
Magnetic ordering in the Kondo lattice

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Physik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Matthias Keßler, M. Sc.

Tag der mündlichen Prüfung: 10. Februar 2023

1. Referent: Priv.-Doz. Dr. Robert Eder

2. Korreferent: Prof. Dr. Jörg Schmalian





Abstract

Although the complicated interaction between electrons makes it impossible to directly

calculate the properties of realistic condensed systems, for large classes of metallic com-

pounds this problem has essentially been “solved”: their behavior is qualitatively de-

scribed by Landau’s Fermi liquid theory (which postulates that the electron interaction

ultimately amounts to little more than a readjustment of a few numerical parameters

compared to a noninteracting system), and approximations based on density functional
theory (which describes the system not through individual electrons, but only through

the total electron density) are always increasing in quantitative accuracy.

However, for other materials (known under the umbrella term of strongly correlated)
these general-purpose methods can fail, sometimes even spectacularly. While such sys-

tems have been known for almost a hundred years, they have only more recently come

to the forefront of research with the discovery of high-temperature superconductors in

the 1980s. Since then, these materials have mostly evaded theoretical understanding. Not

quite as well-known, but equally interesting and difficult to explain are heavy fermion
systems, which form the subject of this thesis in the form of the much simplified Kondo
lattice model (KLM). To deal with the strong interactions in the system, we use a special-

ized ansatz tuned to the specifics of the model, the bond fermion method, which allows for

the calculation of quasiparticle dynamics and magnetic properties.

The structure of the thesis is as follows: Chapter 1 gives a basic introduction into Kondo

physics, heavy fermion systems, and the KLM. Chapter 2 then presents the bond fermion

method. We extend the method by combining it with the Gutzwiller approximation, and
then apply it to the KLM on a square lattice in Chapters 3 and 4. Finally, in Chapter 5 we

investigate the effect of geometric frustration by performing a similar calculation on the

triangular lattice. Chapter 6 forms the conclusion.

Some elements of this thesis are based on published articles, for which the thesis author

acted as first author and contributed a significant majority of the work. Parts of Chapter

2 (specifically, Secs. 2.4, 2.5, and 2.7) and Chapter 3 are based on Ref. [57]. Chapter 5 is

based on Ref. [56].
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1 Introduction to Kondo physics and
heavy fermions
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Figure 1.1: The resistance of two Au samples measured by de Haas et al., normalized to

the resistance at 0
◦
C [29].

1.1 Kondo effect

This thesis is aimed at theoretical study of heavy fermion systems. However, we will first

give a short introduction into the related topic of dilute magnetic impurities in nonmag-

netic host metals. This serves to introduce many of the concepts important for heavy

fermion compounds (for example Kondo screening) in a simpler setting. Furthermore, this

gives some historical context and motivation for the continued study of heavy fermions

and other strongly correlated materials. The content of this section is based on Hewson’s

much more comprehensive treatment [47].

1.1.1 Resistance minimum

It was first discovered by de Haas et al. [29] that the electrical resistivity of (impure) gold

samples shows an unexpected minimum at a low but finite temperature (Fig. 1.1). As

was common knowledge at the time, the two most important sources of electrical resis-

tivity are impurity scattering (𝜌
imp

) and electron-phonon scattering (𝜌
ph
), while electron-

electron scattering (𝜌
e−e) is significant at low temperatures. None of these mechanisms

are expected to behave non-monotonically: in the usual case, 𝜌
imp

is almost independent
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Figure 1.2: Ratio of the atomic d- (f-) shell volume and the Wigner-Seitz cell volume in a

solid, as compiled by van der Marel and Sawatzky [74].

of temperature, while the number of thermally excited phonons and the phase space avail-

able for electron-electron scattering (and thus 𝜌
ph

and 𝜌
e−e) is proportional to some power

of𝑇 . As a consequence, the resistance minimum remained a mystery for several decades.

Later research found that the existence of a resistance minimum was correlated with

the appearance of magnetic impurities formed by transitionmetals, which can be detected

by their a characteristic Curie-Weiss contribution to the magnetic susceptibility (𝜒
CW

∝
1/𝑇 ). For example, in series of Mo-Nb alloys, the strength of the (Fe-impurity) magnetic

moment showed a clear relation to the size of the resistance minimum [23, 99]. Once

the experimental link between magnetism and resistance anomaly was experimentally

established, Kondo [60] quickly provided a simple theoretical calculation explaining the

minimum. We will retrace this calculation shortly, but first we must discuss the origin of

the magnetic moments and their interaction with the conduction electrons.

1.1.2 Anderson and Kondo impurity models

The local magnetic moments responsible for the resistance minimum are a consequence

of strong correlation, which forms a large and diverse research topic. Going back to the

very beginnings of the subject, the elements most often associated with such phenomena

are transition metals and rare earths; for example, the transition metal oxide NiO was the

first compound found to be aMott insulator, a system expected to conduct based on band

theory but insulating in practice [18]. Much later, high-temperature superconductivity

was first discovered by Bednorz and Müller in compounds featuring strongly correlated

copper oxide layers [14].
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1.1 Kondo effect

The reason for these extraordinary features lies in the strong Coulomb repulsion associ-

ated with these elements. In compounds, transition metals
1

(rare earths) exhibit partially

filled 3d- (4f-) shells of relatively small spatial extent when compared to the inter-ionic

lattice constant. As shown in Fig. 1.2, this ratio generally trends downwards towards

the right of the periodic table due to the increased nuclear charge (and decreased atomic

radius). However, the 3d-series Sc-Ga (4f-series La-Lu) have noticeably smaller shells

than other d- (f-) elements. Roughly speaking, this is because 3d and 4f shells are the

lowest-energy states with 𝑙 = 2 or 𝑙 = 3, respectively. Their electron wave functions are

thus already orthogonal to those of the lower-lying electrons due to their angular wave

functions 𝑌𝑙,𝑚 , so that the radial wave function can be compressed further.

The strongly correlated nature of these orbital results in the formation of local mag-

netic moments analogous to Hund’s rule in the gaseous phase. The special feature here

is that the 3d- or 4f-orbitals are sufficiently close in energy to the rest of the conduction

band that hybridization effects appear: there is thus a competition between the local (ef-

fectively magnetic) interaction and tunneling. The simplest model that includes both of

these phenomena is the Anderson impurity model [5].

Forgetting about the orbital degeneracy associated with the quantum number 𝑚 and

taking only a single band of conduction electrons, we can model a transition metal or rare

earth impurity by the Hamiltonian

𝐻
Anderson

= 𝐻𝑡 + 𝐻𝑉 + 𝐻 𝑓 , (1.1)

𝐻𝑡 =
∑︁
k𝜎

𝜖k𝑐
†
k𝜎𝑐k𝜎 , (1.2)

𝐻𝑉 =
1

√
𝑁

∑︁
k𝜎

[
𝑉k𝑓

†
𝜎
𝑐k𝜎 + h.c.

]
, (1.3)

𝐻 𝑓 = 𝜖𝑓

∑︁
𝜎

𝑓
†
𝜎 𝑓𝜎 +𝑈 𝑓 †↑ 𝑓↑𝑓

†
↓ 𝑓↓. (1.4)

Here, 𝑐
†
k𝜎 creates a conduction electron with momentum k and spin 𝜎 . 𝜖k is the band

energy describing the hopping. 𝑓
†
𝜎 creates an impurity electron

2

. 𝑁 is the total number

of sites (or equivalently, the total number of allowed momenta k). 𝜖𝑓 is the energy of the

localized orbital, and𝑈 models the Coulomb interaction of the partially filled shell. Note

that conduction electrons are assumed to have negligible interaction, or can be thought of

as already renormalized in the Fermi liquid sense. 𝑉k describes the hybridization strength

between conduction electron and the 𝑓 -level.

The correlation effects in the system are caused by the interplay of 𝑈 and 𝑉k. If 𝑈 = 0,

the system is non-interacting and the ground state is a Slater determinant wave function.

1

Here meaning specifically 3d-elements.

2

We call this an 𝑓 -electron for consistency with later chapters, which will mostly concern themselves with

rare earth compounds.

3



1 Introduction to Kondo physics and heavy fermions

If 𝑉k = 0 (𝐻𝑉 = 0), the 𝑓 -orbital is completely decoupled and can easily be solved. The

eigenstates of 𝐻 𝑓 have zero, one, or two electrons, with eigenvalues

𝐻 𝑓 |0⟩ = 0, (1.5)

𝐻 𝑓 |𝜎⟩ = 𝜖𝑓 , (1.6)

𝐻 𝑓 |↑↓⟩ = 𝐸↑↓ |0⟩ =
(
2𝜖𝑓 +𝑈

)
|↑↓⟩ . (1.7)

Depending on the values of 𝜖𝑓 and 𝑈 , any of these states can be the ground state of the

system.

With hybridization turned on, the Anderson impurity is highly nontrivial. While there

are some exact numerical solutions [48, 114] (and even analytic results using the Bethe

ansatz [108]), we will only perform some much simpler calculations. As we are mostly

interested in magnetic effects, the Anderson Hamiltonian can be simplified: following

Schrieffer and Wolff [47, 100], we will isolate the spin interactions of the system to arrive

at the Kondo impurity model.
We first specialize to the most interesting parameter region of the Anderson model.

Assuming that the ground state of the 𝑓 -orbital is widely separated from its excited states

(small𝑉k), charge fluctuations are strongly suppressed and any excitations of the 𝑓 -orbital

are very short-lived. If the ground state is either |0⟩ or |↑↓⟩, this is where the story ends:

simple perturbation theory will give adequate results, as the 𝑓 -orbital is effectively non-

dynamic. In contrast, when |𝜎⟩ is the ground state, we have a remaining spin degeneracy:

even if the charge excitations themselves are short-lived, there are two possible ground

states to return to, so that the 𝑓 -orbital is still dynamic. A specific choice of parameters

that achieves this is the symmetric Anderson model with

𝑈 ≫ |𝑉k |, (1.8)

𝜖𝑓 = −𝑈
2

. (1.9)

Due to the ground state degeneracy, simple perturbation theory fails (note that there is

no matrix element linking |↑⟩ and |↓⟩ directly). However, we can still use the smallness of

𝑉k to our advantage, using the Schrieffer-Wolff transformation. Up to second order in 𝑉k,

there are two types of fluctuations (shown in Fig. 1.3): the 𝑓 -electron can tunnel into the

conduction band (intermediate state |0⟩) with its place then taken by a 𝑐-electron, or the

𝑐- and 𝑓 -electrons tunnel in the opposite order (intermediate state |↑↓⟩). As demonstrated,

this can induce a spin-flip of the localized and the conduction electrons; we should accord-

ingly expect a spin-spin interaction to remain even if the charge dynamics of the 𝑓 -orbital

are suppressed by the interaction.

Following Hewson, we formulate the Schrieffer-Wolff transformation by examining the

Schrödinger equation in matrix form:

𝐻
Anderson

|Ψ⟩ = 𝐸 |Ψ⟩ ⇔ ©«
𝐻
0

𝐻
0𝜎 0

𝐻𝜎0 𝐻𝜎 𝐻𝜎↑↓
0 𝐻↑↓𝜎 𝐻↑↓

ª®¬ = 𝐸
©«
|Ψ

0
⟩

|Ψ𝜎⟩��Ψ↑↓
〉ª®¬. (1.10)

4



1.1 Kondo effect

Figure 1.3: Spin-flip scattering on an Anderson impurity through a second-order process.

An incoming

��k′ ↓〉-electron (full yellow arrow) is scattered into the unoccu-

pied |k ↑⟩-state (dashed yellow arrow). Hopping processes are denoted by a

green line. On the left side, the intermediate (middle) state has has an empty

𝑓 -orbital (red). On the right side, the intermediate state has a double occupa-

tion (blue). The final (bottom) state is the same in both cases, with the spin of

the 𝑓 -electron flipped compared to the starting state.

