KIT | KIT-Bibliothek | Impressum | Datenschutz

Code to "Maximum norm error bounds for the full discretization of non-autonomous wave equations"

Scheifinger, Malik 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

This code is used for the numerical experiment in Section 6 of the preprint "Maximum norm error bounds for the full discretization of non-autonomous wave equations" by Benjamin Dörich, Jan Leibold, and Bernhard Maier.


Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Forschungsdaten
Publikationsdatum 21.04.2023
Erstellungsdatum 18.04.2023
Identifikator DOI: 10.5445/IR/1000157919
KITopen-ID: 1000157919
Lizenz Creative Commons Namensnennung – Nicht kommerziell – Weitergabe unter gleichen Bedingungen 4.0 International
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Liesmich

Part of the code relies on code written by J. Leibold in https://doi.org/10.5445/IR/1000130223.

The computations are done in C++ using the Finite Element library deal.II; the plots then are generated with Python3.

To use this code, deal.II (release 9.4.0) has to be installed, cf. https://www.dealii.org/9.4.0

In order to compile the program, open a terminal session in this folder
and call "cmake -DDEAL_II_DIR=/path/to/deal.II ." Next, call "make release" and "make".
Then, one can run the commands (can be done in paralell)

./main P1
./main P2
./main P3
./main euler

to execute the code. This performs the computations and generates the files

error_space_Q1_ritz.txt
error_space_Q2_ritz.txt
error_space_Q3_ritz.txt
error_time_ImplEuler_ritz.txt

in the folder "error" containing the results of the numerical experiments.

After that, the plots can be generated with the Python3 Script using in the terminal

python3 wave_non_auto_error_plots.py

in the folder "tikz".

Art der Forschungsdaten Dataset
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page