
CNNParted: An Open Source Framework for Efficient

Convolutional Neural Network Inference Partitioning in

Embedded Systems

Fabian Kreß, Vladimir Sidorenko, Patrick Schmidt, Julian Hoefer, Tim
Hotfilter, Iris Walter, Tanja Harbaum, Jürgen Becker

aKarlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

Applications such as autonomous driving or assistive robotics heavily rely
on the usage of Deep Neural Networks. In particular, Convolutional Neural
Networks (CNNs) provide precise and reliable results in image processing
tasks like camera-based object detection or semantic segmentation. How-
ever, to achieve even better results, CNNs are becoming more and more
complex. Deploying these networks in distributed embedded systems thereby
imposes new challenges, due to additional constraints regarding performance
and energy consumption in the near-sensor compute platforms, i.e. the sensor
nodes. Processing all data in the central node, however, is disadvantageous
since raw data of camera consumes large bandwidth and running CNN infer-
ence of multiple tasks requires certain performance. Moreover, sending raw
data over the interconnect is not advisable for privacy reasons. Hence, of-
floading CNN workload to the sensor nodes in the system can lead to reduced
traffic on the link and a higher level of data security.

However, due to the limited hardware-resources on the sensor nodes, par-
titioning CNNs has to be done carefully to meet overall latency requirements
and energy constraints. Therefore, we present CNNParted, an open-source
framework for efficient, hardware-aware CNN inference partitioning targeting
embedded AI applications. It automatically searches for potential partition-
ing points in the CNN to find a beneficial workload distribution between
sensor nodes and a central edge node. Thereby, CNNParted not only an-
alyzes the CNN architecture but also takes hardware components, such as
dedicated hardware accelerators and memories, into consideration to evaluate
inference partitioning regarding latency and energy consumption.

Preprint submitted to COMNET March 3, 2023

Exemplary, we apply CNNParted to three commonly used feed forward
CNNs in embedded systems. Thereby, the framework first searches for several
potential partitioning points and then evaluates the latter regarding inference
latency and energy consumption. Based on the results, beneficial partition-
ing points can be identified depending on the system constraints. Using the
framework, we are able to find and evaluate 10 potential partitioning points
for FCN ResNet-50, 13 partitioning points for GoogLeNet, and 8 partitioning
points for SqueezeNet V1.1 within 520 s, 330 s, and 140 s, respectively, on an
AMD EPYC 7702P running 8 concurrent threads. For GoogLeNet, we deter-
mine two partitioning points that provide a good trade-off between required
bandwidth, latency and energy consumption. We also provide insights into
further interesting findings that can be derived from the evaluation results.

Keywords: Convolutional Neural Networks, Embedded Systems, Hardware
Accelerator, Simulation Framework, Hardware/Software Co-Design

1. Introduction

In the last decade, Deep Neural Networks (DNNs) have been the cen-
ter of attention in research focused on image processing. This is due to the
high level of accuracy achieved by these networks and the possibility to de-
ploy them in many different use cases, e.g. autonomous driving, intelligent
prosthetics and assistive robotics [1]. However, due to the increasing com-
putational complexity of these networks [2], their use in embedded hardware
presents new challenges.

It is no longer feasible to deploy such networks on general-purpose CPUs
or GPUs, since these platforms are not able to provide sufficient inference
latency and throughput. Instead, dedicated accelerators as well as hardware/
software-co design are necessary techniques to allow the efficient usage of
these Convolutional Neural Network (CNN) models. Through these means,
it is possible to increase performance and energy efficiency by more than 100x
and 1000x, respectively [3]. Still, the compute power necessary to execute
these algorithms continues to increase.

Several emerging applications rely on a combination of multiple sensors,
such as cameras, lidars and radars, instead of single static images in order
to perceive their environment. In assistive robotics, the focus lies on per-
sonalization and real-time capabilities to achieve user acceptance. The robot
utilizes cameras and other sensors in order to recognize people and to perceive

2

CNNParted 3

Sensor Node Edge Node

L
in
k

Edge Node

Initial Network Partitioned Network

Figure 1: CNNParted automatically evaluates various partitioning points of a CNN model
on multiple nodes. Both, sensor and edge node are embedded platforms with the former
being constrained in energy consumption and area. The link layer transmits intermedi-
ate results and can be inserted in between any network layer. As a result, CNNParted
outputs metrics for multiple potential partitioning points that help the designer efficiently
distribute the workload.

its environment. Real-time recognition is facilitated through local execution
in the robot by dedicated accelerators [4] instead of remote computations.
This also enhances privacy of the data.

Additionally, autonomous driving is another use-case that benefits from
CNNs. Data from different sensors is evaluated by a DNN in order to perform
object detection and semantic segmentation. The evaluated sensor data can
then be used for driver-assistance systems such as lane assistants, face recog-
nition [5] and also fully autonomous vehicles. The different sensor nodes
are all connected to a centralized Electronic Control Units (ECUs) by an
on-board network. It is desirable to reduce the amount of traffic on the net-
work, hence performing parts of the DNN computation directly in the sensor
node is advantageous. This approach has the added benefit of increased data
security while simultaneously keeping the communication latency low, since
reconstructing raw input data from intermediate feature maps requires deep
knowledge of the CNN model and its parameters.

To deploy CNN-based applications in embedded and distributed systems,
we present CNNParted1, an open source framework which searches for bene-
ficial partitioning points in a feed forward CNN and evaluates them based on
a given system architecture. As shown in Figure 1, the framework evaluates

1https://github.com/itiv-kit/cnn-parted

3

https://github.com/itiv-kit/cnn-parted

several configurations, where the first partition of CNN layers is executed
on a sensor node, while the second partition is processed on a central edge
node. Apart from evaluating latency and energy consumption of both com-
pute platforms, CNNParted also considers the link in between, which is used
to transfer the output feature map of the last CNN layer processed in the
sensor node to the edge node. This paper is an extended version of our
work presented in [6], where we studied the partitioning of CNNs in general
and presented a toolchain to evaluate inference partitioning for several feed
forward CNNs. The extended contributions in this paper are as follows:

• We present CNNParted, an open source simulation framework for eval-
uating energy and latency of CNN partitioning in embedded systems

• We show the application of CNNParted to obtain latency and energy
consumption for different CNN inference partitioning

• We evaluate our tool by automatically identifying potential partitioning
points of multiple, typical feed forward CNNs, namely FCN-ResNet50,
GoogLeNet, and SqueezeNet

• We give insights into beneficial partitioning of these CNNs for different
system setups, evaluating also the impact of various link configurations

The remainder of this paper is divided into four sections. In Section 2, we
analyze the current state of the art to highlight the relevance of CNNParted.
Section 3 gives a detailed overview of the concept and implementation of the
framework. In Section 4, we evaluate the performance of CNNParted for
three different CNNs. Finally, Section 5 concludes this paper and provides
an outlook on the next steps.

2. Related Work

Since DNN inference imposes heavy computational and energy require-
ments it is not feasible to execute the full network on the sensor nodes [7]. It
follows that these operations must be moved to other, more powerful devices.
To ease the computational burden, several accelerator architectures specific
for co-deployment in sensor nodes have been proposed. An example of this
is RedEye, an analog accelerator that is connected directly to the pixel array
of a camera [8]. It is equipped with dedicated functional units to perform the
operations most commonly found in CNNs, i.e. computations, max pooling,

4

and is also capable of performing quantization operations. Partitioning of
a GoogLeNet between RedEye and a second computational node, a Jetson
TK1 GPU, showed an improved latency while simultaneously reducing the
overall power consumption slightly.

Besides of designing specialized accelerators for embedded platforms to
meet latency and energy constraints, research has also been carried out con-
sidering DNN inference partitioning over multiple nodes. However, these
mainly take off-the-shelf platforms like GPUs or Field-Programmable Gate
Array (FPGA) based hardware IP modules for DNN inference partitioning
into account and mostly target only datacenter applications [9, 10, 11, 12, 13].
Moreover, approaches such as Distributed Deep Neural Networks (DDNNs)
proposed by Teerapittayanon et al. consider DNN inference partitioning
already during training, showing reduced communication overhead by main-
taining high accuracy [14].

Ghasemi et al. propose a framework for energy-efficient partitioning of a
DNN between a user device and a cloud server [15]. Their goal is to mini-
mize the energy consumed by the user device during computation as well as
transmission while executing a network of DNNs. The problem is formulated
as a weighted flow graph and the optimal partitioning point is calculated by
a min-cut algorithm. However, their approach relies on previous profiling
of the power requirements of the user device. For each new accelerator, the
above step must be repeated to determine the energy consumption of the
hardware used.

