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A B S T R A C T

This paper describes the capabilities of the Fast Source Term Calculation (FSTC) tool developed by the Karlsruhe 
Institute of Technology (KIT) to perform time series predictions of the radiological source term (ST) during 
severe accident (SA) scenarios. The prediction algorithm implemented in FSTC is based on the MOCABA data 
assimilation framework, developed by Framatome, and requires a training database and actual measurements. 
The training database is assessed by employing coupling FSTC to the European reference Accident Source Term 
Evaluation Code (ASTEC), developed by IRSN. The prediction capabilities of FSTC is applied to evaluate: 1) the 
mass of released hydrogen during the QUENCH-08 experiment; 2) the xenon release to the environment during a 
Medium Break Loss of Coolant Accident (MBLOCA) SA scenario in a generic KONVOI nuclear power plant (NPP). 
The prediction results show a very promising employment of FSTC and the MOCABA algorithm in view of 
supporting the emergency response team during SA scenarios.   

1. Introduction

Real-time information about the progression of a severe accident
(SA) at a nuclear power plant (NPP) and of the related radiological 
source term (ST) is fundamental to initiate a prompt response by the 
emergency response team and to make proper decisions to manage the 
event. 

SA codes have been developed for some decades to evaluate the 
progression of SA scenarios at a NPP, from the initiation of the accident 
up to the release of fission products (FPs) into the environment. Such 
integral codes, e.g. ASTEC (Chailan et al., 2019; Allelein et al., 2003), 
MELCOR (Humphries et al., 2015), and MAAP (Luxat et al., 2016), are 
nowadays employed to calculate Figures-of-Merit (FoMs) related to the 
in-vessel and ex-vessel accident progression. Furthermore, concerning 
the ST in particular, efforts have been made to quantify the impact of the 
uncertainties of the physical models embedded in such codes on the ST- 
related FoMs. Examples are the SOARCA project (NRC, 2012) and the 
currently running EC MUSA project (Herranz et al., 2021), within which 
the Karlsruhe Institute of Technology (KIT) and Framatome jointly 
participate. 

Since the SA code simulations are very time-consuming, such codes 
cannot be used by the emergency response team of a NPP during a SA to 

have real-time information on the accident progression. Hence, there is a 
need for dedicated software that provides relevant information about 
the course of the accident in real time to the emergency response team. A 
widely used approach for fast ST prediction is the application of 
Bayesian Belief Networks (BBNs). It is used in tools like RASTEP (Kno
chenhauer et al., 2012) and allows for choosing very quickly from a 
collection of pre-calculated ST values, taking into account answers 
provided by the personnel about the plant status. The drawback of this 
approach is that the ST prediction cannot be adjusted to the actual ac
cident progression, which can be expected to be different from any of the 
pre-calculated variants, due to the high uncertainties and complexity of 
the process. 

In order to overcome such limitations, the WAME project was 
launched by KIT and Framatome in 2019, with the support by the 
German Federal Ministry for Economic Affairs and Climate Action – 
BMWi. The goal of the project is the assessment of a methodology and 
the development of a tool for fast predictions of the ST during SA sce
narios at NPPs. The purpose of this tool is to assist the emergency 
response team of the NPP in decision-making during the course of an 
accident. 

To obtain realistic ST predictions, the estimation of the ST should be 
performed in real time and be based not only on pre-calculated ST 
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1. The prediction of the hydrogen release for the QUENCH-08 experi
ment (Stuckert et al., 2005);

2. The prediction of the xenon (Xe) release into the environment in case
of an MBLOCA scenario at a KONVOI NPP.

The structure of the paper is the following:

- Section 2 – Brief description of MOCABA algorithm;
- Section 3 – Brief description of FSTC tool structure;
- Section 4 – Prediction algorithm application to the results of

QUENCH-08 experiment simulations;
- Section 5 – Prediction algorithm application to the results of

MBLOCA SA scenario simulations;
- Section 6 – Conclusions.

