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= (flat-2-dwell & dwell-2-flat phases) transient description of BoP: APROS [4].
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Figure 1: Data transfer in Power Cycle module architecture. Initial characterization depends on
assumptions and design parameters (blue arrows). Main results of the BoP sub-module are

1 BoP Model — Architecture, composed of:

(Preliminary) Transient (ttBoP) Results
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Subcycles in a single phase. Coupling between phases

implies each phase must be updated multiple times (green 2. different power curve functions in transients (to represent L-H transition);

presented in this work (green arrows). The final output foreseen is a time-dependent curve of the net final conditions for transients, which numbers indicate order of update). 3. First Wall temperature profile (for systems-code coupling);
electrical power generated, computed from gross production and total consumption (black arrows). solve the model in multiple timesteps. 4. Couplings between Subcycles with technology parameters (for design ranges).
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