We have explicitly split the Hamiltonian and the wave function depending on the occu-

pation of the 𝑓 -orbital. The diagonal elements (𝐻
0
, etc.) correspond to 𝐻𝑡 and 𝐻 𝑓 , as they

leave each subspace invariant, while the off-diagonal ones (𝐻
0𝜎 , etc.) correspond to 𝐻𝑉 ,

which changes the 𝑓 -occupation. We can solve the Schrödinger equation for |Ψ
0
⟩ and��Ψ↑↓

〉
and reinsert them, which gives[

𝐻𝜎 + 𝐻𝜎0
1

𝐸 − 𝐻
0

𝐻
0𝜎 + 𝐻𝜎↑↓

1

𝐸 − 𝐻↑↓
𝐻↑↓𝜎

]
|Ψ𝜎⟩ = 𝐸 |Ψ𝜎⟩ . (1.11)

The first term in the bracket is the unperturbed Hamiltonian, while the other two cor-

respond to each of the (short-lived) excitations mentioned above. As 𝐸 appears on both

sides, we have not yet simplified anything. For this we write

𝐻𝜎0
1

𝐸 − 𝐻
0

𝐻
0𝜎 |Ψ𝜎⟩ =

1

𝑁

∑︁
k𝜎k′𝜎 ′

𝑉k𝑓
†
𝜎
𝑐k𝜎

1

𝐸 − 𝐻
0

𝑉
∗
k′
𝑐
†
k′𝜎 ′

𝑓
𝜎
′ |Ψ𝜎⟩ (1.12)

=
1

𝑁

∑︁
k𝜎k′𝜎 ′

𝑉
k
𝑉

∗
k′

𝜖𝑓 − 𝜖k′
𝑓
†
𝜎
𝑐
k𝜎
𝑐
†
k′𝜎 ′

𝑓
𝜎
′ |Ψ𝜎⟩ + O(𝑉 4

k ). (1.13)

We have simplified the denominator through

(𝐻
0
− 𝐸)𝑐†

k′𝜎 ′
𝑓
𝜎
′ |Ψ𝜎⟩ = (𝜖k′ − 𝜖𝑓 )𝑐†k′𝜎 ′ 𝑓𝜎 ′ |Ψ𝜎⟩ + O(𝑉 2

k ), (1.14)

5



1 Introduction to Kondo physics and heavy fermions

as to zeroth order |Ψ𝜎⟩ is an eigenstate of𝐻𝜎 (with an unperturbed Fermi sea and a singly

occupied 𝑓 -orbital) and 𝐸 the unperturbed energy, so the change in energy (𝐻
0
− 𝐸) af-

ter applying 𝑐
†
k′𝜎 ′

𝑓
𝜎
′ comes from adding the 𝑐-electron (+𝜖k′) and removing the 𝑓 -electron

(−𝜖𝑓 ). This approximation is valid as long as 𝜖𝑓 is well-separated from 𝜖k, note the diver-

gence in (1.13) otherwise.

A similar computation for the 𝐻↑↓-term leads to the Kondo (or s-d) impurity model [47]

𝐻
Kondo

= 𝐻𝑡 + 𝐻 𝐽 + 𝐻𝐾 , (1.15)

𝐻 𝐽 =
1

𝑁

∑︁
kk′

𝐽kk′S
𝑐

kk′S
𝑓
, (1.16)

𝐻𝐾 =
1

𝑁

∑︁
kk′

𝐾
kk′
𝑐
†
k
𝑐
k′
, (1.17)

𝐽kk′ = 2𝑉
∗
k
𝑉
k′

[
1

𝜖k − 𝜖𝑓
+ 1

𝑈 + 𝜖𝑓 − 𝜖k′

]
, (1.18)

𝐾kk′ =
𝑉

∗
k′
𝑉
k

2

[
1

𝜖k − 𝜖𝑓
− 1

𝑈 + 𝜖𝑓 − 𝜖k′

]
, (1.19)

𝑐k =
(
𝑐k↑ 𝑐k↓

)⊺
, (1.20)

S𝑐kk′ = 𝑐
†
k

𝝉

2

𝑐
k′
. (1.21)

𝐻𝑡 remains unchanged from the Anderson Hamiltonian, wheres 𝐻 𝐽 and 𝐻𝐾 respectively

describe the spin-dependent and spin-independent scattering (𝐻 𝐽 is theKondo interaction).
𝝉 is the vector of Pauli matrices, so that S𝑐kk′ describes the conduction electron spin (S𝑓 is
defined analogously for the localized electron).

Usually, one assumes that

��𝜖𝑓 �� and 𝑈 are much greater than the bandwidth of conduc-

tion electrons, so that we can neglect 𝜖k and 𝜖k′ in the denominators of (1.18) and (1.19).

For the symmetric Anderson model, this gives the traditional expressions

𝐽kk′ =
8𝑉

∗
k
𝑉
k′

𝑈
, (1.22)

𝐾kk′ = 0. (1.23)

From now on we take 𝑉k = 𝑉 = const. and thus 𝐽kk′ = 𝐽 = const., corresponding to a

strongly localized impurity. One sees that 𝐽 > 0, so that the Kondo interaction between

conduction electrons and the localized spin is antiferromagnetic.

1.1.3 Perturbation theory

In its simplified form, the Kondo model admits a variety of analytical approaches. How-

ever, it is still powerful enough to explain nontrivial features of magnetic impurities, such

as the relationship between the resistance minimum and Curie-Weiss behavior. Naturally,

one of the first things to try is to expand in the interaction parameter. While most ad-

vanced texts on condensed matter physics focus on diagrammatic perturbation theory,

6



1.1 Kondo effect

this approach is not directly applicable to the Kondo impurity. Unlike boson or fermion

operators, expectation values of the 𝑓 -spin cannot be decoupled throughWick’s theorem.

While there are some limited ways around this, many of the curious features are already

visible from Kondo’s third-order perturbation theory results [60], which we will derive

here.

The resistivity is determined by the scattering rate, which to low order can be calculated

through time-dependent perturbation theory. The transition rate from an initial state |𝑖⟩
to a (different) final state |𝑓 ⟩ is given by

Γ𝑖→𝑓 = 2𝜋𝛿 (𝐸 𝑓 − 𝐸𝑖)
��𝑋𝑖→𝑓 + 𝑌𝑖→𝑓 + . . .

��2
(1.24)

= 2𝜋𝛿 (𝐸 𝑓 − 𝐸𝑖)
(��𝑋𝑖→𝑓

��2 + 2 Re(𝑋 ∗
𝑖→𝑓𝑌𝑖→𝑓 ) + . . .

)
, (1.25)

𝑋𝑖→𝑓 = ⟨𝑓 |𝑉 |𝑖⟩ , (1.26)

𝑌𝑖→𝑓 =
∑︁
𝑗

⟨𝑓 |𝑉 | 𝑗⟩ ⟨ 𝑗 |𝑉 |𝑖⟩
𝐸 𝑓 − 𝐸 𝑗 + 𝑖[

. (1.27)

Here, 𝐸𝑖 etc. are the unperturbed energies and 𝑉 is the perturbation operator (𝐻 𝐽 in our

case). 𝑋𝑖→𝑓 and 𝑌𝑖→𝑓 are the lowest-order contributions, respectively proportional to 𝐽

and 𝐽
2

: note that the first term of (1.25) is Fermi’s golden rule, with the other term a

third-order correction.

As the initial state we insert a single electron with momentum k and spin 𝜎𝑐 into a

“background”,

|𝑖⟩ =
��k𝜎𝑐𝜎 𝑓 Ω〉

. (1.28)

Here 𝜎𝑓 denotes the state of the 𝑓 -spin and Ω that of the other conduction electrons,

which will have to be averaged over a thermal distribution later on. The final states have

the form

|𝑓 ⟩ =
���k′𝜎′𝑐𝜎′𝑓 Ω〉

, (1.29)

with the background unchanged. Arbitrarily fixing 𝜎𝑐 =↑, the total scattering rate from k
to k′ is

Γk→k′ =
〈
Γ↑↑→↑↑ + Γ↑↓→↑↓ + Γ↑↓→↓↑

〉
𝑇
/2. (1.30)

The notation ↑↑→↑↑, etc. refers to the initial and final states of 𝜎𝑐 and 𝜎𝑓 . Other scattering
processes are forbidden by spin conservation. The angle brackets denote the thermal av-

erage, and the final division by two is the average over the initial 𝜎𝑓 (both spin directions

are equally likely).

We have to calculate each Γ separately according to (1.25). For each case, the lowest

order is given by the golden rule term of (1.26). From the amplitudes in 𝐻 𝐽 we find

𝑋↑↑→↑↑ =
𝐽

4𝑁
, (1.31)

𝑋↑↓→↑↓ = − 𝐽

4𝑁
, (1.32)

𝑋↑↓→↓↑ =
𝐽

2𝑁
. (1.33)
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1 Introduction to Kondo physics and heavy fermions

Figure 1.4: Diagrams contributing to 𝑌↑↑→↑↑. Conduction electrons are associated with

fermion lines (a hole corresponding to a line running backwards), with the

state of the local moment spin written on the time axis. Each scattering event

must conserve the total spin. Additionally scattering between parallel spin

directions is associated with a factor 𝑋↑↑→↑↑, spin-flip scattering with 𝑋↑↓→↓↑,
and scattering between antiparallel spins (not shown) with 𝑋↑↓→↑↓. Notice

that a hypothetical fourth diagram (with an intermediate spin-flip but without

a particle-hole excitation) is forbidden by spin conservation.

These expressions do not depend on 𝑇 , so they cannot explain the resistance anomaly.

Mathematically, they are more or less equivalent to scattering on a nonmagnetic impurity.

For the temperature dependence, we need to go beyond the golden rule.

While we have mentioned that normal diagrammatic perturbation theory is not appli-

cable to the Kondo model, terms in the perturbation series can still be associated with

their own (nonstandard) diagrams. For example, the diagrams contributing to 𝑌↑↑→↑↑ are
shown in Fig. 1.4. There are two classes of diagrams: in the first class, the k-electron
scatters into a an unoccupied state

˜k and then again into the final state k′. In the second

class, a Fermi sea electron
˜k scatters into k′ and its place is taken by k. Starting from

(1.27), it is straightforward to calculate each diagram and sum them up, giving

𝑌↑↑→↑↑ = 𝑋
2

↑↑→↑↑(𝐼1 + 𝐼2) + 𝑋
2

↑↓→↓↑𝐼2, (1.34)

𝐼
1
=

∑̃︁
k

1 − 𝑛 ˜k

𝜖k − 𝜖 ˜k
, (1.35)

𝐼
2
=

∑̃︁
k

𝑛 ˜k

𝜖k − 𝜖 ˜k
. (1.36)

𝐼
1
and 𝐼

2
are factors corresponding to each class of diagram: 𝑛 ˜k is the occupation probabil-

ity of the intermediate state, which must be either unoccupied or occupied depending on

the class of diagram. When later averaged over a thermal distribution, 𝑛 ˜k will turn into a

Fermi function. From (1.25) one sees that only the real part of the sums are required, so

they should be understood as principal value sums.

What sets this result apart from a nonmagnetic impurity is the appearance of a lone 𝐼
2
in

the second term of (1.34), which is associated with spin-flip scattering. For a nonmagnetic

8



1.1 Kondo effect

impurity, the result is completely proportional to 𝐼
1
+ 𝐼

2
, which does not depend on 𝑛 ˜k,

and thus not on 𝑇 .

Carefully considering every possible diagram, we can calculate

𝑌↑↑→↑↑ = 𝑋
2

↑↑→↑↑(𝐼1 + 𝐼2) + 𝑋
2

↑↓→↓↑𝐼2, (1.37)

𝑌↑↓→↑↓ = 𝑋
2

↑↓→↑↓(𝐼1 + 𝐼2) + 𝑋
2

↑↓→↓↑𝐼2, (1.38)

𝑌↑↓→↓↑ = 2𝑋↑↓→↓↑𝑋↑↓→↑↓𝐼1 + 2𝑋↑↓→↓↑𝑋↑↑→↑↑𝐼2. (1.39)

Inserting each of the three contributions into (1.25) and summing them up as in (1.30), we

get the scattering rate

Γk→k′ = 2𝜋𝛿 (𝐸 𝑓 − 𝐸𝑖)
3𝐽

2

16𝑁
2

(
1 + 𝐽

𝑁
⟨𝐼
2
− 𝐼

1
⟩𝑇

)
, (1.40)

1

𝑁
⟨𝐼
2
− 𝐼

1
⟩𝑇 =

1

𝑁

∑̃︁
k

2𝑓 (𝜖 ˜k) − 1

𝜖k − 𝜖 ˜k
=

1

𝑁

∑̃︁
k

− tanh

(
𝜖 ˜k
2𝑇

)
𝜖k − 𝜖 ˜k

. (1.41)

As the summand decays away from the Fermi energy (which we set to zero), we approxi-

mate the band as flat. This gives

1

𝑁
⟨𝐼
2
− 𝐼

1
⟩𝑇 ≈ 𝜌

∫ 𝐷

−𝐷
d𝜖

tanh

(
𝜖
2𝑇

)
𝜖

≈ 2𝜌 ln

(
𝐷

𝑇

)
, (1.42)

where we assumed |𝜖k | < 𝑇 , which is the energy range relevant for electrical transport.

