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Abstract

Balanced hypergraph partitioning is a classic NP-hard optimization problem that is a fun-

damental tool in such diverse disciplines as VLSI circuit design, route planning, sharding

distributed databases, optimizing communication volume in parallel computing, and acceler-

ating the simulation of quantum circuits. Given a hypergraph and an integer 𝑘 , the task is to

divide the vertices into 𝑘 disjoint blocks with bounded size, while minimizing an objective

function on the hyperedges that span multiple blocks. In this dissertation we consider the

most commonly used objective, the connectivity metric, where we aim to minimize the

number of different blocks connected by each hyperedge.

The most successful heuristic for balanced partitioning is the multilevel approach, which

consists of three phases. In the coarsening phase, vertex clusters are contracted to obtain

a sequence of structurally similar but successively smaller hypergraphs. Once sufficiently

small, an initial partition is computed. Lastly, the contractions are successively undone in

reverse order, and an iterative improvement algorithm is employed to refine the projected

partition on each level.

An important aspect in designing practical heuristics for optimization problems is the

trade-off between solution quality and running time. The appropriate trade-off depends on

the specific application, the size of the data sets, and the computational resources available

to solve the problem. Existing algorithms are either slow, sequential and offer high solution

quality, or are simple, fast, easy to parallelize, and offer low quality. While this trade-off

cannot be avoided entirely, our goal is to close the gaps as much as possible. We achieve

this by improving the state of the art in all non-trivial areas of the trade-off landscape with

only a few techniques, but employed in two different ways. Furthermore, most research on

parallelization has focused on distributed memory, which neglects the greater flexibility of

shared-memory algorithms and the wide availability of commodity multi-core machines.
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In this thesis, we therefore design and revisit fundamental techniques for each phase of the

multilevel approach, and develop highly efficient shared-memory parallel implementations

thereof. We consider two iterative improvement algorithms, one based on the Fiduccia-

Mattheyses (FM) heuristic, and one based on label propagation. For these, we propose a

variety of techniques to improve the accuracy of gains when moving vertices in parallel, as

well as low-level algorithmic improvements. For coarsening, we present a parallel variant of

greedy agglomerative clustering with a novel method to resolve cluster join conflicts on-the-

fly. Combined with a preprocessing phase for coarsening based on community detection,

a portfolio of from-scratch partitioning algorithms, as well as recursive partitioning with

work-stealing, we obtain our first parallel multilevel framework. It is the fastest partitioner

known, and achieves medium-high quality, beating all parallel partitioners, and is close to

the highest quality sequential partitioner.

Our second contribution is a parallelization of an n-level approach, where only one vertex

is contracted and uncontracted on each level. This extreme approach aims at high solution

quality via very fine-grained, localized refinement, but seems inherently sequential. We

devise an asynchronous n-level coarsening scheme based on a hierarchical decomposition of

the contractions, as well as a batch-synchronous uncoarsening, and later fully asynchronous

uncoarsening. In addition, we adapt our refinement algorithms, and also use the prepro-

cessing and portfolio. This scheme is highly scalable, and achieves the same quality as the

highest quality sequential partitioner (which is based on the same components), but is of

course slower than our first framework due to fine-grained uncoarsening.

The last ingredient for high quality is an iterative improvement algorithm based on

maximum flows. In the sequential setting, we first improve an existing idea by solving

incremental maximum flow problems, which leads to smaller cuts and is faster due to

engineering efforts. Subsequently, we parallelize the maximum flow algorithm and schedule

refinements in parallel.

Beyond the strive for highest quality, we present a deterministically parallel partitioning

framework. We develop deterministic versions of the preprocessing, coarsening, and label

propagation refinement. Experimentally, we demonstrate that the penalties for determinism

in terms of partition quality and running time are very small.

All of our claims are validated through extensive experiments, comparing our algorithms

with state-of-the-art solvers on large and diverse benchmark sets. To foster further research,

we make our contributions available in our open-source framework Mt-KaHyPar.

While it seems inevitable, that with ever increasing problem sizes, we must transition

to distributed memory algorithms, the study of shared-memory techniques is not in vain.

With the multilevel approach, even the inherently slow techniques have a role to play in fast

systems, as they can be employed to boost quality on coarse levels at little expense. Similarly,

techniques for shared-memory parallelism are important, both as soon as a coarse graph fits

into memory, and as local building blocks in the distributed algorithm.
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1

1 Introduction

1.1 Motivation

Balanced graph partitioning is a classic NP-hard optimization problem with a rich and

beautiful research history. The goal is to partition the vertices of a graph into a fixed number

of disjoint blocks with bounded size, with as few edges running between blocks as possible.

Practical studies are often motivated by an application. In fact not many optimization

problems have such a diverse set of applications as balanced partitioning. Perhaps the

most archetypical application is data distribution while minimizing communication between

parallel processors.

The Role of Hypergraphs. Yet there are applications where the restriction to pair-wise

relationships is inaccurate at modeling the more complex relationships prevalent [SK72,

CA99, KQDK14, GK21]. Hypergraphs are a generalization of graphs where each hyperedge

can connect an arbitrary subset of the vertices. The corresponding hypergraph partitioning

problem rose to popularity in the context of VLSI design [SK72, FM82, Kri84, San89, Len90,

CS93, AK95, YW96, Alp98, KAKS99]. The goal is to divide circuit elements while producing

as few wires running between components as possible. In the graph model, a wire connecting

more than two elements is modeled as a clique, however multiple cut clique edges translate

to just one external wire in the chip design. Modeling wires as hyperedges instead of cliques

yields the correct cost model [SK72].

The objective function used in this application is the number of cut hyperedges (cut-net
metric). Since a hyperedge can connect arbitrary many vertices, it can also span more than

two blocks. To account for this, the connectivity metric counts the number of different blocks
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Figure 1.1: A distributed database with each query accessing multiple machines.

spanned by each hyperedge (minus one necessary block), with the goal to span as few blocks

as possible over all hyperedges.

Hypergraph partitioning enjoys wide-spread use in many more application areas where

hypergraphs are the appropriate model to capture the cost associated with a partition. In

particular the connectivity metric is relevant in practice, thus it is the main focus in this

work. Some prominent examples are parallel sparse matrix-vector multiplication [CA99],

SAT solving [MP14, MP17], quantum computing [AH19, GK21, Hua+20, PZ21] and sharding

distributed databases [CZJM10, KQDK14, Ser+16, YWCC18, Kab+17a]. In the following we

outline the database application further, as it has become extremely important in recent

years.

Data Distribution Applications. Tech companies operate enormous data centers to host

and query ”their” data. Optimizing data placement not only accelerates queries or increases

throughput, but also has a significant impact on reducing operation costs. Considering the

absolute scale of these operations
1
, even small relative savings are worthwhile. Shalita et

al. [Sha+16] report an impressive 50% decrease in both CPU utilization and query latency

in a data center with thousands of storage servers, using only a very simple optimization

technique [Kab+17a].

In this application, vertices correspond to data records, hyperedges represent queries that

access multiple data records, and the blocks are machines. The goal is to place data records

that are frequently queried together on the same machine in order to improve query locality,

while adhering to memory constraints of the machines and not overloading them with work.

More precisely, minimizing connectivity corresponds to minimizing the average number of

machines involved in a query, which optimizes the latency and query processing time. The

queries are collected from logs, working under the assumption that optimizing for the historic

query loads is representative for future queries. Figure 1.1 shows an example hypergraph

and partition representing a sharded database. While there are previous works that apply

graph partitioning to this problem [CZJM10], hypergraphs are clearly the more natural

choice [KQDK14]. Whether machines cooperate in solving a query, or whether one machine

1https://dgtlinfra.com/facebook-18-data-centers-20bn-investment/

https://dgtlinfra.com/facebook-18-data-centers-20bn-investment/
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Figure 1.2: The multilevel paradigm illustrated.

gathers the necessary records and then performs the query, the optimization objective is the

same: reduce the number of involved machines to reduce the incurred communication and

latency.

Hardness and Heuristics. Unfortunately, solving the balanced partitioning problem opti-

mally is NP-hard [Len90], and it is even NP-hard to compute approximate solutions within a

constant factor [BJ92]. In practice, heuristics are used to compute adequate close-to-optimal

solutions, without any theoretical approximation guarantees. Broadly speaking there are

two categories: from-scratch algorithms and iterative improvement algorithms which take a

given partition and try to improve it by moving vertices between the blocks. Clearly the two

can be combined. The most successful heuristic is the multilevel paradigm [HL93], which

adds a third phase beforehand. Figure 1.2 shows an illustration of the three phases.

In the coarsening phase, vertex clusters are contracted to obtain a sequence of structurally

similar but successively smaller hypergraphs, which constitute the levels. Once the last

hypergraph is sufficiently small, a from-scratch algorithm computes an initial partition on

it. Finally, the contractions are successively undone in reverse order in the uncoarsening
or refinement phase. At each level, the vertices are assigned to the same block as their

coarse representative on the previous level, which results in an equivalent partition on

the finer hypergraph in terms of balance and objective function. Iterative improvement

algorithms then refine the projected partition, in order to improve its objective function,

before continuing with the next level.
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The Role of Parallelism. In recent years, problem sizes have grown beyond what full-

fledged multilevel single-threaded codes can handle in reasonable time. Hence, there is

an increased need for performing partitioning tasks in parallel. This led to very fast but

overly simple approaches that are easy to parallelize, some in distributed memory, or even

approaches that abandoned the multilevel paradigm altogether. As a consequence these

approaches achieve abysmal solution quality. While there are some situations where this

is appropriate [Jia+19], for most applications the solution quality directly impacts the ap-

plication scalability and thus this is a bad trade-off. Therefore our focus is on techniques

for high solution quality and the multilevel paradigm. As Moore’s law continues to stall,

chip developers keep increasing the number of cores per chip. This makes research on

shared-memory algorithms attractive, additionally considering the fact that there is more

flexibility for algorithm design than in distributed memory environments.

1.2 Summary of Main Contributions
As such, this dissertation presents two separate shared-memory parallel frameworks for

multilevel partitioning. The first is a classic multilevel algorithm focused on speed and

medium-high quality with approximately log(𝑛) levels, where 𝑛 is the number of vertices.

We call this algorithm Mt-KaHyPar-D for multi-threaded Karlsruhe Hypergraph Partitioning

framework, where D stands for default configuration. The second is an 𝑛-level algorithm

focused purely on high quality, where on each level only one vertex is removed and later

restored [OS10, AHSS17]. This achieves high quality, because the instances are as similar as

possible between refinement steps, offering the finest possible granularity for refinement. We

call this approach Mt-KaHyPar-Q for quality. Furthermore, we equip both frameworks with

a parallel version of flow-based refinement [GHW19a, GHSW20], the currently strongest

iterative improvement algorithm in terms of partition quality. And finally we propose a

deterministic version of the log(𝑛)-level partitioner.
To derive meaningful conclusions from experiments, our benchmark sets contain a large

number of instances (488 + 94 + 53), which are compiled from well-established benchmark

sets [HS17, ASS18a] as well as applications such as VLSI design, SAT solving, scientific

computing, social networks and web graph matrices. The instances have strongly varying

characteristics, and the largest hypergraph instance has around 2 billion pins. We outline the

selection process and characteristics of our benchmark instances as well as the competing

state-of-the-art solvers in Section 2.4.

As we will show in this dissertation, our algorithms are the new state of the art in the

high speed and high quality regimes, as they currently occupy all non-trivial fronts of the

Pareto trade-off curve. Depending on the application and data set size, either Mt-KaHyPar-D

or one of our variants with flow-based refinement is the method of choice. To illustrate this

further, in Figure 1.3 we draw a simplified sketch of the trade-offs between solution quality

(y-axis) and speed (x-axis) achieved by relevant hypergraph partitioners from the literature.

The partitioners are color-coded by whether they are sequential, shared-memory parallel or
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Figure 1.3: A hand-wavy sketch of the Pareto trade-offs between speed and quality achieved

by several hypergraph partitioners in our evaluations. Our contributions are marked with a

square, prior works are marked with a dot. The green dashed line shows the Pareto front

prior to this work, the red dashed line the front with our work included.

distributed. Our contributions are marked with a square, whereas prior works are marked

with a dot. We draw the Pareto frontiers before this work (green) and after (red), showing

that we improved in all places along the frontier.

Fast Parallel Multilevel Partitioning. For the coarsening phase of Mt-KaHyPar-D, we

choose a greedy agglomerative clustering algorithm [CA99]. We present a parallelization

of this algorithm with on-the-fly resolution of cluster join conflicts, as well as a parallel

contraction algorithm based on prefix sums, fingerprinting and hashing. Additionally we use

a preprocessing technique based on community detection [HS17] to boost solution quality,

which we parallelize using the parallel Louvain algorithm [SM16] where we contribute some

implementation-level improvements.

For the refinement phase we follow a previous work [ASS18a] on parallelizing localized

refinement for graph partitioning, but improve upon it in several ways. We put vertex moves

in a better ordering, that more accurately reflects the gains (objective function difference) at

the time they are computed, and parallelize a previously sequential step to recalculate exact

gains if moves were performed in that sequence. Furthermore, we employ a gain table to

facilitate faster updates in the neighborhoods of moved vertices, as well as a means to infuse

up-to-date global partition information into the local move decisions. While the concept

of gain tables is not new, we are the first to prove that they can be updated efficiently in

parallel, and the first to use them as a communication tool. Furthermore, a naive adaptation

of [ASS18a] to hypergraphs would lead to an infeasible amount of extra memory used for

thread-local hash tables. We propose two very simple methods to keep memory consumption
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low. Besides parallel gain recalculation and parallel gain tables, we propose a third technique

to enhance the accuracy of gains, named attributed gains, which we use to double-check

calculated gains and trace overall improvements. We additionally use label propagation

refinement [KK00] because it is easy to parallelize.

Compared to the conference publication, we analyze our algorithms in the work-depth

model and provide extensive experimental evaluations of the components and optimizations,

showcasing their impact on partition quality and running time. Furthermore, we describe

extensive details of the algorithms and engineering to facilitate better understanding for

engineers wishing to re-implement our approaches, an area that has been lacking in the past

and for which the partitioning community has received criticism [CKM00a].

In a comparison with existing hypergraph partitioning algorithms, we demonstrate that

our algorithm is the fastest partitioner, achieves excellent speedups (around 22 on 64 cores),

and achieves medium to high partition quality in the pool of compared algorithms, which

is close to competitive with hMetis [KAKS99] or KaHyPar [Sch20]. These are the highest

quality sequential partitioners, which are however much slower. Out of the fast or parallel

algorithms it achieves the highest solution quality by far.

Furthermore, even in a comparison with dedicated parallel graph partitioners [ASS18a,

LK13, Got+21] our algorithm achieves the highest quality, demonstrating again the effective-

ness of our improvements. Furthermore it is the second fastest algorithm in this comparison,

the only faster code is one of our own, which uses only label propagation [Got+21].

Deterministic Parallel Partitioning. Subsequently, we develop a deterministic log(𝑛)-
level partitioner, which still reaps the performance benefits of randomized scheduling. De-

terminism is an important feature for certain logic synthesis applications [MABP21], and

at the very least a highly convenient property [Ste90, BFGS]. For agglomerative clustering

in coarsening, community detection preprocessing and label propagation refinement, we

apply the synchronous local moving approach [HSWZ18]. Vertex moves are calculated

and performed in synchronous steps, such that concurrent move decisions do not influence

each other. In the presence of weight constraints on the clusters, some of the moves are

approved and performed, whereas some are denied. The algorithmic novelty lies in the details

of the approval steps, and for community detection in subsequent updates. For example

the refinement approval uses a merge-style parallelization. Furthermore, we show how to

incorporate determinism in the remaining parts of the framework, such as contraction and

initial partitioning.

We demonstrate that the deterministic version of our algorithm achieves similar quality

as the non-deterministic version, though small penalties are incurred, which are justifiable

if determinism is desired in the application. Additionally, it is a bit slower, but achieves

better speedups (around 29 on 64 cores). Furthermore, it completely outperforms a recent

deterministic multilevel hypergraph partitioner [MABP21] in terms of partition quality,

running time and speedups. Finally, we analyze likely sources for the quality loss, and

suggest directions for improving this in future work.
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Parallel n-Level Partitioning. In this work, we parallelize the core component of the

highest quality sequential partitioner KaHyPar [AHSS17, Sch20], which is its 𝑛-level coars-

ening and uncoarsening. At first glance this seems inherently sequential as on each level

only one vertex is removed, however an efficient parallelization is possible. We propose

an asynchronous 𝑛-level coarsening routine based on a representation of contractions as a

forest, which imposes partial ordering constraints, from which we derive a parallel execu-

tion schedule. The contractions are performed on a novel highly intrusive, semi-dynamic

hypergraph data structure with fine-grained locking. For uncoarsening we partition the

contractions into independent batches that can be uncontracted in parallel, around which we

subsequently perform parallel localized refinement, before proceeding with the next batch.

The size of the batches interpolates between parallelism and refinement granularity. The

uncoarsening schedule follows the reverse of the partial constraints from the coarsening

phase as well as another technical condition. An intricacy in 𝑛-level uncoarsening is that

values in the gain table must be updated or initialized as vertices are uncontracted.

The resulting algorithm achieves the same quality as sequential KaHyPar but in a parallel

code. On medium size instances, we achieve around a factor 9 speedup over sequential

KaHyPar with 10 cores, and on large instances around factor 25 self-relative speedup on

64 cores. In a second step, we propose a completely asynchronous uncoarsening with even

better speedups (around 29) at the cost of worse partition quality due to interference between

parallel localized searches.

Advanced Flow-Based Refinement and Parallelization. Our last contribution is an

advanced refinement algorithm based on maximum flows and subsequently its parallelization.

This is currently the strongest iterative improvement algorithm in terms of pushing the

envelope on partition quality, but it is rather slow due to having to solve large flow problems.

The basic version is restricted to partitions into two blocks, but can be applied to 𝑘-way

partitions by scheduling refinement on block pairs. There is prior work on flow-based

refinement [SS11, HSS19] which solves one flow problem on a reduced instance to potentially

obtain a smaller cut.

We improve this by solving incremental maximum flow problems to trade off cut size

for better balance in the same way as the from-scratch algorithms FlowCutter and FBB

[HS18a, YW96]. Using only small increments, we find partitions with smaller cut than the

previous approach. As solving many incremental flow problems is more expensive, we invest

substantial engineering effort into the main bottleneck, the flow algorithms. We implement

them directly on the hypergraph, which is faster than the previous approach of computing

flows on an auxiliary graph. So much in fact that our approach becomes faster than the old

one, and yields better partition quality. In the faster out of the two proposed configurations,

flow-based refinement takes up substantially less time than local search, whereas in previous

work it accounts for the largest share by far. Yet, both configurations find higher quality

partitions than the previous flow-based refinement.

In a follow-up work, we parallelize our approach by plugging in a parallel push-relabel
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algorithm [BBS15] for computing maximum flows, as well as parallelizing the scheduling.

For the flow algorithm we propose two optimizations which speed up the execution by three

orders of magnitude if combined, though this improvement is specific to our instance types.

Furthermore, we describe and fix a bug in the existing parallel flow algorithm, and discuss

intricacies when using push-relabel algorithms with incremental flow problems.

We provide three separate experimental evaluations, as these results are combined from

three separate publications [GHW19a, GHSW20, GHS22]. In the first, we demonstrate the

effectiveness of flow-based refinement as a postprocessing step to a simple but fast sequential

multilevel partitioner [CA99]. In the second, we integrate our approach into sequential

KaHyPar and improve the state of the art in terms of partition quality further, while also

reducing the running time compared to the previous flow-based refinement. And finally, we

demonstrate that our parallel version integrated in Mt-KaHyPar achieves the same partition

quality as sequential KaHyPar with flow-based refinement, but is a factor 9.7 faster on 10

cores. Unfortunately, the speedups on larger core numbers are not as good as for our previous

works. This is however expected, as flow algorithms are notoriously difficult to parallelize

efficiently, and previous studies on flow algorithms [BBS15] show even worse speedups than

ours.

Highly Engineered Implementation in a Unified Framework. Our two frameworks

and their algorithmic components are bundled together in one framework Mt-KaHyPar. We

make the C++ source code available online at https://github.com/kahypar/mt-kahypar.

Additionally, flow-based refinement is available in a separate repository at https://github.

com/larsgottesbueren/WHFC. The source codes are published under permissive open source

licenses to welcome the use in future research projects on applications or algorithms. All

codes are highly optimized and designed with extensibility in mind.

1.3 Thesis Outline
This dissertation is organized as follows. In Chapter 2 we introduce notation and concepts

used throughout this thesis, as well as the methodology employed in the experimental

evaluations. In Chapter 3 we discuss the existing literature on partitioning with a particular

focus on parallel techniques and challenges these have to face. Subsequently we present our

traditional parallel multilevel algorithm Mt-KaHyPar-D and its components in Chapter 4.

We extend this to a deterministic version in Chapter 5. In Chapter 6 we then present our

parallel 𝑛-level algorithm. Finally, in Chapter 7 we present our flow-based refinement, first

the sequential then the parallel version. Each algorithms chapter contains an extensive

experimental comparison with the existing state of the art, in both the sequential and parallel

setting, as well as a thorough evaluation of the algorithmic components we employ. We

conclude the dissertation in Chapter 8 with a summary of our results and outline directions

for future work.

https://github.com/kahypar/mt-kahypar
https://github.com/larsgottesbueren/WHFC
https://github.com/larsgottesbueren/WHFC
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2 Preliminaries

This chapter introduces the fundamental concepts used in this thesis. We start with basic

definitions and notation in Section 2.1. In Section 2.2 we introduce the parallel computa-

tion model we use in running time analyses and discuss algorithmic primitives employed

throughout our work. In Section 2.3 we discuss the fundamentals of maximum flows. We

conclude with the experimental setup in Section 2.4, as this will be reused throughout this

thesis, with minor adaptations where necessary.

2.1 Notation and Definitions
By [𝑚] we denote the set {0, 1, . . . ,𝑚 − 1} for a positive integer𝑚.

Hypergraphs. A weighted hypergraph 𝐻 = (𝑉 , 𝐸, 𝑐, 𝜔) is defined as a set of vertices 𝑉

and a set of hyperedges/nets 𝐸 ⊆ 2
𝑉
with vertex weights 𝑐 : 𝑉 → R>0 and net weights

𝜔 : 𝐸 → R>0. The vertices of a net are called its pins. We extend 𝑐 and𝜔 to sets in the natural

way, i.e., 𝑐 (𝑈 ) ≔ ∑
v∈𝑈 𝑐 (v) and 𝜔 (𝐹 ) ≔

∑
𝑒∈𝐹 𝜔 (𝑒). A vertex v is incident to a net 𝑒 if v ∈ 𝑒 .

I(v) denotes the set of all incident nets of v . The set Γ(v) ≔ {𝑢 | ∃𝑒 ∈ 𝐸 : {v, 𝑢} ⊆ 𝑒} denotes
the neighbors of v . The degree of a vertex v is deg(v) ≔ |I(v) |. The size |𝑒 | of a net 𝑒 is the
number of its pins. Nets of size one are called single-pin nets. We call two nets 𝑒𝑖 and 𝑒 𝑗 with

different identifiers 𝑖 ≠ 𝑗 identical if they have the same pins. We use p ≔
∑

𝑒∈𝐸 |𝑒 | as the
total number of pins, 𝑛 ≔ |𝑉 | as the number of vertices and𝑚 ≔ |𝐸 | as the number of nets.

An undirected graph is a hypergraph where each net has size 2. For graphs, we use the

terminology nodes and edges instead of vertices and nets/hyperedges, to distinguish more

easily when hypergraphs and graphs are used jointly. A directed graph is a graph where
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edges are ordered pairs instead of unordered pairs. To distinguish from undirected graphs

we use the term arcs for directed edges. The transpose of a directed graph𝐺 = (𝑉 , 𝐸) is the
graph 𝐺 = (𝑉 , {(v, 𝑢) | (𝑢, v) ∈ 𝐸}).
A hypergraph can be represented as an undirected bipartite graph 𝐺∗ = (𝑉 ∪ 𝐸, {(v, 𝑒) |

𝑒 ∈ 𝐸, v ∈ 𝑒}) with the vertices and nets as nodes and an edge for each pin. This is called

the star expansion or bipartite graph representation. A different representation is the clique
expansion, where each net is replaced by all pair-wise edges between its pins.

Partitioning and Cuts. A 𝑘-way partition of a hypergraph 𝐻 is a function Π : 𝑉 →
{1, . . . , 𝑘}. The blocks 𝑉𝑖 ≔ Π

−1 (𝑖) of Π are the inverse images. We call Π 𝜀-balanced if each

block 𝑉𝑖 satisfies the balance constraint: 𝑐 (𝑉𝑖 ) ≤ 𝐿max ≔ (1 + 𝜀) ⌈𝑐 (𝑉 )
𝑘
⌉ for some parameter

𝜀 ∈ (0, 1). When 𝜀 is clear from the context we often just say balanced or feasible.

A 2-way partition is also called a bipartition. At times we represent a partition as the set

of blocks, particularly for bipartitions (𝐴, 𝐵) or (𝑉1,𝑉2).
For each net 𝑒 , Λ(𝑒) ≔ {𝑉𝑖 | 𝑉𝑖 ∩ 𝑒 ≠ ∅} denotes the connectivity set of 𝑒 . The connectivity

𝜆(𝑒) ≔ |Λ(𝑒) | is the number of different blocks connected by the net. Given parameters 𝜀 and

𝑘 , and a hypergraph 𝐻 , the balanced hypergraph partitioning problem is to find an 𝜀-balanced

𝑘-way partition Π that minimizes the connectivity metric (𝜆 − 1) (Π) ≔ ∑
𝑒∈𝐸 (𝜆(𝑒) − 1) 𝜔 (𝑒).

A net is called a cut net if 𝜆(𝑒) > 1 and the cut of a partition is set of all cut nets. A

boundary vertex is a vertex that is incident to at least one cut net. The number of pins of a

net 𝑒 in block 𝑉𝑖 is denoted by Φ(𝑒,𝑉𝑖 ) ≔ |𝑒 ∩𝑉𝑖 |. Given a 𝑘-way partition Π, the quotient
graph Q ≔ (Π, 𝐸Π ≔ {(𝑉𝑖 ,𝑉𝑗 ) | ∃𝑒 ∈ 𝐸 : {𝑉𝑖 ,𝑉𝑗 } ⊆ Λ(𝑒)}) is a graph with the blocks as the

nodes and it contains an edge for each block pair with non-empty cut.

Throughout this dissertation the terms partition quality and solution quality refer to the

value of the objective function of a partition, assuming the objective function is clear from

the context. Another common objective function is the cut-net metric
∑

𝑒∈𝐸:𝜆 (𝑒 )>1
𝜔 (𝑒). On

graphs or bipartitions the connectivity metric is equivalent to the cut-net metric.

A clustering is a partition without a restriction on the number of blocks or their weight.

In this context a block is also called cluster and sometimes community. A move (𝑢, 𝑠, 𝑡) is
the operation of assigning a new block 𝑡 to a vertex 𝑢, moving it out of its old block 𝑠 and

into the new block 𝑡 . The gain of a move is the absolute reduction in the objective function

we currently consider, for example connectivity (reduction for minimization, increase for

maximization). A move is called feasible if the resulting partition is balanced.

Contraction. Contracting a vertex pair (𝑢, v) removes v from all nets 𝑒 ∈ 𝐼 (𝑢) ∩ 𝐼 (v) and
replaces v with 𝑢 in all nets 𝑒 ∈ 𝐼 (v) \ 𝐼 (𝑢). The weight of 𝑢 becomes 𝑐 (𝑢) ≔ 𝑐 (𝑢) + 𝑐 (v).
We refer to 𝑢 as the representative and v as the contracted vertex, i.e., the pair is ordered. We

also say v is contracted onto 𝑢, or just v is contracted when the description does not need

the representative. Vertices that are not yet contracted are called active. Uncontraction is the

reverse operation of contraction.
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Contracting a clustering Π means contracting all vertices assigned to the same cluster. For

correctness the order can be arbitrary, though an implementation will not contract them one

by one.

Balance Constraint. The balance constraint we use follows the classic definition used

throughout the literature. However, it has some flaws with weighted vertices. Finding any

balanced partition is NP-hard since the problem can be reduced to scheduling variable length

jobs on identical parallel machines with bounded capacity [GJ79]. Furthermore, if there

is even a single vertex v with 𝑐 (v) > 𝐿max there is no solution. For this particular case, a

reasonable strategy proposed by Caldwell et al. [CKM00b] is to place too heavy vertices in a

separate block each, remove them, and partition the remaining hypergraph with a reduced 𝑘 .

A different approach is to use max(𝐿max,
𝑐 (𝑉 )
𝑘
+maxv∈𝑉 𝑐 (v)) as the upper bound on the

block weights. With this, a feasible partition can always be found through a simple greedy

algorithm, but the imbalance parameter 𝜀 is potentially no longer meaningful. Even with

𝜀 = 0 the block weights are allowed to deviate by maxv∈𝑉 𝑐 (v).
Heuer, Maas and Schlag [HMS21] propose to use (1 + 𝜀) times the result of a 4/3-

approximation algorithm for job scheduling/load balancing [Gra69] as the balance constraint.

This approach is fairly unorthodox and inelegant, but why should a partitioning algorithm

do better than a load balancing algorithm.

So far there is no commonly accepted way to formulate a balance constraint that gracefully

deals with this problem. The benchmark instances we consider in this dissertation are

unweighted, and only become weighted through coarsening where reasonable measures to

favor uniform weights are in place, such that the original simple definition is sufficient.

Hypergraph Representation. We consider two common graph representations, namely

adjacency arrays (also called compressed sparse row or CSR) and adjacency lists. The

adjacency lists data structure has an array of size 𝑛 storing a vector of neighbors and

associated arc weights for each node. In the CSR representation the neighbor vectors are

stored in one common array, and a second offsets array points at the first entry of each node.

The next node’s entry denotes the end of the range of the former. The CSR representation

can be constructed in parallel from the adjacency lists representation by performing a prefix

sum over the degrees, and then writing the neighbors of each node to the destination starting

at the prefix sum value. We can represent a hypergraph with two graph representations

mapping vertices to incident nets and mapping nets to their pins.

Paths, Cycles and Forests. A (directed) path is a sequence ⟨v1, v2, . . . , v𝑟−1, v𝑟 ⟩ of nodes such
that two consecutive nodes v𝑖 , v𝑖+1 are connected by an edge {v𝑖 , v𝑖+1} (or an arc (v𝑖 , v𝑖+1)). A
path is a cycle if additionally the edge or arc (v𝑟 , v1) exists. A (strongly) connected component
𝐶 ⊂ 𝑉 is an inclusion-maximal set of nodes such that for each 𝑢, v ∈ 𝐶 there is a (directed)

path from 𝑢 to v and from v to 𝑢.
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An undirected graph is called a forest if it is does not contain a cycle, and a forest is called

a tree if it is connected. A rooted forest is a directed graph whose underlying undirected

graph is a forest, with a designated set of root vertices such that all arcs point towards the

root of their tree.

A natural way to represent a rooted forest is an array of parent pointers rep[0..𝑛], where
each node stores the endpoint of its outgoing arc, and roots (with no outgoing arc) point at

themselves rep[v] = v . The ancestors of v are the nodes on the unique path towards a root.

The children of v are all nodes 𝑤 ∈ 𝑉 \ v with rep[𝑤] = v . Two nodes are siblings if they
have the same parent.

2.2 Parallelism
Our algorithms are designed for shared-memory multi-core machines. In this section we

discuss the particular machine model we use for algorithm analysis, as well as a variety of

parallel programming and algorithmic patterns we use in the implementations.

2.2.1 Computational Model
The machine model we analyze our algorithms in consists of multiple RAM machines

(cores/threads) working asynchronously on a shared memory. Read access always takes

constant time. Concurrent write accesses to the same memory location exhibit contention,

thus taking O(𝑡) time in the worst case with 𝑡 participating cores. As opposed to the classic

PRAM model which operates in synchronous lockstep, we deem it important to include

asynchronicity as found in modern CPUs in the model. Additionally, it emphasizes the cost of

synchronization, e.g., via locking. We assume a basic binary fork-join model (or spawn-sync),

where a thread can spawn another thread, or wait for the completion of its children with

a join. This is done to highlight that starting a parallel computation comes with overhead.

This simple model suffices to implement common parallel programming primitives such as

parallel for-loops or task parallelism by recursively forking. It can be implemented efficiently

with a thread pool and a work-stealing scheduler on modern multi-core machines. For the

sake of simplicity we do not consider cache effects in the model.

We use the work-depth model [CLRS01] to analyze running times of parallel algorithms.

In the literature depth is also often called span. The work of an algorithm is the running

time if run on a single core, and the depth is the time if run on an infinite number of cores.

More formally, work is the total number of instructions performed and depth is the longest

sequential dependency chain in the computation. With this model we can analyze parallel

algorithms independent of the specific number of threads used, but still understand how

well the algorithm is parallelized. The goals to achieve are work efficiency (same bound as

the best sequential algorithm) and poly-logarithmic depth. For example, a parallel loop with

𝑛 iterations has a log(𝑛) additive term in the depth, to account for loop control, regardless of

the work performed in an iteration.
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Finally, we augment the model with thread-local storage. Unfortunately initialization

costs that are done once per thread (but not on each task) do not fit well into the work-depth

model. Attributing initialization costs to each task is unrealistic in terms of behavior in

practice. Therefore, we often omit these costs in the analysis, but address the issue with an

additional comment.

2.2.2 Concurrent Writes and Atomic Instructions

Multiple threads writing to the same memory location concurrently constitutes a data race.

However, the race is benign if they all write the same value.

Modern CPUs support atomic instructions as a fast way to correctly manipulate the same

memory location in parallel without resorting to locks. With little contention atomic instruc-

tions are almost as fast as non-atomic instructions.

We use the atomic CompareAndSwap, FetchAndAdd and TestAndSet functions. The function

FetchAndAdd(&𝑥,Δ) takes a memory address 𝑥 , atomically adds Δ to the value at 𝑥 and

returns the value immediately prior to its execution. In pseudocode we use the notation

𝑦 +=
atomic

Δ for this function, where 𝑦 is the data at address 𝑥 . Similarly AddAndFetch performs

the update atomically, but returns the value after the update. There are more such incremental

update functions for other arithmetic operations, e.g., bitwise logic manipulation such as

OR, XOR, AND, NAND, etc., but interestingly not for multiplication. To the best of our

knowledge, we only use XOR next to addition and subtraction.

CompareAndSwap(&𝑥, expected, new) takes a memory address 𝑥 , an old expected value,

and a new value. If 𝑥 contains the expected value, then CompareAndSwap replaces it with

the new value and returns true; otherwise it does not perform the store and returns false.

TestAndSet works similarly to CompareAndSwap but the data must be a boolean and can only

be raised from false to true.

One frequently used application of TestAndSet is spinlocks. Furthermore, it can be used to

assign responsibility for a computation task or object to a unique thread. If multiple threads

test and set on a variable, only one succeeds. To reduce write contention with TestAndSet

and CompareAndSwap, we first check whether the memory location already has the desired

value and if so do not perform the atomic instruction.

Modern CPUs execute instructions out of order to hide memory latencies and improve bus

throughput. To achieve correct atomic consistency, the programmer must specify a memory

ordering parameter to these atomic functions. Looser constraints yield better performance.

For FetchAndAdd we use relaxed consistency, which means arbitrary reordering is possible.

This is the loosest ordering one can specify. For acquiring a lock and resource assignment

we need acquire consistency, which means instructions after the acquire cannot be hoisted

before it. Releasing a lock only needs relaxed consistency.
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2.2.3 Parallelization Libraries

There is a variety of parallel programming libraries, with Intel TBB, OpenMP and Cilk

being the most common. We use TBB for our implementations since it has a very simple

programming interface. Its parallel primitives are functions that take C++ lambdas to perform

the work. Furthermore, it has a cache-aligned and a scalable memory allocator, thread-local

storage, and contains implementations of common algorithms such as parallel prefix sums,

reductions, and sorting. TBB also has implementations of common data structures such as

a concurrent queue or a vector, but these are too inefficient because they have to be more

general than we need in most cases.

2.2.4 Parallel Algorithmic Primitives

Reduction and Prefix Sum. The reduce and prefix sum operations both take a sequence of

elements 𝐴 of size 𝑛, and a binary associative operator such as + as input. Reduce computes

the sum

∑𝑛−1

𝑖=0
𝐴[𝑖]. Prefix sum comes in two flavors: exclusive and inclusive. Exclusive prefix

sum outputs a sequence 𝑆 of size 𝑛 + 1 where 𝑆 [ 𝑗] = ∑𝑗−1

𝑖=0
𝐴[𝑖] is the partial sum up to but

excluding 𝑗 . Both operations take O(𝑛) work and O(log(𝑛)) depth, assuming the operator

takes constant time. Reduce can be implemented in a single pass over the data, whereas

prefix sum requires two (upward then downward sweep). Prefix sums are a classic tool in

parallel algorithms, particularly for data arrangement problems such as constructing a CSR

from an edge list, filtering and packing a sequence, or counting sort.

Integer Sorting. The input is a sequence 𝐴 of integers of bounded size [𝐾], and the output
is the sorted stable permutation of 𝐴 and an array of offsets pointing to the first element of

each key. The sequential counting sort algorithm takes O(𝑛 + 𝐾) time and works as follows.

Compute a histogram ℎ : [𝐾] → N0 mapping a key to its frequency in𝐴. An exclusive prefix

sum over ℎ yields an array of offsets 𝑑 : [𝐾 + 1] → [𝑛] (the destinations) such that 𝑑 [𝑖] is
the position of the first element in the sorted sequence with key 𝑖 and 𝑑 [𝑖 + 1] is one past the
last. In a second pass over 𝐴 we assign the elements to the output range, incrementing 𝑑 [𝑖]
to obtain the position for the next element with key 𝑖 . Finally, rotating 𝑑 by one position to

the left restores the offsets required for the output. We avoid the rotation by counting key 𝑖

at ℎ[𝑖 + 1] instead of ℎ[𝑖] and thus also use 𝑑 [𝑖 + 1] for the sorted output.

Computing the histogram can be parallelized by splitting 𝐴 into 𝑡 chunks of size 𝑛/𝑡
(parameter), computing a histogram for each sub-range, and then summing up the counts for

each key. The histogram of one chunk takes O(𝑛/𝑡) time. The loop over the chunks takes an

additive O(log(𝑡)) depth for the loop control, and a combined O(𝑛) work for all histograms.

Summing up the counts of one key takes O(log(𝑡)) depth with a prefix sum (iterating

over chunks). This yields chunk-specific offsets that are combined with 𝑑 to determine the

output positions. The loop control over the keys takes O(log(𝐾)) depth, and summing the

counts of all keys takes O(𝑡𝐾) work.
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The prefix sum for 𝑑 takes O(log(𝐾)) depth and O(𝐾) work and is thus dominated by

the previous step. Writing the output takes the same work and depth as the histogram step.

Overall this results in O(𝑡𝐾 +𝑛) work and O(𝑛/𝑡 + log(𝑡) + log(𝐾)) depth. Choosing 𝑡 offers
a trade-off between work and depth. A good choice is 𝑡 = 𝑛/𝐾 to maintain work-efficiency,

which then results in O(𝐾 + log(𝑛/𝐾)) depth; though in practice we simply use the number

of threads available.

GroupBy and Aggregate. A common algorithmic pattern is to group a set of elements

by an associated key such that they are consecutive in memory and then aggregate over

elements of the same key. We use this in several places, for example to contract a graph

based on a clustering [HSWZ18], to remove identical nets [DKÇ13], or when a computation

on elements of the same key has to be sequential but we want to leverage parallelism over

the keys [GH21].

There is a vast amount of literature from the database community who identify sorting and

hashing as the two main approaches [Mül+15]. Since the order between keys is not important,

a semi-sort which only brings elements with the same key together suffices [GSSB15]. Which

approach gives better performance depends on the context. For graph contraction the

keys are the cluster IDs which are small, so counting sort works best. A great benefit of

counting sort is that it already gives the start and end points of the ranges. For deterministic

update aggregation (Algorithm 5.3 and Section 5.1) we need to establish a deterministic order

between elements with the same key, so plain parallel sorting works well. For detecting

identical nets (Algorithm 4.3) a hybrid approach with hashing to obtain parallelism and then

sequentially sorting elements in the same hash bucket to resolve collisions works better than

sorting.

Duplicate Detection. Another commonly used pattern is de-duplicating elements (with

an associated integer ID) by using a bitvector to check if an element has been generated

before. For example, Breadth-First-Search (BFS) scans the neighbors of nodes in the current

layer and inserts them into a container for the next layer, ensuring that each node is inserted

at most once and only in one layer. In parallel, this check can be implemented in atomically

consistent fashion with a TestAndSet instruction. To avoid resetting each entry in the bitset,

we employ a well-known time-stamping trick. We have an array of timestamps and a current

time, such that all elements with a timestamp older than the current time are considered as

not seen. In parallel, this can be done with an atomic CompareAndSwap. For repeated searches

we can implement the timestamping trick directly on the distance labels, starting the next

BFS at one past the highest distance of the previous BFS.

Applications of this pattern are parallel BFS, parallel gain recalculation (Algorithm 4.9),

localized FM (Algorithm 4.11), 𝑛-level batch uncontractions (Section 6.2.3), and maintaining

active nodes in parallel push-relabel (Algorithm 7.6).

In the various clustering algorithms considered as sub-routines in this thesis (for example

Algorithms 4.2, 4.4), we use a similar trick to enumerate neighbor clusters of a node. To find
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a good cluster to join, we construct cluster ratings in a map/array, using a rating of zero to

indicate that a cluster has not been seen before and we can add it to the list. To implement

this in parallel, we can check the result of FetchAndAdd when aggregating ratings.

2.3 Maximum Flows

A flow network is a symmetric, directed graph with two disjoint non-empty terminal node
sets 𝑆,𝑇 ⊊ 𝑉 , the source and sink node set, as well as a capacity function cap : 𝐸 → R>0.

For a non-symmetric graph, we assume zero capacity on the missing reverse arcs. A flow

is a function 𝑓 : 𝐸 → R subject to the capacity constraint 𝑓 (𝑒) ≤ cap(𝑒) for all arcs 𝑒 ,
flow conservation

∑
(𝑢,v ) ∈𝐸 𝑓 (𝑢, v) = 0 for all non-terminal nodes v , and skew symmetry

𝑓 (𝑢, v) = −𝑓 (v, 𝑢) for all arcs (𝑢, v). The value of a flow |𝑓 | ≔ ∑
𝑠∈𝑆,(𝑠,𝑢 ) ∈𝐸 𝑓 (𝑠,𝑢) is the

amount of flow leaving 𝑆 . The residual capacity 𝑟 𝑓 (𝑒) ≔ 𝑐 (𝑒) − 𝑓 (𝑒) is the additional amount

of flow that can pass through 𝑒 without violating the capacity constraint. If 𝑟 𝑓 (𝑒) = 0 the

arc is saturated. The residual network with respect to 𝑓 is the directed graph N𝑓 = (𝑉 , 𝐸𝑓 ),
where 𝐸𝑓 ≔ {𝑒 ∈ 𝐸 |𝑟 𝑓 (𝑒) > 0} contains all non-saturated arcs. A node v is source-reachable
if there is a path from 𝑆 to v in N𝑓 , it is sink-reachable if there is a path from v to 𝑇 in N𝑓 .

We denote the source-reachable and sink-reachable nodes by 𝑆𝑟 and 𝑇𝑟 , respectively. An

augmenting path is an 𝑆-𝑇 path in N𝑓 . The flow 𝑓 is a maximum flow if |𝑓 | is maximal of

all possible flows. This is the case if and only if there is no augmenting path in N𝑓 . An 𝑆-𝑇

edge cut is a set of edges whose removal disconnects 𝑆 and 𝑇 . The value of a maximum flow

equals the weight of a minimum-weight 𝑆-𝑇 edge cut [FF56]. The source-side cut consists
of the arcs from 𝑆𝑟 to 𝑉 \ 𝑆𝑟 and the sink-side cut consists of the arcs from 𝑇𝑟 to 𝑉 \𝑇𝑟 . The
bipartition (𝑆𝑟 ,𝑉 \ 𝑆𝑟 ) is induced by the source-side cut and (𝑉 \𝑇𝑟 ,𝑇𝑟 ) is induced by the

sink-side cut. Note that𝑉 \𝑆𝑟 \𝑇𝑟 is not necessarily empty. We also call 𝑆𝑟 and𝑇𝑟 the cutsides
of a maximum flow. The source-side cut can be computed by exploring the nodes reachable

from the source via residual arcs (for example via BFS), and analogously the sink-side cut

from the sink in the transpose of N𝑓 .

Augmenting Path Algorithms. Ford and Fulkerson [FF56] developed the first known

maximum flow algorithm. It is based on repeatedly finding augmenting paths and pushing

the smallest residual capacity on the path (bottleneck capacity), until there is no augmenting

path. Edmonds and Karp [EK72] achieve polynomial running time O(𝑛𝑚2) by using shortest

augmenting paths, which are computed via BFS in the residual network. Dinitz [Din70]

achieves O(𝑛2𝑚) time by augmenting multiple shortest paths of the same length. The layered
network is the sub-graph of N𝑓 with all arcs that are on a shortest 𝑆-𝑇 path. Then flow is

augmented along shortest paths until there is no augmenting path in the layered network,

which is implemented by DFS with backtracking. It suffices to compute just the distance

labels via BFS instead of constructing the layered network, and then follow residual arcs that

lead to one higher distance label.
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Preflow Algorithms. The push-relabel [GT88] algorithm by Goldberg and Tarjan stores a

distance label 𝑑 (𝑢) and an excess value exc(𝑢) ≔ ∑
v∈𝑉 𝑓 (v, 𝑢) for each node. It maintains a

preflow [Kar74] which is a flow where the conservation constraint is replaced by exc(𝑢) ≥ 0.

A node 𝑢 ∈ 𝑉 is active if exc(𝑢) > 0. An arc (𝑢, v) ∈ 𝐸 is admissible if 𝑟 𝑓 (𝑢, v) > 0 and

𝑑 (𝑢) = 𝑑 (v) + 1. A push(𝑢, v) operation sends Δ = min(exc(𝑢), 𝑟 𝑓 (𝑢, v)) flow over (𝑢, v). It is
applicable if 𝑢 is active and (𝑢, v) is admissible. A relabel(𝑢) operation updates the distance

label of 𝑢 to min({𝑑 (v) + 1 | 𝑟 𝑓 (𝑢, v) > 0}), which is applicable if 𝑢 is active and has no

admissible arcs.

The distance labels are initialized to ∀𝑢 ∈ 𝑉 \ 𝑆 : 𝑑 (𝑢) = 0 and ∀𝑠 ∈ 𝑆 : 𝑑 (𝑠) = 𝑛. Further-
more all arcs (𝑠, v) are saturated by pushing all residual capacity from the source. Performing

applicable push and relabel operations (in arbitrary order) gives an O(𝑛2𝑚) algorithm.

Efficient variants of push-relabel use the discharge routine, which repeatedly scans the

arcs of an active node until its excess is zero. During a scan, all admissible arcs of the active

node are pushed. If there is excess left after the scan, there are no admissible arcs left, so the

node is relabeled and another scan is started. The appropriate label is tracked during the

scan. Discharging active nodes in FIFO order results in an O(𝑛3) time algorithm. Another

processing order that works well is to discharge the node with highest label, which achieves

O(𝑛2
√
𝑚). Dynamic trees [GT88] reduce the theoretical complexity to O(𝑛𝑚 log( 𝑛2

𝑚
)) by

pushing flow along a path instead of a single arc, but are not useful in practice, due to the

following optimizations.

The global relabeling heuristic [CG97] frequently assigns exact distance labels by per-

forming a reverse BFS from the sink, to reduce the amount of necessary relabel work in

practice. The gap heuristic [CG97] works well with the highest-label order, but has little

impact when used with the FIFO order. If a label 𝑙 has no nodes with 𝑑 (𝑢) = 𝑙 , then any node

with 𝑙 < 𝑑 (𝑢) < 𝑛 can be relabeled to 𝑛 + 1.

Note that preflows already induce minimum sink-side cuts, so if only a minimum cut is

required, the algorithm can already stop once no active nodes with distance label < 𝑛 exist.

The preflow can be converted into an actual flow by continuing until no active node remains

(pushing flow back to the source), or by performing flow decomposition [CG97].

Maximum Flows On Hypergraphs. Lawler [Law73] proposes a transformation to com-

pute a minimum 𝑆-𝑇 cut on a hypergraph via maximum flow on a graph. It combines the

star expansion with a standard technique to compute node separators (on the nets) via edge

cuts by splitting a node into two nodes connected by an arc with the desired capacity. The

Lawler network of a hypergraph 𝐻 = (𝑉 , 𝐸, 𝑐, 𝜔) is a directed graph consisting of 𝑉 and two

nodes 𝑒in, 𝑒out for 𝑒 ∈ 𝐸 as the nodes, and arcs ∀𝑢 ∈ 𝑉 , 𝑒 ∈ I(𝑢) : (𝑢, 𝑒in), (𝑒out, 𝑢) with infinite

capacity, and bridge arcs ∀𝑒 ∈ 𝐸 : (𝑒in, 𝑒out) with capacity 𝜔 (𝑒). The reverse arcs all have
capacity zero. A minimum 𝑆-𝑇 cut in the Lawler network only consists of bridge arcs and

thus directly corresponds to one in 𝐻 . Via the Lawler network, all notions of maximum flow

on graphs translate naturally to hypergraphs.
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Table 2.1:Machines used in this dissertation and their properties. The cores column displays

sockets x cores on each socket, so 2x20 means 40 cores overall spread over two sockets.

frequency boost RAM L3 cores model arch

A 2.1 GHz 3.9 GHz 96 GB 27.5 MB 2x20 Xeon Gold 6230 Cascade Lake

B 2.25 GHz 3.4 GHz 1 TB 256 MB 2x64 EPYC 7742 Zen 2

C 2.0 GHz 3.35 GHz 1 TB 256 MB 1x64 EPYC 7702P Zen 2

D 2.6 GHz 3.3 GHz 64 GB 20 MB 2x8 Xeon E5-2670 Sandy Bridge

E 2.7 GHz 3.5 GHz 256 GB 20 MB 2x8 Xeon E5-2680 Sandy Bridge

2.4 Experimental Methodology
In this dissertation we conduct a thorough experimental analysis of the proposed algorithms.

We consider two main types of evaluations: a horse-race comparison with other algorithms,

and analysis of our proposed components. Horse-race comparisons are good at exploring the

landscape of different trade-offs in terms of connectivity and running time, and identifying

which partitioner works best depending on which criterion is valued most. For most cases,

the horse race comparison is a great choice, and it works even for testing the impact of a

component or parameter. However in some cases we might want to dig deeper, to gain a

better understanding, particularly when there is interaction between different components,

as is the case in the refinement stage. Therefore, we additionally analyze which refinement

algorithm contributed how much of the improvement from the initial partition, and how

well our techniques for accurate gains work. Finally, we analyze the scaling behavior of our

codes with increasing numbers of cores.

In the following, we describe the experimental setup, from machines and benchmark sets,

to the various plots we use to evaluate the data.

2.4.1 Machines
Table 2.1 shows the different machines used throughout this dissertation. Machines A and

D are part of a cluster at KIT, which we use for running slow and sequential partitioners.

Machine D is used for the sequential versions of flow-based refinement. This cluster was

decommissioned in 2020, thus machine A is used for parallel flow-based refinement, Mt-

KaHyPar-D and Mt-KaHyPar-Q. Faster parallel partitioners are also run on machines B and

C. Machine B is the main machine where all comparisons are done as well as the speedup

experiments for Mt-KaHyPar-D. Due to excessive running time (6 weeks) we decided not to

repeat the speedup experiments for Mt-KaHyPar-Q and parallel flow-based refinement, but

instead take the existing measurements taken for the conference publication on machine

C. Furthermore, all data for the asynchronous 𝑛-level version were collected on machine C.

Finally, machine E is used to conduct parameter tuning experiments, to keep machine B free

for the main experiments. The parameter tuning instances are too small to profit from more
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than 16 cores anyways. The component comparisons are also done on machine B.

To ensure fairness, comparisons between different algorithms are always done on the

same machine; and number of threads if both are parallel.

2.4.2 Benchmark Sets
We use five benchmark sets in our experiments, two main benchmark sets (A and B) of

real-world hypergraphs compiled from a variety of application sources, two parameter tuning

sets (C, D) and a set of graphs (E) to compare Mt-KaHyPar with dedicated graph partitioners.

All experiments use a default imbalance parameter of 𝜀 = 0.03. We use the term instance to
refer to a combination of hypergraph and number of blocks 𝑘 .

Sources. All hypergraphs used in the experimental evaluation are derived from four sources

encompassing three application domains: the ISPD98 VLSI Circuit Benchmark Suite [Alp98],

the DAC 2012 Routability-Driven Placement Contest [Vis+12] (also VLSI), the SuiteSparse

Matrix Collection [DH11], and the 2014 SAT Competition [BDHJ14]. VLSI circuits are

transformed into hypergraphs by converting the net-list of each circuit element into a set of

hyperedges. Sparse matrices are translated to hypergraphs using the row-net model [CA99].

SAT inputs are converted to three different hypergraph representations: literal, primal, and
dual [MP14, PM07]. In the primal model each clause is a net, and each variable is a vertex,

with variable-in-clause occurrences as the pins. The literal model further distinguishes

negated and non-negated variables, and thus has twice the number of vertices as the primal

version but the same number of nets and pins. On the other hand, in the dual model variables

are nets and clauses are vertices. All hypergraphs have unit vertex and net weights. Figure 2.1

shows basic properties of the hypergraphs in set A and B such as number of vertices, nets,

pins, as well as median/maximum net size and degree.

Set A:Medium Size Hypergraphs. Set A is the main benchmark set compiled by Sebastian

Schlag for his works on sequential hypergraph partitioning [Sch20]. It contains 488 medium

size hypergraphs and is used for comparison with sequential and slow partitioners. We

use 𝑘 ∈ {2, 4, 8, 16, 32, 64, 128}, which yields a total of 3416 instances, and we use 10 seeds

which makes 34160 runs per algorithm. Each run has a time limit of 8 hours. The parallel

algorithms are run with 1, 10, 20, and 40 cores on machine A, whereas the experiments on

sequential flow-based refinement were still done on machine D.

Set B: Large Hypergraphs for Fast Algorithms. Set B is our main benchmark set for

comparison with fast partitioning algorithms and for analyzing speedup behavior. It consists

of 94 large hypergraphs comprised from the same sources as set A, but around an order of

magnitude larger as shown by Figure 2.1. We included the 24 largest SAT instances (8x3

to keep all three representations) from set A as well as 18 new, even larger ones. From

the SuiteSparse Matrix collection we sampled 42 random entries with at least 15 million
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Figure 2.1: Basic properties of benchmark sets A and B: number of vertices |𝑉 |, nets |𝐸 |,
pins |𝑃 | as well as median/maximum net size |𝑒̃ |,Δ𝑒 and degree 𝑑 (v),Δv .

non-zeroes. Further, none of the ISPD98 hypergraphs are included since they are too small,

but we included all 10 DAC hypergraphs (even though they are the smallest in the set) in

order to have some representation for VLSI inputs. We use 𝑘 ∈ {2, 4, 8, 16, 32, 64}, which
yields a total of 564 instances, and we use 5 seeds per instance which makes 2820 runs

per algorithm. Each run has a time limit of 2 hours. For Zoltan and Mt-KaHyPar-D we

also perform a comparison with large values of 𝑘 ∈ {512, 1024, 2048}, since this is an area

these algorithms were not designed for, but we exclude others since they are too slow. The

scalability experiments for Mt-KaHyPar-D and Mt-KaHyPar-SDet (deterministic) are done on

machine B with 1,2,4,8,16,32,64 cores (and 128 for deterministic). All horse-race comparisons

are done on machine B with 64 cores. The scalability experiments for Mt-KaHyPar-Q (𝑛-

level) and Mt-KaHyPar-D-F (parallel flow-based refinement) were done on machine C with

a reduced parameter set of 𝑘 ∈ {2, 8, 16, 64} and 3 seeds in order to save running time. All

experiments on the asynchronous 𝑛-level version were done with this setup.

Set C and D: Parameter Tuning. We use two parameter tuning sets. The first, set C is a

subset of set A that was assembled to evaluate the memetic algorithm in KaHyPar [ASS18b],

and is also called set C in [Sch20]. It contains 4 DAC hypergraphs, 10 ISPD98 hypergraphs,

18x3 SAT hypergraphs and 32 SPM hypergraphs. Since these were chosen to adequately

represent the full set A but to reduce running time, this set works well as a parameter tuning

set. Moreover, it is almost disjoint from set B (except DAC), to ensure the parameters are not

tuned specifically to these instances when evaluating Mt-KaHyPar on set B. We use this set

to tune all parameters for Mt-KaHyPar-D, performing the experiments on machine E with
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16 threads, with 𝑘 ∈ {2, 4, 8, 16, 32, 64} and five seeds.

The second set D is a subset of set B, containing the 10 smallest sparse matrics and 15

smallest SAT instances. It is used to tune the batch size parameter for the batch-synchronous

𝑛-level variant. To achieve decent parallelism, we need larger instances than set C, but not

too large so that we can still fit them in the 96 GB memory of machine A.

Set E: Graphs. Finally, we evaluate Mt-KaHyPar-D against dedicated graph partitioners on

53 plain graph instances. The benchmark set is combined from two sets, taking 42 graphs

from Akhremtsev [Akh19] (all but the four largest graphs due to memory constraints) and

11 additional graphs from Seemaier [Got+21]. These experiments are run on machine B with

64 cores, 𝑘 ∈ {2, 4, 8, 16, 32, 64} and five seeds per instance.

2.4.3 Source Code

The C++ implementations of our algorithms are available as open-source code, either un-

der https://github.com/kahypar/mt-kahypar/ for the main multilevel partitioning frame-

work, under https://github.com/larsgottesbueren/WHFC/ for the flow-based refinement

with FlowCutter, and under https://github.com/kahypar/kahypar for sequential KaHyPar

equipped with our flow-based refinement. The code is well documented and easy to adapt

for future use in research, and has already been used by several students. Each configura-

tion parameter can be set via a command-line argument or a configuration file. For each

algorithm/publication we include preset files for the specific configurations used in that

publication.