2. Mocaba algorithm description

The MOCABA prediction algorithm for time series applications
(Pauli et al., 2022) is based on the mathematical framework presented in 
(Hoefer et al., 2015; Castro et al., 2016). Its purpose is to translate Monte 
Carlo (MC) simulation data for a set of correlated time-dependent var
iables and corresponding time-dependent measurements into future 
predictions of a set of to-be-predicted variables. Details can be found in 
(Pauli et al., 2022). 

The application of the MOCABA time series prediction algorithm 
involves two main parts – the ‘prior’ and the ‘posterior’ part. For the prior 
part, the results of N Monte Carlo simulations for the to-be-predicted 
variables and the to-be-measured variables are used as training data. 
In the prior part, the prior distribution model parameters of the MOCABA 
model are calculated, i.e. the mean values of the considered variables, 
covariances between different variables for each time step, and co
variances between different time steps for each variable. 

In the posterior part, measurement information for the to-be- 
measured variables is taken into account by applying Bayesian 

updating to the prior model parameters. The updating is performed in 
two steps. In the first updating step, the posterior model parameters are 
calculated for all observed time steps until the current point in time. In 
the second updating step, predictions are performed for the time steps 
lying in the future. As described in detail in (Pauli et al., 2022), the 
second updating step is defined by an iterative procedure involving 
several substeps. Fig. 1 provides an illustration of that procedure. In the 
initial substep, the posterior variable values Y* , corresponding to the 
current time step and to a certain number Δt of previous time steps 
(calculated in the first updating step), are identified with a set of 
‘measurements’ to calculate the posterior variable values Y*

+ for a 
certain number Δ+

t of future time steps. This updating step is, in 
particular, determined by the prior cross-covariances Cov+ between Y*

and Y*
+ (see Fig. 2). In the next substep, the updating procedure of the 

initial substep is repeated, now identifying the latest Y*
+ value with the 

new ‘current’ time step. Repeating this updating procedure for the 
following substeps, finally leads to the posterior predictions of the var
iable values at all considered future time steps. 

In the next section, the description of the FSTC tool is presented, 
where the MOCABA algorithm and functionality for performing U&S 
analysis are implemented. 

3. FSTC tool description

The FSTC tool has been developed by KIT in the Institute for Neutron
Physics and Reactor Technology (INR) in the framework of the WAME 
project. A more detailed description can be found in (Stakhanova et al., 
2022). In the following, only a brief summary is presented. The FSTC 
tool can be divided into two main parts (see Fig. 3). The first part has the 
task to perform U&S analysis and to generate the training database for 
the prediction algorithm. The second part contains an implementation of 
the prediction algorithm described above. 

To perform the U&S analysis, the user specifies a list of uncertain 
input parameters to be sampled, as well as their probability density 
functions (PDFs) and PDFs’ parameters. The choice of the PDFs are 
based on the available information from the literature and engineering 
judgement. Currently available PDFs in the tool are uniform, normal, 
truncated normal, triangular, and beta. Currently available sampling 
methods are Simple Random Sampling (SRS) and Latin Hypercube 
Sampling (LHS) (McKay et al., 1979). The user also can specify corre
lations between input parameters; in that case, the Iman-Conover (Iman 
and Conover, 1982) method is employed to rearrange the sampled 
values according to the provided correlation matrix. 

After that, multiple ASTEC simulations are run in parallel. Each in
dividual simulation run has its own set of values for the uncertain input 
parameters. When all simulations are finished, FSTC checks whether 
they finished correctly and excludes the failed ones. 

The user provides the list of the parameters of interest, which shall be 
analyzed in the U&S part of the code, and FSTC collects the data for 
these parameters from the ASTEC output files for all correctly finished 
simulations. The user also can specify for which time interval the U&S 
analysis shall be performed. The code will take the data only for that 
interval and provide it to the U&S part of the code. 

