KIT | KIT-Bibliothek | Impressum | Datenschutz

Simultaneous Localization and Calibration (SLAC) Methods for a Train-Mounted Magnetometer

Siebler, Benjamin; Hanebeck, Uwe D. 1; Lehner, Andreas; Sand,, Stephan
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Magnetic field localization is based on the fact that the Earth’s magnetic field is distorted in the vicinity of ferromagnetic objects. When ferromagnetic objects are in fixed positions, the distortions are also fixed and, thus, contain location information. In our prior work, we proposed a simultaneous localization and calibration (SLAC) algorithm based on a Rao-Blackwellized particle filter that enables magnetic train localization using only uncalibrated magnetometer measurements. In this paper, a lower-complexity version of the SLAC algorithm is proposed that only estimates a subset of calibration parameters. An evaluation compares the full and reduced SLAC approach to a particle filter in which the magnetometer is pre-calibrated with a fixed set of parameters. The results show a clear advantage for both SLAC approaches and that the SLAC algorithm with a reduced set of calibration parameters achieves the same performance as the one with a full set of parameters.


Verlagsausgabe §
DOI: 10.5445/IR/1000157987
Veröffentlicht am 05.05.2023
Originalveröffentlichung
DOI: 10.33012/navi.557
Scopus
Zitationen: 4
Web of Science
Zitationen: 1
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Graduiertenkolleg 1126: Intelligente Chirurgie (Graduiertenkolleg 1126)
Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 0028-1522, 2161-4296
KITopen-ID: 1000157987
Erschienen in NAVIGATION: Journal of the Institute of Navigation
Verlag John Wiley and Sons
Band 70
Heft 1
Vorab online veröffentlicht am 23.02.2023
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page