All of our parallel algorithms are part of the Mt-KaHyPar framework, and thus start with

this prefix. The default configuration with approximately log(𝑛) levels is called Mt-KaHyPar-

D, and the quality configuration with approximately 𝑛 levels is called Mt-KaHyPar-Q. The

deterministic version is called Mt-KaHyPar-SDet for speed and determinism, as it uses

only label propagation refinement, and we additionally consider a non-deterministic speed

configuration Mt-KaHyPar-S. Finally, we add a suffix -F if flow-based refinement is enabled,

e.g., Mt-KaHyPar-D-F for Mt-KaHyPar-D with flow-based refinement.

2.4.4 Competing Codes

As we perform horse-race comparisons, we must determine a set of state-of-the-art codes

to compare against. More detailed algorithmic choices of these are described in Chapter 3,

whereas in this section, we focus on implementations and their issues.

On benchmark set B, we compare our algorithms with BiPart
1
[MABP21], which is a recent

shared-memory parallel multilevel partitioner focused on determinism; with Zoltan
2
[Dev+06],

1https://github.com/IntelligentSoftwareSystems/Galois/tree/master/lonestar/analytics/cpu/bipart
2https://github.com/sandialabs/Zoltan

https://github.com/kahypar/mt-kahypar/
https://github.com/larsgottesbueren/WHFC/
https://github.com/kahypar/kahypar
https://github.com/IntelligentSoftwareSystems/Galois/tree/master/lonestar/analytics/cpu/bipart
https://github.com/sandialabs/Zoltan
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a distributed memory partitioner developed at Sandia labs; and PaToH-D, which is the de-

fault configuration of the sequential partitioner PaToH [CA99] version 3.3
3
. It is the only

sequential partitioner fast enough to be included on set B.

We could not include Parkway [TK04] as the publicly available implementation
4
crashes

on all of the inputs we tested. We invested a day’s work to fix numerous obvious bugs, but

could not reach a state that works.

Similarly we were unable to include the Social Hash Partitioner (SHP) [Kab+17a] from

Facebook. The code is only available as a pull-request/issue
5
for the Giraph graph processing

framework, which must be combined with additional patches, according to personal corre-

spondence with one of the authors. Even then the compilation fails, as it triggers package

downloads which simply time out. Since we cannot run their code on our instances, we

perform a comparison on the limited set of publicly available instances from their paper,

using their reported numbers.

On the graph benchmark set E, we compare Mt-KaHyPar-D with Mt-KaHiP
6
[ASS18a] in

the fast-social configuration, a shared-memory parallel graph partitioning algorithm that

inspired our refinement algorithms; Mt-Metis
7
[LK13, LK16], a shared-memory parallel

version of the well-known Metis framework using version 0.72 with hill-scanning enabled;

as well as KaMinPar
8
[Got+21], a recent shared-memory parallel algorithm that implements

the novel deep multilevel approach and uses only label propagation for refinement.

On benchmark set A, we have three competitors that are always included: PaToH-D and

PaToH-Q (quality configuration, uses 3 full and 3 shorter V-cycles as well as higher filter

thresholds), as well as hMetis-R [KAKS99] version 2.0, which is the recursive bipartitioning

variant of hMetis
9
.

The first two evaluations in Chapter 7 still consider KaHyPar-MF [HSS19], the version

of KaHyPar with the previous flow-based refinement as it constituted the state of the art at

that time. This is replaced with our sequential version KaHyPar-HFC [GHSW20] in all later

comparisons (the other chapters).

Furthermore, we evaluated several algorithms that we then deemed as outperformed, such

that they could be removed in later comparisons, which we list here. The first is hMetis-

K [KK00], the direct 𝑘-way variant of hMetis, as its quality is inferior to hMetis-R and it often

produces imbalanced partitions. Mondriaan
10
[VB05] is a multilevel recursive bipartitioning

algorithm that is always outperformed by PaToH-D. Zoltan-AlgD
11
[SCS19a] enhances the

Zoltan partitioner with coarsening based on algebraic distances (a vertex-similarity metric),

3https://faculty.cc.gatech.edu/~umit/software.html
4https://github.com/parkway-partitioner/parkway
5https://issues.apache.org/jira/browse/GIRAPH-1131
6https://github.com/KaHIP/mt-KaHIP
7http://glaros.dtc.umn.edu/gkhome/metis/metis/download
8https://github.com/KaHIP/KaMinPar
9http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download
10https://webspace.science.uu.nl/~bisse101/Mondriaan/
11https://github.com/rsln-s/aggregative-coarsening-for-multilevel-hypergraph-partitioning

https://faculty.cc.gatech.edu/~umit/software.html
https://github.com/parkway-partitioner/parkway
https://issues.apache.org/jira/browse/GIRAPH-1131
https://github.com/KaHIP/mt-KaHIP
http://glaros.dtc.umn.edu/gkhome/metis/metis/download
https://github.com/KaHIP/KaMinPar
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download
https://webspace.science.uu.nl/~bisse101/Mondriaan/
https://github.com/rsln-s/aggregative-coarsening-for-multilevel-hypergraph-partitioning
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which is always outperformed by PaToH-Q. And finally HYPE
12
[May+18], a flat algorithm

based on neighborhood expansion, which is faster than PaToH-D by a negligible margin and

has abysmal solution quality.

In chapters 4, 6 and 7 (last evaluation only), we additionally consider a version of sequential

KaHyPar without flow-based refinement, called KaHyPar-CA [HS17] for community-aware

coarsening. It has been previously shown that this version outperforms hMetis-R, yet we

keep hMetis around, as it provides a level of quality between KaHyPar and PaToH.

2.4.5 Aggregates
While we make sure to present all data points using any of the following plots, we do

aggregate data to give a quick overview. For running times and connectivity values on the

same instance, we use the arithmetic mean to aggregate over different seeds. To aggregate

running times across different instances we use the geometric mean since it is not as sensitive

to outliers and is a better choice for skewed data. Again, we stress that any aggregate is

insufficient to give a full picture of the data but it is often helpful to establish an initial picture.

For example, the algorithm ranking provided by geometric mean running times is usually

accurate, but we of course cannot reasonably estimate the running time on a particular

instance from it. We refrain from making summarizing quantitative statements regarding

partition quality (e.g., has 𝑥% lower connectivity), and instead make qualitative statements

using attributes such as barely, slightly, moderate, significant, substantial or enormous, listed
in increasing order of intensity.

2.4.6 Performance Profiles
To compare the solution quality of different algorithms, we use performance profiles [DM02].

Let A be the set of algorithms we want to compare, I the set of instances, and 𝑞𝐴 (𝐼 ) the
objective function value of algorithm 𝐴 ∈ A on instance 𝐼 ∈ I ; in our case the arithmetic

mean connectivity of the repeated runs with different seeds. The performance ratio

𝑟 (𝐴, 𝐼 ) = 𝑞𝐴 (𝐼 )
min{𝑞𝐴′ (𝐼 ) | 𝐴′ ∈ A}

indicates by what factor 𝐴 deviates from the best solution on instance 𝐼 . In particular,

algorithm 𝐴 found the best solution on instance 𝐼 if 𝑟 (𝐴, 𝐼 ) = 1. The performance profile

𝜌𝐴 : [1,∞) → [0, 1], 𝜏 ↦→ |{𝑖 ∈ I | 𝑟 (𝐴, 𝐼 ) ≤ 𝜏}|
|I |

of 𝐴 is the fraction of instances for which it is within a factor of 𝜏 from the best solution

computed by the pool of algorithms A. Therefore, the goal is to achieve higher fractions at

lower 𝜏-values than the competitors. Runs that did not finish within the time limit, resulted

12https://github.com/mayerrn/HYPE

https://github.com/mayerrn/HYPE
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in a balance violation or crashed are excluded. If this concerns all runs of an algorithm on

an instance, we report the corresponding fractions as the steps at special symbols (❃ for

timeouts and crashes, ✘ for balance violations) on the x-axis. If only some are affected, all

proper runs are included in the aggregate, and the faulty runs are ignored.

The plot is split into three segments with different axis scalings for 𝜏 ([1.0, 1.1), [1.1, 1.2),
[1.2,∞)) to give more detail to the most important range [1.0, 1, 1].
The 𝜌𝐴 (1) value is the fraction of instances on which algorithm 𝐴 found the best partition.

We could be tempted to use these values to rank the algorithms directly. However, this is not

possible. A direct ranking is only possible if one curve is clearly above the other. For example,

two algorithms A,B may be very good on similar instances (e.g., because they have similar

components), but one (A) could use an additional, more powerful component (e.g., flow-based

refinement) and thus dominate the other (B). Assume, some third algorithm C outperforms

both A and B on a small set of the instances but is otherwise largely outperformed by both.

Then C may seem superior to B if that assessment is made only based on the 𝜌𝐵 (1), 𝜌𝐶 (1)
values, as 𝜌𝐵 (1) is close to zero because it is dominated by A. In a direct comparison between

B and C, B could be completely superior to C, but in the comparison with A it is overshadowed.

We can see this with the curve of B converging to 1 much faster than that of C. When this

happens, we show additional performance profiles with restricted competitor sets.

Even with only two algorithms in the ring, the 𝜌𝐴 (1) values cannot always be used for

a ranking directly. An example is a pool of two algorithms A and B, where A computes

the best partition on 40% of the instances but is within 𝜏 = 1.01 on 100% of the instances,

whereas algorithm B computes the best partition on 60% of the instances but only 65% have

𝜏 ≥ 2. In this case A is certainly preferable to B. While such extreme cases do not happen in

our data, we want to emphasize that it is important to always look at the full profile.

2.4.7 Effectiveness Tests with Virtual Instances

Often we have algorithms with different time-quality trade-offs. Some algorithm may be

slow and has high quality, and another may be fast and has low quality. Ahkremtsev et al.

[ASS20] propose a method named effectiveness tests to compare two algorithms when they

are given a similar running time. The idea is to give the faster algorithm the same time

as the slower one, to perform additional repetitions of which the best is taken. Instead of

performing more runs, we sample from the existing runs with different seeds.

Consider two algorithms 𝐴 and 𝐵, and an instance 𝐼 . We first sample one run of both

algorithms on 𝐼 . Let 𝑡1

𝐴
, 𝑡1

𝐵
be their running times and assume that 𝑡1

𝐴
≥ 𝑡1

𝐵
. We sample

additional runs without replacement for 𝐵 until their accumulated time exceeds 𝑡1

𝐴
or all

runs have been sampled. Let 𝑡2

𝐵
, . . . , 𝑡𝑙

𝐵
denote their running times. We accept the last run

with probability (𝑡1

𝐴
−∑𝑙−1

𝑖=1
𝑡𝑖
𝐵
)/𝑡𝑙

𝐵
so that the expected time for the sampled runs of 𝐵 equals

𝑡1

𝐴
. The solution quality is the minimum out of the sampled runs.

We generate virtual instances which we compare using performance profiles. For each

instance (hypergraph, 𝑘), we generate 20 virtual instances. If more runs than the number
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of seeds are required to reach 𝑡1

𝐴
, this favors the slower algorithm 𝐴. This approach can be

favorable for algorithms that have high variance in solution quality.

We will present effectiveness tests with algorithms run on different numbers of cores if one

algorithm is sequential. An argument against this approach is that the sequential algorithm

could simply be run independently on the additional cores. However, this argument requires

that the machine has sufficient memory to run independent copies, which is not the case for

machine A for example. Moreover, in some cases the parallel algorithm is faster by a factor

larger than the number of available runs and the maximum speedup.

2.4.8 Speedup Plots
To compare the scaling behavior of our algorithms, we plot self-relative speedups for an

increasing number of threads. For each instance, we plot the speedup on the y-axis, and

the sequential running time on the x-axis. This is done to distinguish the instances where

parallelism really matters. On instances that are solved very quickly we cannot expect good

speedups and we do not need them.

We found that any one of the common metrics (such as number of pins) is not well

correlated with speedups (or running times for that matter), since the running time depends

on a variety of different factors (metrics and events that trigger repetitions). Fitting suitable

parameters for a combination of the metrics seems much more complicated than plotting

against sequential running time, which is often nicely correlated with speedups.

In addition to the per-instance scatter plot, we show rolling geometric means with a fixed

window size. For each phase of the multilevel framework (preprocessing, coarsening, initial

partitioning, refinement, total) or component (FM, LP, flows) we produce a separate plot to

show which parts scale well.

2.4.9 Relative Running Time Plots
Finally, to compare running time between different algorithms we use a relative slowdown
plot. One algorithm is designated as the baseline and for each other considered algorithm its

slowdown over the baseline (running time of the other divided by baseline on the y-axis) is

plotted per instance (x-axis). Each algorithm’s curve is sorted ascendingly to quickly identify

on how many instances it is slower by a certain factor. Similar to performance profiles, we

use special symbols (❃, ✘) to denote timeouts and balance violations, this time on the y-axis.

The symbols plotted below 1 are for the baseline (where the baseline is slower), symbols

above 1 are for the compared algorithm. The y-axis is scaled logarithmically to cope with

skewed data, but beware the scaling is not symmetric around 1. With base 10 logarithms, the

first minor tick above 1 indicates a factor 2x slowdown, whereas the first minor tick below 1

indicates a factor 0.9x slowdown. The corresponding factor 2x speedup is at 5 · 10
−1
, the 5th

minor tick below 1.
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3 Literature Overview

Research on graph and hypergraph partitioning has started more than 50 years ago, with the

seminal work of Kernighan and Lin [KL70] inspiring a long line of research that continues

to this day. In this time frame a huge variety of works have been published, far too vast to

survey all. Therefore, we focus on the basics and classics, early seminal works, techniques

that we use in our work, and recent achievements in parallel algorithms. The dissertation

of Schlag [Sch20] contains a historical overview focused on hypergraph partitioning with

detailed attributions of different techniques, highlighting in particular the achievements of

the VLSI design community. Surveys of recent advances for graph partitioning are given by

Buluc et al. [Bul+16] and Bader et al. [BMSW13]. To illustrate the history of partitioning,

we start with early local search algorithms such as Kernighan-Lin [KL70] and Fiduccia-

Mattheyses [FM82] and then the multilevel framework, before covering recent parallel

algorithms and more advanced iterative improvement such as flow-based refinement. We

continue with an overview of commonly used software tools for graph and hypergraph

partitioning, which predominantly follow the multilevel framework. We finish the discussion

of related work with methods that are outside the scope of this work, namely exact and

non-constant factor approximation algorithms, spectral and streaming partitioning.

3.1 Iterative Improvement

An iterative improvement algorithm takes a given initial partition and tries to improve the

objective function by perturbing the partition. The most common approach to iterative

improvement are local search algorithms, which move one vertex at a time (or a few) to a

different block, while maintaining feasibility of the partition.
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Algorithm 3.1: Kernighan-Lin
1 repeat
2 swaps← ⟨⟩ // empty swap list
3 initialize per-node gains 𝑔(𝑢)
4 for 𝑖 = 1 to min( |𝑉1 |, |𝑉2 |) do
5 find 𝑢 ∈ 𝑉1, v ∈ 𝑉2 with highest swap gain // O(𝑛2)
6 swap 𝑢 and v
7 mark 𝑢 and v as not movable

8 append (𝑢, v) to swaps and record their gain as 𝑔𝑖
9 update gains of neighbors // O(deg(𝑢) + deg(v))

10 𝑗 ← arg max

∑𝑗

𝑖=1
𝑔𝑖 // find best prefix

11 𝑔max ←
∑𝑗

𝑖=1
𝑔𝑖

12 for 𝑖 = 𝑗 + 1 to min( |𝑉1 |, |𝑉2 |) do
13 revert swaps[𝑖]
14 reset movable markers

15 until 𝑔max = 0

An important concept for this is the gain of a vertex move, which is the absolute reduction

in the objective function. Given a move (𝑢, 𝑠, 𝑡), moving vertex 𝑢 from block 𝑠 to 𝑡 , the gain

in the connectivity metric is

𝑔(𝑢, 𝑠, 𝑡) = 𝜔 ({𝑒 ∈ I(𝑢) | Φ(𝑒, 𝑠) = 1}) − 𝜔 ({𝑒 ∈ I(𝑢) | Φ(𝑒, 𝑡) = 0})

where the first term (benefit) corresponds to the weight of nets from which 𝑠 is removed

from the blocks Λ(𝑒) it has pins in, and the second term (penalty) is the weight of nets where
𝑡 is newly introduced to Λ(𝑒).

3.1.1 Kernighan-Lin
The algorithm of Kernighan and Lin [KL70] (KL) is considered the first local search algorithm

for graph partitioning. It works only on undirected graphs with unit node weights and

bipartitions. Due to the restriction to bipartitions, each node only has one associated gain

𝑔(𝑢), that for the opposite block. The central idea is to maintain balance by swapping

two nodes 𝑢 ∈ 𝑉1, v ∈ 𝑉2 in each step. The gain of swapping 𝑢 and v is the sum of the

individual gains minus a correctional term to account for the potential edge (𝑢, v) between
them 𝑔(𝑢) + 𝑔(v) − 2𝜔 ({(𝑢, v) ∈ 𝐸}). In both individual gains we consider the edge (𝑢, v) as
removed from the cut, but after the swap it is still cut.

Algorithm Outline. Algorithm 3.1 outlines the KL algorithm in pseudocode. One iteration

of the repeat-until loop in line 1 is called a pass (also round) and an iteration of the for-loop
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in line 4 is called a step. The KL algorithm operates in passes in which each node is allowed

to move once. In a pass it aims to construct a sequence of node swaps that improves the

current partition as much as possible. In each step, it searches for the node pair that offers

the highest swap gain, out of those not yet moved nodes. The pair is then swapped, marked

as no longer movable in this pass, and the gains of their neighbors are updated to account for

newly cut or uncut edges. The swaps and their gains are recorded, so they can potentially

be reverted later. Negative gain swaps are allowed temporarily to potentially escape local

minima later on. After all possible swaps have been performed, the swap prefix 𝑗 that yields

the highest gain sum 𝑔max =
∑𝑗

𝑖=1
𝑔𝑖 is selected, and the swaps made after it are reverted (line

12,13). The improved partition is used as input for the next pass, presuming 𝑔max > 0, i.e.,

the current pass found an improvement.

Analysis. Initializing and updating the gains 𝑔(𝑢) can be done in O(𝑚) time. However,

selecting the best node pair takes O(𝑛2) time per step, leading to an overall O(𝑛3) time

bound for one pass. In each step, Kernighan and Lin sort the nodes by decreasing gain and the

two nested loops for selection visit nodes in this order. They claim an O(𝑛2
log(𝑛)) bound

because in practice much less than Θ(𝑛2) node pairs have to be checked to find the one with

maximum gain, using Θ(𝑛) pair checks in their analysis based on empirical observations.

Since the instances of that time were tiny, applying such observations to current instances

would be extremely dubious.

Yet there is merit to this claim, in fact Dutt [Dut93] showed that only O(Δ2) pairs have
to be checked, with Δ = maxv∈𝑉 deg(v). The main observation is that the correctional

term is non-zero for at most Δ nodes in the inner loop of the selection. After this, a swap

gain that is the sum of two individual gains is encountered (non-neighbors). Because the

correctional term is subtracted and nodes are visited in decreasing order of their individual

gains, the inner loop can stop as soon as a non-neighbor of the node in the outer loop is

found. Applying symmetry shows that the outer loop can be restricted in the same way. Dutt

claims an O(𝑚(Δ + log(𝑛))) time bound per pass by additionally maintaining the sorted

order between steps with a balanced search tree.

There is no good bound on the number of passes; a trivial one is𝑚 since in each pass the

cut must contain one less edge. In practice, a small constant number of passes around 4-6

suffice [KL70, SK72, Dut93].

Hypergraphs. Schweikert and Kernighan [SK72] implement the KL algorithm on hyper-

graphs, noting that the clique expansion does not accurately model cuts of electrical circuits.

With multiple nets between two vertices, the swap gain becomes the following term.

𝑔(𝑢) + 𝑔(v) − 𝜔 ({𝑒 ∈ I(𝑢) ∩ I(v) | Φ(𝑒,Π(𝑢)) = 1}) − 𝜔 ({𝑒 ∈ I(𝑢) ∩ I(v) | Φ(𝑒,Π(v)) = 1})

This makes it more time-consuming to compute the correctional term. Schweikert and

Kernighan note that the hypergraph KL implementation is a factor 2-4 slower than the graph
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KL implementation running on the clique expansion. Again, due to tiny instances at the

time, the effects should be much larger today.

Limitations. The KL algorithm has several limitations. It is unclear how to convert it to a

heuristic for optimizing 𝑘-way partitions directly, since the elementary primitive is a node

pair swap. The authors therefore suggest running it on block pairs. Non-unit node weights

can be handled by replacing each node v with a clique of size 𝑐 (v), with edge weights set

sufficiently high that they will not be cut, but beware of overflow issues and huge running

time overheads from the expansion. However, the biggest limiting factor for applying KL in

practice is the time complexity of even the basic version.

3.1.2 Fiduccia-Mattheyses
Therefore Fiduccia and Mattheyses [FM82] developed a linear time variation of KL. This

should be deemed the most important improvement of local search algorithms, and it is to

this day the basis of refinement engines in modern partitioning frameworks. In addition to

the smaller time complexity, an upside of this method is that it works with non-unit vertex

weights. The idea of the FM algorithm is to drop the quadratic time selection of node pairs in

favor of moving one node in each step. Furthermore, the algorithm is designed directly for

hypergraphs not graphs. It retains the same notion of passes as KL. After each pass it reverts

back to the best observed prefix, in order to escape local minima by enabling intermediate

steps with negative gain moves.

In order to determine the highest gain move quickly, for each block of the bipartition a

priority queue stores the vertices in that block with the gain of moving it to the opposite

block as the key. Since balance is no longer maintained by swapping vertex pairs, a strategy

to select which block to move from is necessary; for example in alternating fashion if perfect

balance is desired. Instead, Fiduccia and Mattheyses select the block with higher gain if both

moves are feasible, breaking ties for the move resulting in a more balanced partition. If only

one is feasible that move is performed. The case that neither move is feasible is not specified

(because they use a different balance definition where this case does not occur). One way to

deal with this is to repeatedly discard both moves (and mark the vertices as moved), until

either one move is feasible or no unmarked vertices remain.

Analysis. Fiduccia and Mattheyses describe an implementation with O(p) time per pass

for unit weight nets. After each move the gains of neighbors must be updated. A naive

implementation that recomputes each neighbor’s gain from scratch would take O(p2).
Instead, an increment or decrement of 𝜔 (𝑒) is applied to the pins of a net 𝑒 depending on

Φ(𝑒, 𝑖) values; this is discussed in further detail in Section 4.3.5. Tomake this efficient, Fiduccia

and Mattheyses show that each net 𝑒 is involved in a constant number of updates, each of

which takes Θ( |𝑒 |) time. Overall, this yields time O(p) for maintaining gains, however the

gains must also be updated in the priority queue.
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Therefore, a bucket priority queue is employed, which stores all vertices with the same

gain in a linked list (or vector), encompassed in an array indexed by gain value. For unit

weight nets the maximum/minimum gain is ±maxv∈𝑉 deg(v). Using an additional array

mapping vertices to their entry in the PQ, vertices can be moved between gain buckets in

constant time.

To retrieve the highest gain move a pointer to the highest non-empty bucket is used. The

pointer is raised if an insertion happens at a higher gain bucket. If the highest gain bucket

becomes empty, a linear search to lower non-empty buckets is necessary. Let v𝑖 , v𝑖+1 be two
consecutive vertices in the move order produced by the FM algorithm. Then the distance

between their gain buckets is at most deg(v𝑖 ) + deg(v𝑖+1) (in the case 𝑔(v𝑖 ) = deg(v𝑖 ) and
𝑔(v𝑖+1) = − deg(v𝑖+1)). Therefore the total work for maintaining the highest gain bucket

pointer is at most

∑
v∈𝑉 2 deg(v) ∈ O(p).

Implementation Intricacies. For non-unit net weights the bucket PQ implementation with

an array of the size of possible gain values is infeasible. Papa and Markov [PM07] suggest

storing non-empty gain buckets in a hash table. A balanced search tree stores pointers to

non-empty gain buckets to efficiently retrieve the second highest gain bucket, if the highest

becomes empty. However, this increases the update complexity to expected logarithmic from

previously worst-case constant. Schlag found that in practice a simple implementation with

heaps is faster [Sch20].

A large number of implementation improvements were found in the 1990s by the VLSI

design community, which are particularly important for flat FM refinement. Hagen et

al. [HHK97] noted that the order in which vertices are extracted from the highest gain

bucket has a significant impact on partition quality. Last-In-First-Out (LIFO) order performs

significantly better than random order which is still better than FIFO order. Intuitively,

LIFO order encourages a more localized search because neighbors of the moved vertex are

considered next. This also favors moving clusters of vertices across the cut, which is often

the obstacle for escaping a local minimum. Caldwell et al. [CKM99] show that moving

neighbors to the front of the gain bucket even if they did not receive a gain update actually

worsens partition quality (zero-gain deltas).

Caldwell et al. [CKM99] note additional implicit implementation decisions such as tie-

breaking when the highest gain in both blocks is equal (move in the same direction as the

previous works best due to the intuition of moving clusters across the cut), and tie-breaking

when selecting the best prefix (by best balance). Finally, Caldwell et al. point out that the

aforementioned implicit implementation choices barely exhibit their effects when employed

within the multilevel framework. Intuitively this makes sense because there are fewer ties

and the framework is better at moving clusters. While this is framed as bad because the

multilevel framework hides bad implementation choices, we see it as a justification. The

LIFO order only works with bucket queues not heaps. Yet, we want the faster speed of heaps,

so using them in the multilevel setting is not disadvantageous regarding partition quality

compared to the slower bucket queues.
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Extensions. Another gain tie-breaking mechanism is due to Krishnamurthy [Kri84], who

proposes to look a fixed number of steps 𝑙 ahead via higher level gains. The binding number
𝛽𝐴 (𝑒) of a net 𝑒 in a block 𝐴 is the number of pins Φ(𝑒,𝐴) still in 𝐴 or ∞ if a pin of 𝑒 can

not be removed from 𝐴 in this pass. This is a measure how hard it is to remove 𝐴 from Λ(𝑒).
Given a bipartition (𝐴, 𝐵), the 𝑖-th level gain of vertex 𝑢 ∈ 𝐴 is defined as the following term.

𝜔 ({𝑒 ∈ I(𝑢) | 𝛽𝐴 (𝑒) = 𝑖 and 𝛽𝐵 (𝑒) > 0}) − 𝜔 ({𝑒 ∈ I(𝑢) | 𝛽𝐵 (𝑒) = 𝑖 − 1})

The first term accounts for the nets 𝑒 for which 𝐴 can be removed from Λ(𝑒) in 𝑖 moves,

whereas the second term accounts for the nets for which removing 𝐵 would require an

additional move. The higher level gains are used as tie-breaking by comparing gains lexico-

graphically. This comes at the expense of a factor 𝑙 in running time. Krishnamurthy claims

an overall O(𝑙p) time bound per pass, however this bound only holds for updating gain

values. Sanchis [San89] shows that an additional factor of the gain span (maximum degree

for unweighted) is necessary to update the highest gain pointers.

The CLIP (Cluster-Oriented Iterative-improvement Partitioner) approach of Dutt and

Deng [DD96] inserts all vertices into the zero-gain bucket, but sorted by the initial gains (at

the beginning of the pass), placing the highest gain as the first to extract. The algorithm then

proceeds like regular FM, applying gain delta updates to this initial setup. This approach

again favors neighbors of just moved vertices and moving clusters across the cut, because

the other vertices are still in the zero-gain bucket.

Karypis and Kumar [KK98] improve the running time of FM in practice by only keeping

boundary nodes in the priority queues, as only these can have positive gain. Furthermore,

the search is terminated if no improved cut was found after a fixed number of steps, instead

of until all nodes were moved. In recent works, this was called the fruitless moves stopping

rule [Sch20].

3.1.3 𝑘-way FM Local Search
A severe limitation of the FM algorithm so far is its restriction to bipartitions. Sanchis [San89]

was the first to propose a version of FM that optimizes 𝑘-way partitions directly. The main

difference is that we first have to decide a move direction and then select the best of that

direction. She uses 𝑘 (𝑘 − 1) PQs, where each PQ represents one move direction, as well as

one additional PQ to select the best direction. Her variant achieves O(𝑘p) time for updating

gain values, or O(𝑙𝑘p) if used with Krishnamurthy’s higher level gains. The additional

factor 𝑘 is because now each block is involved in a constant number of updates per net. This

translates to O(𝑙𝑘p (log(𝑘) + 𝑙Δ)) overall, where Δ is the maximum degree. The log(𝑘) term
stems from updates to the PQ for selecting a direction (a heap is used).

All following variants implement basic FM without higher level gains.

Träff [Lar06] uses 𝑘 PQs: one for each block 𝑖 storing the highest gain (feasible) move

of vertices in block 𝑖 , plus an additional PQ to select the best block to move from. We call

this approach from-PQs and it is the one we use, because we can prefer heavier blocks to
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move from as a tie-breaker to gain. One can even explicitly rebalance by keeping only heavy

blocks in the block-PQ. Additionally, one PQ per vertex tracks the highest gain move, so

that the target block 𝑡 can be found in constant time. The bottleneck is the time for gain

updates, which dominates the time for PQ management. For graphs with unit edge weights

this variant achieves O(𝑚) time using bucket PQs, even though 𝑘 > 2 because with graphs

only a constant number of blocks are involved per edge. Without lazy initialization a further

O(𝑛𝑘) additive term is necessary to initialize gain values, which is preferable in practice.

For non-unit weights an extra log(𝑛) factor is needed for an implementation with heaps. In

Lemma 4.2 we give a more sensitive analysis for gain updates on hypergraphs to reduce the

O(𝑘p) bound, since a reasonable assumption is that many nets are small.

Osipov and Sanders [OS10] as well as Schlag [Sch20] use 𝑘 PQs to implement what we

call to-PQs. Each PQ is associated with one block and contains all possible moves into that

block leading to a O(𝑘 · 𝑛) memory requirement. This enables looking at only moves into

non-overloaded blocks, though in the presence of vertex weights there is still no guarantee

that the extracted move is feasible.

Karypis and Kumar [KK98], as well as Sanders and Schulz [SS11] use a single PQ to store

the highest gain move for each vertex. This is similar to from-PQs but lacks the rebalancing

capabilities. After extracting the highest gain node 𝑢, Sanders and Schulz recompute gains

from scratch and select the best target block, whereas Karypis and Kumar select the best

target block using a gain table but only check blocks of neighbors. The downside of this

approach is that after a gain update a different target block may be better for the neighbor,

which thus requires a scan of the blocks.

3.2 𝑘-way Partitions
There are two main approaches for computing a 𝑘-way partition: recursive bipartitioning

(RB) and direct. With recursive bipartitioning the hypergraph is first split into two blocks,

which are then both split into two each to obtain four, etc., recursively subdividing the blocks

until the desired 𝑘 is reached. This approach is popular [CA99, Kab+17a, Dev+06, KAKS99]

due to its simplicity because the refinement only needs 2-way local search algorithms.

Simon and Teng [ST97] showed that the quality of a 𝑘-way partition obtained via recursive

bipartitioning can be arbitrarily far from optimal. While the same can be said for direct 𝑘-way

with heuristics, in practice the solutions are better than for recursive bipartitioning [Sch20].

This is because objective functions such as the connectivity metric cannot be optimized

directly. Kernighan and Lin [KL70] already noted that good bipartitions early in the recursion

tree can eliminate optimization potential in later recursion steps. It is doubtful whether

accepting partitions that are not locally optimal in early recursion stages will ultimately

translate to better partitions later.

We believe that direct 𝑘-way is the better approach since it allows to optimize the connec-

tivity metric directly. In his dissertation Schlag [Sch20] compared recursive bipartitioning

and direct 𝑘-way within the same framework, showing that direct 𝑘-way finds better par-
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titions and is faster. Inefficiencies from the more complicated refinement routines can be

compensated by thorough engineering. Another postulated downside of 𝑘-way local search

is that there are too many potential moves, making the algorithms susceptible to local

minima [Sch20, p.96]. Here, localized refinement is the remedy since it restricts the move

candidates without blocking the not considered moves at later stages.

A hybrid between the two approaches is recursive partitioning intomore than two blocks at

each recursion level. This is particularly useful for process mapping, a closely related problem

to partitioning. The network topology of a compute cluster is often organized hierarchically

(islands, racks, nodes, sockets, cores) with slower communication if higher links in the

hierarchy must be used. Recursively partitioning along the topological hierarchy, into the

number of next-lower entities, is shown to produce very good process mappings [ST17].

3.3 The Multilevel Paradigm
The second big revolution after the FM algorithm is the multilevel paradigm. Its current

form is due to Hendrickson and Leland [HL93], but its origins can be traced back to algebraic

multigrid solvers for linear equations [Sou35]. The fundamental idea is to contract vertices

that are likely in the same block, such that they can be moved together. There are three

phases: the coarsening phase, initial partitioning and refinement. Together they make up

one cycle. In the coarsening phase a sequence of successively smaller hypergraphs that

approximately preserve the cut structure is constructed. Each hypergraph in this sequence

constitutes a level. Typical implementations contract vertex clusterings or vertex pairs.

Coarsening stops once the latest hypergraph is sufficiently small to find an initial partition

using a potentially expensive algorithm, or such that even simple algorithms are able to find

good solutions since the search space is small. In the refinement phase (or uncoarsening), the

contractions are reverted level by level in reverse order. The current partition is projected to

the next finer hypergraph by assigning vertices that were contracted together to the same

block as their coarse vertex. This yields a partition of the finer hypergraph with the same

balance and cut properties as that of the coarser one, because the vertex and net weights

of the coarse hypergraph were set appropriately through the contraction. Subsequently

iterative improvement algorithms are used to further optimize the objective function.

The multilevel approach has two tremendous benefits. It offers refinement at different

levels of granularity, moving multiple vertices on coarser levels to make progress more

quickly. Through local techniques, the partition is optimized at both a local and a global

scale and various granularities in between. The number of levels offers a trade-off between

partition quality (more levels, more granularity, more refinement) and running time. We

mentioned already that some improvements to FM emphasize moving entire clusters across

the cut, which is most naturally captured in the multilevel scheme. Secondly, iterative

improvement algorithms converge much faster if they are fed an already good initial solution.

Since the coarser hypergraphs are small, substantially less running time is necessary to find

a good macro-scale partition compared to running iterative improvement directly on the



Coarsening Components Section 3.4

35

input. After projection, only a small amount of work is necessary to repair assignments of

vertices that were clustered together but should not belong to the same block, given the new

information available. We discuss components used in each of the phases in more detail in

the following sections.

3.4 Coarsening Components

The purpose of the coarsening phase is to derive structurally similar but smaller versions of

the input hypergraph. This enables faster improvements in the refinement phase and serves

as a filter [Wal03] for irrelevant information at different optimization scales. As mentioned,

the number of levels offers a trade-off between solution quality and running time. Therefore

the number of vertices should be reduced quickly, but not too quickly. Typically the input is

shrunk geometrically on each level, resulting in a hierarchy with Θ(log(𝑛)) levels, such that

the overall algorithm takes near-linear time if each component takes near-linear time.

Hypothetically assume we had access to an optimal partition. Then the best way to coarsen

the input is to only contract vertices that are in the same block. This preserves the optimal

partition down to the coarsest hypergraph.

3.4.1 Hypergraphs

In practice, coarsening algorithms identify clusters of densely connected vertices via local

similarity measures that are optimized with local greedy methods. Contracting the clustering

then constitutes the next level in the multilevel hierarchy. The most common measure is the

heavy-edge rating function [CA99, KK00, AHSS17, GHSS21], which prefers many nets with

large weight and small size between a vertex and a cluster.

𝑟 (𝑢,𝐶) ≔
∑︁

𝑒∈𝐼 (𝑢 )∩𝐼 (𝐶 )

𝜔 (𝑒)
|𝑒 | − 1

,

Catalyürek and Aykanat [CA99] use a simple greedy agglomerative algorithm to optimize

this function, which has since been adopted by the majority of partitioning frameworks. It is

similar in style to other clustering algorithms for community detection [BGLL08, RAK07].

Initially each vertex is in a cluster of its own (singletons) and vertices are visited in random

order. If not part of a multi-vertex cluster yet, the visited vertex joins the cluster in its

neighborhood that would yield the highest increase in the rating function. To prevent the

formation of too heavy vertices, heavy clusters are penalized by additionally dividing the

rating function with the cluster weight. Akhremtsev et al. [AHSS17] instead use a weight

constraint to prevent the formation of too heavy vertices.
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3.4.2 Graphs

While for hypergraph partitioning, contracting clusterings was the go-to method from

the start (due to skewed degrees and net sizes), this has been long overlooked for graph

partitioning. Here, contracting maximal matchings has been the standard [KK98, SS11]

because it works well on uniform degree mesh-type graphs. Karypis and Kumar [KK95]

visit nodes in random order and match them to the unmatched neighbor with highest edge

weight. This has no approximation guarantee on the weight of the matching. A simple

1

2
-approximation algorithms visits edges by decreasing weight, and greedily includes them if

possible. Holtgrewe et al. [HSS10] investigate different edge rating functions.

On modern complex networks with power-law degree distributions, contracting a match-

ing cannot reduce the graph size quickly enough. In such, many edges connect few hub nodes

(high degree) with many less important nodes (low degree). However, at most one edge per

node is contracted in a matching, thus leaving many unimportant nodes uncontracted and

stalling coarsening progress. To address this, non-adjacent nodes are allowed to be matched

if they share a common neighbor and if they are still unmatched after a pass of the regular

matching algorithm. This is called two-hop matching. In consecutive passes, LaSalle et al.

[LaS+15] first match nodes of degree one, then nodes with identical neighborhoods of any

size, then nodes prioritized by similarity of their neighborhoods; starting the next pass only

if insufficient coarsening progress was made. Davis et al. [DHKY20] extend this by matching

nodes that had the same preferred matching partner during the regular matching pass, but

were denied.

Meyerhenke et al. [MSS14] use size-constrained label propagation [RAK07] to obtain a

graph clustering for contraction, in order to get rid of the matching restrictions. The rating

function is equivalent to the heavy-edge rating function on graphs. Furthermore, the optimiza-

tion algorithm is equivalent to that of Catalyürek and Aykanat, but it is non-agglomerative,

i.e., nodes can back out of a cluster with multiple nodes in it. In our experiments we show

that not having this property is actually harmful. Gottesbüren et al. [Got+21] additionally

use the two-hop matching technique of Davis et al. for still singleton nodes with the same

preferred target cluster. These still exist when using a clustering algorithm due to the cluster

size constraint.

3.4.3 Shared Memory Parallelization

Catalyürek et al. [ÇDKU12] propose parallel schemes for agglomerative clustering and

greedy matching that use locking, in addition to a lock-free version of greedy matching that

resolves conflicts in a second pass. Vertices are visited in parallel. The lock-based algorithms

first try to lock the visited vertex, calculate ratings, and then iterate through the candidates.

When a better candidate is found, its lock is tested. If successful, the old candidate is replaced

and unlocked.

For the lock-free resolution scheme, the matches are stored in a global array 𝑀 without

protecting write access. After one pass, vertices 𝑢 with 𝑀 [𝑀 [𝑢]] ≠ 𝑢 are matched with
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themselves 𝑀 [𝑢] ← 𝑢. These are vertices whose match was visited concurrently and

matched to a different vertex. The resolution-based matching scheme is also used by LaSalle

and Karypis [LK13].

Size-constrained label propagation coarsening [ASS18a, Got+21] is parallelized by visiting

nodes in parallel, but implemented without locking, such that it is possible that nodes

cyclically join each other’s cluster.

3.4.4 Distributed Memory Parallelization
Karypis and Kumar [KK99] use a 1D distribution of the nodes: all edges of a node are stored

on the processor that owns the node. Each node determines its most desirable matching

partner. If the matching partner is on the same processor, both are matched and the partner

is skipped later in the loop. Otherwise a matching request to the processor owning the

partner is sent. In a second step, the nodes who received multiple requests select the most

desirable one and approve it. The remaining ones are rejected. The authors also consider a

parallelization via node coloring, where nodes of the same color are processed in parallel.

However, the matching request scheme is still necessary because two independent nodes

can match with the same third node of a different color. The downside of coloring is that

it induces a lot of synchronization (after each color class). Meyerhenke et al. [MSS17]

implement size-constrained label propagation coarsening for distributed memory with a 1D

distribution.

Devine et al. [Dev+06] show how to parallelize heavy edge rating matching (called inner

product in their paper) with a 2D distribution of the hypergraph. Through alternating phases

of horizontal and vertical communication, exact scores between all unmatched vertices and

a small set of randomly sampled matching candidates are calculated. The candidates and

their highest rated match are marked as matched. This process is repeated until sufficient

coarsening progress is made.

3.4.5 Enhancements
Shaydulin et al. [SCS19b] use algebraic distances (a non-local similarity measure) to modify

the net weights used in the coarsening routine, thus encouraging contraction of close vertices

and penalizing contraction of far vertices. A similar approach is taken by Sybrandt et al.

[SSS20] with embeddings (such as node2vec [GL16]), who incorporate spatial similarity as

an extra factor into the heavy-edge rating function. While these approaches are too slow at

the moment, they pose an interesting new direction for coarsening, where the development

of new ideas has stalled significantly over the years.

Heuer and Schlag [HS17] add a preprocessing phase based on community detection to

the coarsening phase. Community detection aims to partition the nodes of a graph into an

unspecified number of blocks such that connections are internally dense and externally sparse.
The idea is to compute a community structure first and then restrict contractions to vertices

in the same community. In its essence, this is equivalent to performing a V-cycle [Wal04]
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except the partition is obtained through community detection instead of a multilevel cycle.

This prevents potentially harmful contractions (good cuts) through guidance from a more

global view, where local similarity measures are misguided.

Graph-based Representation. Since the notion of community structure on hypergraphs

and corresponding research is not as mature as on graphs, Heuer and Schlag instead per-

form community detection on the star expansion𝐺 = (𝑉𝐺 , 𝐸𝐺 ) of the input hypergraph 𝐻 .
Thus, this approach partitions both the vertices and nets. As we are only interested in the

assignment of vertices, the communities of the nets are discarded.

There is one peculiarity with this approach. Let 𝛿 ≔ 𝑚
𝑛
denote the density of 𝐻 . If

𝛿 ≪ 1, the hypergraph has few but large nets, and the corresponding bipartite graph nodes

have high degrees. These would predominantly shape the community structure, acting as

central nodes that attract a lot of low-degree nodes. As the nodes representing nets are

subsequently ignored, the resulting communities would be poorly connected. In order to

reduce the impact of large nets on the community structure, Heuer and Schlag propose

to incorporate density information into the edge weights of the bipartite graph. For low

density instances the edge weight 𝑤′ (v, 𝑒) ≔ 𝜔 (𝑒 ) |I(v ) |
|𝑒 | is used, which penalizes large nets

and rewards high vertex degrees. Otherwise, for both uniform and high density, the original

net weight 𝑤′ (v, 𝑒) ≔ 𝜔 (𝑒) is used since it performed better in the experiments [HS17]. The

authors chose 𝛿 < 0.75 as threshold for 𝛿 ≪ 1.

On this bipartite graph with modified edge weights 𝑤′, the authors optimize the well-

known modularity objective function [NG04] using the Louvain method [BGLL08]. While

the argument of providing a more global view is rather hand-wavy in the sense that the

used community detection algorithm also performs only local optimization, the quality

improvements are impressive (in particular for initial partitions), which motivated us to

include this component in our work and parallelize it.

Modularity. Let C = {𝐶1, . . . ,𝐶𝑟 } denote a community assignment and let 𝑤′ (𝑢,𝐶) ≔∑
v∈Γ(𝑢 )∩𝐶 𝑤

′ (𝑢, v) denote the weight of edges from node 𝑢 to community 𝐶 . The coverage

cov(C) ≔
∑︁
𝐶∈C

∑︁
𝑢∈𝐶

𝑤′ (𝑢,𝐶)/vol(𝑉𝐺 )

is the fraction of edge weights inside communities. The volume vol(𝑢) ≔ ∑
v∈Γ(𝑢 ) 𝑤

′ (𝑢, v) is
the sum of incident edge weights of a node (counting self-loops twice), which is extended to

node-sets vol(𝑋 ) ≔ ∑
𝑢∈𝑋 vol(𝑢). The modularity of a community assignment C is:

Q(C) ≔ cov(C) −
∑︁
𝐶∈C

vol(𝐶)2/vol(𝑉𝐺 )2

where the second term is the expected coverage of a randomly rewired graph with the same

degree sequence, which alleviates the problem that placing all vertices in the same community

would yield the maximum coverage value of 1. Optimizing modularity is NP-hard [Bra+08],

which is why heuristics are used in practice.
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Louvain Method. The Louvain algorithm [BGLL08] is a well-known method to heuristi-

cally optimize modularity with good practical performance. It starts with each node in its

own community. In a round, it visits each node in a random order and greedily maximizes

modularity by possibly moving the node to the community of a neighbor. After a fixed

number of rounds or if no node has been moved in the last round, the communities are

contracted and the algorithm is applied recursively to the contracted graph. This continues

until no node has been moved on the current level, at which point the community assignment

is projected back to the input graph.

The following term shows the gain (modularity difference) of moving a node from its

current community 𝐶 to a neighboring community 𝐷 .

gain(𝑢,𝐶, 𝐷) = 𝑤′ (𝑢, 𝐷) − 𝑤′ (𝑢,𝐶)
vol(𝑉𝐺 )

+ (vol(𝐶) − vol(𝑢) − vol(𝐷)) vol(𝑢)
vol(𝑉𝐺 )2

It can be computed just from the weight of incident edges to the target 𝐷 and current

community 𝐶 , as well as their volumes. The volumes for the communities are stored in an

array and updated when a vertex is moved. To select the highest gain neighbor community

of a node, the weights to all of its neighboring communities are aggregated.

Parallel Louvain Method. Staudt and Meyerhenke [SM16] parallelize the local moving

of the Louvain method by visiting nodes in parallel. Cluster volumes are updated with

atomic instructions, or more precisely a compare-and-swap loop since fetch-and-add is not

supported for floating point numbers. The complexity of a parallel local moving round is

𝑂 ( |𝐸𝐺 |) work and 𝑂 (maxv∈𝑉𝐺 (deg(v)) + log( |𝑉𝐺 |)) depth.

3.5 Initial Partitioning
The coarsening phase usually stops when only 𝑡 · 𝑘 vertices remain, where 𝑡 is a constant

input parameter, such that initial partitioning can place around 𝑡 vertices in each block and

thus has some optimization potential. Typical values for 𝑡 are in the range of 100 − 1000.

Preen and Smith [PS19] showed that the best point to stop coarsening for partition quality is

instance-dependent, and propose an adaptive stopping rule based on the progress made on

the last level.

Regarding algorithms, any partitioning technique can be used, such as evolutionary [SS12,

ASS18b], spectral partitioning, or even exact methods. Though the latter is often too ex-

pensive and it does not offer better quality on the final partition. During development

it is not uncommon to first use an existing partitioning framework by other authors for

initial partitioning. Maturing frameworks eventually incorporate their own set of initial

partitioning routines.

There is a variety of simple graph growing heuristics and BFS-partitioning that work

well [KK98, CA99, KAKS99, Sch20, SS11]. These should always be complimented with

subsequent iterative improvement. With such simple algorithms it is important to perform
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many randomized repetitions, as there are often multiple choices with the same gain. Battiti

et al. [BBR97] propose two advanced gain definitions that incorporate the progress to

keeping a hyperedge uncut, as opposed to the classic versions that only consider whether

the assignment fixes the hyperedge in the cut or not. See Section 4.2 for a more detailed

description of the ones we use in our portfolio.

While for themultilevel framework direct𝑘-wayworks better than recursive bipartitioning,

flat direct 𝑘-way partitioning is worse than using recursive multilevel bipartitioning [KK98,

KK00, Heu15]. Then only algorithms for flat bipartitions are necessary. An additional benefit

is that recursive calls are independent and can thus be carried out in parallel.

3.6 More Iterative Improvement
We now turn to more iterative improvement algorithms that are used in the refinement phase,

with a focus on parallel algorithms. KL and FM are P-complete via NC-reduction from the

circuit value problem [SW91]. This is strong evidence that the existence of poly-log depth

parallel algorithms for KL and FM is unlikely, though it is not conclusive proof. Therefore,

all of the presented parallel schemes differ from classic FM and KL by relaxing some aspect.

First we start with label propagation as an example of a very simple, inherently parallel

algorithm that is widely used. Then we discuss challenges regarding parallelization and

some techniques used to address these. We also introduce two algorithms that started out as

sequential (localized FM and flow-based refinement).

3.6.1 Label Propagation
Eight years before the label propagation community detection algorithm [RAK07], Karypis

and Kumar [KK99, KK00] proposed a simple refinement algorithm that is equivalent, and

has later been called size-constrained label propagation [MSS14] or balanced label propaga-

tion [UB13]. It is designed with parallelism in mind. Instead of the singleton assignment for

community detection [RAK07] or coarsening [MSS14], label propagation refinement starts

with a given 𝑘-way input partition. Vertices are visited in random order. For each vertex the

gains of moving it to any of the blocks in its neighborhood is calculated. Out of the feasible

moves the one with the highest gain is selected if the gain is positive. Ties are broken in favor

of the more balanced partition. Since only positive gain moves are performed, this scheme

lacks the ability to escape local minima. The benefit is its simplicity and it is straightforward

to parallelize: simply visit vertices in parallel.

The gains can be incorrect due to concurrent moves in the neighborhood. If moves are

performed asynchronously and become visible to other processors, this does not affect

optimization a lot in practice. With synchronous implementations some quality loss is

observed. Meyerhenke et al. [MSS17] use a hybrid between synchronous and asynchronous,

where communication and computation are overlapped. The updates from the previous

round come in gradually while the next round is under way. Even if high partition quality
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is desired and thus escaping local minima is a must-have feature, label propagation is a

valuable component since it finds the easy improvements with much smaller work investment

compared to heavier, less scalable algorithms [ASS18a].

3.6.2 Incorrect Gains

Regardless of the specific optimization routine, in order to achieve non-trivial parallel

speedup, vertex moves must be performed in parallel. In this case the gain calculated on

one thread can be incorrect if neighbors of the vertex in question are moved concurrently.

Consider adjacent vertices 𝑢, v with Π(𝑢) ≠ Π(v), where 𝑢 is moved to Π(v) and v is moved

to Π(𝑢). For both 𝑢 and v the gain contains an 𝜔 ((𝑢, v)) term since it appears that the edge

is removed from the cut. If both moves are performed however, the edge is still cut. This way

the overall cut may even get worse, if 𝜔 (𝑒) is sufficiently large to compensate for cutting

new edges.

Karypis and Kumar [KK99] employ node coloring to fix this issue. Moving nodes with

the same color in parallel does not result in incorrect gains since each color class is an

independent set. However, this incurs a large amount of synchronization (one barrier per

color class), and is not well applicable to hypergraphs because all vertices of one net need

different colors.

A more common technique is to split the refinement into an upstream and a down-

stream pass [KK99, LK13, Dev+06], where the move directions are restricted to blocks with

higher/lower ID, respectively. This prevents the example given above, but restricts opti-

mization capabilities heavily since the target blocks become overloaded very quickly. For

all moves with the same source and target block the actual total gain is at least the sum of

the calculated gains. However, cut degradation is still possible if more than two blocks are

involved. Yet, for refining 2-way partitions and thus recursive bipartitioning this works.

Given moves in a fixed order, Akhremtsev et al. [ASS18a] recompute the exact gains and

keep the highest gain prefix subject to balance. Unfortunately, their algorithm is sequential,

but in Chapter 4 we present a parallelization.

3.6.3 Balance Constraint

With concurrent vertex moves the balance constraint cannot be ensured by checking whether

each individualmove preserves it. Either a synchronizationmechanism or explicit rebalancing

is necessary.

Maintaining Balance. With shared memory it is possible to use atomic fetch-and-add

instructions to update block weights. If the weight of the target block is raised above the

maximum weight the move is reverted. It is important that the weight to the target is added

first, so that the weight of the source block has not been reduced if the move is reverted,

accidentally inviting concurrent moves into the source block that may exceed the balance
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constraint after the revert. This technique is used by Akhremtsev et al. [ASS18a] and

Gottesbüren et al. [Got+21], as well as in the works of this dissertation.

In distributed memory, maintaining the balance constraint is more difficult. Karypis and

Kumar [KK99] and Meyerhenke et al. [MSS17] only update block weights with processor-

local moves and use these for balance checks. Block weight updates are synchronized at the

end of a pass. Meyerhenke et al. split each pass into multiple subrounds to reduce the chance

that balance violations occur, but cannot provably prevent it.

Trifunovic and Knottenbelt [TK04] gather the calculated positive gain moves on the root

processor, which then approves a subset. As the root processor is clearly a bottleneck, this

approach cannot be expected to scale to a large number of machines. The approval algorithm

used is described but not in sufficient detail. The following description is taken verbatim: ”a

greedy scheme favouring taking back moves of sets with large weight and small gain”.

Ugander and Backstrom [UB13] gather all calculated moves and solve a linear program to

select the subset of moves that maximizes the gain sum while maintaining balance. For each

move direction the moves are sorted by gain and a prefix is selected by the linear program.

The size of the linear program is independent of the graph size but takes Θ(𝑘2) variables
and O(𝑘2𝑛𝑔) constraints, where 𝑛𝑔 = 1 + 2 maxv∈𝑉 deg(v) is the number of different gain

values. This makes it feasible to solve the LP on a single machine for moderate 𝑘 . The

technique is restricted to unit weight nodes and does not consider that gains are incorrect

from simultaneous moves.

Kabiljo et al. [Kab+17a] simplify this by pairing up moves in opposite directions, sorting by

gain, and swapping all vertices in the shorter sequence with the prefix of the longer sequence

with the same length. Again, this is restricted to unweighted nodes, however we propose a

parallel version with weights in Chapter 5. This technique only allows pairwise movement,

whereas the version of Ugander and Backstrom allows arbitrary cycles of exchanged nodes.

Two ideas are proposed to implement the approach in distributed memory. First, instead

of sorting, the gains are grouped into exponentially spaced buckets to which the two-way

prefix swap is applied. Secondly, a probabilistic version is run on the leftover moves that

preserves balance in expectation. Each processor counts the number of locally computed

moves in each direction, which are aggregated at a root processor. Let 𝑆𝑖, 𝑗 denote the number

of moves from block 𝑖 to 𝑗 . For each direction, the root processor calculates
min(𝑆𝑖,𝑗 ,𝑆 𝑗,𝑖 )

𝑆𝑖,𝑗
and

broadcasts it to all processors. Each move in a direction is then approved independently with

this probability.

Rebalancing. Finally, we describe rebalancing algorithms. Lasalle and Karypis [LK13] track

the performed moves in buffers: each thread maintains the moves it performed. To rebalance,

the buffers are traversed in reverse order. Moves into overloaded blocks are reverted. Each

thread is responsible for restoring excess weight proportional to the amount it moved into

that block, such that combined across threads, the balance is restored.

Slota et al. [SMR16] employ label propagation with modified gains. The original gain is

multiplied by 𝐿max/|𝑐 (𝑉𝑖 ) | to favor moving into lighter blocks. This is similar to an approach



More Iterative Improvement Section 3.6

43

used in streaming partitioning [MLLS17]. Maleki et al. [MABP21] use label propagation

but in synchronous fashion. Only a subset of the moves prioritized by calculated gain is

performed. This is repeated, with recalculated gains, until the partition is balanced.

For large 𝑘 , Gottesbüren et al. [Got+21] store the moves out of overloaded blocks in one

priority queue per block. Since 𝑘 is large, the overloaded blocks are processed in parallel.

The key for the priority queues is the ratio of highest gain (to a non-overloaded block) and

node weight. Each priority queue is initialized with just enough nodes to remove the excess

weight. In case designated target blocks become close to overloaded, neighbors of moved

nodes in the same former block are inserted.

3.6.4 Incomplete Information
Another challenge to computing accurate gains is incomplete information. Some processors

may not know that vertices in the neighborhood were moved, even if this happened long

before the current vertex is visited. This is particularly severe for distributed memory environ-

ments, where the fine-grained communication necessary to exchange this information is too

expensive. Therefore distributed algorithms often follow a synchronous approach [Kab+17a,

MSS17, UB13, HSWZ18], where gains are calculated based on only locally available, poten-

tially outdated information. After a pass the updated block IDs are sent to the processors of

the neighbors in batched communication, and then the next pass is started.

An even more severe case is the framework Zoltan [Dev+06] which uses a 2D partition of

the hypergraph’s incidence matrix. The rows are the nets and the columns are the vertices.

Each processor is responsible for a rectangular submatrix and therefore has neither access

to all incident nets of a vertex nor to all pins a of net. Calculating initial gains is done

cooperatively. Gain updates after a move are done with only local information. The actual

moving is done by one processor per processor-column (all processors in a column share the

same vertices), the one with the most non-zeroes since it has the most information.

3.6.5 Localized FM
Osipov and Sanders [OS10] propose a localized version of FM. Instead of considering all

nodes at once, the search starts with one or a few seed nodes in the priority queues. After a

node is moved, all of its neighbors are added to the search, such that it gradually expands in

directions where progress is made.

The intent for this scheme is to have a dynamic algorithm that can react to small changes.

It was designed for 𝑛-level uncoarsening where only one node is uncontracted per level.

During uncoarsening, localized FM is initialized with just the uncontracted node and its

former representative.

Adaptive Stopping Rule. Modelling the objective function behavior over time as a random

walk, an adaptive stopping rule is proposed, since the fruitless moves stopping rule is too

insensitive and thus causes too long running times (order of magnitude factor). If it is deemed
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unlikely that the search will find an overall improvement given the recent history of gains,

the search is terminated.

Gain values are assumed as identically distributed, independent random variables with

expected value 𝜇 and variance 𝜎2
. These are estimated from the previous gain values since

the best objective function value seen so far. Let 𝑟 denote the number of moves since the best

cut value, 𝛼, 𝛽 a tuning parameter, where 𝛽 is a minimum number of steps typically set to

log(𝑛). If 𝑟 𝜇2 > 𝛼𝜎2 + 𝛽 it is deemed unlikely that the local search will find a better partition.

This is of course heuristic, but works well in practice.

Static Version. Sanders and Schulz [SS11] devise a static version of localized FM that is

organized in passes like classic FM. In a pass each node is allowed to move once. Each node

that is a boundary node at the beginning of the pass serves as a seed for localized FM. If the

next potential seed was already moved it is skipped.