At the final step in the U&S part of the FSTC tool, simple statistics and 
different correlation coefficients (Pearson, Spearman, etc.) are calcu
lated. One of the outputs from the U&S analysis part – the results of 
multiple code runs – is also used as input for the prediction part of FSTC. 
That data is used as input for the prior part of the MOCABA algorithm. If 
real measurements are not available, the predictive power of the 
MOCABA algorithm can be tested by treating the results of individual 
ASTEC simulations as “measurements” and using them as input for the 
posterior part of the MOCABA algorithm. 

In the next section, the QUENCH-08 experiment and its corre
sponding ASTEC model are briefly described. 

values, but also on plant data measured during the SA. For this purpose, 
the MOCABA data assimilation methodology (Pauli et al., 2022; Hoefer 
et al., 2015; Castro et al., 2016) is employed, which has been developed 
by Framatome. An algorithm based the MOCABA approach has been 
implemented in the Fast Source Term Code (FSTC) (Stakhanova et al., 
2022) developed by KIT in the framework of the WAME project. FSTC is 
used to generate a training database for the prediction model, which 
consists of results of multiple SA simulations for random-sampled input 
parameters. The trained prediction model then has the capability to map 
very fast (practically in real-time) measured data from plant detectors 
onto predictions of accident variables, such as the ST. The procedure of 
preparing the training database involves random-sampling of uncertain 
input parameters, running multiple SA simulations for the sampled input 
parameters, and uncertainty and sensitivity (U&S) analysis of the 
simulation results. The latter includes the calculation of correlation 
coefficients between to-be-measured variables (such as dose rates) and 
the to-be-predicted ST. This information is used to select for the pre-
diction model an appropriate set of to-be-measured variables that have 
the potential to provide relevant information with respect to the ST 
prediction. The functionalities to perform all of the above steps are 
implemented in the FSTC tool. 

Currently, the FSTC tool is coupled with the ASTEC SA code. All 
simulations presented here have been performed with ASTEC (version 
2.2b). ASTEC is developed by the Institute de Radioprotection et de 
Sûreté Nucléaire (IRSN) and allows to simulate the full range of the in- 
vessel and ex-vessel phenomena during SA progression. For the ASTEC 
simulations performed in the context of the current work, all ASTEC 
modules have been activated – from modeling the release from fuel 
pellets to aerosol chemistry in the containment. 

In the present paper, the time series prediction algorithm described 
in (Pauli et al., 2022) is applied to two different tasks: 



4. Prediction algorithm application to the results of quench-08
experiment simulations

4.1. Description of quench-08 experiment and its corresponding ASTEC 
model 

The QUENCH-08 experiment (Stuckert et al., 2005) was performed 
in 2003 at the Forschungszentrum Karlsruhe (FZK) in the frame of the 
QUENCH program. The aim of the experiment was to investigate the 
hydrogen source term and material interactions during LOCA and the 
early phase of severe accidents including reflood in a fuel rod bundle. 

The test bundle consists of 21 fuel rod simulators. 20 of them are 
heated by tungsten elements mounted inside the simulators and the 

central one remains unheated. These 21 simulators plus 4 corner rods 
are located inside a Zircaloy shroud, which is surrounded by insulation 
enveloped by cooling jacket. The central rod and eight rods around it 
were combined into one structure in the ASTEC model – ‘Channel_1′, the 
rest of the rod simulators and four corner rods form another structure – 
‘Channel_2′, shroud, insulation and cooling jacket are also simulated, see 
Fig. 4(left-hand side). 

Thermocouples are attached to each fuel rod simulator at different 
elevations and angles, the shroud and the cooling jacket, and the axial 
nodalization in the ASTEC model allows to calculated the temperature 
values of different model structures at different elevations, see Fig. 4 
(right-hand side). 

