
cba doi:10.18420/sicherheit2022_03

Wressnegger and Reinhardt (Hrsg.): GI Sicherheit 2022,
28 Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022

Hardening the Security of Server-Aided MPC Using
Remotely Unhackable Hardware Modules

Dominik Doerner1, Jeremias Mechler2, Jörn Müller-Quade3

Abstract:

Garbling schemes are useful building blocks for enabling secure multi-party computation (MPC), but
require considerable computational resources both for the garbler and the evaluator. Thus, they cannot
be easily used in a resource-restricted setting, e.g. on mobile devices. To circumvent this problem,
server-aided MPC can be used, where circuit garbling and evaluation are performed by one or more
servers.

However, such a setting introduces additional points of failure: The servers, being accessible over the
network, are susceptible to remote hacks. By hacking the servers, an adversary may learn all secrets,
even if the parties participating in the MPC are honest.

In this work, we investigate how the susceptibility for such remote hacks in the server-aided setting
can be reduced. To this end, we modularize the servers performing the computationally intensive tasks.
By using data diodes, air-gap switches and other simple remotely unhackable hardware modules, we
can isolate individual components during large parts of the protocol execution, making remote hacks
impossible at these times. Interestingly, this reduction of the attack surface comes without a loss of
efficiency.

Keywords: multi-party computation; garbling schemes; universal composability; fortified universal
composability

1 Introduction

Secure Multi-Party Computation (MPC) allows mutually distrusting parties to jointly
perform tasks on private data via a protocol 𝜋. Examples for such tasks include

• the secure evaluation of a function 𝑓 , where protocol parties learn nothing but the
result [GMW87],
• first-price sealed-bid auctions, where nothing but the winner and the highest bid is
revealed or, for example,
• COVID contact tracing [Be21].

1 Constreo Systems, dominik.doerner@student.kit.edu
2 KASTEL, Karlsruhe Institute of Technology, jeremias.mechler@kit.edu
3 KASTEL, Karlsruhe Institute of Technology, joern.mueller-quade@kit.edu

cba doi:10.18420/sicherheit2022_05

C. Wressnegger et al. (Hrsg.): SICHERHEIT 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 83

mailto:dominik.doerner@student.kit.edu
mailto:jeremias.mechler@kit.edu
mailto:joern.mueller-quade@kit.edu
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sicherheit2022_05

Hardening the Security of Server-Aided MPC 29

More generally, MPC can be used for every efficiently computable task while guaranteeing
properties such as correctness, privacy or the independence of inputs. These guarantees hold
even if some parties are corrupted and deviate from the protocol in an arbitrary manner.

For MPC, there is a long list of feasibility results (e.g. [GMW87; Ya86]) that give a protocol
for any efficiently computable function (general MPC). To this end, the function-to-be-
evaluated 𝑓 is transformed into a circuit 𝐶 that is jointly evaluated. For secret-sharingMPC
(e.g. [Da12; GMW87]), this evaluation happens online and gate by gate, incurring a round
complexity that is linear in the circuit’s depth. For high performance, low latency between
the protocol parties is desirable.

For MPC with garbled circuits, the circuit 𝐶 is “garbled” into a garbled circuit 𝐶 ′ by a
garbler. After an interaction phase for distributing the inputs (which is independent of
the circuit depth), 𝐶 ′ can be evaluated by the evaluator without further interaction. While
garbled circuit protocols are generally constant-round, the garbled circuit 𝐶 ′ is usually much
larger than 𝐶, leading to a high communication overhead. In this setting, a high bandwidth
is more important than a low latency.

Common to virtually all solutions for general MPC is the high computational or communi-
cation overhead. In a setting where the parties participating in such a protocol have very
limited resources, e.g. on mobile devices, this overhead is prohibitive. As such, MPC has
not seen wide-spread adoption, despite its promising security guarantees.

A partial solution to the limited efficiency is to outsource the most expensive parts of an
MPC to one or more servers, e.g. in the cloud. If they can be partially trusted, for example in
the sense that some kind of corruption threshold is tolerated by the protocol, security in such
a setting can be shown. In practice, the assumption of e.g. a honest majority of the serves is
often justified by placing the servers at different (competing) cloud providers. In such an
outsourcing setting, the resources of the clients’ devices are mostly irrelevant. Assuming
the use of different cloud providers, it may be plausible to assume high bandwidths together
with latency that is higher than e.g. within the same data center. In the following, we thus
consider MPC based on garbled circuits, which is suitable for this particular setting.

Depending on the protocol, cloud-based MPC may not require the clients to communicate
with each other. This may be highly desirable, e.g. for security reasons.

Possible applications include private set intersection, e.g. for contact discovery with
messengers on smartphones or privacy-preserving analytics on e.g. smart-meter data.
Generally, a setting with a complex function to be evaluated and small in- and outputs is
favored.

84 D. Doerner, J. Mechler, J. Müller-Quade

30 D. Doerner, J. Mechler, J. Müller-Quade

1.1 Related Work

Garbling-based multi-party computation. Garbling schemes have proven to be a valuable
tool in implementing MPC protocols. Goyal et al. [GMS08] designed an efficient MPC
protocol using the cut-and-choose principle while Ben-David et al. [BNP08] designed a
system called FairplayMP, in which the function to be executed is compiled to a boolean
circuit and executed jointly and securely against semi-honest adversaries.

Server-aided MPC. More practice-oriented variations include the works of Alam et al.
[Al18], for server-aided privacy-aware access control, and Baldimtsi et al. [Ba17], for online
queries using data of offline users in the use case of social networks. Another subclass of
the research has focused on improving security by utilizing multiple servers, as used by
Jakobsen et al. [JNO14], Kerschbaum [Ke15] and Bugiel et al. [Bu11]. Thirdly, many MPC
protocols utilize the cut-and-choose principle to ensure that the circuit is garbled correctly.
Notable example include the series of single-server-aided MPC protocols by Kamara et al.
[KMR11] and the Salus system by Kamara et al. [KMR12].