Otherwise 𝑇 should be replaced by |𝜖k | in the final expression. To derive this result, note

that the integrand is ∝ 𝜖−1 for most of the integration range, with the divergence cut off

by 𝐷 and 𝑇 for large and small 𝜖 respectively. We insert this expression into (1.40) and

integrate over all final momenta k′, which gives another factor of 𝜌 . The final result for

the scattering rate for is

Γ
Kondo

=
3

8𝑁
𝐽
2

𝜌

(
1 + 2𝐽 𝜌 ln

(
𝐷

𝑇

))
. (1.43)

If the system contains 𝑁
imp

well-separated impurities, we can simply multiply this result

by 𝑁
imp

(the scattering rate is then proportional to the impurity density 𝑁
imp

/𝑁 , as is

physically reasonable).

(1.43) gives an adequate explanation of the resistance minimum. The third-order term

gives a positive contribution to the scattering rate ∝ ln(𝐷/𝑇 ), which increases at low

temperatures. If we add the phonon contribution (usually ∝ 𝑇 5

), the total resistance 𝜌
tot

should thus have the form

𝜌
tot

= 𝐴
ph
𝑇
5 + 𝜌

imp,0 + 𝜌imp,1 ln

(
𝐷

𝑇

)
. (1.44)

which has a minimum at

𝑇
min

=

(
𝜌
imp,1

5𝐴
ph

) 1

5

. (1.45)
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1 Introduction to Kondo physics and heavy fermions

However, it is clear that this cannot be the full picture. Namely, the correction is diver-

gent at low temperatures; from comparing the relative sizes of the two terms in (1.43), it

appears that our perturbative result becomes inapplicable below

𝑇𝐾 ∼ 𝐷𝑒−
1

2𝐽 𝜌 , (1.46)

which is known as the Kondo temperature. The problem of calculating the various elec-

trical and magnetic response functions (which suffer from similar divergences) below the

Kondo temperature is known as the Kondo problem.

1.1.4 Bound state

Kondo’s calculation was soon followed by higher-order expansions, which allow for a

resummation of certain classes of terms (most famously Abrikosov’s “parquet” method

[1]). The results of these methods are generally even more pathological than (1.44), as

divergences appear not just at𝑇 = 0, but already at𝑇 = 𝑇𝐾 . The expression for the Kondo

temperature hints at the reason for this: 𝑇𝐾 cannot be represented as a power series in 𝐽 ,

suggesting that nonperturbative calculations may be required.

The difficulties at low temperatures arise from the formation of a bound state: as the

interaction in𝐻 𝐽 is antiferromagnetic, it favors configurations where conduction electron

spins and the local moment compensate each other and form spin-0 singlet states, in a

process called Kondo screening. For the compensating electron, the local moment corre-

sponds to an effective attractive potential, resulting in a stable bound state.

This is demonstrated by probably the simplest nonperturbative ansatz, the variational

wave function of Yosida [117] (which is analogous to Cooper’s earlier calculation for at-

tractive electron-electron interactions [25]). The wave function consists of a filled Fermi

sea (𝑇 = 0), above which a single electron is added to compensate the local moment. In

the language of the previous section, this state is

|𝜓 ⟩ =
∑︁
k

𝜓k |k⟩ , (1.47)

|k⟩ = 1

√
2

( |k ↑↓ Ω⟩ − |k ↓↑ Ω⟩ (1.48)

𝜓k are variational parameters (and normalized to unity). The momentum sum is taken

only over empty states (𝜖k > 0). The matrix elements of the Hamiltonian are〈
k′

��𝐻𝑡 ��k〉 = 𝛿k k′ (𝜖k + 𝐸Ω), (1.49)〈
k′

��𝐻 𝐽

��k〉 = −3
4

𝐽

𝑁
, (1.50)

𝐸
var

= ⟨𝜓 |𝐻
Kondo

|𝜓 ⟩ = 𝐸Ω +
∑︁
k

𝜖k𝜓
2

k −
3

4

𝐽

𝑁

∑︁
kk′
𝜓k𝜓k′, (1.51)

10



1.2 Lattice Systems

where 𝐸Ω is the (kinetic) energy of the Fermi sea and we calculated the variational energy

in the final line. Minimizing this gives the (effectively one-particle) Schrödinger equation

𝐸
S
𝜓k = 𝜖k𝜓k −

3

4

𝐽

𝑁

∑︁
k′
𝜓k′, (1.52)

𝐸
S
= 𝐸

var
− 𝐸Ω . (1.53)

𝐸
S
is the energy of the singlet. Solving (1.52) for𝜓k and then summing over k, we get

1 =
3

4

𝐽
∑︁
k

1

𝜖k − 𝐸S
≈ 3

4

𝐽 𝜌 ln

(
𝐷

−𝐸
S

)
, (1.54)

⇒ 𝐸
S
= −𝐷𝑒−

4

3𝐽 𝜌 . (1.55)

𝐸
S
is indeed negative, so that a bound state exists for arbitrarily small 𝐽 . While the coef-

ficient in the exponent depends on the specific approximation used, the resemblance to

our earlier result for𝑇𝐾 is obvious. This supports the earlier assertion: below𝑇𝐾 , the local

moment is bound in a singlet state with vanishing total spin. When 𝑇 ∼ |𝐸
S
| ∼ 𝑇𝐾 , the

bound state vanishes: intuitively, the (exponentially small) binding energy corresponds

to a large time scale between repeated scatterings of the local moment and its “partner

electron”. By the time the partner returns, the local moment may already have had its

spin flipped by scattering with other, thermally excited electrons, thus disturbing the deli-

cate singlet attraction. Once the bound state is completely destroyed, perturbation theory

becomes applicable.

If one were to redo the same calculation with a nonmagnetic attractive potential, one

would also find a bound state. However, the interpretation would be different: as the

impurity does not have a “memory”, there is no loss of temporal coherence at higher

temperatures. The interesting feature of the Kondo impurity is the crossover between

two qualitatively different states, which is not associated with the breaking of a physical

symmetry.

1.2 Lattice Systems

Following the discussion in the previous sections, it is natural to wonder what happens

when the assumption of dilute impurities is violated. For example, how do compounds

with a regular lattice of local moments behave? For rare earth compounds there are

roughly three regimes [47], depending on the energy difference between the 𝑓 -electron

orbitals and the conduction band. In the “normal” regime, they are located so far away

from the Fermi surface that the Kondo coupling can be disregarded, and Kondo physics

are not important
3

. This is usually the case for transition metal compounds or pure rare

earth systems. The other two regimes are anomalous. If the 𝑓 -electron levels are very

close to (or inside) the conduction band, there are strong charge fluctuations and the sys-

tem is in themixed valence regime. While this by itself forms a large body of research, we

3

If there is any 𝑐-𝑓 -interaction, it is usually a consequence of direct exchange and thus ferromagnetic.
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Figure 1.5: The magnetic resistivity 𝜌𝑚 (i.e., the difference in resistivity between

Ce𝑥La1−𝑥Cu6 and pure LaCu6) per mole Ce, as found by Sumiyama et al. [107].

are more interested in the third regime, with a moderate separation between 𝑓 -orbitals

and the conduction band. There, one finds an (apparent) lattice analogue of the Kondo

effect, so that such systems are referred to as Kondo lattices.

1.2.1 Coherence and heavy fermions

To keep in with our discussion of the impurity models, let us begin with a resistance

anomaly. Ce𝑥La1−𝑥Cu6 is a classic example of a Kondo lattice, and its resistance curve is

found in Fig. 1.5 [107]. Lanthanum is nonmagnetic, so that the resistance associated with

the magnetic moments (located on the Cerium ions) can be found by subtracting the 𝑥 = 0

(pure LaCu
6
) resistance. At small-to-moderate doping, the results can be explained by the

single-impurity Kondo effect of the previous chapter; upon lowering the temperature, the

resistance increases before levelling off at a few K (the Kondo temperature).

However, at large doping 𝑥 ≈ 1 (pure CeCu
6
), something surprising happens: the mag-

netic contribution to the resistance, which was responsible for the minimum of the total
resistance, itself has amaximum at a finite temperature. Indeed, the resistance per Cerium

ion decreases with the Cerium concentration. The position of this maximum is referred

to as the coherence temperature𝑇 ∗
, and is usually interpreted as the onset of coherent scat-

tering. An intuitive picture of this is the following: In the previous chapter, we viewed

the magnetic ions as localized impurities in an otherwise periodic background. However,

at 𝑥 = 1 and 𝑇 = 0, the system should be a lattice of screened Cerium ions, so that the

screened magnetic ions are the periodic background. Thus, since the system is ordered,

the current should be carried by Bloch states formed from excitations of the (singulet)

screening states, whose residual resistivity is proportional to the other impurities of the

system. This picture breaks down at the coherence temperature𝑇
∗
, as then the screening

states are so short lived that the local magnetic moments can be viewed as “effectively

disordered”, at which point usual Kondo physics apply. The transition can loosely be

identified as a lattice analogue of the Kondo effect, which is further supported by mag-

netic susceptibility measurements where a Curie law is recovered at high temperatures

(Fig. 1.6).
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Figure 1.6: The inverse magnetic susceptibility per Cerium atom (𝜒 = 𝜒
CeCu

6

− 𝜒
LaCu

6

) as

found by Onuki and Komatsubara [88]. At large temeperatures 𝜒
−1

is linear at

𝑇 , but saturates at a finite value for𝑇 → 0 (the extrapolated Curie temperature

is negative).

The low-temperature state has other anomalous qualities. The specific heat is given by

𝐶 = 𝛾𝑇 , (1.56)

as for a normal Fermi liquid, but with an extraordinarily large coefficient 𝛾 : typical metals

have 𝛾 ∼ 1 in units of mJ/mol K
2

(Copper has around 0.7 [26], for example), but CeCu
6

shows 𝛾 ≈ 1400 [37]. 𝛾 gives an estimate of the density of states, or (in Fermi liquid the-

ory) the effective mass𝑚
∗ ∝ 𝛾 ; although there is no strict cutoff, phases with 𝛾 greater

than a few tens are referred to as heavy fermion systems. The heavy fermion state can

also coexist with other kinds of order, even when “traditional” theory would forbid this.

For example, although magnetic impurities suppress conventional superconductivity, ex-

periments have found a whole range of heavy fermion superconductors. The textbook

example of this is CeCu
2
Si

2
(𝛾 ∼ 1000) [104, 105], which becomes superconducting below

𝑇𝑐 = 0.6 K. In such superconductors, the mass enhancement can also be estimated from

the specific heat discontinuity at𝑇𝑐 , which gives a similarly huge value (implying that the

supercurrent is really carried by the heavy fermions).

At this time, no theoretical models adequately explain the anomalous behavior of the

Kondo lattices, which includes not only large masses and superconductivity, but also a

large variety of magnetically ordered states. This is not even mentioning the possible

breakdown of Fermi liquid theory (and thus heavy fermion behavior) in some critical re-

gions, which more recently has become an active field of research [24]. Our own research

will focus on the interplay of heavy fermion physics with magnetic order, in a much sim-

plified setting.

1.2.2 Periodic Anderson and Kondo lattice models

The most basic theoretical models that show heavy fermion physics are the periodic An-
derson and Kondo lattice models [47]. Similar to the Kondo impurity, the Kondo lattice
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1 Introduction to Kondo physics and heavy fermions

model is derived as the limit of the somewhat more “realistic” periodic Anderson model,

which reads (in real space)

𝐻
PAM

= 𝐻𝑡 + 𝐻𝑉 + 𝐻 𝑓 , (1.57)

𝐻𝑡 = −
∑︁
k𝜎

𝑡
RR′𝑐

†
R𝜎
𝑐
R′
𝜎
, (1.58)

𝐻𝑉 = 𝑉
∑︁
R𝜎

[
𝑓
†
R𝜎𝑐R𝜎 + h.c.