An edge-host inference partitioning approach has been presented by Ko
et al. [16]. They designed and synthesized an inference engine containing
144 16-bit MAC units, an on-chip buffer and a JPEG encoder and decoder
which allows storing weights in compressed format. They were able to prove
that DNN partitioning can be beneficial regarding throughput and energy-
efficiency. However, they do not provide a hardware-aware design space
exploration for DNN partitioning.

Similarly, the Deep Compressive Offloading framework, presented by Yao
et al., aims for reducing link latency by adding lightweight encoder and de-
coder in between the partitioned neural network [17]. Even though the results
show very small accuracy loss, the authors only evaluate latency and energy
consumption for off-the-shelf platforms in the sensor node, i.e. two different
Android phones.

Hu et al. propose the usage of autoencoder-based compression to opti-
mize throughput and accuracy of a pipelined CNN inference [18]. Similar to

5

the approach presented in this paper, the first inference stage is placed in
transmitting node, i.e. the sensor, while the second is performed by the re-
ceiver. Thereby, to reduce communication overhead between both platforms,
an Autoencoder is inserted. However, their approach focuses on computa-
tion load-balance but does not consider power consumption or the accelerator
embedded near the sensor. This would be helpful when identifying optimal
partitioning points of the CNN.

Zhao et al. present DeepThings, an open source framework to split CNN
inference across multiple edge nodes leading to lower local memory require-
ments as well as drastic improvements on performance [19]. The network
is automatically split into multiple, independent tiles which are then dis-
tributed to the various nodes while considering their individual compute
resource constraints. Still, the authors only consider methods to optimize
scheduling while ignoring the hardware implementation of the accelerator. It
follows that this method only improves latency and throughput by dynamic
load balancing while considerations of energy across the different nodes are
neglected.

A co-exploration method for hardware and neural architecture co-design
targeting real-time applications is introduced by Yang et al. [20]. To achieve
this, the network is split across multiple FPGAs connected by a network-on-
chip. A feedback loop is used in the exploration step to improve accuracy
and hardware efficiency. However, their approach again does not consider
energy needed by the hardware and can therefore not be used to optimize
energy efficiency of embedded Artificial Intelligence (AI) scenarios.

An approach to partition multiple CNNs across a network of IoT devices
is proposed by Disabato et al. [21]. The network of devices is modelled as a
graph where vertices are only connected if they are in communication range.
The goal is to minimize the total latency of the data processing. To this end,
the individual latencies of computation and communication are calculated
and the optimization is formulated as a binary linear program. The solution
is calculated by a solver. Similar to previously discussed approaches, the au-
thors disregard energy requirements which makes this approach not suitable
when trying to find an energy efficient partitioning.

To the best of our knowledge, there is a lack of tools that can find a ben-
eficial CNN inference partitioning point considering the deployed hardware
architecture and the link between compute platforms. Hence, in this paper,
we propose CNNParted, a hardware- and link-aware framework for determin-
ing efficient workload distribution of a CNN in embedded AI applications.

6

3. CNNParted

As already mentioned, several embedded applications like autonomous
driving or assistive robotics rely on multiple sensors to achieve a good per-
ception of the environment. With the rising number of sensors deployed in
such systems, the amount of captured data increases and, hence, sending
raw data to an other node in the network for processing becomes disadvan-
tageous. Consequently, recent embedded systems consist of distributed com-
pute platforms enabling data preprocessing close to the sensor. As a result,
the amount of data to be transferred is significantly reduced, yet computa-
tionally intensive applications such as semantic segmentation still have to be
performed in a central computing node.

In applications such as autonomous driving, there are multiple tasks run-
ning in parallel requiring a very powerful compute node to meet the latency
constraints. Overcoming this limitation can be achieved by offloading even
more workload from the central compute platform to the sensor nodes in-
cluding e.g. CNN inference. Consequently, this approach not only results in
lower link utilization but also takes the limited compute resources in the cen-
tral platform into account. Overall, partially offloading CNN workload to the
sensor node helps to achieve lower link usage and higher system performance.

However, especially sensor nodes are constrained in energy consumption
as well as in available area on the chip. In order to allow for operation on
limited energy and area, highly specialized hardware accelerators have to be
deployed in the sensor node. This leads to an increased complexity of the
hardware/software co-design, since partitioning of CNN inference also has to
take hardware requirements into account to achieve high energy efficiency and
low link utilization. In the following, we therefore present CNNParted, an
open source framework for automated design space exploration of inference
partitioning in distributed compute platforms.

The aim of the framework is to find a good trade-off for CNN inference
partitioning in terms of latency, energy consumption, required link band-
width and workload distribution. Providing a full system model is thereby
not required, since usage of constraints, e.g. maximum available bandwidth,
allows to take the impact of other nodes on the link into account. Hence,
modelling of the actual system can be simplified by solely considering a near-
sensor node (Sensor Node) which is connected to a central compute platform
(Edge Node) over a specific link. An overview of CNNParted is provided in
Figure 2.

7

�
Config File

DNN Analyzer

Sensor Node

Node Thread

Link

Link Thread

Edge Node

Node Thread

�
HW Arch.

�
Link

�
Spreadsheet

Partitioned Networks

Results

Figure 2: Overview of CNNParted. The framework takes a configuration file as input
containing the CNN architecture and the node parameters. First, the DNN Analyzer
determines several partitioning points of the CNN, then the hardware-aware evaluation of
these points is performed. Therefore, CNNParted takes the architecture description and
a link configuration as input and outputs results for energy consumption and latency.

CNNParted is designed to be flexible and extensible allowing for the in-
tegration of a broad range of system simulation and hardware/software co-
design tools into the workflow. Its goal is to find beneficial partitioning
points in a feed forward CNN, however, it can also be used for other DNNs
by replacing CNN-related tools and adapting the search algorithm accord-
ingly. As input, CNNParted takes a single configuration file containing the
following information:

• The CNN to be analyzed as well as the input size.

• The sensor and edge node configuration, including the CNN layer name
to be run on the specified hardware accelerator at a certain frequency

8

and the tool settings for evaluating the energy consumption and la-
tency. In case a real platform should be used for evaluation, only the
device, the number of threads and the number of evaluation runs for
determining the median latency have to be defined.

• The link configuration including, e.g. the data bit width, as well as the
specific communication protocol parameters.

• A constraint for limiting the maximum output feature map size to be
sent over the link, i.e. the maximum available transmission bandwidth,
to account for other nodes in the system architecture. The list of
constraints can be extended depending on user requirements, e.g. by
specifying a maximum layer depth for searching beneficial partitioning
points or a maximum number of parameters to account for the limited
memory capacity in the sensor node.

After reading the configuration file, CNNParted first analyzes the CNN
architecture and determines potential partitioning points. The correspond-
ing module is called DNN Analyzer. Subsequently, the resulting set of par-
titioned models is evaluated regarding energy consumption and latency for
each part of the system, i.e. sensor node, link, and edge node. Thereby, to
reduce the overall run time of CNNParted, the evaluation of each system
module runs in a separate thread. Finally, the evaluator collects the sim-
ulation results of the preceding step and generates estimates of the energy
consumption and latency for each partitioned model. As output, CNNParted
provides the data in spreadsheet format to the system designer for determin-
ing the best partitioning point regarding the system constraints. We will
provide some insights into the interpretation of these results in Section 4.

3.1. DNN Analyzer

Manually setting possible partitioning points in CNNs takes a huge amount
of time, especially for large model architectures consisting of more than a
hundred layers. In addition, partitioning can only be done if the architec-
ture is known to the tool which is not always the case. Since CNNParted
is meant to be used for any feed-forward CNN, a methodology is required
to automatically determine potential partitioning points in unknown neural
architectures. CNNParted therefore contains a module to analyze the given
neural network called DNN Analyzer, which is based on PyTorch.

9

Conv2D

BatchNorm

ReLU

Conv2D

BatchNorm

ReLU

Conv2D

BatchNorm

+

ReLU

Conv2D

BatchNorm

Figure 3: Example of a residual layer containing skip connection taken from FCN ResNet
architecture [22]. Partitioning within such blocks is usually disadvantageous, since this
requires higher link bandwidth.

To retrieve basic information of the given CNN, a forward pass including
forward hooks is performed on the model using the torchinfo module. It
outputs a list of the configuration of all layers and their sublayers, if any
exists, which is used to further analyze the architecture of the CNN. For
flattened feed forward models containing no sublayers determining potential
partitioning points is trivial. However, partitioning of neural networks is
not advisable for each individual layer or layer type, respectively. State-of-
the-art networks often use skip connections as shown in Figure 3 to prevent
vanishing gradients during training. Skip connections are usually grouped
into building blocks. However, partitioning the network within these building
blocks would introduce a larger amount of data to transfer and a greater
memory footprint. Hence, potential partitioning points are usually placed
in between the aforementioned building blocks and in layers without skip
connections.