MPC using secure hardware. Additional hardware assumptions provide a way to enable
security under majority collusion. Some hardware assumptions, such as Trusted Execution
Environments (TEE), provide great possibilities, but require the assumption of complete
tamper-proof processors that can execute arbitrary functions. These have been used by Gupta
[Gu16], Bahmani et al. [Ba16] and Benenson et al. [Be06]. Less restrictive assumptions
include tamper-proof hardware tokens for cryptographic operations, as used by Katz [Ka07]
or Dowsley et al. [DMN15].

Fortified Multi-Party Computation. In the established adaptive corruption model, an
adversary may corrupt parties during any point of a protocol execution, being able to
learn and modify a corrupted party’s inputs and outputs. As such, even protocol parties
that are initially honest are not afforded any kind of protection from the consequences of
adaptive corruptions. This problem is addressed by Broadnax et al. [Br21], who introduce a
new corruption model that distinguishes between physical attacks and remote hacks. By
using simple remotely unhackable hardware modules like data diodes or air-gap switches, a
protocol party can (temporarily) isolate itself, preventing an adversary to remotely hack
it. By using an appropriate architecture, they construct a protocol where initially honest
protocol parties are protected against the consequences of remote hacks: Unless all parties
are corrupted or a party is corrupted at the very beginning of a protocol execution, the
remote hacking of a party will not result in the adversary learning or being able to modify
the hacked party’s inputs or outputs. Being a theoretical feasibility result, their construction
is not practically efficient.

1.2 Our Contribution

In previous solutions for server-aided MPC, the problem of server corruptions is usually
addressed by defining a corruption threshold up to which security is guaranteed. However, no

Hardening the Security of Server-Aided MPC 85

Hardening the Security of Server-Aided MPC 31

technical measures are taken to justify such corruption thresholds. In practice, the problem
is exacerbated by the fact that a server, presumably used for many MPC executions, may be
an attractive target for hackers. It is thus very important to reduce the attack surface of such
servers as much as possible.

Inspired by the work of Broadnax et al. [Br21], we investigate the use of simple remotely
unhackable hardware modules like data diodes (which allow unidirectional communication
only) or air-gap switches (which allow a party to temporarily disconnect itself) in the context
of server-aided MPC in order to reduce the servers’ attack surface. We present a server-aided
general MPC protocol where the most expensive computations are outsourced. We split the
servers into several parts with different responsibilities. By isolating parts of the servers
from the network, they are not susceptible to remote hacks anymore. We prove the security
of our construction in the Fortified UC framework [Br21].

To the best of our knowledge, we are the first to explore the use of isolation assumptions
such as data diodes or air-gap switches in the field of server-aided MPC.

1.3 Guide for the Reader

In Sect. 2, we give a short introduction into the concepts used throughout the paper. In Sect. 3,
we present our construction, along with a proof sketch together with a short theoretical
evaluation of its performance. For more details, see the full version.

2 Preliminaries

In the following, we give a short and informal overview of important concepts and building
blocks used in this paper. A detailed version can be found in in the full version.

Oblivious transfer (OT) [EGL85; Ra81] allows a receiver with an input 𝑏 ∈ {0, 1} to interact
with a sender with inputs 𝑚0 and 𝑚1. At the end of the interaction, the receiver learns the
value 𝑚𝑏, but nothing about 𝑚1−𝑏. Conversely, the sender does not learn the bit 𝑏. This
notion of 1-out-of-2-OT can be extended, e.g. to the case of 𝑛-out-of-𝑘-OT.

When combined with an OT protocol, a garbling scheme [BHR12; Ya86] allows two parties
𝑃1, 𝑃2 to jointly evaluate a circuit 𝐶 on their respective private inputs 𝑥1 and 𝑥2. To this
end, the garbler creates an obfuscated variant of 𝐶 with its input 𝑥1 hard-coded into the
circuit. The evaluator 𝑃2 can obtain “keys” for its input 𝑥2 via OT from the garbler 𝑃1.
Having these keys, it can evaluate 𝐶 on inputs 𝑥1 and 𝑥2 to learn the result 𝑦 = 𝐶 (𝑥1, 𝑥2).
With respect to security, it is guaranteed that 𝑃1 learns nothing about 𝑥2 and 𝑃1 learns
nothing about 𝑥1 that it cannot compute from 𝑦 and 𝑥2. Also, 𝑃2 cannot evaluate the circuit
repeatedly on different inputs.

86 D. Doerner, J. Mechler, J. Müller-Quade

32 D. Doerner, J. Mechler, J. Müller-Quade

Universal Composability [Ca01] is a security notion for MPC protocols in a setting where
multiple (possibly adversarially chosen) protocols are executed concurrently. As an extension
of the real-ideal paradigm, the security of a protocol is defined through an ideal functionality
it (presumptively) realizes. Fortified Universal Composability (Fortified UC) [Br21] extends
UC security to capture isolation properties of remotely unhackable hardware modules such
as data diodes or air-gap switches and introduces a new corruption model that distinguishes
between physical attacks and remote hacks.

3 Our Protocol

In the following, we will describe our MPC protocol, which is cast in the Fortified UC
Framework [Br21]. We begin with a description of the protocol and its architecture, followed
by the ideal functionality we realize and the formal protocol definition.

3.1 Protocol Architecture

Our protocol 𝜋MPC allows a set of 𝑛 players (P), each with their own private input 𝑥𝑖 ∈ 𝑋 ,
to securely compute a globally known circuit 𝐶 : 𝑋𝑛 → 𝑌𝑛 and yet keep their inputs 𝑥𝑖 and
respective output 𝑦𝑖 ∈ 𝑌 private. Apart from the players, the parties include an initializer I, a
server S, a hybrid functionality FnOT, a remotely unhackable moduleM and the environment
Z.