]
, (1.59)

𝐻 𝑓 = 𝜖𝑓

∑︁
R𝜎

𝑓
†
R𝜎 𝑓R𝜎 +𝑈

∑︁
R

𝑓
†
R↑𝑓R↑𝑓

†
R↓𝑓R↓. (1.60)

Simply put, instead of a single isolated impurity, an 𝑓 -orbital is attached to every lattice

site. 𝑡RR′ is the hopping parameter. The parameters 𝑉 , 𝜖𝑓 , and 𝑈 have the same meaning

as in the impurity case. In momentum space, we get (assuming translation invariance, i.e.

𝑡RR′ = 𝑡R−R′)

𝐻
PAM

=
∑︁
k𝜎

(
𝑐
†
k𝜎 𝑓

†
k𝜎

) (
𝜖k 𝑉

𝑉 𝜖𝑓

) (
𝑐k𝜎
𝑓k𝜎

)
+𝑈

∑︁
R

𝑓
†
R↑𝑓R↑𝑓

†
R↓𝑓R↓, (1.61)

𝜖k = −
∑︁
R

𝑒
−𝑖k(R−R′)

𝑡R−R′ . (1.62)

This representation is especially useful in the weakly interacting case.

For large 𝑈 , one can do the same calculation as in Sec. 1.1.2 to project out states with

zero or two 𝑓 -electrons. This projection is applied to every site, resulting in a lattice of

spin-1/2 moments, which are coupled to the conduction electrons through an exchange

interaction. The result is the Kondo lattice model,

𝐻
KLM

= 𝐻𝑡 + 𝐻 𝐽 , (1.63)

𝐻 𝐽 = 𝐽
∑︁
R

S𝑐RS
𝑓

R. (1.64)

As before, 𝐽 = 8𝑉
2/𝑈 .

1.2.3 Fermi surface

We start with some of the properties of the periodic Anderson model, which can readily

be solved in two limits. The first is the noninteracting system with 𝑈 → 0. In this case,

(1.61) is quadratic, so we can immediately calculate the ground state and the quasiparticle

energies by diagonalizing the 2 × 2 band structure matrix. Setting 𝜖𝑓 = 0 (the symmetric

case), we get two bands with energies

𝐸
±
k𝜎 =

𝜖k

2

±

√︄
𝑉

2 +
𝜖
2

k

4

. (1.65)

This is shown in Fig. 1.7 (a), for a one-dimensional system with 𝜖k = −2𝑡 cos(𝑘). The
other simple limit is vanishing hybridization 𝑉 → 0, in which case 𝑐- and 𝑓 -electrons

14



1.2 Lattice Systems

filled

empty

0 kFπ/2 π

-2

0

2

k

E
k

U=0

(a)

filled

empty

0 kF π/2 π

-2

0

2

k

E
k

V=0

(b)

Figure 1.7: Possible band structures for the periodic Anderson model in one dimension,

with 𝑛𝑒 = 1.8 and 𝑡 = 1.

(a) 𝑈 = 0 and𝑉 = 0.5𝑡 . The Fermi energy lies in the lower band, with 𝑘𝐹 = 𝜋
𝑛𝑒
2
. For

𝑛𝑒 = 2, the system becomes insulating.

(b) 𝑉 = 0 and 𝑈 = 3𝑡 . 𝑛𝑐 = 𝑛𝑒 − 1 electrons are located in a partially filled mobile

band, while the other 𝑛 𝑓 = 1 are stuck in a flat lower Hubbard band. 𝑘𝐹 = 𝜋
𝑛𝑐
2
.

are completely decoupled. The result of this is shown in Fig. 1.7 (b): the quasiparticle

bands are simply the original band 𝜖k, and a set of Hubbard bands for 𝑓 -electrons. Note
that 𝑉 → 0 can be implemented in the Kondo lattice model through 𝐽 → 0, but no such

equivalence exists for 𝑈 → 0 (as then the perturbation theory used to derive the Kondo

model no longer applies).

A very significant difference between the two limits is the position of the Fermi surface.

While for 𝑈 → 0 (Fig. 1.7 (b)) we have 𝑘𝐹 ≈ 𝜋/2 (as for a system that does not have 𝑓 -

electrons at all, with 𝑛𝑐 = 𝑛𝑒 − 1 the conduction electron density), for 𝑉 → 0 (Fig. 1.7 (a))

we have 𝑘𝐹 ≈ 𝜋 . The two limits thus cannot be adiabatically connected, i.e. we cannot

“interpolate” between them.

This dichotomy is of experimental importance. When imaging the Fermi surfaces of

real compounds, they oftentimes match well with density functional theory (DFT) calcu-

lations, despite of the strong correlations in the 𝑓 -orbitals. The catch is that, depending

on the exact compound and the external parameters, one may need to perform two dif-
ferent kinds of DFT calculation: Sometimes the 𝑓 -orbitals can be simply be regarded as

“frozen”, i.e. as part of the ionic core of each lattice site (e.g. Ref. [42]); this type of cal-

culation corresponds to 𝑉 → 0. Other times the 𝑓 -electrons must be regarded as mobile

and taking part in hopping processes (e.g. Ref. [101]); as this implicitly assumes weak

correlations, such a calculation corresponds to 𝑈 → 0. Colloquially, this is referred to

as 𝑓 -electron delocalization. Phases with heavy quasiparticles are usually associated with

such “delocalized” Fermi surfaces: however, the calculations do not actually reproduce the

large masses, only the geometry and volume of the Fermi surface is predicted correctly.

Note that this behavior should not be confused with the mixed valence compounds men-
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1 Introduction to Kondo physics and heavy fermions

Figure 1.8: Schematic depiction of the RKKY interaction. An electron with momentum k′

from the Fermi sea is scattered from a 𝑓 -spin into an unoccupied state k, and
is then scattered back into k′ from a different 𝑓 -spin. This leads to an effective

nonlocal spin-spin interaction.

tioned in the opening section, as no real evidence for charge fluctuations are found; the

apparent delocalization seems to be a correlation effect.

In common parlance, the two types of Fermi surfaces are also referred to as large
(𝑈 → 0) and small (𝑉 → 0). These terms are derived from a supposed connection to

Luttinger’s theorem [72, 73], which states that the volume of the Fermi surface is the same

as that of the noninteracting system, even in the presence of interactions. Fig. 1.7 (a) has

a “large” Fermi surface, because its 𝑘𝐹 is the same as if we had used the original bands

𝜖k and simply filled them up with both 𝑐- and 𝑓 -electrons. The 𝑓 -electrons can thus be

seen as “contributing to the Fermi surface”. While we will also use the terms “large” and

“small”, we must advise some caution, as this is only a description of the experimental
Fermi surface (as one would find through e.g. quantum oscillation experiments). The

mathematical definition of the Fermi surface (as used in the proof of Luttinger’s theorem)

also counts completely filled bands, which do not show up in quantum oscillations. In this

sense, the 𝑓 -electrons thus always “contribute” and the volume of both systems in Fig. 1.7

is actually the same. This goes even for the Kondo lattice model, where the 𝑓 -electrons

are in some sense completely theoretical [89]. If we thus, for example, describe a Fermi

surface as “small”, we only mean that it superficially resembles (and would show a similar

experimental signature to) the original Fermi surface of a system without 𝑓 -electrons; the

actual form of the band structure away from the Fermi energy can be quite different.

1.2.4 Magnetic order

In addition to the Fermi surface dynamics described above, we are also interested in mag-

netic order, which is usually investigated in the Kondo lattice model. The main reason
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1.2 Lattice Systems

the lattice models are much more complicated than the impurity systems is intersite cor-
relations. The most important such effect is the RKKY (Ruderman-Kittel-Kasuya-Yosida)

interaction [55, 98, 116], which is illustrated in Fig. 1.8: Scattering of conduction electrons

on an 𝑓 -spin can transfer angular momentum from site to site, resulting in an effective in-

tersite interaction. As first described by Doniach [31], the periodic Anderson and Kondo

lattices are governed by two competing phenomena: a statically screened spin cannot

take part in RKKY processes, so that the Kondo effect and magnetic interaction at least

partially exclude each other.

Based on this reasoning, Doniach then argued for the existence of a magnetic phase

transition in the Kondo lattice model. For small 𝐽 , the strength of the Kondo effect is

essentially given by the Kondo temperature 𝑇𝐾 = 𝐷𝑒
− 1

2𝐽 𝜌
, whereas second-order pertur-

bation theory implies that the RKKY interaction is proportional to 𝐽
2

(as two spin-flip

scattering processes are involved). For 𝐽 → 0, the RKKY interaction should thus domi-

nate, resulting in a magnetically ordered phase
4

. For large 𝐽 , this reasoning breaks down.

Instead, conduction electrons are tightly bound to each spin (assuming there is one screen-

ing electron per spin, i.e. 𝑛𝑐 = 1), in a lattice analogue of the Yosida bound state of Sec.

1.1.4. The 𝐽 → ∞ ground state is a product of localized singlets

|Ψ⟩ =
∏
R

1

√
2

[
𝑐
†
R↑𝑓

†
R↓ − 𝑐

†
R↓𝑓

†
R↑

]
|0⟩ , (1.66)

with |0⟩ the vacuum. Each singlet contributes an energy −3

4
𝐽 , so that there is an energy

gap ∝ 𝐽 that suppresses intersite effects.

From this absence of magnetism at large 𝐽 , we should expect a phase transition for

intermediate 𝐽 (with 𝐽 𝜌 ∼ 1). This is the region we wish to investigate with the bond

fermion method.

4

The sign of the RKKY interaction is in principle arbitrary and oscillates with distance, usually results in

antiferromagnetic order near half-filling.
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2 The bond fermion method

2.1 Introduction

The bond fermion method is a conceptually simple approach to the Kondo lattice model,

and consists of an expansion around the (exact) 𝐽 → ∞ limit introduced at the end of

the previous chapter. The usefulness of this strong-coupling limit was first pointed out

by Lacroix [65], who demonstrated the equivalence of the 𝐽 = ∞ Kondo lattice with

the 𝑈 = ∞ Hubbard model. In this limit, the Hubbard model allows only empty (hole)

sites that have vanishing spin, and singly occupied sites that carry a spin-1/2. Double
occupations are forbidden due to infinite repulsion. Hopping simply exchanges an empty

site with a singly occupied site.
1

For the Kondo lattice at 𝐽 = ∞, sites in a singlet state can be considered “empty” (they

have spin-0). At 𝑛𝑐 = 1, all sites are singlet sites, which would correspond to 𝑛𝑐 = 0 in the

Hubbard model. If we have 𝑛𝑐 < 1 in the Kondo lattice model, the remaining 1 − 𝑛𝑐 sites
have an empty 𝑐-orbital and thus an uncoupled 𝑓 -electron; as this has a remaining spin-

1/2 degree of freedom, these sites can be seen “occupied” by an effective fermion (a bond
fermion)2. Multiple bond fermions cannot occupy the same site, as the result would not

correspond to any physical state, so here we too must forbid double occupancy. Hopping

processes are shown in Fig. 2.1; 𝑐-electron hopping exchanges a singlet site and a site

with an empty 𝑐-orbital, so we can interpret it in terms of bond fermion hopping (in the

opposite direction).

What we thus find is that we can relate the strong-coupling Kondo lattice to the strong-

coupling Hubbard model by the replacement

𝑛𝑐 → 1 − 𝑛𝑐 . (2.1)

This is a nice result, as it allows us to transfer results from the Hubbard model to the

Kondo lattice. For example, Nagaoka’s theorem states that at𝑈 = ∞, the Hubbard model

with a single hole is ferromagnetic [83]. Thus, the Kondo lattice at 𝐽 = ∞ with only a

single conduction electron must be ferromagnetic as well.

The natural question to ask is whether one can extend this to the case of finite 𝐽 .

Necessarily, this is significantly more complicated. Singlets can spontaneously break up

through electron hopping: if an electron hops from one singlet to another, two excitations

are generated. One site is left empty, while the other is doubly occupied. We thus need to

1

We assume 𝑛𝑐 ≤ 1 for the conduction electron density. For 𝑛𝑐 ≥ 1, the roles of empty and doubly

occupied sites exchanged (particle-hole symmetry): here, it is empty sites that are forbidden to minimize

the interaction energy.

2

Again, 𝑛𝑐 ≥ 1 can be treated analogously by exchanging empty sites with doubly occupied sites (in the

Kondo lattice model, both carry a spin-1/2).
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2 The bond fermion method

Figure 2.1: The correspondence between the Kondo lattice (left) and bond fermions (right).

