lq-nets: Learned quantization for
highly accurate and compact deep neural networks,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 365–382.

[151] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and hard-
ware acceleration for neural networks: A comprehensive survey,”Proceedings
of the IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[152] X. Dong, J. Huang, Y. Yang, and S. Yan, “More is less: A more compli-
cated network with less inference complexity,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[153] M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. Vetrov, and
R. Salakhutdinov, “Spatially adaptive computation time for residual net-
works,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

[154] A.-H. Phan, K. Sobolev, K. Sozykin, D. Ermilov, J. Gusak, P. Tichavský,
V. Glukhov, I. Oseledets, and A. Cichocki, “Stable low-rank tensor decompo-
sition for compression of convolutional neural network,” in Computer Vision
– ECCV 2020. Cham: Springer International Publishing, 2020, pp. 522–539.

[155] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep con-
volutional neural networks,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), vol. 13, no. 3, pp. 1–18, 2017.

180

	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Overview of spectral analysis
	1.2 Current problems and limitations
	1.2.1 Problems in qualitative analysis
	1.2.2 Problems in quantitative analysis
	1.2.3 Additional challenges in spectral analysis

	1.3 Motivation of deep-neural-network based framework for spectral analysis
	1.4 Contributions and outline

	2 Preliminaries
	2.1 Physics in spectral analysis
	2.1.1 Laser-induced breakdown spectroscopy
	2.1.2 X-ray fluorescence spectroscopy
	2.1.3 Generic abstract physical model in spectral analysis

	2.2 Fundamentals in artificial intelligence
	2.2.1 Definition of neural networks
	2.2.2 Common neural network architectures
	2.2.3 Hyperparameter, overfitting and underfitting
	2.2.4 Tensorflow: a machine learning platform

	3 Concept and design of the framework
	3.1 Requirements for the framework
	3.1.1 Functional requirements
	3.1.2 Non-functional requirements

	3.2 Concept, design of the comprehensive framework
	3.2.1 Overview
	3.2.2 Details of the framework components

	4 Element quantification
	4.1 Current status and related work
	4.2 Task definition and network architecture
	4.3 Experiments and results
	4.3.1 Appropriate size of training dataset
	4.3.2 Selection of model topology
	4.3.3 Selection of hyperparameter
	4.3.4 Evaluation on real measurements

	5 General feature selection
	5.1 Introduction
	5.2 Background and related work
	5.2.1 Bayes error rate
	5.2.2 Kernel density estimation
	5.2.3 Spearman's rank correlation coefficient
	5.2.4 Information-theoretic concepts

	5.3 Watermelon feature selection
	5.4 Experiments
	5.4.1 Experiment setup
	5.4.2 Results and analysis of experiments
	5.4.3 Discussion

	6 Element identification with interpretable dimension reduction
	6.1 Introduction
	6.2 Related work and preliminary
	6.2.1 Task definition
	6.2.2 Related work

	6.3 Comprehensive element identification with interpretable dimension reduction
	6.3.1 Data preprocessing
	6.3.2 Network architecture and evaluation metrics
	6.3.3 Feature selection for dimension reduction
	6.3.4 Other dimension reduction approaches

	6.4 Experiments and results
	6.4.1 Experiment setup
	6.4.2 Classification results on simulation data
	6.4.3 Comparison of dimension reduction methods
	6.4.4 Evaluation on real measurements
	6.4.5 Comparison of model sizes

	7 Efficient network pruning via feature selection
	7.1 Introduction
	7.2 Related works and preliminary
	7.3 Model pruning via feature selection
	7.3.1 Feature selection score
	7.3.2 Network pruning and fine-tuning
	7.3.3 Handling cross-layer connections structure

	7.4 Experiments
	7.4.1 Experiment setup
	7.4.2 VGGNet on CIFAR10
	7.4.3 DenseNet on CIFAR10 and ImageNet

	8 Real-time low-cost spectral analysis
	8.1 Introduction
	8.2 Real-time low-cost spectral analysis via a hybrid approach
	8.2.1 Data reduction using feature selection
	8.2.2 Network size reduction via efficient network pruning
	8.2.3 Network quantization via Tensorflow Lite

	8.3 Experiments
	8.3.1 Experiment setup
	8.3.2 Application of feature selection
	8.3.3 Network pruning
	8.3.4 Network quantization
	8.3.5 Comparison on different hardware platforms
	8.3.6 Overall comparison

	9 Minimal cost device calibration via meta learning
	9.1 Introduction
	9.2 Related work
	9.2.1 Transfer learning and meta learning

	9.3 DNN-based minimal cost device calibration via meta learning
	9.3.1 Problem definition
	9.3.2 Meta learning based calibration
	9.3.3 Choice of baseline methods

	9.4 Experiment
	9.4.1 Experiment setup
	9.4.2 Performance evaluation
	9.4.3 Resource analysis

	10 Conclusion and future work
	10.1 Conclusion
	10.2 Future work
	10.2.1 Future work in fundamental research
	10.2.2 Future work in practices

	Abbreviations and Symbols
	List of Figures
	List of Tables
	Publications
	Journal paper
	Conference paper

	Bibliography