Consequently, the DNN Analyzer has to find these building blocks based
on the architecture description. Therefore, the CNN is converted into a graph

10

representation to allow for depth-first search of the layer levels. The recursive
function implementing this search, shown in Algorithm 1, adds each leaf layer
on the current level directly to the list of potential partitioning points.

Algorithm 1: Depth-first search to identify potential partitioning
points in the given CNN architecture.

1 function GetPartPoints
Input : CNN architecture, root module
Output: potential partitioning points

2 found ← True
3

4 if root module is leaf layer then
5 insert root module into partPointList
6 else
7 found ← FindPartitions(root module) // call Algorithm 2

8 end
9

10 if found is True then
11 for each neighbor in CNN architecture do
12 GetPartPoints(CNN architecture, neighbor) // recursive call

13 end

14 end

Open source machine learning frameworks such as PyTorch offer multi-
level DNN architectures based on special layer types, e.g. ModuleDict or
Sequential [23], to implement residual layers or skip connections, it is also
necessary to iterate through their child layers. Hence, the DNN Analyzer
evaluates the forward pass of all modules containing sublayers to recognize
such connections in the CNN. The implementation of this is presented in
Algorithm 2.

Thereby, the submodules of the given CNN layer are each appended to
a list of layers building a feed forward neural network architecture without
any branches, i.e. DNN Analyzer reorganizes the model into a sequential
block. This is then evaluated as well as the original module using a randomly
initialized tensor. If both models return the same output tensor, all direct
sublayers can be added to the list of potential partitioning points, since
no skip connections have been found. Subsequently, Algorithm 1 continues
its search by evaluating the neighbors of the given module. Otherwise, if
the models return different tensors after evaluation, the depth-first search

11

Algorithm 2: Evaluation of modules to recognize partitioning
points between submodules.

1 function FindPartitions
Input : CNN module

2 seq ← new List
3

4 for each m in module.children do
5 append m to seq
6 end
7

8 rand tensor ← random tensor
9 res1 ← evaluate(seq, rand tensor)

10 res2 ← evaluate(module, rand tensor)
11

12 if res1 and res2 are equal then
13 if module in partPointList then
14 replace module in partPointList by submodules
15 else
16 insert all submodules in partPointList
17 end
18 return True

19 end
20

21 return False

stops at this point and moves on to the next neighbor looking for potential
partitioning points until all branches have been explored.

Finally, the DNN Analyzer analyzes the output feature map size of each
partitioning point and filters out all CNN layers that do not meet the cor-
responding constraint. The resulting list contains all potential partitioning
points of the CNN and can be accessed by other classes in the CNNParted
framework for evaluating energy consumption and latency of the sensor and
edge node, as well as for the link in between these platforms.

3.2. Node Evaluation

CNNParted assumes an embedded system setup which consists of a data
processing node close to the sensor, the sensor node, and a central compute
platform, the edge node. In contrast to the development of server hardware
architectures, which mainly focus on low latency and high throughput, sev-
eral additional constraints must be considered in the design of embedded

12

systems. Especially due to the limited energy consumption in the sensor
node, an extensive hardware/software co-design is particularly important to
meet performance requirements of the system. Therefore, achieving high
energy efficiency for CNN inference partitioning requires a hardware-aware
evaluation of the system.

Usually, Convolution (CONV) layers contribute by far the majority of
the computational operations to most CNNs. For example, as shown by
Guo et al, in VGG-11, they account for more than 98% of the operations
performed [24]. Therefore, the evaluation of the embedded platform within
CNNParted focuses on CONV layers to estimate energy consumption and
latency as well as the required bandwidth on the link between sensor and
edge node. Consequently, this methodology offers a first step towards reduced
simulation time, which is very important in the context of hardware/software
co-design.

CNNParted provides a common API which allows to adapt different tools
to the workflow for evaluating important metrics, i.e. latency and energy
consumption of the potential CNN inference partitions. Consequently, tools
other than the two presented in the following can be easily integrated into
CNNParted if needed.

3.2.1. Model-based Node Evaluation

In embedded hardware platforms, specialized accelerators are often de-
ployed to meet performance requirements of the corresponding application.
Thereby, these architectures are optimized towards high energy efficiency,
high throughput, and low latency. In recent years, many different CNN in-
ference hardware accelerators have been proposed [25, 26, 27, 28, 29], few of
them being open source as well [30, 31]. Each of them has been designed
for either a single application or a range of use cases offering more flexibility.
However, since each of the architectures has its advantages and drawbacks,
such as power and area consumption, performance, and flexibility, it is not
trivial to determine a suitable design for the CNN workload given the system
constraints.

CNNParted requires a highly flexible and rapid simulation framework
to evaluate important metrics of these CNN hardware accelerators for vari-
ous workloads including search for optimal mapping on the architecture. In
general, several frameworks have been proposed offering cycle-accurate sim-
ulation and evaluation of Application-Specific Integrated Circuits (ASICs)
[32, 33, 34] for DNN inference. Even though these come with high accuracy

13

of the estimated metrics, the major drawback is the enormous simulation
time for analyzing each cycle individually. Hence, this is not a viable ap-
proach to evaluate different layers of a given CNN rapidly.

Consequently, CNNParted focuses on giving first estimates to support the
system design process. Trading accuracy for significantly reduced simulation
time thereby allows to evaluate a broader range of hardware accelerators for
CNN inference partitioning. There are several of such higher-level simulation
frameworks available, most of which are also available as open source [35, 36,
37, 38, 39, 40]. However, most of these tools lack flexibility because they
are tied to a specific hardware accelerator architecture or offer only a few
adjustable parameters, resulting in limited support for ASICs.

In our proposed framework, we use Timeloop [41] together with Accelergy
[42] since this provides a fully flexible hardware design space as well as fine-
grained analytical models to produce good estimates for the most important
metrics. Based on a given model of the hardware accelerator, Timeloop first
searches for an optimal inference mapping of a single CONV layer and then
evaluates the corresponding latency. Therefore, CNNParted first extracts all
relevant layers as well as the corresponding input shape and then launches
Timeloop for analysis. As an output of the mapping, the tool also gives
detailed statistics about each individual module of the accelerator allowing
also for estimating the energy consumption of the ASIC. However, since
Timeloop itself only provides very basic component libraries, other tools are
required to provide more reliable estimates for each CNN layer. Accelergy
is an open source tool for evaluating energy consumption based on action
counts of each instantiated module. It provides primitive component libraries
and calls estimation plugins for generating energy consumption estimates for
each primitive. Within CNNParted, we integrate the CACTI [43] plugin
for evaluating energy consumption and latency of the memories inside the
accelerator. Thereby, the tool is able to generate good estimates for these
metrics since it takes the architecture as well as the technology parameters of
the memory into account. For modelling the power consumption and latency
of the logic components integrated in the accelerator, CNNParted uses the
Aladdin [44] plugin. This accelerator simulator allows for evaluation of the
design without the need for an RTL description based on the construction of
a Dynamic Data Dependence Graph (DDDG). Overall, integrating Timeloop
and Accelergy hence allows for fair comparison of different ASICs for each
CNN layer in a reasonable amount of time.

14

3.2.2. Measurement-based Node Evaluation

As already mentioned, since many hardware accelerators remain non open
source, accurate models are not always available. In addition, accounting for
embedded systems containing only a CPU or a GPU is not possible using
simulation tools such as Timeloop. Hence, CNNParted provides a module
called Generic Node which performs latency measurements on real platforms
instead of performing model-based simulations. We therefore apply PyTorch
Benchmark in our framework [23].

Apart from the possibility of running multiple threads to reduce overall
run time, it can ensure good performance metrics through warm-up run and
CUDA synchronization at startup. Further, Python is available for many
platforms and operating systems ensuring the execution of CNNParted on a
broad range of embedded systems. This approach consequently allows de-
signers to deploy either high-performance computing platforms, e.g. NVIDIA
Jetson TX-2, or general-purpose embedded CPU platforms, such as a Rasp-
berry Pi, depending on the workload and use case. Nevertheless, real mea-
surements on Commercial-Off-the-Shelf (COTS) platforms usually have the
disadvantage of significant statistical variances that can occur due to sev-
eral other tasks being executed in parallel on these operating systems. To
overcome this, CNNParted therefore determines the median value of 1000
measurements to achieve more reliable inference latency estimations.

However, accounting for the power consumption of the node is less ac-
curate in this configuration because COTS platforms typically implement
general-purpose components that introduce noticeable overhead. In addition
to peripherals, the operating system and tasks running in parallel have a
significant impact on overall system power consumption. CNNParted there-
fore neglects this metric for the Generic Node, as it assumes constant power
consumption.

3.3. Ethernet Link Model

With the modular structure of the framework, various models of the par-
tition interconnection link can be implemented and easily integrated into the
toolflow. Conceptually, this is the link that carries feature maps between two
neighbouring layers of the CNN, where the partitioning takes place.

