KIT | KIT-Bibliothek | Impressum | Datenschutz

On the effectiveness of the Moulinec–Suquet discretization for composite materials

Schneider, Matti 1
1 Institut für Technische Mechanik (ITM), Karlsruher Institut für Technologie (KIT)

Abstract:

Moulinec and Suquet introduced a method for computational homogenization based on the fast Fourier transform which turned out to be rather computationally efficient. The underlying discretization scheme was subsequently identified as an approach based on trigonometric polynomials, coupled to the trapezoidal rule to substitute full integration. For problems with smooth solutions, the power of spectral methods is well-known. However, for heterogeneous microstructures, there are jumps in the coefficients, and the solution fields are not smooth enough due to discontinuities across material interfaces. Previous convergence results only provided convergence of the discretization per se, that is, without explicit rates, and could not explain the effectiveness of the discretization observed in practice. In this work, we provide such explicit convergence rates for the local strain as well as the stress field and the effective stresses based on more refined techniques. More precisely, we consider a class of industrially relevant, discontinuous elastic moduli separated by sufficiently smooth interfaces and show rates which are known to be sharp from numerical experiments. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000157994
Veröffentlicht am 05.05.2023
Originalveröffentlichung
DOI: 10.1002/nme.7244
Scopus
Zitationen: 9
Web of Science
Zitationen: 8
Dimensions
Zitationen: 10
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 0029-5981, 1097-0207
KITopen-ID: 1000157994
Erschienen in International Journal for Numerical Methods in Engineering
Verlag John Wiley and Sons
Band 124
Heft 14
Seiten 3191-3218
Vorab online veröffentlicht am 05.04.2023
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page