On most sites, 𝑐-electrons (large circles) and 𝑓 -electrons (small circles) form

singlets, illustrated through the opposite-pointing spins. These correspond to

empty sites in the bond fermion description. Sites without a 𝑐-electron corre-

spond to hole-like bond fermions (red), the spin is carried by the 𝑓 -electron.

Hopping of a 𝑐-electron is equivalent to hopping of the bond fermion in the

opposite direction.

introduce two species of bond fermions, one for each type of excited state. The described

hopping process then corresponds to a pair production of bond fermions (Fig. 2.2). Fur-

ther, one may have to take spin-1 (triplet) states into account: as triplets carry a spin,

they are important for the formation of magnetically ordered states. Note that 𝐽 < ∞
corresponds in no way to the 𝑈 < ∞ Hubbard model: bond fermions are forbidden from

occupying the same site by their very nature, independent of 𝐽 . For example, there is no

way to make sense of a site occupied by both a “hole fermion” and a “double occupancy”

fermion at the same time.

After Lacroix, bond operators for the Kondo lattice were used by Sigrist et al. to in-

vestigate the one-dimensional case [103]. They proved that this system orders ferromag-

netically for any nonzero doping (𝑛𝑐 ≠ 1) and large but finite 𝐽 . Some years later the

idea was picked up again by Eder et al. as an approximate technique to describe the band

structure and gap evolution at more moderate 𝐽 ∼ 𝑡 [34, 35]. This is the inception of the

bond fermion method as we will use it. Jurecka and Brenig successfully applied the tech-

nique to the antiferromagnetic phase transition at half-filling [53], followed by a similar

calculation by Eder et al. [33] for the doped case.

Bond fermions have been introduced in somewhat different ways each time, but there

are generally two formulations. One can be viewed as an operator formulation, where the
bond particles are constructed in an extended Hilbert space augmented with additional

constraints [32, 53, 103]. Alternatively, there is what we refer to as the wave function

20



2.2 Variational wave function

Figure 2.2: Pair creation and annihilation of bond fermions, which is allowed for 𝐽 < ∞.

In the bottom left of the grid, a double-occupancy bond fermion (blue) and

a hole bond fermion of opposite spin annihilate into two singlets. In the top

right, two bond fermions are spontaneously created from two singlet sites.

formulation, where one tries to stay generally in the “physical” Hilbert space, and the

bond fermions can be seen as a shorthand to calculate expectation values [34, 35]. This

is the view we will present here. While these presentations are all compatible with each

other, each suggests its own approximations at some stage of the calculation. We will try

to elucidate how these approaches can be interpreted as different methods to implement

the constraint of no double occupancy, and also present our own method (an adaptation

of the Gutzwiller approximation).

2.2 Variational wave function

It is now time tomake the previous section’s arguments precise. The local Hilbert space of

each site R of the (single-band, spin-1/2) Kondo lattice consists of eight states. Explicitly,
they are

|𝑆⟩R =
1

√
2

𝑐
†
R 𝑖𝜏𝑦 𝑓

∗
R |0⟩R , (2.2)

|T⟩R =
1

√
2

𝑐
†
R 𝝉𝑖𝜏𝑦 𝑓

∗
R |0⟩R , (2.3)

|𝐴𝜎⟩R = 𝑓
†
R𝜎 |0⟩R , (2.4)

|𝐵𝜎⟩R = 𝑓
†
R𝜎𝑐

†
R↑𝑐

†
R↓ |0⟩R . (2.5)
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2 The bond fermion method

Here we used |0⟩R to denote the vacuum state of site R, in which neither the localized nor

the conduction electron states are occupied. 𝑓
∗
R is to be understood as (𝑓 †R )

⊺
, i.e. the as

the column vector of creation operators.

The conduction orbital is empty (fully occupied) in the two |𝐴𝜎⟩R (|𝐵𝜎⟩R) states, so they
will correspond to the bond fermions of the introduction. |𝑆⟩R is the singlet (ground) state
and does not carry a spin; |T⟩R is the vector of excited states, which form a spin-1 triplet.

This is also the eigenbasis of the Kondo interaction, with eigenvalues

𝐽S𝑐RS
𝑓

R |𝐴𝜎⟩R = 𝐽S𝑐RS
𝑓

R |𝐵𝜎⟩R = 0, (2.6)

𝐽S𝑐RS
𝑓

R |𝑆⟩R = −3
4

𝐽 |𝑆⟩R , (2.7)

𝐽S𝑐RS
𝑓

R |T⟩R =
1

4

𝐽 |T⟩R . (2.8)

The strategy is now to construct a variational wave function in this new basis. For this,

we choose a local “vacuum” state |Ω⟩R, along with a set of “creation operators” for our

bond particles. Specifically, we will use

|Ω⟩R = 𝑠R |𝑆⟩R + tR |T⟩R , (2.9)

1 = |𝑠 |2R + |t|2R. (2.10)

While for 𝐽 ≫ 𝑡 the singlet state (tR = 0) is appropriate, we want to describe magnetic

phases at moderate 𝐽 . tR effectively corresponds to the local magnetic moment, so we can

implement magnetic ordering through different choices of tR.
The creation operators are similar to the ones introduced by Hubbard [50] and given

by

𝑎
†
R𝜎 = |𝐴𝜎⟩⟨Ω |R , (2.11)

𝑏
†
R𝜎 = |𝐵𝜎⟩⟨Ω |R , (2.12)

where the operator on the right-hand side acts only on the state at R while leaving all

other sites unchanged. Further, they are taken to anticommute at different sites: |𝐴𝜎⟩⟨Ω |R
and |𝐵𝜎⟩⟨Ω |R change the fermion number by one, so these operators are “fermionic” in

nature
3

. The 𝑎- and 𝑏-fermions form spin-1/2 doublets, which we collect in the operator

vectors

𝑎R =
(
𝑎R↑ 𝑎R↓

)⊺
, (2.13)

𝑏R =
(
𝑏R↑ 𝑏R↓

)⊺
. (2.14)

The variational basis |𝑖⟩ consists of all possible product states

|𝑖⟩ =
⊗
R

|𝑖⟩R , (2.15)

|𝑖⟩R ∈
{
|Ω⟩R , |𝐴𝜎⟩R , |𝐵𝜎⟩R

}
. (2.16)

3

Technically speaking, the right-hand sides of (2.11–2.12) should include a Jordan-Wigner type factor to

enforce this anti-commutativity.
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2.2 Variational wave function

These are precisely the states we generate by applying the fermion creation operators

(2.11–2.12) to the vacuum state

|Ω⟩ =
⊗
R

|Ω⟩R . (2.17)

Trial states are linear combinations of the |𝑖⟩. The utility of the bond fermions is that they

allow for a transparent and intuitive notation when calculating expectation values in this

(noncomplete) basis.

It should be kept in mind that the bond fermions are not technically fermions, but

instead hard-core fermions. When applied to the same site, they do not have the expected

anti-commutation relations. For example, (2.11–2.12) imply

𝑎
†
R𝜎𝑏R𝜎 = |𝐴𝜎⟩⟨Ω |R |Ω⟩⟨𝐵𝜎 |R = |𝐴𝜎⟩⟨𝐵𝜎 |R , (2.18)

𝑏R𝜎𝑎
†
R𝜎 = |Ω⟩⟨𝐵𝜎 |R |𝐴𝜎⟩⟨Ω |R = 0, (2.19)

⇒ 𝑎
†
R𝜎𝑏R𝜎 ≠ −𝑏R𝜎𝑎

†
R𝜎 . (2.20)

Multiple occupancies are thus forbidden. This will lead to the equivalence to the 𝑈 = ∞
Hubbard model discussed in the opening section. However, for now we should avoid

commuting fermions on the same site to avoid any ambiguity.

For a given variational state |Ψ⟩ (a superposition of the basis states |𝑖⟩ in (2.15)), we

can evaluate expectation values of an (electron number conserving) single-site operator

𝑂R by separately computing the contributions of each state:

⟨𝑂R⟩ = 𝜔R ⟨Ω |𝑂R |Ω⟩R
+

∑︁
𝜎𝜎

′
⟨𝑎†

R𝜎
𝑎
R𝜎 ′

⟩
〈
𝐴𝜎

��𝑂R
��𝐴𝜎 ′〉R

+
∑︁
𝜎𝜎

′
⟨𝑏†

R𝜎
𝑏
R𝜎 ′

⟩
〈
𝐵𝜎

��𝑂R
��𝐵𝜎 ′〉R (2.21)

𝜔R = 1 − ⟨𝑎†R𝑎R⟩ − ⟨𝑏†R𝑏R⟩. (2.22)

Simple angle brackets ⟨ · ⟩ denote expectation values with respect to |Ψ⟩. 𝜔R is the prob-

ability that site R is in the “vacuum” state. Some useful expectation values are

⟨𝑐†R𝑐R⟩ = 𝜔R + 2⟨𝑏†R𝑏R⟩ (2.23)

= 1 − ⟨𝑎†R𝑎R⟩ + ⟨𝑏†R𝑏R⟩, (2.24)

⟨S𝑐RS
𝑓

R⟩ = 𝜔R

(
−3
4

|𝑠R |2 +
1

4

|tR |2
)
, (2.25)

⟨S𝑐R⟩ = 𝜔R
(
+ Re[𝑠∗RtR] +

𝑖

2

t∗R × tR
)
, (2.26)

⟨S𝑓R⟩ = 𝜔R
(
− Re[𝑠∗RtR] +

𝑖

2

t∗R × tR
)
+ ⟨𝑎†R

𝝉

2

𝑎R⟩ + ⟨𝑏†R
𝝉

2

𝑏R⟩. (2.27)

From (2.24) we can see that 𝑎
†
R and 𝑏

†
R have the expected effect on the electron number,

respectively decreasing or increasing it by one. (2.25) gives us the Kondo interaction,
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2 The bond fermion method

which is now a simple quadratic function of the fermion operators. An external magnetic

field couples to the spin expectation values (2.26–2.27); in most actual calculations 𝑠R and

tR are real, so that the net total spin (S𝑐R + S𝑓R) is nonzero only in the fermion-like states.

To calculate the kinetic energy, we must also consider nonlocal electron bilinears, i.e.

expectation values with R ≠ R′
. These effectively factorize, where each electron is sepa-

rately transformed into a sum of bond fermions before taking the expectation value [32]:

⟨𝑐†
R𝜎
𝑐
R′
𝜎
′⟩ =

∑︁
𝛼𝛼

′
𝑊

∗
R𝜎𝛼𝑊R′

𝜎
′
𝛼
′ ⟨𝑣†R𝛼𝑣R′

𝛼
′⟩, (2.28)

𝑣R =

(
𝑎
†
R↑ 𝑎

†
R↓ 𝑏R↑ 𝑏R↓

)⊺
, (2.29)

𝑊R =
1

√
2

(
[𝑠∗R + t∗R𝝉 ] 𝑖𝜏𝑦 [−𝑠R + tR𝝉 ]

)
. (2.30)

The combined vector 𝑣R is indexed by Greek letters and contains both creation and anni-

hilation operators. 𝑊R𝜎𝛼 is a 2 × 4 matrix, with the index 𝛼 ranging over the four com-

ponents of 𝑣R. The𝑊R are used to “translate” electron hopping expectation values into

bond fermion hopping expectation values. Note that ⟨𝑐†R𝜎𝑐R′
𝜎
′⟩ contains not only terms

corresponding to bond fermion propagation (of the form ⟨𝑎†
R𝜎
𝑎
R′
𝜎
′⟩ and ⟨𝑏†

R𝜎
𝑏
R′
𝜎
′⟩), but

also bond fermion pair creation or annihilation (⟨𝑎†
R𝜎
𝑏
†
R′
𝜎
′⟩ and ⟨𝑎

R𝜎
𝑏
R′
𝜎
′⟩). These terms

correspond to the spontaneous breaking of singlet bound states referred to in the open-

ing section. To arrive at the above expression it is allowed to anticommute bond fermion

operators, as they act on different sites.