The complete architecture is depicted in Fig. 1. Using the conventions for graphical
depictions as defined by Broadnax et al. [Br21], rounded boxes represent main parties while
sub-parties are represented by sharp corners. A cloud shape is meant to represent hybrid
functionalities, a gray background that the party is online during the protocol execution
and bold borders that a (sub-)party is unhackable. Air-gap switches, represented with

, can be controlled by the party next to the hinge, allowing it to disconnect itself
via this connection. Similarly, data diodes, represented with , allow unidirectional
communication only.

The initializer I is connected to the environment via an initially connected air-gap switch.
To the other entities, it is connected via data diodes. After it has received initialization
messages from the environment, the initializer can disconnect the air-gap switch. Then, it is
no longer able to receive messages and thus cannot be hacked remotely. At the same time, it
can still send protocol messages to the outside via its data diodes.

Connected to the initializer is a remotely unhackable moduleM that will act as a surrogate
for I for any interaction with the other parties. As we will see later, this is necessary as this
interaction cannot be performed by uni-directional messages from behind a data diode. Due
to its simplicity, we assume that the moduleM can be implemented in a way that makes it
immune to hacks, e.g. as a fixed-function circuit that can be verified for correctness.

Hardening the Security of Server-Aided MPC 87

Hardening the Security of Server-Aided MPC 33

MFnOT

I

S

P1 . . . P𝑛

Z

Fig. 1: Architecture of 𝜋MPC

Finally, the serverS interacts with themoduleM and the playersP. Due to the communication
required in the protocol, we cannot protect it via data diodes or air-gap switches. Also, due
to its complexity, we do not assume that it is remotely unhackable.

The protocol makes use of a single hybrid functionality FnOT that interacts with I and the
players P:

Definition 3.1 (Ideal Functionality for 𝑛 × 𝑂𝑇12). The ideal functionality FnOT for non-
adaptive 𝑛-fold 1-out-of-2 𝑙-bit oblivious transfer (𝑛 × 𝑂𝑇12) interacts with a sender S, a
receiver R and an adversary A.

It is parameterized with the number of repetitions 𝑛 as well as the word length 𝑙. These are
fixed and known to all parties involved.

On receiving (sid, initiate, 𝑚 = ((𝑚01, 𝑚
1
1), . . . , (𝑚

0
𝑛, 𝑚

1
𝑛))) from S, with 𝑚𝑣

𝑖
∈ {0, 1}𝑙:

• If no message (sid, initiate, ·) has yet been received, store (𝑚1, . . . , 𝑚𝑛).
• Send (sid, initiate) to A.

On receiving (sid, request, 𝑏 = (𝑏1, . . . , 𝑏𝑛)) from R, with 𝑏𝑖 ∈ [0, 1]:

• Send (sid, output-request) to A and wait for an answer (sid, output-response, 𝜙)
with 𝜙 ∈ {pass, abort}.

– if 𝜙 = pass, continue.
– if 𝜙 = abort, abort.

• Check if a message (sid, request, ·) was previously received and answered.
– if not, continue.
– if yes, abort.

• Check if a message (sid, initiate, ·) was previously received.
– if not, abort.

88 D. Doerner, J. Mechler, J. Müller-Quade

34 D. Doerner, J. Mechler, J. Müller-Quade

– if yes, continue.
• Send (sid, response, 𝑚∗ = (𝑚𝑏1

1 , . . . , 𝑚
𝑏𝑛
𝑛)) to R.

All main parties (namely I, S and P) are connected to the environment Z, although I is
connected only via an air-gap switch and will disconnect it upon first activation.

The only parties to receive any input from the environment are the players P, each of which
receives an input value 𝑥𝑖 ∈ 𝑋 .

As we will see later, the above architecture is suitable to provide security against adversaries
that adhere to the following corruption model.

3.2 Corruption Model

We assume that the initializer I can only be corrupted semi-honestly, meaning that an
adversary learns all information, but does not deviate from the protocol. We make this
assumption for the following reasons: i) We envision that I, M and S are placed in the
cloud. Cloud providers are often assumed to be honest-but-curious. This is captured by
semi-honest corruption. ii) As I is placed behind data diodes and an air-gap switch, the attack
surface from the “outside” is greatly reduced, making remote hacks infeasible. Moreover,
semi-honest corruption also captures e.g. side-channel attacks, which are still possible in
this setting. They would only leak the internal state of the party and not allow for an active
manipulation of the protocol flow.

Additionally, we assume that an adversary can only corrupt either I or S, but not both at
the same time. This assumption is practically motivated: Standard security practices would
dictate to use different providers to host both parties, such as two different major cloud
providers.

The server S as well as the players are subject to adaptive byzantine corruptions throughout
the whole protocol execution.

3.3 Ideal Functionality

The ideal functionality FMPC for secure multi-party computation interacts with an initializer
I, a server S, a given set of players P := {P1, . . . ,P𝑛} and an adversary A.

It is parameterized with a circuit 𝐶 : ({0, 1}𝑙)𝑛 → ({0, 1}𝑙)𝑛 to execute as well as the word
length 𝑙. These are fixed and known to all parties involved.

Every player P𝑖 holds an input 𝑥𝑖 ∈ {0, 1}𝑙 .

Phase 1: Input
On receiving (sid, input, 𝑥𝑖) from P𝑖 ∈ P, with 𝑥𝑖 ∈ {0, 1}𝑙:

Hardening the Security of Server-Aided MPC 89

Hardening the Security of Server-Aided MPC 35

• If no message (sid, input, ·) has yet been received from P𝑖 , store 𝑥𝑖 and ignore all
further input messages from 𝑃𝑖 .
• Send (sid, input-received,P𝑖) to A.
• Once a message (sid, input, ·) has been received from every player P 𝑗 ∈ P, mark
this phase as complete.