The experiment consisted of 5 main phases (Stakhanova et al., 2022; 
Stuckert et al., 2005):  

1. Heat-up to ~873 K, t = 0–134 s;
2. Heat-up to ~1700 K with a rate of ~0.3–0.6 K/s, t = 134–2277 s;
3. Pre-oxidation phase: maintaining the constant temperature when

superheated steam flowed through the test bundle, t = 2277–3240 s;
4. Transient phase: the temperature increasing up to 2200 K, t =

3240–3814 s;
5. Cooling down with saturated steam injected from the bottom of the

test section, t = 3775.5–4647 s (end of the test). During that time
period electric power reduction up to 3.9 kW is performed (from t =
3830 s);

In the next section, the results of the ASTEC simulations for the
presented QUENCH-08 model are briefly described. 

4.2. Simple statistics of simulation results 

In the current section, only simple statistics results of QUENCH-08 
simulations are shown. Details of the U&S analysis were presented in 

Fig. 1. Posterior part of MOCABA algorithm: Illustration of updating procedure for future predictions.  

Fig. 2. Covariance matrix of variable values at past and future time steps.  

Fig. 3. FSTC tool scheme.  



(Stakhanova et al., 2022). Here, for the purpose of demonstrating the 
application of the MOCABA algorithm only simple statistics of chosen 
‘prediction’ and ‘observable’ parameters are needed. 

To prepare the training database for the prior part of the prediction 
algorithm, 400 ASTEC simulations were run. 24 uncertain input pa
rameters were used for sampling – 5 of them have a normal distribution 
and the rest have a uniform distribution. These parameters are related to 
geometry, initial and boundary conditions and some ASTEC models, like 
corium relocation model or model of melt oxidation by steam, for 
example. All details about the choice of these uncertain parameters, 
their PDFs, PDFs’ parameters and links to the literature are also provided 
in (Stakhanova et al., 2022). 

For the purpose of the MOCABA test considered here, the standard 
deviations of the two most influential parameters – steam flow rate 
(stFlow) and argon flow rate (arFlow) – were set to 20 %, while in 
(Stakhanova et al., 2022) they were set to 5 %. The reason for choosing 
increased standard deviations is to cover a broader range of possible 
variants of process progression. 

Despite the fact that the experimental results of the QUENCH-08 
experiment can be used for testing the prediction algorithm, here only 
simulation results are used. Using simulated data instead of experi
mental allows one to test the algorithm in a more systematic way. For 
that purpose, a set of 50 simulations was prepared with 5 % standard 
deviation for the stFlow and arFlow parameters. This guarantees that the 
results of these 50 simulations will lie inside the uncertainty range of the 
prior input data. In addition, each of these 50 simulations can be used as 
an individual ‘experiment’. 

For that test, three parameters were chosen as ‘observables’: tem
perature of the ‘Channel_1′ structure at 950 mm elevation (T2_950), 

temperature of the ‘Channel_2′ structure at 850 mm elevation (T3_850), 
and shroud temperature at 950 mm elevation (TS_950). Using that data, 
the generated hydrogen mass (H2mass) is to be predicted. 

Simple statistics and individual curves for all samples for the amount 
of produced hydrogen during the course of the process for 400 and 50 
samples sets are shown in Figs. 5 and 6, respectively. One can see that 
the range in which the hydrogen mass varies is especially large for the 
case with 400 samples, for which the uncertainty for the input param
eters was increased. Also, one can notice that the start of massive 
hydrogen generation can significantly vary – from ~1800 s to ~3800 s. 

In the next section, results of the MOCABA application to these sets of 
data are given. 

4.3. Results of hydrogen mass prediction 

Two sets of ASTEC QUENCH-08 simulations described in the previ
ous section were used to test the MOCABA time series algorithm. The 
larger set with results from 400 simulations was used as training data
base for the prior part. The small set of 50 simulations was used as a 
collection of simulated ‘experiments’. The quantity to be predicted is the 
hydrogen mass (H2mass) based on measurements of three temperature 
values: temperature of inner circle of fuel rods simulators (in ASTEC 
model marked as ‘Channel_1′ at Fig. 4) at 950 mm elevation – T2_950; 
temperature of outer circle of fuel rods simulators (‘Channel_2′ at Fig. 4) 
at 850 mm elevation – T3_850; and shroud temperature at 950 mm 
elevation – TS_950. 