The intuition why this is better at escaping local minima than classic FM is that if only

negative gain moves are left, classic FM performs a large number of moves with similar

negative gain in arbitrary areas. However, only a few of these moves will enable good positive

gain moves in the future for an overall improvement. At the point these are performed,

it is likely that the overall partition has deteriorated significantly, such that no overall

improvement is possible anymore. Localized FM attempts to isolate a few negative gain

moves in the hope of quickly enabling positive gain moves for an overall improvement. If this

fails, the adaptive stopping rule triggers quickly and stops the search, keeping the untouched

nodes available for moving in later searches.

Parallelization. Another benefit of localized FM is that it can be parallelized by starting

parallel searches with different seeds [ASS18a]. The searches are kept disjoint with atomic

test-and-set to claim exclusive ownership of nodes. There are a variety of details to make

this efficient and practical on hypergraphs, which are one of the main contributions of this

dissertation. Further details including details of Akhremtsev’s version [ASS18a] are discussed

in Chapter 4, in order to highlight the differences between their version and ours.

3.6.6 Greedy and Hill-Scanning
LaSalle and Karypis [LK13] parallelize Metis’ refinement [KK98] on shared memory architec-

tures. The sequential algorithm performs FM on boundary nodes but performs only positive

gain moves, i.e., terminates when only negative gain moves are left. This eases parallelization

since no moves must be reverted, and thus there is no serial move order to observe. However,

it does eliminate the ability to escape local minima. Supposedly, this is still better than label

propagation, as more promising nodes are moved first.

Nodes are statically assigned to threads, where the sequential algorithm is run on the local

nodes. Moves are communicated to the threads of neighboring nodes via message buffers.

The threads frequently check their buffers to update local gains.
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Balance checks are done optimistically with locally updated block weights. Potential

balance violations are repaired at synchronization points using the approach with move-

buffers outlined above.

In a second paper [LK16] an extension that is able to escape local minima to some extent

is proposed. This is a simplified variant of localized FM. When the extracted node 𝑢 from the

priority queue has negative gain, a small group of up to 16 nodes around 𝑢 is incrementally

constructed in the same way as localized FM. A difference is that all nodes must be moved to

the same block. Furthermore, the expansion stops as soon as an improvement is possible,

even if there may be further improvements within the 16 node expansion limit. As opposed

to the greedy algorithm, the selected nodes are not restricted to the locally owned nodes.

3.6.7 Interface Optimization
Walshaw and Cross [WC00] propose a parallel refinement algorithm that combines label

propagation with an arbitrary 2-way refinement routine. First, the vertices with positive

gain moves are grouped by their highest gain move directions. More precisely, vertices with

preferred move direction from block p to 𝑞 or 𝑞 to p are grouped together. Then sequential

2-way refinement is applied to each such group. This is parallelized over the groups but

each block participates in only one refinement at a time due to their scheduling algorithm.

As such, this approach is restricted to the setting where the number of blocks equals the

number of processors.

3.6.8 Flow-Based Refinement
As opposed to balanced minimum cuts, unbalanced minimum cuts can be computed in

polynomial time via maximum flows, and can thus be a valuable subroutine.

Sanders and Schulz [SS11] propose a refinement algorithm for bipartitions, which is then

scheduled on different block pairs for refining 𝑘-way partitions. Given a bipartition (𝑉0,𝑉1),
the idea is to select sets 𝐵0 ⊂ 𝑉0, 𝐵1 ⊂ 𝑉1 of nodes that are allowed to be moved. A flow

network is constructed on the subgraph induced by 𝐵0 ∪ 𝐵1, and creating an artificial source

and sink. For each node in 𝐵0 with edges to 𝑉0 \ 𝐵0 an arc with infinite capacity from the

source is created; and analogously from each node in 𝐵1 with edges to 𝑉1 \ 𝐵1 an arc to the

sink. A minimum cut on this flow network yields a bipartition with smaller or equal cut

size as the input bipartition, though it may be imbalanced. Therefore, the sizes of 𝑉0,𝑉1 are

restricted. We revisit this approach in Chapter 7 with an improved method (incremental max

flow instances) and parallelization, so refer to this chapter for more details.

The MQI algorithm of Lang and Rao [LR04] optimizes a quotient-cut metric such as

expansion (ratio of cut to size of the smaller side) or conductance (ratio of cut to smaller

volume). It is an iterative algorithm that solves a sequence of nested maximum flow problems.

Starting with an initial bipartition, the edge cut becomes smaller and the partition more

unbalanced with each iteration. The cuts are nested in the sense that the smaller side of the

cut is a subset of the previous iteration’s smaller side. Once no improvement is found, the cut
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is guaranteed to be optimal regarding the quotient metric, out of all cuts where the smaller

side is a subset of the initial bipartition’s smaller side. The flow network contains the leftover

nodes of the smaller side and usesmodified edgeweights to achieve this convergence criterion.

A particularly elegant feature of this approach is that it can be phrased as a parametric flow

problem, such that the sequence can be solved in the same asymptotic time as a single

maximum flow instance. In a follow-up work [AL08] Andersen and Rao extend this approach

to enable growing the cut. The new algorithm is provably at least as strong as MQI but will

work better in situations where the initial bipartition is less balanced.

3.7 Deep Multilevel Partitioning

A recent approach that combines recursive partitioning and direct 𝑘-way is called deep
multilevel partitioning [Got+21]. This approach is important for large 𝑘 where both other

approaches fail. Recursive multilevel bipartitioning performs log
2
(𝑘) cycles of coarsening

and uncoarsening (full graph, two graphs half the size, four graphs a quarter the size, etc.).

This overhead factor is too high if 𝑘 is very large. With direct 𝑘-way the coarsest graph

should have Ω(𝑘) nodes so that a constant number of nodes can be placed in each block.

Therefore coarsening stops once 𝑡 · 𝑘 nodes are left, where 𝑡 is a constant input parameter. If

recursive bipartitioning is used for initial partitioning, the direct 𝑘-way scheme degenerates

to recursive bipartitioning since coarsening is stopped very early. Otherwise, an expensive

flat direct 𝑘-way algorithm is used, which is too slow because the assumption that the coarsest

graph is small no longer holds. Deep multilevel performs only one cycle of coarsening and

uncoarsening as direct 𝑘-way. But it starts with less than 𝑘 blocks at the coarsest level and

gradually expands the number of blocks during uncoarsening.

More formally, the idea is to select the appropriate number of blocks for each of the graphs

in the multilevel hierarchy depending on their size. The input graph is coarsened until only

2𝑡 vertices are left. During uncoarsening, the blocks from the previous level are further

subdivided using bipartitioning, to achieve the appropriate number of blocks 𝑘 ′ for this level,
before a 𝑘 ′-way refinement algorithm improves the current partition. The value for 𝑘 ′ is
chosen such that each bipartitioning call works on approximately 2𝑡 vertices. Combined

with the fact that only one cycle is performed, this leads to overall near-linear time if each

algorithmic component has near-linear time. The appropriate choice is𝑘 ′ ≔ min(𝑘, ceil2 ( 𝑛
′

𝐶
))

for an 𝑛′-vertex graph, where ceil2 (𝑥) is 𝑥 rounded up to the next power of two. If the top-

level partition does not have the desired 𝑘 yet, it is further subdivided to achieve 𝑘 blocks.

This happens if 𝑛 < 𝑘 · 𝑡 , and in this case an additional O(log( 𝑘𝑡
𝑛
)) factor is incurred for

bipartitioning.
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3.8 𝑛-level Partitioning
Inspired by a speedup technique for shortest path computations in road networks [GSSV12],

Osipov and Sanders [OS10] study an extreme version of the multilevel paradigm where only

one node is contracted on each level. This leads to a hierarchy of almost 𝑛 levels, thus the

name 𝑛-level partitioning, which instantiates the multilevel scheme for maximum refinement

granularity at the cost of slow running times. To avoid quadratic memory usage, a dynamic

graph data structure is used to implement contractions. On each level, localized FM local

search with the adaptive stopping rule is performed, initialized with the just uncontracted

node and its partner as seeds. Schlag et al. [Sch+16, AHSS17] extend this approach to

hypergraphs, investing significant engineering efforts to make the approach feasible on both

the data structure and algorithmic side. For example, two orders of magnitude in running

time were saved by visiting vertices randomly and contracting greedily (as in agglomerative

heavy-edge clustering) as opposed to maintaining the highest rated contractions in a priority

queue like Osipov and Sanders [OS10]. Further improvements are based on known techniques

such as gain caching, the adaptive stopping rule of Osipov and Sanders, and avoiding gain

update cases. In Chapter 6 we propose a parallel version of the 𝑛-level scheme.

3.9 Partitioning Frameworks
These various techniques are implemented in different frameworks. In Table 3.1, we there-

fore list the most relevant partitioning frameworks and the components they use. These

frameworks are all considered in our evaluations, with the exception of Parkway, as already

mentioned.

Mt-KaHiP and (Mt-)KaHyPar are the only partitioners with a 𝑘-way FM implementation.

Surprisingly a lot of frameworks still use random initial partitioning. Most frameworks use

similar coarsening approaches based on either heavy-edge clustering or matching. However,

BiPart uses a different coarsening algorithm, where each vertex is matched to its smallest

incident net. Subsequently all vertices matched to the same net are merged.

While Zoltan has a 2-way FM implementation, it uses a 2D distribution of the hypergraph’s

incidence matrix. The actual FM routine is performed by one processor per column using only

locally available information, namely the one with the most non-zeroes in its rectangular sub-

matrix. Therefore, we can expect quality penalties if many processors are used. Furthermore,

it uses the upstream/downstream pass approach where only moves in one direction are

allowed, such that only few moves are feasible in each pass before the balance constraint is

reached.

3.10 Complexity and Approximation
Wagner andWagner [WW93] study the complexity of cut minimization problems (𝑘 = 2) with

different balance requirements between minimum unbalanced cut and minimum bisection.
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Table 3.1: Partitioning frameworks and their components. HEC = agglomerative heavy-edge

clustering, HEM = heavy-edge matching, LP = label propagation, K = direct 𝑘-way, RB =

recursive bipartitioning, GHG = greedy hypergraph growing. The last three frameworks

are restricted to graphs. Frameworks marked with
†
are shared-memory parallel and those

marked with
⋎
are distributed.

Framework Reference Coarsening Initial Refinement Mode

PaToH [CA99] HEC portfolio FM RB

Mondriaan [VB05] HEM random FM RB

hMetis-R [KAKS99] HEC random, BFS FM RB

hMetis-K [KK00] HEC hMetis-R LP K

KaHyPar [Sch20] 𝑛-level HEM RB, portfolio

localized FM,

FlowCutter

K

Zoltan-AlgD [SCS19a] HEM + AlgD GHG 2-phase FM RB

HYPE [May+18] – GHG – K

BiPart
†

[MABP21] smallest net GHG LP, pairwise prefixes RB

Mt-KaHyPar
† HEC or

𝑛-level HEM
RB, portfolio

localized FM, LP,

FlowCutter

K, (RB, deep)

Zoltan
⋎

[Dev+06] 2D HEM GHG 2-phase 2D FM RB

SHP
⋎

[Kab+17a] – random LP, pairwise prefixes RB, K

Parkway
⋎

[TK04] HEM hMetis-K LP, gather K

Mt-Metis
†

[LK16] HEM + 2-hop RB, Metis

2-phase Greedy,

Hill-Scanning

K

Mt-KaHiP
†

[ASS18a] LP KaHiP localized FM, LP K

KaMinPar
†

[Got+21] LP + 2-hop portfolio, deep LP deep

Their results indicate that the problem becomes harder with tighter constraints. As soon

as the smaller side must contain at least 𝛼𝑛𝛿 nodes the problem is NP-hard, for arbitrary

𝛼 > 0, 𝛿 > 0. Balanced 2-way partitioning is a special case with 𝛿 = 1. If the smaller side

must only contain a constant number of nodes, the problem can be solved in polynomial

time, and the case ≥ 𝛼 log(𝑛) is still open.
For 𝑘 ≥ 3, 𝜀 = 0, there is no finite factor approximation algorithm subject to P ≠ NP, via

reduction from 3-partition [AR06]. With 𝜀 ∈ (0, 1] the best known approximation factor

is O(log(𝑛) (however with exponential running time in 1/𝜀 [FF15]. For 𝜀 = 1 a better

approximation ratio of O(
√︁

log(𝑛) log(𝑘)) can be achieved [KNS09]. For 𝑘 = 2, 𝜀 = 0, an

O(log(𝑛)) approximation is also possible [Räc08].

3.11 Exact Solvers
There are a lot of exact solver implementations for graphs, but not hypergraphs. Most are

based on branch-and-bound and focus on bipartitioning. Bounds are computed using various
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methods such as semi-definite programming [KRC00, AFHM08], linear programming [BCR97,

Fer+98, AFHM08], multi-commodity flows [Sen01, SST03], or combinatorial bounds based on

max flow and packing paths [DGRW12, DW12]. The combinatorial bounds can be computed

much faster but are less effective at pruning the search. This is a common trade-off in

branch-and-bound algorithms. Usually it is settled on the side of the stronger bounds, but

further recent works in other areas prefer faster bounds as well [Got+20].

For the most part, these solvers are not practical on instances with more than 100 nodes,

yet the solver by Delling et al. [DGRW12] is appropriate as long as the cut is very small.

3.12 Spectral Partitioning
Since the success of combinatorial iterative improvement algorithms and the multilevel

paradigm, spectral partitioning has been deemed outdated. It is slower and produces worse

partitions. Yet, due to the difficulty of parallelizing the combinatorial algorithms and the

advent of highly optimized linear algebra libraries on GPUs, spectral partitioning has recently

experienced a resurgence [ABR20]. At the moment spectral partitioning is not competitive

with the parallel combinatorial algorithms, but the research area has become active again.

The fundamental idea [Fie75] is to bipartition the nodes based on their entries in the

eigenvector 𝑥2 of the second smallest eigenvalue 𝜆2 (the Fiedler vector) of the graph’s

Laplacian matrix 𝐿. The smallest eigenvalue 𝜆1 of 𝐿 is 0 with eigenvector (1, . . . , 1)𝑇 , which
holds no information. Nodes with an entry smaller than the median, are assigned to one

block, and those greater to the other. To allow imbalances 𝜀 > 0 other quantiles can be used

as the splitter. The Laplacian is defined as 𝐿 = 𝐷 −𝐴 where 𝐷 is the matrix with node degrees

on the diagonal and 𝐴 is the adjacency matrix.

The following description is based on one in the the dissertation of Christian Schulz [Sch13].

First note that 𝑥𝑇𝐿𝑥 =
∑
(𝑢,v ) ∈𝐸 (𝑥 [𝑢] − 𝑥 [v])2. Furthermore, assume we have a bipartition

(𝑉1,𝑉2) with cut edges 𝐶 . Let 𝑥 be the vector with 𝑥 [𝑢] = −1 if 𝑢 ∈ 𝑉1 and 𝑥 [𝑢] = 1 if

𝑢 ∈ 𝑉2. Then 𝑥
𝑇𝐿𝑥 =

∑
(𝑢,v ) ∈𝐶 (𝑥 [𝑢] − 𝑥 [v])2 = 4|𝐶 | as 𝑥 [𝑢] − 𝑥 [v] is zero if 𝑢 and v are in

the same block. This leads to a formulation of graph bisection as the optimization problem

of minimizing 𝑥𝑇𝐿𝑥 , subject to 𝑥 [𝑢] ∈ {−1, 1} (partition), as well as (1, . . . , 1)𝑥 = 0 (balance).

If we relax the integrality constraint on 𝑥 to real values but restrict the values via 𝑥𝑇𝑥 = 𝑛,

the optimal solution is the Fiedler vector by Lagrange’s optimality conditions.

This approach is restricted to bipartitions and thus recursive bipartitioning is used for

𝑘-way partitions. Hendrickson and Leland [HL95] show how to use multiple eigenvectors to

extend this approach to direct 𝑘-way partitions.

3.13 Streaming Partitioning
In the streaming setting the graph is too large to be stored in memory. Instead, it is streamed

in via the network or file system. In the classic model the algorithm receives one node and
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its incident edges at a time. The node must be assigned right away, and the decision cannot

be changed later. The buffered model allows keeping a limited set of nodes and their edges

in memory.

All known algorithms in the classic model perform some kind of one-pass label propagation.

A modification of the rating function encourages balanced partitions, as only partial node

assignments are known.

Stanton and Kliot [SK12] use |𝑉𝑖 ∩ Γ(v) | · (1 − |𝑉𝑖 |
𝐿max

) as the rating function to maximize, in

their linear deterministic greedy algorithm. The first term is simply the label propagation

objective, whereas the second term is a penalty for heavy blocks.

In their Fennel algorithm, Tsourakakis et al. [TGRV14] use |𝑉𝑖 ∩ Γ(v) | − 𝛼𝛾 |𝑉𝑖 |𝛾−1
, where

𝛾 = 3

2
is a parameter and 𝛼 = 𝑚 𝑘𝛾−1

𝑛𝛾
. The parameter 𝛾 interpolates between pure label

propagation aka optimizing for the number of neighbors in the block (𝛾 = 1) and optimizing

for the number of non-neighbors (𝛾 = 2). The authors claim that the corresponding objective

function is essentially a form of modularity, but it seems like they used the wrong null model

(Erdos-Renyi instead of configuration model).

Faraj and Schulz [FS21] propose a buffered/batched streaming algorithm that incorporates

a multilevel partitioner. The algorithm loads a batch of nodes, builds a model graph, and then

partitions the model with a multilevel algorithm in-memory, before proceeding with the next

batch. The model consists of the already streamed/assigned nodes contracted into one node

per block (fixed to that block) as well as the nodes in the current batch and the thus induced

subgraph. Hence, the optimizer takes the already built partition assignment into account,

without using memory proportional to the number of already streamed nodes. Jafari et al.

[JSA21] follow a similar approach, but omit the model graph. The already built partition

can still be taken into account, however the running time does not benefit from a compact

graph representation (smaller IDs, more cache-friendly) and all partition assignments must

be stored in memory.

Taşyaran et al. [TDKU21] use streaming label propagation without a penalty term for

partitioning hypergraphs. Furthermore, they propose methods to reduce the memory used

for storing connectivity sets, such as (1) storing only a fixed number of entries and using a

random eviction policy, (2) using a Bloom filter. This comes at the cost of storing incomplete

(1) or partially wrong (2) connectivity sets.
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4

Parallel Multilevel Hypergraph Par-
titioning

Recent work on hypergraph partitioning has focused on improving the solution quality

further and further. This was for example done by investing substantial amounts of running

time for complex refinement routines such as flow-based refinement. With our works on

FlowCutter refinement integrated in KaHyPar [GHSW20] and recent evolutionary algo-

rithms [ASS18b] this research direction appears saturated for now. So far, the majority of

partitioning algorithms are still sequential. The time was ripe to pivot towards improving the

speed of these algorithms, in order to make them more applicable in practice. Motivated by

recent advances in shared-memory graph partitioning [ASS18a], this led us to parallelize the

techniques employed in KaHyPar. The fast and parallel multilevel hypergraph partitioning

algorithm presented in this chapter is the first step in a series of works on this topic. In this

chapter we focus on a classic multilevel algorithm with approximately log(𝑛) levels, which
uses 𝑘-way refinement. The missing components from KaHyPar are 𝑛-level (un)coarsening

and flow-based refinement, which are parallelized in Chapter 6 and Chapter 7, respectively.

Attributions. This chapter is based on a joint publication [GHSS21] with Tobias Heuer,

Peter Sanders and Sebastian Schlag. The paper was written by Tobias Heuer and me, with

editing by Peter Sanders and Sebastian Schlag. However, due to the space constraints of

a conference paper, the contents were almost completely reworked for this dissertation,

adding a substantial amount of details. The source code was written by Tobias Heuer and me.

Tobias focused on coarsening, label propagation refinement and initial partitioning (which

had already been the subject of his bachelor thesis [Heu15]), whereas I worked on parallel

localized FM refinement and community detection. As both contributed to the entirety of the

code, both dissertations describe the full system. We are grateful to Michael Hamann for his

ideas on a first version of the parallel gain recalculation. While we describe a more memory-
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efficient version here, his idea is still published in the conference paper. Additionally, we

include some parts that were not yet in the code/algorithm at the time of writing the paper,

but do benefit it. These came about during performance engineering in the context of the

follow-up paper on parallel n-level partitioning [GHSS22]. Due to this, the experiments are

completely redone for this dissertation. Finally, some algorithmic descriptions are based on a

more recent publication with Michael Hamann on deterministic parallel partitioning [GH21]

(written predominantly by me), because some low-level components were replaced with

newer versions developed for said paper.

Chapter Overview. The structure of this chapter follows the multilevel paradigm. We start

with coarsening in Section 4.1, where we extend an existing parallelization for agglomerative

heavy-edge clustering by showing how to use less locking, and resolve cyclic cluster join

conflicts on-the-fly. Additionally, we propose a parallel hypergraph contraction algorithm,

and describe engineering and parallelization details for the community detection prepro-

cessing. This is followed by the initial partitioning phase in Section 4.2, where we discuss

shortcomings in the parallelization of existing approaches and propose using work-stealing

as a remedy to scalability issues. Our main novel contributions are in the refinement phase

described in Section 4.3, where we describe several techniques to improve the accuracy of

calculated gains in scenarios where parallel vertex moves are performed: attributed gains to

double-check and trace actual gains, a parallel gain table, and a parallel gain recalculation.

These are integrated into our direct 𝑘-way label propagation and localized FM refinement

algorithms, for which we provide implementation and engineering details; with specific

focus on hypergraph implementations. With parallel gain recalculation, this is the first

partitioner to implement a fully parallel 𝑘-way FM refinement.

Compared to the conference publication, we add running time analyses in terms of work

and depth, as well as substantial algorithmic details. This chapter not only serves as a

description of novel techniques, but also as a description of the overall framework Mt-

KaHyPar. Therefore, this chapter contains discussions of existing approaches that we use in

more detail than common for short conference publications. We conclude with a thorough

experimental evaluation, in which we assess the effectiveness of the algorithmic components

employed in our framework, perform extensive comparisonswith state-of-the-art partitioning

systems, and provide configuration experiments.

4.1 Coarsening

The purpose of the coarsening phase is to provide a sequence of structurally similar and suc-

cessively smaller (coarser) hypergraphs ⟨𝐻0 = 𝐻,𝐻1, . . . , 𝐻𝑟 ⟩, to enable faster improvements

and convergence in the refinement phase. We obtain a coarser hypergraph 𝐻𝑖+1 from the

finer 𝐻𝑖 by contracting a vertex clustering of 𝐻𝑖 .
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Algorithm 4.1: Coarsening Phase
1 𝑉0 ← 𝑉 , 𝑖 ← 0

2 while |𝑉𝑖 | > 𝑡 · 𝑘 do
3 rep[𝑢] ← 𝑢,weight[𝑢] ← 𝑐 (𝑢) ∀𝑢 ∈ 𝑉𝑖
4 for 𝑢 ∈ 𝑉𝑖 in random order do in parallel
5 𝐶 ← HeavyEdgeRating(u)

6 if ClusterJoinProtocol(u, C) succeeds

7 if (weight[𝐶] +=
atomic

𝑐 (𝑢)) ≤𝑊max

8 rep[𝑢] ← 𝐶

9 else
10 weight[𝐶] −=

atomic

𝑐 (𝑢)
11 𝐻𝑖+1 = (𝑉𝑖+1, 𝐸𝑖+1) ← Contract(rep)
12 𝑖++

4.1.1 Agglomerative Clustering
Algorithm 4.1 shows pseudocode for our approach. Initially, each vertex is in its own

cluster (line 3, rep[𝑢] = 𝑢) and we visit the vertices in random order in parallel (line 4). For

each vertex 𝑢 we select a cluster 𝐶 to join (line 5) that maximizes the heavy-edge rating
function [CA99, HS17, KAKS99].

𝑟 (𝑢,𝐶) ≔
∑︁

𝑒∈𝐼 (𝑢 )∩𝐼 (𝐶 )

𝜔 (𝑒)
|𝑒 | − 1

This rating prefers clusters that share a large number of heavy nets of small size with 𝑢. We

then run a locking protocol (described in the next paragraph) to actually perform the move

into the desired cluster, which performs on-the-fly conflict resolution.

A clustering is agglomerative if no vertex leaves a cluster that already consists of multiple

vertices. We achieve this by skipping non-singleton vertices in the parallel loop and via the

locking protocol. This property ensures that each cluster contains a vertex with the same ID

(its leader). Furthermore, the actual rating of a cluster is at least as good as the calculated

one; it may be better if some other vertex joined concurrently, but it will never be worse.

Additionally, we enforce a weight constraint

∑
v∈𝐶 𝑐 (v) ≤𝑊max ≔ ⌈𝑐 (𝑉 )

𝑡 ·𝑘 ⌉ on the clusters.

Here 𝑡 is a parameter defined shortly. This constraint ensures that a balanced 𝑘-way partition

of the coarsest hypergraph exists, since we prevent overly heavy vertices.

We use atomic fetch-and-add instructions to update cluster weights concurrently. We first

check if an update would violate the constraint, and only perform it if not. This still has no

atomic consistency, so we perform the atomic fetch-and-add instruction and check its return

value (line 7). If the new cluster weight exceeds the maximum weight, we subtract the vertex

weight again and keep the vertex in its singleton cluster, so that it may try to move again
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Figure 4.1: Cluster locking protocol. Blue dashed lines show the current cluster assignment,

whereas the arrows show intentions to join a specific cluster.

in the next iteration. Note that we do not update the weight of 𝑢’s old cluster, since it is

now empty and no longer needed. We remark that in this phase, strictly enforcing weight

constraints is not particularly important; the non-atomic check would probably work fine

due to the 1/𝑡 factor in𝑊max.

After one pass over the vertices, we contract the clustering to construct the next hypergraph

𝐻𝑖+1 (line 11). We keep performing passes until the latest hypergraph is small enough for

initial partitioning (|𝑉𝑖 | ≤ 𝑡 · 𝑘 , line 2). The parameter 𝑡 controls the size of the coarsest

hypergraph, such that initial partitioning has good potential for optimization decisions,

placing roughly 𝑡 vertices in each block. A typical value for us is 𝑡 = 160, even though a

fixed choice is not optimal [PS19].

Cluster Join Protocol. A side effect of the parallelization is that two vertices may concur-

rently join each other’s cluster and are subsequently still left as singletons. More generally,

there may be a cycle of vertices trying to join each other. This type of race condition is

often left unaddressed, (1) because maybe multiple rounds are performed before contracting

(offering a second chance), (2) because clustering quality is not severely affected, or (3)

because it does not happen very often. Yet, we argue that such behavior is harmful for the

algorithm’s convergence, in particular once the hypergraphs are small.

We employ a vertex-locking protocol with three states per lock that resolves such cyclic

join conflicts on-the-fly. Each vertex can be in one of three states: singleton, currently joining
a cluster, or part of a multi-vertex cluster. We maintain vertex states with compare-and-swap

instructions. The semantics of the singleton and multi-vertex state are unlocked, whereas the
joining state has locked semantic. We distinguish between singleton and multi-vertex due to
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the agglomerative property. We need to protect singletons whose vertex is about to leave

from taking on new vertices, whereas multi-vertex clusters can be joined right away, as their

vertices are not considered for moving.

If vertex 𝑢 is in a singleton cluster, we find a cluster 𝐶 for 𝑢 to join, and atomically set the

state of 𝑢 to joining. If 𝐶 is already a multi-vertex cluster, we directly set the state of 𝑢 to

multi-vertex cluster, letting the join operation succeed.

Otherwise, if 𝐶 is a singleton, we try to atomically change the state of the vertex v in 𝐶 to

joining. Because the clustering is agglomerative v’s identifier is just 𝐶 . If that succeeds, 𝑢
joins 𝐶 and both 𝑢 and v are marked as part of a multi-vertex cluster.

In the case that v is currently trying to join some other cluster𝐶′, we spin in a busy-waiting
loop until the state of v is updated to multi-vertex cluster by the thread currently working

on v , and then join its new cluster. In that busy-waiting loop, we check if 𝑢 is part of a cycle

of vertices trying to join each other, as this may result in a deadlock. This is done by storing

intended joins in an array, which we can use as parent pointers to chase until we get back to

𝑢 (cycle detected) or a vertex pointing to itself (tree root). The deadlock case is illustrated

in Figure 4.1. Notice that provoking this deadlock is intentional, as it synchronizes all join

operations of a cyclic dependency, allowing us to fix it. If a cycle is detected, the vertex with

the smallest ID in the cycle gets to break it by joining its intended cluster. This then triggers

a cascade of join approvals in both ways around the cycle, effectively merging all associated

vertices. The joins are still subject to the weight constraint, which is checked before each

approval.

Heavy-Edge Rating Calculation. Algorithm 4.2 shows pseudocode for calculating the

heavy-edge rating function for the neighbor clusters of a vertex 𝑢. First, we aggregate

the ratings in a sparse array indexed by cluster ID and store the potential candidates in a

dense vector. Line 4 incorporates the information from community detection preprocessing,

restricting candidates to clusters of neighbors in the same community. In a second step we

select the highest-rated candidate (ties broken uniformly at random) and reset the ratings.

We already check the cluster weight constraint to make it less likely that the join is denied

in the subsequent atomic check.

Rating calculation is the most time-consuming part of the clustering routine by far. For a

vertex 𝑢 it takes O(∑𝑒∈I(𝑢 ) |𝑒 |) work if implemented naively as in Algorithm 4.2. With this,

the overall work of one full coarsening pass would be O(∑𝑒∈𝐸 |𝑒 |2) which is infeasible in

practice. To accelerate this, we use a parameter 𝜂 to skip nets with |𝑒 | > 𝜂. Their contribution
to the rating is small due to the 1/|𝑒 | term. In practice we choose 𝜂 = 1000 based on previous

experience [Sch20]. This reduces the work for one vertex down to O(deg(𝑢)), and the overall
work of a pass down to O(∑𝑢∈𝑉 deg(𝑢)) = O(p), though the constant term is quite large.

The depth of one coarsening pass is thus O(max𝑢∈𝑉 deg(𝑢) + log(𝑛)).
We could further reduce the depth to O(log(max𝑢∈𝑉 deg(𝑢)) + log(𝑛)) by parallelizing

the loop over incident nets in the per-vertex calculation, using atomic fetch-and-add instruc-

tions for the ratings. The check rating[rep[v]] = 0 can be faithfully implemented because
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Algorithm 4.2: Compute Heavy-Edge Rating

Input: vertex 𝑢 ∈ 𝑉
1 candidates← ∅
2 for 𝑒 ∈ I(𝑢) do
3 for v ∈ 𝑒 do
4 if community[𝑢] = community[v]
5 if rating[rep[v]] = 0

6 add rep[v] to candidates

7 rating[rep[v]] += 𝜔 (𝑒)/|𝑒 |
8 for 𝐶 ∈ candidates do
9 if weight[𝐶] + 𝑐 (𝑢) ≤𝑊max and rating[𝐶] > best rating

10 store 𝐶 as best candidate

11 rating[𝐶] ← 0

12 return best candidate

the atomic instruction returns the value immediately prior to its execution. However, in

practice the outer level of parallelism over the vertices is clearly sufficient and the per-vertex

parallelization would only be worthwhile for very large degrees.

Coarsening Progress. As already stated, the number of levels in the multilevel hierarchy

offers a trade-off between speed and quality. Therefore it is important to find the right pace:

not too quickly where information gets lost, but not too slow either. During a coarsening

pass we track the number of clusters, which corresponds to the number of vertices on the

next level. If enough progress is made, we stop the coarsening pass and create the next level.

We use the condition
|𝑉𝑖 |
|𝑉𝑖+1 | > 𝛽 on level 𝑖 , where 𝛽 is a user parameter we call the shrink

factor. Intuitively, good values for 𝛽 are in the range [1.5, 10]. For example matching-based

coarsening is hard-capped at 2. With clustering-based coarsening, the hypergraph can be

shrunk substantially faster, which is usually not desirable, hence we need to control it. In

the parameter study, we determine that 𝛽 = 2.5 works best for us.

Similarly, if too little progress
|𝑉𝑖 |
|𝑉𝑖+1 | < 𝛼 is made, we terminate coarsening altogether and

proceed with initial partitioning. Here 𝛼 is a second input parameter with reasonable values

around 1.01. When this condition is triggered, it is usually due to a lack of light clusters

in the neighborhood of singleton vertices. Oscillation issues arising from parallelism are

handled by the locking protocol; in fact the locking protocol encourages more progress.

Differences to PaToH’s AgglomerativeClustering. Catalyürek et al. [ÇDKU12] consider

a similar parallelization of PaToH’s agglomerative clustering [CA99]. The major difference

to our approach is the way cluster join conflicts are handled. They try to lock the visited

vertex 𝑢 before the rating calculation and skip 𝑢 if this fails. When a higher rated candidate
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is found in the selection loop, the lock on the cluster’s representative vertex (same ID due to

agglomerative property) is tried. In case of success, the candidate is stored and the previously

best candidate is released. If the lock fails the candidate is ignored. Once again, this means

the lock for 𝑢 is held during the entirety of the rating process.

The intention is to avoid cyclic joins, as the candidate that 𝑢 is trying to join must be

successfully locked. This is not possible if the candidate currently tries to join a cluster

itself. Note that deferring the try-lock until the candidate selection loop would give the same

parallel consistency guarantees, but the rating calculation would be wasted if some other

vertex joined 𝑢 in the meantime. One upside of this approach is that only try-lock operations

are used. However, the convergence issue we mentioned still persists here. If no suitable

candidate can be locked, the vertex stays a singleton, whereas in our approach this only

happens if the cluster weight constraint fails. This is remedied to a certain extent by trying

multiple candidates prioritized by rating.

During the writing of this dissertation, we noticed that we did not conduct any comparison

between our approach and theirs for the conference paper. It was still unclear whether

either of the locking approaches have a noticeable impact on partition quality or running

time. Additionally, there is some design space left to explore. Therefore, we perform this

comparison in Section 4.4 and add two variants of their approach (try all candidates, lock

only best candidate) as well as a variant using no locks at all (which corresponds to label

propagation coarsening). We believe our approach is better since we hold locks for a shorter

time, perform fewer lock operations overall, and do not ignore the best choice if a lock fails.

This is confirmed in the experiments.

Additionally, our heavy-edge rating calculation algorithm differs from the one in PaToH.

We aggregate ratings directly at the clusters as we iterate over the neighborhood, whereas

their algorithm fully constructs the neighborhood in the rating map. The ratings are then

aggregated at the same time as selecting a candidate, which means the second loop (line 8) is

not over the candidates but the neighbor vertices. This aggravates the heavier use of locking

further.

4.1.2 Contraction
We now recapitulate the semantics of contracting a clustering, before describing our parallel

algorithm. Vertices of the same cluster 𝐶 are merged into a coarse vertex with weight∑
v∈𝐶 𝑐 (v). The incident nets of the coarse vertex are obtained from the union of the nets

of its constituents. For each net 𝑒 of 𝐻𝑖 , its pins are replaced by their corresponding coarse

vertex in 𝐻𝑖+1. Nets consisting of a single pin are discarded. From a set of identical nets

(containing the same pins in 𝐻𝑖+1) we keep one representative and aggregate their weights.

We describe a different algorithm than in the conference paper, since this one performed

better when writing the deterministic partitioning code (Chapter 5). The process consists of

the following four steps, the first three of which are also shown in Algorithm 4.3.

1. Remap cluster IDs to a compact interval.
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2. Generate pin lists of coarse nets.

3. Detect and remove identical nets.

4. Assemble the CSR data structures.

Remap Cluster IDs. To remap cluster IDs, we compute a prefix sum over an array with a 1

at position 𝑖 if cluster ID 𝑖 is used, and a 0 otherwise. This array then contains the remapped

compact ID for cluster 𝑖 at position 𝑖 , which we assign to the vertices in a parallel loop,

replacing their old cluster ID with the remapped one. The prefix sum also yields the number

of coarse vertices 𝑛′ = |𝑉𝑖+1 |. This step has O(𝑛) work and O(log(𝑛) depth.

Generate Pin Lists. Generating pin lists for 𝐻𝑖+1 is done independently in parallel over the

nets of 𝐻𝑖 (line 6 - 18). For each 𝑒 ∈ 𝐸𝑖 , we remap vertex IDs in the pin list to the compact

IDs. We use a thread-local bitvector of size 𝑛′ to avoid duplicate entries. Deduplication could

also be done without extra memory by sorting and using a filter to remove consecutive

duplicates (std::unique), but the bitvector is faster in practice. If only one pin is left, we

clear the vector to mark the single-pin net as removed; this is considered later in the CSR

assembly step. This step takes O(p) work and O(max𝑒∈𝐸𝑖 |𝑒 | + log(𝑚)) depth. While the

depth may be reduced by parallelizing the deduplication, we do not implement this due to

the sufficient outer level of parallelism. The new pin list vector is stored in a global array

coarse-pins at position 𝑒 . This effectively creates an adjacency list for 𝐻𝑖+1 but still uses net
IDs for 𝐻𝑖 , since we will only know the number of nets in 𝐻𝑖+1 after the next step: identical
net detection.

Identical Net Detection. A trivial approach to detecting identical nets is to compare all

pin lists pair-wise. Since this is not feasible, the InrSrt algorithm of Aykanat et al. [ACU08,

DKÇ13] uses a fingerprint

∑
v∈𝑒 v2

to eliminate unnecessary comparisons. Nets with different

fingerprints (or different size) need not be compared. This is achieved by sorting nets by

fingerprint and size, such that nets with the same fingerprint are consecutive in memory.

On each range with the same fingerprint the pairwise comparisons are performed (see line

22-25). The net in the outer loop (line 22) is the representative at which duplicate’s weights

are aggregated, if detected in the inner loop (line 24). Duplicates are marked as removed by

clearing their coarse-pins[𝑒] vector. The outer loop thus skips nets with an empty pin list.

The equality-check is implemented with a bitvector of size 𝑛′ (re-use from previous step)

with bits for the pins of the outer loop’s net set. Surprisingly, this was faster than sorting the

pin-lists (once in the previous step) for direct comparison, even if parallel sorting was used

for very large nets.

While InrSrt can be parallelized by simply plugging in a parallel sorting algorithm, a

hashing-based parallelization was faster. This can be interpreted as a form of a map-reduce

computation, where we group items on processors by some key, and then treat all items

with the same key sequentially. For this, we perform the fingerprint computation during
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Algorithm 4.3: Contract Clustering: Steps 1 - 3
// remap cluster IDs

1 for 𝑢 ∈ 𝑉 do in parallel mapping[𝑢] ← 0

2 for 𝑢 ∈ 𝑉 do in parallel mapping[rep[𝑢]] ← 1

3 𝑛′ ← PrefixSum(mapping) // 𝑛′ = # coarse vertices
4 for 𝑢 ∈ 𝑉 do in parallel rep[𝑢] ← mapping[rep[𝑢]]

// generate pin lists
5 buckets← ∅ // hash map with a vector + spinlock per slot
6 for 𝑒 ∈ 𝐸 do in parallel
7 pins← ∅ // empty vector
8 contained[0..𝑛] ← false // thread-local bitvector of size 𝑛
9 for v ∈ 𝑒 do // remap and deduplicate
10 if not contained[rep[v]]
11 contained[rep[v]] ← true

12 add rep[v] to pins

13 if |pins| > 1

14 fingerprint← ∑
v∈pins v2

15 add (𝑒, fingerprint) to buckets, hashing by fingerprint

16 else
17 clear pins // mark 𝑒 as removed
18 coarse-pins[𝑒] ← pins // global adjacency list

// identical net detection
19 𝑚′ ← 0, p′ ← 0

20 for 𝐵 ∈ buckets do in parallel
21 sort 𝐵 by fingerprint

22 for 𝑖 = 0 to |𝐵 | with coarse-pins[𝐵 [𝑖] .𝑒] ≠ ∅ do // pairwise comparisons
23 𝑤 ← 0

24 for 𝑗 = 𝑖 + 1 to |𝐵 | and 𝐵 [𝑖].fingerprint = 𝐵 [ 𝑗].fingerprint do
25 if coarse-pins[𝐵 [𝑖] .𝑒] = coarse-pins[𝐵 [ 𝑗] .𝑒]
26 clear coarse-pins[𝐵 [ 𝑗] .𝑒] // mark 𝐵 [ 𝑗] .𝑒] as removed
27 𝑤 += 𝜔 (𝐵 [ 𝑗] .𝑒)
28 coarse-net-weight[𝐵 [𝑖] .𝑒] ← 𝑤

29 𝑚′ +=
reduce

1

30 p′ +=
reduce

|coarse-pins[𝐵 [𝑖] .𝑒] |

the pin-list generation (line 14), and then insert the net into a parallel hash map (line 15),

with the fingerprint as key. The hash map’s slots are vectors (called buckets), such that all

nets with the same fingerprint are placed in the same bucket. We then run the sequential
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algorithm on each bucket independently in parallel (line 20).

Analyzing the complexity of this step is more difficult since it depends on the false-

positive rate of the fingerprint function and the distribution of the hash keys, which is

why we refrain from it. One might expect that this is the most time-consuming step, but

during performance engineering it was always faster than generating the pin lists, showing

the effectiveness of the simple

∑
v∈𝑒 v2

fingerprint function in practice. This fingerprint

function performed best in experiments by Deveci et al. [DKÇ13] as well as Akhremtsev

et al. [AHSS17] who compared false-positive rates. We should also mention that with

more sophisticated fingerprint functions, one can actually obtain provable bounds on the

false-positive rates [HS18b].

Assemble CSR Data Structures. The last step is to assemble the two CSR data structures

for the pins of nets and the incident nets of vertices. At this point we have generated the pin

lists of 𝐻𝑖+1 but they are still stored in an adjacency list that is indexed by the net IDs of 𝐻𝑖 .

To obtain the CSR representation, we can apply the standard conversion from the pin list

format (adjacency lists for the nets), with some ID remapping. We first compute two prefix

sums over the nets of 𝐸𝑖 with non-empty coarse pin lists to obtain a fine-to-coarse net ID

mapping and their sizes to obtain offsets into the CSR for the pins. In a second parallel loop

over 𝐸𝑖 we write the pin lists to the CSR. We compute the degrees of the coarse vertices by

atomically incrementing a counter for each coarse vertex in the copy loop. With the degrees,

we can again use a prefix sum to compute offsets for the incident nets CSR. In a last parallel

loop, this time over the nets of 𝐸𝑖+1, we iterate over the (now constructed) pin list of 𝐻𝑖+1
and write the net ID to the position obtained from atomically incrementing the offset of the

pin. The offsets are now rotated by one position, which we fix by employing a trick. We

actually construct the degrees at one position to the right, and atomically decrement during

the net ID writing, such that the final offsets are at the correct position.

In the introduction, we mentioned that this contraction algorithm was developed for the

deterministic partitioning paper (Chapter 5). To avoid repeating this algorithm later, we

show how to make it deterministic here. These steps are omitted in the non-deterministic

default version. There are only two sources of non-determinism in this algorithm. The first

is what we just described: the incident net IDs may be in an arbitrary order, which we fix

by sorting each range. The second is which one from a set of identical nets becomes the

representative we keep. Different choices here will cause different coarse net IDs, since we

assign them based on a prefix sum, which then causes differences in the CSR. We fix this by

including the net ID as a tertiary comparison criterion for the sorting during identical net

detection, such that the order is deterministic.

4.1.3 Community Detection Enhances Coarsening

The last piece of the coarsening phase is what is actually run first: the enhancement of

coarsening decisions based on community detection, as proposed by Heuer and Schlag [HS17]
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for sequential KaHyPar. We follow their approach and optimize modularity on the star

expansion with hand-crafted edge weights 𝑤′ as described in Section 3.4.5, using the parallel

version of the Louvain algorithm by Meyerhenke and Staudt [SM16].

Our Contribution. In our implementation, we parallelize local moving in the sameway, but

employ a randomized visit order. Furthermore, we remove a term from the gain computation

that only depends on the origin cluster, reducing arithmetic operations by a factor of about 2.

Recall that the modularity gain of moving a node from its current community 𝐶 to a

neighboring community 𝐷 is the following term.

𝑤′ (𝑢, 𝐷) − 𝑤′ (𝑢,𝐶)
vol(𝑉𝐺 )

+ (vol(𝐶) − vol(𝑢) − vol(𝐷)) vol(𝑢)
vol(𝑉𝐺 )2

First, we remove the redundant vol(𝑉𝐺 ) factor in both denominators, already eliminating a

division. For comparing potential target clusters, we use 𝑤′ (𝑢, 𝐷) − vol(𝐷) vol(𝑢 )
vol(𝑉𝐺 ) , since the

term −𝑤′ (𝑢,𝐶) + (vol(𝐶) −vol(𝑢)) vol(𝑢 )
vol(𝑉𝐺 ) is the same for all potential targets. We incorporate

the option of not moving the node by considering this as the initially best choice with gain

𝑤′ (𝑢,𝐶) − (vol(𝐶) − vol(𝑢)) vol(𝑢 )
vol(𝑉𝐺 ) , due to the adjusted gain definition for target clusters

𝐷 ≠ 𝐶 . Additionally, we precompute
1

vol(𝑉𝐺 ) once for the graph and
vol(𝑢 )

vol(𝑉𝐺 ) once per node so
that the gain computation does not perform any divisions at all, which is one of the more

expensive arithmetic operations.

Our contraction algorithm works differently than that of Staudt and Meyerhenke, and

is a shared-memory version of a map-reduce contraction algorithm by Zeitz [HSWZ18].

We remap the community IDs to a compact interval as for the hypergraph contraction.

Subsequently, we sort the nodes by community ID via parallel counting sort, which also gives

us an array of offsets, pointing to the ranges where communities begin. We parallelize the

generation of the coarse edges on a per-community level. For each community, one thread

generates all of its outgoing coarse edges by iterating sequentially over the neighbors of

the vertices in the community, and aggregating the edge weights in a sparse vector indexed

by community ID of the neighbor. The work is 𝑂 ( |𝐸𝐺 |), and the depth is the largest degree

sum over vertices in a community. Again, the depth can be reduced by parallelizing the

per-community generation analogously to the generation of coarse pin lists (Algorithm 4.3).

Community Detection on Hypergraphs. We have since supervised a bachelor the-

sis [Kra21] that faithfully transfers two community structure measures (modularity and

map equation) to hypergraphs, and implements a parallel Louvain method directly on the

hypergraph for these measures. Other researchers [Kam+19, CVB21] have worked on trans-

ferring modularity to hypergraphs, coming up with different measures depending on how

hyperedges are counted as covered: all pins in the same community, the majority of pins in

the same community, etc. Our modularity measure is based on 𝜆 − 1, i.e., it accounts for the

number of different blocks cut by a hyperedge, whereas other measures are based on cut or
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model what the clique expansion would do. The goal for this was to both establish the notion

of community structure on hypergraphs more deeply, and get rid of the hand-crafted edge

weights. While this did improve partition quality by a small margin, it was substantially

slower (not just due to implementation issues), which is why we ultimately did not include

it in the framework.

4.2 Initial Partitioning

Based on previous research [KK00] and our own experience [Heu15], recursive bipartitioning

works better than flat direct 𝑘-way algorithms for initial partitioning. Therefore, we perform

recursive bipartitioning with the parallel coarsening and uncoarsening code. More precisely,

we have a main coarsening cycle for direct 𝑘-way that coarsens until 𝑡 · 𝑘 vertices are left.

This is then followed by recursive bipartitioning which coarsens further down to 𝑡 · 2 vertices

and only then runs flat initial partitioning. For recursive bipartitioning, we use the adaptive

imbalance formulation of Schlag et al. [Sch+16] to guarantee 𝜀-balance of the final 𝑘-way

partition.

4.2.1 Parallel Recursive Bipartitioning

To gain further parallelism, we perform recursive partitioning tasks in parallel. A previous

approach [LK13] proposes to split the threads for recursive sub-tasks, statically assigning

them. This will cause bad load imbalance issues if some sub-tasks deal with substantially

larger (or more dense) sub-hypergraphs than others. This is particularly severe for hyper-

graphs (as opposed to graphs), since the number of hyperedges and pins may still be large,

even if only few vertices are left. For this observation, note that the number of distinct edges

in a graph is bounded by

(
𝑛
2

)
, thus guaranteeing well-collapsing instances, whereas for a

hypergraph it is only bounded by 2
𝑛
. This is further aggravated if coarsening converges long

before reaching the 𝑡 · 𝑘 limit. To alleviate this load balance issue, we implement the entire

multilevel code with a framework that uses a work-stealing task scheduler, such that threads

will join the work in other branches of the recursive partition tree.

4.2.2 Portfolio-Based Flat Bipartitioning

We use the same portfolio of sequential flat bipartitioning heuristics as sequential KaHy-

Par [Sch+16], but parallelize independent runs. In total, there are 9 different sequential

algorithms, including six different versions of greedy hypergraph growing [CA99]. These

are repeated several times with different random seeds to diversify the solution space. Each

2-way partition is refined with sequential 2-way FM to navigate even the partitions of poten-

tially weaker algorithms into a local minimum. Since the optimization landscape is diverse,

even seemingly bad algorithms can contribute the best initial partition if refined with FM, as
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shown by previous results [Heu15]. Out of the computed solutions that are balanced, we

pick the one with smallest cut with ties broken by balance and a coin toss.

Random. A very simple algorithm is to iterate through the vertices and toss a coin for the

block assignment. In case an assignment would exceed the maximum block weight, the

vertex is assigned to the other block. If that would also exceed the other block’s weight we

take the result of the coin toss and accept that the partition is imbalanced.

Pseudo-Peripheral Seeds. The following algorithms start with one vertex (seed) in each

block and gradually grow the blocks. The quality of seeds influences the partition quality.

One choice that works well are vertices that are far away from each other, resulting in the

name pseudo-peripheral. Starting from a random vertex, we perform a BFS. The last visited

vertex is the seed for 𝑉0. It also serves as the start point for a second BFS, whose last visited

vertex is the seed for 𝑉1.

BFS. The BFS-based flat algorithm performs two alternating BFSs from pseudo-peripheral

seeds, adding one vertex at a time to each block. In each iteration, the next unassigned

vertex from the BFS queue is added to the associated block if it fits, and its neighbors are

added to the BFS queue. If a queue becomes empty before all vertices are assigned, a random

unassigned vertex is added to it.

Label Propagation. For label propagation initial partitioning, the vertices are initially

unassigned. Two pseudo-peripheral vertices and a fixed number (𝜏 = 5 [Heu15]) of their

neighbors are initially assigned to the respective blocks𝑉0,𝑉1. Then label propagation rounds

are performed until no vertex was moved in the last round or a maximum number of rounds

is exceeded. In each round, all vertices are visited in random order and moved to the block

that has the highest connectivity gain, subject to the balance constraint. Note that the gain

computation formula distinguishes between unassigned and assigned vertices. The gain for

unassigned vertices is still well-defined since it is forced to be assigned at the time it is first

visited. Note also that after the first round all vertices are assigned.

Greedy Hypergraph Growing. Finally, we employ six different variants of greedy hyper-

graph growing [CA99], combining three priority queue (PQ) selection strategies and two

scoring functions (PQ keys). Again, each block is initialized with a pseudo-peripheral seed.

For each block, we maintain a PQ with unassigned neighbors of the vertices currently in the

block. The two different scoring functions are (1) the direct connectivity gain of adding the

vertex 𝑢 to the associated block and (2) the max-net gain, which picks the block with the

highest weight arg max𝑖∈[𝑘 ] 𝜔 ({𝑒 ∈ I(𝑢) | Φ(𝑒,𝑉𝑖 ) > 0}) of already incident nets. The latter

does not suffer from zero-gain moves as the former, where a net only contributes positively

if Φ(𝑒,𝑉𝑖 ) = |𝑒 | − 1. We have three PQ selection strategies: alternating (round-robin), global

(pick the PQ with higher gain), and sequential (which first grows 𝑉0 and then 𝑉1).
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Prefer Promising Algorithms. In Ref. [GHSS22] we propose a method to reduce the many

repetitions of less promising flat bipartitioning algorithms. Each algorithm in the portfolio is

run at least 5 times. After this, we only run it again if it is likely to find a better partition

than the best partition Π
∗
observed so far. We estimate this based on the arithmetic mean 𝜇

and standard deviation 𝜎 of connectivity values the flat algorithm achieved so far, using the

95% rule
1
. Assuming the connectivity values follow a normal distribution, roughly 95% of

the runs will fall between 𝜇 − 2𝜎 and 𝜇 + 2𝜎 . If 𝜇 − 2𝜎 > (𝜆 − 1) (Π∗) , we do not run this

flat algorithm again. While this is somewhat ad hoc and hand-wavy, it cuts down on initial

partitioning time and only affects partition quality a little, as shown in our experiments.

4.3 Refinement
In this section, we discuss our two parallel 𝑘-way refinement algorithms label propagation

(Section 4.3.4) and localized FM (Section 4.3.7); with a focus on techniques to compute more
accurate gains. For algorithms that greedily move vertices concurrently it is inherently

difficult to compute exact gain values, as moves in the neighborhood affect the gain of a

vertex. An example are two concurrent moves worsening the partition quality, even though

the individual gains suggested an improvement.

Consider adjacent vertices 𝑢, v with Π(𝑢) ≠ Π(v), where 𝑢 is moved to Π(v) and v is

moved to Π(𝑢) concurrently. For both vertices, 𝜔 (𝑒) is added to the gain since the thread

thinks the edge (𝑢, v) will be removed from the cut, yet after both moves are executed the

edge is still cut. If 𝜔 (𝑒) compensated for new edges being cut, the overall cut increases. Since

connectivity reduces to cut on graphs, this problem is just as relevant for hypergraphs.

This poses a significant challenge in the parallelization of existing sequential refinement

algorithms, which is why we propose three techniques for more accurate gains in parallel

vertex moving heuristics. For detecting and reverting such quality-degrading moves we

propose a technique named attributed gains that is based on atomically consistent updates of

certain data structures, which are described in Section 4.3.1.

To make the reader familiar with these concepts, we describe how to use them to calculate

gains from scratch in Section 4.3.2, before showing how attributed gains work in Section 4.3.3.

Subsequently, we show how to maintain a globally shared gain table in parallel, based

on similar ideas (Section 4.3.5). In Section 4.3.6 we parallelize the so far sequential gain

recalculation phase [ASS18a] at the end of an FM round.

4.3.1 Partition Data Structures
We store and maintain the pin counts Φ(𝑒, 𝑖) and connectivity sets Λ(𝑒) for each net 𝑒 and

block 𝑉𝑖 . When a vertex 𝑢 is moved from block 𝑠 to 𝑡 , we iterate over its incident nets 𝐼 (𝑢)
and for each 𝑒 ∈ 𝐼 (𝑢) we increment Φ(𝑒, 𝑡) += 1 and decrement Φ(𝑒, 𝑠) −= 1. If Φ(𝑒, 𝑡) is
now 1, then we add 𝑡 to Λ(𝑒), and if Φ(𝑒, 𝑠) is now 0, then we remove 𝑠 from Λ(𝑒).
1https://online.stat.psu.edu/stat200/lesson/2/2.2/2.2.7

https://online.stat.psu.edu/stat200/lesson/2/2.2/2.2.7
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For the Φ(𝑒,𝑉𝑖 )-values we use a packed representation with ⌈log(max𝑒∈𝐸 |𝑒 |)⌉ bits per
entry to save memory. In the presence of very large nets, this can be further reduced by

grouping similar-sized nets (e.g., exponentially spaced), such that the many small nets profit

from the smaller representation, though for simplicity this is not done in our implementation.

Unfortunately, this packed representation prevents the use of atomic instructions to update

the Φ(𝑒, 𝑖) values. Instead we must use one spin lock-per net. Each thread holds at most one

spin-lock at a time for an O(1) operation. Note that only the writes are synchronized, not

the reads.

For the connectivity sets we use a bit-set of size 𝑘 per net, with the entry at position 𝑖

indicating that 𝑖 ∈ Λ(𝑒). To iterate through Λ(𝑒), we use count-leading-zeroes instructions.
Similarly, we use pop-count instructions to calculate the connectivity of a net. Adding and

removing a block is implemented by toggling the bit using an atomic fetch-XOR instruction.

Finally, the last piece of data associated with a partition that we maintain is the block

weights. Whenever a vertex is moved, the block weights of the source and target block are

updated with atomic fetch-and-add instructions. One downside this bears is that maintaining

block weights globally results in false sharing and contention on these memory locations.

However, compared to the amount of other updates this is negligible. In early versions we

experimented with different means of reducing contention (e.g., storing thread-local deltas

that are applied frequently). The simple global array was faster and we can leverage the result

from the atomic update to actually guarantee balance. An option to reduce false sharing

we did not explore is to align entries with cache line boundaries; for example TBB offers an

allocator that implements this. The wasted space is not an issue since 𝑘 cache lines is small

compared to the rest of the data structures.

4.3.2 Calculating Gains

Recall that the gain 𝑔𝑖 (𝑢) can be written as 𝑔𝑖 (𝑢) = 𝑏 (𝑢) −p𝑖 (𝑢), where 𝑏 (𝑢) ≔ 𝜔 ({𝑒 ∈ 𝐼 (𝑢) |
Φ(𝑒,Π(𝑢)) = 1}) and p𝑖 (𝑢) ≔ 𝜔 ({𝑒 ∈ 𝐼 (𝑢) | Φ(𝑒,𝑉𝑖 ) = 0}). We think of the term 𝑏 (𝑢) as the
benefit of moving 𝑢 out of its current block, and we consider p𝑖 (𝑢) the penalty for moving 𝑢

into 𝑉𝑖 .