Phase 2: Calculation

• Store (𝑦1, . . . , 𝑦𝑛) := 𝐶 (𝑥1, . . . , 𝑥𝑛) and mark this phase as complete.

Phase 3: Output

• For every player P 𝑗 ∈ P, send (sid, output-request,P𝑖) toA and wait for an answer
(sid, output-response, 𝜙) with 𝜙 ∈ {pass, abort}. If 𝜙 = pass, send (sid, output,
𝑦𝑖) to P𝑖 . If 𝜙 = abort, send (sid, output, abort) to P𝑖 .

Corruption

• Upon corruption of a player P𝑖 , send its input 𝑥𝑖 to the adversary (if existent) and let
it replace it with an input 𝑥 ′

𝑖
.

• Upon corruption of the server S, do nothing.
• Upon corruption of the initializer I, do nothing.

3.4 Protocol

In the following, we present our construction.

Roughly, the protocol works as follows: First, the initializer I creates a garbling of the circuit
𝐶 and distributes the input labels to the players via the ideal functionality for oblivious
transfer FnOT. The garbled circuit and the output labels are given to the moduleM, which
sends the garbled circuit to the server S. According to their inputs, the players will obtain
their input labels via oblivious transfer and forward them to the server. With these labels,
S can evaluate the garbled circuit, leading to an encrypted and authenticated result that it
distributes to the parties. Using the output labels provided byM, a player P𝑖 can reconstruct
its output 𝑦𝑖 .

Unless an adversary controls both the initializer and the server, this implies the following
(informal) security guarantees:

• Privacy: For an honest player P𝑖 , the adversary is unable to learn its input or output.
If the server is corrupted, the adversary only sees a player’s input labels, but does not
know the corresponding input. Conversely, the output is encrypted. If the initializer is
corrupted, the adversary learns all input and output labels. However, as we assume
that the server is honest in this case, it does not learn which labels are actually used.

90 D. Doerner, J. Mechler, J. Müller-Quade

36 D. Doerner, J. Mechler, J. Müller-Quade

• Integrity: The adversary cannot modify the computation’s result. To this end, it would
need private information held by the initializer together with the ability to modify the
server’s messages to the parties. As the adversary can only corrupt the server or the
initializer, this is not possible.
• Independence of Inputs: In order to choose the input of a corrupted player P 𝑗 in
dependence of an honest player P𝑖 , the adversary would have to perform the OT of P 𝑗

with choice bits depending on the choice bits of P𝑖 . By the definition of FnOT, this is
not possible. Alternatively, even if the initializer is corrupted, the adversary will not
learn the choice bits of P𝑖 in the OT, making it impossible to use the corresponding
input labels for P 𝑗 (which are then known to the adversary for all possible inputs of
P 𝑗).
• No Repeated Circuit Evaluations: In order to evaluate the circuit multiple times in the
case of a corrupted server (and one or more corrupted players), the adversary needs
to know additional input labels. Due to the security of the OT and the fact that the
initializer must not be corrupted together with the server, this is not possible.

These only very informal security guarantees are implied by the ideal functionality FMPC,
which is provably realized by our construction.

In the following, we give the formal protocol description.

Protocol 1 𝜋MPC, a secure server-aided multi-party computation protocol

Parties. Initializer I, secure moduleM, server S and set of players P := {P1, . . . ,P𝑛}.

Parameterization. The protocol is parameterized with a session identifier sid, a circuit
𝐶 : ({0, 1}𝑙)𝑛 → ({0, 1}𝑙)𝑛, a security parameter 𝜅, an input length 𝑙 and a projective,
output-projective and output-key-secure garbling scheme4 G = (GbG , EnG , EvG , DeG). In
the following, we use ®𝑥 to abbreviate 𝑥1, . . . , 𝑥𝑛.

Inputs. Every P𝑖 ∈ P holds an input 𝑥𝑖 ∈ {0, 1}𝑙 . The other parties hold no initial input.

Hybrid functionality. The protocol makes use of the ideal functionality FnOT for 𝑛-fold
oblivious transfer (see Definition 3.1).

Channels. I, S and all P𝑖 ∈ P are connected to Z via air-gap switches that are initially
connected. I is connected toM via a data diode. Every player P𝑖 ∈ P is connected via a
(secure) standard channel to bothM and S.

4 A garbling scheme G is called projective if the encoding function consists of 2𝑛𝑚 input keys (also called “wire
labels”), where 𝑛 is the number of input values and 𝑚 is the number of bits in each input value.
We call a garbling scheme output-projective if the decoding information consists of 2 wire labels for each
output bit in each output value, one corresponding to each possible value of that bit.
Informally, output-key secure (OKS) garbling schemes, introduced by Jafargholi et al. [JSW17], maintain their
security properties even if the adversary is provided with an unordered set of output keys, i.e. the possible labels
that can be produced by EvG (·) for each output bit, but without knowledge which bit value they each encode.

Hardening the Security of Server-Aided MPC 91

Hardening the Security of Server-Aided MPC 37

Protocol Phase 1: Garbling

• MGarble(𝐶), executed by I on first activation
1. Close the air-gap switch toZ.
2. Set (�̃�, 𝑒, 𝑑) ← GbG (1𝜅 , 𝐶).
3. Parse 𝑒 =: {𝐿𝑣

𝑖𝑛,𝑖, 𝑗
}𝑖∈[𝑛], 𝑗∈[𝑙],𝑣∈{0,1} and 𝑑 =: {𝐿𝑣

𝑜𝑢𝑡,𝑖, 𝑗
}𝑖∈[𝑛], 𝑗∈[𝑙],𝑣∈{0,1}.

