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Abstract
With the increased adoption of artificial intelligence (AI) in industry and society, effective human-AI interaction systems are
becoming increasingly important. A central challenge in the interaction of humans with AI is the estimation of difficulty for
human and AI agents for single task instances. These estimations are crucial to evaluate each agent’s capabilities and, thus,
required to facilitate effective collaboration. So far, research in the field of human-AI interaction estimates the perceived
difficulty of humans and AI independently from each other. However, the effective interaction of human and AI agents
depends on metrics that accurately reflect each agent’s perceived difficulty in achieving valuable outcomes. Research to date
has not yet adequately examined the differences in the perceived difficulty of humans and AI. Thus, this work reviews recent
research on the perceived difficulty in human-AI interaction and contributing factors to consistently compare each agent’s
perceived difficulty, e.g., creating the same prerequisites. Furthermore, we present an experimental design to thoroughly
examine the perceived difficulty of both agents and contribute to a better understanding of the design of such systems.
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1. Introduction
In recent decades, technological advances have led to
artificial intelligence (AI) applications becoming part of
our everyday lives, e.g., when learning a new language
[1] or driving autonomous cars [2]. Like many other
examples of human-AI interaction, it comes down to ap-
propriately assessing the difficulty of different situations
for each agent (human and AI). The consequences for
incorrect estimates can range from rejecting such sys-
tems, e.g., when the human learner is given too difficult
words or grammar without being ready, to potentially
severe consequences, e.g., autonomously driving cars on
a foggy night. Consequently, it is necessary to estimate
each agent’s difficulty for an instance adequately.

Further examples of human-AI interaction that draw
from an estimation of instance difficulty are human-
AI complementarity [3–11], curriculum learning [12–14],
and machine teaching [12, 13, 15–18]. Accurately assess-
ing the difficulty of single instances for both human and
AI agents is central to developing these forms of human-
AI interaction to fully exploit their complementary capa-
bilities while creating pleasant automation experiences.

By reviewing related literature, we observe different
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methods and terms, most prominently uncertainty, con-
fidence, performance (e.g., in [19]), for measuring the
difficulty of human and AI agents, which is why we aim
to delimit our research in the following and create a
shared understanding of the relevant terms. Before div-
ing into the frequently used methods, we elaborate on the
commonly used terms to describe the difficulty. Perfor-
mance represents the aggregated accuracy over multiple
instances for a task or over multiple agents for an in-
stance [10, 19].

Further, confidence and uncertainty are often used in-
terchangeably [20] and serve as a proxy for the difficulty
of an instance. However, Pouget et al. [20] argues that
these notions are not synonyms. Instead, uncertainty de-
scribes the distribution of probabilities over all possible
outcomes, while confidence represents the probability
that a particular decision is correct. When it comes to
difficulty, one must differentiate between objective diffi-
culty and perceived difficulty. The former, for instance,
can be measured by comparing the number of features
of a given task [21]. For the perceived difficulty, one must
distinguish between task and instance difficulty. On the
task level, a common method for human and AI agents
depicts the usage of the average performance over multi-
ple instances (for example, in Hemmer et al. [8], Geirhos
et al. [22]) to determine the perceived difficulty.

However, on an instance level, the perceived difficulty
of human and AI agents is assessed differently. First, a
potential issue arises from an existing gap in access to
relevant information. Usually, the AI agent is trained and
tested on data drawn from the same distribution, thus
having information on the label distribution. However,
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this is often not the case for humans (e.g., in [10, 22, 23]).
Therefore, it remains unclear whether and how, amongst
others, this affects humans’ perception of difficulty. Sec-
ond, the difficulty of single instances is assessed differ-
ently. For AI agents, the distribution of the softmax out-
puts is often used to determine its uncertainty [10, 22].
Contrarily, the human’s perceived instance difficulty is
often measured by observing the distribution of predic-
tions over groups of humans for single instances or by
their average performance for an instance [19, 23]. Con-
sequently, individual skills and capabilities of humans are
neglected, potentially resulting in poor experiences in
human-AI interaction settings [24]. As related literature
shows, humans have distinct cognitive styles which can
affect their perceived difficulty [25]. Hence, neglecting
their individual traits and generalizing their predictions
to determine the perceived difficulty can result in poor
estimation for individuals.

As we observe inconsistencies in the measurement of
the perceived difficulty between human and AI agents,
we outline existing metrics to measure their perceived dif-
ficulty as a first step. Moreover, we scrutinize methods to
compare both agents adequately. Based upon this, we are
interested in adequately examining the difference in the
perceived difficulty between humans and AI. Therefore,
we state the following research question:

RQ: What are the differences in the perceived difficulty of
humans and AI for single instances?

To answer this research question, we conduct a liter-
ature review to evaluate existing research fields relying
on an accurate measurement of the perceived instance
difficulty. Furthermore, we present an experimental de-
sign that avoids the previously mentioned inconsisten-
cies. Through our experiment, we want to analyze the
perceived difficulty of human and AI agents for single
instances, using established metrics like confidence [10]
and PVI [26] adequately. We support our endeavor to
establish adequate methods to consistently measure the
perceived instance difficulty of human and AI agents with
first empirical results based on an existing, public dataset.
Overall, with our experiment, we aim to contribute to
a better and more integrated understanding of how to
adequately compare human and AI agents’ perceived dif-
ficulty leading to a thorough understanding of the design
of human-AI interaction systems.