Calculating 𝑔𝑖 (𝑢) is straight-forward: iterate over all incident nets 𝑒 ∈ 𝐸, increase the gain
by 𝜔 (𝑒) if Φ(𝑒,Π(𝑢)) = 1, and decrease it by 𝜔 (𝑒) if Φ(𝑒, 𝑖) = 0. Often, we are interested

in calculating the gains to all blocks at the same time, in order to pick the highest gain

target block. Algorithm 4.4 shows how to achieve this without an 𝑂 (𝑘) loop over the blocks

for each incident net, performing a loop over the connectivity set Λ(𝑒) instead, which is

expected to be much smaller. To see why this works, we rewrite

𝑏 (𝑢) = 𝜔 ({𝑒 ∈ I(𝑢) | Φ(𝑒,Π(𝑢)) = 1}) = 𝜔 (I(𝑢)) − 𝜔 ({𝑒 ∈ I(𝑢) | Φ(𝑒,Π(𝑢)) > 1})

and

p𝑖 (𝑢) = 𝜔 ({𝑒 ∈ I(𝑢) | Φ(𝑒, 𝑖) = 0}) = 𝜔 (I(𝑢)) − 𝜔 ({𝑒 ∈ I(𝑢) | Φ(𝑒, 𝑖) > 0})
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Algorithm 4.4: Compute Max Gain Move

Input: vertex 𝑢 ∈ 𝑉
1 gains[0..𝑘] ← 0

2 internal← 0

3 for 𝑒 ∈ I(𝑢) do
4 if Φ(𝑒,Π[𝑢]) > 1

5 internal += 𝜔 (𝑒)
6 for block 𝑖 ∈ Λ(𝑒) do
7 gains[𝑖] += 𝜔 (𝑒)
8 𝑗 ← arg max𝑖∈[𝑘 ] (gains[𝑖])
9 return 𝑗, gains[ 𝑗] − internal

such that 𝑔𝑖 (𝑢) can be written as

𝑔𝑖 (𝑢) = 𝑏 (𝑢) − p𝑖 (𝑢) = 𝜔 ({𝑒 ∈ I(𝑢) | Φ(𝑒, 𝑖) > 0}) − 𝜔 ({𝑒 ∈ I(𝑢) | Φ(𝑒,Π(𝑢)) > 1})

where the 𝜔 (I(𝑢)) terms cancel each other out. Note that {𝑒 ∈ I(𝑢) | Φ(𝑒,Π(𝑢)) = 0} = ∅
since clearly 𝑢 ∈ 𝑉Π(𝑢 ) .

Due to our bitset implementation of connectivity sets, the running time for Algorithm 4.4

is still O(deg(𝑢) · 𝑘). However in practice it is much faster due to skipping up to 64 not

contained blocks in a single count-leading-zeroes instruction.

Note that this gain definition does not yield the correct value 0 for the current block of a

vertex 𝑔Π(𝑢 ) (𝑢) ≠ 0. Therefore, we skip Π(𝑢) in the selection (line 8). While pΠ(𝑢 ) (𝑢) = 0 is

guaranteed, 𝑏 (𝑢) = 0 is not. The intuition here is that after moving 𝑢 out of its block, the

benefit term would shift to the penalty, which then cancels out the original benefit, but this

is of course not reflected.

4.3.3 Attributed Gains

Since we cannot rely on the correctness of computed gains when moving vertices in parallel,

we additionally compute an attributed gain based on the synchronized writes to Φ(𝑒, 𝑖). We

attribute a connectivity reduction by 𝜔 (𝑒) to the move that reduces Φ(𝑒, 𝑖) to zero and an

increase by 𝜔 (𝑒) for increasing it to one. See lines 5-7 and 8-10 in Algorithm 4.5 Since we

only lock one incident net at a time, this scheme may distribute the contributions to different

threads. Hence, there is still no guarantee on the correctness of one attributed gain. However,

the sum of the attributed gains equals the overall connectivity reduction. We use attributed

gains to correctly track the connectivity metric through concurrent vertex moves, and as

a secondary check to boost confidence. If both calculated and attributed gain agree that a

move is good, we should perform it.
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Algorithm 4.5: Move Vertex with Attributed Gains

Input: vertex 𝑢 ∈ 𝑉 , source block 𝑠 , target block 𝑡
1 Π[𝑢] ← 𝑡

2 attributed← 0

3 for 𝑒 ∈ I(𝑢) do
4 lock(𝑒)
5 if (Φ(𝑒, 𝑠) −= 1) = 0

6 attributed += 𝜔 (𝑒)
7 remove 𝑠 from Λ(𝑒)
8 if (Φ(𝑒, 𝑡) += 1) = 1

9 attributed −= 𝜔 (𝑒)
10 add 𝑡 to Λ(𝑒)
11 unlock(𝑒)
12 return attributed

4.3.4 Parallel Label Propagation
With these ingredients set up, we are ready to describe the parallel label propagation imple-

mentation. We employ a commonly used optimization named active set, which is an array 𝐴

that contains all neighbors of vertices moved in the previous round. Initially the active set

contains all boundary vertices.

In each round we iterate over the active set in parallel in random order and greedily

move visited vertices. We determine the highest gain target block 𝑡 using Algorithm 4.4,

while already filtering target blocks that would exceed 𝐿max if moved into and preferring

lighter target blocks as a secondary criterion to gain. This is particularly useful for zero-

gain moves. If the gain is positive, or zero and improves balance between the two blocks

(block-weight[Π(𝑢)] > block-weight[𝑡] + 𝑐 (𝑢)) we perform the move using Algorithm 4.5.

We check again whether the result from block-weight[𝑡] +=
atomic

c(𝑢) actually stays below

𝐿max to guarantee a balanced partition. If 𝐿max is exceeded or the attributed gain is less than

zero, we revert the move.

If we keep the move, we insert 𝑢’s neighbors into the active set 𝐴. This is implemented as

a global vector that contains the vertices, filled from thread-local buffers. To avoid duplicate

insertions, we use the atomic time-stamping from Section 2.2.4. We need to construct 𝐴

explicitly in order to shuffle it, but we note that it is possible to instead iterate through all

vertices in parallel and skip those not incident to nets of vertices moved in the previous

round.

Equivalently to Algorithm 4.2 we employ a size limit on nets we scan, so that the work

for activating neighbors in one round is O(p) and the depth is O(max𝑢∈𝐴 deg(𝑢)). Tracing
attributed gains has the same work bound, but an additional O(max𝑒∈𝐸 |𝑒 ∩ 𝐴|) term in

the depth for contention when updating Φ(𝑒, 𝑖). This is negligible in practice because the
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updates are well interleaved. The dominating term is the gain calculation. Due to the

bitset implementation of Λ(𝑒), the work is O(∑𝑢∈𝐴 deg(𝑢) · 𝑘) ⊆ O(p𝑘) and the depth is

the maximum work of one gain calculation O(max𝑢∈𝐴 (deg(𝑢) · 𝑘) + log( |𝐴|)). As already
mentioned this is much faster in practice; we observe behavior closer to O(p).

4.3.5 Parallel Gain Tables
For our FM algorithm, we propose to use a gain table as we do not move vertices immediately

after exploring them for the first time. This enables repeatedly looking up gains in 𝑂 (1) and
is a globalized way of updating the gains of vertices owned by other threads (more on this in

the FM section). The idea of using a gain table is not new [KK98, Lar06, AHSS17], though it

has gone out of fashion in recent years [SS11, ASS18a] due to the memory requirements. To

the best of our knowledge, this idea has not yet been employed in a parallel setting and thus

showing how to perform gain updates in parallel is novel.

We use atomic fetch-and-add instructions to update the gains as vertices are moved.

Updates trickle in over time, at the same time as the gain values are read on other cores.

Therefore, some observed gains may be not up to date. This guarantee can only be given

if no updates are pending anymore. Still, this is the most accurate we can be in a parallel

setting.

Our Approach. Instead of storing 𝑔𝑖 (𝑢), we store 𝑏 (𝑢) and p𝑖 (𝑢) separately for each vertex

𝑢, so that changes to 𝑏 (𝑢) only require one update, instead of updates to 𝑘 gain values as

is the case for sequential KaHyPar [AHSS17]. This approach uses (𝑘 + 1)𝑛 memory words

(integers) in total. Now, let vertex 𝑢 be moved from block 𝑠 to 𝑡 . For each net 𝑒 ∈ 𝐼 (𝑢), we
update 𝑏 (𝑢) and p𝑖 (𝑢) using atomic fetch-and-add instructions as follows.

1. If Φ(𝑒, 𝑠) = 0, then ∀v ∈ 𝑒 : p𝑠 (v) += 𝜔 (𝑒)

2. If Φ(𝑒, 𝑠) = 1, then ∀v ∈ 𝑒 ∩𝑉𝑠 : 𝑏 (v) += 𝜔 (𝑒)

3. If Φ(𝑒, 𝑡) = 1, then ∀v ∈ 𝑒 : p𝑡 (v) −= 𝜔 (𝑒)

4. If Φ(𝑒, 𝑡) = 2, then ∀v ∈ 𝑒 ∩𝑉𝑡 : 𝑏 (v) −= 𝜔 (𝑒)

The update conditions are checked via the synchronized writes to Φ(𝑒, 𝑠) and Φ(𝑒, 𝑡) and
refer to the values after the update (post-increment/decrement). In case 2 and 4 we only

update one or two pins, respectively. In case 4 we already know one pin (𝑢) but not the

second, in case 2 we do not know the remaining pin, so we still need to iterate over the pins.

Maintaining Benefits. This approach has one down-side, which is however easy to fix.

The benefit term 𝑏 (𝑢) of a vertex cannot be correctly updated after it is moved. There is

a race condition on Π(v) in the check Π(v) = 𝑠 (case 2) or Π(v) = 𝑡 (case 4). When Π(v)
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changes, we may perform a benefit update on v that was intended for a different vertex. The

penalty values are not affected since they are independent of the pin’s current block.

Our FM algorithm is organized in rounds in which each vertex can be moved at most once.

Therefore, once 𝑢 gets moved, we do not read 𝑏 (𝑢) for the rest of the round. Due to the race

condition it may still be written, which is why we recalculate 𝑏 (𝑢) after the round is finished,
instead of recalculating 𝑏 (𝑢) for the new block immediately after the move.

We note that it is possible to correctly maintain benefit values throughout a round by

using 𝑘 benefit values 𝑏𝑖 (𝑢) = 𝜔 ({𝑒 ∈ I(𝑢) | Φ(𝑒, 𝑖) = 1}) instead; one for each block even

if the vertex is not in that block. The gain 𝑔𝑖 (𝑢) = 𝑏Π(𝑢 ) − p𝑖 (𝑢) is calculated on demand,

taking the benefit term associated with 𝑢’s current block. The differences in how updates

are performed are highlighted in the following (green for added, red for removed).

1. If Φ(𝑒, 𝑠) = 0, then ∀v ∈ 𝑒 : p𝑠 (v) += 𝜔 (𝑒), 𝑏𝑠 (v) −= 𝜔 (𝑒)

2. If Φ(𝑒, 𝑠) = 1, then ∀v ∈ 𝑒 ∩𝑉𝑠 : 𝑏𝑠 (v) += 𝜔 (𝑒)

3. If Φ(𝑒, 𝑡) = 1, then ∀v ∈ 𝑒 : p𝑡 (v) −= 𝜔 (𝑒), 𝑏𝑡 (v) += 𝜔 (𝑒)

4. If Φ(𝑒, 𝑡) = 2, then ∀v ∈ 𝑒 ∩𝑉𝑡 : 𝑏𝑡 (v) −= 𝜔 (𝑒)

However, this comes at the cost of an additional (𝑘 − 1) · 𝑛 memory words and two

additional updates (case 1 and 3), which is why we use the first approach. Note that the

additions in case 1 and 3 would only affect the just moved vertex in our first approach, which

is why they can be safely omitted.

Correctness Proof. In the following we prove that our approach produces correct gain

values. We have to specify and formalize what that means. We can perform updates for

multiple moves in parallel, but we cannot observe gains at any possible time because updates

trickle in asynchronously. Instead, we prove correctness in a scenario where we first finish

all updates, then freeze execution before looking at the gains to see if they are correct.

Theorem 4.1. Let 𝑀 = {(𝑢, 𝑠, 𝑡) | 𝑢 ∈ 𝑉 , 𝑠 = Π(𝑢), 𝑡 ∈ [𝑘] − Π(𝑢)} be a set of moves with
pair-wise disjoint vertices 𝑀𝑉 = {𝑢 | ∃(𝑢, 𝑠, 𝑡) ∈ 𝑀}. After performing the gain updates
associated with𝑀 , each vertex v ∈ 𝑉 \𝑀𝑉 has correct 𝑏 (v), and each v ∈ 𝑉 has correct p𝑖 (v)
terms.

Proof. First, we note that the updates are correct in the sequential setting [San89]. Due to

the atomic consistency of pin-count and gain updates, it suffices to prove correctness for

arbitrary linearized (sequential) orders of updates. The remaining difficulty is that different

orders may yield different intermediate values. However, due to commutativity we arrive

at the same final Φ(𝑒, 𝑖) values. Thus, it suffices to argue that gain updates triggered by

Φ(𝑒, 𝑖) += 1 cancel out those triggered by Φ(𝑒, 𝑖) −= 1. This statement holds, as case 1 and 3

are complimentary, as well as case 2 and 4. Therefore, the final p𝑖 (v) and 𝑏 (v) values only
depend on the final Φ(𝑒, 𝑖) values. Furthermore, for v ∉ 𝑀𝑉 there is no race condition on

Π(v) such that updates to 𝑏 (v) are applied to the correct vertex. □
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Algorithm 4.6: Gain Updates after Move

Input: vertex 𝑢 ∈ 𝑉 , source block 𝑠 , target block 𝑡
1 for 𝑒 ∈ I(𝑢) do
2 lock(𝑒) // fused with updates for attributed gains if used together
3 Φ𝑠 ← (Φ(𝑒, 𝑠) −= 1)
4 Φ𝑡 ← (Φ(𝑒, 𝑡) += 1)
5 unlock(𝑒)
6 if Φ𝑠 = 0

7 for v ∈ 𝑒 do
8 p𝑠 (v) +=

atomic

𝜔 (𝑒)
9 if Φ𝑠 = 1

10 for v ∈ 𝑒 do
11 if Π(v) = 𝑠
12 𝑏 (v) +=

atomic

𝜔 (𝑒)
13 if Φ𝑡 = 1

14 for v ∈ 𝑒 do
15 p𝑡 (v) −=

atomic

𝜔 (𝑒)
16 if Φ𝑡 = 2

17 for v ∈ 𝑒 do
18 if Π(v) = 𝑡 and v ≠ 𝑢

19 𝑏 (v) −=
atomic

𝜔 (𝑒)

Update Complexity. We now analyze the complexity of performing gain updates in terms

of work and depth, using the pseudocode in Algorithm 4.6 as a guide. To simplify the analysis,

we assume that all vertices are moved exactly once, as moving only a subset incurs less work.

The core to the argument is that each vertex is moved at most once. As a disclaimer, this

assumption holds for traditional FM versions, but does not for localized FM in the way we

use it (with local rollbacks). We discuss the differences and implications in the paragraph on

local rollbacks in Section 4.3.7.

Lemma 4.2. The work of gain updates for moving all vertices once isO(∑𝑒∈𝐸 |𝑒 | ·min(𝑘, |𝑒 |)) ⊆
O(𝑘p).

Proof. For each vertex we perform a loop over its incident nets, which results in O(p)
iterations overall. Now we show that for each net, each of the conditions in line 6, 9, 13, 16

is true at most twice per block. This results in up to O(min(𝑘, |𝑒 |)) updates per net that take
O( |𝑒 |) work each. This leads to O(∑𝑒∈𝐸 |𝑒 |min(𝑘, |𝑒 |)) ⊂ O(𝑘p) work for the nets, which

is the dominating term of the overall work. The argument hinges on the requirement that

each vertex is moved at most once. Only vertices that are in the block at the beginning of
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the round can be removed from it; vertices that were moved into a block are locked in it.

The condition Φ(𝑒, 𝑠) = 0 is true at most once, since it requires Φ(𝑒, 𝑠) = 1 before the

move. If Φ(𝑒, 𝑠) is incremented to 1 again at any point, the responsible vertex is locked in

𝑠 . Therefore Φ(𝑒, 𝑠) cannot be decremented to 0. The same argument holds for Φ(𝑒, 𝑡) = 1,

which requires Φ(𝑒, 𝑡) = 0 before the move. After the increment, the responsible vertex is

locked in 𝑡 , which prevents the prerequisite Φ(𝑒, 𝑡) = 0. Therefore the conditions in line 6

and 13 are each triggered at most once. Note that for this argument the roles of 𝑠 (moved out

of) and 𝑡 (moved into) matter.

The condition Φ(𝑒, 𝑠) = 1 can be triggered at most twice: one move out of 𝑠 at Φ(𝑒, 𝑠) = 2,

followed by one into 𝑠 , and finally the last move out. The round may start with Φ(𝑒, 𝑠) > 2

but only the last two remaining matter here. Again it is important that we trigger the update

only when we decrement. Similarly Φ(𝑒, 𝑡) = 2 can be true at most twice: one move in at

Φ(𝑒, 𝑡) = 1, one out, and one in.

□

The proof uses the same argument as Fiduccia and Mattheyses for 2-way partitions [FM82],

except they prune the second invocation in both benefit updates at the expense of additional

memory. This bound is unfortunately tight in the worst case. Think of a net with 𝑘/2 pins in

distinct blocks that are each moved to a distinct one of the remaining 𝑘/2 blocks. Each of

the 𝑘/2 moves triggers two penalty updates. Creating disjoint copies of this instance yields

arbitrary size instances. Note also that due to the min(𝑘, |𝑒 |) term, this bound matches the

O(𝑚) bound for 𝑘-way gain updates on plain graphs, i.e., we did not mess up the algorithm,

updating gains with larger hyperedges is simply more expensive.

On real-word instances we observed work much closer to O(p) since most nets have con-

stant size. With the same proofwe can also show a (situationally)more strictO(∑𝑒∈𝐸 (𝜆pre (𝑒)+
𝜆post (𝑒)) · |𝑒 |) bound, where 𝜆pre (𝑒) is the size of Λ(𝑒) before all moves and 𝜆post (𝑒) the size
after. This bound resembles the behavior in practice.

Lemma 4.3. The worst-case work for one vertex is O(max𝑢∈𝑉
∑

𝑒∈I(𝑢 ) |𝑒 |). The depth of all
gain updates is O(max𝑢∈𝑉

∑
𝑒∈I(𝑢 ) |𝑒 | + log(𝑛)).

Proof. Each incident net of one vertex may require a gain update, which shows the worst-case

work for one vertex. The depth for all gain updates is the per-vertex work plus a log(𝑛) term
for the parallel loop control overhead. □

We can perform all loops in Algorithm 4.6 in parallel. Let 𝜎 ≔ max𝑒∈𝐸 |𝑒 | and let Δ ≔

maxv∈𝑉 deg(v). Then the new depth bound would be O(𝜎 + Δ), not the desired O(log(𝜎) +
log(Δ)) because we have to update Φ(𝑒, 𝑖) with a lock |𝑒 | times (same lock for all blocks),

and there are up to 2 deg(𝑢) atomic updates per benefit/penalty value per vertex. If not all

vertices are moved, these bounds become better. Our implementation does not parallelize

these loops, since extremely large nets often have more than 2 pins in each block so that they

rarely trigger updates, and due to the hidden moves variant of FM with thread-local partition

data that we describe in Section 4.3.7, which would require parallel access to that data.
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Algorithm 4.7: Gain Table Initialization

1 for 𝑢 ∈ 𝑉 do in parallel
2 𝑏 (𝑢) ← 0

3 p𝑖 (𝑢) ← 0 ∀𝑖 ∈ [𝑘]
4 𝑤 ← 0

5 for 𝑒 ∈ I(𝑢) do in parallel
6 𝑤 +=

reduce

𝜔 (𝑒)
7 if Φ(𝑒,Π(𝑢)) = 1

8 𝑏 (𝑢) +=
reduce

𝜔 (𝑒)
9 for 𝑖 ∈ Λ(𝑒) do
10 p𝑖 (𝑢) −=

reduce

𝜔 (𝑒)
11 for 𝑖 ∈ [𝑘] do
12 p𝑖 (𝑢) ← 𝑤 − p𝑖 (𝑢)

Initialization. So far we have shown how to update the gain table; now we show how to

initialize it on each level using Algorithm 4.7. The approach is similar to the gain calculation

in Algorithm 4.4. We employ the same trick to avoid an O(𝑘) loop over the blocks for each

incident net by leveraging connectivity sets. Again, due to the bitset implementation this

does not eliminate the O(𝑘) term in theory, it is just substantially faster in practice. The

difference to Algorithm 4.4 is that we have to extract benefits and penalties separately. For

the inner loop we use a reduce operation since atomic instructions would cause too much

contention. This leads to O(𝑘p) work and O(log(𝑛) + log(Δ) + 𝑘) depth. The work bound

matches the one for the updates, whereas the initialization depth contains an additive O(𝑘)
that is missing in the updates depth, because each move only touches two blocks.



Refinement Section 4.3

73

Algorithm 4.8: Distribute Gains of Net
Input: net 𝑒 , move sequence𝑀 , vertex positions pos in𝑀

1 first-in[0..𝑘] ← ∞, last-out[0..𝑘] ← −∞, rem-pins[0..𝑘] ← 0

// first pass: set up data
2 for v ∈ 𝑒 do
3 if pos[v] ≠ ⊥ // vertex was moved
4 𝑚 ← 𝑀 [pos[v]]
5 first-in[𝑚.𝑡] ← min(first-in[𝑚.𝑡], pos[v])
6 last-out[𝑚.𝑠] ← max(last-out[𝑚.𝑠], pos[v])
7 else
8 rem-pins[Π(v)] += 1

// second pass: distribute gains
9 for v ∈ 𝑒 do
10 if pos[v] ≠ ⊥ // vertex was moved
11 𝑠 ← 𝑀 [pos[v]] .𝑠, 𝑡 ← 𝑀 [pos[v]] .𝑡
12 if last-out[𝑠] = pos[v] and first-in[𝑠] > pos[v] and rem-pins[𝑠] = 0

13 gain[pos[v]] +=
atomic

𝜔 (𝑒)
14 if first-in[𝑡] = pos[v] and last-out[𝑡] < pos[v] and rem-pins[𝑡] = 0

15 gain[pos[v]] −=
atomic

𝜔 (𝑒)

4.3.6 Parallel Gain Recalculation

Finally, we propose a parallel algorithm to recompute exact gains of vertex moves if they

are supposed to be performed in a given order, as is the case for FM. This approach is of

independent interest to graph partitioning, as Mt-KaHiP [ASS18a] does this step sequentially.

The parallel gain recalculation is even easier to implement for plain graphs. But this is

one scenario (of certainly many) where transferring the problem to hypergraphs revealed

more insight into the problem. Considering edges as first-class entities enables us to change

perspective, which leads to the idea of distributing gains from nets to vertices.

Given a sequence of vertex moves 𝑀 = ⟨𝑚0, . . . ,𝑚𝑟−1⟩, we want to compute the exact

gain of each move, as though they were performed sequentially in this order. A move𝑚 𝑗

is represented as a tuple (𝑢, 𝑠, 𝑡) meaning that vertex 𝑢 is moved from block 𝑠 to 𝑡 . We use

an array pos[0..𝑛] to denote the position of a vertex in𝑀 . Note here that this requires that

each vertex is moved at most once per round, as in the previous section.

Our idea is to identify at which position block 𝑖 would have Φ(𝑒, 𝑖) = 0 or Φ(𝑒, 𝑖) = 1 for

each 𝑒 ∈ 𝐸, 𝑖 ∈ [𝑘] and accordingly attribute the associated gain to the move in that position.

This is shown in Algorithm 4.8. For a given net 𝑒 , we determine the positions of the first pin

moved into 𝑖 and the last pin moved out of 𝑖 for each 𝑖 ∈ [𝑘]. If no pin of 𝑒 was moved out

of 𝑖 , this position is −∞, and similarly∞ for the first moved in. Additionally, we compute
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Algorithm 4.9: Parallel Gain Recalculation

Input: Move sequence𝑀 = ⟨𝑚0, . . . ,𝑚𝑟−1⟩, FM round ID: round

1 for 𝑖 = 0 to 𝑟 with𝑚𝑖 = (𝑢, 𝑠, 𝑡) do in parallel
2 pos[𝑢] ← 𝑖

3 gain[𝑖] ← 0

4 for 𝑖 = 0 to 𝑟 with𝑚𝑖 = (𝑢, 𝑠, 𝑡) do in parallel
5 for 𝑒 ∈ I(𝑢) do in parallel
6 if CAS(&last-recalc-round[𝑒], round)
7 DistributeGainsOfNet(e, pos) // Algorithm 4.8
8 for 𝑖 = 0 to 𝑟 with𝑚𝑖 = (𝑢, 𝑠, 𝑡) do in parallel
9 pos[𝑢] ← ⊥

rem-pins[𝑖], the number of pins in block 𝑖 at the beginning of the round, minus the ones

that were moved out.

If rem-pins[𝑖] = 0, all pins of 𝑒 that were initially in 𝑉𝑖 were removed over the course of

the round, or there were none in the beginning. In the former case (last-out[𝑖] > −∞) there
is a chance that 𝑖 was removed from Λ(𝑒) since there may be a point at which Φ(𝑒, 𝑖) = 0.

This happens exactly if last-out[𝑖] < first-in[𝑖], i.e., no pin moves into 𝑖 before the last initial

one leaves. Therefore the pin v ∈ 𝑒 with last-out[𝑖] = pos[v] and pos[v] < first-in[𝑖] is
awarded an 𝜔 (𝑒) reduction, see line 12 and 13. Note that first-in[𝑖] may be∞, in which case

no pin was moved into 𝑖 .

Similarly, if there are moves into 𝑖 (indicated by first-in[𝑖] < ∞) and rem-pins[𝑖] = 0,

there may be a point at which 𝑖 is newly added to Λ(𝑒). It may have been removed at some

point (in which case the previous case awarded gain to the earlier move) or not been part

of Λ(𝑒) at the beginning of the round (last-out[𝑖] = −∞). Block 𝑖 is added newly, exactly

if last-out[𝑖] < first-in[𝑖] and rem-pins[𝑖] = 0, i.e., the first pin newly moved into 𝑖 comes

after the last initial one moved out (if any). The 𝜔 (𝑒) connectivity increase is attributed to

the vertex v with first-in[𝑖] = pos[v], see line 14 and 15. It is rather unintuitive that this

condition last-out[𝑖] < first-in[𝑖] looks exactly like the condition for the other case (line 12

and 13). The difference is in the role of 𝑖 as the target block of v .
We now know how to assign the gain contributions of one net 𝑒 . We could simply run

Algorithm 4.8 for each 𝑒 ∈ 𝐸 in parallel to obtain an O(p) work algorithm. However,

we would like to run it only on nets incident to moved vertices, since that set may be

substantially smaller. Let 𝐸𝑚 ≔
⋃

𝑗∈[𝑟 ] I(𝑚 𝑗 .𝑢) denote this set. The second parallel for loop

in Algorithm 4.9 shows how we can construct 𝐸𝑚 on-the-fly in parallel and call Algorithm 4.8

on each contained net. We iterate in parallel over the moved vertices and their incident nets.

To avoid duplicate calls on the same net we use the atomic time-stamping from Section 2.2.4.

Theorem 4.4. Algorithm 4.9 assigns correct gain values to each move in a given sequence
𝑀 = ⟨𝑚0, . . . ,𝑚𝑟−1⟩ as if they were applied in this order, assuming the vertices in𝑀 are unique.
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Algorithm 4.10: Parallel Localized FM

1 while improvement found and less than maximum rounds performed do
2 work-queue← {v ∈ 𝑉 | ∃𝑒 ∈ I(v) : 𝜆(𝑒) > 1}
3 do on each thread
4 while seeds← work-queue.tryPopMultiple(num seeds) do
5 insert seeds into thread-local PQs

6 while not done do
7 find best move in PQs

8 perform best move

9 claim and insert/update neighbors into PQs

10 rollback to best local prefix

11 rollback to best global prefix

Let𝑀𝑉 denote the set of moved vertices.
It takes O(∑𝑢∈𝑀𝑉 deg(𝑢) +∑𝑒∈𝐸𝑚 |𝑒 |) ⊆ O(p) work and the depth is

O(max𝑒∈𝐸𝑚 |𝑒 | + log(𝑟 ) +max𝑢∈𝑀𝑉 log(deg(𝑢))).

Proof. Correctness follows directly from the previous paragraph. The first work term stems

from iteration over incident nets of moved vertices, the second term stems from iterating

over pins of nets incident to moved vertices. This also constitutes the first term in the depth,

whereas the other two stem from loop control. □

The data structures in line 1 of Algorithm 4.8 would incur O(𝑘) overhead for initialization.
We use thread-local objects that are reset to a clean state by performing a third pass over the

pins if |𝑒 | < 𝑘 . Since thread-local objects do not fit the work-depth model we omitted this

term. The O(𝑘) term for initialization could be eliminated by using a folklore array with

constant time initialization [Meh84], though this is not necessary in practice. Algorithm 4.8

could be further parallelized by using priority-writes for the min/max operations (early-exit

compare-and-swap loops) and a fetch-and-add instruction for rem-pins.

4.3.7 Parallel Localized FM
We have now gathered all ingredients to describe our version of parallel localized FM.

Recall that sequential FM consists of two phases: finding a sequence of moves by repeatedly

performing a feasible move with highest gain, followed by reverting moves back to the prefix
with the highest cumulative gain in that sequence.

We implement a relaxed version of the first phase that performs non-overlapping localized
FM searches on different threads to obtain a global sequence of moves 𝑀 . In the second

phase we use our new parallel gain recalculation (Section 4.3.6) to assign exact gains to

moves in𝑀 . We perform a prefix-sum (gains) and reduce operation (for selection) to identify
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the highest gain prefix of𝑀 . Since we have no guarantee that each move maintains balance,

we additionally filter out prefixes that do not yield a balanced partition. We do this by

incorporating the block weights into the prefix sum operation. In the following, we describe

how to implement the first phase.

Algorithm 4.10 shows high-level pseudocode for parallel localized FM that also fits the

version of Akhremtsev et al. [ASS18a] in Mt-KaHiP. We perform multiple global rounds

in which each vertex is allowed to be moved once (line 1). Thread-local data structures

are highlighted in red, globally shared data in blue. In each round we collect all boundary

vertices in a global work queue and shuffle it (line 2). Each thread polls up to a fixed number

of seed vertices from the work queue (line 4).

Starting with the seeds and expanding to neighbors of moved vertices, we perform 𝑘-way

FM, i.e., repeatedly perform the highest gain move (line 7-9) among the feasible ones. A

search ends once there are no vertices left (empty PQs) or the adaptive stopping rule by

Osipov and Sanders [OS10] is triggered. This stopping rule is also used by Mt-KaHiP and

sequential KaHyPar.

Since we may perform negative gain moves to escape local minima, we revert back to the

best prefix of our thread-local sequence and save it (line 10). At this point, we try to poll new

seeds to start a new search, or terminate the thread’s task if the work queue is empty (line 4).

Once all threads are finished, the global rollback (second phase) is performed (line 11).

Mt-KaHiP’s Version and Two Issues. For this, the local move sequences have to be

combined into a global sequence. Akhremtsev et al. [ASS18a] just concatenate the sequences

ordered by thread IDs, first all moves of thread 1, then thread 2, etc. We argue that this is

bad since it will more likely revert moves by threads with higher ID in the global step. This

disincentives using many cores. There is no mechanism to assign promising seeds to threads

with lower ID; in fact the work queue is randomized. Note that each thread performed

multiple searches and thus has multiple sequences ordered by time.

This problem is further aggravated by the fact that threads do not communicate their

moves with each other. The moves are kept private until the end of the round. Each search

only knows the moves of searches previously run on the same thread. Therefore, the searches

can make arbitrarily bad move decisions, as only outdated information on the partition is

available. The differences to the global partition are stored in thread-local data: a hash table

for the block IDs and an array for the block weights.

Our Version. Note that hiding some moves is actually a good idea. Towards the end of a

local move sequence we have only negative gain moves, which we need to revert. These

are performed in the hope of enabling positive gain moves later on, to steer out of a local

minimum. Applying them to the global partition and later reverting would confuse the
searches on other threads, as they can influence the other searches’ move decisions.

We want to incorporate more up-to-date global information (gains and block weights)

and get rid of the arbitrary move ordering, while retaining the benefits of hiding bad moves.



Refinement Section 4.3

77

Therefore, we apply the best local prefix to the global partition at the end of a search. Moves

are inserted into the global move sequence in the same order as they are applied to the global

partition. We use the gain table from Section 4.3.5 to provide up-to-date gain values for all

vertices based on all globally available moves so far. In our experiments, we show that hiding

moves is very important for high partition quality. While we expected it to be slightly slower

than applying directly to the global partition, and this was the case in an early version, the

local-first version is now faster thanks to several implementation-level optimizations.

First we discuss issues related to our local partition data structures and the local rollback.

Subsequently we show how to infuse state from the central gain table into the thread-local

FM state. This happens in two places: when finding the next move and when updating the

neighbors’ gains after the move. To thoroughly describe this, we outline low-level details of

our 𝑘-way FM implementation.

Local Partition Data. Like Mt-KaHiP we keep block IDs in a hash table and block weight

deltas in an array. However, as opposed to Mt-KaHiP we use a gain table and Φ(𝑒, 𝑖) to get

good performance (no Λ(𝑒) needed for our version). Unfortunately deltas for these have to

be stored in hash tables as well. We add the benefit and penalty and values in the central

gain table to the deltas in the thread-local table to obtain the actual gain. To reduce their

memory overhead, we actually apply local move sequences to the global partition as soon as
we find an improvement, i.e., the sum of the local gains so far is positive. This allows us to

clear all hash tables, while still hiding all bad moves.

In rare cases, we try to move vertices with extremely high degree and extremely negative

gain, as the stopping rule only considers such gains once the move is made and there is a

minimum number of moves to be made. These bloat the hash tables with useless updates,

since the stopping rule will trigger in a few steps and we will revert the move. Therefore, we

skip high degree moves if they do not yield an overall improvement (sum of local gains so

far > 0). We omit the updates for the last move, since the local deltas are cleared right after.

This ensures that we can move high degree vertices (if they net an improvement) without

bloating the hash tables.

Local Rollback. When applying a local move sequence to the global partition, we use

attributed gains to double-check whether a shorter prefix may be even better and if so revert

back to it. Since these moves are visible only shortly and it happens very rarely, this still

keeps bad moves sufficiently hidden from searches on other threads. To determine its position

in the global sequence, we atomically increment an offset by the length of the local sequence.

Note that performing local rollbacks breaks the O(𝑘p) work bound we can prove for gain

updates on the global partition. Think of a very large net 𝑒 and a block 𝑖 with Φ(𝑒, 𝑖) = 0 (this

combination occurs rarely). Moving a pin of 𝑒 into 𝑖 removes the 𝜔 (𝑒) penalty for further

pins to move into 𝑖 , causing a Θ( |𝑒 |) gain update on the local partition. If the move is locally

reverted, the next search can move a second pin of 𝑒 into 𝑖 , seemingly for the first time; thus

requiring the same gain update. This can happen up to |𝑒 | times, leading to Θ( |𝑒 |2) work for
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Algorithm 4.11: Acquire or Update Neighbors
Input: move (𝑢, 𝑠, 𝑡), search ID z

1 𝐸𝑔 ← {𝑒 ∈ I(𝑢) | Φ(𝑒, 𝑠) ≤ 1 or Φ(𝑒, 𝑡) ≤ 2} // observe values at move
2 seen[0..𝑛] ← false

3 for 𝑒 ∈ 𝐸𝑔 do
4 for v ∈ 𝑒 do
5 if seen[v] = false

6 seen[v] ← true

7 if search[v] = z

8 update gains of v to values in gain table // already own v
9 else if search[v] = ⊥ and CompareAndSwap(&search[v], ⊥, z)
10 insert v into PQs with values in gain table // claimed v

gain updates.

We emphasize that this is not an artifact of the parallelization or hiding local moves from

other searches. It equally affects any localized FM implementation with local rollbacks, such

as the one in sequential KaHyPar. This stems purely from not adhering to the rule of moving

at most once per round. In practice, this bad behavior does not appear to occur frequently,

otherwise it would be highly unlikely that the run finishes.

Vertex Ownership. The vertices are exclusively owned by threads. Each localized search

is assigned an ID when it starts. We keep an array search[0..𝑛] that maps a vertex to the

ID of the search that owns it, or to a special value ⊥ if it is not owned. To acquire a vertex,

we first check if it is owned and if not, perform a compare-and-swap with the search ID to

acquire it (see line 9 in Algorithm 4.11). If a search ends because the adaptive stopping rule is

triggered, we still own vertices, which we release (set search[v] ← ⊥) so that other searches
may acquire them.

Acquire or Update Neighbors. In our case, vertices are acquired at the beginning of a

search (seeds) and after a move (neighbors). While it is possible to acquire a vertex only once

we move it, doing so at the time it is added to the search allows us to use just one globally

shared array for the priority queue handles (positions in the heaps). Algorithm 4.11 shows

pseudocode for acquiring neighbors after a move. If they are already owned, we update their

gain in the PQs.

During the move we update the Φ(𝑒, 𝑠),Φ(𝑒, 𝑡) values for 𝑒 ∈ I(𝑢). We use these to track

the nets 𝐸𝑔 whose pins have received a gain update (Φ(𝑒, 𝑠) ∈ {0, 1},Φ(𝑒, 𝑡) ∈ {1, 2}), see
line 1. Since the update is so far only reflected in the gain table, we now propagate it to the

priority queues of the search. If a neighbor is already owned by our search, we update its

gains based on the gain table, otherwise we try to acquire it. This way, we gradually infuse
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Algorithm 4.12: Find Best Feasible Move

1 if block-PQ.empty()
2 return ⊥
3 while true do
4 𝑠 ← block-PQ.top()

5 𝑢 ← vertex-PQs[𝑠].top()
6 PQ gain← vertex-PQs[𝑠].topKey()
7 𝑡 ← arg max𝑖∈[𝑘 ] p𝑖 (𝑢) // balance tie break, filter infeasible
8 if 𝑏 (𝑢) − p𝑡 (𝑢) ≥ PQ gain // success. return move
9 vertex-PQs[𝑠].deleteTop()

10 if vertex-PQs[𝑠].empty()
11 block-PQ.remove(𝑠)

12 return 𝑢, 𝑡, 𝑏 (𝑢) − p𝑡 (𝑢)
13 else // retry. refresh PQ entries
14 vertex-PQs[𝑠].adjustKey(𝑢,𝑏 (𝑢) − p𝑡 (𝑢))
15 if vertex-PQs[𝑠].topKey() ≠ block-PQ.keyOf(𝑠)

16 block-PQ.adjustKey(𝑠 , vertex-PQs[𝑠].topKey())

global partition state into the thread-local search state without resorting to message passing.

In particular, this keeps information fresh in the direction the search is currently expanding.

Note that with 𝐸𝑔 we may not acquire all neighbors of 𝑢, but we do encounter all that

have become boundary vertices through the move. Only boundary vertices can have positive

gain, so this is a perfectly acceptable choice. This can still miss vertices that were on the

boundary prior to any move, but these are in the global work queue and will thus be seeds of

their own search. Similar to Algorithm 4.2 and sequential KaHyPar, we filter out nets with

|𝑒 | > 𝜂 to accelerate updates in the presence of large nets, as it is unlikely that vertices that

are only incident to large nets admit a positive gain move [Sch20]. Vertices that share small

nets with the just moved vertex receive their updates. We use a bitset (line 5 and 6) to avoid

performing duplicate updates, implemented with timestamping to avoid manual resets. The

bitset is initialized once per thread, not once per call to Algorithm 4.11.

PriorityQueue Layout. A vital part of an efficient 𝑘-way FM implementation is the way

priority queues are used to extract the next move. There are several variants which offer

different capabilities and tradeoffs, which we discussed in Chapter 3. We chose to implement

from-PQs by Träff [Lar06], due to their tie-breaking capability when selecting blocks to move

from. Since each vertex is in only one block, only one array is needed to track positions in

the 𝑘 heaps, even in our parallel setting due to exclusive vertex ownership.

Algorithm 4.12 shows how we extract the next move using from-PQs [Lar06]. The block-

PQ is the PQ to select the best block 𝑠 to move from (line 4) and vertex-PQs[𝑠] is the PQ to
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select the highest gain vertex 𝑢 ∈ 𝑉𝑠 to move (line 5). We omit the per-vertex PQs to select

the highest gain target block 𝑡 , due to the excessive memory requirement. Instead, we select

𝑡 from scratch (line 7) using the gain table.

With this, we can react to changes on the global partition that are not yet reflected in our

local PQs. We may have missed some other move that is now better due to outdated local

state. We consider entries from the gain table as more trustworthy than the local PQ entries.

Additionally, we filter infeasible moves at this stage, as hidden local moves of other threads

may have made the designated move infeasible. If the gain stored in the PQ is better than

the table entry (line 8), we adjust the gain of 𝑢 (line 14) and retry with a different vertex

(line 3). Otherwise, we return the found move (line 12) after updating vertex-PQs[𝑠] and the

block-PQ (line 9-11).

4.3.8 Rebalancing

While our refinement algorithms are guaranteed to produce balanced partitions, intermediate

balance violations can improve solution quality. The intuition behind this is that localized FM

searches may each find good improvements but their combination is barely infeasible. Hence,

we relax the balance constraint for the global rollback step by a small amount, multiplying

the imbalance parameter 𝜀 by a small factor. Based on preliminary experiments we use 1.25,

which turns 𝜀 = 0.03 into 𝜀′ = 0.0375. Often, label propagation refinement is able to rebalance

the partition with zero gain moves.

If the partition is still imbalanced on the finest level, we rebalance it using an approach

that is similar to label propagation. Since we allow only a small amount of imbalance, the

amount of work to rebalance the partition is small as well. In this case, we prefer worsening

the partition by as little as possible, even if the algorithm is not as efficient as it could be.

We iterate over the vertices in overloaded blocks in parallel and compute their highest

gain feasible move, but ignore staying in the current block. Non-negative gain moves are

performed immediately. Negative-gain moves are collected for a second pass, disregarding

that their gains may no longer be correct then.

If the partition is still imbalanced after the pass with non-negative gain moves, we perform

a second pass where we perform the negative gain moves. One way to prioritize higher gains

is to sort, and apply them sequentially until balance, but this lacks gain accuracy. Instead,

we distribute the negative gain moves to thread-local PQs. Each thread polls moves from

its PQ, and recomputes the best target block and according gain. If the current block is not

overloaded anymore, the move is discarded. If the fresh gain is not worse than the one in the

PQ, the move is applied, otherwise the vertex is reinserted into the PQ with the new gain.

To emulate the prioritization of gains, a thread spins idle if its top gain is worse than the

global top gain by more than a small threshold (we use 5). Under normal circumstances this

is unacceptable in terms of performance, but here it works because the imbalance is very

small and thus only few moves are considered.
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Structure of Experiments
We have concluded the algorithmic description of our multilevel algorithm, and now turn to

evaluating it experimentally. The experiments are structured as follows. First, we evaluate

the different components and design choices made in our algorithms (Sections 4.4 and 4.5).

In Section 4.5 we also consider techniques from a competing refinement algorithm and

demonstrate that our choices are superior. Following this, we assess how scalable each

component and the overall algorithm are in Section 4.6. Subsequently, we perform a horse-

race comparison with state-of-the-art partitioning algorithms in Section 4.7, first with fast

and parallel algorithms, then with slower sequential algorithms. This is the centerpiece of

the evaluation. Finally, we perform a parameter study to explain configuration choices for a

subset of the parameters. The volume of experiments has been substantially expanded from

the conference publication, which contained only the horse-race comparisons on set A and

B.

We call our algorithm Mt-KaHyPar-D. The Mt stands for multi-threaded, and the D stands

for default configuration, as we present further configurations in the following chapters. We

use the experimental setup as described in Section 2.4.

4.4 Evaluating the Algorithmic Components
The component evaluation experiments are conducted on set B andmachine Bwith 64 threads,

not the parameter tuning benchmark set. The order is as in the multilevel framework: first

preprocessing, then coarsening, and ultimately refinement, which makes up the largest

part. Except for the variable part, the algorithm uses the default configuration discussed in

Section 4.8.

Community Detection. In Figure 4.2 we show performance profiles for the final and

initial partition quality, with and without community detection preprocessing. The pre-

processing significantly improves both metrics substantially, though the effect is larger

on initial partitions as should be expected. The quality difference warrants enabling this

component in the main configuration, particularly considering the contribution to the overall

running time (which we show later). This approach’s effectiveness was already shown in

prior works [Sch20] with sequential codes, but we reconfirm this result for our algorithm.

Coarsening Locking Schemes. Next we investigate the impact of the locking scheme

employed for clustering in the coarsening phase. We proposed a two-stage locking approach

called ResolveByMerge in the following. We compare this with a version that performs

no locking at all (which thus corresponds to label propagation coarsening as for example

employed in Mt-KaHiP [ASS20]), and two versions of the locking scheme by Catalyürek

et al. [ÇDKU12] for the parallelization of PaToH’s coarsening. LockByRating tries to lock

all candidates in sorted order of their rating, stopping as soon as it succeeds, whereas
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Figure 4.2: Impact of community detection preprocessing on partition quality: for final

partition and initial partition.

1 1.05 1.1

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
c
ti

o
n

o
f

in
st

a
n
c
e
s

1.4 1.7 2.0 2.5 0 100 200 300 400 500

instances

1

4× 10−1

6× 10−1

sl
o
w

d
o
w

n
re

l.
to

N
o
L

o
ck

in
g

NoLocking ResolveByMerge LockByRating LockHighestRated

Figure 4.3: Partition quality and running time of different locking schemes during coarsening.

The running time plot (right) considers coarsening time, not total partitioning time.

LockHighestRated only tries the highest rated candidate and then gives up. Both versions

lock the current vertex before calculating ratings as this was faster.

Figure 4.3 shows the quality and running time results. In terms of quality, our ap-

proach ResolveByMerge comes out barely ahead of the two PaToH variants and far ahead of

NoLocking. LockByRating and LockHighestRated barely differ, which is a strong indication

that locking the first candidate usually succeeds. In terms of running time ours is the fastest

because it uses less locking than PaToH (joins to multi-vertex clusters are immediately
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Figure 4.4: Partition quality and running time when using just label propagation, just FM or

the combination of LP and FM. The running time plot (right) considers the refinement time

(LP + FM).

approved), and because it encourages more progress when the instances are small, due to

merging more vertices rather than rejecting joins (LockByRating and LockHighestRated) or

performing cyclic joins which lead to oscillation (NoLocking).

We are not definitively certain where the severe quality penalty for NoLocking stems from.

Due to oscillation, we do not reach the contraction limit as often, and smaller contraction

limits lead to better partition quality, as shown later in the parameter study. However, our

main idea is that we do not properly control the coarsening progress. We create level 𝑖 + 1

as soon as
|𝑉𝑖 |
|𝑉𝑖+1 | > 𝛽 , where 𝛽 is the shrinking parameter. During a coarsening pass, we

track |𝑉𝑖+1 | by incrementing a counter for each approved cluster join (thread-local deltas,

zero-initialized, synchronized from time to time), which is subtracted from |𝑉𝑖 |. Due to the

agglomerative property of the algorithms with locking this method is accurate; over the

course of the pass |𝑉𝑖+1 | only becomes smaller. However, it fails without locking as two

vertices joining each other at the same time cause two increments, while subsequently both

are still singletons. Here, we could accurately track |𝑉𝑖+1 | via the events ”cluster weight

becomes 0” and ”cluster weight becomes > 0” observed with atomic instructions as triggers

for decrementing/incrementing the number of clusters, but we did not investigate further.

Combining LP and FM Refinement. In the Mt-KaHiP paper, Akhremtsev et al. [ASS20]

claim that combining LP and FM refinement leads to better running time than using only

FM, because LP finds all of the easy improvements in shorter time, such that FM needs to

perform less work to find the non-trivial improvements. We dispel this claim in Figure 4.4,

at least for our benchmark instances. Using only FM is a bit faster than the combination FM

+ LP on the majority of the instances. Even the tail at slowdowns < 0.5 is larger than the tail
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Figure 4.6: Intervention frequency of gain accuracy techniques, and overall gain fluctuation.

at > 2. There is almost no quality difference between only FM and the combination, though

the combination looks barely ahead. Using only LP is not viable if good partition quality is

desired.

In Figure 4.5 we plot the fraction each of the two refinement algorithms makes to the

overall gain, that is the improvement made from the initial to the final partition. LP makes

the larger contribution since it is run first and thus able to find the easy improvements.

Considering this, the contribution of FM is quite impressive.
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Figure 4.7: Intervention frequency of gain accuracy techniques, and overall gain fluctuation,

but restricted to the coarsest level.

Gain Accuracy. Up next, we investigate how often our techniques for accurate gains have

to intervene because the calculations were wrong. Figure 4.6 shows combined box-and-

scatter plots for the frequency of various events (relative to the total number of moves in that

part, all below 1), as well as how this affected the overall gain (LP gain, FM attributed gain,

FM rollback gain; fluctuate around 1). We plot how often the gains are wrong, whether this

lead to a revert, and whether moves had to be reverted due to accidental balance violation.

The plots are separated for LP, FM at local rollbacks (attributed), where we compare the

calculated gain from the gain table with the attributed gain, and FM at global rollbacks

(rollback), where we compare the attributed gain with the recalculated gain within the move

sequence. For FM we cannot distinguish whether the revert is due to negative gain or balance

violation, since a combination of moves, and only non-violating prefixes are considered. To

clarify, we plot the number of reverted moves and total moves calculated, not the number of

local rollbacks that perform reverts.

It is astonishing how rare incorrect gains are and how small the effect on the overall gain

is, even for attributed gains with FM, where some time passes between moving the vertex

locally and applying the move to the global partition. Consequently the effect on the actual

gain is rather small, though in some cases the overall gain is even better. Out of the three

contexts, the gain difference is most pronounced at the global rollback, making the parallel

gain recalculation the most important of our accuracy techniques.

Reverts are much more often triggered by balance violations, up to 20% of all moves for

LP on an outlier instance. For FM global rollbacks this is expected because move sequences

that were not coordinated with one another are combined; for LP not so much since a check

is performed before the atomic block weight update incurred by the move.
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Figure 4.8: Impact of attributed gains on partition quality with LP refinement. For these

measurements FM was turned off.

The numbers are tracked for the main uncoarsening (actual 𝑘 , no recursive bipartitioning)

and aggregated across all levels. Interference between threads is more prominent on coarser

than on finer levels, and more moves are possible on finer levels. Therefore Figure 4.7 shows

the same statistics measured on just the coarsest level. As can be expected, we see that the

calculated gains in LP and FM are wrong more often, but interestingly balance violations

occur less frequently.

Attributed Gains. Considering the results in the previous paragraph, we cannot expect a

significant quality improvement from using attributed gains. In Figure 4.8 we compare the

quality of just label propagation refinement (FM turned off) with and without attributed gains.

The difference is tiny. However, the running time impact is tiny as well, so the technique

can be used without considering a trade-off. Furthermore, we have a follow-up work with

substantially more interference between threads (Chapter 6), where attributed gains have a

bigger impact.

Gain Tables. Next we evaluate the parallel gain table used during FM and two alternative

methods that were preferred in recent years: recomputing gains from scratch [ASS20] and

using to-PQs [Sch20] with delta-gain updates. Additionally, we consider a variant where the

gain table entries of a vertex are only initialized once it is acquired, instead of initializing all

entries before FM starts. We call this GainTableOnDemand.

Figure 4.9 shows the results. Recomputing gains from scratch is not viable. With the gain

table, FM takes 80 seconds on our largest instance sk-2005 for 𝑘 = 64, whereas the version

that recomputes gains takes 20700 seconds. To clarify the timeout symbol, these runs had

a time limit of 8 hours, instead of the usual 2 hours. DeltaGainsInToPQs exhibits similar

issues but is slightly faster than recomputing gains. The overhead compared to the gain table
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Figure 4.9: Partition quality and running time when using different techniques to calculate

gains: gain tables, initializing the gain table only on demand, recalculating from scratch for

each move, and updating gains directly in the priority queues. The running time plot (right)

considers the time spent in FM.

stems from one heap operation for each gain update on a net between the moved vertex and

neighbor, instead of one heap operation overall per neighbor.

Additionally, DeltaGainsInToPQs exhibits slightly worse partition quality than GainTable.

GainTableOnDemand exhibits the same partition quality as GainTable but is overall slower.

The hope was that by running LP before FM, only a fraction of the vertices would be

considered in FM, which would make this approach attractive. However, this did not pan

out as expected.

Hidden vs Global Moves. Now we assess the impact of hiding moves from other threads

during FM until a net improvement is found. Recall that this comes at the cost of local

partition data structures that must be stored in thread-local hash tables. In terms of quality,

hiding moves (ApplyToLocalPartition) is clearly superior, contributing the best partitions

on roughly 70% of the instances, and reaching the 90% fraction at 1.02 performance ratio,

whereas ApplyToGlobalPartition reaches this marker only at around 1.06.

Interestingly ApplyToLocalPartition is even faster than ApplyToGlobalPartition, often

by a factor 2-3. This was not the case in the conference publication, where the latter was

substantially faster. We have since invested engineering effort for the local-first variant:

clearing hash tables early, avoiding updates, and engineering the hash tables, such that we

made it the sole default.

Running the experiment again with 16 threads reveals that the running time difference

becomes less pronounced. The explanation is that FM performs a lot of moves, many of

which will be reverted. This causes contention on the locks for updating the connectivity
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Figure 4.10: Impact on quality and running time of applying moves directly to the global

partition or to a thread-local partition first during FM. Interestingly the latter is faster.

The running time plot considers time spent in FM.
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Figure 4.11: Impact on quality and running time of releasing acquired vertices at the end of

a localized FM search. The running time plot considers time spent in FM.

sets Λ(𝑒) and packed pin-count data structures. Hiding these moves reduces lock contention.

We previously argued that there should be little contention on these locks, and for LP this

still holds because LP performs only positive gain moves.

Release Vertices. Now, we consider the option of releasing vertices at the end of a localized

FM search (such that other searches during the current round can acquire them), versus
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Figure 4.12: Fractions of time spent in each of the components of Mt-KaHyPar-D.

keeping them locked. The results are in Figure 4.11. The quality impact is similar to hiding

moves, however this time the higher quality variant Release is slower than the lower quality

variant, with slowdown ranging between a factor 1-10. On almost 200 instances Release is

slower by a factor 2 or more.

Running Time Shares. Finally, we show how much running time each phase takes up in

the overall multilevel algorithm. In Figure 4.12 this is plotted per instance. The instances are

sorted by the share FM refinement has. To make the plot look cleaner, we show only the

first seed, as we do not want to aggregate across different runs here. Overall, FM refinement

makes up the biggest part of the work on most of the instances, as expected; though the

share varies a lot ranging from below 5% up to 80%. Only on about 80 instances it takes more

than 50% of the total running time, thus it is rarely the sole bottleneck.

Coarsening and preprocessing usually take between 15-30% each, with preprocessing

taking up a bit more. Initial partitioning is often negligible, but there are a few instances

where it takes very long. This is often due to coarsening terminating before the contraction

limit is reached or uneven work loads in the recursive partitioning calls (sequential 2-way

FM), which is why work-stealing is so important. LP usually stays below 5-10%. While LP is

a similar algorithm as the coarsening and community detection clustering, it is substantially

faster because the number of clusters is smaller, and thus rating maps fit in cache.

The results are close to what we expected beforehand. We thought the shares of FM would

be even higher and those of coarsening and preprocessing would be lower. The category

”other” displays the difference between the total time and the sums of the measured phases

(so that the bars reach to 1). These are parts of the code that were not timed, e.g., calculating

metrics or aggregating statistics.
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Table 4.1: Design aspects of parallel FM.

design avenue Mt-KaHyPar Mt-Metis

vertex assignment localized expansion (LocExp) static to threads (Stat)

gains negative + local rollback (NegGain) only positive (PosGain)

apply moves local partition (Loc) global partition (Glob)

communicate moves gain table message queues (MQ)

unused vertices release (Rel) keep locked (NoRel)

4.5 Parallel FM Design Choices
In this section we explore further design choices for implementing a parallel FM type al-

gorithm. Often, researchers compare entire multilevel systems, such that implementation

differences and different algorithms in the other two phases make a comparison of just the

refinement algorithms difficult. Therefore we conduct our comparison within the same

framework, to assess the impact of just the differences in the specific refinement components.

The experimental results presented are based on the bachelor thesis of Noah Wahl [Wah21],

which was supervised by me. We omit running times, because the implementation is not as

optimized as possible, in order to accommodate integrating all components in one imple-

mentation.

Besides Mt-KaHiP the only other shared-memory parallel FM type algorithm is from the

Mt-Metis graph partitioning framework by Lasalle and Karypis [LK13]. We identified six

aspects in which their approach differs from ours, which we summarize in Table 4.1. First,

boundary vertices are statically assigned to threads, and each thread performs sequential FM

on the boundary vertices it owns; without localized expansion. Only positive gain moves

are allowed, such that no sequential move order is necessary. Moves are applied directly to

the global partition. Pair-wise message queues are used to communicate moves to threads

owning neighbors of moved vertices, such that they can update their internal gain structures.

No shared gain table is used. Finally, since there is no expansion, unused vertices cannot be

moved by other threads, and are therefore kept locked.

In our evaluation, all variants use the shared gain table to simplify the implementation. In

the table we listed abbreviations to identify the different components. For example the con-

figuration of FM we use in Mt-KaHyPar-D would be called LocExp-NegGain-Loc-NoMQ-Rel,

because it uses localized expansion, allows negative gains, applies moves to a local partition

first, does not use message queues, and releases unused vertices. The experiments were run

on benchmark set B and machine E with 16 threads.

We turn off the ”good” components step by step and examine the impact on partition

quality. The order is the same as the legend in the plot. Starting with the FM configuration

as used in Mt-KaHyPar-D (blue), we first switch from applying moves to a local partition to

a global partition (Glob, orange), then from releasing unused vertices to keeping them locked

(NoRel, green); two components whose impact we have already observed. This already
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Figure 4.13: Partition quality when turning off FM components one by one.

shows a big decline in partition quality. Next we only allow positive gain moves (PosGain,

red), which shows a further decline but not as strong. The biggest dip in partition quality is

caused by switching from localized expansion to static assignment of boundary vertices to

threads (Stat, purple). We also tried a version that is allowed to expand to not yet assigned

vertices (non-boundary vertices at the beginning) but this did not exhibit any difference

(not shown in the plot). Some of the quality can be recovered by using message queues

(MQ, brown), or attributed gains (Attr, pink). Using message queues and attributed gains in

combination (gray) does not give any further benefits. Allowing negative gain moves again

(yellow, NegGain) also manages to recover some quality. While message queues can be used

in conjunction with the strongest version presented, this did not make an impact (not shown

here). Their ineffectiveness is caused by the use of the shared gain table.

4.6 Scalability
After evaluating the components in our framework in terms of quality and running time,

it is now time to assess their scalability. In Figure 4.14 we plot self-relative speedups for

each component as well as the overall framework (top left), with 4,16,64 threads. We plot

one data point (scatter) for each instance, as well as an aggregate rolling geometric mean

with window size 50. The instances are sorted by sequential running time, to show that

we achieve better speedups on longer running instances. For readability purposes, we did

not plot our measurements with 2,8,32 threads, but the overall trends are the same, and we

filtered 3 outliers for initial partitioning above 128. Additionally, Table 4.2 shows geometric

mean speedups for all instances and instances where the particular phase took at least 100

seconds.