4. For each player P𝑖 ∈ P:
a) Initialize a new instance of FnOT with session identifier sid𝑜𝑡,𝑖 .
b) Send (sid𝑜𝑡,𝑖 , initiate, 𝐿𝑖𝑛,𝑖 =

(
(𝐿0

𝑖𝑛,𝑖,1, 𝐿
1
𝑖𝑛,𝑖,1), . . . , (𝐿

0
𝑖𝑛,𝑖,𝑙

, 𝐿1
𝑖𝑛,𝑖,𝑙
)
)
)

to FnOT.
5. Send (init, �̃�,−−→sid𝑜𝑡 , ®𝐿𝑜𝑢𝑡) toM.

Protocol Phase 2: Distribution

• MDistReq(�̃�,−−→sid𝑜𝑡 , ®𝐿𝑜𝑢𝑡), executed byM after receiving a message (init, �̃�,−−→sid𝑜𝑡 ,
®𝐿𝑜𝑢𝑡) from I
1. Send (circuit, �̃�) to S.
2. Save ®𝐿𝑜𝑢𝑡 .
3. For each player P𝑖 ∈ P, send (labels, sid𝑜𝑡,𝑖) to P𝑖 .

• MDistServer(�̃�), executed by S after receiving a message (circuit, �̃�) fromM
1. Save �̃�.

• MDistPlayer(𝑥𝑖 , sid𝑜𝑡,𝑖), executed by P𝑖 after receiving a message (labels, sid𝑜𝑡,𝑖)
fromM and an input (𝑥𝑖) fromZ
1. Send (sid𝑜𝑡,𝑖 , request, 𝑥𝑖) to FnOT and receive 𝑥𝑖 .
2. Send (input, 𝑥𝑖) to S.

Protocol Phase 3: Computation

• MCalcReq(P𝑖 , 𝑥𝑖), executed by S after receiving a message (input, 𝑥𝑖) from P𝑖 .
1. Save (P𝑖 , 𝑥𝑖).
2. If an entry has been saved for every P 𝑗 ∈ P:

a) Set ®̃𝑦 = EvG (�̃�, ®̃𝑥 = (𝑥1, . . . , ˜𝑥 |P |)).
b) If the execution of EvG aborts, send (output, abort) to every player

P𝑖 ∈ P
c) Else, send (output, �̃�𝑖) to every player P𝑖 ∈ P.

• MCalcRes(�̃�𝑖), executed by P𝑖 after receiving a message (output, �̃�𝑖) from S
1. Save �̃�𝑖 .
2. Send (decode-request) toM.

Protocol Phase 4: Output Decoding

• MDecSend(®𝐿𝑜𝑢𝑡 ,P𝑖), executed byM after receiving a message (decode-request)
from P𝑖 ∈ P.
1. Save (P𝑖 , decode).
2. If an entry has been saved for every player P 𝑗 ∈ P:

92 D. Doerner, J. Mechler, J. Müller-Quade

38 D. Doerner, J. Mechler, J. Müller-Quade

a) Send (decode-response, 𝐿𝑜𝑢𝑡,𝑖) to every player P𝑖 ∈ P.
• MDecEx(�̃�𝑖 , 𝐿𝑜𝑢𝑡,𝑖), executed by P𝑖 after receiving a message (decode-response,

𝐿𝑜𝑢𝑡,𝑖) fromM.
1. Set 𝑦𝑖 := DeG (𝐿𝑜𝑢𝑡,𝑖 , 𝑖, �̃�𝑖).
2. Return 𝑦𝑖 .

We can now state our main theorem:

Theorem 3.1. The protocol 𝜋MPC Fortified-UC-realizes the ideal functionality FMPC in the
FnOT-hybrid model for adversaries adhering to the corruption model of Sect. 3.2.

3.5 Proof Sketch

In the following, we will give a short proof sketch for Theorem 3.1. The complete proof can
be found in the full version.

In order to show Theorem 3.1, we have to show the indistinguishability of a real execution
of 𝜋MPC and the execution of FMPC with a simulator that “simulates” the execution of
𝜋MPC. To this end, the simulator must provide an interactive distinguisher (the environment)
with protocol messages that are indistinguishable from messages of a real execution. The
environment may influence the execution, e.g. by (adaptively) giving inputs to parties,
learning the outputs of honest parties and by communicating with the adversary.

The architecture has been specifically designed to allow simulation:

If the initializer is corrupted, it must follow the protocol flow and expose its secrets to
the simulator by passing them to M (which is simulated by the simulator). Since I and
S cannot be corrupted simultaneously according to our corruption model, the adversary
cannot decrypt (fake) values sent by the simulator or check their validity. With at least one
of both being controlled by the simulator, the environment has not enough information to
verify the circuit execution.

If any player is corrupted, they need to garble their inputs before passing them to the server
S. As such, the simulator can learn their input from FnOT, as players would only be able to
garble their inputs themselves if I is corrupted as well. Following the reasoning above, the
simulator would learn the input labels fromM and can then decrypt the input given to the
simulated S.

If the simulator has committed itself to encrypted random inputs for honest players, which
the environment then learns by adaptively corrupting S, then the simulator is still able to
decrypt the encrypted circuit output to the correct output values by manipulating the output
labels.

We now state the simulator for one considered corruption pattern. The other corruption
cases are handled similarly. For the sake of simplicity, we consider static corruptions only.