(2.24–2.27) and (2.28) are enough to calculate the variational energy. For generality, we

introduce leave open the possibility for an external magnetic field B; the magnetic field

Hamiltonian reads

𝐻B = −B
∑︁
R

(
S𝑐R + S𝑓R

)
. (2.31)

The total variational energy is

⟨𝐻 ⟩ = ⟨𝐻 𝐽 ⟩ + ⟨𝐻B⟩ + ⟨𝐻𝑡 ⟩ (2.32)

⟨𝐻 𝐽 ⟩ + ⟨𝐻B⟩ =
∑︁
R

[
𝑒R

(
⟨𝑎†R𝑎R⟩ + ⟨𝑏†R𝑏R⟩ − 1

)
− B

2

(
⟨𝑎†R𝝉𝑎R⟩ + ⟨𝑏†R𝝉𝑏R⟩

)]
, (2.33)

𝑒R =
3𝐽

4

𝑠
2

R − 𝐽

4

t2R − 𝑖B(t∗R × tR), (2.34)

⟨𝐻𝑡 ⟩ = −
∑︁
RR′

𝑡
RR′

〈
𝑣
†
R
𝑊

†
R
𝑊

R′𝑣R′

〉
. (2.35)

⟨𝐻 𝐽 ⟩ + ⟨𝐻B⟩ give the “local” contribution to the energy. 𝑒R is the energy needed to destroy

the background state on site R (and thus to create a bond fermion); the two terms propor-

tional to 𝐽 are the Kondo energy, and the term proportional to B the Zeeman energy of

the background state (as mentioned, this usually vanishes).

There are two issues remaining. Obviously, one still has to handle the hard-core nature

of the fermions somehow (the Kondo interaction has been taken care of). However, we
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2.3 Gutzwiller approximation

also have already implicitly introduced another approximation, as the basis (2.15) is not

complete. For an exact mapping, one can in principle introduce boson operators that

generate the remaining states, which contain one conduction electron and are orthogonal

to |Ω⟩R [32, 53]. These are the triplet fluctuations, which we will disregard. The main

complications is that the expression for the hopping expectation values (2.28) must be

modified: intuitively, a hopping bond fermion can leave a “string” of excited states in

its wake. Such processes are described by terms cubic and quartic in the bond particle

operators. While there have been some attempts to include these processes [32], we will

content ourselves with our “static” approximation, i.e. that the effect of the triplet states

is contained entirely within |Ω⟩R.

2.3 Gutzwiller approximation

There are multiple ways to deal with the hard-core condition on the bond fermions. We

will first describe the Gutzwiller approximation, a classic method for strongly correlated

systems. Two simpler schemes will be described and discussed afterwards.

First of all, we replace the hard-core fermions with normal fermions subject to an in-

finite interaction (𝑈 = ∞ Hubbard model), as this cannot change the observables of the

system. One should think of this as an entirely different system that happens to give

the same results, and where expectation values take the same form as calculated in the

previous section (which fixed the true ordering of fermion operators). However, now anti-

commutations as in (2.20) are allowed: while an intermediate statemay have two fermions

and thus infinite energy, it is still part of the new Hilbert space, so the operator does not

have to vanish. Naturally, we will use the same symbols for 𝑎, 𝑏, etc. in the new system.

The Gutzwiller wave function (and the associated Gutzwiller approximation) was orig-

inally developed for the Hubbard model [40]. The ground state is approximated by an

uncorrelated (Slater determinant) wave function |Ψ
0
⟩, which is multiplied by a Gutzwiller

projection operator 𝑃 :

|Ψ
G
⟩ = 𝑃 |Ψ

0
⟩ , (2.36)

𝑃 =
∏
R

𝑃R. (2.37)

The role of 𝑃R is to reduce the weight of energetically unfavorable configurations on site

R. For example, Gutzwiller’s ansatz for the Hubbard model had

𝑃R = 𝑔
𝑐
†
R↑𝑐R↑𝑐

†
R↓𝑐R↓ (2.38)

with 0 ≤ 𝑔 ≤ 1 tuned to minimize the variational energy. A configuration with 𝑁𝐷 double

occupations is multiplied with a factor of 𝑔
𝑁𝐷

, which reduces the interaction energy (but

will incur a cost in the kinetic energy). For 𝑔 = 1 we have 𝑃R = 1, so that |Ψ
0
⟩ remains un-

modified: the Gutzwiller ansatz thus includes Hartree-Fock theory as a limiting case. The

strong-coupling limit is 𝑔 = 0, in which double occupations are completely forbidden. We

will use a similar 𝑃R, as we are also trying to eliminate double occupations. However, the
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2 The bond fermion method

more complicated multiband form of the bond fermion Hamiltonian necessitates some-

what heavier machinery than Gutzwiller’s original formalism. For systems with a more

complicated interaction term, 𝑃R would also be more complicated. For example, Lanatà et

al. [68] applied the method to the Kondo lattice model by starting with a Slater determi-

nant wave function of 𝑐- and 𝑓 -electrons. The role of 𝑃R was then twofold: First to project

out double occupations of 𝑓 -electrons (this part is taken care of automatically in the bond

fermion method), and to optimize the interaction energy by increasing the weight of sin-

glet configurations (and decreasing that of triplet configurations). Thus, while in both

cases a Gutzwiller wave function is used, in spirit, their calculation is quite different from

bond fermion theory.

When actually trying to calculate expectation values of a Gutzwiller wave function, it

quickly becomes apparent that this task is far from trivial even in the comparatively sim-

ple case of (2.38). An exact evaluation is usually only possible for small systems using the

variational Monte Carlo technique [22]. Still, one can often get a reasonable estimate us-

ing mostly analytic means; this is the domain of the Gutzwiller approximation, which was

originally derived combinatorially [40]. However, this method is difficult to generalize, so

that in most modern calculations a different formalism is used.

Metzner and Vollhardt [79] first demonstrated that expectation values of the Gutzwiller

wave function with 𝑃R as in (2.38) can be calculated exactly in the limit of a very large

number of spatial dimensions. In this formalism, the Gutzwiller approximation consists

of using the same expression for finite-dimensional lattices. Generally speaking, the same

approximations can be derived by a slave boson mean-field scheme originally put forward

by Kotliar and Ruckenstein [62]. The slave boson scheme is simpler in the sense that

one often arrives at the correct result more quickly, but we here outline the infinite-

dimensions version of the calculation as we feel it is closer in spirit to our own wave

function based approach.

When the Gutzwiller approximation is applied to our bond fermion wave function, we

must take care because of the presence of pairing terms𝑎
†
R𝜎
𝑏
†
R′
𝜎
′ in the hopping term (2.28),

which require a slight extension of the usual method. How to include such anomalous

terms is described by Fabrizio [36] in the context of superconductivity. For the derivation

of the method, we will loosely follow Strand [106]; however, we have generally tried to be

more thorough in some regions that were mostly skimmed over, especially regarding the

treatment of disconnected diagrams (for example, the revised diagram series introduced

in Sec. 2.3.1.1 is original). This thoroughness goes at the cost of brevity: readers that are

not interested in the technical details of the 𝑑 → ∞ limit are advised to skip to Sec. 2.3.4,

where the main results (which turn out to be very simple) are presented.

2.3.1 Diagrammatic series and Gutzwiller conditions

We will present the Gutzwiller approximation in its general form before specializing to

our simple hard-core interaction system later on. For now, it is enough to know that we

are dealing with a system of fermions, and 𝑃R is a generic local operator (despite the name,

it is usually not a projection operator in the sense that 𝑃
2

R ≠ 𝑃R). The only requirement is

that |Ψ
0
⟩ and 𝑃R conserve fermion parity: fermions should only be created or destroyed in
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2.3 Gutzwiller approximation

pairs (a property which we call fermion-even), so that the expectation value of a product

of an odd number of fermion operators vanishes.

The expectation value of a generic fermion-even operator 𝑂 is

⟨𝑂⟩ = ⟨𝑃†𝑂𝑃⟩
0

⟨𝑃†𝑃⟩
0

. (2.39)

⟨ · ⟩ stands for an expectation value with respect to |Ψ
G
⟩ and ⟨ · ⟩

0
for expectation values

with respect to |Ψ
0
⟩ (which should be a normalized state). Fermion-evenness means that

𝑂 is an product of evenly many fermion operators 𝑞R𝛼 . The index 𝛼 here ranges over both

creation and annihilation operators: in the bond fermion context 𝛼 is a tuple (𝑠𝜎) with a

species index 𝑠 ∈ {𝑎, 𝑎†, 𝑏, 𝑏†} and a spin index 𝜎 . This should not be confused with the

Greek indices in (2.29), where the species index is restricted to {𝑎†, 𝑏}.
Let us try to evaluate the numerator of (2.39) for the special case of a local operator

𝑂R (that has all its constituent 𝑞R𝛼 acting on the same site). Local operators of interest

are charge densities, spin densities, interaction energies, etc. We introduce the shorthand

notation

𝑄R = 𝑃
†
R𝑂R𝑃R, (2.40)

𝑆R = 𝑃
†
R𝑃R − 1. (2.41)

Since the 𝑃R commute at different sites, this yields

⟨𝑃†𝑂R𝑃⟩0 = ⟨𝑄R

∏
R′
≠R

(1 + 𝑆R′)⟩
0

(2.42)

=
∑︁
𝑚≥0

∑︁
R
1
<...<R𝑚
R𝑖≠R

⟨𝑄R𝑆R
1

. . . 𝑆R𝑚⟩0 (2.43)

=
∑︁
𝑚≥0

1

𝑚!

∑︁
{R

1
...R𝑚}

R𝑖≠R

⟨𝑄R𝑆R
1

. . . 𝑆R𝑚⟩0. (2.44)

In the second line, the sum is taken over ordered tuples (the ordering of sites is arbitrary

but should be fixed). In the third line we drop the ordering and instead divide by𝑚! (we

use the { · } notation to mean that all summands should be unique; R is not summed over).

We can now try to evaluate the sum by means of Wick’s theorem, for which we rewrite

it as a diagrammatic series. Evaluating the series is difficult in general, but with slight

restrictions on 𝑃R we can eliminate many lower-order diagrams; the rest is then easily

calculated in the limit of infinite dimensions.

To illustrate, let us look at the𝑚 = 0 and𝑚 = 1 terms in (2.44):

⟨𝑃†𝑂R𝑃⟩0 = ⟨𝑄R⟩0 +
∑︁
R′
≠R

[
⟨𝑄R⟩0⟨𝑆R′⟩

0
+ ⟨𝑄R𝑆R′⟩

0
+ ⟨𝑄R𝑆R′⟩

0
+ . . .

]
+

∑︁
𝑚≥2

. . . (2.45)

We have organized the 𝑚 = 1 contribution by the number of Wick contractions [112]
between 𝑄R and 𝑆R′ . The diagrams associated with each term are pictured in Fig. 2.3,

27



2 The bond fermion method

(a) (b) (c)

(e)

(d)

()

Figure 2.3: Examples of diagrams for the Gutzwiller wave function. (a–d) are the lowest

order diagrams (𝑚 ≤ 1). (e–f) have𝑚 = 3, with (e) connected and (f) discon-

nected.

which also shows some examples of higher-order (𝑚 = 3) diagrams. Vertices correspond
to operators𝑄R, 𝑆R′ , etc., and blue lines indicate one or more nonlocal Wick contractions

4

.

The𝑚 = 0 diagram does not involve a lattice sum and can be directly calculated using only

local expectation values. The𝑚 = 1 contribution is already more difficult, as it involves

a sum over R′
. As we will see, these lattice sums are the main challenge that needs to be

overcome.

2.3.1.1 Linked cluster theorem

The first thing we notice is that the diagram with zero contractions (Fig. 2.3 (b)) is a

disconnected diagram, as it has two independent components. Experience with other dia-

grammatic expansions tells us that we should apply the linked cluster theorem: to calculate

the expectation value ⟨𝑂⟩, we also need to take into account the denominator of (2.39),

which can be expanded in a similar diagrammatic series and cancels the contribution of

the disconnected diagrams. A simple proof of the linked cluster theorem is through the

replica trick [84]. Formally, we replicate our system (and our Gutzwiller wave function) 𝑛

times by adding a replica index 1 ≤ 𝑘 ≤ 𝑛 to each site. Each replica is independent, so that
only correlation functions with alike replica indices are nonvanishing. ⟨𝑂R⟩ = ⟨𝑂

1R⟩𝑛 is
calculated on the first replica, where the notation on the right-hand side indicates that

the expectation value is taken in the 𝑛-fold replicated space.

The main crux of the replica argument is that, since correlations between different

replicas are zero, the replica index must be constant on each connected part of a diagram.