The MOCABA test was performed in the following way: 

Fig. 4. ASTEC model of QUENCH-08 experiment.  

Fig. 5. Simple statistics (left) and hydrogen mass curves for all samples (right) – 400 samples, 20% uncertainty for stFlow and arFlow.  



- Run prior part of the algorithm using the set of 400 ASTEC simulation
results, which will calculate the prior mean values of the observable
and the prediction parameters, as well as correlations between them
at each time step and correlations between the values of each of these
parameters for different time steps (in the current implementation of
the MOCABA algorithm in the FSTC tool, correlations are translated
into covariances in the posterior part);

- Consider each example from the set of 50 simulations as an indi
vidual experiment:
• Input for calculating the posterior hydrogen mass are the prior

results and the T2_950, T3_850, and TS_950 temperature values,
which are considered as measurements;

• The posterior part calculates the predictions of hydrogen mass
values (H2mass);

• Compare predicted H2mass values to H2mass values of the corre
sponding simulations provided by ASTEC for that Monte Carlo
sample.

In Fig. 7, Pearson correlations between prediction and observable 
parameters are presented. High correlation values between these two 
groups of parameters are important for good predictions. From Fig. 7 it 
is clear that data prepared for this test meets this requirement. The 
correlations for each prediction - observable pair are high over the entire 
time period, except for the very beginning of the process. 

Another requirement for applying the MOCABA algorithm is that the 
measured values should lie inside the range covered by the ‘prior’ data. 
In our case, the temperature values should lie between the maximum 
and minimum temperature curves from the set of 400 simulations pre
pared for the prior part. For demonstration purposes, data for two 
samples (N◦7 and N◦11) from the set of 50 samples are here chosen as 

measurements. In Fig. 8, it is shown that the values of prediction and 
observable parameters from these two samples are lying inside the range 
covered by the prior data. The maximum curves reflect the high uncer
tainty of 20 % for steam and argon flow rate in the ASTEC calculations. 

On the left-hand side of Figs. 9 and 10, the prediction results for the 
two selected samples are presented. Measured data is added time step by 
time step to see how the prediction changes over time. In the figures 
below, only four predictions are presented, when measurements up to 
165, 2442, 3415 and 4485 s were taken into account. ‘Experimental’ data 
is available from 165 s. Hence, only one measured value is available to 
be used for the prediction. Therefore, the prediction is located close to 
the prior curve; for sample N◦ 11 the prediction and prior curves are 
practically identical. Adding more and more measured data, the pre
diction curve is getting closer and closer to the experimental curve. 
Prediction errors are shown on the right-hand side of Figs. 9 and 10. The 
error, in general, is decreasing when adding more measured data, except 
for the very end of the process, where the error increases sharply, 
probably due to a decrease of the Pearson correlation coefficient be
tween prediction and observable parameters (see Fig. 7). 

In general, good prediction results can be obtained for the QUENCH- 
08 case. 

5. Prediction algorithm application to the results of mbloca sa
scenario simulations

5.1. Description of the KONVOI NPP, its ASTEC model, and MBLOCA 
scenario 

Another test for the MOCABA prediction algorithm was made for 
KONVOI NPP simulations with ASTEC. The original input deck devel
oped by KIT in the frame of the CESAM project (Nowack et al., 2018; 
García-Toraño, 2017) has been further extended and improved (Gabri
elli et al., 2021). All the ASTEC calculation modules are activated in 
order to simulate the in-vessel and ex-vessel accident progression from 
the initiation up to the radiological release to the environment. Atten
tion has been paid in a quite detailed modeling of the transport of the 
fission products from the primary to the containment. With respect to 
that, a library of realistic fuel inventories for an equilibrium cycle with 
328 effective full power days have been computed for performing the 
ASTEC analyses. For such evaluations, the core is loaded with 193 Fuel 
Assemblies (48 U FAs, 6 batches; 81 U-Gd FAs, 6 batches; 64 MOX FAs, 4 
batches). For the depletion calculations, the ORIGEN-ARP tool has been 
used, employing the ORIGEN reactor libraries for an 18x18 FA design 
embedded in SCALE 6.2.3 (Wieselquist et al., 2020). 