With 4 threads we achieve near-perfect speedups in coarsening, initial partitioning and

FM refinement. LP struggles on short-running instances and it is overall the fastest phase
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Figure 4.14: Speedups for Mt-KaHyPar-D in total as well as its components separately. The

x-axis shows the sequential time in seconds, the y-axis the speedup. The lines are rolling

geometric means (window size 50) of the per-instance speedups (scatter).
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Table 4.2: Geometric mean speedups for each phase, 16 and 64 threads, all instances or

instances that took at least 100 seconds sequentially. The last row shows the percentage of

instances where this applies.

instances threads total coarsen initial community LP FM

all 16 10.62 10.91 11.57 9.15 6.37 11.18

all 64 20.54 22.88 18.16 17.4 8.47 21.29

≥ 100𝑠 16 10.53 11.05 10.5 9.34 11.36 11.83

≥ 100𝑠 64 22.17 26.8 18.97 23.08 25.82 27.19

% ≥ 100𝑠 40.6 14 9.8 9.6 0.5 23
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Figure 4.15: Partition quality with increasing number of threads. We can see that there is

no quality penalty incurred by using more cores.

by far, so this is expected. On the other hand, community detection preprocessing achieves

near-perfect speedup on the fast instances, but struggles on the slower ones (more than 10

seconds), where its speedup is around 3.

With 16 threads the overall geometric mean speedup is 10.62, and with 64 threads it is

20.54. This improves to 22.17 if we consider only instances that take longer than 100 seconds.

FM (21.29, 27.19) and coarsening (22.88, 26.8) exhibit the best speedups.

Overall, the speedups are fairly robust, which was not yet the case in the conference

publication. With subsequent performance engineering we were able to eliminate startup

overheads in FM refinement and shared resource usage in flat initial partitioning. These

contributed to poor speedups on instances that were solved quickly. Now we see good

speedups even on the small instances, though it is still a general trend that we achieve better

speedups on longer running instances.

Finally, Figure 4.15 shows that increasing the number of threads does not affect the partition
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Figure 4.16: Partition quality and running time on benchmark set B. All algorithms are run

on 64 cores, except PaToH.

quality either negatively or positively. This is usually an issue for parallel partitioning

algorithms.

4.7 Horse-Race Comparisons
Now we turn our attention to comparisons with existing state-of-the-art hypergraph par-

titioning algorithms. We start with fast and parallel algorithms on set B, and then turn to

sequential algorithms on set A.

4.7.1 Comparison with Parallel Algorithms
Figure 4.16 summarizes the results for Mt-KaHyPar-D compared with PaToH-D, Zoltan, and

BiPart on benchmark set B. Mt-KaHyPar-D clearly outperforms the competitors by a huge

margin, both in terms of partition quality and running time. It contributes 78.5% of the best

partitions (443) to the pool, is within a factor of 1.1 of the best solution on over 95% of the

instances, and never worse by more than 2.2. PaToH-D contributes around 16.4% of the

best partitions (98) and reaches the 1.1 ratio at around 60% of the instances. BiPart is far off,

contributing only 5 of the best partitions, reaching 1.1 at below 10% and reaching factor 2

below 40%. Zoltan is situated between BiPart and PaToH. It converges towards 1 much faster

than BiPart. This indicates that Zoltan is more robust, as its worst solutions fare better than

the worst of BiPart. The worst partition of BiPart is a factor 4551 worse than the best on that

instance.

The geometric mean running times are 3.9s for Mt-KaHyPar-D, 47.63s for PaToH-D, 29.15s

for BiPart, and 10.64s for Zoltan. The ranking induced by the aggregates fits with the overall
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Figure 4.17: Running time comparison with increasing number of threads versus PaToH-D.

picture in the running time plot of Figure 4.16 (right), where Mt-KaHyPar-D is usually the

fastest. It is faster than Zoltan by a factor between 1-10, and between 2-200 for BiPart and

PaToH-D. For PaToH-D this is expected since it is sequential, for BiPart not so much since

it uses only simple components that are easy to parallelize. In Figure 5.5 of Chapter 5 (our

deterministic algorithm) we show speedups for BiPart, which are mostly below 2, and the

largest speedup is around 7.

In Figure 4.17 we additionally plot the slowdown of our algorithm relative to PaToH,

with different numbers of threads. With 1 thread Mt-KaHyPar is slower, with 2 threads the

running time is very similar, and starting at 4 threads it is noticeably faster. PaToH is seen as

the fastest sequential multilevel partitioner [Sch20] that is extremely well engineered and

configured for speed. For example, PaToH uses only 2 rounds of 2-way boundary FM per

level (recursive bipartitioning). Considering we use 10 rounds of 𝑘-way FM per level, the

similar running time at 2 threads is impressive for our implementation.

4.7.2 Comparison with Sequential Algorithms

In this section we compare Mt-KaHyPar with the state-of-the-art sequential hypergraph

partitioning codes KaHyPar, PaToH, and hMetis on benchmark set A. Mt-KaHyPar is run

on 10 cores. For KaHyPar we consider two configurations: KaHyPar-CA (n-level with

community-aware coarsening [HS17]), and additionally using flow-based refinement with

FlowCutter [GHSW20]. For hMetis, we include only the recursive bipartitioning configura-
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Figure 4.18: Partition quality and running time on benchmark set A, using 10 cores for

Mt-KaHyPar.

tion hMetis-R, as the direct 𝑘-way version produces mostly imbalanced partitions, which are

further of inferior quality to those of hMetis-R. Figure 4.18 summarizes the results.

Mt-KaHyPar is between one and three orders of magnitudes faster than hMetis-R, KaHyPar-

CA and KaHyPar-HFC, with the majority of their slowdowns in the range 10-100. hMetis-R

is the slowest algorithm in this evaluation, followed by KaHyPar-HFC. On around 2500

instances, Mt-KaHyPar is between a factor 2 to 10 faster than PaToH-Q, and on around 900

instances it is between one to two orders of magnitude faster. PaToH-D has a similar running

time as Mt-KaHyPar: it is faster on around half of the instances and on the other half it is

slower. In the previous section, we showed that Mt-KaHyPar with just 2 threads has a similar

running time as PaToH-D on set B. The difference here is that the instances of set A are

substantially smaller, which makes it more difficult to obtain good parallel speedups, and

emphasizes the parallelization overheads more. The geometric mean running times are 0.96s

for Mt-KaHyPar-D, 1.17s for PaToH-D, 5.86s for PaToH-Q, 28.14s for KaHyPar-CA, 48.95s

for KaHyPar-HFC and 93.2s for hMetis-R, which match the ranking suggested by the plot.

KaHyPar-HFC contributes around 70% of the best partitions, hMetis-R around 20%, while

PaToH-Q, Mt-KaHyPar-D, and KaHyPar-CA contribute around 8% each. KaHyPar-CA and

Mt-KaHyPar-D converge faster towards 1 than hMetis-R, crossing its curve at 1.03 and 1.1,

respectively. PaToH-Q has similar quality as Mt-KaHyPar-D though slightly worse overall,

and PaToH-D comes in last. Because KaHyPar-HFC works well on similar instances as

KaHyPar-CA and Mt-KaHyPar-D and has superior components, we also present two plots

without it in Figure 4.19 for a more individualized comparison. In the left one, we compare Mt-

KaHyPar-D with PaToH and hMetis-R, and in the right one directly with KaHyPar-CA. Here

we see that the gap between Mt-KaHyPar-D and PaToH-Q is larger than suggested by the

first plot. Furthermore, hMetis-R and KaHyPar-CA are noticeably better than Mt-KaHyPar-D.
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Figure 4.19:More individualized quality comparisons on set A.
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Figure 4.20: Effectiveness tests with virtual instances on benchmark set A, comparing

Mt-KaHyPar-D (on 10 cores) with KaHyPar-HFC, KaHyPar-CA, hMetis-R and PaToH-Q.
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However, they are also substantially slower, not just due to parallelism but due to im-

plementation and design choices. Therefore, we perform effectiveness tests with virtual

instances in Figure 4.20 to compare partition quality when the algorithms are given a similar

amount of running time. Given the large running time discrepancy, it is very likely that

Mt-KaHyPar will not exhaust the given time, even with all 10 available seeds. We see that in

the effectiveness tests, Mt-KaHyPar-D performs noticeably better than hMetis-R, and slightly

better than KaHyPar-CA, whereas it cannot beat flow-based refinement purely with repeti-

tions. Mt-KaHyPar is highly non-deterministic and exhibits large fluctuations in partition

quality, which is a strength in these effectiveness tests. Lastly, we run an effectiveness test

versus PaToH-Q, where the gap simply becomes larger than before.

4.7.3 Comparison with Social Hash
Since we could not include SHP (Social Hash Partitioner) [Kab+17a] in the regular compari-

son, we ran Mt-KaHyPar on the available real-world instances from their paper. We compare

results computed on our machine with those reported in their technical report [Kab+17b].

Note that SHP optimizes the fanout objective, which is equivalent to connectivity on un-

weighted instances, since (𝜆 − 1) (Π) = (fanout(Π) ·𝑚) −𝑚. We report connectivity values

(converted from fanout for SHP) for 𝑘 ∈ {2, 8, 32, 128, 512} for SHP-K (direct 𝑘-way), SHP-R

(recursive bipartitioning), and Mt-KaHyPar-D in Table 4.3. The instances are ordered from

smallest to largest. On the two largest instances we additionally consider the configuration

Mt-KaHyPar-S (speed, FM disabled).

On most of the instances, Mt-KaHyPar computes substantially better partitions. The

difference is most pronounced for the web instances. SHP is only competitive on the two

smallest instances email–Enron and soc–Epinions.

In Table 4.4 we report absolute running times for 𝑘 ∈ {32, 512, 8192}. Unfortunately

the authors of SHP only included running times for the two largest instances Pokec and

LiveJournal, and used different values of 𝑘 than for the quality measurements. Since different

machines were used (4 x 16 threads), which are furthermore older than ours, running times

cannot be compared directly. For large 𝑘 , SHP-K is slower than SHP-R because its label

propagation implementation calculates gains to each block separately instead of to all blocks

in one simultaneous pass over incident nets. Mt-KaHyPar-S is the fastest out of the considered

variants. The running time of Mt-KaHyPar-D is similar to SHP-R for 𝑘 = 32, but slower for

𝑘 = 512, 8192. Compared with SHP-K the running is similar for all three values of 𝑘 . This

is astonishing as Mt-KaHyPar uses 𝑘-way FM and multilevel, whereas SHP is flat and uses

only label propagation. Recall from Figure 4.12 and Figure 4.14 that label propagation is

substantially faster than FM.

4.7.4 Larger Number of Blocks
In this section, we perform experiments with Mt-KaHyPar and Zoltan on benchmark set B but

for larger values of 𝑘 ∈ {512, 1024, 2048} than our previous experiments. PaToH and BiPart
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Table 4.3: Quality Comparison with SHP. Best solutions in bold.

𝜆 − 1

𝐻 Partitioner 𝑘 = 2 𝑘 = 8 𝑘 = 32 𝑘 = 128 𝑘 = 512

E
n
r
o
n

SHP-R 3313 19875 39241 65997 102434
SHP-K 3822 17837 33635 60900 112371

Mt-KaHyPar-D 5398 16876 33649 55330 110575

E
p
i
n
i
o
n
s SHP-R 1246 21804 53888 95627 151073

SHP-K 1869 20247 47658 90332 164467

Mt-KaHyPar-D 1082 22638 56318 102401 168315

S
t
a
n
f
o
r
d SHP-R 22779 60743 101239 149327 189823

SHP-K 20248 43026 75929 116425 197416

Mt-KaHyPar-D 42 9641 34808 67186 100431

B
e
r
k
S
t
a
n SHP-R 67048 170668 274287 420574 542479

SHP-K 60953 146286 195049 304764 597336

Mt-KaHyPar-D 109 18866 90299 180352 266095

P
o
k
e
c

SHP-R 625731 2273064 4175797 6142380 8773004

SHP-K 549111 2094283 3920396 5772049 8274973

Mt-KaHyPar-D 498795 1881114 3530491 5478685 7875689
Mt-KaHyPar-S 538508 1929862 3693454 5777868 8548565

L
i
v
e
J
o
u
r
n
a
l SHP-R 1051618 3969011 7768406 11805263 16181352

SHP-K 1255157 3595856 6275786 9566334 14315578

Mt-KaHyPar-D 777664 2686922 5165858 8073151 11417656
Mt-KaHyPar-S 858789 2978709 5707737 9323059 12569971

are too slow to be included in these experiments. Again, we add the speed configuration

Mt-KaHyPar-S without FM to showcase the impact of the multiplicative O(𝑘) term in the

running time of FM. The results are shown in Figure 4.21. The default version with FM yields

the best quality; the difference to Zoltan looks even bigger than in Figure 4.16. However,

using FM comes at a huge cost in terms of running time for large 𝑘 . The geometric mean

running times are 42.32s for Mt-KaHyPar-D, 15.15s for Zoltan, and 9.59s for Mt-KaHyPar-S.

On 65% of the instances Mt-KaHyPar-S is faster than Mt-KaHyPar-D by more than a factor

of 3. Even though it only uses label propagation, Mt-KaHyPar-S still finds better partitions

than Zoltan and is faster. Zoltan has 31 instances with only imbalanced partitions and 3

crashes. Mt-KaHyPar-D times out on one instance and runs out of memory on one.
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Table 4.4: Running time comparison with SHP. Fastest algorithms in bold.

𝑡 [𝑠]
𝐻 Partitioner 𝑘 = 32 𝑘 = 512 𝑘 = 8192

E
n
r
o
n

SHP-R – – –

SHP-K – – –

Mt-KaHyPar-D 0.46 1.03 5.23

E
p
i
n
i
o
n
s SHP-R – – –

SHP-K – – –

Mt-KaHyPar-D 0.77 1.72 7.44

S
t
a
n
f
o
r
d SHP-R – – –

SHP-K – – –

Mt-KaHyPar-D 0.56 1.79 5.57

B
e
r
k
S
t
a
n SHP-R – – –

SHP-K – – –

Mt-KaHyPar-D 1.00 3.36 9.60

P
o
k
e
c

SHP-R 108 138 270

SHP-K 156 528 2076

Mt-KaHyPar-D 70.42 173.76 760.71

Mt-KaHyPar-S 45.71 55.67 87.31

L
i
v
e
J
o
u
r
n
a
l SHP-R 144 222 396

SHP-K 276 1260 2868

Mt-KaHyPar-D 125.39 332.15 4466.63

Mt-KaHyPar-S 80.83 91.36 154.11

4.7.5 Comparison with Graph Partitioning Algorithms

Since hypergraphs are a generalization of graphs, Mt-KaHyPar can also be used for parti-

tioning plain graphs. We included a comparison with dedicated graph partitioners in the

conference paper. The solution quality was competitive with Mt-KaHiP, but the running time

was higher by a factor of about 2. Unsurprisingly, our code was at a sizable disadvantage

because the graph is stored in a sub-optimal format and the algorithm implementations are

more complex than necessary for this particular case. To alleviate the first issue, we plug in a

graph data structure in place of the hypergraph and emulate the Φ(𝑒, 𝑖),Λ(𝑒) data structures,
as well as the hypergraph iteration methods. Thanks to template meta-programming this

switch is easily possible at compile time. Nikolai Maas carried out the implementation and

integration of this approach during his employment as a student researcher with Tobias

Heuer.
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Figure 4.21: Partition quality and running time on benchmark set B for large 𝑘 ∈
{512, 1024, 2048}.
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Figure 4.22: Partition quality and running time comparisonwith dedicated graph partitioners

on benchmark set E.

In Figure 4.22 we compare this version with the shared-memory parallel graph parti-

tioning frameworks Mt-KaHiP [ASS20], Mt-Metis [LK16] (with hill-scanning) and KaMin-

Par [Got+21]. We use benchmark set E (53 graphs, 𝑘 ∈ {2, 4, 8, 16, 32, 64}makes 318 instances)

and machine B with 64 cores for each algorithm. In terms of quality, Mt-KaHyPar performs

best, as it contributes around 65% of the best partitions, reaches 1.1 performance ratio around

95% of the instances and is never worse by a factor of more than 2. Mt-KaHiP contributes

around 25% of the best partitions and reaches 1.1 performance ratio around 80%. The qual-
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ity difference between Mt-KaHyPar and Mt-KaHiP can be attributed to the differences in

localized FM we outlined in Section 4.3.7 and the community-aware coarsening. Mt-Metis

crashes on 12% of the instances (no timeouts). Out of 1590 runs, only 815 produce balanced

partitions, which results in about 35% of the instances where all computed partitions were

imbalanced. At some point Mt-Metis used a rebalancing algorithm in the refinement, but it

was removed in more recent versions. KaMinPar is far off in terms of quality since it uses

only label propagation, but this means it is much faster. The geometric mean running times

are 2.55s for KaMinPar, 9.2s for Mt-KaHyPar-D, 11.93s for Mt-Metis, and 12.77s for Mt-KaHiP.

The ranking induced by the aggregates almost matches the behavior of the per-instance

running time plot. KaMinPar is almost always faster than Mt-KaHyPar, by a factor of 5-10

on 100 instances, and by a factor of 3-10 on 200 instances. On 200/318 instances, Mt-Metis is

faster than Mt-KaHyPar, however the crashes are counted as the 2 hour time limit in the

aggregate, which explains why the aggregate is higher. Mt-KaHiP is slower than Mt-KaHyPar

on around 200/318 instances.

4.8 Algorithm Configuration
Our algorithm possesses a huge number of parameters. We summarized the most important

ones and their default configuration value in Table 4.5. In the following, we perform parameter

studies for a subset of these where we see interesting results, structured by the multilevel

phases. The experiments are performed on machine E with 16 cores on the instances of the

parameter tuning benchmark set C.

For coarsening we consider the contraction limit parameter 𝑡 , and the shrink factor 𝛽 . For

initial partitioning we test the adaptive portfolio that only repeats promising algorithms,

as well as the maximum number of repetitions of each flat algorithm in the portfolio. For

refinement we test the number of rounds for LP and FM, as well as the number of seeds

in localized FM. Experiments on the Louvain rounds are not shown. We tested 3-9 rounds

and saw now difference, which matches previous results by Öhl [Öhl18] who showed that

just two rounds suffice for best quality. This is different from usual community detection

tasks in social network analysis, where values upwards of 20 rounds are common. For

label propagation, we do not show results for the net activation threshold (tested range

50− 10
4
) and rebalancing with zero gains, as we did not observe any differences between the

configurations.

In Figure 4.23 (left) we see the impact of the coarsening limit 𝑡 on partition quality. Our

choice of 160 works best, and 100 or 240 work equally well, whereas larger values beyond

300 are no longer competitive.

On the right of the same figure we show results for the shrink factor 𝛽 during coarsening.

This affects the number of levels created in the hierarchy. Surprisingly we see very little

difference between the different tested values. Out of caution we use a fairly conservative

value of 2.5 as the default, instead of fast shrinking with larger values. The value 2.5 even

narrowly emerges as the top curve.



Algorithm Configuration Section 4.8

103

Coarsening-Limit-100

Coarsening-Limit-160

Coarsening-Limit-240

Coarsening-Limit-300

Coarsening-Limit-600

Coarsening-Limit-1000

Shrink-Factor-1.8

Shrink-Factor-2.0

Shrink-Factor-2.35

Shrink-Factor-2.5

Shrink-Factor-2.75

Shrink-Factor-3.0

Shrink-Factor-3.5

1 1.05 1.1

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
c
ti

o
n

o
f

in
st

a
n
c
e
s

1.4 1.7 2 10 20 30 1 1.05 1.1

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
c
ti

o
n

o
f

in
st

a
n
c
e
s

1.4 1.7 2 10 20 30

Figure 4.23: Effect of coarsening limit (left) and shrink factor (right) on partition quality.
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Figure 4.24: Effect of the adaptive portfolio (left) and number of repetitions per flat algorithm

(right) on final partition quality.
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Parameter Explanation Selected Value

- Louvain: num rounds before contraction 5

- Louvain: min fraction of nodes moved 1%

𝜂 max net size for heavy-edge rating 1000

𝑡 coarsen until 𝑡 · 𝑘 vertices remain 160

𝑊max max cluster weight ⌈𝑐 (𝑉 )
𝑡 ·𝑘 ⌉

𝛼 terminate coarsening if |𝑉𝑖 |/|𝑉𝑖+1 | ≤ 𝛼 1.01

𝛽 create level 𝑖 + 1 once |𝑉𝑖 |/|𝑉𝑖+1 | > 𝛽 2.5

- flat bipartitioning repetitions 20

- use adaptive yes

- min repetitions (only if adaptive) 5

- LP rounds 5

- LP max net size for activating neighbors 100

- LP use zero gain moves for rebalancing yes

- max FM rounds 10

- FM releases vertices yes

- FM moves directly on global partition no

- FM seeds 25

- FM stop rule adaptive

- FM rollback: allowed balance violation 1.25 · 𝜀
- FM PQ layout from-PQs

- FM gain table yes

- IP mode (rb, deep, direct) rb

Table 4.5: List of parameters used in Mt-KaHyPar

In Figure 4.24 (left) we see that using the adaptive portfolio comes at a small quality

penalty. We deem this justified by the savings in running time: 0.16s vs 0.24s geometric

mean time, and thus enable the adaptive portfolio in the default configuration. The number

of flat algorithm repetitions (right) is more interesting. We see that quality increases if more

repetitions are added, as expected. But there are diminishing returns around 20 repetitions,

which we therefore choose as our default value. Both plots are based on the quality of the

final partition, not the initial 𝑘-way partition.

Figure 4.25 (left) shows that the number of LP rounds has almost no impact on partition

quality, which is very surprising. FM was not disabled for these measurements, since we

want to use the combination of LP and FM, which contributes to this effect. Looking at

some outputs, the vast majority of the improvements happen in the first LP round, a few

improvements still happen in the second, and by the third almost no moves are made any
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Figure 4.25: Effect of LP rounds (top left), FM rounds (top right). The other refinement

algorithm was not disabled for these measurements.
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Figure 4.26: Effect of the number of FM seeds on partition quality and running time.

more. This further explains why LP is so fast, as very little work is invested thanks to the

active set strategy.

This phenomenon does not carry over to the number of FM rounds (right), where we see

drastic improvements when going from 1 to 3 rounds. From 3 to 5 the step is much smaller,

and by 10 rounds diminishing returns set in. Therefore, we use 10 rounds as the default

value.
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For the number of seeds (Figure 4.26) the sweet-spot is at 5, not at 1, because with fewer

seeds it is more likely that some of the moves that are reverted would be helpful in the local

search of a different seed. On the other hand, grouping too many seeds together diminishes

the localization, as unrelated searches are performed together. This can interfere with the

hill-climbing capabilities. At more than 5 seeds, the quality slowly degrades, but the running

time improves drastically with 80ms geometric mean running time for 15 seeds, 60ms for 25,

50ms for 50 seeds, compared to the 130ms for 5 seeds and 210ms for 1 seed. In this chapter we

aim for a fast configuration with moderately good quality, which is why we choose 25 seeds

as the default value. In Chapter 6 on our parallel 𝑛-level variant we aim for the maximum

quality regardless of running time, so we use 5 seeds in that configuration.

4.9 Conclusion
In this chapter, we presented a shared-memory parallel hypergraph partitioning algorithm

that guarantees balanced partitions, exhibits very good speedups and partition quality, even

compared with sequential algorithms. It is the fastest multilevel hypergraph partitioner

to date and offers the best quality out of all parallel algorithms available. This is achieved

by carefully engineering and parallelizing each phase of the multilevel framework. On the

algorithmic side, we presented parallel versions of agglomerative clustering for coarsening,

label propagation refinement and localized 𝑘-way FM refinement.

In our experiments we demonstrated that our implementation and design choices are

superior to choices made by previous, related implementations [LK13, ASS18a, Sch20]. We

falsified the claim that combining LP and FM is superior in terms of running time and quality

over using just FM [ASS18a], at least on our benchmark instances. Unfortunately, the gain

accuracy techniques were not as impactful as we had hoped, which is caused by the lack of

interference between the local searches, thanks to randomization. Using attributed gains

showed no significant difference but also does not come at extra running time costs. Using a

parallel gain table showed small to moderate quality improvements over other approaches.

Yet, the main benefit of the gain table is its superior speed. The largest quality impact is

from the global rollback step, which uses our third gain accuracy technique: parallel gain

recalculation.
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5

Deterministic Parallel Hypergraph
Partitioning

Motivation and Context. A program is deterministic if it is guaranteed to produce the

same output each time it is run on the same input. For sequential programs this is easy to

achieve most of the time. For parallel programs not so much, as randomized scheduling

and arbitrary execution interleaving lead to different results in each run. Researchers have

advocated the benefits of deterministic parallel algorithms for several decades [Ste90, BFGS].

It is easier to debug the program, to reason about performance and it enables reproducing

experimental results.

While some researchers strive for deterministic programming models [LCB11], this comes

at high costs, e.g., static scheduling, private on-write copies of shared memory, determin-

istic ordering of updates at synchronization points, and most importantly the inability to

use custom locking and synchronization measures [LCB11]. These approaches focus on

deterministic program behavior (a stronger requirement), not just deterministic results.

We want to enjoy the performance benefits of randomized scheduling for skewed inputs

(work stealing) and custom synchronization. Therefore we pursue custom measures to force

existing algorithms to produce deterministic results. Among these techniques are hiding
asynchronous move decisions, sorting collectively produced results if their order influences

the execution in the next program stage, and tie-breaking with deterministically generated

tags when selecting results.

With the exception of BiPart [MABP21], all published parallel partitioning algorithms

so far are non-deterministic. In this chapter, we design, implement and evaluate a scalable

multilevel partitioning algorithm with direct 𝑘-way refinement that is fully deterministic.

To experimentally verify our last claim, we compared partitions from repeated runs. We

propose deterministic algorithms for the preprocessing, coarsening and refinement phases

of Mt-KaHyPar, and furthermore show how make the rest of the framework deterministic.
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Algorithm 5.1: Local Moving Round

1 for v ∈ 𝑉 in random order do in parallel
2 compute and perform best move for v
3 update data structures

Algorithm 5.2: Synchronous Local Moving Round

1 randomly split vertices into sub-rounds

2 for 𝑟 = 0 to number of sub-rounds do
3 for v ∈ 𝑉 in sub-round 𝑟 do in parallel
4 compute and save best move for v
5 approve saved moves and update data structures

Attributions. This chapter is based on a conference publication together with Michael

Hamann. I wrote the source code and paper, and conducted the experiments. Michael

Hamann contributed to writing the paper. Furthermore, we thank Tobias Heuer for feedback

on an early draft.

Non-Determinism in Local Moving. Typical community detection, clustering coarsening

and label propagation refinement algorithms are so-called local moving algorithms, which
follow the structure outlined in Algorithm 5.1: given an initial assignment of vertices to

groups, visit vertices in random order in parallel, and improve the solution by greedily moving

vertices when they are visited. Since vertices are moved right away, the local optimization

decisions depend on non-deterministic scheduling decisions, as they are influenced by

changes in their neighborhood.

Our approach to incorporate determinism is illustrated in Algorithm 5.2. It is based on

the synchronous local moving approach [HSWZ18] to parallelize the Louvain community

detection algorithm [BGLL08] in distributed memory scenarios. Instead of performing all

moves asynchronously, vertices are split into sub-rounds. The best move for each vertex

in the current sub-round is computed with respect to the unmodified groups. The move

decisions are deterministic because they are not influenced by other concurrent moves. In a

second step, some of the calculated moves are approved and performed, and some are denied,

for example due to the balance constraint.

Our algorithmic contributions lie in the details of the approval steps. For example, the

refinement approval uses a merge-style parallelization to incorporate vertex weights.

Chapter Overview. This chapter again follows the order of the multilevel framework. In

Sections 5.1, 5.2 and 5.4, we discuss how to incorporate determinism into the local mov-

ing algorithms for community detection, coarsening and 𝑘-way refinement, respectively.
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The ingredient that is common to all three local moving algorithms, randomized splitting

into sub-rounds is discussed in Section 5.5. Section 5.3 deals with initial partitioning. In

Section 5.6, we highlight differences between our approach and BiPart. In Section 5.7, we

outline the difficulties of incorporating determinism into parallel localized FM, as this is

the only component of Mt-KaHyPar-D for which we do not provide a deterministic version.

In Section 5.8, we conduct scalability experiments, a comparison with other partitioning

algorithms, and analyze the cost of determinism in terms of partition quality. Finally, we

summarize our results in Section 5.9 and provide some ideas for future work.

5.1 Preprocessing
In the preprocessing phase, we compute a community assignment using the parallel Louvain

method on the star expansion, as detailed in Section 3.4.5. We directly apply the algorithmic

template of Algorithm 5.2 to Louvain. We randomize the visit order by dividing nodes into

random sub-rounds. For each sub-round we calculate the best move for each node in parallel,

but only apply community volume and community assignment updates after synchronizing.

There are no constraints on the communities, so all moves are approved.

Update Order. The difficulty lies in applying community volume updates as we have

floating point edge weights. In theory, we could use atomic instructions, but on real machines

adding floating point numbers is not associative, which leads to small discrepancies depending

on the execution order. Rescaling edge weights to integers is unfortunately not an option,

due to the 1/|𝑒 | factor, so we are stuck with floating points. We would have to multiply each

edge weight with the least common multiple of unique net sizes, which would exceed what

64 bit floating points can represent.

Instead, we have to establish a deterministic order in which the volume updates of each

community are aggregated. We lexicographically sort the updates by community (primary

key) and node ID (secondary key). Applying the updates is done in parallel for different

communities. We perform a parallel loop over all updates, and the first entry of a community

is responsible for performing the sequential scan. A scan ends once the first update associated

with a different community is encountered.

Analysis. To analyze the work and depth, let 𝑉 ′
𝐺
denote the nodes in a sub-round. The

work is O(∑𝑢∈𝑉 ′
𝐺

deg(𝑢) + |𝑉 ′
𝐺
| log( |𝑉 ′

𝐺
|)). The depth is linear in the maximum number

of moves in or out of a community (sequential volume updates) and the maximum degree

max𝑢∈𝑉 ′
𝐺
(deg(𝑢)) for calculating modularity gains, plus the depth of the sorting algorithm.

This is usually poly-logarithmic in |𝑉 ′
𝐺
|, but TBB’s quick-sort implementation uses se-

quential partitioning, and thus is linear. We tested a better sorting algorithm [AWFS17] but

measured substantial slowdown, so we did not investigate further. To reduce the sorting

overhead in practice, we split the updates into two vectors (addition and subtraction) which

are sorted independently in parallel, but applied one after another.
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The number of moves and degree linear terms in the depth may be reduced to poly-

logarithmic by parallelizing the per-vertex gain calculation (parallel for loop over neighbors,

atomic fetch-add for weight to neighbor clusters) and aggregating updates within a commu-

nity in parallel with a deterministic reduce. However, in practice the outer level of parallelism

is sufficient, and we do not know the starting and end positions of a community’s sub-range

which would incur an additional step to compute. In practice, the execution time is dominated

by the work for modularity gain calculations and the sorting overheads.

5.2 Coarsening
As discussed in Section 4.1, in the hypergraph coarsening phase we compute a vertex

clustering based on heavy-edge-rating, contract the clustering, and repeat on the coarse

hypergraph until convergence or the hypergraph is small enough for initial partitioning. We

already described a determinism-friendly contraction algorithm and the adaptations needed

to make it actually deterministic in Section 4.1.2. In this section, we show how to make the

agglomerative heavy-edge clustering algorithm deterministic.

Algorithm 5.3 shows pseudocode for one round (previously called pass and level). Again,

we use the template of Algorithm 5.2 to split vertices into sub-rounds (line 1).

Find Target Clusters. For each vertex 𝑢 in a sub-round, we store the best target cluster

according to the rating function in an array of propositions P (line 8). If there are multiple

candidates with the same rating, we pick one uniformly at random. To achieve deterministic

selection we use a hash-and-combine function seeded with 𝑢 as a random number generator.

Since the initial partitioning step must be able to compute a feasible partition, we enforce a

maximum weight on the clusters𝑊max. To respect this constraint, we filter the target cluster

candidates during the selection, using the weights from the previous sub-round. Additionally,

some of the calculated moves must be rejected, which leads to the approval step.

Approval. We sort the moves lexicographically by cluster, vertex weight, and lastly for

determinism by vertex ID (see line 19). For each target cluster, we then approve the vertices

one by one (in order of ascending weight), and reject all of the remaining moves into this

cluster once its weight would exceed𝑊max (line 24). Our implementation iterates over

the moves in parallel, and the iteration of the first vertex in the sub-range of a cluster is

responsible for performing the moves into the cluster (line 21). Parallel counting sort is

not viable in line 19, as the number of clusters is only reduced by a small amount in each

sub-round. Furthermore the IDs have not been remapped to a compact range, which is too

expensive if performed in each sub-round.

Optimizations. As an optimization we already sum up the cluster weights during the target-

cluster calculation step using atomic fetch-and-add instructions (line 9). If all moves into a
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Algorithm 5.3: Coarsening Pass
1 randomly split vertices into sub-rounds

2 rep[𝑢] ← 𝑢,P [𝑢] ← 𝑢 : ∀𝑢 ∈ 𝑉
3 weight[𝑢] ← 𝑐 (𝑢), opportunistic-weight[𝑢] ← 𝑐 (𝑢) : ∀𝑢 ∈ 𝑉
4 for 𝑟 = 0 to number of sub-rounds do

// find target clusters
5 for 𝑢 ∈ 𝑉 in sub-round 𝑟 do in parallel
6 if weight[𝑢] ≠ 𝑐 (𝑢) // skip non-singletons
7 continue
8 P [𝑢] ← ComputeHeavyEdgeRating(u)

9 opportunistic-weight[P [𝑢]] +=
atomic

𝑐 (𝑢)
// pre-approve

10 𝑀 ← ∅ // moved vertices
11 for 𝑢 ∈ 𝑉 in sub-round 𝑟 do in parallel
12 if P [𝑢] = 𝑢
13 continue
14 if opportunistic-weight[P [𝑢]] ≤𝑊max

15 rep[𝑢] ← P [𝑢]
16 weight[rep[𝑢]] ← opportunistic-weight[rep[𝑢]] // benign race
17 else
18 add 𝑢 to𝑀

// approval step
19 sort𝑀 lexicographically by (P [𝑢], 𝑐 (𝑢), 𝑢)
20 for 𝑖 = 0 to |𝑀 | do in parallel
21 if 𝑖 = 0 or P [𝑀 [𝑖 − 1]] ≠ P [𝑀 [𝑖]]
22 𝑡 ← P [𝑀 [𝑖]] // target cluster
23 𝑤 ← weight[𝑡]
24 for 𝑗 = 𝑖 until 𝑤 + 𝑐 (𝑀 [ 𝑗]) >𝑊max do
25 rep[𝑀 [ 𝑗]] ← 𝑡

26 𝑤 += 𝑐 (𝑀 [ 𝑗])
27 weight[𝑡] ← 𝑤

28 opportunistic-weight[𝑡] ← 𝑤

29 contract clustering rep

target cluster combined do not exceed𝑊max (line 14), we approve them all. This drastically

reduces the number of moves we have to sort. Due to this optimization, calculating the target

clusters is the far more expensive step in practice, even though approving the moves requires

sorting. There is a data race in line 16, when setting the actual weight of the cluster to the

opportunistic weight. All iterations write the same value which makes the race benign.
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We collect moves for which this is optimization does not apply in a vector𝑀 , filled from

thread-local buffers. Moves in𝑀 with the same target cluster are guaranteed to exceed𝑊max

in combination. Therefore, the stop condition of the loop in line 24 does not check whether

the next cluster is reached. Instead,𝑊max will be exceeded which stops the loop.

Analysis. Calculating target clusters has the same work and depth bounds as the non-

deterministic version. Let 𝑉 ′ denote the vertices in the current sub-round. The pre-approval

step has O( |𝑉 ′ |) work and O(log( |𝑉 ′ |) depth since constant work is performed in each

iteration. The work of the approval step is O( |𝑀 | log( |𝑀 |)) ⊂ O( |𝑉 ′ | log( |𝑉 ′ |)). The depth
is determined by the depth of the sorting algorithm (O( |𝑀 |) for TBB’s quicksort, poly-log
usually), and an additive linear term of the maximum number of moves into a cluster. We

can reduce the second term from linear to logarithmic: binary search for the end of the target

cluster’s sub-range, sum up the weights with a parallel prefix sum, and then find the first

position that would exceed𝑊max with binary search again (or track it during the second pass

of the prefix sum).

5.3 Initial Partitioning
After the coarsening phase, we compute an initial 𝑘-way partition on the coarsest hyper-

graph using the same approach as in Section 4.2. We perform parallel multilevel recursive

bipartitioning and run the portfolio of flat bipartitioning algorithms. The sequential flat

algorithms are inherently deterministic. However, care must be taken when selecting which

partition to use for refinement. The primary criterion is connectivity followed by imbalance.

Additionally, we assign sequentially generated tags to the initial bipartitions, which are

used as a third criterion in case a tie break is necessary. In combination with deterministic

coarsening and refinement, the overall initial partitioning phase is deterministic.

We do not use the adaptive selection technique for flat bipartitioning since it is non-

deterministic. Furthermore, in the existing configuration each thread runs one FM round

on all of the bipartitions it computes, and subsequently a second FM round on the best

bipartition out of the ones it computed. This is non-deterministic as we do not control which

thread performs which bipartitioning runs. Therefore, we implemented a version that keeps

a fixed number of the best partitions found across all runs, and after a synchronization refines

these with a second round of FM. However, this lacked diversity in preliminary experiments,

so we instead increase the number of FM rounds that are run on all bipartitions from one to

three, and omit the second refinement.

5.4 Refinement
In the refinement phase, we take an existing 𝑘-way partition (from the previous level or

initial partitioning) and try to improve it by moving vertices to different parts, depending on
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their gain values. Our refinement algorithm is a synchronous version of label propagation

refinement [KK00, RAK07]. The vertices are randomly split into sub-rounds. For each vertex

in the current sub-round, we compute the highest gain move, and store it if the gain is

positive. The gain calculation algorithm (Algorithm 4.4) and thus the work and depth bounds

are the same as in the non-deterministic case. Since gain calculation dominates the running

time in practice, we also employ the active set strategy, where only neighbors of moved

vertices are considered in the next round.

In a second step we approve some of the stored moves, and subsequently apply them

in parallel, before proceeding to the next sub-round. This is the interesting part, as just

applying all moves does not guarantee a balanced partition.

Approval Idea. We perform a sequence of balance-preserving vertex swaps on each block-

pair, prioritized by gain. This approach was first introduced for SHP [Kab+17a], though

their work only considers unweighted vertices. For each block-pair (𝑠, 𝑡) ∈
([𝑘 ]

2

)
, we collect

the vertices𝑀𝑠𝑡 that want to move from 𝑠 to 𝑡 and𝑀𝑡𝑠 from 𝑡 to 𝑠 , and sort both sequences

descendingly by gain. The vertex ID is used as tie breaker to get a deterministic order.

SHP moves the first min( |𝑀𝑠𝑡 |, |𝑀𝑡𝑠 |) vertices from each sequence. With unit weights, this

does not change the balance of the partition. However, we have to handle non-unit weights,

so we are interested in the longest prefixes of 𝑀𝑠𝑡 , 𝑀𝑡𝑠 , represented by indices 𝑖, 𝑗 , whose

cumulative vertex weights 𝑐 (𝑀𝑠𝑡 [0..𝑖]), 𝑐 (𝑀𝑡𝑠 [0.. 𝑗]) are equal.

Budgets. The sums do not need to be exactly equal, as long as the resulting partition is still

balanced. For each block 𝑡 ∈ [𝑘], we have a certain additional weight budget 𝛽𝑡 it can take

before becoming overloaded.

Block pairs can be handled sequentially one after another or independently in parallel.

If they are handled sequentially, we can set 𝛽𝑡 = 𝐿max − 𝑐 (𝑉𝑡 ), where 𝑐 (𝑉𝑡 ) reflects already
approved moves at the time we use it. If they are handled in parallel, we divide this budget

equally among the different block-pairs that have moves into 𝑡 , with the initial 𝑐 (𝑉𝑡 ). Sur-
prisingly, we did not observe quality differences in practice, even when randomizing the

order in which block pairs are handled, which is why we handle them in parallel.

The prefixes 𝑖, 𝑗 are called feasible if they satisfy the condition −𝛽𝑠 ≤ 𝑐 (𝑀𝑠𝑡 [0..𝑖]) −
𝑐 (𝑀𝑡𝑠 [0.. 𝑗]) ≤ 𝛽𝑡 . The partition obtained from swapping𝑀𝑠𝑡 [0..𝑖] and𝑀𝑡𝑠 [0.. 𝑗] is balanced
if this condition is fulfilled (if and only if for sequential budgets).

The Sequential Algorithm. We compute the prefix indices 𝑖, 𝑗 similar to theway two sorted

arrays are merged. Initially, we set 𝑖 ← 0, 𝑗 ← 0. We simultaneously iterate through both

sequences and keep track of the so far exchanged weight. If 𝑐 (𝑀𝑠𝑡 [0..𝑖]) − 𝑐 (𝑀𝑡𝑠 [0.. 𝑗]) < 0

and𝑀𝑠𝑡 has moves left, we approve the next move from𝑀𝑠𝑡 by incrementing 𝑖 . Otherwise,

we approve the next move from𝑀𝑡𝑠 by incrementing 𝑗 . In each iteration, we check whether

the current prefixes are feasible. If so, we store the pair 𝑖, 𝑗 as the current best. Longer
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prefixes are preferred (since we only consider positive gain moves), so the result is the last

feasible pair we encounter.

The Parallel Algorithm. We use a simple divide-and-conquer parallelization for merging

sorted arrays. First, we compute the cumulative vertex weights via parallel prefix sums. Then

the following algorithm is applied recursively. We binary search for the cumulative weight

of the middle of the longer sequence in the shorter sequence. The left and right parts of the

sequences can be searched independently. If the right parts contain feasible prefixes, we

return them. Otherwise, we return the result from the left parts. The left-most path in the

recursion tree is guaranteed to find at least the trivial solution 𝑖 = 𝑗 = 0 (no move applied). If

𝑟 denotes the length of the longer sequence, this algorithm has O(log(𝑟 )2) depth and O(𝑟 )
work.

Optimizations. Since we are interested in the longest prefixes, we can omit the recursive

call on the left parts if the prefixes at the splitting points are feasible. This is fairly likely, since

the cumulative weights are as close to each other as possible (due to binary search). Further,

we can omit the recursive call on the right parts if the cumulative weight at the middle of

the longer sequence exceeds the cumulative weight at the end of the shorter sequence plus

the appropriate budget. Note that in this case the binary search finds the end and thus the

left recursion works on the entirety of the shorter sequence.

We fall back to the sequential algorithm once both sequences have less than 2000 elements.

This value worked well in preliminary experiments. As we already computed cumulative

weights, we perform the simultaneous traversal from the ends of the sequences. Since we

expect to approve the majority of the saved moves, this is likely faster.

There is a merging algorithm with depth O(log(𝑟 )) and O(𝑟 ) work [Vis10] based on

ranking 𝑟/log(𝑟 ) equidistant splitters in the opposite sequence and then merging 2𝑟/log(𝑟 )
(parallel) counter-part sub-sequences of size < log(𝑟 ) (sequential merge). However, we cannot

expect any performance benefits in practice, because this step is inexpensive compared to

gain calculation.

Implementation Details. We collect all positive gain moves of a sub-round in a vector𝑀

with thread-local buffers. To organize the moves, we sort 𝑀 by the move direction using

parallel counting sort (𝑘2
possible keys is decently small). For each block pair (𝑠, 𝑡) we sort

the two sub-ranges𝑀𝑠𝑡 , 𝑀𝑡𝑠 (identified by the positions array from counting sort) by gain and

vertex ID (for determinism), using TBB’s quicksort. Additionally, we compute the cumulative

weights of vertex moves using parallel prefix sums. Subsequently, we run the parallel prefix

selection algorithm described above.

Once we have determined the prefixes for all block pairs, we apply the approved moves to

the partition. We do this by iterating over𝑀 in parallel. A move is approved if its position in

𝑀 is smaller than the prefix index for its move direction computed in the previous step. This

condition can be checked independently in each iteration.
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We compute attributed gains, and sum them with a reduction to obtain the overall connec-

tivity reduction. The overall attributed gain can be negative, due to the calculated gains not

considering concurrent moves in their neighborhood. In this case, we revert all moves of the

current sub-round and double the number of sub-rounds for the next round. This increases

the likelihood of finding an overall positive gain.

We add neighbors to the active set for the next round (not sub-round) as in the non-

deterministic algorithm. To achieve a deterministic random permutation (sub-round split),

we sort the active set using TBB’s quicksort after each round (unless we are done). Note that

the active set is typically small after the second round, since most moves happen in the first.

5.5 Randomization
Our algorithm to perform the randomized splitting is based on the RandSort and RandDist

algorithms for random shuffling [CB05]. We divide the input range into a fixed number of

equal-size chunks, which are handled independently in parallel. To achieve deterministic

results even when varying the number of threads, we always use 256 chunks. For each chunk,

a random number generator is seeded with an input seed and the index of the first element,

which is then used to generate 8-bit tags for each element in the chunk. The input range is

then sorted by the tags using parallel counting sort, which returns an array of offsets where

each tag starts. Multiple tags are further grouped together to form sub-rounds, depending on

the number of requested sub-rounds. The order within the same tag is deterministic because

counting sort is stable.

This algorithm can be extended to random shuffling. The elements with the same tag are

shuffled sequentially. Different tags are handled independently in parallel.

Since the random number generator is used sequentially on a chunk we are stuck with

static load balancing. Considering that randomization is never a bottleneck and only O(1)
work is performed per iteration this is fine.

A way to eliminate static load balancing is to use random number generators that allow

skipping 𝑟 ∈ N steps in O(log(𝑟 )) time. This would enable using chunks of size log(𝑟 ) with
overall linear work still. However, such generators are not available in the C++ STL.

5.6 Differences to BiPart
We now discuss differences between BiPart and our algorithm. BiPart uses recursive biparti-

tioning, whereas we use direct 𝑘-way, which is superior regarding solution quality [ST97,

San89]. Furthermore, our algorithms are randomized. The refinement algorithms are similar.

Both are based on label propagation [RAK07] and the prefix-pair swap method from

SHP [Kab+17a]. However, BiPart’s refinement ignores vertex weights, which leads to im-

balanced partitions that must be repaired by explicit rebalancing. This can be slow and

offers little control by how much connectivity degrades, as there is no control on how imbal-
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anced the partition is. Our refinement guarantees balanced partitions at all stages without

rebalancing.

Additionally, we use sub-rounds for more accurate gains and the active set optimization for

better performance. Furthermore, BiPart uses no mechanism to track actual improvements,

whereas we use attributed gains to detect and prevent quality-degrading moves.

Their coarsening scheme assigns each vertex to its smallest incident hyperedge (ties

broken by ID) and merges all vertices assigned to the same hyperedge. This does not consider

hyperedge weights: eliminating a heavy-weight net from the hypergraph (and thus from the

possibility of being cut) is in no way preferred to a low-weight net. Furthermore, this scheme

offers no control over the weights of the coarse vertices. Preventing large vertex weights is

important so that initial partitioning can find balanced partitions, and there is more leeway

for optimization. BiPart uses a parallel version of greedy graph growing [CA99] for initial

partitioning. However the coarsest hypergraphs are small. This makes achieving speedups

difficult. We believe a better investment of the running time is to perform parallel diversified

repetitions of sequential algorithms, in order to achieve better partition quality.

5.7 Ideas and Challenges for deterministic FM
While enforcing determinism for label propagation refinement is fairly easy without straying

from the spirit of the algorithm, this is certainly not the case for parallel localized FM. We

identify the following main challenges and outline ideas to solve them.

During localized expansion, vertices must be acquired. So far this is first come first serve,

which is clearly non-deterministic. It is possible to forgo localization and instead pre-assign

vertices statically. In the previous chapter we showed that this is detrimental to partition

quality, which makes this option unattractive. Instead, we envision a version where we run

each localized search for some time. Each search collects vertices it would like to acquire

instead of acquiring them right away. At synchronization points, we establish consensus

which search gets to own which vertex, and then continue the localized searches.

As in the other local moving algorithms, we need to hide moves from other threads until a

synchronization point. This will bloat the thread-local hash-tables for partition data structure

deltas, since we cannot clear them as soon as we find an improvement. Abandoning these

data structures is not an option due to their performance benefits. However, we have not

investigated whether the memory usage would actually be obstructive in practice.

Synchronization would have to happen quite frequently. Otherwise, searches run out of

vertices to move, lack up-to-date gains, and may exhibit excessive memory usage. This is

bad for long-running searches, which are important, as the searches without improvement

terminate quickly.

Much of localized FM’s efficiency is due to its completely asynchronous nature in the

moving phase. Frequent synchronization will incur bad load imbalance, since threads cannot

join the barrier after a certain time or once enough threads are waiting. The searches have

to perform an a priori determined workload between synchronizations, e.g., a fixed number
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of steps. In practice this could be counteracted (at least partially) by over-subscription, i.e.,

spawn substantially more searches than threads. The downside is increased interference.

More searches want the same vertices and perform hidden moves close to other search

regions.

Due to these unresolved challenges and time constraints, we currently do not have a

parallel deterministic implementation of FM refinement, but are interested to pursue this

in future work. Therefore, our deterministic partitioner only uses label propagation in the

refinement phase.

5.8 Experimental Evaluation

Our code is written in C++17, uses Intel’s TBB library for parallelization and is compiled

with g++ version 9.2 with optimization level -O3 and native architecture optimizations. The

experiments are run on machine B and on benchmark set B, comparing our deterministic

algorithm with other parallel algorithms. Additionally, we conduct scalability experiments

demonstrating very good speedups, examine the impact of the number of sub-rounds on

partition quality, and determine the cost of determinism for partitioning.

5.8.1 Configurations

We perform 5 rounds of local moving on each level during refinement, 5 rounds before

contracting during preprocessing, and one round before contracting during coarsening.

These values are the default values of the configuration in Chapter 4. We call the algorithm

and configuration proposed in this work Mt-KaHyPar-SDet, and the equivalent configuration

that uses the existing non-deterministic local moving algorithms Mt-KaHyPar-S, where

Det stands for determinism, and S for speed. Additionally, we consider the configuration

Mt-KaHyPar-D (for default) from Chapter 4, which has the original non-deterministic initial

partitioning configuration (Section 4.2) and uses parallel localized FM.

5.8.2 Parameter Tuning

The supposedly most important parameter is the number of sub-rounds used, as it offers a

trade-off between scalability (synchronization after each sub-round) and solution quality

(more up-to-date gains). In the following, we show that this is actually not a trade-off, as

the number of sub-rounds either does not affect solution quality, or using fewer sub-rounds

even leads to better quality.

We made an initial guess of 5 sub-rounds for refinement, and 16 sub-rounds for coarsening

and preprocessing, which we use as a baseline configuration when varying each parameter.

Figure 5.1 shows the performance profiles. The parameter sets differ, because we had to

expand the set for coarsening.
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Figure 5.1: Impact of the number of sub-rounds and preprocessing on partition quality.

The largest impact is on the coarsening phase, where two sub-rounds performs the best.

Such a small value is surprising. One possible explanation is that high-degree vertices attract

low-degree vertices too quickly if synchronization happens too frequently. This is a known

weakness of our clustering algorithm, since we do not have a penalizing term for heavy

clusters. We only enforce a weight constraint. Hiding this phenomenon for a bit gives slower

growing clusters a chance in the tie-breaks.

Using only one sub-round is excluded here, since the clustering algorithm oscillates heavily,

with many vertices remaining singletons. This leads to coarsening converging long before

the contraction limit is reached and thus initial partitioning takes very long. Due to the same

effect, using two sub-rounds is about 12% slower than using three sub-rounds in the geometric

mean. Since it gives only slightly worse solution quality, we choose three sub-rounds for

coarsening in the main experiments.

For preprocessing, there is almost no impact on solution quality. We stick with our

original choice of 16 sub-rounds since the floating-point-aggregation handling is slower if
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more vertices are in a sub-round due to the sorting overhead.

For refinement, there are minor differences, but greater than in preprocessing. Here,

one sub-round narrowly emerges as the best choice. This is again surprising, as frequently

synchronizing should allow for more informed move-decisions. One cause we noticed is

that with more sub-rounds the pair-wise swaps did not have a sufficient number of moves to

balance, as moves from earlier sub-rounds are not considered. Using such moves as back-up

could be included in future versions of the algorithm.

Finally, we should justify why we use the community detection preprocessing. We have

shown the quality impacts in Chapter 4 already. However, to incorporate determinism

we had to deal with quite unpleasant floating point issues for the volume updates, so we

re-confirm the choice. Figure 5.1 (bottom right) shows significantly worse quality when the

preprocessing is turned off. The plot shows the qualiy of the final partition, not the initial

partition.

5.8.3 Speedups

In Figure 5.2 we show self-relative speedups of the overall algorithm and the separate

components, plotted against the sequential running time on that particular instance. In

addition to the scatter plot, we show rolling geometric means with window size 50. The

overall geometric mean speedups of the full partitioning process are 3.91, 7.04, 12.79, 21.32,

28.73, 29.09 for 4, 8, 16, 32, 64, and 128 threads, respectively, and the maximum speedups

are 4.9, 8.7, 15.8, 29.1, 48.9, and 72.6. Since our algorithms are memory-bound workload

types these are very good results, and they are better than the speedups for the default

configuration.

On about 37% of the runs with 4 threads, and 0.32% of runs with 8 threads, we observe

super-linear speedups which occur in all phases except initial partitioning. We identified two

reasons for this. First, even sequential runs had running time fluctuations, and as super-linear

speedups occur mostly on instances with small sequential times, the speedups are more

easily affected. Secondly, we sort vectors that are filled in non-deterministic order. Sorting

algorithms in library implementations (such as TBB’s quicksort) have checks for presorted

sub-sequences to speed up execution. This leads to fluctuating amounts of work in different

runs.

Looking at speedups for the individual phases, we see that most phases exhibit very

consistent speedups, even for small sequential running times. Only initial partitioning

exhibits sub-par speedups on larger instances, which is due to load imbalance from long

running sequential FM refinement. It may be worthwhile to detect and prune overly long

running searches, though this is clearly non-deterministic.

With 128 threads (only rolling geometric means shown for readability), the running times

still improve, though not as drastically. Only small instances show a slight slowdown,

predominantly in initial partitioning. Each socket has 64 cores, so the second memory socket

is used, and thus some slowdown is expected. By default, we set the memory allocation
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Figure 5.2: Speedups for Mt-KaHyPar-SDet in total as well as its components separately.

The x-axis shows the sequential time in seconds, the y-axis the speedup. The lines are rolling

geometric means (window size 50) of the per-instance speedups (scatter).

policy to interleaved if multiple sockets are used, in order to distribute memory latencies

evenly.
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Figure 5.3: Shares of running time spent in each of the components of Mt-KaHyPar-SDet.

5.8.4 Running Time Share
From the sequential times in the speedup plots we already get a broad idea how much

running time is spent in which phase of the multilevel algorithm. Figure 5.3 shows this

break-down into phases per instance when run on 64 cores. Coarsening and community

detection preprocessing make up the bulk of the work, whereas label propagation refinement

is negligible compared to the other two. While these are all local moving algorithms, the

cluster IDs for label propagation are small and thus cluster ratings always fit in cache, which

is not the case for community detection and coarsening. Calculating moves is the most

expensive step in these algorithms, so these results are expected. Initial partitioning generally

takes less time than preprocessing and coarsening, but there are some instances where it

takes the longest. Often this is caused by coarsening converging before reaching the vertex

limit, such that initial partitions are computed on larger hypergraphs than desired. This

emphasizes again that it is important to parallelize each phase.

5.8.5 Comparison with other Algorithms
Figure 5.4 (left) shows performance profiles comparing our new algorithm with its non-

deterministic predecessors, the non-deterministic distributed algorithm Zoltan [Dev+06]

as well as the deterministic BiPart algorithm [MABP21]. Each algorithm was run with 64

threads. Note that the number of threads does not impact the partitions computed by BiPart

and Mt-KaHyPar-SDet. We omit comparisons with sequential algorithms, since determinism

is not a challenge for them, and we have established Mt-KaHyPar-D from Chapter 4 as the

state-of-the-art baseline for fast algorithms. Slow algorithms based on 𝑛-level (un)coarsening

(sequential KaHyPar) or many repetitions and V-cycles (hMetis) represent a vastly different

trade-off and would not finish on these instances in reasonable time.

As expected, Mt-KaHyPar-D finds the highest quality solutions out of the compared
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Figure 5.4: On the left: solution quality of BiPart, Zoltan, our algorithm Mt-KaHyPar-SDet

and the existing Mt-KaHyPar variants. The ❃ symbol marks timeouts (6 instances for Zoltan).

On the right: slowdown relative to our algorithm. The instances on the x-axis are sorted

independently.

algorithms, due to FM. It contributes the best solutions on about 75% of the instances,

followed by Mt-KaHyPar-SDet and Mt-KaHyPar-S which are similar. However, Mt-KaHyPar-

S is slightly better than Mt-KaHyPar-SDet as the former converges faster towards 1, and there

is a noticeable gap starting at factor 1.05. BiPart is far off. It contributes only 6 of the best

solutions, and its quality is off by more than a factor of 2 on more than 50% of the instances;

on some instances even by three orders of magnitude. Zoltan is situated between BiPart

and Mt-KaHyPar-S. In a direct comparison, Mt-KaHyPar-SDet computes better partitions

than BiPart on 551 of the 564 instances with a geometric mean performance ratio of 1.0032

compared to BiPart’s 2.3805. Recall that performance ratio refers to partition quality, not

running time.

In Figure 5.4 (right), we report relative slowdowns, i.e., the running time of the other

algorithm divided by running time of the baseline Mt-KaHyPar-SDet. Mt-KaHyPar-S is faster

on 406/564 instances but never by a factor of more than 2. BiPart is between one and two
orders of magnitude slower than the two speed variants of Mt-KaHyPar. A partial reason

for this is shown in Figure 5.5 which plots self-relative speedups of BiPart. Most speedups

are below 2 and the largest speedup is about 7. Unfortunately, the plot is not very legible

but on the other hand this is not necessary. In theory, the algorithms employed in BiPart

should scale as well as ours. The poor scaling in practice is due to the implementation and

the parallelization library.
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Figure 5.5: Instance-wise speedups for BiPart. The rolling geometric means are omitted.
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Figure 5.6: Impact of determinism in each component on the final partition quality.
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5.8.6 The Cost of Determinism
In this section, we investigate in which phase the solution quality gets lost, by swapping out

one component for its non-deterministic counterpart in each of the plots in Figure 5.6. Inter-

estingly, the biggest quality loss comes from coarsening, whereas deterministic preprocessing

even improves quality. The loss in refinement is expected due to the lack of up-to-date gains

and the inability to leverage zero gain moves for rebalancing and diversification.