However, the indices can be chosen independently for each connected part (except for the

4

Since our operators 𝑄R and 𝑆R′ have a “substructure” (they consist of multiple fermion operators), the

actual evaluation of a diagram also involves local contractions between e.g. the individual fermion op-

erators that make up 𝑄R. For example, Fig. 2.3 (c) does not specify exactly which fermion operators in

𝑄R and 𝑆R′ need to be contracted with each other. In effect, it represents a sum over all possible ways of

contracting individual fermion operators, but under the restriction that exactly one of these contractions
is nonlocal.
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2.3 Gutzwiller approximation

one attached to our operator 𝑄
1R), which results in a factor of 𝑛 each time. We expand

both the numerator and the denominator as power series in 𝑛, which gives

⟨𝑂R⟩ = ⟨𝑂
1R⟩𝑛 =

⟨𝑃†𝑂
1R𝑃⟩0,𝑛

⟨𝑃†𝑃⟩
0,𝑛

=

∑{connected diagrams} + O(𝑛)
1 + O(𝑛) (2.46)

=
∑︁

{connected diagrams}. (2.47)

In the first line, we used that all disconnected contributions to the numerator scale with at

least 𝑛, whereas in the denominator, all terms except the empty diagram (with value 1 as

the |Ψ
0
⟩ is normalized) contain factors of𝑛. The second line follows by the following argu-

ment: As ⟨𝑂R⟩ is clearly unchanged by adding independent replicas, the final expression

in (2.46) can also not depend on 𝑛. We are then free to choose any value of 𝑛 to evaluate

the expression, and we get the second line by taking 𝑛 = 0. For readers uncomfortable

with this analytic continuation, we refer to the combinatorial proof [2], although in our

case the replica trick is rigorous (both the numerator and denominator are finite sums, as

long as the system itself has finite size).

Sadly, experience has failed us here, because we have not defined our diagram series

carefully enough [19]. The issue lies in the summation restrictions of (2.44), which spoil

the above argument: Since all summands must be unique, supposedly independent dia-

gram parts can “block” each other. For example, without the summation restriction, our

𝑚 = 1 disconnected diagram would simply be proportional to the total number of sites

𝑛𝑁 , as each replica contributes 𝑁 sites. However, only on the first replica, we must have

R′
≠ R, so that the diagram is actually ∝ 𝑛𝑁 − 1, which does not vanish for 𝑛 = 0. Thus,

taking 𝑛 = 0will not eliminate the disconnected diagrams in the numerator (although the

denominator still goes to 1). Equivalently, the combinatorial proof requires diagrams to

factorize, which would also need the summations to be unrestricted.

There are multiple ways to salvage the diagram series. For the Hubbard model, the

Gutzwiller operator is simple enough that only a very slight reinterpretation of the di-

agrams is needed to make the linked cluster theorem apply [38]. For the more general

calculation we are attempting, this simpler approach does not work. One option here is to

simply accept that the theorem does not hold, but demonstrate that all the disconnected

contributions vanish anyway (for infinite dimensions) [19]. Instead, we choose a differ-

ent approach that we think is somewhat easier to reason about: as we will demonstrate,

we can remove the summation restrictions by introducing new diagrams that effectively

cancel the overcounted contributions. The linked cluster then applies and we only need

to retain connected diagrams.

First of all, we note that since all sites were unique in our previous diagram series, we

only ever drew blue lines between distinct sites. We are thus safe to associate each blue

line with not only a Wick contraction, but also a redundant factor of (1 − 𝛿R𝑖R𝑗
). For

example, Fig. 2.3 (c) is modified as

⟨𝑄R𝑆R′⟩
0
→ (1 − 𝛿RR′)⟨𝑄R𝑆R′⟩

0
. (2.48)

Since R ≠ R′
in the sum over sites, this does not change the result. The utility of this

modification is that it explicitly removes contributions like ⟨𝑄R𝑆R⟩0, which will appear

once we relax the summation restriction.
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2 The bond fermion method

(a) (b) (c)

(e)

(d)

()

Figure 2.4: Connected diagrams in the revised series. (a–d) are the lowest order diagrams

(𝑚 ≤ 1). (e–f) have𝑚 = 3: Note that (e) is still a valid connected diagram if

one were to remove the red line, whereas (f) would become disconnected.

It is important to understand that this modification is not enough to let us relax the sum-

mation restrictions, as all sites in a diagram that are not linked directly could still be the

same. For example, in Fig. 2.3 (e), the top left site (which holds 𝑄) must be different from

the bottom left site, but could be the same as either of the sites on the right of the diagram.

In particular, it also does not help with the disconnected diagrams. To completely remove

the summation restrictions, we instead use the inclusion-exclusion principle known from

combinatorics: for a general restricted sum we can write (writing R
0
for R to simplify the

notation; R
0
is not summed over)∑︁
{R

1
...R𝑚}

R𝑖≠R0

=
∑︁

R
1
...R𝑚

∏
0≤𝑖< 𝑗≤𝑚

(1 − 𝛿R𝑖R𝑗
) (2.49)

=
∑︁

R
1
...R𝑚

−
∑︁

R
1
...R𝑚

∑︁
(𝑖, 𝑗)
pairs

𝛿R𝑖R𝑗
+

∑︁
R
1
...R𝑚

∑︁
(𝑖, 𝑗),(𝑘,𝑙)
pairs

𝛿R𝑖R𝑗
𝛿R𝑘R𝑙 + . . . (2.50)

In the first line we moved the restrictions from the summation to the summand by explic-

itly writing them out in a product. In the second line we then expanded this product
5

. The

result can also be interpreted diagrammatically by associating each 𝛿R𝑖R𝑗
with a red line

between R𝑖 and R 𝑗 . The zeroth sum in (2.50) generates diagrams with zero red lines, the

first sum diagrams with a single red line, etc. The resulting diagrams thus have two dif-

ferent kinds of lines (blue and red), where the red lines cancel the forbidden contributions

introduced by relaxing the summation restriction on the R𝑖 .
With this modification, the linked cluster theorem applies. Diagrams are shown in Fig.

2.4. To reiterate, sites can be connected by

• one or more blue lines which imply Wick contractions and a factor of (1 − 𝛿R𝑖R𝑗
)

• a single red line which implies a factor of −𝛿R𝑖R𝑗

5

The “pairs” notation means that each 2-tuple of indices should be unique and ordered.
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2.3 Gutzwiller approximation

Since (1 − 𝛿R𝑖R𝑗
)𝛿R𝑖R𝑗

= 0, there are no diagrams where a pair of sites is connected by

both blue lines and a red line (indeed, this was the reason we introduced the extra factor

(1 − 𝛿R𝑖R𝑗
) to each blue line). From Fig. 2.4 (a–d), the lowest-order contributions to the

expectation value are now

⟨𝑂R⟩ = ⟨𝑄R⟩0 +
∑︁
R′

[
−𝛿RR′ ⟨𝑄R⟩0⟨𝑆R′⟩

0
+ (1 − 𝛿RR′)⟨𝑄R𝑆R′⟩

0
+ (1 − 𝛿RR′)⟨𝑄R𝑆R′⟩

0
+ . . .

]
+

∑︁
𝑚≥2

. . . (2.51)

Note the negative sign of the red-line diagram, which corresponds to the 𝑛 = 0 limit of

the proportionality constant 𝑛𝑁 − 1 we mentioned earlier.

2.3.1.2 Eliminating low-order diagrams

Having laid a solid foundation, we should now actually evaluate some diagrams. The

𝑚 = 0 contribution in (2.51) is trivial, so we will focus on the 𝑚 = 1 sum, evaluating

each term in order. Actually, we have some further leeway in reducing our workload. For

example, the red-line diagram can be set to zero provided we properly modify our ansatz

for the projection operator 𝑃R. This is called the first Gutzwiller condition
6

, and is usually

written as

⟨𝑆R⟩0 = 0 ⇔ ⟨𝑃†R𝑃R⟩0 = 1. (2.52)

This constraint can be enforced by an appropriate rescaling of 𝑃R, so that this does not

actually reduce our variational space
7

. In general, this means that every 𝑆 in a diagram

must have at least a single blue line originating from it.

For the next few terms, let us look at the general structure ofWick contractions. The𝑄R
and 𝑆R can be written as fermionic polynomials (temporarily suppressing the site index):

𝑄 =
∑︁
𝑋

𝑄𝑋𝐻𝑋 , (2.53)

𝐻𝑋 =
∏
b∈𝑋

𝑞b . (2.54)

Here, 𝑋 stands for sets of indices {𝛼, 𝛽, . . .}. 𝑄𝑋 are (complex) coefficients and 𝐻𝑋 the

monomials spanning the local operator space. The expansion of 𝑆R is analogous. The

6

Gutzwiller’s original ansatz (2.38) for the Hubbard model may seem incompatible with (2.52) (and the

second condition introduced later), but actually only needs a trivial modification to work with the current

formalism. (2.38) assigns states with zero, one, and two electrons the respective weights 1, 1, and 𝑔,

which will not fulfill the conditions unless 𝑔 = 1. Instead, one should choose an ansatz with (as yet

undetermined)weights 𝑝
0
, 𝑝

1
, and 𝑝

2
. Two of these parameters can then be solved for using theGutzwiller

conditions, so that the final wave function will again have a single free parameter equivalent to 𝑔.
7

It may seem like a waste of time to have introduced the red-line diagrams, only to immediately throw

out the first problematic term using (2.52). The real utility in the red-line diagrams is that they will

let us argue about higher-order diagrams (which are harder to get rid of) with a minimum amount of

handwaving.
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2 The bond fermion method

b-product in (2.54) should be taken in some fixed but in principle arbitrary “ascending”

order.

To evaluateWick contractions, we define operators with certain indices “removed”: For

the monomials, this means

𝐻
(𝛼𝛽...)
𝑋

=


0 {𝛼, 𝛽, . . .} ⊈ 𝑋
± ∏
b∈𝑋\{𝛼,𝛽,...}

𝑞b {𝛼, 𝛽, . . .} ⊆ 𝑋 (2.55)

The sign depends on the number of exchanges that would be needed to move the factor

𝑞𝛼𝑞𝛽 . . . to the front of 𝐻𝑋 . As an example, we have (assuming no two indices are the

same)

𝐻{𝛼,𝛽,𝛾} = 𝑞𝛼𝑞𝛽𝑞𝛾 , (2.56)

𝐻
(𝛽)
{𝛼,𝛽,𝛾} = −𝑞𝛼𝑞𝛾 , (2.57)

𝐻
(𝛽𝛾)
{𝛼,𝛽,𝛾} = 𝑞𝛼 , (2.58)

𝐻
(𝛿)
{𝛼,𝛽,𝛾} = 0. (2.59)

Using this definition, the first-order contraction (Fig. 2.4 (c)) can be written as

⟨𝑄
R
𝑆
R′⟩0 = −

∑︁
𝛼

∑︁
𝛽

⟨𝑞
R𝛼
𝑞
R′
𝛼
′⟩0 ⟨𝑄

(𝛼)
R

⟩
0
⟨𝑆 (𝛼

′)
R′ ⟩

0
= 0, (2.60)

which vanishes as the expectation value of a fermion-odd operator is zero
8

. Analogously,

⟨𝑆 (𝛼)R ⟩
0
= ⟨𝑆 (𝛼𝛽𝛾)R ⟩

0
= ⟨𝑆 (𝛼𝛽𝛾𝛿𝜖)R ⟩

0
= . . . = 0. (2.61)

Thus, the total number of blue lines attached to each vertex (be it 𝑄 or a 𝑆) in a diagram

must be even.
The second-order contraction (Fig. 2.4 (d)) is

⟨𝑄
R
𝑆
R′⟩0 = −

∑︁
𝛼≠𝛽

∑︁
𝛼
′
≠𝛽

′
⟨𝑞

R𝛼
𝑞
R′
𝛼
′⟩0 ⟨𝑞R𝛽𝑞R′

𝛽
′⟩0 ⟨𝑄

(𝛼𝛽)
R

⟩
0
⟨𝑆 (𝛼

′
𝛽
′)

R′ ⟩
0
. (2.62)