In order to estimate the impact of the link on the overall performance
of the modelled CNN, link power consumption and transmission latency are
taken into account. In the current implementation, copper-based Ethernet is
assumed as the connection link, although development of other link models,

15

e.g. Bluetooth, is considered in near future. Data is assumed to be trans-
ferred over the link in a deterministic fashion, i.e. with a certain amount of
data being transmitted over equal intervals of time.

Power estimation for standard Ethernet is based on typical power con-
sumption values of Physical layer (PHY) devices and latency is calculated
based on queuing time with the defined line rate and cable propagation delay
[6]. Thus, transmission latency model depends on four user-defined parame-
ters: overall amount of data produced by the source CNN layer, maximum
Ethernet packet size, link bandwidth and cable length.

Nevertheless, with improvement of energy efficiency being one of the pri-
mary purposes of the CNNParted framework, the model is enhanced with a
generalized Energy-Efficient Ethernet (EEE) model based on Equation 1 to
compute mean power consumption E[PEEE] [45]. Not being restricted to spe-
cific energy-saving strategies, this model allows to explore various approaches
and improve power consumption of the link on the conceptual level.

PEEE = P · (1− (1− σoff)(1− ρ))
Toff

Toff + TS + TW

(1)

Here, mean baseline power consumption EP is that of the legacy Ethernet.
Link utilisation ρ is dependent on the use case and must be less than one for
correct functioning of the model. σoff represents the ratio between power
consumption in normal and Low-Power Idle (LPI) operation modes of the
PHY device and estimated to be 0.1 [45, 46]. An important input parameter
of the model, E[Toff] is the mean duration of LPI mode and is defined by
an energy-saving strategy and must be specified explicitly. Two more pa-
rameters, TS and TW are the active-to-sleep and sleep-to-active transition
times respectively. The current model uses the minimum TS and TW values
as specified in the corresponding standard [47].

As the deterministic traffic model is assumed, latency evaluation does
not differ significantly from the legacy Ethernet. As long as the link is never
overloaded, it is sufficient to only add the link wake-up time TW to the legacy
latency model. To ensure that the link bandwidth is never exceeded at a
specific feature map transmission rate FFM and line rate B, the following
condition must be satisfied:

Ndata

B
+ TW + Ts ≤

B

FFM

(2)

The EEE-enabled latency model is described with Equation 3, where Twire

16

being the cable propagation delay.

TEEE = TW +
Ndata

B
+ Twire (3)

Based on these equations, CNNParted can estimate the latency and energy
consumption of the link and its components for each potential partitioning
point of the CNN. Overall, this approach enables a bandwidth-aware evalu-
ation of CNN inference partitioning during design time.

4. Evaluation

In the following, we show the application of CNNParted for inference par-
titioning of typical feed forward CNNs. The evaluation is executed on two
different systems, especially providing a good comparison regarding frame-
work runtime. One is based on a 64-core AMD EPYC 7702P, the second
system is built of an octa-core Intel Xeon W-2145 and an NVIDIA RTX
A6000 which is designed and optimized for visual computing. Both sys-
tems are running Rocky Linux and are executing CNNParted using the same
tools, i.e. Python, PyTorch, Timeloop and Accelergy including CACTI and
Aladdin plug-ins.

For the model-based node evaluation, we use always the same Timeloop
configuration to allow for a fair comparison. The tool runs eight threads in
parallel and targets a delay- and energy-optimal mapping of each CONV layer
of the given CNN for a specific hardware accelerator architecture. Thereby,
we make use of the linear-pruned search algorithm, which uses pruning tech-
niques to improve efficiency of the linear search. It is terminated as soon as
the victory condition is fulfilled, meaning 100 consecutive valid but subopti-
mal mappings have been determined. Overall, this configuration offers good
results while achieving low simulation time.

Since we want to consider different types of hardware accelerators in our
evaluation, we use two distinct architectures in the following. The more
powerful Simba-like architecture [48] is clocked at 500 MHz and provides
good performance for large CNNs. It is based on a weight-stationary dataflow
and uses 1024 Processing Elements (PEs). Optimized towards low energy
consumption, we choose to also evaluate an Eyeriss-like architecture [49]
which is clocked at 200 MHz and offers suitable latency and throughput for
smaller CNNs. In contrast to the Simba-like architecture, it applies row-
stationary dataflow and consists of 256 PEs for processing CNN layers.

17

4.1. Workloads
For the evaluation, we select three commonly used CNNs: Fully Convo-

lutional Network (FCN) ResNet-50 [22] for semantic segmentation as well
as GoogLeNet [50] and SqueezeNet V1.1 [51] designed for application in im-
age classification tasks. When loading into CNNParted, the framework adds
an Identity layer in the beginning of each CNN to consider evaluation of
executing all layers on the edge node.

ResNets can be configured at different levels of complexity. FCN ResNet
usually uses ResNet-50 or ResNet-101 configuration as backbone, achieving
91.4% or 91.7% pixel accuracy, respectively. In general, the network topology
consists of configuration independent head and tail layers and four Bottle-
neck blocks. The latter contains a certain amount of residual blocks, which
is determined by the configuration. In contrast, the network head is built
of a large convolution and max pool to reduce the dimensions, and a batch
normalization layer whereas the tail consists of two CONV layers with batch
normalization. As already mentioned, since partitioning in between residual
layers is not beneficial, the submodules of the Bottleneck layers are not con-
sidered as potential partitioning points in CNNParted. Hence, this results in
25 partitioning points for FCN ResNet-50 determined by the DNN Analyzer.
Furthermore, if the maximum output shape at the split point is restricted to
a feature map with 450,000 elements, 10 possible configurations remain.

In a similar fashion, potential partitioning points are determined for
GoogLeNet. It consists of multiple Inception modules which provide mul-
tiple paths between the layers, with different convolution filter sizes. Hence,
partitioning within these modules is not beneficial. Apart from the Incep-
tion modules, the network architecture includes simple CONV, pooling and
dense layers. For GoogLeNet, the DNN Analyzer determines 19 partitioning
points. If the maximum output shape at the split point is restricted to a fea-
ture map with 200,000 elements, CNNParted finds 13 possible partitioning
points.

Finally, SqueezeNet V1.1 has been designed towards a small memory foot-
print containing a very low amount of parameters. The basic building block
of SqueezeNet is the Fire module which performs efficient feature extraction
implementing concurrent 1x1 and 3x3 CONV layers. With a CONV layer at
the beginning and end as well as pooling operations before each Fire module,
SqueezeNet V1.1 offers 17 partitioning points. Assuming a maximum output
shape of 150,000 elements in the feature map, this results in 8 potential split
points.

18

4.2. CNNParted Runtime Analysis

The integration of CNNParted into hardware/software co-design work-
flows is only feasible if the evaluation of multiple partitioning points is not
overly time-consuming. By providing good estimates for latency and energy
consumption, fast simulation enables a broad exploration of the design space
to determine suitable system architectures. Therefore, the framework may
add only a marginal overhead to the integrated tools for analyzing CNN
layers and potential partitioning points. In the following, we analyze the
runtime of both parts, determining beneficial partitioning points of a given
CNN and evaluation of these in terms of energy consumption and latency.
For this, we ran each simulation at least 10 time to ensure certain reliability
of the results. Since the link evaluation is based on a mathematical model,
estimating relevant metrics takes about a millisecond for all configurations
and is therefore neglected.

Table 1: Median runtime and standard deviation of DNN Analyzer on a CPU and a GPU
to analyze the model architecture for three different CNNs out of 30 runs.

Architecture
AMD EPYC NVIDIA RTX

7702P A6000

FCN ResNet-50
2081.84 ms 108.88 ms

(σ = 32.78 ms) (σ = 0.90 ms)

GoogLeNet
372.22 ms 100.46 ms

(σ = 14.09 ms) (σ = 0.76 ms)

SqueezeNet V1.1
246.10 ms 68.79 ms

(σ = 0.74 ms) (σ = 1.01 ms)

The median runtime of the DNN Analyzer, the first module of the pro-
posed framework, for the three CNN workloads is shown in Table 1. As
expected, since actual execution of the forward pass is performed to find
branches in the CNN architecture, the GPU outperforms the CPU. Nev-
ertheless, even the CPU-based system offers good performance for larger
models like the FCN ResNet-50 and only takes about 2.1 seconds to search
for potential partitioning points. Consequently, the results prove that the
chosen approach to search for possible split points works reasonably fast.

Following the workflow of CNNParted, after analyzing the CNN architec-
ture, the nodes are evaluated in terms of energy consumption and latency for
each partitioning point. Table 2 shows the simulation runtime of Timeloop

19

for the two different hardware accelerators on both evaluation systems. Ob-
viously, since the Simba-like accelerator is more complex and therefore offers
a larger mapspace, the exploration takes more time than for the Eyeriss-like
accelerator.