2. Related Work

2.1. Human-AI Interaction and Instance
Difficulty

With the latest ascent in research on human-AI inter-
action, the deployment of AI in automated systems is

advancing [27, 28]. Hereby, various forms of human-AI
interaction rely on estimating an instance’s difficulty for
effective collaboration. Following, we outline the three
forms of human-AI interaction most relevant to our re-
search: human-AI complementarity, curriculum learning,
and machine teaching.

In the field of human-AI complementarity, recent
research studies complementary team performance—
exceeding the performance each agent (human or AI)
can achieve on their own [3, 5]. In this collaboration, it
is crucial to properly delegate tasks to each agent to ex-
ploit their complementary capabilities [9]. Steyvers et al.
[10] establish a framework to facilitate both human and
AI agents’ confidence scores to investigate factors that
influence complementary capabilities of human-AI col-
laborations. Lai et al. [11] suggest using uncertainty as a
measure to delegate tasks between human and AI agents.
In the work of Fügener et al. [29], the authors evaluate
different delegation strategies based on the performance
of both agents for single instances. They find that hu-
mans’ perception of task difficulty differs from the actual
task difficulty. Lubars and Tan [6] investigate, amongst
others, the effect of the difficulty of single instances to
delegate tasks.

Curriculum learning denotes another form of human-
AI interaction in which the perceived difficulty is relevant
to the overall process. This form of learning is based on
human learning and incorporates the idea that the order
is crucial in which training instances are presented to
a learner [12]. A central aspect of curriculum learning
is the assertion of difficulty levels of single instances.
Wei et al. [13] use the annotator agreement in an image
classification task to determine the difficulty of instances.

In the field of machine teaching, a human or an AI agent
is trained by selecting samples to achieve high learning
outcomes [15]. The selection of training instances can be
grounded on difficulty estimation. For example, Zhang
et al. [16] presents an interactive learning procedure in
which crowd workers are trained based on an approx-
imated difficulty for instances. Similarly, Singla et al.
[17] select training instances for learners based on an
expected uncertainty measured by an AI agent.

2.2. Measuring Perceived Difficulty of
Humans and AI

AI’s perceived difficulty. In Ståhl et al. [30], the authors
evaluate different metrics to compare the uncertainty of
deep learning models. One of these metrics is a Bayesian
network-based approach using dropout [31]. Further,
Xu et al. [32] present a metric that builds on Shannon
entropy [33] to compare the difficulty of different datasets.
Moreover, Ethayarajh et al. [26] extend this metric, called
𝒱-usable information, to apply it to single instances. This
metric, the pointwise 𝒱-information (PVI), is used to



Figure 1: Comparison of performance and confidence for single instances (top: fine-tuned model, bottom: human).

compare the difficulty of single instances with respect
to a model family 𝒱 . According to the authors, PVI, in
contrast to related metrics, quantifies the difficulty of
single instances accounting for how much information
can be extracted beyond the label distribution.

Human’s perceived difficulty. Most works focus on
estimating the perceived difficulty of humans by aggre-
gating over multiple humans. For example, Peterson et al.
[23] asses the disagreement of two decision-makers. In
their work, the authors define the difficulty of a single
instance by using the disagreement of crowdsourcing
annotators. To measure the individual perceived diffi-
culty of instances, Steyvers et al. [10] use a different
approach. The authors use the ordinal responses of hu-
mans to determine their confidence. Similarly, Bıyık et al.
[34] determine human difficulty by asking participants
about their perceived task difficulty.

3. Empirical Validation Using
Public Datasets

Before our experiment, we examine reports of other stud-
ies to investigate the differences in the perceived difficulty
of single instances. Therefore, we utilize publicly avail-
able datasets, e.g., CIFAR10-H [23], modelvshuman [22],
or ImageNet-16H [10]. However, the first two datasets,
CIFAR10-H, and modelvshuman do not contain individ-
ual human confidence or uncertainty measurements. In-
stead, the authors of the datasets [22, 23] estimate the
instance difficulty by aggregating the performance of
multiple human annotators for instances. ImageNet-16H
is the only dataset containing human difficulty measure-
ments in the form of self-reported confidence levels, e.g.,
low, medium, and high. To compare these reported confi-
dence levels with the commonly used technique of aver-
age instance performance, we transformed the confidence
levels to 0 (low), 0.5 (medium), and 1 (high).

Further, we fine-tune an efficientnet model with the
dataset for two epochs and use Monte-Carlo Dropout to
receive the perceived confidence of the AI agent. Finally,

with the confidence of human and AI agents available,
we compare their performance and confidence for single
instances.