Hardening the Security of Server-Aided MPC 93

Hardening the Security of Server-Aided MPC 39

Definition 3.2 (Simulator for corrupted players and a corrupted server). The simulator S
works as follows:

1. Set (�̃�, ®𝐿𝑖𝑛, ®𝐿𝑜𝑢𝑡) ← GbG (1𝜅 , 𝐶).
2. Send the message (circuit, �̃�) to S∗.
3. For each corrupted P∗

𝑖
∈ P∗:

a) Create a new dummy instance of FnOT with session identifier sid𝑜𝑡,𝑖 .
b) Send the message (labels, sid𝑜𝑡,𝑖) to P∗

𝑖
.

4. When receiving a message (sid, input-received,P𝑖) from FMPC for an honest P𝑖:
a) Choose ¤𝑥𝑖 at random.
b) Set ¤̃𝑥𝑖 ← EnG (𝐿𝑖𝑛,𝑖 , 𝑖, 𝑥𝑖).
c) Send the message (input, ¤̃𝑥𝑖) to S∗.

5. When a corrupted P∗
𝑖

sends a message (sid𝑜𝑡,𝑖 , request, 𝑥𝑖) meant for FnOT:
a) Set 𝑥𝑖 ← EnG (𝐿𝑖𝑛,𝑖 , 𝑖, 𝑥𝑖).
b) Have FnOT return (sid𝑜𝑡,𝑖 , response, 𝑥𝑖) to P∗

𝑖
.

6. When receiving the first message (output, ·) from S∗ meant for an honest player
a) For every corrupted player P∗

𝑖
∈ P∗

i. Let 𝑥𝑖 be the input that P∗
𝑖

has sent to FnOT. Set it randomly (𝑥𝑖
𝑅←− 𝑋) if P∗

𝑖
has

not interacted with FnOT.
ii. Send the message (sid, input, 𝑥𝑖) as P∗

𝑖
to FMPC.

7. When FMPC sends a message (sid, output-request,P𝑖) to an honest player P𝑖 ∉ P∗,
delay sending a response until later on. Let all output-requests to corrupted players pass.
8. When S∗ sends a message (output, 𝜙) to an honest player P𝑖

a) If 𝜙 = abort, send (sid, output-response, abort) to FMPC.
b) If 𝜙 is an encoded value �̃�∗

𝑖
server, mark that a decode-request-message was received

from P𝑖 .
9. When a decode-request-message was received from every honest and corrupted player
in P

a) Evaluate 𝑦sim = 𝐶 (𝑥), with 𝑥 being the input of the corrupted players as it was given
to FMPC and the input of the honest players as it was given (in an encoded form) to S∗.

b) For every corrupted player P∗
𝑖

i. Wait for a message (sid, output, 𝑦ideal
𝑖
) from FMPC meant for P∗

𝑖
.

ii. Create a copy �̄�𝑜𝑢𝑡,𝑖 of 𝐿𝑜𝑢𝑡,𝑖 as follows:
• For each 𝑗 ∈ [𝑙]

– If 𝑦sim
𝑖, 𝑗

= 𝑦ideal
𝑖, 𝑗

, set �̄�𝑣
𝑜𝑢𝑡,𝑖, 𝑗

:= 𝐿𝑣
𝑜𝑢𝑡,𝑖, 𝑗

, 𝑣 ∈ [0, 1].
– Else, set �̄�𝑣

𝑜𝑢𝑡,𝑖, 𝑗
:= 𝐿1−𝑣

𝑜𝑢𝑡,𝑖, 𝑗
, 𝑣 ∈ [0, 1].

iii. Send (decode-response, �̄�𝑜𝑢𝑡,𝑖) to P∗
𝑖
.

c) For every honest player P∗
𝑖

• If �̃�∗
𝑖
server can be decoded successfully, send the response (sid, output-

response, pass) to FMPC to let the output pass to (this single) P𝑖 .
• Else, send the response (sid, output-response, abort) to FMPC.

94 D. Doerner, J. Mechler, J. Müller-Quade

40 D. Doerner, J. Mechler, J. Müller-Quade

We will now briefly argue why the environment’s view is computationally indistinguishable
between an execution of 𝜋MPC and a real-world adversary and the execution of FMPC and
the simulator of Definition 3.2 for the case of corrupted players and a corrupted server.

To this end, we define a series of games, starting with the real execution. Finally, we reach
the ideal execution through indistinguishable changes.

Game 1 We now consider an execution with an ideal functionality 〈FMPC〉 that is identical
to FMPC, but also tells the simulator all inputs and lets it determine all outputs. In this
execution, the simulator performs the protocol for the honest parties, using the inputs
provided by the functionality and making outputs through it. Also, FnOT is simulated
honestly. As the changes are only syntactical and oblivious for the environment, it is easy to
see that the environment’s view is identically distributed.

Game 2 In Game 2, the simulator initializes an internal vector $INPUT that saves the
inputs 𝑥𝑖 of all players. Initially set all inputs to random values. If a corrupted player P𝑖

sends an input to FnOT, replace the saved input with the given value.

When S∗ first sends out a output-message to any (honest or corrupted) player, send
(sid, input, 𝑥𝑖) to 〈FMPC〉 for all players with 𝑥𝑖 = $INPUT[𝑖] for every P𝑖 .

Replace the output labels 𝐿𝑜𝑢𝑡,𝑖 in the message (decode-response, 𝐿𝑜𝑢𝑡,𝑖) with a copy
�̄�𝑜𝑢𝑡,𝑖 , where the output labels for the same bit (𝐿0𝑜𝑢𝑡,𝑖, 𝑗 , 𝐿

1
𝑜𝑢𝑡,𝑖, 𝑗

) are conditionally switched
so that the garbled output produced by EvG (�̃�, EnG (𝐿𝑖𝑛, $INPUT)) decodes to the output
returned by 〈FMPC〉.

It is obvious that when $INPUT holds the correct server input of every player it follows that
the result produced by the ideal functionality is identical to the one to be expected from the
server and thus no changes to the output labels will be made. Note that the actual behavior
of the corrupted server has no effect on this change. Thus, the games are indistinguishable.