For coarsening, the results are unexpected, particularly because similar local moving

algorithms for community detection [HSWZ18] are not as affected by out-of-date gains. One

reason for this is that these algorithms perform multiple global rounds, where vertices can

back out of their first cluster assignment. We only use one round and even prematurely

terminate the round to avoid coarsening too aggressively. Performing a second round, where

only already clustered vertices may reassess their assignment, may be beneficial and we leave

this for future research. Additionally, we unsuccessfully experimented with two features

of the non-deterministic coarsening, but both affected the partition quality negatively. We

considered adapting hyperedge sizes to the current clustering in the rating function, and

stable leader chasing, where oscillations (vertices joining each other) and cyclic joins are

resolved by merging all involved vertices.

5.9 Conclusion and Future Work
We presented the first scalable, deterministic parallel hypergraph partitioning algorithm. Our

experiments show that determinism does incur sacrifices regarding both solution quality and

running time compared to the previous non-deterministic version. These are small enough

to justify if determinism is desirable for the application.

In future work we would like to make additional refinement algorithms deterministic, such

as parallel localized FM or flow-based refinement. For localized FM, we already identified

the main challenges, and we believe these are solvable with engineering effort. Making

flow-based refinement deterministic is easier. The idea is to schedule two-way refinements

on independent block pairs, where we can synchronize after each block participated in one

refinement. On each block pair, we solve incremental maximum flow problems. The flow

algorithm need not be deterministic, as the source-side and sink-side cuts are unique. The

flow assignment only influences the insertion order into a data structure we use to construct

the next flow problem. Therefore, we only need to make the insertion order deterministic,

which is not a performance-critical part.

Further work is necessary to investigate the quality issues in the coarsening phase. On

the engineering side, we would like to eliminate the overhead for sorting when aggregating

moves into the same cluster (for preprocessing and coarsening). Promising options are

semi-sorting or the hash-and-distribute approach employed for identical net detection. We

still need to sort within a bucket, but can do so sequentially on a smaller input.
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6

Parallel n-Level Hypergraph Parti-
tioning

Motivation and Context. Our parallel multilevel algorithmMt-KaHyPar-D from Chapter 4

finds moderately worse partitions than KaHyPar-CA. As we already ruled out that paral-

lelism impacts partition quality, the component responsible for this difference is the n-level

uncoarsening, thanks to its fine-grained refinement granularity. At first glance, this method

appears inherently sequential, as only one vertex is contracted at a time. Correspondingly,

in each step of refinement, only a single vertex is uncontracted, allowing a highly localized

search for improvements.

Contributions. To bridge this remaining quality gap, we present an approach to parallel

𝑛-level (un)coarsening in this chapter. We devise a parallel execution order for contractions

based on a representation of contractions as a forest and on-the-fly conflict resolution. The

contractions are performed on a highly intrusive semi-dynamic hypergraph data structure

with fine-grained locking. After initial partitioning, the forest is decomposed into batches,
each containing a fixed number of vertices, which can be uncontracted independently in

parallel and are used as seeds for highly localized refinement. The result is a highly scalable

system (self-relative speedups around 25 on 64 cores), which computes partitions with the

same quality as sequential KaHyPar-CA.

Attributions. This chapter is based on a joint publication [GHSS22] with Tobias Heuer,

Peter Sanders and Sebastian Schlag, as well as a follow-up work presented in theMaster thesis

of Moritz Laupichler [Lau21] which was supervised by Tobias and me. Tobias and I wrote

the paper, with editing by Peter Sanders and Sebastian Schlag. The 𝑛-level (un)coarsening

code was written by Tobias Heuer with consulting by me. To make the approach feasible, I
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Algorithm 6.1: Parallel 𝑛-level Hypergraph Partitioning

Input: Hypergraph 𝐻 = (𝑉 , 𝐸), number of blocks 𝑘

Output: 𝑘-way partition Π of 𝐻

1 ∀v ∈ 𝑉 : rep[v] ← v // initialize empty forest F
2 while 𝑛 > 𝑡 · 𝑘 do
3 for 𝑢 ∈ 𝑉 in random order do in parallel
4 v ← HeavyEdgeRating(u)

5 if (𝑢, v) can be safely added to F
6 rep[v] ← 𝑢 and contract v onto 𝑢
7 Π← InitialPartition(𝐻,𝑘)

8 B = ⟨𝐵1, . . . , 𝐵𝑙 ⟩ ← ConstructBatches(F)
9 for 𝐵 ∈ B do
10 for v ∈ 𝐵 do in parallel
11 uncontract v from rep[v]
12 Π[v] ← Π[rep[v]]
13 improve Π with localized refinement on 𝐵

worked on overall performance engineering of the framework, with a particular focus on

eliminating overheads in the refinement routines.

6.1 Overview
Algorithm 6.1 shows a high-level pseudocode of our parallel 𝑛-level framework. Contracting

and uncontracting vertices in a strict order is inherently sequential, which is why we have to

relax the 𝑛-level paradigm. For the coarsening phase, we parallelize the loop over the active

vertices in line 3 to select contraction partners. Contractions are performed on-the-fly as in

the sequential algorithm, completely asynchronously with the contraction partner selection.

To this end, we propose a new low-overhead hypergraph data structure in Section 6.2, and

describe how to implement contractions and uncontractions on it.

In Section 6.3 we address two challenges regarding contractions. A vertex can only be

contracted once all contractions we want to perform onto it are finished. We define the

contraction forest F as the rooted forest induced by the array rep of vertices pointing to the

vertex they are contracted onto (their parent). This children before parents condition seems

intuitively necessary and correct. If a parent 𝑢 is contracted before its child v , it does not
know all of its incident nets yet, which would have to be propagated to rep[𝑢]. In Section 6.2

we additionally pin-point which data structure invariants we need this condition for. The

second challenge is to incrementally construct F without adding cycles (see line 5), since we

do not know F beforehand.

For initial partitioning, we use the same approach as in Chapter 4, but plug in the 𝑛-level
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Figure 6.1: Contractions and uncontractions applied on the dynamic data structure.

coarsening and uncoarsening for recursive multilevel bipartitioning.

The uncoarsening phase starts in line 8. We construct a sequence of batches B =

⟨𝐵1, . . . , 𝐵𝑙 ⟩ of contracted vertices, such that |𝐵𝑖 | ≈ 𝑏max, where 𝑏max is an input parameter.

Batches are processed one after another, enabling the uncontraction of vertices in subsequent

batches. This leads to O(𝑛/𝑏max) levels. Vertices in the same batch are uncontracted in

parallel, such that 𝑏max offers a trade-off between parallelism and levels.

In sequential 𝑛-level partitioning, the uncontractions are performed in the exactly reverse

order of the contractions. This is done to correctly project the partition up in the hierarchy,

but is of course inherently sequential. We show that it suffices to only revert the contractions

of siblings in reverse order to correctly project the partition, in addition to parents before

children. This enables parallel uncoarsening as detailed in Section 6.4.

After uncontracting each batch, we run highly-localized refinement algorithms around the

batched vertices. In Section 6.5 we discuss how to adapt the gain table to𝑛-level uncoarsening.

In order to avoid reinitialization after each batch, we have to update it through the information

obtained from uncontractions. Localizing the existing parallel refinement algorithms is

straight-forward. Therefore, the main contributions of this chapter are the parallel 𝑛-level

coarsening and uncoarsening algorithms.

After presenting our experimental results, we discuss a follow-up work where uncontrac-

tions are performed completely asynchronously as well.
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6.2 Semi-Dynamic Hypergraph Data Structure
To support concurrent on-the-fly contraction and uncontraction, we use a semi-dynamic

hypergraph data structure that improves the approach of KaHyPar [Sch20, p. 100]. In

KaHyPar, the pins of the nets are represented as a CSR (the sub-range storing the pins of a

certain net is called its pin-list), whereas the incident nets of the vertices are represented

using adjacency-lists, i.e., as a separate vector for each vertex.

A contraction (𝑢, v) merges I(v) into I(𝑢) and removes v from the hypergraph. Adjacency

lists are the more flexible data structure for dynamic hypergraphs. It is possible to add entries

to the incident nets vector without rebuilding the entire data structure, which is why this

choice was made. With adjacency lists I(v) \ I(𝑢) is copied to I(𝑢).
With repeated contractions onto the same vertex this can lead to quadratic memory

usage in the worst case, and is therefore not suitable for hypergraphs that are very large or

have a skewed degree distribution. Following the approach of Bader and Cong [BC06] for

parallelizing Boruvka’s minimum spanning tree algorithm, we organize merged vertices in a

linked list, such that no copy and reallocation operations are necessary to merge adjacency

lists. In preliminary experiments, this data structure was roughly 5% slower than KaHyPar’s

approach due to iteration overheads, but allows us to handle larger and highly skewed

instances. Note that Bader and Cong used this to speed up the contraction algorithm,

whereas our intention is to save memory.

The key idea is to remove 𝐼 (𝑢) ∩ 𝐼 (v) from 𝐼 (v) (instead of adding 𝐼 (v) \ 𝐼 (𝑢) to 𝐼 (𝑢)). 𝐼 (𝑢)
is obtained by iterating over both the representation of the current 𝐼 (𝑢) and the remaining

entries of 𝐼 (v). For each vertex 𝑢 ∈ 𝑉 , we store an array 𝐼𝑢 which is initialized with the

incident nets of 𝑢 on the input hypergraph. We organize all vertices contracted onto 𝑢 as

well as 𝑢 itself in a doubly-linked list 𝐿𝑢 , so that the current state for 𝐼 (𝑢) is obtained by

iterating over all 𝐼𝑤 arrays for 𝑤 ∈ 𝐿𝑢 . When contracting v onto 𝑢, we remove any incident

net of 𝑢 from the arrays 𝐼𝑤 for 𝑤 ∈ 𝐿v and append 𝐿v to 𝐿𝑢 . Since this flattens the list, 𝐿𝑢
contains all descendants of 𝑢 in F .

The pin-lists of nets are stored in CSR format. Each pin-list is split into an active and
inactive part. The active part contains the pins that are currently part of the net, the inactive

part contains pins that were previously part of that net, but were contracted.

The data structure and all operations, which we describe in more detail in the following,

are illustrated with an example of multiple contraction and uncontraction steps in Figure 6.1.

In each step, the top part shows the current state of the pin-lists, the bottom part shows the

incident net arrays 𝐼𝑤 and lists 𝐿𝑤 .

6.2.1 Remove and Restore Incident Nets.
To remove and later restore entries from an incident net array 𝐼𝑤 , we additionally store a

counter 𝑡𝑤 which counts in how many contractions 𝐼𝑤 was modified, as well as a marker

𝑡𝑤,𝑒 for each entry of 𝐼𝑤 . The counter and markers are initially set to zero. Entries with

markers ≥ 𝑡𝑤 are active, i.e., were not removed yet. To remove a set 𝑋 of entries from 𝐼𝑤 , we
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Algorithm 6.2: Contraction Operation

1 𝑐 (𝑢) ← 𝑐 (𝑢) + 𝑐 (v)
2 for 𝑒 ∈ 𝐼 (v) do // edit pin-lists
3 if 𝑢 in pin-list of 𝑒 // 𝑒 ∈ 𝐼 (𝑢) ∩ 𝐼 (v)
4 remove v from pin-list of 𝑒

5 mark 𝑒 in bitset 𝑋

6 else // 𝑒 ∈ 𝐼 (v) \ 𝐼 (𝑢)
7 replace v by 𝑢 in the pin-list of 𝑒

8 for 𝑤 ∈ 𝐿v do // edit incident net arrays
9 remove active entries in 𝑋 from 𝐼𝑤

10 append 𝐿v to 𝐿𝑢

increment 𝑡𝑤 and iterate over the previously active entries of 𝐼𝑤 (now marked with 𝑡𝑤 − 1).

If the entry is not in 𝑋 , we set its marker to 𝑡𝑤 . Otherwise, we swap the entry and its marker

to the end of the active part but keep its marker at 𝑡𝑤 − 1, thereby marking the entry inactive.

This maintains the invariant that the entries of 𝐼𝑤 are sorted by decreasing markers, so that

iterating over active entries of 𝐼𝑤 has no overhead. In particular, the iterator for 𝐼 (𝑢) has
a time complexity of O(deg(𝑢) + |𝐿𝑢 |). Recall that 𝐼 (𝑢) changes during coarsening and is

made up of the active entries in the 𝐼𝑤 arrays for 𝑤 ∈ 𝐿𝑢 .
To restore entries, we just decrement 𝑡𝑤 , so that we consider entries marked with 𝑡𝑤,𝑒 =

𝑡𝑤 − 1 as active again. The restore operations must be performed in reverse order of the

remove operations, in order to restore the correct entries in the sorted order. This corresponds

exactly to the dependency children before parents in F during coarsening, and parents before

children during uncoarsening.

In Figure 6.1 b) we contract v0 onto v1. We remove 𝑒1 from the incident net array of v0,

but keep 𝑒0. Therefore, we increment 𝑡0 to 1, and set 𝑡0,0 to 1, while leaving 𝑡0,1 at 0. In step f

(which uncontracts v1), we decrement 𝑡0 to 0 and thus mark 𝑒1 as active again in the incident

net array of v0.

6.2.2 Contraction Operation

Algorithm 6.2 shows the pseudocode for contracting a vertex v onto another vertex 𝑢. To

edit the pin-lists, we iterate over the incident nets 𝑒 ∈ 𝐼 (v) and search for the position of 𝑢

in 𝑒 (see line 3).

If 𝑢 ∉ 𝑒 , we replace v by 𝑢, reusing its slot, see line 7. For example in Figure 6.1 b) v0 is

replaced by v1 in 𝑒0 (first slots of 𝑒0).

If 𝑢 ∈ 𝑒 already, we remove v by swapping it to the end of the active part and decrement

the current size of 𝑒 , see line 4. In Figure 6.1 b) v0 is removed from 𝑒1 by moving it from its

slot (first) to the inactive part (last slot). Additionally, we mark 𝑒 in a bitset 𝑋 if 𝑢 ∈ 𝑒 . After
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Algorithm 6.3: Uncontraction Operation

1 Π(v) ← Π(𝑢)
2 restore the sublist 𝐿v from 𝐿𝑢
3 for 𝑤 ∈ 𝐿v do
4 𝑡𝑤 ← 𝑡𝑤 − 1

5 for active entries 𝑒 ∈ 𝐼𝑤 do
6 if 𝑡𝑤,𝑒 = 𝑡𝑤 // 𝑒 ∈ 𝐼 (𝑢) ∩ 𝐼 (v)
7 restore v in the pin-list of 𝑒

8 else // 𝑒 ∈ 𝐼 (v) \ 𝐼 (𝑢)
9 replace 𝑢 by v in pin-list of 𝑒

10 𝑐 (𝑢) ← 𝑐 (𝑢) − 𝑐 (v)

editing the pin-lists, we use this bitset to remove all nets 𝑒 ∈ 𝐼 (𝑢) ∩ 𝐼 (v) from the incident

net arrays 𝐼𝑤 for 𝑤 ∈ 𝐿v , see line 9.
To enable concurrent contractions, we use a separate lock for each net to synchronize

edits to the pin-lists. In line 10, the set 𝐼 (𝑢) may change due to concurrent contractions onto

𝑢, which is why it is not thread-safe to initialize 𝑋 by iterating over 𝐼 (𝑢). If multiple vertices

that are contracted concurrently onto 𝑢 share a net 𝑒 , only the first pin-list edit of 𝑒 can do

the replacement (if 𝑢 was not already in 𝑒). All subsequent edits of 𝑒 , triggered by contraction

onto 𝑢, remove their pins and mark 𝑒 in their thread-local bitset 𝑋 .

Operations on the incident net arrays 𝐼𝑤 for 𝑤 ∈ 𝐿v are not synchronized (see line 9), since
𝐼𝑤 is only modified by contracting vertices in 𝐿v . These are the descendants of v in F and

therefore their contractions must be finished before the contraction of v starts.
If 𝑐 (𝑢) + 𝑐 (v) exceeds the maximum vertex weight𝑊max, we discard the contraction. We

use a separate lock for each vertex 𝑢 ∈ 𝑉 to synchronize modifications to 𝐿𝑢 and 𝑐 (𝑢).
According to the parallel loop in line 3 of Algorithm 6.1, we would not need a lock on 𝑢 since

only one vertex gets contracted onto it per pass. However, we may reverse the roles of v
and 𝑢 as a performance optimization if v has very high degree, so we can edit the smaller

incident nets list.

6.2.3 Uncontraction Operation
Algorithm 6.3 shows the pseudocode for uncontracting a vertex v that is contracted onto

a vertex 𝑢. To splice 𝐿v out of 𝐿𝑢 in line 2, we additionally store the last vertex in 𝐿v at the

time v is contracted. To restore the incident nets of v that were removed, we iterate over all

vertices 𝑤 ∈ 𝐿v and decrement the counter 𝑡𝑤 in line 4. This reactivates all entries of 𝐼𝑤 that

became inactive due to contracting v , i.e., had marker 𝑡𝑤,𝑒 = 𝑡𝑤 . The other active nets are

marked with 𝑡𝑤,𝑒 > 𝑡𝑤 , which were not incident to 𝑢 at the time of contraction and thus not

removed.

To restore the pin-lists, we iterate over all active nets 𝑒 ∈ 𝐼𝑤 and if 𝑡𝑤,𝑒 = 𝑡𝑤 , we restore
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v from the inactive part of the pin-list, see line 7. In Figure 6.1 f) v4 is restored from the

inactive part of 𝑒2. Otherwise, if 𝑡𝑤,𝑒 > 𝑡𝑤 , we replace 𝑢 by v , see line 9. For example v0

replaces v1 in 𝑒0 in Figure 6.1 f).

In the sequential setting, contractions are undone in the reverse order in which they were

performed, so if v was removed, it is the first entry in the inactive part of 𝑒 . In this case it

suffices to increment the current size of 𝑒 to restore v in line 7.

In the parallel setting, we perform all uncontractions in the current batch in parallel, so v
can be anywhere in the inactive part of 𝑒’s pin-list. After constructing the batches, we sort

each pin-list including the inactive entries by the batches in which the pins are uncontracted

(see net 𝑒2 in Figure 6.1 d). Then, all pins of 𝑒 that have to be restored in the current batch

can be activated simultaneously by appropriately incrementing the current size of 𝑒 (as

seen in parts e and f of Figure 6.1). Only one thread that triggers the restore case on a net

performs the restore operation, which we ensure with the atomic time-stamping trick from

Section 2.2.4.

6.2.4 Implementation Details
To speed up iteration over incident nets, we store a second doubly-linked list where vertices

𝑤 without active entries in 𝐼𝑤 are removed. This improves the iterator’s complexity to

O(deg(𝑢)). Since the edit operations that require locks are very fine-grained, we implement

locking with spinlocks using atomic test-and-set operations. This applies to all locks used in

this chapter.

6.3 Coarsening
In this section, we describe how to implement the coarsening phase for 𝑛-level partitioning.

The main conceptual tool for this is the forest F of contractions, represented by the array

rep of parent pointers.

Parallelization. A vertex can be contracted as soon as all of its children in F have been

contracted. Different sub-trees and siblings can be contracted in parallel. Hence, we traverse

F in bottom-up fashion. The contracted hypergraph will be the same regardless of the exact

execution order. What may differ is the representation in the data structure (which pin was

replaced and which was removed). This will have an effect on the intermediate levels later

on, but for now we can safely ignore this.

Incremental Construction. We do not know F in advance, but start with rep[v] = v for
all v ∈ 𝑉 and incrementally build it. For finding good contractions to perform, we use the

same heavy-edge-rating algorithm as the log(𝑛)-level version (Algorithm 4.2) but construct

the ratings directly at vertices instead of their clusters. In the following, we describe how to

dynamically extend F in a thread-safe manner that still enables the bottom-up parallelization.
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Conditions. Let (𝑢, v) be a contraction suggested by the heavy-edge-rating function. We

have to ensure that F remains a rooted forest, i.e., v must still be a root (rep[v] = v) and we

cannot add cycles. Additionally, 𝑢 must not have been contracted yet or be in the process of

contraction (bottom-up).

This has two consequences: First, if 𝑢’s contraction has started, we instead contract v
onto a suitable ancestor of 𝑢. In Algorithm 6.4 we detect cycles and replace 𝑢 by an ancestor

of 𝑢 that is not contracted yet. This is what we call a safe ancestor. In practice 𝑢 is a safe

ancestor in the overwhelming majority of cases, but for correctness the scheme below is still

necessary. Secondly, if there are unfinished contractions onto v , we cannot contract v right
away. We explicitly allow multiple concurrent contractions onto the same vertex. Therefore

Algorithm 6.5 shows how to avoid waiting when there are still pending contractions.

Algorithm 6.4: Find Safe Ancestor

Input: Vertex pair (𝑢, v) to contract

1 lock(v)
2 if rep[v] ≠ v
3 unlock(v) and return // other thread contracts v
4 while rep[𝑢] ≠ 𝑢 and pending[𝑢] = 0 do
5 𝑢 ← rep[𝑢]
6 if 𝑢 = v
7 unlock(v) and return // cycle in F
8 if v < 𝑢

9 lock(𝑢)

10 else
11 unlock(v), lock(𝑢), lock(v) // avoid deadlock
12 if rep[v] ≠ v
13 unlock(v), unlock(𝑢) and return // other thread contracts v
14 if rep[𝑢] = 𝑢 or pending[𝑢] > 0

15 𝑥 ← 𝑢

16 while rep[𝑥] ≠ 𝑥 do
17 𝑥 ← rep[𝑥]
18 if 𝑥 = v
19 unlock(v), unlock(𝑢) and return // cycle in F
20 rep[v] ← 𝑢 // safe ancestor found
21 pending[𝑢] ← pending[𝑢] + 1

22 unlock(𝑢), unlock(v)
23 return ContractOrTransferResponsibility(𝑢, v)
24 else
25 unlock(𝑢) and go to line 4 // retry with different ancestor
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Detecting Contraction Starts. We use a zero-initialized array pending, where pending[𝑥]
stores the number of vertices 𝑦 with rep[𝑦] = 𝑥 whose contraction is not finished. If

pending[𝑥] = 0, it is safe to contract 𝑥 . If additionally rep[𝑥] ≠ 𝑥 , we assume that the

contraction of 𝑥 onto rep[𝑥] has started. This makes 𝑥 unsafe to contract onto. Note that

this does not mean that it has started, just that it is safe to start.

Cycle Detection and Safe Ancestor. We discuss Algorithm 6.4 first. First, v is locked, so
that no other thread can write to rep[v] (line 1). If rep[v] ≠ v , then (𝑢, v) is discarded (line

2), as another thread has already elected to contract v and will run this algorithm. Otherwise,

we walk the path towards the root of 𝑢’s tree in F by chasing the rep entries to find the

lowest ancestor 𝑤 of 𝑢, for which either rep[𝑤] = 𝑤 or pending[𝑤] > 0, i.e., the contraction

of 𝑤 has not started (line 4). If v is found on this path, the contraction is discarded, as it

would add a cycle to F (line 6,7). We replace 𝑢 with 𝑤.

If no cycle is found, then 𝑢 is locked (line 9) and we check rep[𝑢] and pending[𝑢] again
(line 14). If they changed, we release 𝑢 and keep walking up to find a higher ancestor of 𝑢

(line 25). Otherwise, 𝑢 is the desired candidate. We finish the walk up to the root to check

for cycles (line 15-19). If no cycles are found, 𝑢 is a safe ancestor, so we set rep[v] ← 𝑢 and

increment pending[𝑢] by 1 (line 20, 21). We then unlock v and 𝑢 and call Algorithm 6.5 to

perform the contraction itself (line 22,23).

To avoid deadlocks in Algorithm 6.4, we acquire the lock of the vertex with lower ID first

(line 8-13). If 𝑢 < v , we have to intermediately release the lock for v , so we re-check whether

rep[v] = v and discard the contraction if this is not the case any longer.

Algorithm 6.5: Contract Or Transfer Responsibility
Input: Vertex pair (𝑢, v) to contract

1 while 𝑢 ≠ v do
2 if pending[v] > 0 // without lock
3 return // transfer responsibility
4 lock(v)
5 if pending[v] = 0

6 unlock(v)
7 performContraction(𝑢, v) // Algorithm 6.2
8 lock(𝑢), pending[𝑢] −= 1, unlock(𝑢)

9 v ← 𝑢

10 𝑢 ← rep[𝑢]
11 else
12 unlock(v) and return // transfer responsibility
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Contract or Transfer. If v has pending contractions pending[v] > 0, we cannot perform

the contraction right away. To avoid waiting until pending[v] = 0, we return so we can

perform the next iteration of the coarsening pass (the parallel loop in line 3 of Algorithm 6.1).

Instead, the thread that reduces pending[v] to 0 is responsible for contracting (rep[v], v). If
pending[v] = 0 already, we call Algorithm 6.2 to contract (𝑢, v), and subsequently decrement

pending[𝑢] by 1. If this reduces pending[𝑢] to 0 and rep[𝑢] ≠ 𝑢, we recursively apply this

process to (rep[𝑢], 𝑢).

Identical Net Detection. There is one last detail left for the coarsening phase. For the sake

of performance in all components (not just coarsening) it is crucial to detect and remove

identical nets. Doing this on-the-fly would introduce additional dependencies for the batches

in the uncoarsening phase, which is why we decided against it. Instead, we remove identical

nets and nets consisting of a single pin at the synchronization point after a coarsening pass.

We adapt the algorithm from Section 4.1.2 to the dynamic data structure.

6.4 Batch-Synchronous Uncoarsening

For the uncoarsening phase, our goal is to create a sequence of batchesB = ⟨𝐵1, . . . , 𝐵𝑙 ⟩, where
B is a partition of the contracted vertices into disjoint sets such that ∀𝐵 ∈ B : |𝐵 | ≈ 𝑏max.

Here, 𝑏max is an input parameter that interpolates between parallelism (high values) and

uncoarsening granularity. Each batch 𝐵𝑖 will be chosen such that we can uncontract the

vertices v ∈ 𝐵𝑖 in parallel. Refinement is applied after each batch. Processing 𝐵𝑖 will resolve

the last dependencies required to uncontract the next batch 𝐵𝑖+1. Clearly, the uncontraction
of a vertex v can only start once the uncontraction of rep[v] is finished, i.e., all of its ancestors
are uncontracted. Therefore, we construct the batches via a top-down traversal of F .

There is an additional ordering dependency to achieve a correct algorithm that we have

not introduced yet. In the sequential version, contractions are undone in the reverse order

they were performed. This is not possible in the parallel setting, since it would be inherently

sequential and we do not even have a strict contraction order. In the following we show that

reverse order is necessary for correctness but only between siblings (vertices contracted onto

the same parent). Subsequently, we describe the batch construction algorithm that must take

these dependencies into account.

6.4.1 Sibling Dependencies

Consider the scenario in Figure 6.2, with vertices 𝑢, v1, v2 ∈ 𝑉 with rep[v1] = rep[v2] = 𝑢,
and two nets 𝑒1, 𝑒2 ∈ 𝐸 with v1, v2 ∈ 𝑒𝑖 but 𝑢 ∉ 𝑒𝑖 . If the contractions of v1 and v2 happen at

the same time, and 𝑢 replaces v1 in 𝑒1 and v2 in 𝑒2, then v2 gets removed in 𝑒1, and v1 gets

removed in 𝑒2 (moved to the inactive part). If we uncontract v1 in an earlier batch than v2,

then 𝑢 would be incident to 𝑒2 but not 𝑒1 until v2 is uncontracted, since we replace 𝑢 by v1 in
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Figure 6.2: Inconsistent state due to concurrent contraction of both v1 and v2 onto 𝑢, where

𝑢 replaces v1 in 𝑒1 and v2 in 𝑒2. By uncontracting v1 before v2, it replaces 𝑢 in 𝑒1 again, but 𝑢

should still be incident to 𝑒1, since v2 is still contracted onto 𝑢.

u
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Figure 6.3: Sibling interval counters. Siblings are sorted by the finish time of their contraction,

such that we can uncontract them in reverse order. The red boxes show transitive closures

of overlapping time intervals.

𝑒1 but not yet by v2 in 𝑒2. This is an inconsistent state because v2 is in 𝑒1 and was contracted

onto 𝑢, and thus 𝑢 should be incident to 𝑒1.

The Problem. This is not an issue if we only care about fully uncontracting the hypergraph

and projecting the partition. However, we perform refinement, moving vertices after each

batch, and doing so in inconsistent intermediate states causes a problem. Assume, we

uncontract v1 from 𝑢 and then move 𝑢 and v1 into different blocks (third part in Figure 6.2).

Then 𝑒1 is not in the cut (dashed line) because 𝑢 ∉ 𝑒1. When we uncontract v2 from 𝑢 we

add it to the same block as 𝑢 and thus inadvertently add 𝑒1 to the cut since now v2 ∈ 𝑒1

(fourth part). Note that this is just through the uncontraction operation. This violates a

fundamental property of the multilevel framework: the projected partition must have the

same connectivity and imbalance as that on the previous level. Fortunately these inconsistent

states are restricted to siblings, since they are caused by intertwining different roles (replace

or remove/restore) of their shared parent in different shared nets.
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The Solution. We fix this by enforcing that all siblings that were contracted at the same time
are reverted in the same batch. A similar argument holds for the case of v1 being contracted

strictly earlier than v2 (no time overlap). Here, v2 must be uncontracted in an earlier or the

same batch as v1.

To detect time overlaps, we atomically increment a counter at the parent before starting

and after finishing a contraction operation. For each contracted vertex v , this yields an
interval [𝑠v , 𝑒v ] with start time 𝑠v and end time 𝑒v . If the intervals of two siblings overlap,

we assume they were contracted at the same time, otherwise one is strictly earlier than the

other. We need to compute the transitive closure of siblings with overlapping intervals, as

well as order them decreasingly if one is strictly earlier than the other. Since comparing for

equality with interval overlaps is not transitive, we instead sort them in decreasing order of

𝑒v . Then, the siblings in a transitive closure are ordered consecutively and can be found with

a rightward sweep from the first interval, by checking whether the next interval overlaps

with the union of intervals in the closure so far and extending the union interval if they

overlap. An example is shown in Figure 6.3. Here, the siblings are sorted with respect to

their contraction finish time, and the red boxes correspond to transitive closures.

Strictly speaking, siblings in a transitive closure need not be reverted in the same batch,

but we would have to delay refinement until there are no partially uncontracted transitive

closures, which seems more obstructive.

6.4.2 Batch Construction

After the coarsening phase, we need to construct batches of contracted vertices, to uncontract

in parallel during the uncoarsening phase. We traverse F top-down in BFS order, using

two FIFO queues: 𝑄 for the current layer and 𝑄 ′ for the next layer. Additionally, we have a
batch 𝐵cur that we are currently adding contracted vertices to, which we append to B once

|𝐵cur | ≥ 𝑏max and then proceed with a new empty batch. An example batch construction is

shown in Figure 6.4.

BFS Details. 𝑄 and 𝑄 ′ store elements (𝑢, v𝑖 ), where 𝑢 is a vertex and v𝑖 is the 𝑖-th child

of 𝑢 in the order sorted by finish time 𝑒v of the contraction operation. For elements in 𝑄 ,

we maintain the invariant that 𝑢 is uncontracted in a batch before 𝐵cur, so that its children

can be added to 𝐵cur. Furthermore, v𝑖 is the first child of 𝑢 that has not been added to any

batch yet. To initialize 𝑄 , we insert all entries (𝑟, 𝑤1), where 𝑟 is a root of F and 𝑤1 is the

first child of 𝑟 .

We pop elements from𝑄 until it is empty, and then swap it with𝑄 ′. Now, let (𝑢, v𝑖 ) be the
current element we popped from 𝑄 , and let 𝑇 denote the transitive closure of v𝑖 . For each
v ∈ 𝑇 , we add v to 𝐵cur, and push (v, 𝑤1) to 𝑄 ′, where 𝑤1 is the first child of v . Additionally,
we push (𝑢, v𝑗 ) to the end of 𝑄 , where v𝑗 is the first child of 𝑢 outside 𝑇 , if any.

This reinsertion aims to minimize the number of contractions with the same parent in

a batch, which reduces synchronization overheads during uncontraction operations (list
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Figure 6.4: Batch Construction via BFS from the roots v1, v2 of F . In this situation v8 will

be added to the third batch (currently under construction) since it is at depth 2. The other

eligible vertices (v9, v10, v11) are at depth 3, so only two of them will be added before opening

a new batch, since 𝑏max = 3.

splicing, vertex weights) and reduces the overlap of local searches. The work of this algorithm

is O𝑛.

Parallelization. We traverse the different trees of F in parallel. F has as many trees as

vertices left in the coarsest hypergraph, so at least around 𝑡 ·𝑘 , which is more than a common

number of cores. We statically assign roots to threads. To approximate a BFS order across

trees, we perform one BFS per thread on all of its assigned roots. The threads collaborate on

filling batches, and we keep multiple batches open, as threads may progress at different rates.

6.5 Refinement
We perform refinement after uncontracting a batch of vertices. To make this efficient, the

refinement should be localized, i.e., focus on areas close to the uncontracted vertices first

and then gradually expand. We reuse the two refinement algorithms from Section 4.3: label

propagation and localized FM.

More Localized Refinement. FM is already localized; we only use vertices from the

current batch as seeds instead of all boundary vertices. Similarly, label propagation does not

iterate over all vertices but just the vertices in the batch. Still, neighbors of moved vertices

are activated, so the search expands to vertices not in the batch.

Global Refinement. We complement the localized refinement with a run of parallel local-

ized FM on the entire hypergraph. We choose the same synchronization point as the one used

to restore single-pin and identical nets: after contractions from a full coarsening pass are

reverted. This corresponds to the refinement available in traditional multilevel algorithms.
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Gain Table Revisited. Recall that FM uses a gain table to look up gains, that is updated

when vertices are moved. With the log(𝑛)-level algorithm, we initialize the table from

scratch on each level. With Ω(𝑛) levels this incurs too much overhead. Instead, we update

the previous gains based on updates to the Φ(𝑒, 𝑖) values made while uncontracting.

To make this efficient, we employ the same trick as Algorithm 4.4 and Algorithm 4.7 where

we do not compute benefits and penalties directly. Instead of p𝑖 (𝑢), we store and update

p𝑖 (𝑢) ≔ 𝜔 (I(𝑢)) −p𝑖 (𝑢), such that we can compute the gain as 𝑔𝑖 (𝑢) = 𝑏 (𝑢) −𝜔 (I(𝑢)) +p𝑖 (𝑢).
Consider a contraction (𝑢, v) that should be reversed. The values 𝑏 (v) and p𝑖 (v) are

initialized to zero. The values 𝑏 (𝑢) and p𝑖 (𝑢) are taken from the previous levels. Analogously

to the uncontraction operation in Algorithm 6.2.3, on each incident net 𝑒 of v we distinguish

two cases: (i) whether v was replaced by 𝑢 in 𝑒 , or (ii) whether 𝑢 and v were both incident to

𝑒 before the contraction; confer line 6.

Case 1: Replace. If v was replaced by 𝑢 during coarsening, then 𝑢 is now being replaced

by v . Hence, we subtract 𝜔 (𝑒) from p𝑖 (𝑢) and add it to p𝑖 (v) for all 𝑖 ∈ Λ(𝑒). Recall that
Λ(𝑒) = {𝑖 | Φ(𝑒, 𝑖) ≥ 1}. If Φ(𝑒,Π(𝑢)) = 1, we additionally subtract 𝜔 (𝑒) from 𝑏 (𝑢) and add

it to 𝑏 (v). In this case, Φ(𝑒,Π(𝑢)) does not change, as v is now a pin of 𝑒 , but 𝑢 no longer is.

Case 2: Restore. In the second case, where 𝑢 and v are both incident to 𝑒 after the uncon-

traction, we increase Φ(𝑒,Π(𝑢)) by one since v is assigned to Π(𝑢) and now both 𝑢 and v
are pins of 𝑒 in Π(𝑢). If Φ(𝑒,Π(𝑢)) = 2, we have to reduce 𝑏 (𝑢) by 𝜔 (𝑒), since moving 𝑢 out

of Π(𝑢) would no longer remove Π(𝑢) from Λ(𝑒). Regardless of Φ(𝑒,Π(𝑢)) we add 𝜔 (𝑒) to
each p𝑖 (v) for 𝑖 ∈ Λ(𝑒).

Algorithm 6.6 shows the approach again in pseudocode, with the following parallelization

included. As in Section 6.2.3, we distinguish the two cases based on the timestamp in the

incident net arrays. There is no need to search in the pin-list which case applies, as is done

for sequential KaHyPar [Sch20].

Parallelization. While updates to v are done exclusively by one thread, updates to 𝑢 can

happen from multiple threads. Therefore, we use atomic fetch-and-add instructions for

updates to 𝑢.

Λ(𝑒) does not change during uncontractions, since Φ(𝑒, 𝑖) is only modified in the second

case, where Φ(𝑒, 𝑖) ≥ 1. Therefore, iteration over Λ(𝑒) is thread-safe. Modification and reads

on Φ(𝑒,Π(𝑢)) are thread-safe because they are protected by a net-specific lock. Updates to

the gain table are done outside locks, but for simplicity the benefit updates are displayed

inside here. The lock in the replace case is necessary to do the replacement itself, though the

slot can be found outside the lock. This is important for the following issue.

Uncoarsening in parallel introduces one more intricacy. In the restore case, 𝑢 might

have been replaced by some v ′ ≠ v due to a concurrent uncontraction (𝑢, v ′). Therefore if
Φ(𝑒,Π(𝑢)) = 2, we search for a pin v ′ in the active part of 𝑒 with Π(v ′) = Π(𝑢) and v ′ ≠ v ,
and then subtract from 𝑏 (v ′) instead of 𝑏 (𝑢). If 𝑢 was not replaced, we simply find v ′ = 𝑢.
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Algorithm 6.6: Update Gain Table for Uncontraction

1 for 𝑒 ∈ 𝐼 (v) do
2 if v replaces 𝑢 // case 1: replace
3 find 𝑢’s slot in 𝑒

4 lock(𝑒)

5 replace 𝑢 with v at the found slot

6 if Φ(𝑒,Π(𝑢)) = 1

7 𝑏 (𝑢) −=
atomic

𝜔 (𝑒)
8 𝑏 (v) += 𝜔 (𝑒)
9 unlock(𝑒)

10 for 𝑖 ∈ Λ(𝑒) do
11 p𝑖 (𝑢) −=

atomic

𝜔 (𝑒)
12 p𝑖 (v) += 𝜔 (𝑒)
13 else // case 2: restore
14 lock(𝑒)

15 Φ(𝑒,Π(𝑢)) += 1

16 if Φ(𝑒,Π(𝑢)) = 2

17 for v ′ ∈ 𝑒 do // subtract from potential replacement of 𝑢
18 if v ′ ≠ v and Π(v ′) = Π(𝑢)
19 𝑏 (v ′) −=

atomic

𝜔 (𝑒)
20 break
21 unlock(𝑒)

22 for 𝑖 ∈ Λ(𝑒) do
23 p𝑖 (v) += 𝜔 (𝑒)

For correctness it is necessary to perform the scan forward from the beginning of the

active part. The reasoning about correctness is very delicate, in fact we were lucky that

this was not a bug. The current batch may contain further vertices contracted onto 𝑢 that

are restored. These are assigned to Π(𝑢) as well, but are the wrong vertex to take 𝜔 (𝑒) off
the benefit. Fortunately, these were moved behind 𝑢 or its potential replacement v ′ during
coarsening, into the inactive part at the time. Thus, we exploit the fact that the sorting

algorithm, used to sort the pin-lists by batch, is stable, in order to find 𝑢 or v ′ first. Note that
there are no pins of 𝑒 in Π(𝑢) that were not contracted onto 𝑢, since Φ(𝑒,Π(𝑢)) was 1 prior

to this. Furthermore, the scan happens only for the first restore case; subsequent ones have

Φ(𝑒,Π(𝑢)) > 2.
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Figure 6.5: Impact of the batch size 𝑏max on partition quality.

6.6 Experimental Evaluation
We integrated our parallel 𝑛-level approach into the Mt-KaHyPar framework. Our new

algorithm is called Mt-KaHyPar-Q (for quality preset). While the speedup experiments are

performed on machine C (they took six weeks which was unattainable for a repetition), all

other experiments on set B are performed on machine B in this section.

In the following, we first determine an appropriate value for the batch size parameter 𝑏max.

Subsequently, we conduct speedup experiments, look at running time shares of the multilevel

phases, and analyze the refinement algorithm’s behavior. We follow up with the familiar

horse-race comparisons against prior works. Since Mt-KaHyPar-Q is primarily targeted at

medium size instances, we present experiments on set A before set B.

6.6.1 Batch Size Configuration
In Figure 6.5 we compare the solution quality when varying the batch size parameter𝑏max. For

this experiment we used machine A with 20 cores on the second parameter tuning benchmark

set D. We tested the different values 1 (which corresponds to sequential uncoarsening), 100,
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Table 6.1: Geometric mean speedups for each phase, reported separately for 16 and 64

threads, and all instances or instances that took at least 100 seconds sequentially. The last

row shows the percentage of instances that took at least 100 seconds sequentially.

instances threads total coarsen initial uncoarsen LP FM

all 16 11.79 11.04 10.21 11.01 8.04 11.22

all 64 23.41 25.05 18.16 22.9 15.91 19

≥ 100𝑠 16 12.33 12.69 11.15 11.79 10.73 12.04

≥ 100𝑠 64 25.52 35.39 18.53 24.84 25.94 21.8

% ≥ 100𝑠 71.8 30.8 7.8 33.8 18.5 39.3

200, 1000, and 10000. Comparing 𝑏max = 1 and 𝑏max = 100 shows a marginal advantage for

𝑏max = 100. Using 𝑏max = 100 is slightly better than 𝑏max = 200. Finally, there is no visible

difference between 𝑏max = 200, 𝑏max = 1000 and 𝑏max = 10000. The fastest configuration is

𝑏max = 1000, which is 1.64 times faster (geometric mean) than 𝑏max = 100 and 13.06 times

faster than 𝑏max = 1. We therefore choose 𝑏max = 1000 for all further experiments.

6.6.2 Scalability
For the speedup experiment we used a subset of set B containing 77 out of the 94 hypergraphs.

These were selected such that Mt-KaHyPar-Q on 64 cores finishes in under 800 seconds. The

speedup experiment still took 6 weeks to complete on machine C.

In Figure 6.6 we summarize self-relative speedups for the algorithmic components of

Mt-KaHyPar-Q and the whole framework (top left), with varying number of threads 4, 16, 64.

For initial partitioning, we removed 4 outliers below 1, in order to avoid skewing the plot

further. These all stem from the same instance circuit5M.mtx, where non-determinism

during coarsening leads to a larger initial partitioning instance. Additionally, Table 6.1 shows

geometric mean speedups for all instances, and such where the particular phase took at least

100 seconds.

The overall geometric mean speedup of Mt-KaHyPar-Q is 3.68 on 4 cores, 11.79 on 16

cores and 23.41 on 64 cores. If we only consider instances with a single-threaded running

time ≥ 100s, we achieve a geometric mean speed up of 25.52 on 64 cores.

The scaling behavior of coarsening, uncoarsening and localized FM are crucial to the overall

scalability of our framework, since they account for the majority of the work performed.

Coarsening and uncoarsening both have similar speedups with 11.04 and 11.01 for 16 cores,

whereas coarsening performs significantly better with 64 cores (25.05 vs 22.9).

Both localized refinement algorithms yield reliable speedups. However, since we run label

propagation before FM, it scales slightly better for 64 cores, as it could potentially remove

boundary vertices from the cut, which then reduces the available parallelism for FM. Initial

partitioning shows the least promising speedups out of all components, but is substantially
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Figure 6.6: Relative speedups of Mt-KaHyPar-Q in total, as well as its components shown

separately. The x-axis shows the sequential time in seconds, whereas the y-axis shows the

speedup. The lines are rolling geometric means with window size 50 of the per-instance

speedups (scatter).
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Figure 6.7: Partition quality of Mt-KaHyPar-Q with increasing number of threads on set B.

faster, running in less than 100 seconds on 92.2% of the instances (see last row of Table 6.1).

On some instances we obtain super-linear speedups. This is not surprising since the algo-

rithms are non-deterministic. Among other things, we have observed refinement converging

in fewer rounds. The extreme outliers, however, are caused by coarsening and uncoarsening

(up to 412), where non-deterministic contraction decisions cause highly varying running

times. The coarsening slows down once only few vertices are left.

Figure 6.7 shows that increasing the number of threads does adversely affect the solution

quality, but only by a fairly small amount. We observed that the localized searches interfere

with one another, which may reasonably explain this behavior. A possible remedy would be

to further diversify the uncontraction batches, an avenue we pursue later in Section 6.7.4.

6.6.3 Refinement Statistics

This phenomenon is further explained by the statistics in Figure 6.8, where we show how

often calculated gains were wrong and how often moves had to be reverted due to accidental

balance violations. Looking back at Figure 4.6 we see that for 𝑛-level the calculated gains are

wrong more often than for Mt-KaHyPar-D. The majority is still around 0% but there are a lot

more outliers in the 5-10% range. This is caused by interference between threads, as they

operate in parallel on the same areas, whereas in Mt-KaHyPar-D the randomization spreads

out the areas of the hypergraph where vertices are moved. For label propagation, fewer

reverts are caused by accidental balance violations, which is explained by the fact that fewer

moves are performed between synchronization points (end of round) than in Mt-KaHyPar-D.

However, localized FM reverts a much larger fraction of moves during global rollbacks: the

median for Mt-KaHyPar-D was below 5%, whereas for Mt-KaHyPar-Q it is around 30%. We

also see larger gain fluctuations.
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Figure 6.8: Intervention frequency of gain accuracy techniques, and overall gain fluctuation

for Mt-KaHyPar-Q on set B.
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instance of set B.

6.6.4 Running Time Shares

Next we look at Figure 6.9 to see which phases of the framework take up the most time.

For each phase we plot the fraction of the total running time. The instances are sorted by

the fraction for uncoarsening, which is generally the slowest phase, together with localized

FM. Combined they make up around 60% of the total time. Adding 5-10% for localized LP

and 5-10% for global FM (run at synchronization points for restoring identical nets), the

refinement phase makes up around 70-80% of the total time. On around half of the instances
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Figure 6.10: Partition quality and running time of Mt-KaHyPar-Q and competitors on set A.

coarsening is negligible, on the remaining half it takes between 10-20%. Initial partitioning

is negligible for the most part, though there are some outlier instances.

6.6.5 Comparison with Sequential Algorithms

Now we turn our attention to comparisons with existing state-of-the-art hypergraph par-

titioning algorithms. As Mt-KaHyPar-Q primarily targets medium-size instances we start

with benchmark set A. Figure 6.10 displays the quality and running time results for the full

pool of algorithms and Figure 6.11 shows some direct comparisons.

From Figure 6.10 (right) we see that Mt-KaHyPar-Q on 10 cores is moderately faster

than PaToH-Q and significantly faster than hMetis and the sequential KaHyPar variants: in

particular around a factor of 10 compared to KaHyPar-CA. The geometric mean running

times are 3.13s for Mt-KaHyPar-Q (10 cores), 28.14s for KaHyPar-CA, 48.95s for KaHyPar-

HFC, 93.2s for hMetis-R, 1.17s for PaToH-D, 5.86s for PaToH-Q, and 0.96s for Mt-KaHyPar-D

(10 cores). PaToH-D and Mt-KaHyPar-D are substantially faster, but compute partitions with

worse quality.

Mt-KaHyPar-Q finds partitions of similar quality as KaHyPar-CA and hMetis-R, and is only

beaten by KaHyPar-HFC due to its flow-based refinement. Considering the entire algorithms

pool, hMetis-R contributes more of the best partitions, but converges slower towards 1 than

the KaHyPar variants.

Looking at the direct comparison in Figure 6.11 (bottom right), we see that Mt-KaHyPar-Q

is slightly better than hMetis-R and contributes more of the best partitions. It reaches the

1.1 factor at 90% of the instances, whereas hMetis-R only does so at 80%. Mt-KaHyPar-D is

moderately worse: at 50% it reaches factor 1.02, at 80% it reaches 1.04, and at 95% it reaches
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Figure 6.11: Direct comparisons of Mt-KaHyPar-Q with competitors of similar quality. Top

row KaHyPar-CA versus Mt-KaHyPar-Q with 10 cores (left) and 1 core (right). Bottom row:

Mt-KaHyPar-D (left) and hMetis-R(right).

1.1 (bottom left). Comparing Mt-KaHyPar-Q and KaHyPar-CA directly (top row), we see

that KaHyPar-CA is still barely better if 10 cores are used, and this diminishes if only 1 core

is used.

Due to varying running times, we present effectiveness tests in Figure 6.12. Here, Mt-

KaHyPar-Q beats hMetis-R and KaHyPar-CA convincingly, thanks to the parallelism. The

plot versus hMetis-R looks similar on 1 core (not shown), the one versus KaHyPar-CA does

not (same quality). Furthermore, Mt-KaHyPar-Q almost reaches the quality of KaHyPar-HFC

and is almost reached by Mt-KaHyPar-D. The effectiveness tests comparing default and

𝑛-level Mt-KaHyPar on set B look similar, but slightly better for Mt-KaHyPar-D.

6.6.6 Comparison with Parallel Algorithms
Next we look at the comparison with fast and parallel algorithms on set B, using 64 cores

for the parallel algorithms. Figure 6.13 shows the results. Mt-KaHyPar-Q contributes the

best solutions on around 70% of the instances, followed by Mt-KaHyPar-D and PaToH-D
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Figure 6.12: Effectiveness tests with virtual instances on benchmark set A, comparing Mt-

KaHyPar-Q (on 10 cores) with KaHyPar-HFC, KaHyPar-CA and hMetis-R andMt-KaHyPar-D

(on 10 cores).

on around 17%. It reaches the 1.1 factor at 90% of the instances, as does Mt-KaHyPar-D. In

the first bucket range [1.0, 1.1] Mt-KaHyPar-D stays below Mt-KaHyPar-Q. At the median

marker for the instances, it is off by about 2%. As shown previously, BiPart and Zoltan are

far off in terms of partition quality, whereas PaToH-D is situated in the midfield.

Concerning running times, Mt-KaHyPar-Q is slightly faster than BiPart, but slower than

Zoltan and much slower than Mt-KaHyPar-D. The geometric mean running times are 23.96s

for Mt-KaHyPar-Q, 29.15s for BiPart, 10.64s for Zoltan, 3.9s for Mt-KaHyPar-D and 47.63s

for PaToH-D.

6.7 Asynchronous Uncoarsening
Batch-synchronous uncoarsening performs remarkably well, considering the Θ(𝑛/𝑏max)
synchronization points. Through writing the paper we gained some further intuition how
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Figure 6.13: Partition quality and running time of Mt-KaHyPar-Q and competitors on set B.

parallel 𝑛-level should work, which led us to believe that completely asynchronous un-

coarsening is feasible and potentially practical. The goal is to perform uncontractions and

refinement at the same time, without any synchronization for batches. Localized refinement

should be run on the parent and child right after the uncontraction. Therefore this approach

is truly 𝑛-level, not 𝑛/𝑏max levels.

This section is based on the Master thesis of Moritz Laupichler [Lau21], which was

supervised jointly with Tobias Heuer. In many places it contains a substantial amount of

additional details (for example search space diversification), and we only show a subset of

the experiments.

6.7.1 Asynchronous Uncoarsening Scheme

We still have to abide by the same uncoarsening rules as before: parents before children and

siblings in reverse order; or together if they were contracted at the same time. Hence, the

algorithm works on uncontraction groups, which we define as the transitive closure of siblings
that were contracted at the same time. We traverse F top-down in BFS order, by using a

priority queue with the depth in F as the key for the groups. A group is eligible when its

parent is uncontracted and prior sibling uncontractions are finished. Once an uncontraction

group is finished, we mark the next sibling uncontraction of the parent as eligible, as well as

the first group of each child (where it acts as parent), and insert them into the queue. Initially

the first groups of the roots of F are eligible.

The threads keep polling groups from the queue until all are uncontracted. For a group, we

perform all uncontractions first, before running localized refinement around the boundary

vertices among the children and parent. To prevent vertices that participate in an uncontrac-
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tion from being moved and vice versa, we use vertex-specific locks that are shared between

the local search and uncontraction parts of the code. For each move, the vertex must be

locked, and for each uncontraction group the parent must be locked. The children need not

be locked, since we delay their activation until all children of the group are uncontracted.

This means the local search routines do not consider them as part of the hypergraph yet.

We only use try-lock operations. If the try-lock on the parent of the top-priority uncon-

traction group fails, we reinsert it and poll a new uncontraction group. The priority queue is

randomized, such that we likely get a different entry with each poll.

6.7.2 Asynchronous Localized Refinement
For refinement, we run label propagation first such that it is responsible for finding the easy

moves. We only hold the vertex-lock for the duration of the move and again only use try-lock

operations. If the try-lock fails, we store the move in a vector, to try again in a second pass,

but still do not insist. If the lock fails a second time, we discard the move.

Subsequently we run localized FM on the same seeds. Here, we must hold on to the locks

of all vertices in the PQs and those already moved, releasing them only once the search

ends. We do not perform a global rollback with gain recalculation, since the asynchronous

uncoarsening lacks the concept of a round. Instead, we rely on attributed gains when applying

moves to the global partition in the local rollback step.

6.7.3 Gain Table
For the same reason, the trick with recomputing benefits of moved vertices at the end of

a round no longer works. Hence, we use the gain table version with 𝑘 benefit values as

outlined in Section 4.3.5. This version supports correct updates through any set of moves.

Uncontractions. A major simplifying factor for updating the gain table through uncon-

tractions in Section 6.5 was that Λ(𝑒) does not change during uncontractions. This is no

longer the case with concurrent moves. Instead of performing the updates while holding the

net-lock, we create a snapshot of Λ(𝑒) and then perform penalty updates outside the lock.

Furthermore, the added benefit values require more updates, whereas the penalty updates

stay the same.

Let (𝑢, v) be a contraction to revert, and let 𝑒 ∈ I(v). There are again the two cases where

v replaces 𝑢 in 𝑒 , or v is restored in 𝑒 . If v replaces 𝑢, we now need to shift 𝜔 (𝑒) from all 𝑏𝑖 (𝑢)
to 𝑏𝑖 (v) for 𝑖 ∈ Λ(𝑒) with Φ(𝑒, 𝑖) = 1. If v is restored, we add 𝜔 (𝑒) benefit to all 𝑏𝑖 (v) with
Φ(𝑒, 𝑖) = 1. In this case we need to additionally subtract 𝜔 (𝑒) from 𝑏Π(𝑢 ) (𝑤) for all 𝑤 ∈ 𝑒 \ v
if Φ(𝑒,Π(𝑢)) = 2. This is the expensive new part; for an uncontraction the synchronous

version never required a gain update to all pins of a net.

Moves. The gain updates due to moves are as described in Section 4.3.5 for the variant with

𝑘 benefits. Unfortunately, the updates may be applied to the wrong vertices since concurrent
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uncontractions may edit the pin-list. This affects updates due to uncontractions equally,

since we have a new case where we need to scan the pin-list in the restore case.

To guarantee correctness, the gain table updates would have to be performed inside the

net-lock, which we cannot afford for large nets. A potential remedy is to create a snapshot

of the pin-list inside the lock, and then use the snapshot to perform the updates outside.

Asymptotically the snapshot creation is just as expensive as the gain update, but the latter

does random memory access (with atomic instructions that need to flush write buffers no

less), whereas the former only does a scan. If the net is small (|𝑒 | < 𝜂 = 1000), we simply

perform the gain update inside the lock. Otherwise, we create a snapshot but drastically

reduce the number of pins we have to snapshot with the following optimization.

Optimize Snapshots. A pin is called stable if it will not be replaced in future uncontractions.
Initially, only leaves of F are stable. For simplicity, we make a vertex stable in all of its

incident nets, once all uncontractions from it are done.

We partition the pin-lists into two parts: stable pins first, then unstable pins. We only

need to snapshot unstable pins inside the lock, the stable pins can be scanned outside the

lock. Once a pin becomes stable we swap it to the boundary and increment the start pointer

for unstable pins. A further optimization is to consider that we have a synchronization point

for restoring identical nets. Parents with all uncontractions after this point are considered

stable as well. Hence, the number of unstable pins is fairly small.

6.7.4 Explicit Search Space Diversification
While the batch-synchronous version already exhibited some interference between FM

searches, this problem is exacerbated for the asynchronous version since uncontractions

and label propagation happen concurrently to FM searches. We attempt to remedy this

by restricting in which regions of the hypergraph we perform uncontractions and thus

subsequent localized refinement. More precisely, we ensure that we do not uncontract a

group whose parent shares any (!) net with a parent of an uncontraction on a different

thread. The nets stay blocked until the associated localized refinement is done. However, the

blocked region is not expanded as the localized search expands; only the parent’s nets are

blocked. Yet, this still counteracts interference from uncontractions. The implementation

uses a bound on the Jaccard similarity, but preliminary experiments showed that forcing

complete dissimilarity works best, even though this seems fairly aggressive. If after a number

of tries, there is still no uncontraction group with a disjoint region available, we pick the least

similar out of those tried. This approach is also applicable to the batch-synchrous variant,

but the implementation needs more work to make it truly viable.

6.7.5 Experimental Evaluation
We omit the usual speedup plot and instead report the harmonic mean (!) speedups taken

from the Master thesis. With 64 cores of machine C, a 21.81 overall speedup is achieved,
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Figure 6.14: Partition quality and running time of the asynchronous 𝑛-level uncoarsening

variant Mt-KaHyPar-Async and competitors on set B.

which improves to 29.14 for instances that take longer than 100s on 1 core, and to 32.32 for

instances that take longer than 1000s. For uncoarsening plus refinement the speedups are

21.6 overall, 32.51 for ≥ 100𝑠 , and 39.46 for ≥ 1000𝑠 . This last aggregate still includes 23% of

the instances. Again, there are some super-linear speedups due to non-determinism.