Figure 1 illustrates and compares instance performance
and confidence for ten randomly sampled instances of
the ImageNet-16H dataset. The left part represents the
AI agent’s output, while the right part shows the hu-
man’s self-reported confidence. Based on this, we can
make several observations. First, task performance is not
necessarily a reliable factor to determine the perceived
difficulty of an instance. For example, instances seven
to nine have the same performance but differ greatly in
their reported confidence. Second, human and AI agents
can perceive different instances as easy, e.g., the AI agent
has low confidence for instances seven and eight, while
the humans have medium to high confidence. Third, the
human self-reported confidence scores differ among par-
ticipants, as can be seen from the standard deviation of
confidence. We argue that these observations represent
first evidence in the direction of our hypotheses. More
specifically, we can see that the average performance of
an instance cannot be used to determine the perceived
difficulty of an instance for individual humans. Instead,
other metrics need to be considered.

Moreover, the high standard deviation of human con-
fidence for almost all instances indicates that humans
differ in their perceived difficulty. Consequently, the di-
versity of humans must be taken into consideration when
designing human-AI interaction systems.

4. Experimental Design
Our experiment is based on a mixed-effects model that
combines a between-subject and a within-subject design
[35]. We follow the notion of existing works and un-
derstand confidence as a proxy for difficulty [36]. More
precisely, we measure the difficulty of the human and
the AI agent by two metrics: the commonly used confi-
dence [10] and the PVI score [26] as a novel metric that
considers the label distribution. We measure the confi-



dence of AI agents by Monte-Carlo Dropout [31] and for
humans via probabilities, e.g., using a scale between 0%
and 100%. We use a binary classification task to avoid
participants having to assign multiple probabilities. The
binary classification allows us to observe one probabil-
ity, e.g., an image showing a cat with a probability of
80%, and calculate the complementary probability, e.g.,
the complementary probability that the image does not
represent a cat is 20%.
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Measure difficulty 
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Figure 2: Design of the study.

The preliminary experiment design is illustrated in
Figure 2. The experiment is composed of three parts.
Part I includes consent, instructions, and a demographics
questionnaire. Next, Part II comprises two binary classi-
fication tasks—one visual and one textual—and, finally,
Part III is a questionnaire on cognitive styles. In both
tasks, we measure the perceived difficulty of participants
and AI for single instances.

In our experiment, we have two treatments. First, as
we want a consistent comparison of the perceived dif-
ficulty between humans and AI, we must ensure they
have access to the relevant information. However, in
contrast to humans, the AI agent has access to the label
distribution through its training prior to the task. As we
want to examine this effect, we show humans the label
distribution before conducting the task in one condition.
Thus, we hypothesize:

Hypothesis 1. Access to the information on label distri-
bution has an impact on humans’ perceived difficulty of
single instances.

After providing a consistent way to measure the
confidence—as a proxy for the perceived difficulty—of the
human and the AI agent, we want to examine the differ-
ences in their perceived difficulty of instances. Previous
research identified subsets of data on which either human
or AI agent has a better performance, e.g., [22]. As the

performance of human and AI agents is a consequence
of the probabilities they assign to each class and, thus,
their uncertainty, we argue that the perceived difficulty
for an instance can differ even for instances both agents
have classified the same. Thus, we hypothesize:

Hypothesis 2. There are instances for which human and
AI agents make the same prediction but differ in their per-
ceived difficulty.

Within our experiment, we leverage two datasets for
the tasks of Part II to compare the perceived difficulty
of human and AI agents. Both conditions comprise the
same tasks. We chose two different tasks: one visual clas-
sification task and one based on tabular data. Research
shows the impact of different cognitive styles on partici-
pants’ task performance (i.e., [25, 37, 38]). By choosing a
visual and a text-based task, we account for participants’
different cognitive styles and individual perceptions of
difficulty. Accordingly, participants will be asked to con-
duct a questionnaire in which we determine their cogni-
tive styles.We assess these styles by using the validated
items of Kirby et al. [37] (initially presented by Richard-
son [39]). The items of the cognitive style questionnaire
are randomly arranged as suggested by Kirby et al. [37].
All items are measured on a five-point Likert scale. We
hypothesize:

Hypothesis 3. Humans with distinct cognitive styles per-
ceive the difficulty of single instances differently.

5. Discussion
In this work, we propose an experimental design to in-
vestigate the difference in perceived difficulty between
human and AI agents for single instances. To build a
foundation, we assess related work and common met-
rics to estimate instance difficulty. Yet, these studies
insufficiently scrutinize consistent difficulty estimations
between humans and AI. By first examining a related
dataset, we show the discrepancies in difficulty estima-
tion by applying conventional approaches. Thus, we
propose an experiment design that paves the way for a
broad main study in which we: (I) Develop a consistent
way to measure the perceived difficulty of instances, (II)
Examine the differences in the perceived difficulty of hu-
man and AI agents, (III) Investigate a potential cause in
varying perceived difficulty of humans.

Through our main study, we expect to contribute to
the ongoing discussion on developing automated and
reliable AI agents interacting with humans with diverse
skills and capabilities. Moreover, our results will provide
guidance not only in research but also in practice on
designing human-AI interaction systems. A promising
field of research lies ahead.
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