Game 3 Let us assume that the simulator does not know all inputs. We define a changed
game where an honest player P𝑖 is chosen at random by the simulator. P𝑖 is mostly simulated
honestly, but will choose a (random) input ¤𝑥𝑖 ≠ 𝑥𝑖 such that the resulting ¤𝑦𝑖 := EvG (¤𝑥𝑖 ,
·) ≠ EvG (𝑥𝑖 , ·). ¤𝑥𝑖 is given to FnOT and (in an encoded form) to S∗ and thus saved in $INPUT.
The original input 𝑥𝑖 is still saved and sent in a message (sid, input, 𝑥𝑖) to 〈FMPC〉. This
results in at least one row of 𝐿𝑜𝑢𝑡,𝑖 to be rearranged due to the simulator instructions as to
preserve the correctness of the player outputs.

If a player in Game 3 were to send different inputs to the hybrid functionality FnOT and the
ideal functionality 〈FMPC〉, then the resulting game is still indistinguishable from Game 2
under the output-key secure obliviousness of G.

Hardening the Security of Server-Aided MPC 95

Hardening the Security of Server-Aided MPC 41

Let us assume that there exists an environmentZ that can distinguish between Games 2
and 3, thereby determining for at least one tuple (𝐿𝑣

𝑜𝑢𝑡,𝑖, 𝑗
, 𝑖, 𝑗 , 𝑤) that 𝑣 ≠ 𝑤. Such an

environmentZ can be used to construct a new adversary B that can break the output-key
secure obliviousness of G. Due to the security of G, we thus conclude that Game 2 and
Game 3 are indistinguishable.

Game 4 We now replace replace all (simulated) honest players in P\P∗ with their ideal
world counterparts as in Definition 3.2.

When 〈FMPC〉 sends an input-received-message to the simulator informing about the input
of an honest player P𝑖 ∉ P∗, send the message (input, ¤̃𝑥𝑖) to S∗, where ¤̃𝑥𝑖 is the encoding
of a randomly chosen input 𝑥𝑖 .

When S∗ sends an abort to an honest P𝑖 , respond with abort to any output-request by
〈FMPC〉 for P𝑖 . If S∗ instead sends an output �̃�∗𝑖 to P𝑖 , mark that a decode-request-message
from P𝑖 was received.

After sending out decode-response-messages, try to decode the result �̃�∗
𝑖
received from the

server for any honest P𝑖 and respond with pass to any output-request by 〈FMPC〉 for P𝑖 if
that is the case and abort otherwise.

Game 4 is indistinguishable from Game 3 for any environment Z under the output-key
secure obliviousness, authenticity and the output-projectiveness of G.

Game 5 Replace the ideal functionality 〈FMPC〉 with the ideal functionality FMPC. Game
5 is perfectly indistinguishable from Game 4 for any environmentZ.

We remark that S in the latest adaptation is no longer dependent on the input or out-
put of any party. Since these values are not used in the simulator’s instructions and
both ideal functionalities are identical apart from that, this change is naturally perfectly
indistinguishable.

Note that the protocol described in Game 5 is identical to our simulator instructions. The
indistinguishability of the presented games proves our claim.

For the complete proof, see the full version.

3.6 Efficiency

Regarding the efficiency of the protocol we have multiple aspects of complexity that we
can differentiate. In the following, we will present a summary of our findings regarding the
communication cost, total information flow and computational complexity of the protocol.
The full efficiency analysis can be found in the full version.

96 D. Doerner, J. Mechler, J. Müller-Quade

42 D. Doerner, J. Mechler, J. Müller-Quade

The communication cost of the protocol, with which we denote the total number of messages
sent between protocol participants, with 𝑛 being the number of players, is 2 + 5𝑛 for the
execution of 𝜋MPC. As such, the communication cost is linear in the number of players.

The information flow is our designation for the total number of bits transferred between
parties and is more difficult to determine than the communication cost as it depends on
details of the garbling scheme and the circuit to be evaluated. Using variables for the number
of input bits per player 𝑙, the maximum size of input and output keys 𝑚 and the information
size of the garbled circuit 𝑐, we can determine an upper bound of Θ(𝑐 + 𝑛 · (log(𝑛) + 𝑚𝑙))
bit for the execution of 𝜋MPC alone, which is quasi-linear in the number of players 𝑛.

The computation complexity heavily depends not only on the implementation of the protocol
and its schemes but also the size of the used circuit and the underlying hardware. We note
that only three sub-tasks incur noteworthy computation efforts, namely the garbling of the
circuit, the execution of FnOT and the evaluation of the garbled circuit. It can be seen that
our protocol has the advantage that all players are burdened identically and have outsourced
both the garbling and execution to other participants, namely S and I. Furthermore, even I
can realistically be presented by low-performance hardware, since the initial garbling can
be pre-processed and stored securely before initiation of the protocol with concrete players
if the circuit is known beforehand.

4 Conclusion

While many solutions for server-aided MPC exist, they do not aim to protect the servers
from remote hacks performed by an adversary.

In this paper, we take a first step towards addressing this problem: We have presented a
composable general MPC protocol in the setting of server-aided MPC. By modularizing the
servers and using remotely unhackable hardware modules such as data diodes and air-gap
switches, we can greatly reduce the attack surface.

The resulting protocol is plausibly efficient and provides security going beyond the state of
the art.

Acknowledgements

We woud like to thank Lukas Beeck, Markus Raiber and Rebecca Schwerdt for helpful
discussions on a related but unpublished project.

Jeremias Mechler, Jörn Müller-Quade: This work was supported by funding from the topic
Engineering Secure Systems of the Helmholtz Association (HGF) and by KASTEL Security
Research Labs.