Table 2: Median simulation time and standard deviation of two CPUs to evaluate all
CONV layers using Timeloop for three different CNN architectures and two hardware
accelerators out of 10 runs.

Architecture
Eyeriss-like Accelerator Simba-like Accelerator

Xeon W-2145 EPYC 7702P Xeon W-2145 EPYC 7702P

FCN ResNet-50
307.59 s 169.64 s 857.36 s 519.04 s

(σ = 2.62 s) (σ = 0.60 s) (σ = 7.32 s) (σ = 1.10 s)

GoogLeNet
302.34 s 161.03 s 563.02 s 329.67 s

(σ = 35.81 s) (σ = 0.49 s) (σ = 8.36 s) (σ = 0.98 s)

SqueezeNet V1.1
143.87 s 70.28 s 229.89 s 138.70 s

(σ = 1.61 s) (σ = 0.22 s) (σ = 6.99 s) (σ = 0.28 s)

The results are based on running Timeloop using 8 concurrent threads for
exploration. Consequently, slight runtime differences are observed between
the Intel Xeon W-2145 and the AMD EPYC 7702P for both accelerators.
However, we also ran simulations where 32 threads were executed in parallel.
Although Timeloop is able to find better mappings in terms of power con-
sumption and latency by using more threads, the runtime can be almost twice
as high. For FCN ResNet-50, the exploration based on Simba-like architec-
ture takes about 770 seconds, while for GoogLeNet we observe a runtime of
630 seconds. In contrast, we measured a slight improvement in simulation
runtime with SqueezeNet V1.1. This is due to the fact that Timeloop uses
these additional threads to explore even more possible mappings, which can
result in the victory condition being fulfilled much later. Overall, choosing
8 threads to explore energy-efficient mappings for a given accelerator is a
reasonable trade-off to achieve low simulation runtime.

The runtime of the measurement-based node evaluation clearly depends
on the performance of the hardware components deployed and the number
of concurrent threads for benchmarking. Hence, Table 3 shows the median
runtime to obtain latency of CNN inference for all partitioning points, where
PyTorch uses 8 threads on the Intel Xeon W-2145 and 32 threads on the AMD
EPYC 7702P. The benchmarking is performed 500 times to ensure a certain

20

reliability of the results. Most importantly, compared to our previous work
where we measured a median runtime of 3320 seconds for the FCN ResNet-50
on a Jetson TX-2 for 1000 runs [6], we can achieve a significant improvement
in the overall simulation time with the reduced number of partitioning points.

Table 3: Median time and standard deviation to measure latency of all potential partitions
for different CNN architectures and two CPUs out of 10 runs. The measurement-based
node evaluation includes 500 runs for each element in the set of partitioned CNN models.
The Intel Xeon W-2145 uses 8 threads for benchmarking whereas the AMD EPYC 7702P
runs 32 concurrent threads.

Architecture
Partitioning Sensor Node Edge Node

points Xeon W-2145 EPYC 7702P Xeon W-2145 EPYC 7702P

FCN ResNet-50 10
342.42 s 294.97 s 367.95 s 322.85 s

(σ = 4.00 s) (σ = 7.08 s) (σ = 2.25 s) (σ = 6.72 s)

GoogLeNet 13
127.88 s 114.06 s 84.09 s 66.67 s

(σ = 0.70 s) (σ = 0.48 s) (σ = 0.77 s) (σ = 0.75 s)

SqueezeNet V1.1 8
25.46 s 24.88 s 15.51 s 16.49 s

(σ = 1.09 s) (σ = 0.79 s) (σ = 1.16 s) (σ = 0.39 s)

4.3. Experimental Results

Besides analyzing a given CNN architecture and identifying a set of po-
tential partitioning points to evaluate, CNNParted also outputs various met-
rics to support the design process. In the following, we therefore provide
insights into determining beneficial partitioning points and system configu-
rations based on the evaluation results of CNNParted.

4.3.1. Ethernet Link

The link is a critical part of the entire system, as it not only has to
transfer the data of a single application from the sensor to the edge node,
but also has to serve multiple processes at the same time. Hence, reducing
traffic is an important optimization criterion to allow multiple applications
to run simultaneously. In order to achieve lower link utilization, CNNParted
provides insights into the size of the output feature map of each possible
partitioning point. We will use SqueezeNet V1.1 topology and Gigabit EEE
with a configuration of σoff = 0.1 in the following to evaluate the impact of
the link to the entire system.

21

Id
en
ti
ty

C
on
v2
d:

2-
1

R
eL
U
:
2-
2

M
ax
P
oo
l2
d:

2-
3

F
ir
e:

2-
4

F
ir
e:

2-
5

M
ax
P
oo
l2
d:

2-
6

F
ir
e:

2-
7

F
ir
e:

2-
8

M
ax
P
oo
l2
d:

2-
9

F
ir
e:

2-
10

F
ir
e:

2-
11

F
ir
e:

2-
12

F
ir
e:

2-
13

C
on
v2
d:

2-
15

R
eL
U
:
2-
16

A
da
pt
iv
eA

vg
P
oo
l2
d:

2-
17

0

5

10

15

20

Partitioning point

E
st
im

at
ed

L
at
en

cy
[m

s]

Energy-Efficient Ethernet

Figure 4: SqueezeNet V1.1 evaluation results of each potential partitioning point for un-
constrained output feature map size regarding the link latency. The partitioning points
Conv2d: 2-1 and Fire: 2-4 require large bandwidth and are therefore disadvantageous.
In contrast, MaxPool2d: 2-9 is favorable in terms of latency if the entire CNN is not to
be processed in the sensor node alone.

As shown in Figure 4, when searching for a partitioning point that is
also beneficial in terms of the required link bandwidth, several split points
can already be sorted out from the very beginning. Especially the second
(Conv2D: 2-1) and third point(ReLu: 2-2) as well as the partitioning points
Fire: 2-5 and Fire: 2-6 require long time for transmitting the data. There-
fore, these should be avoided when optimizing towards reduced traffic on the
link.

Apart from bandwidth considerations, our experimental results for trans-
mitting 25 frames per second show significantly lower energy consumption for
EEE compared to conventional Ethernet, as expected, while the latency over-
head of EEE is only about 0.01 ms. Exemplary, energy consumed for sending
intermediate results after processing Fire: 2-11 is reduced from 0.74 mJ to
0.098 mJ.

4.3.2. Sensor Node Architecture

CNNParted not only aims to find suitable partitioning points in a static
system, but can also be used to explore different hardware architectures based
on a given workload. Thus, using the model-based approach for evaluation
also allows the framework to be used during the design phase of a System-

22

on-Chip (SoC). In the following, we therefore investigate the performance of
each hardware accelerator for the GoogLeNet topology.

Figure 5 shows the estimated latency for each potential partitioning point
using one of the two hardware accelerators. Since the Simba-like architecture
is optimized towards performance and runs at 500 MHz, while the Eyeriss-like
accelerator is clocked at 200 MHz and optimized for low energy consumption,
the results are as expected. However, if power consumption is also taken into
account, the choice is no longer trivial.

Eyeriss-like Acc.

M
ax
P
oo
l2
d:

1-
5

M
ax
P
oo
l2
d:

1-
8

In
ce
pt
io
n:

1-
9

In
ce
pt
io
n:

1-
10

In
ce
pt
io
n:

1-
11

In
ce
pt
io
n:

1-
12

In
ce
pt
io
n:

1-
13

M
ax
P
oo
l2
d:

1-
14

In
ce
pt
io
n:

1-
15

In
ce
pt
io
n:

1-
16

A
da
pt
iv
eA

vg
P
oo
l2
d:

1-
17

L
in
ea
r:
1-
19

0

20

40

60

Partitioning point

E
st
im

at
ed

L
at
en

cy
[m

s]

Simba-like Acc.

Figure 5: GoogLeNet evaluation results of each potential partitioning point using either
Eyeriss-like (clocked at 200 MHz) or Simba-like architecture (clocked at 500 MHz). Ob-
viously, since the clock frequencies are not equal, Simba-like accelerator can run inference
faster. Besides, it can be observed that the first layers up to the partitioning point Incep-
tion: 1-12 have the largest contribution to the latency.

Based on the estimated power that can be obtained from the simulation
results of CNNParted, the power consumption of these accelerators is about
200 mW for the Eyeriss-like architecture and about 650 mW for the Simba-
like accelerator, respectively. Thus, if the system allows the latency of the
Eyeriss-like architecture, but higher data throughput is required, a second
accelerator could be implemented to increase throughput without consum-
ing more power than a single Simba-like architecture. Moreover, from the
simulation results, we can deduce that especially the rear CONV layers in
GoogLeNet do not contribute much to the latency. Therefore, combining
both accelerators within the sensor node may be a feasible solution if the
SoC provides enough area. Consequently, it would be beneficial to process

23

the first CONV layers in the Simba-like accelerator while the remaining lay-
ers until the partitioning point can be handled by the eyeriss-like accelerator.
In this case, an advantageous data flow would be to infer the first CONV
layers in the Simba-like accelerator, while the remaining layers up to the par-
titioning point are processed by the Eyeriss-like accelerator. This approach
could thus enable high throughput and reduce overall power consumption
compared to running all layers on the Simba-like accelerator.