Looking at partition quality in Figure 6.14 (left), we see that the asynchronous version does

come with a small quality penalty and is situated between Mt-KaHyPar-D and Mt-KaHyPar-

Q in the first range [1.0, 1.1]. In the second range [1.1, 2] it stays below Mt-KaHyPar-D,

indicating that robustness can be improved. The geometric mean running times are 22.66s

for asynchronous Mt-KaHyPar-Q and 30.7s for batch-synchronous Mt-KaHyPar-Q.

6.8 Conclusion

In this chapter, we demonstrated that the powerful 𝑛-level scheme can be parallelized very

efficiently on shared-memory architectures, without significant sacrifices in solution quality.

Our new system outperforms most existing partitioners in terms of solution quality and

achieves good speedups over its sequential counterpart. From a theoretical perspective,

we introduced the contraction forest – formed by any valid sequence of contractions – as

a useful concept to maintain consistent states while performing concurrent contractions.

Further, we presented a decomposition of this forest into batches – each containing a fixed

number of vertices – which can be uncontracted in parallel and enables highly localized

searches in a very fine-grained hierarchy. Moreover, we showed how to lift the restriction to

batches and instead perform uncoarsening completely asynchronously, at the same time as



Chapter 6 Parallel n-Level Hypergraph Partitioning

152

refinement. This leads to better speedups due to fewer synchronization points, but sacrifices

some solution quality due to increased interference.
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7

Flow-Based Hypergraph Partition-
ing

In this chapter, we investigate maximum flows as a tool for partitioning heuristics. In contrast

to local vertex moving algorithms they were only scarcely used due to their complexity. This

chapter is based on three papers [GHW19a, GHSW20, GHS22], published jointly withMichael

Hamann and Dorothea Wagner; MH, DW and Sebastian Schlag; as well as Tobias Heuer

and Peter Sanders. The first paper [GHW19a] deals with porting an existing flow-based

bipartitioning algorithm FlowCutter [HS18a] from graphs to hypergraphs. As it is too slow,

we investigate methods to accelerate FlowCutter, which are based on using bigger terminal

sets. An extreme version of this ultimately corresponds to an extension of an existing flow-

based refinement algorithm [SS11]. The advantage of our approach is that the solution space

is more effectively explored, which leads to smaller cuts. This first paper is restricted to

bipartitioning and unweighted instances. FlowCutter itself is an accidental re-invention of

the FBB algorithm by Yang and Wong [YW96], who originally proposed it on hypergraphs,

computing flows via the Lawler network. Our contribution over their work is the faster

flow computation directly on the hypergraph, and using it as a refinement algorithm. We

furthermore contribute several extensions such as handling disconnected inputs, distance-

based piercing (refinement only), and keeping the assignment of vertices only incident

to cut nets flexible. In the second paper [GHSW20] we integrate flow-based refinement

with FlowCutter into the existing flow-based refinement scheme of KaHyPar [HSS19], now

supporting weighted inputs and 𝑘-way partitioning via scheduling. The advantage of our

approach is faster speed due to the thoroughly engineered flow algorithm and better partition

quality due to FlowCutter. In the third paper [GHS22] we parallelize the approach from the

second paper, by employing a parallel push-relabel algorithm to compute maximum flows,

and parallelizing the scheduling of different block pairs.
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Attributions. The source code for the first two papers was written by me. The papers were

largely written by me, with editing by the co-authors. For the third paper, the parallel flow

algorithm was implemented by me, whereas the parallel scheduling was implemented by

Tobias Heuer. Both contributed equally to the write-up.

Overview. This chapter is split into two parts: sequential FlowCutter refinement and its

parallelization. After the first part on sequential refinement, we present the experimental eval-

uations from the first two papers [GHW19a, GHSW20] with the first (Section 7.7) restricted

to 2-way partitions but providing more internal details, whereas the second (Section 7.8)

focuses on horse-race comparisons with more algorithms.

We discuss a lot of related work in the first part, in order to supply specific details close to

where we use them. This is the reason we kept their discussion brief in Chapter 3. Sections 7.1

and 7.2 are largely related work, presenting FlowCutter and flow-based refinement in a way

that sets up the rest of the chapter nicely. The novelties proposed by us in these sections are

ensemble terminals, using FlowCutter as a refinement algorithm, and distance-based piercing.

In Section 7.3 we show how to implement Dinitz’ maximum flow algorithm [Din70] directly

on the hypergraph, and discuss the running time benefits of this approach. In Section 7.4, we

show how to run FlowCutter on disconnected hypergraphs. After some minor points and

the first two sets of experiments, we continue with the parallel flow algorithm in Section 7.9,

and parallel scheduling in Section 7.12. These components are evaluated separately: in

Section 7.11 on computing flows and 2-way refinement and Section 7.13 with the main

horse-race comparison and refinement analysis.

7.1 FlowCutter

Algorithm 7.1: FlowCutter Core Routine

1 𝑆 ← {𝑠},𝑇 ← {𝑡}
2 while true do
3 augment flow to maximality regarding 𝑆,𝑇

4 derive source- and sink-side cut 𝑆𝑟 ,𝑇𝑟 ⊂ 𝑉
5 if (𝑆𝑟 ,𝑉 \ 𝑆𝑟 ) or (𝑉 \𝑇𝑟 ,𝑇𝑟 ) balanced
6 return balanced partition

7 if 𝑐 (𝑆𝑟 ) ≤ 𝑐 (𝑇𝑟 )
8 𝑆 ← 𝑆𝑟 ∪ selectPiercingNode()

9 else
10 𝑇 ← 𝑇𝑟 ∪ selectPiercingNode()

FlowCutter solves a sequence of incremental maximum flow problems until a balanced

bipartition is found. Algorithm 7.1 shows pseudocode for the approach. We start with an
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initial set of sources and sinks (traditionally consisting of one node each), and an initial flow

assignment of zero. In each iteration, first the previous flow is augmented to a maximum

flow regarding the current source set 𝑆 and sink set𝑇 . Subsequently, the node sets 𝑆𝑟 ,𝑇𝑟 ⊂ 𝑉
of the source- and sink-side cuts are derived. This is done via residual (parallel) BFS (forward

from 𝑆 for 𝑆𝑟 , backward from𝑇 for𝑇𝑟 ). The node sets induce two bipartitions (𝑆𝑟 ,𝑉 \ 𝑆𝑟 ) and
(𝑉 \𝑇𝑟 ,𝑇𝑟 ). If neither is balanced, all nodes on the side with smaller weight are transformed

to a source if 𝑐 (𝑆𝑟 ) ≤ 𝑐 (𝑇𝑟 ) or a sink otherwise. To find a different cut in the next iteration,

one additional node is added, called the piercing node. Thus, the bipartitions contributed by

the currently smaller side will be more balanced in future iterations. Since the smaller side is

grown, this process will converge to a balanced partition.

The running time of FlowCutter is O(𝜁𝑚), where 𝜁 is the final cut weight. This makes

it well-suited for graphs with tiny cuts such as road networks. The bound stems from a

pessimistic implementation that augments one flow unit in O(𝑚) work with the Edmonds-

Karp algorithm [HS18a, YW96]. Deriving cut-sides also takes O(𝑚) work per bipartition.

The time bound carries over to a hypergraph implementation with the Lawler network,

leading to O(𝜁p) running time.

FlowCutter leaves three design decisions to the implementing engineer: the flow algorithm,

the heuristic to select piercing nodes, and the choice of initial terminals 𝑠, 𝑡 , of which only

the latter two have an impact on partition quality, whereas the first has the largest impact

on running time. The piercing heuristic is arguably the most important piece for partition

quality, since a bad choice can make the rest of the run useless. The terminals are also

important for both quality and running time. If the final cut weight 𝜁 is not small, and

there are many incremental cuts whose weights differ only slightly, FlowCutter will be

excruciatingly slow. This is the case for modern hypergraph partitioning instances, so there

is a need for a terminal selection method that yields good partitions and fast FlowCutter

runs.

Piercing. It is possible that we pierce but the cut weight does not increase, so we get better

balance for free. Hence, a natural piercing heuristic is to select a node that does not increase

the cut weight, if such a node exists [HS18a, YW96]. This is called the avoid augmenting
paths heuristic, since such a node is not reachable from the opposite side: v ∉ 𝑇𝑟 if the source

side is grown and v ∉ 𝑆𝑟 if the sink side is grown. If we pick such a node, there is no new

flow to augment, and therefore we cannot afford to spend O(𝑚) work to derive the next

cut-sides, but this is not necessary. We take the previous cut-sides and grow the just pierced

side via residual BFS from the new piercing node. The added work for this can be charged to

the O(𝑚) work for computing the previous cut-sides, since only one side was grown and

the other did not change.

This also has an implication on the piercing node selection. The candidates are restricted

to nodes incident to cut arcs, such that we can perform O(𝑚) iterations (at least one cut arc
changes per iteration) with O(𝜁 ) work in each iteration, for checking whether there is a

candidate that avoids augmenting paths. Cut arcs are collected while deriving cut-sides.
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Hamann and Strasser [HS18a] consider a secondary heuristic based on hop distances from

the initial terminals, but its geometric interpretation seems only useful in road networks

or instances with good low-dimensional embeddings. In our preliminary experiments it

performed worse than random tie-breaking, a secondary heuristic that is also employed by

Yang and Wong [YW96].

For hypergraphs, the direct piercing candidates are never hypernodes, but the out-node of

a cut hyperedge (if piercing the source side) or the in-node (piercing sink side). All pins of

that hyperedge effectively become terminals immediately because of the infinite capacity

arcs from the in-node or out-node. Therefore, it may make sense to select the hyperedges

to pierce based on some measure how many of its pins are not assigned to a side yet. We

unsuccessfully experimented with several rating schemes: preferring many or little, absolute

or relative numbers, and avoid creating hyperedges with pins in both sides. Unfortunately, we

did not observe a significant difference to random tie-breaking. The only piercing heuristic

that had measurable impact is a hop-distance (from cut) heuristic that only works in the

context of flow-based refinement, which we describe in the next section.

Terminals. The second design option is the choice of initial terminals. Hamann and

Strasser [HS18a] as well as Yang and Wong [YW96] use two randomly sampled nodes as

terminals. As mentioned, this is too slow for modern instances, so there is a need for larger

terminal sets, where FlowCutter has to compute fewer incremental cuts. Since nodes of the

same terminal are assigned to the same block, we should be confident they belong together.

Li, Lillis, and Cheng [LLC95] compute a linear ordering (minimizing distance of adjacent

nodes) using a heuristic spectral approach, and take the first, respectively last 10% as terminals.

The ordering is also used for piercing node selection by picking candidates closest to the

terminals of the pierced side. Their application is linear placement in VLSI design, but the

merit of this approach in other contexts has not been investigated.

We experimented with pseudo-peripheral terminals (see Section 4.2) to no avail. What

worked well for us is ensemble classification, and flow-based refinement (described in the

next section), which can be interpreted as an extreme version of ensemble terminals (with

an ensemble of size one).

Ensemble classification is a technique used in machine learning to build a strong classifier

from multiple weak ones. We compute multiple Π1, . . . ,Π𝑟 bipartitions with PaToH [CA99]

(an extremely fast multilevel partitioner). Let 𝑥 ≡ 𝑦 ⇔ ∀𝑖 = 1, . . . , 𝑟 : Π𝑖 (𝑥) = Π𝑖 (𝑦) denote
the equivalence relation in which two nodes are equivalent if they are clustered together in

each of the 𝑟 bipartitions. An equivalence class is likely in the same block of a good bipartition

and is thus suited as a terminal set. We order the equivalence classes by size in descending

order and group two successive classes as one terminal pair. Generally speaking, the larger

equivalence classes make for better terminal pairs, since the subsequent FlowCutter run is

faster and the random tie-breaking piercing makes less errors. In this sense, the terminal

set size is not strictly a parameter for trading off solution quality versus running time, as

too small terminals generally result in bad quality. Rather, there is a sweet-spot to be found,
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which is of course dependent on the instance and random choices and thus hard to find.

7.2 Flow-Based Refinement
Flow-based refinement is a technique that was first developed by Sanders and Schulz [SS11]

for graph partitioning, and subsequently ported to hypergraphs by Heuer, Sanders, and

Schlag [HSS19] by plugging in the Lawler network [Law73] and optimizing some cases in

the model (e.g., small nets). The idea is to select a set of nodes 𝐵 that are allowed to be moved

between the two blocks 𝑉0,𝑉1 of a given bipartition Π. We use 𝑆 = 𝑉0 \ 𝐵 and 𝑇 = 𝑉1 \ 𝐵 as

terminals, such that 𝑆 remains in𝑉0,𝑇 remains in𝑉1 and𝑀 may be assigned to either side in

a minimum 𝑆 −𝑇 cut. The size (or weight) of 𝐵 offers a trade-off between cut weight and

running time. Sanders and Schulz as well as Heuer, Sanders and Schlag use one minimum cut

computation instead of FlowCutter. Hence, the larger 𝐵 the more likely it is that the found

bipartition is not balanced. If the bipartition induced by the minimum cut is balanced and

has smaller cut weight (or equal cut and better balance), it is accepted as the new currently

best solution. The difference between the weight of the original cut nets and the flow value

equals the decrease in connectivity, even if used on 𝑘-way partitions. We do not include nets

that are connected to both 𝑆 and 𝑇 , since they cannot be removed from the cut. This method

can also be used to optimize the cut-net metric on 𝑘-way partitions, by removing nets with

pins in a third block.

Weight Constraint and Rescaling. If the weight of 𝐵 ∩ 𝑉𝑖 is restricted to 𝑐 (𝐵 ∩ 𝑉𝑖 ) ≤
(1 + 𝜀) 𝑐 (𝑉 )

𝑘
− 𝑐 (𝑉1−𝑖 ) the resulting bipartition is guaranteed to be balanced, no matter how

the nodes in 𝐵 are assigned. But, this restricts the cut optimization capabilities too much,

so Sanders and Schulz propose to rescale 𝜀 with a parameter 𝛼 ≥ 1, i.e., 𝑐 (𝐵 ∩ 𝑉𝑖 ) ≤
(1 + 𝛼 · 𝜀) 𝑐 (𝑉 )

𝑘
− 𝑐 (𝑉1−𝑖 ) is the new constraint. If the result is accepted, 𝛼 is doubled (capped

at 16), if it is rejected 𝛼 is halved, and another flow computation with the new 𝛼 is started.

This is repeated until 𝛼 < 1.

FlowCutter. A weakness of this approach is that a lot of computation time is wasted

recomputing flow from scratch if the bipartition is barely imbalanced. Similarly, the much

smaller 𝐵 in the next iteration can waste a lot of cut reduction potential. FlowCutter shines

in this scenario. With only few incremental flow problems and thus little additional work,

we can trade off some cut weight for balance, to arrive at a bipartition that is accepted in the

refinement framework. FlowCutter eliminates the need for the rescaling framework, and

offers the finest possible granularity without the need to recompute flows from scratch.

In our experiments we consider two configurations: the above with 𝛼 = 16 fixed (no

rescaling) used in the papers on FlowCutter refinement in sequential KaHyPar [GHSW20]

and Mt-KaHyPar [GHS22], as well as 𝑐 (𝐵 ∩𝑉𝑖 ) ≤ 𝑐 (𝑉𝑖 ) − 𝛽𝑐 (𝑉 ) with 𝛽 = 0.4 for the default

imbalance 𝜀 = 0.03 used in the papers on FlowCutter refinement for bipartitioning with
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PaToH [GHW19a] and sequential KaHyPar [GHSW20]. These are simply different methods,

but the latter usually yields smaller flow models and is thus faster.

Identifying Nodes to Move. Intuitively, the nodes we consider for moving should be close

to the cut. Sanders and Schulz construct 𝐵∩𝑉0 and 𝐵∩𝑉1 separately with two BFSs restricted

to 𝑉0 and 𝑉1, initialized with the respective boundary nodes. The visited nodes constitute 𝐵,

and the BFSs are run until the weight constraint is tight. We call this the corridor approach,
since a corridor around the cut is extracted.

In the first paper [GHW19a] we considered a second method, where we use PaToH to

compute 𝐵 by splitting off a third block from the input bipartition. In terms of cut size this

method works equally well as the corridor approach, but it is slower, so we focus solely on

the corridor approach.

Distance-Based Piercing. We can use the original bipartition as a guide for the piercing

heuristic. To avoid that bad piercing decisions make it impossible to recover parts of the

original cut, we use hop-distances from the original cut as a secondary criterion to avoiding

augmenting paths, preferring larger distances from the cut. The distances are already

computed in the corridor-approach, so this heuristic comes at no additional cost. Vertices

from the other side of the original cut are rated with distance −1, i.e., chosen only after

one side has been entirely added to the corresponding terminal vertices. We maintain the

boundary vertices in a bucket priority queue and select candidates uniformly at random

from the highest-rated non-empty bucket. New terminal vertices are removed lazily.

Improving Balance. Once the bipartition is balanced, Li et al. [LLC95] propose to keep

piercing as long as no augmenting path is created in order to further improve the balance

of the bipartition at no additional cut. Sanders and Schulz [SS11] as well as Heuer et al.

[HSS19] use amore explicit approach: repeated randomized topological ordering of the Picard-

Queyranne DAG [PQ82]. We follow the approach of Li et al. but incorporate repetitions by

adding the ability to track and revert vertex and net assignments, as well as restore the state

of the bucket PQs for piercing to the initial balanced partition, without resorting to copies.

This heuristic is useful if integrated in a framework that uses other refinement mechanisms,

such as FM local search. FM only considers balance-preserving moves, such that partitions

with small imbalance give FM more leeway for optimization.

7.3 Maximum Flow on Hypergraphs
In this section, we show how to compute maximum flows directly on the hypergraph, instead

of constructing the Lawler network. This is done purely for efficiency purposes, which

is why we discuss several engineering details. We focus on augmenting path algorithms

in this section, since we use Dinitz algorithm [Din70] in the first two papers [GHW19a,
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GHSW20]. Later on, in Section 7.9 we also discuss a push-relabel algorithm, in the context

of parallelization.

7.3.1 Pistorius-Minoux Generalized

Pistorius and Minoux [PM03] propose a method to run the augmenting path based Edmonds-

Karp flow algorithm [EK72] directly on hypergraphs with unit capacity nets. The advantage

of implementing flow algorithms directly on the hypergraph is the ability to identify and

skip cases in which we cannot push any flow. If a unit capacity net is already saturated,

we only need to follow one pin, the one sending flow in, instead of scanning the entire

net. This corresponds to scanning the in-node of that net but not the out-node. The other

advantage is that less memory is used which also has a running time impact since data is

packed more tightly together. Furthermore, we can fuse the scan of residual arcs for in-nodes

and out-nodes if the out-node must be scanned, since both comprise a scan of the pin-list. If

the out-node is reached the in-node is always reached as well (in a forward traversal).

On an early testing instance with an average net size of 12.6 and maximum net size of

36, the unit capacity Pistorius-Minoux approach with Edmonds-Karp gave a 15x speedup

over the Lawler network. This impressive result led us to abandon plain Lawler networks.

We generalize the approach of Pistorius and Minoux to non-unit capacities and arbitrary

augmenting path based algorithms, such as Dinitz algorithm [Din70]. In the following, we

present the general version directly, and then discuss how it simplifies on unit capacities.

Let 𝑓 (𝑢, 𝑒) denote the amount of flow that vertex 𝑢 sends into net 𝑒 . Negative values

indicate that 𝑢 receives flow from 𝑒 . Let 𝑓 (𝑢, 𝑒)+ ≔ max(𝑓 (𝑢, 𝑒), 0) denote the absolute
flow 𝑢 sends into 𝑒 and 𝑓 (𝑢, 𝑒)− ≔ max(−𝑓 (𝑢, 𝑒), 0) the absolute flow 𝑢 receives from

𝑒 . Then, 𝑓 (𝑒) can also be written as

∑
𝑢∈𝑒 𝑓 (𝑢, 𝑒)+ =

∑
𝑢∈𝑒 𝑓 (𝑢, 𝑒)− . We can push up to

cap(𝑒) − 𝑓 (𝑒) + 𝑓 (𝑢, 𝑒)− + 𝑓 (v, 𝑒)+ flow from 𝑢 via 𝑒 to another pin v ∈ 𝑒 . This is the residual
capacity of 𝑒 . The cap(𝑒) − 𝑓 (𝑒) term stems from the path (𝑢, 𝑒𝑖 , 𝑒𝑜 , v), the 𝑓 (𝑢, 𝑒)− stems

from (𝑢, 𝑒𝑜 , v), and the 𝑓 (v, 𝑒)+ term stems from (𝑢, 𝑒𝑜 , 𝑒𝑖 , v). Figure 7.1 shows these three
paths in the fourth, second and third step, respectively.

If cap(𝑒) − 𝑓 (𝑒) = 0 and 𝑓 (𝑢, 𝑒)− = 0, we only need to iterate over the pins v ∈ 𝑒 with
𝑓 (v, 𝑒) > 0. On the Lawler network, we would have to scan the arc (𝑒𝑖 , v) for every pin

v ∈ 𝑒 . With unit capacity, there is at most one pin v ∈ 𝑒 with 𝑓 (v, 𝑒) > 0 and one v ′ ∈ 𝑒
with 𝑓 (v, 𝑒) < 0. Storing these in separate arrays flow-from and flow-to constitutes the

approach of Pistorius and Minoux. With non-unit capacity, there can be many such pins. To

avoid using O(p) extra memory, we partition the pin-lists of the nets into three subranges

𝑓 (v, 𝑒){< 0,= 0, > 0}. When the sign of 𝑓 (v, 𝑒) changes (from pushing flow), we insert pin v
into the correct subrange by performing swaps with the range boundaries.
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Figure 7.1: Example illustrating the four steps for pushing Δ = 19 units of flow from 𝑢 via

hyperedge 𝑒 = {𝑢, v, 𝑤} to v . Black arcs show the direction of the flow, dashed red arrows

the direction we want to push flow in the Lawler network. The arc (𝑒0, 𝑤) is omitted for

readability. Current values of Δ, 𝑓 (𝑢, 𝑒), 𝑓 (v, 𝑒), 𝑓 (𝑒), and Δ′ are shown at the bottom for

each state.

7.3.2 Flow Routing

Pushing flow over a hyperedge is the elementary operation necessary to implement any

flow algorithm on hypergraphs. Let Δ be the amount of flow to push. We update the

values 𝑓 (𝑢, 𝑒), 𝑓 (v, 𝑒), and 𝑓 (𝑒) in four steps (see Figure 7.1 for an example). These steps

correspond to paths p1 = (𝑢, 𝑒𝑜 , 𝑒𝑖 , v), p2 = (𝑢, 𝑒𝑜 , v), p3 = (𝑢, 𝑒𝑖 , v), p4 = (𝑢, 𝑒𝑖 , 𝑒𝑜 , v) in
the residual Lawler network. The order of these steps is important to correctly update

𝑓 (𝑒). First, we push Δ′ ≔ min(Δ, 𝑓 (𝑢, 𝑒)−, 𝑓 (v, 𝑒)+) along p1 by setting 𝑓 (𝑒) ← 𝑓 (𝑒) − Δ′,

𝑓 (𝑢, 𝑒) ← 𝑓 (𝑢, 𝑒) + Δ′, 𝑓 (v, 𝑒) ← 𝑓 (v, 𝑒) − Δ′, and reduce the amount to push Δ← Δ − Δ′.
Then, we push Δ′ ≔ min(Δ, 𝑓 (𝑢, 𝑒)−) along p2, by updating 𝑓 (𝑢, 𝑒), 𝑓 (v, 𝑒), and Δ as before.

Note that we do not update 𝑓 (𝑒) since the bridge arc (𝑒𝑖 , 𝑒𝑜 ) is not in p2. Analogously to

p2, we push Δ′ ≔ min(Δ, 𝑓 (v, 𝑒)+) along p3. Finally, we push the remaining Δ along p4 and

update 𝑓 (𝑒), 𝑓 (𝑢, 𝑒), 𝑓 (v, 𝑒), and Δ as for p1.

The order of these updates stems from the intention to avoid circulation of flow, i.e., a

vertex should not have incoming and outgoing flow from the same hyperedge. Hence, we

push back incoming flow first, reduce the delta, and then push the remaining delta in the
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desired direction. In particular the first path (𝑢, 𝑒𝑜 , 𝑒𝑖 , v) is not considered in the residual

capacity since it is covered by the other three, but it is necessary to correctly drain flow from

it in the routing procedure. If we spent double the memory to store incoming and outgoing

flow separately, we could avoid this more complicated routing procedure. Yet, pushing flow

accounts for only a negligible part of the running time, so we deem saving the memory

worthwhile. In Section 7.9 we consider a parallel flow algorithm, where this is no longer

possible, and we have to store incoming and outgoing flow separately for thread safety.

Note that the Lawler network is just used as a means of illustration, to identify the

appropriate update steps. In the implementation, we do not actually construct the Lawler

network. We only update the 𝑓 (𝑢, 𝑒), 𝑓 (v, 𝑒), and 𝑓 (𝑒) values as shown at the bottom of

Figure 7.1.

7.3.3 Switching Directions
With FlowCutter, we solve incremental maximum flow problems. We keep the existing

flow assignment and only need to run an augmenting path algorithm from the last piercing

vertex [HS18a, YW96]. Since we can pierce both the source and sink side, we must therefore

be able to push flow from the new sink to the existing sources. This does not mean pushing

flow back, but transpose the network including flow direction, and then augment flow. Instead

of transposing the entire data structure, we multiply the flow with a direction multiplier 1 for

forward and −1 for backward. Additionally, we swap the data structures for in- and out-nodes

in the flow algorithm (distance labels for Dinitz), special marker values for membership

in 𝑆 or 𝑇 (fused into distance labels to save memory), the indices for the pinlist subranges

𝑓 (v, 𝑒){< 0,= 0, > 0}, as well as the last piercing nodes of each side, such that the entire

transposition takes only O(1) time. We can then run the regular forward implementation of

the flow algorithm. In our implementation, this is all neatly hidden away behind an interface

to access flow values, such that the flow algorithm implementation remains legible. We

assume the arithmetic operation overhead for multiplying flow values is negligible, since the

workload is heavily dominated by random memory accesses for labels and flow values.

7.3.4 Dinitz Algorithm
We now turn to the actual flow algorithm, namely Dinitz algorithm [Din70]. It works in two

phases that are repeated until no flow can be augmented any more. The first phase is a BFS

to construct distance labels in the residual network. If a sink is found during the BFS, the

flow is not maximal and the second phase is invoked. Otherwise, the algorithm terminates,

and the nodes visited by the BFS induce the side of the cut that was pierced last.

In the second phase, the distance labels induce a layered network. Flow is augmented

along shortest paths in the layered network, i.e., the distance label always increases by one

along the augmenting path. This is implemented as a DFS with backtracking, by following

arcs leading to nodes with one higher distance label. When a sink is found, the smallest

residual capacity (bottleneck capacity) on the path induced by the call-stack is pushed along
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Algorithm 7.2: Construct Layered Network (BFS)

1 𝑄 ← last piercing node

2 augment← false

3 while 𝑄 not empty do
4 𝑢 ← 𝑄 .pop()

5 𝑑 ← dist[𝑢] + 1

6 if 𝑢 ∈ 𝑇
7 augment← true

8 for 𝑒 ∈ I(𝑢) do
9 if 𝑑 < out-dist[𝑒]
10 if cap(𝑒) − 𝑓 (𝑒) + 𝑓 (𝑢, 𝑒)− > 0

11 out-dist[𝑒] ← 𝑑

12 pin-it[𝑒] ← 𝐻 .first-pin[𝑒]
13 in-dist[𝑒] ← 𝑑

14 flow-sending-pin-it[𝑒] ← 𝐻 .first-flow-sending-pin[𝑒]
15 for v ∈ 𝑒 do
16 if 𝑑 < dist[v]
17 dist[v] ← 𝑑

18 𝑄 .push(v)
19 net-it[v] ← 𝐻 .first-net[v]
20 else if 𝑑 < in-dist[𝑒]
21 in-dist[𝑒] ← 𝑑

22 flow-sending-pin-it[𝑒] ← 𝐻 .first-flow-sending-pin[𝑒]
23 for v ∈ 𝑒 with 𝑓 (v, 𝑒)+ > 0 do
24 if 𝑑 < dist[v]
25 dist[v] ← 𝑑

26 𝑄 .push(v)
27 net-it[v] ← 𝐻 .first-net[v]
28 return augment

the path. The search continues at one below the lowest saturated arc on the call stack. There

is at least one saturated arc on the path, because the amount pushed was the bottleneck

capacity.

Saving Traversals. When the algorithm terminates, we transpose the instance to also derive

the other cut-side, and then transpose back, since we need both cut-sides for FlowCutter.

This traversal also sets the data structures for the second phase, such that after piercing,

we can transpose, augment flow using the already computed layered network (from an old

piercing node to the new one), transpose back, and then run regular Dinitz. This saves one
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BFS, which saves some running time in practice.

Layered Network Construction. We emulate Dinitz algorithm on the layered network

without explicitly constructing it. For this, we need distance labels for each of the three node

types: hypernodes (dist[𝑢]), in-nodes (in-dist[𝑒]) and out-nodes (out-dist[𝑒]). Algorithm 7.2

shows pseudocode for our hypergraph implementation of the first phase. Instead of plac-

ing in-nodes and out-nodes in the BFS queue, we fuse their scans (line 15 for out-nodes

in Algorithm 7.2, line 23 for in-nodes) with the hypernode scan loop (line 8). For each

vertex/hypernode 𝑢 we scan its incident nets 𝑒 ∈ I(𝑢). The corresponding out-node 𝑒𝑜 is

scanned, if it was not scanned yet (dist[𝑢] + 1 < out-dist[𝑒]), and there is residual capacity

cap(𝑒) − 𝑓 (𝑒) > 0 on the bridge arc (𝑒𝑖 , 𝑒0) or 𝑢 receives flow from 𝑒 already (𝑓 (𝑢, 𝑒)− > 0). If

so, we set the distance label and a pin iterator that is used in the DFS for both the in-node and

out-node. If we do not scan the out-node, we check whether the in-node has not been visited

yet. If so, we visit all pins v that send flow into 𝑒 , i.e., 𝑓 (v, 𝑒)+ > 0, using the corresponding

sub-range in our data structure. Note that we use the same distance label for in-node and

out-node, regardless of which specific path leads to them.

Flow Augmentation. Algorithm 7.3 shows the pseudocode for the flow augmentation

phase (DFS). The implementation emulates recursion in an iterative code, using an explicit

call-stack on the heap to avoid stack overflows on huge instances, and to avoid function call

overheads in hot parts of the code. Again, the loops are fused to avoid pushing nets’ in-nodes

or out-nodes on the stack. The iterators are used to scan each incident net list and each pin

list only once, as well as each list of flow-sending pins only once. They are not a byproduct

of the iterative implementation, as they are also used in purely recursive implementations.

The iterators can only be incremented after backtracking from a node, i.e., if it leads to a

dead end. Lines 22-24 implement the backtracking for dead ends. Resetting the distance in

line 24 is necessary since the pin-iterator on the previous layer still points to 𝑢. With the

reset, the check dist[v] = 𝑑 fails (𝑢 in current layer in the role of v in the previous layer), so

the iterator is incremented.

Theoretical Complexity and Running Time in Practice. Due to the backtracking the

DFS may take super-linear time (also on plain graphs). In particular, the backtracking after

flow augmentation (line 27) causes the search to reuse the path from the source up to the

lowest saturated arc. Recall the running time of O(𝑛2𝑚) of Dinitz algorithm on graphs, which

translates to O(min(𝑛,𝑚)2 · p) on hypergraphs. The graph bound stems from performing

at most 𝑛 repetitions of BFS and DFS, since each DFS increases the number of layers by at

least one in the next BFS, and the O(𝑛𝑚) time bound for DFS, which is due to reusing partial

paths. Note not (𝑛 +𝑚)2 for the hypergraph bound since min(𝑛,𝑚) is a bound on the layers

in our version. Let 𝑙 denote the number of layers. In the DFS, at most 𝑙 forward steps are

performed between either backtracking (eliminating the incoming arc) or saturating (and

thus eliminating) an arc from the layered network, which can happen at most𝑚 times. Flow
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Algorithm 7.3: Augment Flow (DFS)

1 stack.push(last piercing node)

2 while stack not empty do
3 𝑢 ← stack.top()
4 𝑑 ← dist[𝑢] + 1

5 𝑤 ← ⊥
6 for 𝑒 ∈ I(𝑢) starting at net-it[𝑢] do
7 if out-dist[𝑒] = 𝑑 and cap(𝑒) − 𝑓 (𝑒) + 𝑓 (𝑢, 𝑒)− > 0

8 for v ∈ 𝑒 starting at pin-it[𝑒] do
9 if dist[v] = 𝑑
10 𝑤 ← v
11 break
12 pin-it[𝑒]++
13 if 𝑤 = ⊥ and in-dist[𝑒] = 𝑑
14 for v ∈ 𝑒 with 𝑓 (v, 𝑒)+ > 0 starting at flow-sending-pin-it[𝑒] do
15 if dist[v] = 𝑑
16 𝑤 ← v
17 break
18 flow-sending-pin-it[𝑒]++
19 if 𝑤 ≠ ⊥
20 break
21 net-it[𝑢]++
22 if 𝑤 = ⊥
23 stack.pop()
24 dist[𝑢] ← ∞
25 else
26 if 𝑤 ∈ 𝑇
27 lowest-bottleneck← PushBottleneckCapacityAlongStack(stack)

28 stack.popDownTo(lowest-bottleneck)
29 else
30 stack.push(𝑤)

augmentation also costs O(𝑙) time, which thus proves the DFS bound. In practice, we often

observe just a constant number of repetitions, and the DFS behaves linearly in p , since the
instances often have low diameter. The running time shares are roughly 40% for BFS and

60% for DFS, though numbers vary across instances.
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7.4 Disconnected Hypergraphs
By default, FlowCutter only works on connected inputs, which is often a reasonable assump-

tion. However, out of the 488 hypergraphs in benchmark set A, 173 are disconnected, so we

cannot run plain FlowCutter on them. We could partition each component separately and

glue the solutions together, but we may get much smaller cuts if we split some components

unevenly. Often there are some small components that need not be cut, so partially this is

rather a packing problem.

For the refinement version, this is not so critical. We rarely observe disconnected inputs,

since even if the cut spans across multiple components, none of them are visited fully by the

BFSs, such that terminals are placed in them. This is because small components are already

packed together without cutting them in the input partition, because PaToH has an initial

partitioning heuristic tailored towards packing. However, for plain FlowCutter the issue

persists. In Section 7.7, we use this even with the refinement version, in Section 7.8 and 7.13

we do not, because it complicates the implementation.

An obvious approach for handling disconnected hypergraphs is connecting components

artifically. We refrained from this because a component which intersects neither the initial 𝑆

nor 𝑇 would become assimilated by only one side and thus could never be split. A similar

issue arises, if we instead permit adding piercing nodes from components without terminals.

The first side to add a terminal takes the entire component, since there is no opposite terminal.

Use Pareto Bipartitions. Instead, we exploit the fact that FlowCutter computes a series of

cuts with different trade-offs between cut and balance. We run the core algorithm on each

component up to 𝜀 = 0, and systematically try possible combinations from the Pareto sets of

each component. This can be stated as a generalization of subset sum. In the subset sum

problem we are given a multiset of positive integers 𝐴 = {𝑎1, . . . , 𝑎z }, the items, and a target

sum𝑊 , and want to know whether a subset of 𝐴 sums to𝑊 .

Subset Sum. Finding a bipartition with zero cut is equivalent to subset sum, where the

items are the sizes of the components and𝑊 is the minimum size of the smaller block. We

are interested in any subset summing to at least𝑊 . Let 𝐴 be sorted in increasing order

and let 𝑄 (𝑖, 𝑆) be a boolean variable, which is exactly if a subset of the first 𝑖 items sums

to 𝑆 . The standard pseudo-polynomial time dynamic program (DP) [CLRS01, Section 35.5]

for subset sum computes solutions for all possible target sums. It fills the DP table 𝑄 by

iterating through the items in increasing order and setting 𝑄 (𝑖, 𝑆) to true if 𝑄 (𝑖 − 1, 𝑆 − 𝑎𝑖 )
or 𝑄 (𝑖 − 1, 𝑆) is true. For filling row 𝑖 , only row 𝑖 − 1 is required, so the memory footprint is

not quadratic.

Splitting Cost Subset Sum. We now turn to non-zero cut bipartitions by allowing to

split items in different ways and associating costs with the splits. Let 𝐶1, . . . ,𝐶z denote the

decomposition into connected components. We have multiple bipartitions 𝑃𝑖 in the Pareto
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set on component𝐶𝑖 , at most one for every possible size of the smaller side, i.e., |𝑃𝑖 | ≤ |𝐶𝑖 |/2.
These correspond directly to the different ways we can split items. The associated cost is the

cut size.

We modify the standard subset sum DP to minimize the added cuts instead of finding any

subset. We ensure every item is split only one way in a solution. For each 𝐶𝑖 , we iterate

through the possible bipartitions in the Pareto set, and try the smaller and larger side of

the component bipartition for the smaller side of the global bipartition. The costs of the

possible global bipartitions are stored in the DP table, storing the best one for each possible

size of the smaller side 0, ..., 𝑛/2. The worst case asymptotic running time of this DP is

O(∑z
𝑖=1

∑𝑖−1

𝑗=1
|𝑃𝑖 | |𝑃 𝑗 |).

Optimizations. We propose some optimizations to make the approach faster in practice.

First we solve standard subset sum to check whether there is an 𝜀-balanced bipartition with

zero cut. This actually applies to eight hypergraphs in our benchmark set.

Our main optimization is what we call gap-filler. We find the largest 𝑔 ∈ N such that for

every 𝑥 ∈ [0, 𝑔] there are connected components, whose sizes sum to 𝑥 . Computing 𝑔 is

possible in O(𝑛) time. Let 𝐶1, . . . ,𝐶z be sorted by increasing size, which takes O(𝑛) time

using counting sort. Then 𝑔 =
∑𝑟−1

𝑗=1
|𝐶 𝑗 | for the smallest 𝑟 such that |𝐶𝑟 | > 1 +∑𝑟−1

𝑗=1
|𝐶 𝑗 |. It

is never beneficial to split the components 𝐶1, . . . ,𝐶𝑟−1.

For most hypergraphs in set A, we do not have to invoke the DP because we split only

the largest component due to the gap-filler optimization. For the hypergraphs on which

we do invoke the DP, its running time is negligible. Nonetheless, it is easy to construct a

worst case instance, where the quadratic running time is prohibitive. For a robust algorithm,

we propose to sample bipartitions from every 𝑃𝑖 so that the worst case running time falls

below some input threshold, though we stress that this has not been implemented in our

framework. The samples should include perfectly balanced bipartitions to guarantee that a

balanced partition on 𝐻 can be combined from those on 𝐻 [𝐶𝑖 ].

7.5 Isolated Vertices
In this section, we discuss an optimization particular to hypergraphs, with which we may

achieve a balanced bipartition earlier, which is important for both cut weight and running

time. A vertex v ∉ 𝑆 ∪𝑇 is called isolated if all of its incident nets have pins in both 𝑆 and

𝑇 . An isolated vertex can be moved without affecting the cut, because v ∉ 𝑆𝑟 ∪𝑇𝑟 (due to
flow maximality) and its incident nets remain in both the source- and sink-side cut over the

course of the algorithm. More precisely, at each bipartition, we can freely reassign them to

balance the bipartition as much as as possible. Solving this assignment problem optimally

constitutes a subset sum problem. With unweighted vertices, it is completely trivial and

comes at no additional cost, so we integrate this in the unweighted version [GHW19a].

The results are not as pronounced for the refinement as for plain FlowCutter, because nets

with pins in the initial 𝑆 and𝑇 are removed, and in the multilevel version they are negligible.
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For completeness sake, we still describe our approach for non-uniform vertex weights below,

since the multilevel version introduces non-uniform weights through coarsening, even for

uniform weight inputs. It is implemented in the code, and was used for initial experiments

with sequential KaHyPar [GHSW20], but disabled for the experiments in Section 7.8 as well

as Section 7.13, even though its running time was negligible during profiling.

Introducing non-uniform vertex weights makes the subset sum problem non-trivial, be-

cause arbitrary divisions of the total vertex weight are not necessarily possible. Since isolated

vertices remain isolated, the problem instances are incremental. To solve the problem, we use

the pseudo-polynomial DP for subset sum. It maintains a lookup table of partition weights

that are summable with isolated vertices. After obtaining a new bipartition, we update the

DP table to incorporate potential new isolated vertices. For each new isolated vertex v , we
iterate over the subset sums 𝑥 in the table and insert 𝑐 (v) + 𝑥 if it was not yet a subset sum.

As an optimization, we maintain a list of ranges that are summable (consecutive entries).

The balance check takes constant time per range. To merge ranges efficiently, we store

a pointer from each DP table entry to its range in the list. When a new subset sum 𝑥 is

obtained, we check whether 𝑥 − 1 and 𝑥 + 1 are also subset sums, and extend or merge ranges

as appropriate. Since entries in the DP table cannot be reverted easily, we do not add isolated

vertices to the DP after the first balanced partition is found (improve balance by piercing as

long as no augmenting path is created).

7.6 Repetition Interleaving

To improve solution quality, one can perform multiple randomized repetitions of FlowCutter

and take the minimum cut. Recall that the running time of one repetition is O(𝜁𝑚), where 𝜁
is the final cut size. If the repetitions are run one after another, the running time depends

on the worst of the found cuts. Instead, Hamann and Strasser [HS18a] propose to run them

simultaneously, such that the overall running time depends on the best found cut. We should

interleave the executions by always running the repetition with the currently smallest flow

value. In their implementation
1
, the execution only yields once a cut is found. This breaks

the claimed running time because the final cut of the current execution may be larger than

the final overall cut. Instead, we invest O(𝑚) work for flow augmentation and then yield, to

resume the instance with the smallest flow value. In the context of road networks, this small

detail does not matter since incremental cut sizes often differ by only one and the different

executions find similar cut sizes. However for our hypergraph instances these assumptions

are wrong and it makes a noticeable difference.

1https://github.com/kit-algo/flow-cutter/blob/master/flow_cutter.h#L649

https://github.com/kit-algo/flow-cutter/blob/master/flow_cutter.h#L649
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Table 7.1: Average and quantile speedups of the hybrid and interleaved execution strategies

over consecutive execution.

gmean min 0.1 0.25 median 0.75 0.9 max

hybrid 1.46 0.4 0.96 1.07 1.29 1.55 2.57 49.66

interleaved 1.61 0.55 1.0 1.14 1.38 1.74 2.66 175.47

7.7 2-way Flat Experiments

We now turn to the first set of experiments stemming from the first paper [GHW19a] on

flow-based refinement. We evaluate our flow-based refinement with FlowCutter using

PaToH as the initial partitioner. This algorithm is called ReBaHFC (for Refinement and

Balancing HyperFlowCutter). In addition we consider running plain FlowCutter (dubbed

HyperFlowCutter or HFC here) with random and ensemble terminal pairs.

The experiments are conducted on set A and a cluster of machines of type D. Each

partitioner in the evaluation is run five times (as opposed to the usual ten on set A) with

different random seeds, and we report the arithmetic mean cut in the plots. The code
2
is

restricted to 𝑘 = 2 and unweighted instances, which is why we present a second set of

experiments in the next section; for arbitrary 𝑘 , support for weights and integrated in the

multilevel partitioner KaHyPar.

We consider two imbalance values 𝜀 = 0.03 which is a commonly used default value

in the literature, and 𝜀 = 0, i.e., perfect balance. Plain FlowCutter is not even remotely

competitive on 𝜀 = 0.03, as opposed to results by Hamann and Strasser on the Walshaw

benchmark [HS18a]. Therefore, we also consider the perfectly balanced case 𝜀 = 0, where it

provides the best quality out of the tested algorithms.

7.7.1 Repetition Interleaving

Table 7.1 shows the average speedup and some quantiles when interleaving the execution

of 20 random terminal vertex pairs, instead of running them one after another; repeated

for 5 random seeds. Here plain HyperFlowCutter is run until 𝜀 = 0. Because consecutive

execution exhibits more memory locality, we also tested a hybrid strategy where the instance

with the currently smallest flow is allowed to make multiple progress iterations. Interleaving

outperforms consecutive execution by a factor of 1.61 in the geometric mean, a factor of 1.38

in the median, a factor of 2.66 on the 0.9 quantile, whereas the 0.1 quantile has a factor of 1.

This shows that saving work is more important than memory locality.

2github.com/kit-algo/HyperFlowCutter

github.com/kit-algo/HyperFlowCutter
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Table 7.2: Overview by hypergraph class, how often ReBaHFC improves the initial partition.

Algorithm 𝜀 all SPM Dual Primal Lit DAC VLSI

ReBaHFC-Q 0.00 37.3 39.8 47.4 23.9 33.0 66.0 34.4

ReBaHFC-D 0.00 49.2 58.4 59.8 27.4 41.3 58.0 47.8

ReBaHFC-Q 0.03 52.5 47.2 51.5 50.9 57.8 82.0 76.7

ReBaHFC-D 0.03 64.5 61.5 65.9 56.7 71.1 76.0 86.7

7.7.2 ReBaHFC versus PaToH
ReBaHFC Configuration. With ReBaHFC we use only one initial partition computed with

PaToH. The imbalance for the initial partition is set to the same value as the desired imbalance

𝜀 for the output partition, which proved superior to larger imbalances on initial partitions.

The block-size parameter 𝛽 should depend on 𝜀, so we settled on 𝛽 = 0.4 for 𝜀 = 0.03 and

𝛽 = 0.46 for 𝜀 = 0. In the technical report [GHW19b] we conduct a thorough parameter

study for these choices. We compute one initial partition and run five differently randomized

FlowCutter repetitions in interleaved fashion. This number seems to provide decent quality

without increasing running time too much. We consider two variants: ReBaHFC-D, which

uses PaToH with default preset and ReBaHFC-Q, which uses PaToH with quality preset.

Improvement over Initial Partition. Table 7.2 reports how often ReBaHFC improves

the initial partition, for the different hypergraph classes of the benchmark set. As expected,

ReBaHFC-Q could improve fewer solutions than ReBaHFC-D since the PaToH baseline is

already better. Furthermore, ReBaHFC has more opportunities for refinement with 𝜀 = 0.03,

in particular on the DAC and VLSI instances, whereas it struggles with the Primal and Literal

SAT instances for 𝜀 = 0.

Direct Comparison. In Figure 7.2 we show performance profiles with direct comparisons

between ReBaHFC and the corresponding PaToH version, as well as ReBaHFC-D versus

PaToH-Q for 𝜀 = 0.03. While ReBaHFC consistently improves upon its PaToH baseline,

ReBaHFC-D does not catch up to PaToH-Q in a direct comparison. If we take the minimum

cut out of the five seeds instead of the arithmetic mean, they achieve equal partition quality

(not shown). Note that the PaToH runs use different random seeds than the internal calls in

ReBaHFC, so it is possible for stand-alone PaToH to find smaller cuts. Otherwise, the curve

of ReBaHFC would start at 1.

7.7.3 Comparison for 𝜀 = 0.03

We now turn to the horse-race comparison for the default imbalance parameter 𝜀 = 0.03. As

plain FlowCutter is not competitive, we consider only ReBaHFC here. Since KaHyPar-HFC
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Figure 7.2: Direct solution quality comparison of ReBaHFC versus PaToH for 𝜀 = 0.03.
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Figure 7.3: Quality and running times of ReBaHFC and competitors on set A for 𝜀 = 0.03.
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did not exist yet, we consider the previous flow-based refinement KaHyPar-MF instead, as

this was the best KaHyPar version at the time.

The geometric mean running times are 0.5s for PaToH-D, 1.4s for ReBaHFC-D, 2.27s

for PaToH-Q, 3.1s for ReBaHFC-Q, 17.08s for KaHyPar-MF and 34.15s for hMetis-R. While

hMetis-R is the best algorithm regarding partition quality, contributing around 52% of the

best solutions, it is also the slowest, followed closely by KaHyPar-MF at 42%. There is a factor

3 gap in running time between ReBaHFC-D and its PaToH baseline, however there are some

instances where it is actually faster. These are instances where the DP for disconnected inputs

solves the instance with zero cut, or much smaller components are partitioned. The running

time gap between PaToH-Q and ReBaHFC-Q is smaller, because there is less opportunity

for refinement. FlowCutter reaches the flow bound from the initial partition faster (smaller

cut than with PaToH-D) if it cannot improve the partition. Regarding partition quality,

ReBaHFC-D is situated between PaToH-D and PaToH-Q, whereas ReBaHFC-Q is between

PaToH-Q and KaHyPar-MF. Furthermore, we note that while hMetis-R is the top competitor

in the first segment [1.0, 1.1], it falls off in the second segment [1.1, 2.0], being overtaken by

PaToH-D at around 1.55, and by ReBaHFC-D at 1.4. This indicates that the worst solutions

by the other competitors are closer to the best than the worst of hMetis.

Looking at effectiveness tests in Figure 7.4, we see that ReBaHFC-D almost catches up to

KaHyPar-MF, and ReBaHFC-Q is actually better. We see a similar picture for hMetis-R and

ReBaHFC-Q except the gap is slightly larger due to hMetis being less robust. Furthermore,

ReBaHFC-D overtakes hMetis already at the 1.05 factor. Lastly, PaToH-Q narrowly beats

ReBaHFC-D in effectiveness tests, indicating that V-cycles are stronger than flow-based

refinement in the medium quality tier, whereas ReBaHFC-Q narrowly beats PaToH-Q.

7.7.4 Perfect Balance

Even though the setting 𝜀 = 0 has received no attention in hypergraph partitioning and

only some attention in graph partitioning [SS13, MMS09, CBM07, BH10, BH11a, BH11b,

DW12], we consider it here. Previous studies on perfectly balanced partitioning for graphs

have focused on running time intensive metaheuristics such as evolutionary algorithms

[SS13, BH11a, BH10] or tabu search [BH11b] and even an exact branch-and-bound algo-

rithm [DW12]. Therefore, we include KaHyPar-EVO [ASS18c], the evolutionary algorithm of

KaHyPar as well as plain HyperFlowCutter in addition to the already considered algorithms.

While we report results for hMetis, we note that it rejects 𝜀 < 0.002 for bipartitions as input.

We run it with 𝜀 = 0.002 but it is therefore often unable to compute balanced partitions.

Plain HyperFlowCutter Configuration. With plain HyperFlowCutter we want to push

the envelope on solution quality for 𝜀 = 0. We do this regardless of running time because

ReBaHFC already provides a good time-quality trade-off. Therefore we use up to 𝑞 =

100 terminal pairs, the maximum value used for the graph variant [HS18a], and call this

configuration HFC-100. Based on experiments in the technical report [GHW19b], we use 3
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Figure 7.4: Effectiveness tests with virtual instances on benchmark set A, comparing Re-

BaHFC with KaHyPar-MF, hMetis-R and PaToH-Q for 𝜀 = 0.03.

ensemble terminal pairs and 97 random vertex pairs. For the ensemble terminals we compute

10 bipartitions with PaToH-D. The reported running time always includes the time for these

runs.
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On 42 of the 488 hypergraphs, plain HyperFlowCutter with 100 terminal pairs exceeds

the eight hour time limit. One downside of interleaving executions is that the solution is

only available once all terminal pairs have been processed. Instead of interleaving all 100

executions, we run four waves of ⟨1, 5, 14, 80⟩ terminal pairs consecutively and interleave

execution within waves. An improved bipartition is available after every wave, so that,

even if the time limit is exceeded, a solution is available as long as the first wave has been

completed. We chose wave sizes, so that completing waves four and three corresponds to

100 and 20 terminal pairs, respectively, as these values were used in [HS18a]. The first wave

consists of the first ensemble terminal pair, the second/third wave consist of 5/14 random

terminal pairs and the fourth wave consists of 78 random plus two ensemble terminals. There

are 438 hypergraphs for which the fourth wave finishes, 35 for which the third but not the

fourth wave finishes, 6 for the second, 1 for the first. Furthermore, there are 8 hypergraphs

which are partitioned with zero cut, using just the subset sum preprocessing.

Evolutionary KaHyPar Configuration. The evolutionary algorithm KaHyPar-EVO gen-

erates, manages and improves a pool of solutions until a time limit is exceeded, and outputs

the minimum cut out of all generated solutions. We set the instance-wise time limit to the

maximum of the running times of HFC-100 and KaHyPar-MF to evaluate whether KaHyPar-

EVO can yield better solution quality when given the same running time as HFC-100. As

opposed to the original paper, we configure KaHyPar-EVO to use flow-based refinement,

which further improves solution quality. KaHyPar-MF is unable to find any balanced bipar-

tition on 4 hypergraphs, whereas KaHyPar-EVO always finds one, as the latter computes

multiple solutions. Furthermore, KaHyPar-MF exceeds the time limit on 7 hypergraphs and

KaHyPar-EVO on an additional 17, without reporting intermediate solutions.

Horse-Race Comparison. Figure 7.5 shows the relative running times and performance

profiles of all tested algorithms. HFC-100 produces the best solutions on 244 hypergraphs

(50%), followed by ReBaHFC-Q (142). This shows that with exorbitant running time, HFC-100

produces high quality solutions for 𝜀 = 0. However the time-quality trade-off is clearly in

favor of ReBaHFC-Q, especially since the solution quality of the latter is closer to the best

cut for the instances on which it does not find the best cut, as opposed to HFC-100. Both

KaHyPar and KaHyPar-EVO do not perform well, reaching the 50% instance marker only at a

factor 2. PaToH is better than KaHyPar for 𝜀 = 0 because it includes a KL [KL70] refinement

pass as opposed to KaHyPar which only uses FM [FM82]. Lastly, hMetis-R finds perfectly

balanced partitions on only 30% of the instances, out of which it however contributes 13% of

the best partitions.

The geometric mean running times are 35.29s for hMetis-R, 7.58s for KaHyPar-MF, 850.16s

for KaHyPar-EVO, 714.51s for HFC-100, 0.52s for PaToH-D, 0.67s for ReBaHFC-D, 2.36s for

PaToH-Q, and 2.4s for ReBaHFC-Q. Noticeably the running time gap between PaToH-D and

ReBaHFC-D is much smaller than for 𝜀 = 0.03. This is partially because we used a different

block-size parameter 𝛼 , and partially because there is less opportunity for refinement.
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Figure 7.5: Quality and running times of ReBaHFC and competitors on set A for 𝜀 = 0.0

7.8 k-way Multilevel Experiments

Algorithm 7.4: 𝑘-way Flow-Based Refinement

Input: Hypergraph 𝐻 = (𝑉 , 𝐸, 𝑐, 𝜔), 𝑘-way partition Π of 𝐻

1 Q← ConstructQuotientGraph(𝐻,Π)
2 while improvement found do
3 for (𝑉𝑖 ,𝑉𝑗 ) ∈ Q with 𝑉𝑖 ,𝑉𝑗 active do
4 𝐵 ≔ 𝐵𝑖 ∪ 𝐵 𝑗 ← GrowRegion(𝐻,𝑉𝑖 ,𝑉𝑗 ) // 𝐵𝑖 ⊆ 𝑉𝑖 , 𝐵 𝑗 ⊆ 𝑉𝑗

5 (N , 𝑠, 𝑡) ← ConstructFlowHypergraph(𝐻, 𝐵)
6 (𝑀,Δgain) ← FlowCutterRefinement(N , 𝑠, 𝑡)
7 if Δgain ≥ 0

8 ApplyMoves(𝐻,Π, 𝑀)
9 mark 𝑉𝑖 ,𝑉𝑗 as active

In our second paper on flow-based refinement [GHSW20], we integrated refinement with

FlowCutter into KaHyPar. The novelty is that we must now support weighted inputs. To

refine 𝑘-way partitions we use the active block scheduling of Sanders and Schulz [SS11] as

already implemented in KaHyPar-MF [HSS19] and outlined in Algorithm 7.4. The algorithm

is organized in multiple rounds, in which the blocks that contributed to an improvement in

the previous round are scheduled for pair-wise refinement.

In the evaluation presented in this section, we consider two configurations KaHyPar-

HFC and KaHyPar-HFC-Eco, which differ in the way the size constraints for the movable

vertices are chosen. KaHyPar-HFC uses the same method as KaHyPar-MF (confer Section 7.2),
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Figure 7.6: Partition quality of KaHyPar-HFC and KaHyPar-HFC-Eco versus KaHyPar-MF.
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Figure 7.7: Running time per pin spent in the different phases of KaHyPar variants with

flow-based refinement.

whereas KaHyPar-HFC-Eco uses the method of ReBaHFC. Note that the terminology differs

from the paper, but the slower KaHyPar-MF rule has emerged as the default configuration,

and is used in later experiments in this chapter. As in the previous section we use a cluster of

machines of type D, 𝜀 = 0.03, 8 hours timelimit and benchmark set A, but consider different

values of 𝑘 ∈ {2, 4, 8, 16, 32, 64, 128} now and run 10 repetitions with different seeds (the

usual setup for set A).

Comparison with KaHyPar-MF. KaHyPar-HFC-Eco computes solutions with better,

equal, or worse quality than KaHyPar-MF on 1933, 367, 1056 instances, respectively. On the

remaining 60 instances neither finished within the time limit. As Figure 7.6 (right) shows,

the performance ratios are consistently better, though not by a large margin.
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Figure 7.8: Partition quality and running time of KaHyPar-HFC and competitors on set A

for 𝜀 = 0.03.

The median of the flow-based refinement time ratios (KaHyPar-HFC-Eco divided by

KaHyPar-MF) is 0.18, the 75th percentile is 0.26, and the 90th percentile is 0.51. Hence, the

flow-based refinement of KaHyPar-HFC-Eco is significantly faster than that of KaHyPar-MF.

As a rough estimate, flow-based refinement constitutes about 40% of KaHyPar-MF’s overall

running time [HSS19]. With a geometric mean running time of 44.84s, KaHyPar-HFC-Eco is

about 33% faster than KaHyPar-MF at 67.07s. The improved running time is partially due to

faster flow computation and partially due to smaller flow hypergraphs. Since KaHyPar-HFC-

Eco uses smaller flow hypergraphs, the improved solution quality can be attributed to using

FlowCutter in the refinement.

With 62.49s, KaHyPar-HFC is moderately faster than KaHyPar-MF and computes solutions

of better, equal, or worse quality on 2776, 381, 198 instances, respectively (with 61 instances

on which neither finished within the time limit). The partition quality of KaHyPar-HFC is

thus clearly better. The flow hypergraphs have the same maximum size in these two variants.