The core and containment nodalization of the ASTEC model of a 
generic KONVOI NPP are shown in Fig. 11. The containment is divided 
into two almost symmetrical halves, with the exceptions of some spaces 
such as sump, cavity, reactor room and dome. In the model, smaller 

Fig. 6. Simple statistics (left) and hydrogen mass curves for all samples (right) – 50 samples, 5% uncertainty for stFlow and arFlow.  

Fig. 7. Pearson correlation coefficients between prediction and observable var
iables (MOCABA test on QUENCH-08 simulations). 



spaces are combined with the adjacent rooms. The plant rooms (green, 
red, grey, and light blue boxes in Fig. 11) and the operating rooms 
(white boxes in Fig. 11) are modelled by means of eleven and nine 
volumes, respectively. Finally, three volumes are employed to model the 
annulus region (light yellow boxes in Fig. 11). The containment and the 

annulus, as well as the annulus and the environment, are connected by 
means of two fans. The flow rates through such fans depend in the model 
on the relative pressure differences in such zones based on plant data. 

The MBLOCA scenario (with 0.044 m2 break in the cold leg) is 
considered in this work. Simulations were stopped 6000 s after lower 

Fig. 8. Prior values for hydrogen mass, temperatures and data for two samples from validation set (MOCABA test on QUENCH-08 simulations).  

Fig. 9. Prediction results and prediction error for sample N◦7.  

Fig. 10. Prediction results and prediction error for sample N◦11.  



head vessel failure. 
The progression of the events of the MBLOCA scenario have been 

modeled in the ASTEC input deck as follows:  

1. Break of the cold leg at t = 0 s;
2. Reactor scram, if the primary pressure is lower than 1.32‧107 Pa or

containment overpressure is larger than 3‧103 Pa;
3. No admission to turbine and closure of the main feed water pumps

into the steam generator;
4. Emergency Core Cooling System (ECCS) is activated if two of the

following three conditions are fulfilled: containment overpressure
larger than 3‧103 Pa; pressure of the Reactor Coolant System (RCS)
lower than 1.10‧107 Pa; pressurizer liquid level lower than 2.30 m;

5. Main Coolant Pumps are coasted down and the pressure regulation in
the pressurizer is switched off;

6. Activation of the Emergency Feed Water System (EFWS) when the
liquid level of one SG falls below 4.50 m;

7. High and low pressure injection systems (HPIS and LPIS) activated
when the temperature of the gas in the primary exceeds 923 K, and
continue to work until tanks are empty. In this condition, the severe
accident occurs;

8. Activation of the Extra Borating System when the pressurizer water
level is lower than 2.30 m;

5.2. Simple statistics of simulation results 

To test the MOCABA prediction algorithm for the KONVOI MBLOCA 
simulations, two separate sets of data were prepared, one with 300 and 
one with 100 samples. Some of the ASTEC simulations failed for 
different reasons. Some simulations, which had a very fast accident 
progression, were excluded to provide a broader time range for U&S 
analysis. The resulting number of samples used for calculating ‘priors’ 
and ‘posteriors’ were 255 and 89 samples, respectively. 

Simple statistics are only briefly described here to demonstrate how 
the prediction parameters are changing in time. Unlike for the QUENCH- 
08 simulations, the uncertainty ranges of input parameters were chosen 
the same for the 255 and the 89 sample set. Nevertheless, data from the 
smaller set is covered by the data of the larger set, which is used for prior 
part. 