4.3.3. System Evaluation

As an extension of our previous work [6] evaluating CNNs for a system
consisting of a dedicated hardware accelerator integrated into the sensor and
an NVIDIA Jetson TX-2 GPU as the edge node, CNNParted allows model-
based evaluation in both parts of the system. CNNParted thus enables a
holistic, model-based evaluation of the hardware accelerators deployed in the
system as part of the hardware/software co-design. Below, we evaluate the
energy consumption and latency for GoogLeNet inference partitioning for a
system consisting of an Eyeriss-like SoC close to the sensor and a Simba-like
hardware accelerator in the central computing node. The results are shown
in Figure 6.

Looking at the overall energy consumption of the system, shown in Fig-
ure 6a, it can be seen that either partitioning right at the beginning or at
the end of the network is best. These points also offer beneficial results
in terms of latency and required link bandwidth, respectively. In between,
there is a point of interest with the partitioning point MaxPool2d: 1-14 due
to its low bandwidth requirements. Compared to the transmission of pure
raw data, this point offers a bandwidth reduction of almost 73 %. However,
it suffers from a relatively high latency, as depicted in Figure 6b, therefore
MaxPool2d: 1-14 should only be selected if this is not an important optimiza-
tion criterion. MaxPool2d: 1-5 offers a good workload distribution, since the
difference in latency between the two nodes is the lowest of all the partition-
ing points, except for the discarded ones. In particular, MaxPool2d: 1-2 and
BasicConv2d: 1-3 offer low overall latency but exceed the link constraint of
200,000 elements in the feature map. However, both layers output a feature
map with only 704 elements above the user-defined limit as stated before,
clearly demonstrating the need for careful constraint definition. Neverthe-
less, the comparatively quite high load on the link when partitioning at these
points (+33 % compared to transmitting raw data) or at MaxPool2d: 1-5 can
be problematic in some use cases. Finally, a good trade-off between required

24

Id
en
ti
ty

B
as
ic
C
on
v2
d:

1-
1

M
ax
P
oo
l2
d:

1-
2

B
as
ic
C
on
v2
d:

1-
3

B
as
ic
C
on
v2
d:

1-
4

M
ax
P
oo
l2
d:

1-
5

In
ce
pt
io
n:

1-
6

In
ce
pt
io
n:

1-
7

M
ax
P
oo
l2
d:

1-
8

In
ce
pt
io
n:

1-
9

In
ce
pt
io
n:

1-
10

In
ce
pt
io
n:

1-
11

In
ce
pt
io
n:

1-
12

In
ce
pt
io
n:

1-
13

M
ax
P
oo
l2
d:

1-
14

In
ce
pt
io
n:

1-
15

In
ce
pt
io
n:

1-
16

A
da
pt
iv
eA

vg
P
oo
l2
d:

1-
17

L
in
ea
r:
1-
19

0

10

20

E
st
.
E
n
er
gy

[m
J
]

Sensor Node Link Edge Node Discarded(a)

Id
en
ti
ty

B
as
ic
C
on
v2
d:

1-
1

M
ax
P
oo
l2
d:

1-
2

B
as
ic
C
on
v2
d:

1-
3

B
as
ic
C
on
v2
d:

1-
4

M
ax
P
oo
l2
d:

1-
5

In
ce
pt
io
n:

1-
6

In
ce
pt
io
n:

1-
7

M
ax
P
oo
l2
d:

1-
8

In
ce
pt
io
n:

1-
9

In
ce
pt
io
n:

1-
10

In
ce
pt
io
n:

1-
11

In
ce
pt
io
n:

1-
12

In
ce
pt
io
n:

1-
13

M
ax
P
oo
l2
d:

1-
14

In
ce
pt
io
n:

1-
15

In
ce
pt
io
n:

1-
16

A
da
pt
iv
eA

vg
P
oo
l2
d:

1-
17

L
in
ea
r:
1-
19

0

20

40

60

80

Partitioning point

E
st
.
L
at
en

cy
[m

s] (b)

Figure 6: GoogLeNet evaluation results of each possible partitioning point using an
Eyeriss-like architecture clocked at 200 MHz in the sensor and a Simba-like architecture
clocked at 500 MHz in the edge node. If minimal latency is required, the network has
to be executed entirely on the edge node. Partitioning point Inception: 1-9 provides a
good trade-off in terms of power consumption, latency, required bandwidth and workload
distribution.

bandwidth, latency and energy consumption is provided by the partitioning
points MaxPool2d: 1-8 and Inception: 1-9.

In general, it can be observed that the partitioning of CNNs after a pool-
ing layer is beneficial because these can reduce the overall size of the feature
maps and thus the amount of data transferred. Moreover, since such layers
are not compute-intensive, sensor latency does not increase drastically, unlike
connection latency and energy consumption which may benefit significantly.

25

4.3.4. Baseline Comparison

As mentioned in the state of the art analysis, there are tools such as
DeepCOD proposed by Yao et al. [17] that enable offloading DNN infer-
ence from a central compute node to near-sensor devices to reduce network
latency. For comparison with their presented results, we evaluate the FCN-
ResNet-50 in terms of latency and energy consumption for each potential
partitioning point. n the following, we focus on the first layers up to the Bot-
tleneck: 3-7, since the subsequent suitable partitioning points are not feasible
in the context of resource-constrained sensor nodes due to the large number
of layer parameters. The results for using a Simba-like hardware accelerator
architecture in the sensor node and an AMD EPYC 7702P core in the edge
node are shown in Figure 7.

Id
en
ti
ty

M
ax
P
oo
l2
d:

2-
4

B
ot
tl
en
ec
k:

3-
4

B
ot
tl
en
ec
k:

3-
5

B
ot
tl
en
ec
k:

3-
6

B
ot
tl
en
ec
k:

3-
7

0

5

10

15

20

E
st
.
E
n
er
gy

[m
J
]

Sensor Node Link Edge Node(a)

Id
en
ti
ty

M
ax
P
oo
l2
d:

2-
4

B
ot
tl
en
ec
k:

3-
4

B
ot
tl
en
ec
k:

3-
5

B
ot
tl
en
ec
k:

3-
6

B
ot
tl
en
ec
k:

3-
7

0

50

100

150

Partitioning point

E
st
.
L
at
en

cy
[m

s] (b)

Figure 7: FCN-ResNet50 evaluation results of each possible partitioning point using an
Simba-like architecture clocked at 500 MHz in the sensor and an AMD EPYC 7702P in
the edge node. If low energy consumption and network latency is targeted, partitioning
point MaxPool2d: 2-4 provides a good trade-off.

26

For finding a beneficial partitioning point DeepCOD takes inference la-
tency and accuracy into account. The latter is necessary, since the frame-
work adds an encoder-decoder structure to the DNN to further reduce the
required bandwidth for transmitting intermediate feature maps. However,
near-sensor platforms are often limited in their energy consumption. As can
be seen in Figure 7a, neglecting energy consumption when determining the
best partitioning point is therefore not reasonable. Especially in this case,
where latency is not impacted by choosing different partitioning points de-
pending on the system requirements of offloading DNN inference as shown
in Figure 7b, energy consumption becomes a major metric for determining
the best partitioning point. Apart from determining a beneficial partitioning
point, CNNParted, unlike DeepCOD and similar tools, does not insert ad-
ditional encoder-decoder structures into the DNN architecture and therefore
does not require training to achieve high network accuracy.

5. Conclusion

Efficient CNN inference partitioning in embedded systems for applica-
tions such as autonomous driving or assistive robotics requires a compre-
hensive hardware/software co-design. Therefore in this paper, we presented
CNNParted, an open source framework for hardware-aware design space ex-
ploration of CNN partitioning. Based on simulation and measurements, it
estimates latency and energy consumption for each potentially beneficial par-
titioning point supporting the system designer determining an optimal work-
load distribution between near sensor node and central compute platform.
Thereby, not only the hardware architecture deployed in the nodes is con-
sidered but also the impact of the link on the system. Hence, CNNParted
evaluates CNN inference partitioning considering the whole system architec-
ture with respect to the available link bandwidth.

The evaluation results presented proved the effectiveness of CNNParted
to find multiple points of interest for three, commonly used CNNs. Beyond
identifying beneficial partitioning points for FCN ResNet-50, GoogLeNet,
and SqueezeNet V1.1, we were also able to derive important metrics such as
latency and energy consumption for a holistic hardware/software co-design.

