KIT | KIT-Bibliothek | Impressum | Datenschutz

Active Learning for SAT Solver Benchmarking

Fuchs, Tobias 1; Bach, Jakob ORCID iD icon 2; Iser, Markus ORCID iD icon 3
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)
3 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Benchmarking is a crucial phase when developing algorithms. This also applies to solvers for the SAT (propositional satisfiability) problem. Benchmark selection is about choosing representative problem instances that reliably discriminate solvers based on their runtime. In this paper, we present a dynamic benchmark selection approach based on active learning. Our approach predicts the rank of a new solver among its competitors with minimum runtime and maximum rank prediction accuracy. We evaluated this approach on the Anniversary Track dataset from the 2022 SAT Competition. Our selection approach can predict the rank of a new solver after about 10 % of the time it would take to run the solver on all instances of this dataset, with a prediction accuracy of about 92 %. We also discuss the importance of instance families in the selection process. Overall, our tool provides a reliable way for solver engineers to determine a new solver’s performance efficiently.


Verlagsausgabe §
DOI: 10.5445/IR/1000158097
Veröffentlicht am 24.04.2023
Originalveröffentlichung
DOI: 10.1007/978-3-031-30823-9_21
Scopus
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISBN: 78-3-031-30822-2
ISSN: 0302-9743
KITopen-ID: 1000158097
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Tools and Algorithms for the Construction and Analysis of Systems. Ed.: S. Sankaranarayanan. Pt. 1
Veranstaltung 29th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2023), Paris, Frankreich, 22.04.2023 – 27.04.2023
Verlag Springer Nature Switzerland
Seiten 407-425
Serie Lecture Notes in Computer Science ; 13993
Vorab online veröffentlicht am 22.04.2023
Externe Relationen Forschungsdaten/Software
Forschungsdaten/Software
Schlagwörter Propositional satisfiability, benchmarking, active learning
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page