16 uncertain input parameters were used in both cases: 6 with 
normal distribution, 5 with triangular distribution, 4 with uniform dis
tribution, and one with beta distribution. These parameters are related 

to different ASTEC models – release of FPs from fuel pellets, integrity 
criteria, aerosol behavior. In addition, there are parameters governing 
the leakage flow rate from containment to annulus and burnup. The 
release into the environment is mostly defined by two uncertain input 
parameters, one governing the leakage rate from the annulus to the 
environment and the second one governing the burnup. For the release 
into the containment, the most important parameter is the one related to 
the burnup. For these two parameters, the Spearman correlation to the 
release to the environment amounts to up to 0.9. Other parameters have 
smaller Spearman coefficient values. For example, the Spearman cor
relation between the release of low-volatile fission products, like Ba and 
Mo, into the vessel and the primary circuit and parameters from the 
ELSA ASTEC model (models the release from the fuel pellets) is around 
0.4 at the beginning of the SA. Parameters from the SOPHAEROS ASTEC 
module (models aerosols behavior in containment and primary circuit) 
affects Cs and I aerosols release into the containment at later stages of 
the SA (Stakhanova et al., 2022). A detailed description of the assess
ment of the PDFs of the uncertain parameters and of the results of the 
U&S analysis is presented in (Stakhanova et al., 2022). Note that in the 
presented simulations, the containment integrity was not compromised. 
Table 1 shows the time range for the occurrence of some characteristic 
events. Changing uncertain parameters values could significantly affect 
SA progression, for example, difference between the earliest time of the 
lower head vessel failure and the latest one is almost 15 times. 

For the MOCABA test for the KONVOI simulations, the amount of Xe 
as a fraction of the initial inventory released to the environment (XetEFr) 
has been chosen as observable. Simple statistics and curves for all sam
ples for XetEFr are presented on the left-hand side and right-hand side of 
Figs. 12 and 13, respectively. One can see that there is no big difference 
between the shapes of the curves, like for the hydrogen mass curves in 
Figs. 5 and 6. 

Fig. 11. Core and containment nodalizations of KONVOI ASTEC model. From (Wieselquist et al., 2020).  

Table 1 
Time range of main events occurring during SA progression. (From results of 300 
simulations of MBLOCA scenario).  

Event Minimum time 
(s) 

Maximum time 
(s) 

Start of FPs release from the fuel pellets  424.4  764.4 
First corium slump into the lower plenum  724.4  11784.4 
Lower head vessel failure  2240.9  33206.9 
End of the corium slump from the lower head 

to the cavity  
2243.2  33225.6  



In the next section, the results of the MOCABA prediction for the 
KONVOI MBLOCA simulations are presented. 

5.3. Results of xenon release prediction 

The test of the MOCABA prediction algorithm was performed as 
described in Section 6. A set of simulations (with smaller amount of 
samples) was used as a collection of individual ‘experiments’, and 
MOCABA was applied to these ‘experiments’ one by one. As stated before, 
the correlations between ‘prediction’ and ‘observable’ variables should be 
high in order to obtain good predictions for given values of the 
‘observable’ variables. Two possible candidates for observable parame
ters were suggested – total dose rate in annulus (TotalDoseAnnulus) and 
total dose rate in containment (TotalDoseCont). Pearson correlation co
efficients between the ‘observable’ and the chosen ‘prediction’ parameters 
are shown at Fig. 14. As one can see, the correlation between Total
DoseCont and XetEFr is fairly low, especially after 8000 s. Therefore, 
TotalDoseCont was excluded from the prediction model. The correlation 
between TotalDoseAnnulus and XetEFr, on the contrary, is very high over 
the entire time period. TotalDoseAnnulus is, therefore, chosen as a suit
able ‘observable’ parameter for the MOCABA prediction model. 

Two samples were chosen for demonstration purpose – samples N◦2 
and N◦59. It is shown in Fig. 15 that XetEFr and TotalDoseAnnulus values 
for these two samples are lying inside the uncertainty range of the prior 
data. 