CNNParted has been designed to explore inference partitioning for a
given CNN considering the system hardware configuration and to support
the system design process. In the future, we plan to integrate it into Neu-
ral Architecture Search (NAS) to account for the system hardware setup in

27

an earlier stage of application development. In addition, we further plan to
evaluate CNN partitioning using wireless links such as Bluetooth and FPGA-
accelerated inference in heterogeneous sensor systems.

Acknowledgment

This work was funded by the German Federal
Ministry of Education and Research (BMBF)
under grant number 16ME0454 (EMDRIVE).
The responsibility for the content of this pub-
lication lies with the authors.

References

[1] N. Fasfous, M.-R. Vemparala, A. Frickenstein, M. Badawy, F. Hund-
hausen, J. Höfer, N.-S. Nagaraja, C. Unger, H.-J. Vögel, J. Becker,
T. Asfour, W. Stechele, Binary-lorax: Low-latency runtime adaptable
xnor classifier for semi-autonomous grasping with prosthetic hands,
in: 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA), 2021, pp. 13430–13437. doi:10.1109/ICRA48506.2021.

9561045.

[2] S. Bianco, R. Cadene, L. Celona, P. Napoletano, Benchmark analysis of
representative deep neural network architectures, IEEE Access 6 (2018)
64270–64277. doi:10.1109/ACCESS.2018.2877890.

[3] S. Han, et al., EIE: efficient inference engine on compressed deep neural
network, CoRR abs/1602.01528 (2016). arXiv:1602.01528.

[4] I. Walter, J. Ney, T. Hotfilter, V. Rybalkin, J. Hoefer, N. Wehn,
J. Becker, Embedded face recognition for personalized services in the
assistive robotics, in: Machine Learning and Principles and Practice of
Knowledge Discovery in Databases, Springer International Publishing,
Cham, 2021, pp. 339–350.

[5] T. Hotfilter, F. Kempf, J. Becker, D. Reinhardt, I. Baili, Embedded
image processing the european way: A new platform for the future au-
tomotive market, in: 2020 IEEE 6th World Forum on Internet of Things
(WF-IoT), 2020, pp. 1–6. doi:10.1109/WF-IoT48130.2020.9221396.

28

https://doi.org/10.1109/ICRA48506.2021.9561045
https://doi.org/10.1109/ICRA48506.2021.9561045
https://doi.org/10.1109/ACCESS.2018.2877890
http://arxiv.org/abs/1602.01528
https://doi.org/10.1109/WF-IoT48130.2020.9221396

[6] F. Kreß, J. Hoefer, T. Hotfilter, I. Walter, V. Sidorenko, T. Harbaum,
J. Becker, Hardware-aware partitioning of convolutional neural network
inference for embedded ai applications, in: 2022 18th International Con-
ference on Distributed Computing in Sensor Systems (DCOSS), 2022,
pp. 133–140. doi:10.1109/DCOSS54816.2022.00034.

[7] Y. Chen, Y. Xie, L. Song, F. Chen, T. Tang, A survey of accelerator
architectures for deep neural networks, Engineering 6 (3) (2020) 264–
274. doi:https://doi.org/10.1016/j.eng.2020.01.007.

[8] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, L. Zhong, Redeye: Ana-
log convnet image sensor architecture for continuous mobile vision,
SIGARCH Comput. Archit. News 44 (3) (2016) 255–266. doi:10.1145/
3007787.3001164.

[9] C. Hu, W. Bao, D. Wang, F. Liu, Dynamic adaptive dnn surgery for
inference acceleration on the edge, in: IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, 2019, pp. 1423–1431. doi:

10.1109/INFOCOM.2019.8737614.

[10] W. Zhang, J. Zhang, M. Shen, G. Luo, N. Xiao, An efficient mapping
approach to large-scale dnns on multi-fpga architectures, in: 2019 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE),
2019, pp. 1241–1244. doi:10.23919/DATE.2019.8715174.

[11] D. Kwon, S. Hur, H. Jang, E. Nurvitadhi, J. Kim, Scalable multi-fpga
acceleration for large rnns with full parallelism levels, in: 2020 57th
ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6. doi:
10.1109/DAC18072.2020.9218528.

[12] T. Mohammed, C. Joe-Wong, R. Babbar, M. D. Francesco, Distributed
inference acceleration with adaptive dnn partitioning and offloading, in:
IEEE INFOCOM 2020 - IEEE Conference on Computer Communica-
tions, 2020, pp. 854–863. doi:10.1109/INFOCOM41043.2020.9155237.

[13] T. Alonso, et al., Elastic-df: Scaling performance of dnn inference in
fpga clouds through automatic partitioning, ACM Trans. Reconfigurable
Technol. Syst. 15 (2) (dec 2021). doi:10.1145/3470567.

[14] S. Teerapittayanon, B. McDanel, H. Kung, Distributed deep neural net-
works over the cloud, the edge and end devices, in: 2017 IEEE 37th

29

https://doi.org/10.1109/DCOSS54816.2022.00034
https://doi.org/https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1145/3007787.3001164
https://doi.org/10.1145/3007787.3001164
https://doi.org/10.1109/INFOCOM.2019.8737614
https://doi.org/10.1109/INFOCOM.2019.8737614
https://doi.org/10.23919/DATE.2019.8715174
https://doi.org/10.1109/DAC18072.2020.9218528
https://doi.org/10.1109/DAC18072.2020.9218528
https://doi.org/10.1109/INFOCOM41043.2020.9155237
https://doi.org/10.1145/3470567

International Conference on Distributed Computing Systems (ICDCS),
2017, pp. 328–339. doi:10.1109/ICDCS.2017.226.

[15] M. Ghasemi, S. Heidari, Y. G. Kim, A. Lamb, C.-J. Wu, S. Vrudhula,
Energy-efficient mapping for a network of dnn models at the edge, in:
2021 IEEE International Conference on Smart Computing (SMART-
COMP), 2021, pp. 25–30. doi:10.1109/SMARTCOMP52413.2021.00024.

[16] J. H. Ko, T. Na, M. F. Amir, S. Mukhopadhyay, Edge-host partition-
ing of deep neural networks with feature space encoding for resource-
constrained internet-of-things platforms, in: 2018 15th IEEE Interna-
tional Conference on Advanced Video and Signal Based Surveillance
(AVSS), 2018, pp. 1–6. doi:10.1109/AVSS.2018.8639121.

[17] S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, T. Abdelzaher, Deep
compressive offloading: Speeding up neural network inference by trading
edge computation for network latency, in: Proceedings of the 18th Con-
ference on Embedded Networked Sensor Systems, SenSys ’20, Associa-
tion for Computing Machinery, New York, NY, USA, 2020, p. 476–488.
doi:10.1145/3384419.3430898.

[18] D. Hu, B. Krishnamachari, Fast and accurate streaming cnn inference
via communication compression on the edge, in: 2020 IEEE/ACM Fifth
International Conference on Internet-of-Things Design and Implemen-
tation (IoTDI), 2020, pp. 157–163. doi:10.1109/IoTDI49375.2020.

00023.

[19] Z. Zhao, K. M. Barijough, A. Gerstlauer, Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge clus-
ters, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 37 (11) (2018) 2348–2359. doi:10.1109/TCAD.2018.
2858384.

[20] L. Yang, W. Jiang, W. Liu, E. H. M. Sha, Y. Shi, J. Hu, Co-exploring
neural architecture and network-on-chip design for real-time artificial in-
telligence, in: 2020 25th Asia and South Pacific Design Automation Con-
ference (ASP-DAC), 2020, pp. 85–90. doi:10.1109/ASP-DAC47756.

2020.9045595.

30

https://doi.org/10.1109/ICDCS.2017.226
https://doi.org/10.1109/SMARTCOMP52413.2021.00024
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1145/3384419.3430898
https://doi.org/10.1109/IoTDI49375.2020.00023
https://doi.org/10.1109/IoTDI49375.2020.00023
https://doi.org/10.1109/TCAD.2018.2858384
https://doi.org/10.1109/TCAD.2018.2858384
https://doi.org/10.1109/ASP-DAC47756.2020.9045595
https://doi.org/10.1109/ASP-DAC47756.2020.9045595

[21] S. Disabato, M. Roveri, C. Alippi, Distributed deep convolutional neural
networks for the internet-of-things, IEEE Transactions on Computers
70 (8) (2021) 1239–1252. doi:10.1109/TC.2021.3062227.

[22] E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for
semantic segmentation, arXiv:1605.06211 [cs]ArXiv: 1605.06211 (May
2016).

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-
performance deep learning library, in: H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (Eds.), Advances
in Neural Information Processing Systems 32, Curran Associates, Inc.,
2019, pp. 8024–8035.

[24] K. Guo, S. Zeng, J. Yu, Y. Wang, H. Yang, A survey of fpga-based
neural network accelerator (2018). arXiv:1712.08934.