Hardening the Security of Server-Aided MPC 97

Hardening the Security of Server-Aided MPC 43

References

[Al18] Alam, M.; Emmanuel, N.; Khan, T.; Khan, A.; Javaid, N.; Choo, K.K. R.;
Buyya, R.: Secure policy execution using reusable garbled circuit in the cloud.
Futur. Gener. Comput. Syst. 87/, pp. 488–501, 2018.

[Ba16] Bahmani, R.; Barbosa, M.; Brasser, F.; Portela, B.; Sadeghi, A.-r.: Secure
Multiparty Computation from SGX, tech. rep., Cryptology ePrint Archive,
2016.

[Ba17] Baldimtsi, F.; Papadopoulos, D.; Papadopoulos, S.; Scafuro, A.; Triandopou-
los, N.: Server-Aided Secure Computation with Off-line Parties. ESORICS
Part 1/LNCS 10492, pp. 103–123, 2017, arXiv: 9780201398298.

[Be06] Benenson, Z.; Fort, M.; Freiling, F.; Kesdogan, D.; Penso, L. D.: TrustedPals:
Secure Multiparty Computation Implemented with Smart Cards. Eur. Symp.
Res. Comput. Secur./, pp. 34–48, 2006.

[Be21] Beskorovajnov, W.; Dörre, F.; Hartung, G.; Koch, A.; Müller-Quade, J.;
Strufe, T.: ConTra Corona: Contact Tracing against the Coronavirus byBridging
the Centralized-Decentralized Divide for Stronger Privacy. In (Tibouchi, M.;
Wang, H., eds.): Advances in Cryptology - ASIACRYPT 2021 - 27th In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 6-10, 2021, Proceedings, Part II.
Vol. 13091. Lecture Notes in Computer Science, Springer, pp. 665–695, 2021.

[BHR12] Bellare, M.; Hoang, V. T.; Rogaway, P.: Foundations of garbled circuits. Proc.
ACM Conf. Comput. Commun. Secur./, pp. 784–796, 2012.

[BNP08] Ben-David, A.; Nisan, N.; Pinkast, B.: FairplayMP - A system for secure multi-
party computation. Proc. ACM Conf. Comput. Commun. Secur./, pp. 257–266,
2008.

[Br21] Broadnax, B.; Koch, A.; Mechler, J.; Müller, T.; Müller-Quade, J.; Nagel, M.:
Fortified Multi-Party Computation: Taking Advantage of Simple Secure
Hardware Modules. Proc. Priv. Enhancing Technol. 2021/4, pp. 312–338,
2021.

[Bu11] Bugiel, S.; Stefan, N.; Sadeghi, A.-r.; Schneider, T.: Twin Clouds : Secure
Cloud Computing with Low Latency./, pp. 32–44, 2011.

[Ca01] Canetti, R.: Universally Composable Security: a New Paradigm for Crypto-
graphic Protocols. In: 42nd Found. Comput. Sci. Conf. Vol. 16, 2001.

[Da12] Damgård, I.; Pastro, V.; Smart, N. P.; Zakarias, S.: Multiparty Computation
from Somewhat Homomorphic Encryption. In (Safavi-Naini, R.; Canetti, R.,
eds.): Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings.
Vol. 7417. Lecture Notes in Computer Science, Springer, pp. 643–662, 2012.

98 D. Doerner, J. Mechler, J. Müller-Quade

44 D. Doerner, J. Mechler, J. Müller-Quade

[DMN15] Dowsley, R.; Müller-Quade, J.; Nilges, T.: Weakening the Isolation Assumption
of Tamper-proof Hardware Tokens./1, 2015, arXiv: 1502.03487.

[EGL85] Even, S.; Goldreich, O.; Lempel, A.: A Randomized Protocol for Signing
Contracts. Commun. ACM 28/6, pp. 637–647, 1985, arXiv: arXiv:1011.
1669v3.

[GMS08] Goyal, V.; Mohassel, P.; Smith, A.: Efficient two party and multi party
computation against covert adversaries. Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 4965 LNCS/,
pp. 289–306, 2008.

[GMW87] Goldreich, O.; Micali, S.; Wigderson, A.: How To Play Any Mental Game OR
A Completeness Theorem for Protocols with Honest Majority. In: Proc. ACM
STOC. Pp. 218–229, 1987, isbn: 0897912217.

[Gu16] Gupta, D.: Practical and Deployable Secure Multi-Party Computation, Yale
University, 2016.

[JNO14] Jakobsen, T. P.; Nielsen, J. B.; Orlandi, C.: A Framework for Outsourcing of
Secure Computation. Proc. 6th Ed. ACMWorkshop Cloud Comput. Secur.
CCSW ’14/, pp. 81–92, 2014.

[JSW17] Jafargholi, Z.; Scafuro, A.; Wichs, D.: Adaptively indistinguishable garbled
circuits. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics) 10678 LNCS/, pp. 40–71, 2017.

[Ka07] Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. EUROCRYPT 2007 4515/, pp. 115–128, 2007.

[Ke15] Kerschbaum, F.: Oblivious outsourcing of garbled circuit generation. Proc.
ACM Symp. Appl. Comput. 13-17-Apri/, pp. 2134–2140, 2015.

[KMR11] Kamara, S.;Mohassel, P.; Raykova,M.:OutsourcingMulti-PartyComputation./
, 2011.

[KMR12] Kamara, S.; Mohassel, P.; Riva, B.: Salus : A System for Server-Aided Secure
Function Evaluation./, 2012.

[Ra81] Rabin, M.O.: How To Exchange Secrets with Oblivious Transfer, 1981.
[Ya86] Yao, A. C. C.: How To Generate and Exchange Secrets. Annu. Symp. Found.

Comput. Sci./1, pp. 162–167, 1986.

Hardening the Security of Server-Aided MPC 99