Prediction results for samples N◦2 and N◦59 are presented on the 
left-hand side of Figs. 16 and 17, and prediction errors are shown on the 
right-hand side of these figures. As for the QUENCH-08 example, four 
prediction curves are presented for each considered sample, which 
correspond to four different points in time at which the predictions are 
performed. The more measured data are used the better the prediction 

becomes. The very high prediction error (in %) at the beginning of the 
process is due to the very small values of the released amount of Xe at 
that time. The prediction error decreases very fast with time and is 
around 10 % already when measured data up to 5614 s is used. 

6. Conclusions

A time series prediction algorithm based on the MOCABA data
assimilation framework was tested on two different application cases: 

Fig. 12. Simple statistics (left) and Xe released to the environment for all samples (right) – 255 samples.  

Fig. 13. Simple statistics (left) and Xe released to the environment for all samples (right) – 89 samples.  

Fig. 14. Pearson correlation coefficients between ‘prediction’ and ‘observable’ 
variables (test MOCABA on KONVOI MBLOCA simulations). 



- Prediction of the amount of generated hydrogen for the QUENCH-08
experiment using as measurements the temperatures at different
elevations;

- Prediction of the amount of Xe released to the environment for an
MBLOCA SA scenario at a KONVOI NPP using as measurements the
values of the total dose rate in the annulus.

The FSTC tool (developed by KIT) was applied to the ASTEC SA code
to perform Monte Carlo uncertainty propagation for the QUENCH-08 
experiment and for an MBLOCA SA scenario at a KONVOI NPP. The 
simulation results were then used by FSTC to perform U&S analysis and 
to train the MOCABA prediction model. To test the performance of the 
trained prediction model, the prediction algorithm (also implemented in 
FSTC) was applied to selected ASTEC simulations, which were chosen as 
application cases. The simulated application case measurements were 
here applied to the trained prediction model, and the obtained pre
dictions of the to-be-predicted variables (generated hydrogen or 
released Xe) were compared to the actual values of the selected 

application cases. 
From the results of the performed test cases it can be concluded that 

the MOCABA time series prediction algorithm can be very useful to 
perform real-time predictions of accidents at nuclear power plants based 
on measured plant data. Implementing MOCABA prediction models for 
different accident scenarios within specific software packages, such as 
Framatome’s Central Radiological Computer System (CRCS) (Torchiani 
et al., 2015), may significantly improve the safety level of a NPP by 
automatically providing the emergency response team with real-time 
information about the course of an accident. 

A necessary precondition for generating a reliable prediction model, 
however, is that the modeling of the accident (e.g. in terms of an ASTEC 
model) is sufficiently representative of the NPP to which the prediction 
model shall be applied. Also the uncertainties represented by the PDFs of 
the input parameters shall sufficiently cover the actual uncertainties we 
have to deal with for the NPP under consideration. A further precondi
tion for reliable predictions is that measured plant data are available 
that are sufficiently high correlated to the to-be-predicted quantities 

Fig. 15. Prior values for amount of Xe released into the environment, total dose rate in annulus and data for two samples from validation set.  

Fig. 16. Prediction results and prediction error for sample N◦2.  

Fig. 17. Prediction results and prediction error for sample N◦59.  
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(Pauli et al., 2022). For example, for the analyzed MBLOCA SA scenario, 
the annulus dose rate was highly correlated to the Xe release to the 
environment, which made the annulus dose rate a suitable measurement 
variable for the prediction model of the Xe release. Finally, there may be 
cases where the simulated time curves corresponding to different sets of 
sampled input parameters show significantly different shapes and many 
crossings, similar to a ball of wool (Pauli et al., 2022). If this is the case, 
the available measurement information at a given time during the ac-
cident provides only limited information about the further course of the 
accident. In the context of a prediction model this situation reflects a low 
information content of the training data, which reduces the predictive 
power of the trained prediction model. 
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