[25] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song, Y. Wang, H. Yang, Going deeper with embedded fpga
platform for convolutional neural network, in: Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’16, Association for Computing Machinery, New York,
NY, USA, 2016, p. 26–35. doi:10.1145/2847263.2847265.

[26] B. Khabbazan, S. Mirzakuchaki, Design and implementation of a low-
power, embedded cnn accelerator on a low-end fpga, in: 2019 22nd
Euromicro Conference on Digital System Design (DSD), 2019, pp. 647–
650. doi:10.1109/DSD.2019.00102.

[27] A. Jahanshahi, Tinycnn: A tiny modular cnn accelerator for embedded
fpga (2019). doi:10.48550/ARXIV.1911.06777.

[28] J. Kim, J.-K. Kang, Y. Kim, A resource efficient integer-arithmetic-only
fpga-based cnn accelerator for real-time facial emotion recognition, IEEE
Access 9 (2021) 104367–104381. doi:10.1109/ACCESS.2021.3099075.

31

https://doi.org/10.1109/TC.2021.3062227
http://arxiv.org/abs/1712.08934
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1109/DSD.2019.00102
https://doi.org/10.48550/ARXIV.1911.06777
https://doi.org/10.1109/ACCESS.2021.3099075

[29] K. Zeng, Q. Ma, J. W. Wu, Z. Chen, T. Shen, C. Yan, Fpga-based
accelerator for object detection: A comprehensive survey, The Journal
of Supercomputing (2022) 1–41.

[30] NVIDIA Corporation, The nvidia deep learning accelerator (Nov. 2018).
URL http://nvdla.org/

[31] H. Genc, A. Haj-Ali, V. Iyer, A. Amid, H. Mao, J. Wright, C. Schmidt,
J. Zhao, A. Ou, M. Banister, et al., Gemmini: An agile systolic array
generator enabling systematic evaluations of deep-learning architectures,
arXiv preprint arXiv:1911.09925 3 (2019).

[32] Y.-C. Lee, T.-S. Hsu, C.-T. Chen, J.-J. Liou, J.-M. Lu, Nnsim: A
fast and accurate systemc/tlm simulator for deep convolutional neural
network accelerators, in: 2019 International Symposium on VLSI De-
sign, Automation and Test (VLSI-DAT), 2019, pp. 1–4. doi:10.1109/

VLSI-DAT.2019.8741950.

[33] S. Kim, J. Wang, Y. Seo, S. Lee, Y. Park, S. Park, C. S. Park,
Transaction-level model simulator for communication-limited accelera-
tors (2020). doi:10.48550/ARXIV.2007.14897.

[34] T. Hotfilter, J. Hoefer, F. Kreß, F. Kempf, J. Becker, Flecsim-soc: A
flexible end-to-end co-design simulation framework for system on chips,
in: 2021 IEEE 34th International System-on-Chip Conference (SOCC),
2021, pp. 83–88. doi:10.1109/SOCC52499.2021.9739212.

[35] M. S. Abdelfattah, L. Dudziak, T. Chau, R. Lee, H. Kim, N. D. Lane,
Best of both worlds: Automl codesign of a cnn and its hardware acceler-
ator, in: 2020 57th ACM/IEEE Design Automation Conference (DAC),
2020, pp. 1–6. doi:10.1109/DAC18072.2020.9218596.

[36] F. Muñoz-Mart́ınez, J. L. Abellán, M. Acacio, T. Krishna, Stonne: A
detailed architectural simulator for flexible neural network accelerators,
ArXiv abs/2006.07137 (2020).

[37] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, T. Krishna, Scale-
sim: Systolic cnn accelerator simulator, arXiv preprint arXiv:1811.02883
(2018).

32

http://nvdla.org/
http://nvdla.org/
https://doi.org/10.1109/VLSI-DAT.2019.8741950
https://doi.org/10.1109/VLSI-DAT.2019.8741950
https://doi.org/10.48550/ARXIV.2007.14897
https://doi.org/10.1109/SOCC52499.2021.9739212
https://doi.org/10.1109/DAC18072.2020.9218596

[38] S. L. Xi, Y. Yao, K. Bhardwaj, P. Whatmough, G.-Y. Wei, D. Brooks,
Smaug: End-to-end full-stack simulation infrastructure for deep learning
workloads, ACM Trans. Archit. Code Optim. 17 (4) (Nov. 2020). doi:

10.1145/3424669.

[39] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina, C. Kozyrakis, M. Horowitz, Interstellar: Using halide’s
scheduling language to analyze dnn accelerators, in: Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’20, Associ-
ation for Computing Machinery, New York, NY, USA, 2020, p. 369–383.
doi:10.1145/3373376.3378514.

[40] L. Mei, P. Houshmand, V. Jain, S. Giraldo, M. Verhelst, Zigzag: En-
larging joint architecture-mapping design space exploration for dnn ac-
celerators, IEEE Transactions on Computers 70 (8) (2021) 1160–1174.
doi:10.1109/TC.2021.3059962.

[41] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, J. Emer, Timeloop: A sys-
tematic approach to dnn accelerator evaluation, in: 2019 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS), 2019, pp. 304–315. doi:10.1109/ISPASS.2019.00042.

[42] Y. N. Wu, J. S. Emer, V. Sze, Accelergy: An architecture-level energy
estimation methodology for accelerator designs, in: 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2019,
pp. 1–8. doi:10.1109/ICCAD45719.2019.8942149.

[43] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, N. P. Jouppi, Cacti-p:
Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques, in: 2011 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), 2011, pp. 694–701. doi:

10.1109/ICCAD.2011.6105405.

[44] Y. S. Shao, B. Reagen, G. Wei, D. Brooks, Aladdin: A pre-rtl, power-
performance accelerator simulator enabling large design space explo-
ration of customized architectures, in: 2014 ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture (ISCA), 2014, pp. 97–108.
doi:10.1109/ISCA.2014.6853196.

33

https://doi.org/10.1145/3424669
https://doi.org/10.1145/3424669
https://doi.org/10.1145/3373376.3378514
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD.2011.6105405
https://doi.org/10.1109/ICCAD.2011.6105405
https://doi.org/10.1109/ISCA.2014.6853196

[45] S. Herreria-Alonso, M. Rodriguez-Perez, M. Fernandez-Veiga, C. Lopez-
Garcia, A gi/g/1 model for 10 gb/s energy efficient ethernet links, IEEE
Transactions on Communications 60 (11) (2012) 3386–3395. doi:10.

1109/TCOMM.2012.081512.120089.

[46] P. Fondo-Ferreiro, M. Rodŕıguez-Pérez, M. Fernández-Veiga, Imple-
menting energy saving algorithms for ethernet link aggregates with onos,
in: 2018 Fifth International Conference on Software Defined Systems
(SDS), 2018, pp. 118–125. doi:10.1109/SDS.2018.8370432.

[47] IEEE, Ieee standard for information technology– local and metropolitan
area networks– specific requirements– part 3: Csma/cd access method
and physical layer specifications amendment 5: Media access control
parameters, physical layers, and management parameters for energy-
efficient ethernet, IEEE Std 802.3az-2010 (Amendment to IEEE Std
802.3-2008) (2010) 1–302doi:10.1109/IEEESTD.2010.5621025.

[48] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. Emer, C. T. Gray, B. Khailany, S. W. Keckler, Simba:
Scaling deep-learning inference with multi-chip-module-based architec-
ture, in: Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’52, Association for Com-
puting Machinery, New York, NY, USA, 2019, p. 14–27. doi:10.1145/
3352460.3358302.

[49] Y.-H. Chen, T.-J. Yang, J. Emer, V. Sze, Eyeriss v2: A flexible accelera-
tor for emerging deep neural networks on mobile devices, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems 9 (2) (2019)
292–308. doi:10.1109/JETCAS.2019.2910232.

[50] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions,
arXiv:1409.4842 [cs]ArXiv: 1409.4842 (Sep 2014).

[51] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
K. Keutzer, Squeezenet: Alexnet-level accuracy with 50x fewer param-
eters and <0.5mb model size, arXiv:1602.07360 [cs]ArXiv: 1602.07360
(Nov 2016).

34

https://doi.org/10.1109/TCOMM.2012.081512.120089
https://doi.org/10.1109/TCOMM.2012.081512.120089
https://doi.org/10.1109/SDS.2018.8370432
https://doi.org/10.1109/IEEESTD.2010.5621025
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1109/JETCAS.2019.2910232

	Introduction
	Related Work
	CNNParted
	DNN Analyzer
	Node Evaluation
	Model-based Node Evaluation
	Measurement-based Node Evaluation

	Ethernet Link Model

	Evaluation
	Workloads
	CNNParted Runtime Analysis
	Experimental Results
	Ethernet Link
	Sensor Node Architecture
	System Evaluation
	Baseline Comparison

	Conclusion