Hence, the faster flow computation more than compensates the additional work incurred by

FlowCutter refinement.

Figure 7.7 shows box plots for the different phases of KaHyPar. The running times

of preprocessing, coarsening, and initial partitioning remain unchanged, as they are not

influenced by the refinement phase. Local search and flow-based improvement both modify

the solution and thus influence one another. The plots show that the running time of local

search remains largely unchanged, while our variants substantially reduce the running time

of flow-based refinement. For the Eco variant, flow-based refinement even becomes faster

than local search.
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Table 7.3:Overview of geometric mean running times and number of instances with timeouts,

errors, or imbalanced partitions.

KaHyPar-HFC KaHyPar-HFC-Eco KaHyPar-MF hMetis-R hMetis-K

gmean time (s) 62.49 44.84 67.07 96.55 73.65

timeouts 75 66 63 63 27

imbalanced 0 0 0 0 484

error 0 0 0 0 0

PaToH-Q PaToH-D Zoltan-AlgD Mondriaan HYPE

gmean time (s) 7.48 1.47 107.60 6.44 1.03

timeouts 0 0 12 19 0

imbalanced 0 0 99 3 0

error 0 0 0 4 1

Full Comparison. We now compare the three KaHyPar variants with other state-of-the-art

algorithms. In contrast to previous chapters, we add hMetis-K [KK00], Mondriaan [VB05],

Zoltan-AlgD [SCS19a] and HYPE [May+18], as they were still included in the experimental

setup for this paper. In later papers they were excluded to focus on a smaller set of non-

dominated competitors. As HYPE produces substantially worse partitions when randomized,

we report only the results of one non-randomized run.

Figure 7.8 (left) shows that KaHyPar-HFC outperforms all competing algorithms in terms

of partition quality, and that hMetis-R emerges as the best competitor outside the KaHyPar

variants. KaHyPar-HFC computes the best solutions on 63% of all instances, KaHyPar-HFC-

Eco on 14%, and hMetis-R on 18%, as shown by their 𝜌𝑎 (1) values.
Recall that these values alone do not permit a ranking between the algorithms. Both

KaHyPar-MF and KaHyPar-HFC-Eco compete with KaHyPar-HFC for the best solutions on

similar instances, and thus end up with a lower 𝜌𝑎 (1) value. Compared individually, KaHyPar-

HFC-Eco is better than hMetis-R on 69.9% of the instances. Additionally, KaHyPar-HFC-Eco

and KaHyPar-MF approach the profile of KaHyPar-HFC much faster.

The KaHyPar variants are all within a factor of 1.1 of the best solution on over 90% of the

instances, and within 1.4 on over 97%, whereas hMetis-R achieves 76% and 90%. PaToH-Q

and PaToH-D solve more instances than hMetis-R within factors of roughly 1.2 and 1.4, and

more instances than hMetis-K within 1.1 and 1.2. Mondriaan is similar to PaToH-D and

Zoltan-AlgD settles between PaToH-D and PaToH-Q. The only non-multilevel algorithm

HYPE is considerably worse, with only 5.7% of solutions within a factor 2 of the best.

Figure 7.8 (right) shows relative running times for each instance. We categorize the

algorithms into two groups. Algorithms in the first group, consisting of KaHyPar, hMetis and

Zoltan-AlgD, invest substantial running time to aim for high-quality solutions. On the other

hand, PaToH, Mondriaan and HYPE aim for fast running time and reasonable solution quality.

The results show that while PaToH gives the best time-quality trade-off, KaHyPar-HFC is
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the best algorithm for high-quality solutions, whereas KaHyPar-HFC-Eco offers the best

time-quality trade-off in the first group. The geometric mean running times can be found in

Table 7.3, which match the ranking suggested by the running time plot.

Failed Runs. The table additionally contains statistics on timeouts, imbalanced solutions

(all seeds yielded an imbalanced partition), and errors. On one instance, HYPE output an

infeasible objective value. Mondriaan reported a not further classified error on 4 instances.

Regarding infeasible solutions, hMetis-K computes imbalanced partitions on 484 instances,

Zoltan-AlgD on 99 and Mondriaan on 3 instances. To the best of our understanding, the

hMetis-K paper [KK00] does not mention a constraint or penalty on maximum vertex weights

during coarsening. Heavy vertices make it difficult for initial partitioning to find balanced

partitions, which could be a possible explanation for these effects.

In a rerun of one seed of the experiments, where we disabled some expensive timing

measurements, KaHyPar-HFC only times out on 60 instances and KaHyPar-HFC-Eco on 57.

On the instances that still time out, initial partitioning often dominates the running time.

This can be solved by implementing techniques to sparsify the coarsest hypergraph.

7.9 Parallel Push-Relabel on Hypergraphs
When developing Mt-KaHyPar, we set out to parallelize all of the powerful techniques in

sequential KaHyPar. FlowCutter refinement is certainly the most powerful among the refine-

ment techniques. We see two avenues for parallelization: scheduling two-way refinement on

independent block pairs, and plugging a parallel maximum flow algorithm into FlowCutter.

The scheduling is more straight-forward, so we focus on parallel maximum flow first.

Maximum flow algorithms are notoriously difficult to parallelize efficiently [SV82, BBS15,

AS95, KÖ19] and often achieve only mediocre speedups. Push-relabel algorithms are the most

amenable to parallelization [AS95, KÖ19, BBS15]. The synchronous push-relabel approach

of Baumstark et al. [BBS15] is a recent algorithm that sticks closely to the sequential FIFO

algorithm and thus exhibits good results. We pick their algorithm, since it does not seem to

do much more work than the sequential algorithm, whereas asynchronous push-relabel can

exhibit substantially more work when run with more threads [BBS15].

There is prior work by Lillis and Cheng [LLC95] on a push-relabel algorithm directly on

the hypergraph, but it constructs all paths to push from a vertex 𝑢 to another vertex v with
a nested loop over the incident nets and then over the pins. This takes quadratic time in

the net sizes and is thus impractical. For push-relabel it turns out that an on-hypergraph

implementation is better than the Lawler expansion, but as opposed to Dinitz, it is better to

intermediately push to nets instead of directly between vertices.

In the following, we first outline the synchronous algorithm on graphs, then describe a

so far undocumented bug followed by our fix, and conclude with implementation details

and intricacies of using FlowCutter with preflows. In this section the variable 𝑛 is used for

the number of nodes in the flow network, which is |𝑉 | + 2|𝐸 | for the Lawler network of a
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hypergraph 𝐻 = (𝑉 , 𝐸). For the majority of this section, we assume the perspective of plain

graphs again, since the results carry over to hypergraphs via the Lawler network. Only in the

sections on the efficient implementation, where we describe pseudocode and optimizations,

we consider hypergraph specifics again.

7.9.1 Synchronous Parallel Push-Relabel

Algorithm 7.5: Synchronous Push Relabel Outline

1 active, next-active← ∅
2 SaturateSourceArcs() // add nodes with exc(v) > 0 and 𝑑 (v) < 𝑛 to next-active
3 while next-active not empty do
4 swap active and next-active
5 if work exceeds threshold

6 GlobalRelabeling()

7 work← 0

8 next-active← ∅
9 for 𝑢 ∈ active do in parallel // aggregate work performed with reduction
10 Discharge(𝑢) // add pushed to nodes to next-active
11 for 𝑢 ∈ active do in parallel
12 𝑑 (𝑢) ← 𝑑 ′ (𝑢)
13 exc(𝑢) += exc

′ (𝑢)
14 exc

′ (𝑢) ← 0

15 for 𝑢 ∈ next-active do in parallel
16 exc(𝑢) += exc

′ (𝑢)
17 exc

′ (𝑢) ← 0

Recall that an active node is a node v with exc(v) > 0. Let 𝑒 = (v, 𝑤) be an arc of v .
If cap(𝑒) − 𝑓 (𝑒) > 0 and 𝑑 (v) = 𝑑 (𝑤) + 1, the arc is called admissible. The discharging

operation repeatedly scans all arcs of an active node, pushing the maximum residual capacity

on admissible arcs. After a scan, no admissible arcs are left, so the node is relabeled.

The synchronous parallel algorithm proceeds in rounds in which all active nodes are

discharged in parallel. Algorithm 7.5 shows an outline. The flow is updated globally, but

relabels and excess differences are hidden until the end of the round. More precisely, we

maintain a second array 𝑑 ′ with new distance labels and a second array exc
′
in which excess

differences are aggregated using atomic fetch-and-add. There is no synchronization for 𝑑 ′

because a node is only relabeled by one thread. After all nodes have been discharged, the

distance labels 𝑑 are updated to the local labels 𝑑 ′ (see line 12) and the excess deltas are

applied (see line 13 and 16). The discharging operations thus use the labels and excesses

from the previous round. The distance condition in the admissibility definition becomes
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Figure 7.9: A conflict in the parallel discharge routine (adapted from Ref. [KÖ19]). The

numbers on the arcs denote their residual capacities.

𝑑 ′ (v) = 𝑑 (𝑤) + 1, i.e., use the fresh label for the discharged node, but the old label for the

target. We discuss more details on the discharging routine later.

Discharging rounds are repeated until there are no nodes with exc(v) > 0 and 𝑑 (v) < 𝑛
left, at which point a minimum cut is available. The rounds are interleaved with global

relabeling [CG97], after linear push and relabel work (line 6), using parallel reverse BFS, but

no gap-relabeling heuristic is employed [CG97].

There is a race condition on the flow value of an arc, if both of its endpoints are active. To

avoid concurrently pushing in both directions, a deterministic winning criterion on the old

distance labels 𝑑 is used to determine which direction to push, if both nodes are active. If

𝑑 (v) < 𝑑 (𝑤) − 1 or 𝑑 (v) = 𝑑 (𝑤) + 1 or v < 𝑤, then v wins the comparison and is allowed to

push on (v, 𝑤), whereas 𝑤 is not allowed to push on (𝑤, v). The condition v < 𝑤 is used as

tie-breaker for the case 𝑑 (v) = 𝑑 (𝑤). The intention behind this criterion is that one node

may be relabeled past the other, to ensure progress. If an arc (v, 𝑤) cannot be pushed due

to the criterion, the discharge terminates after the current scan. In this case v still has an
outgoing admissible arc, and thus may not be relabeled in this round, and there are no further

admissible arcs left to push.

7.9.2 A Bug in the Synchronous Algorithm
Unfortunately, there is a still a bug in the above algorithm. The parallel discharge routine does

not protect against push-relabel conflicts [KÖ19] as illustrated in Figure 7.9. In particular the

winning criterion does not help. A node𝑢 may be relabeled too high if it concurrently receives

flow from a residual arc (v, 𝑢) with 𝑑 ′ (v) = 𝑑 (𝑢) + 1. The arc (𝑢, v) may not be observed

as residual yet, and thus 𝑢 may set its new label 𝑑 ′ (𝑢) > 𝑑 ′ (v) + 1, violating correctness of

the distance labels. We noticed the bug when the algorithm terminated prematurely with

non-maximal flow, even though all excess nodes had label > 𝑛.

Our fix is to collect mislabeled excess nodes during global relabeling. The global relabeling

repairs the wrong distance labels. A node is mislabeled, if it is visited by the relabeling BFS,

has excess and was not added to the active nodes for the next discharging round. When the
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regular termination criterion is triggered, we run global relabeling, and restart the main loop

if new active nodes are found.

The additional work is already accounted for, because we need to extract the sink-side

cut anyways. Hence, we already set the markers for the sink-side when running this extra

global relabeling, since we presume that we can terminate most likely. In practice, this bug

occurs very rarely (which makes it hard to find), and in fact none of the termination check

relabel runs find new active nodes, because they are already found during regular runs,

which justifies our presumption.

We also consider a second independent fix where we prevent nodes from being pushed to

after being relabeled, or from being relabeled after being pushed to; whichever comes first.

We implement this with an atomic compare-and-swap on a state variable for the node. The

compare-and-swap must succeed before either operation is allowed to execute. The possible

states are not modified, relabeled, or pushed. We reset the states in the update loop for levels

and excess values. Note that relabeled nodes may be relabeled again, and nodes that were

pushed to may be pushed to again, just not the other operation.

We use the first fix, but investigate the difference between these two approaches in

Section 7.11, showing that on our instances, there is no difference in performance. As

mentioned, the bug occurs rarely, which explains this result.

7.9.3 Optimizations
In this section we discuss two optimizations that substantially improve performance on our

instances in practice. The first is particular to hypergraphs and relevant in both sequential

and parallel settings, whereas the second is also relevant for plain graphs but is presumably

much more important for the parallel setting than the sequential.

Restricting Capacities. Recall that only bridge arcs (𝑒in, 𝑒out) have finite capacity (𝜔 (𝑒))
in the Lawler network. Since (𝑒in, 𝑒out) is the only outgoing arc of 𝑒in with non-zero capacity,

the flow (but not preflow) on arcs (𝑢, 𝑒in) is also bounded by 𝜔 (𝑒). Adding these capacities
during the preflow stage is a trivial optimization, but it reduces running time for one flow

computation on our largest instance from over two hours to 14 seconds, when using 16 cores!

That is an improvement by a factor of more than 500. It also boosts the available parallel

work, since hypernodes are not immediately relieved of all their excess.

Without this optimization the minimum cut contains only bridge arcs. Now it may contain

arcs of the form (𝑢, 𝑒in). This matters when tracking cut hyperedges (for collecting piercing

candidates), which are detected by checking if 𝑒in and 𝑒out are on different sides. Therefore,

we do not check this capacity and thus visit 𝑒in nodes during the forward residual BFSs to

derive the source-side cut.

Avoid Pushing Flow Back. Once the correct flow value is found, the algorithm could

terminate in theory. This is often achieved in very few discharging rounds (< 1%). At this
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point the full amount of flow has reached the sink, the cut is saturated, but there is still excess

that can be pushed back. Furthermore, we observed that the number of active nodes roughly

follows a power law distribution: many active nodes in the beginning, decreasing rapidly

until only a few active nodes remain in later rounds. This limits the available parallelism,

which is why we would like to terminate in as few rounds as possible.

We terminate once all nodes with exc(𝑢) > 0 have 𝑑 (𝑢) ≥ 𝑛, which is most often detected

by global relabeling. At this stage only little work is performed per round, and thus it takes

many rounds to trigger global relabeling. We perform additional relabeling, if the flow value

has not changed for some rounds (500), and only few active nodes (< 1500) were available

in each. In case we were wrong and have to continue pushing flow, we do not perform the

additional relabeling again. work is still performed.

7.9.4 Intricacies with Preflows and FlowCutter

In this section, we discuss (some unexpected) challenges we faced during the implementation

that arose from using FlowCutter with preflows. The major difference to actual flows is that

there are nodes with positive excess left.

Source-Side Cut. A maximum preflow only yields a sink-side cut via the reverse residual

BFS, but we also need the source-side cut. We can run flow decomposition [CG97] to push

excess back to the source, to obtain an actual flow. However, flow decomposition is difficult

to parallelize [BBS15]. Instead, we initialize the forward residual BFS with all non-sink excess

nodes. This finds the reverse paths that carry flow from the source to the excess nodes,

which is what we need.

Sink-Side Piercing. When transforming a node with positive excess to a sink, its excess

must be added to the flow value. This only happens when piercing, as sink-side nodes have

no excess, if they are not sinks yet.

Maintain Distance Labels. Between two consecutive flow computations, we want to

reuse the distance labels to avoid re-initialization overheads. However, as the labels are a

lower bound on the distance from the sink, piercing on the sink side invalidates the labels.

Additionally, no new excess nodes are created. In this case, we run global relabeling to fix

the labels and collect the existing excess nodes, before starting the main discharge loop.

When piercing on the source side the labels remain valid and new excesses are created by

saturating the arcs of the new sources. The new excesses are added to the active nodes and

we do not run an additional global relabeling. The existing excess nodes are collected during

regular global relabel runs; at the latest for the termination check.
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7.9.5 Hypergraph Implementation
In this section, we discuss the on-hypergraph implementation of parallel push-relabel, fo-

cusing on the discharging routines. We implement three separate discharging routines for

in-nodes, out-nodes and hypernodes since they differ in the way residual capacities are cal-

culated, dispatching to the correct one in the loop over active nodes (line 10, Algorithm 7.5).

As opposed to the Dinitz implementation, we have to store in-nodes and out-nodes as actual

entities in the data structures, since push and relabel are local operations.

Algorithm 7.6: TryPush
Input: Arc (𝑢, v), residual capacity Δ, excess 𝑔, potential new level 𝑙 , skipped

1 if Δ > 0

2 if 𝑑 ′ (𝑢) = 𝑑 (v) + 1

3 win← 𝑑 (𝑢) = 𝑑 (v) + 1 or 𝑑 (𝑢) < 𝑑 (v) − 1 or (𝑑 (𝑢) = 𝑑 (v) and 𝑢 < v)
4 if exc(v) > 0 and not win // only check if v is active
5 skipped← true

6 else
7 next-active.tryAdd(v) // deduplicate
8 𝑔 −= Δ
9 exc

′ (v) +=
atomic

Δ

10 return true

11 else if 𝑑 ′ (𝑢) ≤ 𝑑 (v)
12 𝑙 ← min(𝑙, 𝑑 (v))
13 return false

For hypernodes (Algorithm 7.7), we iterate over the incident nets and try to push flow to

the corresponding in-nodes (line 6) and out-nodes (line 12). For in-nodes (Algorithm 7.8)

and out-nodes (Algorithm 7.9), we iterate over the pins of the net and try to push to them

(line 10 and 6 respectively), as well as over the bridge arc (line 5 and 10 respectively). We

make a local copy 𝑔 of the excess of the discharged node (line 1), so we can use the exc(𝑢)
values to detect if a node is active, as they are not modified during the round. Updates to the

excess are applied to exc
′ (𝑢) at the end of each discharge (line 19 for Algorithm 7.7, omitted

for the others), which are then applied to exc after all active nodes have been discharged.

Note again that in the discharging routines 𝑛 = |𝑉 | + 2|𝐸 | denotes the number of nodes in

the Lawler network, not |𝑉 |.
Algorithm 7.6 shows the TryPush routine that is run on each outgoing arc. It takes the

amount Δ to be pushed (residual capacity), the origin node 𝑢 and target node v , and returns

whether the push is successful (distances fit, Δ > 0 and arc is won). If Δ > 0 but the distances

do not fit (line 11,12), we record the label of v as a candidate for relabeling. If the distances
do fit (line 2), v is active and the arc is not won (line 3,4), we cannot push on it. Thus, we

record that the arc is skipped, such that we terminate the discharge after the current scan.
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Algorithm 7.7: Discharge Hypernode
Input: Hypernode 𝑢

1 𝑔← exc(𝑢), 𝑛 ← |𝑉 | + 2|𝐸 |, skipped← false

2 while 𝑔 > 0 and 𝑑 ′ (𝑢) < 𝑛 and not skipped do
3 𝑙 ← 𝑛

4 for 𝑒 ∈ I(𝑢) do
5 Δ = min(𝑔, cap(𝑒) − 𝑓 (𝑢, 𝑒𝑖 )) // restricted capacity optimization
6 if TryPush((𝑢, 𝑒𝑖 ),Δ, 𝑔, 𝑙,skipped)
7 𝑓 (𝑢, 𝑒𝑖 ) += Δ
8 if 𝑔 = 0 break
9 if 𝑔 = 0 break

10 for 𝑒 ∈ I(𝑢) do
11 Δ = 𝑓 (𝑒𝑜 , 𝑢) // exc(𝑢) ≥ 𝑓 (𝑒𝑜 , 𝑢)
12 if TryPush((𝑢, 𝑒𝑜 ),Δ, 𝑔, 𝑙,skipped)
13 𝑓 (𝑒𝑜 , 𝑢) −= Δ // push back to out-node
14 if 𝑔 = 0 break
15 if 𝑔 > 0 and not skipped // relabel
16 𝑑 ′ (𝑢) ← 𝑙 + 1

17 if 𝑔 > 0 and 𝑑 ′ (𝑢) < 𝑛
18 next-active.tryAdd(𝑢)
19 exc

′ (𝑢) −=
atomic

(exc(𝑢) − 𝑔)

Algorithm 7.8: Discharge In-Node
Input: Net 𝑒

1 𝑔← exc(𝑒𝑖 ), 𝑛 ← |𝑉 | + 2|𝐸 |, skipped← false

2 while 𝑔 > 0 and 𝑑 ′ (𝑒𝑖 ) < 𝑛 and not skipped do
3 𝑙 ← 𝑛

4 Δ𝑏 ← min(𝑔, cap(𝑒) − 𝑓 (𝑒𝑖 , 𝑒𝑜 )
5 if TryPush((𝑒𝑖 , 𝑒𝑜 ),Δ, 𝑔, 𝑙,skipped)
6 𝑓 (𝑒𝑖 , 𝑒𝑜 ) += Δ𝑏

7 if 𝑔 = 0 break
8 for v ∈ 𝑒 do
9 Δ = 𝑓 (v, 𝑒𝑖 )

10 if TryPush((𝑒𝑖 , v),Δ, 𝑔, 𝑙,skipped)
11 𝑓 (v, 𝑒𝑖 ) −= Δ
12 if 𝑔 = 0 break
13 if 𝑔 > 0 and not skipped // relabel
14 𝑑 ′ (𝑒𝑖 ) ← 𝑙 + 1

15 ...
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Algorithm 7.9: Discharge Out-Node
Input: Net 𝑒

1 𝑔← exc(𝑒𝑜 ), 𝑛 ← |𝑉 | + 2|𝐸 |, skipped← false

2 while 𝑔 > 0 and 𝑑 ′ (𝑒𝑜 ) < 𝑛 and not skipped do
3 𝑙 ← 𝑛

4 for v ∈ 𝑒 do
5 Δ = 𝑓 (𝑒𝑜 , v)
6 if TryPush((𝑒𝑜 , v),Δ, 𝑔, 𝑙,skipped)
7 𝑓 (𝑒𝑜 , v) += Δ
8 if 𝑔 = 0 break
9 Δ𝑏 ← min(𝑔, 𝑓 (𝑒𝑖 , 𝑒𝑜 ))

10 if TryPush((𝑒𝑜 , 𝑒𝑖 ),Δ, 𝑔, 𝑙,skipped)
11 𝑓 (𝑒𝑖 , 𝑒𝑜 ) −= Δ𝑏

12 if 𝑔 = 0 break
13 if 𝑔 > 0 and not skipped // relabel
14 𝑑 ′ (𝑒𝑜 ) ← 𝑙 + 1

15 ...

We have to terminate because we cannot relabel 𝑢, as the arc (𝑢, v) is admissible. In case of

success (line 6-10), we update the local excess copy 𝑔 of 𝑢, exc
′ (v) and add v to the active

nodes in the next round. To avoid duplicate insertion, we use atomically updated timestamps.

The flow value of the arc is updated outside the function since we store the flow only in one

direction, such that we either need to add or subtract Δ.
We store 𝑓 (𝑢, 𝑒𝑖 ), 𝑓 (𝑒𝑜 , 𝑢), 𝑓 (𝑒𝑖 , 𝑒𝑜 ), i.e., the values at the regular arcs of the Lawler network,

but not 𝑓 (𝑒𝑖 , 𝑢), 𝑓 (𝑢, 𝑒𝑜 ), 𝑓 (𝑒𝑜 , 𝑒𝑖 ) (the corresponding negatives) since we do not have the

arcs constructed in memory for pointers to their back-arcs. Instead, we have back-pointers at

pin-list entries pointing to the corresponding entry in the incident nets list of the pin. With

these, we can retrieve the required flow values 𝑓 (𝑢, 𝑒𝑖 ), 𝑓 (𝑒𝑜 , 𝑢) when discharging in-nodes

and out-nodes, respectively. For arcs of the form (𝑢, 𝑒𝑖 ), (𝑒𝑜 , 𝑢), (𝑒𝑖 , 𝑒𝑜 ) we add Δ, and for the

reverse arcs (𝑒𝑖 , 𝑢), (𝑢, 𝑒𝑜 ), (𝑒𝑜 , 𝑒𝑖 ) we subtract Δ, as can be seen in the discharging routines.

7.10 Bulk Piercing
In this section, we propose a simple optimization that enables FlowCutter to progress faster

towards a balanced bipartition by piercing more aggressively. This is important since the

incremental flow problems at later stages often lack good parallelism, since only little flow

is augmented. The proposed approach is rather brute force, but it works well enough in

practice. It can be seen as a hybrid between the rescaling in KaHyPar-MF [HSS19] and regular

piercing, transitioning carefully between them. Regarding partition quality, our experiments
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Figure 7.10: Effects of bulk piercing on partition quality and running time. Measured on

extracted flow hypergraphs of set B with 32 cores.

show there is no difference between regular piercing and the new bulk piercing, but bulk
piercing is substantially faster.

The performance of FlowCutter is much better than the O(𝜁𝑚) bound in practice, as

the first cut is often close to the final cut. Only few augmenting iterations are needed and

much less than O(𝑚) work is spent per flow unit [GHW19a], with most work spent on the

initial flow. Still, the flow augmented per iteration at later stages is often small: at most

the capacity of arcs incident to the piercing node. On large instances, we observed that the

number of required iterations also increases substantially, which further inhibits parallelism.

We accelerate convergence by piercing multiple nodes per iteration, but only if we cannot

avoid augmenting paths. This increases the amount of augmentation work per iteration

(good for parallelism) and reduces the number of iterations.

To ensure a poly-log iteration bound, we set a geometrically shrinking goal of weight to

add to each side per iteration. The initial goal for the source side is set to 𝛽 ( 𝑐 (𝑉 )
2
− 𝑐 (𝑆)),

and analogously the initial goal for the sink side is 𝛽 ( 𝑐 (𝑉 )
2
− 𝑐 (𝑇 )). The term 𝑐 (𝑉 )

2
− 𝑐 (𝑆)

is the weight to add for perfect balance. The parameter 𝛽 ∈ (0, 1) is a geometric shrinking

factor that is multiplied with the initial weight goal in each iteration. If a goal is not met,

its remainder is added to next iteration’s goal. More precisely, in the 𝑗-th iteration, we add

𝛽 𝑗 ( 𝑐 (𝑉 )
2
− 𝑐 (𝑆)) to the current weight goal.

We track the average weight added per node and from this estimate the number of piercing

nodes needed to match the current goal. To boost measurement accuracy, we pierce only

one node for the first few rounds, and then enable bulk piercing. The sides have distinct

measurements and goals, so that we do not pierce too aggressively when the smaller side

flips. This scheme (with 𝛽 = 0.55, and 5 regular iterations before bulk) reduces running time

on our largest instances from beyond two hours (time limit) to less than 10 minutes, when
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Figure 7.11: Speedups for flow computation with parallel push relabel on set B. On the left

is the variant that picks up mislabeled excess nodes during global relabeling. On the right is

the variant that blocks relabeled nodes from being pushed to and vice versa. The window

size for the rolling geometric means is set to 5.

run on a single core.

Figure 7.10 shows performance profiles of FlowCutter with and without bulk piercing, as

well as running times relative to bulk piercing. We constructed the instances by extracting

flow hypergraphs from bipartitions of the instances in set B. The measurements are done on

32 cores. We see no quality difference, but the bulk piercing version can solve two instances

that previously timed out, and is much faster on some instances that take very long with the

non-bulk version. The geometric mean running times are 1.38s with bulk piercing and 2.79s

without bulk piercing.

Additionally, if we can avoid augmenting paths, and assigning all 𝑉 \ (𝑆𝑟 ∪ 𝑇𝑟 ) to the

smaller side still keeps this side as the smaller one, we assign them all straight away. This

allows us to skip having to repeatedly step through the piercing and side-growing routines

(with startup overheads for parallel BFS), even though we will ultimately assign them all

anyways.

7.11 Flow Algorithm Experiments
Speedups. In Figure 7.11 we report speedups for the two parallel push-relabel variants, with

instances sorted by sequential time. The instances are the aforementioned extracted flow

hypergraphs. The algorithms differ in the way the discovered bug is addressed: ParPR-RL is

the variant that runs additional relabeling, ParPR-Block is the variant that blocks relabels or

pushes. Both variants achieve essentially the same speedups. With 2 and 4 cores near-perfect

speedups are recorded. With 8 cores the speedups are around 5-6 for the larger instances,

and similarly for 16 cores the speedups are around 8. With 32 and 64 cores we reach up to

16, but on the smaller instances we also observe slow-downs.
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Figure 7.12: Running time comparison of flow algorithms for plain flow computation on set

B. All algorithms were run sequentially.

Running Times. In Figure 7.12 we present running times relative to a sequential implemen-

tation of FIFO push-relabel, which uses a simple queue and does not need synchronization

mechanisms. In addition to the two parallel push-relabel variants (run on one core), we

consider an implementation of Dinitz, sequential push-relabel with the parallel queue data

structures, and a push-relabel variant directly on the Lawler network. We can see that the

Lawler variant is a factor 2-3 slower, i.e., the implementation directly on the hypergraph

is worth it, but the savings are not as drastic as they were for Dinitz. Dinitz is faster than

push-relabel on about
1

3
of the instances, and slower on about

2

3
. Furthermore, we see that

using the parallel data structures comes at a cost, though always below a factor 2. Finally,

the two parallel variants exhibit the same running time (their curves are almost identical).

We see that the synchronization mechanisms incur a further slowdown.

2-way FlowCutter Refinement Speedups. After looking at speedups for the flow al-

gorithms, we now look at a full execution of FlowCutter with ParPR-RL as parallel flow

algorithm, run on the same instances. With 2 and 4 cores we still observe near-perfect

speedups, but starting at 8 cores the speedups are not as good as the plain flow algorithm.

This is not surprising since even with bulk piercing, there are some iterations that only have

small flow augmentation work. Notably using 64 cores over 32 seems to incur a slow-down

except for 7 instances where we still reach a speedup of 16.
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Figure 7.13: Speedups for FlowCutter refinement on set B. The window size for the rolling

geometric means is set to 5.
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plotted per instance.

Running Time Shares. In Figure 7.14 we break the running time of FlowCutter refinement

down into its components: global relabeling, discharging, applying excess and level updates,

and saturating source nodes, which are part of the flow algorithm, as well as piercing, deriving

the source-side cut, and determining the smaller side and settling nodes (assimilate). Deriving

the sink-side cut is accounted for in the global relabeling time already. These measurements

were done on 32 cores of machine B on the extracted flow hypergraphs of set B.

Global relabeling accounts for the largest shares, which is partially a configuration choice

and partially a side effect of including the time to derive sink-side cuts. In preliminary

experiments we determined that global relabeling is the best way to accelerate the algorithm.

It was almost impossible to perform too much of it. As expected, discharging makes up the
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second largest share, followed by applying excess and level updates. Piercing and assimilating

are negligible, which shows that the bottleneck is indeed the flow algorithm.

7.12 Parallel Scheduling
So far, we have only parallelized the refinement on bipartitions, but for integration in a

𝑘-way partitioner such as Mt-KaHyPar, we need to schedule the 2-way flow refinement on

different block pairs. This is a much easier avenue for parallelization than the flow algorithm

since the different refinement calls are completely (or largely) independent. The goal is

thus to maximize the number of block pairs we can schedule at the same time, without

compromising partition quality.

A simple scheme would be to schedule non-overlapping block pairs in the quotient graph

Q in parallel, i.e., a maximal matching, in order to maximize the utilized parallelism. We

can either synchronize after one matching, construct a new one and restart, or dynamically

maintain it. This scheme ensures that the different refinements are completely independent

and do not interfere with one another. This means that all of the calculated gains are correct,

and no accidental balance violations can occur.

However, there are at most
𝑘
2
non-overlapping block pairs. At later stages the number

is much smaller even, since there are fewer active blocks or, in some cases, just a few hub

blocks and many low-degree blocks in Q. This restricts the available parallelism too much,

in particular for small 𝑘 . Therefore, we remove the restriction to non-overlapping block

pairs, but restrict the number of concurrent refinements to reduce the interference between

overlapping searches.

Apply Moves. Let 𝑀 = {(𝑢, 𝑠, 𝑡) | 𝑢 ∈ 𝑉𝑖 ∪𝑉𝑗 and (𝑠 = 𝑖, 𝑡 = 𝑗 or 𝑠 = 𝑗, 𝑡 = 𝑖)} denote the
set of moves output by flow-based refinement on 𝑉𝑖 ,𝑉𝑗 . The semantics are that vertex 𝑢 is

moved from block 𝑠 to 𝑡 . There are three issues that can occur due to the removed restriction.

1. a vertex of𝑀 may no longer be in the block expected by𝑀

2. the calculated gain Δexp does not equal the actual gain Δ when applied to the partition

3. applying the moves may make the partition imbalanced

To mitigate these issues, we apply moves to the global partition only while holding a

global lock, see lines 7-16 in Algorithm 7.10. This does not impact performance, since the

bulk of the work is performed outside the lock (line 3-5). First, we remove all vertices from

𝑀 that are not in the expected block (line 8). Then, we calculate the block weights if all

remaining moves were applied (line 9). If balanced (line 10), we apply the remaining moves

to the global partition (line 11). During this, we use attributed gains to calculate the actual

gain Δ. If Δ < 0, we accidentally worsened the partition, and thus revert the moves (line 13).

Otherwise, we found an improvement and mark 𝑖 and 𝑗 as active for further refinement in

the next round.
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Algorithm 7.10: Parallel Flow-Based 𝑘-way Refinement

Input: Hypergraph 𝐻 = (𝑉 , 𝐸, 𝑐, 𝜔), 𝑘-way partition Π of 𝐻

1 Q← ConstructQuotientGraph(𝐻,Π)
2 while ∃ active (𝑉𝑖 ,𝑉𝑗 ) ∈ Q do in parallel
3 𝐵 ≔ 𝐵𝑖 ∪ 𝐵 𝑗 ← GrowRegion(𝐻,𝑉𝑖 ,𝑉𝑗 ) // 𝐵𝑖 ⊆ 𝑉𝑖 , 𝐵 𝑗 ⊆ 𝑉𝑗

4 (N , 𝑠, 𝑡) ← ConstructFlowHypergraph(𝐻, 𝐵)
5 (𝑀,Δexp) ← FlowCutterRefinement(N , 𝑠, 𝑡)
6 if Δexp ≥ 0 // potential improvement
7 lock()

8 𝑀 ← {(𝑢, 𝑠, 𝑡) ∈ 𝑀 | Π(𝑢) = 𝑠}
9 𝑎 ← 𝑐 ({𝑢 | (𝑢, 𝑗, 𝑖) ∈ 𝑀}) − 𝑐 ({𝑢 | (𝑢, 𝑖, 𝑗) ∈ 𝑀})

10 if 𝑐 (𝑉𝑖 ) + 𝑎 ≤ 𝐿max and 𝑐 (𝑉𝑗 ) − 𝑎 ≤ 𝐿max

11 Δ← ApplyMoves(𝐻,Π, 𝑀)
12 if Δ < 0 // accidentally worsened
13 RevertMoves(𝐻,Π, 𝑀)
14 else // verified improvement
15 mark 𝑉𝑖 and 𝑉𝑗 as active

16 unlock()

Block Pair Queue. In contrast to Algorithm 7.4, we partially removed the concept of

rounds from the scheduler in Algorithm 7.10, in order to eliminate the synchronization point

at the end of a round. Instead, we use a FIFO queue that contains the active block pairs,

which threads poll from until empty, to implement the loop in line 2. The queue in our

implementation is concurrent, but using a lock would not be harmful here.

For the sake of determining which block pairs to add to the queue, we still use the rounds

concept. Each round is associated with an array of size 𝑘 to mark blocks that become active

in the next round. If we find a verified improvement (line 14,15), we mark the two involved

blocks as active for the next round, and push them into the FIFO queue if not yet contained,

together with their adjacent blocks in Q. The rounds are stored interleaved in the queue,

and each block pair in the queue is associated with a round number. A round ends once

all of its block pairs have been processed and all prior rounds have ended. If the relative

improvement at the end of a round is less than 0.1%, we immediately terminate the entire

algorithm, even if refinements from later rounds are running.

Restrict Concurrent Searches. Removing the restriction to non-overlapping block pairs

introduces a lot of parallelism, but also the potential for interference between the searches.

Therefore, we manually limit the number of concurrent searches to 𝜏 · 𝑘 , where 𝜏 is a

parameter to tune. Lower values of 𝜏 can reduce conflicts, but restrict parallelism, and thus

put more emphasis on obtaining good speedups in 2-way refinement. Higher values of 𝜏

increase parallelism, but cause more interference. In Section 7.13.4, we determine 𝜏 = 1 as a
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good choice. This seems like just a factor 2 more than the matching, however at later stages

there are much less than
𝑘
2
block pairs in the matching. In the experiments, we show that we

do observe interference between searches with this approach (sometimes heavy interference),

however the partition quality is fortunately not negatively affected when adding more cores.

Integration in Mt-KaHyPar. In previous chapters, we introduced two variants of Mt-

KaHyPar: the default version Mt-KaHyPar-D and the 𝑛-level version Mt-KaHyPar-Q. We

equip both with flow-based refinement to obtain the configurations Mt-KaHyPar-D-F and

Mt-KaHyPar-Q-F. For Mt-KaHyPar-D, we first run label propagation refinement, then FM,

then flow-based refinement. Recall that for Mt-KaHyPar-Q, we use the synchronization

points at which we restore identical nets to run further refinement. Here, we first run FM

and then flow-based refinement. Running flow-based refinement within regular 𝑛-level is

impractical since it is not localized. We run all refinement algorithms on each level multiple

times in combination and stop if the relative improvement is less than 0.25%.

7.13 Parallel 𝑘-way Refinement Experiments

We now turn to evaluating our parallel flow-based refinement on 𝑘-way partitions with both

parallelism sources. As in Chapter 6, the experiments on set B use 𝑘 ∈ {2, 4, 8, 16, 32, 64}
if run on 64 cores, and 𝑘 ∈ {2, 8, 16, 64} if run on different numbers of cores. We look

at the running time shares of the different phases, analyze the refinement behavior, and

conduct scalability experiments. Because flow-based refinement is employed in the same

way in Mt-KaHyPar-Q-F as in Mt-KaHyPar-D-F, we focus on Mt-KaHyPar-D-F in this part.

Subsequently we perform the horse-race comparisons, first with sequential algorithms and

other Mt-KaHyPar variants on set A, then with fast and parallel algorithms on set B, this

time involving Mt-KaHyPar-Q-F as well.

7.13.1 Running Time Shares

Figure 7.15 shows that flow-based refinement makes up the biggest part of the running time

of Mt-KaHyPar-D-F, by a huge margin. For each instance and phase we plot the fraction of

the total time spent in that phase. The instances are sorted by the fraction for flow-based

refinement (brown).

In Figure 7.16 we break flow-based refinement down into four separate phases: selecting

movable vertices (grow region, BFS), assembling the flow hypergraph, running FlowCutter,

and applying the calculated moves. We further plot the behavior for the different numbers of

threads 1, 4, 16, 64 as separate box and scatter plots. We sum up the measured times of each

phase and plot the fraction of the total sum. The algorithm works on different block pairs in

parallel, therefore we measure the execution times of each block pair and sum them up. As

a disclaimer, the timings are therefore not guaranteed to be an accurate representation of
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per instance.
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Figure 7.16: Fractions of time spent in each of the phases of flow-based refinement, separated

by 𝑘 and the number of threads used.

the overall work, except when 𝑘 = 2 or when we use 1 core, because the flow algorithm is

parallelized as well.

Applying moves is usually negligible as expected. Only for 𝑘 = 64 and 64 cores we observe

some outliers in the 20-30% area. Region growing takes around 10% for 𝑘 = 2, 64, and 5% for

𝑘 = 8, 16, though the share for 64 cores is slightly higher because the BFS is not parallelized,

as it is not the bottleneck. The actual bottleneck is FlowCutter (and therein computing flows),

as would be expected. The share is the largest for 𝑘 = 2 because computing flows is the
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only component with super-linear running time (in practice as well) and smaller values of 𝑘

yield larger flow hypergraphs. Therefore, the share decreases for 𝑘 = 8, 16 and even more for

𝑘 = 64, where assembling the flow hypergraph makes up around 40% of the running time.

With increased thread count, the share of FlowCutter increases. As we observe this for 𝑘 = 2,

it is not a side-effect of the measurements being inaccurate, but a matter of worse speedups

than assembly, which is much easier to parallelize.

7.13.2 Scalability
In Figure 7.17 we plot instance-wise self-relative speedups of parallel flow-based refinement

and Mt-KaHyPar-D-F as a whole (bottom right), with rolling geometric means as curves.

The plot for flow-based refinement is split into three segments 𝑘 = 2 (top left), where only

the flow algorithm is parallelized, 𝑘 = 64 (bottom left) where only the scheduling parallelism

is used, and 𝑘 ∈ {8, 16} (top right), where both parallelism sources are used (depending on

the number of cores). For Mt-KaHyPar-D-F we use window size 50, for the other three plots

we use window size 10 due to the reduced number of instances.

The overall geometric mean speedup of Mt-KaHyPar-D-F is 3.1 on 4 cores, 7.4 on 16 cores,

and 10.62 on 64 cores. If we only consider instances with a single-threaded running time

greater than 100𝑠 , we achieve a geometric mean speedup of 14.5 on 64 cores.

For 𝑘 = 2 we see that the speedups are largely comparable with those in Figure 7.11

and 7.13. The speedups exhibit very large variance, but the overall trend indicated by the

rolling geometric mean curves, is that we achieve better speedups if there is sufficient work

as indicated by the sequential running time. Looking back at Figure 7.16, we recall that there

were some instances where assembling the flow hypergraph takes particularly long on one

thread. These are the outliers in the top left plot, e.g., nlpkkt200 with a speedup of 80.05 on

64 cores.

For 𝑘 = 64 we achieve a geometric mean speedup of 18.48 on 64 cores. In this case, all

parallelism is leveraged in the scheduler, and none in the flow algorithm, which explains

why we obtain more reliable speedups than for all other k. As the outer parallel construct,

the scheduler is the more amenable parallelism source. For 𝑘 ∈ {8, 16}, both parallelism

sources are used. The speedups are slightly better than for 𝑘 = 2, but not as robust or reliable

as for 𝑘 = 64.

In Figure 7.18 we plot the partition quality of Mt-KaHyPar-D-F with 1, 4, 16 and 64 cores.

We see that using more cores does not adversely affect the partition quality.

7.13.3 Refinement Analysis
Next, we look at the behavior of flow-based refinement under interference from concurrent

searches. In Figure 7.19 we plot the fraction of block pairs for which FlowCutter claims

an improvement, relative to all scheduled block pairs. Out of these, we plot the fraction of

actual improvements (verified while applying moves) and searches with zero gain, incorrect

gain value, whether this event lead to a revert, or whether accidental balance violations lead
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Figure 7.17: Speedups for flow-based refinement with different values of 𝑘 (because different

parallelism sources are used), as well as Mt-KaHyPar-D-F in total for all 𝑘 (bottom right).

The x-axis shows the sequential time in seconds, the y-axis the speedup. The lines are

rolling geometric means (window size 50 for Mt-KaHyPar-D-F, 10 for the per 𝑘 plots) of the

per-instance speedups (scatter).

to a revert. These events are shown per instance and per number of threads. Around 35%

of scheduled block pairs claim an improvement, and the number increases when adding

more threads, which is the first sign of interference. With 1 core these are all successful,

with 4 cores still around 95%, 16 cores around 90%, and 64 cores around 85%, though the

outliers increase. The number of zero gain improvements are quite steady across different

thread counts, but surprisingly high at around 40% of claimed improvements. In this case

the balance was improved, which in turn can lead to positive gain improvements in later

rounds or the other refinement algorithms.
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Figure 7.18: Partition quality with increasing number of threads. We can see that there is

no quality penalty incurred by using more cores.
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Figure 7.19: Flow-based refinement statistics per instance and different numbers of threads.

The number of searches with incorrect gains increases rapidly with more cores, reaching

around 20% for 64 cores. Still, this translates to a revert due to negative gains in about half of

the cases. Notably, for 𝑘 = 2 the claimed gain or balance is never wrong, which we see from

clusters at 0, even when 64 cores are used. Furthermore, for the other 𝑘 , balance reverts are

more rare than negative gain reverts.

The data for Figure 7.19 does not contain information how these statistics affect the actual

gain, which we care about the most. In order to save running time, we only repeated this

experiment with 64 cores, which we show in Figure 7.20. As a sanity check, the event

statistics look the same as in Figure 7.19. The rightmost entry shows that the gain is affected.

We plot the sum of actual gains divided by the sum of expected gains, showing that we
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Figure 7.20: Flow-based refinement statistics for 64 cores, with tracked gain values.
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Figure 7.21: Contribution to the overall gain made by each refinement algorithm, plotted

per instance.

achieve around 75-80% of the expected gain. As we saw earlier in Figure 7.18, this does not

actually yield worse partition quality overall, because there may be additional repetitions, or

the other refinement algorithms are able to compensate.

Finally, in Figure 7.21 we show how much each of the three refinement algorithms con-

tributed to the overall gain (difference from initial partition to final partition). Again, label

propagation contributes the majority, since it is run first and can perform the easy im-

provements, but the share is lower than without flow-based refinement, confer Figure 4.5.

Flow-based refinement and FM have similar shares, with flows coming out ahead by a small

margin.
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Figure 7.22: Flow-based refinement statistics per instance and different values of 𝜏 .

7.13.4 Configuring 𝜏

In this section, we justify our choice of 𝜏 = 1 for the factor to restrict concurrent searches.

To save running time, we use only a subset of set B consisting of 19 instances: 5 VLSI, 5

SPM and 9 SAT instances. We perform three repetitions with different random seeds and use

𝑘 ∈ {2, 8, 16, 64} on machine C with 64 cores.

Figure 7.22 shows the per-instance event statistics we used before, but this time for different

values of 𝜏 ∈ {0.5, 1, 2, 4,∞}. With 𝜏 = 0.5, we have the same level of parallelism as the

non-overlapping version in the beginning of a round, and with 𝜏 = ∞ there is no restriction.

The plot is split into two parts with 𝑘 ∈ {8, 16} and 𝑘 = 64, as these should exhibit different

levels of interference. We can see that the level of interference increases significantly with
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Figure 7.23: Solution quality of Mt-KaHyPar-D-F with different values of 𝜏 .

𝜏 for 𝑘 ∈ {8, 16}, and slower for 𝑘 = 64. This is also reflected in the running times, where

we observe an increase at 𝜏 > 1 due to increased conflicts. Applying the move sequences

fails more often for larger values of 𝜏 , which slows down the convergence of the scheduling

algorithm. The geometric mean running times are 14.63s for 𝜏 = 0.5, 12.35s for 𝜏 = 1, 12.87s

for 𝜏 = 2, 13.34s for 𝜏 = 4, and 13.01s for 𝜏 = ∞.
Fortunately, Figure 7.23 shows that the increased interference affects partition quality

only mildly. As 𝜏 = 1 is the fastest, we choose this value.

7.13.5 Comparison with Sequential Algorithms

After analyzing the refinement algorithm, we now turn to evaluating it against state-of-the-

art sequential partitioning algorithms on set A. As before, Mt-KaHyPar is run on 10 cores.

Figure 7.24 summarizes the quality and running time results. We see that Mt-KaHyPar-Q-F

and KaHyPar-HFC have the same quality, as they now have the same relevant feature set,

followed closely by Mt-KaHyPar-D-F which catches up to their curves at factor 1.08 with

90% of the instances. These three algorithms stand out as the highest quality partitioners

by a significant margin, due to refinement with FlowCutter. In Figure 7.25 we present the

performance profiles of just the variants with flow-based refinement, and Mt-KaHyPar-D

for a less cluttered plot. In a direct comparison Mt-KaHyPar-Q-F computes better partitions

than PaToH-D on 94.7%, PaToH-Q on 87.7%, Mt-KaHyPar-D on 97.3%, Mt-KaHyPar-D-F on

73.5%, Mt-KaHyPar-Q on 95.7%, and KaHyPar-HFC on 51.3% of the instances.

Meanwhile, Mt-KaHyPar-Q-F has a similar running time as PaToH-Q as can be seen in

the right plot. The geometric mean running times are 2.79s for Mt-KaHyPar-D-F, 5.11s for

Mt-KaHyPar-Q-F, 48.95s for KaHyPar-HFC, and 5.86s for PaToH-Q. Further geometric mean

times are, 1.17s for PaToH-D, 0.96s for Mt-KaHyPar-D, 3.13s for Mt-KaHyPar-Q and 93.2s
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Figure 7.24: Partition quality and running time on benchmark set A, using 10 cores for

Mt-KaHyPar.
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Figure 7.25: Partition quality on benchmark set A of just the variants with flow-based

refinement and Mt-KaHyPar-D.

for hMetis-R. Using 10 cores, we achieve a speedup of nearly 10 over KaHyPar-HFC in the

geometric mean. This is not just due to parallelism, but also due to further engineering.

The median improvement of Mt-KaHyPar-D-F and Mt-KaHyPar-Q-F compared to the

configurations that use no flow-based refinement is 4.2% and 2.7%, while only incurring a

slowdown by a factor of 2.9 and 1.6. To put this into perspective, the quality preset of PaToH

(PaToH-Q) improves the default preset (PaToH-D) by 5.3% in the median and is a factor of 5

slower. The median improvement of hMetis-R compared to PaToH-Q is 2.6% while it is a
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Figure 7.26: Effectiveness tests with virtual instances on benchmark set A, comparing

Mt-KaHyPar-D-F and Mt-KaHyPar-Q-F with Mt-KaHyPar-D (on 10 cores). As opposed to

𝑛-level, flow-based refinement cannot be beaten by repetitions.

factor of 15.9 slower. The solutions produced by Mt-KaHyPar-Q-F are 3% better than those

of hMetis-R in the median and it has a similar running time as PaToH-Q.

Comparing our two parallel partitioners with flow-based refinement, we see that Mt-

KaHyPar-Q-F gives only minor quality improvements over Mt-KaHyPar-D-F (median im-

provement is 0.6% whereas without flow-based refinement it is 1.9%). This demonstrates the

effectiveness of flow-based refinement.

Furthermore, we present effectiveness tests with virtual instances in Figure 7.26. Whereas

Mt-KaHyPar-D was competitive with Mt-KaHyPar-Q and even KaHyPar-HFC in this setup

(this time parallel versus non-parallel mattered), we see that Mt-KaHyPar-D-F and Mt-

KaHyPar-Q-F are still more effective.

In conclusion, we achieved the solution quality of the currently hiqhest quality sequential

partitioner in a fast parallel code.

7.13.6 Comparison with Parallel Algorithms
In Figure 7.27 we present solution quality and running time results on set B, where each

algorithm was run on 64 cores. Again, the quality results of Mt-KaHyPar-D-F and Mt-

KaHyPar-Q-F are comparable, with a small advantage for the 𝑛-level variant. Yet, Mt-

KaHyPar-D-F is a factor of 1.73 faster at 28.93s versus 50.11s geometric mean running time.

The other geometric mean running times are 3.89s for Mt-KaHyPar-D, 23.96s for Mt-KaHyPar-

Q, 29.15s for BiPart, 10.64s for Zoltan and 47.63s for PaToH-D. In terms of partition quality,

the flow-based variants clearly outperform the competition.

The median improvement of Mt-KaHyPar-D-F and Mt-KaHyPar-Q-F compared to the

configurations that use no flow-based refinement is 5.2% and 3.4%, while they are slower by a

factor of 7.4 and 2.1. The improvements and slowdowns are more pronounced than on set A.
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Figure 7.27: Partition quality and running time on benchmark set B. All algorithms run on

64 cores, except PaToH.

The slowdowns are expected since the size of the flow problems scales linearly with instance

sizes, while the complexity of the flow-based refinement is super-linear. Mt-KaHyPar-D-F

is slower than Zoltan and BiPart, but computes partitions that are 33% better than those of

Zoltan and twice as good as those of BiPart in the median.

7.14 Conclusion
In this chapter, we presented an extension and thorough engineering of the powerful flow-

based refinement technique. The main ingredient for speed is an on-hypergraph implemen-

tation of the flow algorithm. In extensive experiments we demonstrated the quality merits

of our approach. In a second part, we parallelize flow-based refinement with two parallelism

avenues: scheduling and the flow algorithm. While the speedups are not as impressive as

our prior works, they are consistent with speedup results of flow algorithms in the literature.

Overall, our system Mt-KaHyPar now possesses the full feature set of the highest quality

sequential partitioner KaHyPar but in a parallel form, and is therefore the new state of

the art. The Mt-KaHyPar-D configuration is the fastest multilevel partitioner and achieves

very competitive quality, whereas Mt-KaHyPar-D-F/Mt-KaHyPar-Q-F achieve the highest

quality (previously held solely by sequential KaHyPar-HFC) and are significantly faster than

KaHyPar thanks to parallelism. Hence, Mt-KaHyPar-D is the method of choice for extremely

large instances, whereas Mt-KaHyPar with flow-based refinement is the method of choice

for medium-size instances where partition quality really matters.
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8 Conclusion

Summary. In this dissertation we presented efficient parallelizations of all relevant tech-

niques employed in the highest quality sequential partitioning framework. We achieve the

same partition quality but in a fast parallel code, thus making our algorithms the state of the

art both in terms of speed and partition quality.

More specifically, our default configuration is the fastest multilevel partitioner and achieves

very competitive solution quality. Compared only with parallel algorithms beyond our own

follow-up works, it offers both the highest quality and fastest speed.

The two versions with flow-based refinement achieve the highest partition quality at

the cost of increased running times, which are however still competitive with previous

algorithms other than our default configuration. The parallel 𝑛-level variant without flow-

based refinement has similar running time as the log(𝑛)-level version with flow-based

refinement, but the latter achieves better solution quality. Yet, 𝑛-level is still relevant in

combination with flow-based refinement, and is interesting from an academic standpoint.

Contributions Summarized. The ingredients to these achievements are community-

aware coarsening using the parallel Louvain algorithm, parallel agglomerative hypergraph

clustering for heavy-edge rating, parallel 𝑛-level coarsening, parallel initial partitioning via

multilevel recursive bipartitioning with work-stealing and parallel runs of a bipartitioning

portfolio, parallel label propagation refinement, parallel localized FM refinement, parallel

𝑛-level uncoarsening, and parallel flow-based refinement with FlowCutter.

We contributed substantial engineering efforts to speed up localized FM and enhance

its optimization capabilities. In our experiments, we thoroughly analyzed the impact of

each component and design choice. Among these components are gain accuracy techniques

such as attributed gains, parallel gain tables, and parallel gain recalculation. The latter two
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improve partition quality and speed in both 𝑛-level and log(𝑛)-level refinement, whereas

attributed gains only contribute to partition quality in 𝑛-level refinement.

Perhaps the most surprising result is the efficient parallelization of 𝑛-level (un)coarsening,

particularly the fully asynchronous version. The main optimizations are projecting gain table

values via uncontractions, and restoring ranges of newly activated pins in the semi-dynamic

hypergraph data structure.

For flow-based refinement, we engineered a hypergraph version of FlowCutter by im-

plementing flow algorithms directly on the hypergraph without constructing the Lawler

network. On-hypergraph implementations have substantial running time benefits over the

Lawler network. We fixed a previously undocumented bug in a synchronous parallel push-

relabel algorithm, and developed optimizations such as imposing additional capacities, and a

mechanism to detect early termination. Furthermore, we developed techniques for running

FlowCutter on disconnected hypergraphs, show how to avoid redundant computations,

and efficiently integrate Dinitz algorithm in the incremental maximum flow problems of

FlowCutter.

Finally, we presented deterministic versions of the local moving algorithms for community

preprocessing, coarsening and label propagation refinement, culminating in a deterministic

version of our framework. In our experiments, we showed that there is a small price to pay

in terms of partition quality and running time, whereas the speedups were better than for

the non-deterministic version. We outlined challenges and ideas for deterministic versions

of localized FM and flow-based refinement, which serve as a starting point for future work.

Future Work. Beyond this, the research on shared-memory parallelization of existing

techniques appears saturated. Future work should focus on transferring the high quality

techniques to distributed memory and other computational architectures (e.g., GPUs). Effi-

cient distributed implementations of FM face enormous challenges, as our localized version

is inherently very fine-grained. Flow-based refinement on the other hand is fairly amenable

to transfer since scheduling block pairs is coarse-grained. Refinement on a block pair should

be run on one host, but can still be run in parallel using the existing shared-memory imple-

mentation. Label propagation refinement and coarsening are well understood in distributed

memory. So far a highly scalable implementation is missing, but work on a plain graph

version is currently in progress.

Another missing gap is experimental studies of algorithms with theoretical approximation

guarantees, albeit non-constant factor approximation. We cannot expect remotely competi-

tive quality or running time to the established well-understood heuristics. This is therefore

purely for academic purposes. At the moment we lack an understanding of how bad the gap

actually is. The structure of these algorithms is usually recursive bipartitioning into more

than 𝑘 blocks, and subsequent packing along the recursion tree to reach the desired 𝑘 . It

might be worthwhile to combine the theoretically sound components in such algorithms

with heuristic components in practical works to get the best of both worlds.

Most of the research in recent years has focused on the refinement phase, as it is easy to
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understand where improvements come from. The coarsening phase on the other hand has

seen very little progress. While clustering intuitively seems the best approach, the success

of community-aware coarsening showed that simple local greedy optimization is inadequate.

A recent work [SSS22] incorporates spatial proximity in embeddings into the rating and

restrictions. It showed promising results in terms of quality, but is completely infeasible in

terms of running time. Therefore, future research should work towards better understanding

of the coarsening methods.

Finally, it would be interesting to study variations of the partitioning problem. A notable

example is judicious partitioning, where we are interested in minimizing the maximum load.

The load of a block is the weight sum of nets incident to vertices in the block. There is no

need for a balance constraint, as a locally optimal solution has balanced loads. This problem

is a data distribution tool in a phylogenetic interference bioinformatics application [Baa+19].

As only the maximum load contributes to the objective function, all vertex moves have zero
gain if there is a sufficient gap to the second highest load. This makes the existing greedy

approaches essentially unusable. So far, this NP-hard problem has received little algorithmic

attention. Most works focus on proving bounds for specific hypergraph classes. The only

algorithm known so far [Tan+17, Baa+19] iterates through possible objective values and

checks whether this value is attainable by greedily solving a minimum set cover problem.

Still, it is possible to perform refinement to some extent by moving out of the block

with the highest load. We are currently working on a paper, where we apply greedy initial

partitioning and refinement heuristics to the judicious problem formulation with promising

results. In spite of the mentioned challenges, our methods outperform the mentioned set-

cover approach, both in terms of load (moderately) and running time (enormously).
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