This term is nonzero in general. However, there is still a way around actually having to

calculate this diagram, as long as we place further restrictions on our variational wave

function. This is the second Gutzwiller conditions, from which it will follow that second-

order contractions of 𝑆R also vanish. The condition is

⟨𝑆R𝑞R𝛼𝑞R𝛽⟩0 = 0 ⇔ ⟨𝑃†R𝑃R𝑞R𝛼𝑞R𝛽⟩0 = ⟨𝑞R𝛼𝑞R𝛽⟩0. (2.63)

8

The negative sign in (2.60) appears because we need to move 𝑞
R′
𝛼
′ past the fermion-odd 𝑄

(𝛼 )
R (of course,

the sum vanishes anyway).
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2.3 Gutzwiller approximation

While (2.63) is a local constraint, it also has consequences for the nonlocal contraction
(2.62). Specifically, using both Gutzwiller constraints we have

0 = ⟨𝑆R𝑞R𝛼𝑞R𝛽⟩0 = ⟨𝑆R⟩0⟨𝑞R𝛼𝑞R𝛽⟩0 + ⟨𝑆R𝑞R𝛼𝑞R𝛽⟩0 (2.64)

= −
∑︁
𝛾≠𝛿

⟨𝑞R𝛼𝑞R𝛾 ⟩0⟨𝑞R𝛽𝑞R𝛿⟩0⟨𝑆
(𝛾𝛿)
R ⟩

0
, (2.65)

Introducing the matrices 𝔮 and 𝔖 with entries [𝔮]𝛽𝛿 = ⟨𝑞R𝛽𝑞R𝛿⟩0 and [𝔖]𝛾𝛿 = ⟨𝑆 (𝛾𝛿)R ⟩
0

(with zeros on the diagonal), we can rewrite the condition as a matrix equation

0 = 𝔮𝔖𝔮
⊺
. (2.66)

𝔮 is nonsingular except in degenerate cases
9

. For the product to result in the zero matrix,

𝔖 must then also be the zero matrix, resulting in

⟨𝑆 (𝛼𝛽)R ⟩
0
= 0. (2.67)

Accordingly, the second-order contraction (2.62) vanishes.

With the Gutzwiller conditions, we have eliminated all diagrams where an 𝑆 is con-

nected by fewer than four blue lines. We could try introducing conditions to eliminate

higher-order contractions, but this turns out to be too restrictive: whilewementioned that

the first Gutzwiller condition does not actually constrain the available wave functions, the

second condition does (this will be important later when we apply the approximation to

the bond fermion problem). The next set of contractions is fourth-order, so that a new

Gutzwiller condition would require us to place restrictions on ⟨𝑞R𝛼𝑞R𝛽𝑞R𝛾𝑞R𝛿⟩0: However,
interaction terms are also quartic, so that constraining such terms is the opposite of what

we want. If we were to go even further, we would eventually accumulate enough con-

straints so that only 𝑆R = 0 (𝑃 = 1) can fulfill all of them, bringing us back to a standard

Slater determinant wave function.

Luckily, further constraints are not needed. Diagrams with four or more blue lines are

instead eliminated by going to infinite dimensions.

2.3.2 Infinite dimensions

The physical basis of an expansion in the number of spatial dimensions is that the strength

of nonlocal correlations decreases with the coordination number 𝑧 of the lattice. This is

illustrated by the following thought experiment: Regard two neighboring sites R and R′
.

An electron hops onto R and is involved in an interaction process. How likely is it that

the electron then hops to R′
and interacts again? If the lattice connectivity is 𝑧 ≫ 1,

the vast majority of paths the electron can take will never lead it to R′
. It is much more

likely that the next interactions on R′
will involve a completely unrelated set of electrons:

Correlations between R and R′
go to zero.

9

𝔮 is related to the local density matrix ⟨𝑞†R𝛼𝑞R𝛽⟩0 by exchange of rows. The density matrix can always be

diagonalized by a Bogoliubov transform, and its eigenvalues are the occupation numbers of the fermionic

modes. As long as no fermionic modes are totally (un-) occupied, the matrix is positive definite and thus

has full rank.
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2 The bond fermion method

A logical idea spawning from this is that to calculate expectation values at R, wemay be

able to replace the rest of the lattice by some simple “bath” whose only role is to provide

a source (and sink) for electrons, R being the only site where we need to explicitly take

correlations into account. This is the idea behind dynamical mean-field theory [51], which

provides many exact solutions for infinite-dimensional lattices. A similar thought process

can be applied to the Gutzwiller wave function: a Gutzwiller wave function where the

projection operator only acts on a single site would be trivial to solve through Wick’s

theorem, as no lattice sum needs to be performed.

We should now try to make these arguments precise. Roughly speaking, the Gutzwiller

approximation can be thought of as a controlled expansion in ⟨𝑞R𝛼𝑞R′
𝛼
′⟩
0
. To derive the

scaling of these expectation values for fairly generic |Ψ
0
⟩, it suffices to take as an example a

single band of fermions on a hypercubic lattice. We first derive a useful identity: assuming

electron number conservation, we can write (with 𝑛
0

R = ⟨𝑐†R𝑐R⟩0)

⟨𝑐†
R
𝑐
R

∑︁
R′
𝑐
†
R′𝑐R′⟩0 = 𝑛0R𝑁𝑒 (2.68)

=
∑︁
R′

[
⟨𝑐†

R
𝑐
R
⟩
0
⟨𝑐†

R′𝑐R′⟩0 + ⟨𝑐†
R
𝑐
R′⟩0⟨𝑐R𝑐

†
R′⟩0

]
(2.69)

= 𝑛
0

R
𝑁𝑒 +

∑︁
R′

⟨𝑐†
R
𝑐
R′⟩0(𝛿RR′ − ⟨𝑐†

R′𝑐R
⟩
0
) (2.70)

= 𝑛
0

R
𝑁𝑒 + 𝑛0R(1 − 𝑛

0

R
) +

∑︁
R′
≠R

���⟨𝑐†R𝑐R′⟩0
���2, (2.71)

⇒
∑︁
R′
≠R′

���⟨𝑐†R𝑐R′⟩
���2 = 𝑛0R(1 − 𝑛0R) (2.72)

The expectation value is calculated in two different ways. In the first line (2.68) we used

that

∑
R′ 𝑐

†
R′𝑐R′ is the operator of the total electron number, of which |Ψ

0
⟩ is an eigenstate

with eigenvalue 𝑁𝑒 . In (2.69) we instead evaluate the expectation value using Wick’s

theorem, where we explicitly separated the local and nonlocal contributions in (2.71).

The right-hand side of (2.72) is bounded, so the left-hand side must be as well. As

a consequence, the sum over each “shell” of constant 𝑙 =
��R − R′��

(the norm taken in

Manhattan distance, so that the shell corresponds to the 𝑙-nearest-neighbors) can also

be bounded separately. As the number of neighbors increases in high dimensions, the

correlation functions must decrease in turn.

The number of sites of each shell scales somewhat counterintuitively for large 𝑑 . Expe-

rience might lead one to expect the that shell size scales ∼ 𝑙𝑑−1, analogous to the surface

area of a 𝑑-dimensional ball with radius 𝑙 . However, this relation only holds for 𝑙 ≫ 𝑑 ,

while we are in the opposite limit. For a typical l = R − R′
, the vast majority (specifically,

𝑑 − 𝑙 ≈ 𝑑 ≫ 1) of the components 𝑙𝑖 will be 0, while 𝑙 of the components will be ±1.
Choosing these 𝑙 components and multiplying by 2

𝑙
for each choice of sign, we get the

approximate scaling

2
𝑙

(
𝑑

𝑙

)
≈ 2

𝑙 𝑑
𝑙

𝑙 !
∼ 𝑑𝑙 . (2.73)
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2.3 Gutzwiller approximation

(a) (b)(a)

Figure 2.5: Two example diagrams of high order. The important difference is that 𝑄 is

attached either through (a) two blue lines or (b) a red line.

Aswe are only interested in the leading𝑑-dependence, we disregard𝑑-independent terms
10

.

As a result, we find that ���⟨𝑐†R𝑐R′⟩
0

��� ∼ 𝑑− |R−R′ |
2 . (2.74)

This rapid decay is the central feature of the infinite-dimensional limit, and will be used

to eliminate the remaining nontrivial diagrams
11

. The same scaling relation as (2.74) can

of course be derived for ⟨𝑞R𝛼𝑞R′
𝛼
′⟩
0
for any multiband system as well.

Let us first look at what this result means for the rest of the𝑚 = 1 term in the diagram

series. A 2𝑝-order contraction gives us 2𝑝 factors of 𝑑
− 𝑙

2 , so the sum is∑︁
R′
≠R

∑︁
𝑝≥𝑝

0

⟨𝑄R𝑆R′⟩
0
∼

∑︁
𝑙≥1

𝑑
𝑙
∑︁
𝑝≥𝑝

0

𝑑
−𝑝𝑙 ≈

∑︁
𝑙≥1

𝑑
𝑙
𝑑
−𝑝

0
𝑙 ≈ 𝑑1−𝑝0 → 0,

×2𝑝

(2.75)

where we replaced the sum over sites by a sum over shells, with a factor 𝑑
𝑙
for the size

of each shell. The sum vanishes because 𝑝
0
= 2 (lower-order diagrams were removed

through the Gutzwiller conditions): the decay of the correlation functions wins out over

the increase in shell sizes.

It only remains to demonstrate that the rest of the diagram series (with𝑚 > 1) behaves

the same way. Two typical diagrams are shown in Fig. 2.5. These diagrams are leading-

order, in the sense that each 𝑆 has exactly four blue lines attached to it (if we were to

remove any blue lines the diagram would be identically zero, and if we were to add any

10

The exact number of 𝑙-nearest neighbors, valid for any𝑑 and 𝑙 , is the hypergeometric sum

∑
𝑘

(
𝑑
𝑘

) (
𝑙−1
𝑘−1

)
2
𝑘
=

2𝑑
2
𝐹
1
(1−𝑑, 1−𝑙 ; 2; 2), the factors in the sum respectively corresponding to the number of ways to choose

𝑘 nonzero components, the number of ways to distribute 𝑙 steps over these components, and the factor

for each sign.

11

Of course, a small degree of isotropy is assumed in (2.74), meaning that

���⟨𝑐†R𝑐R′⟩0
��� should not vary too

much on each individual shell. For example, if the wave function is taken to be a product of one-

dimensional chains, increasing the number of dimensions will not influence the correlation functions

inside each chain, and the scaling does not apply.
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2 The bond fermion method

further ones it would vanish more quickly for 𝑑 → ∞). The only conceptual difference is

the connection of𝑄 : in diagram (a),𝑄 has two blue lines (the minimum possible number)

attached to it, while in (b) it has a red line attached to it.

Let us first consider diagram (a). Similar to the 𝑚 = 1 case, there are essentially two

competing effects for 𝑑 → ∞: correlation functions decrease, but the number of 𝑙-nearest-

neighbors increases (note that the actual number of diagrams does not depend on the

dimension). It remains to show that the first effect is stronger than the second. For this,

the exact structure of the diagram is irrelevant. We start by counting blue lines. As there

are two lines attached to 𝑄 and four to each 𝑆 , the total number of blue lines is

𝐵 =
2 + 4𝑚

2

= 1 + 2𝑚. (2.76)

Since the correlation functions rapidly decrease with distance, we can focus on the case

where each blue line links nearest-neighbor sites (see for example (2.75), where the 𝑙 = 1

term gave the leading contribution). We then get a factor of 𝑑
− 1

2 for every line, or 𝑑
−𝐵/2

in total.

Now for the combinatorial factor. We imagine placing down the 𝑆-vertices one by one.

If an 𝑆 does not have any red lines leading to it, we can put it at any nearest-neighbor site

of a previously placed vertex; counting the number of nearest neighbors, we get a factor

of ∼ 𝑑 . If it does have a red line attached to it, its position is fixed and the factor is unity.

As a result, the total combinatorial factor is 𝑑
𝐶
, where

𝐶 =𝑚 − 𝑅 (2.77)

and 𝑅 the number of red lines.

Putting these ingredients together, the diagram scales as

𝑑
𝐶−𝐵/2

= 𝑑
𝑚−𝑅− 1+2𝑚

2 = 𝑑
− 1

2
−𝑅 ≲ 𝑑−

1

2 → 0. (2.78)

Here, the value of 𝑅 ≥ 0 is irrelevant. The analysis for diagram (b) is similar: The dif-

ferences are that 𝐵 = 2𝑚, but that in turn we must have 𝑅 ≥ 1, so that diagram (b) also

vanishes. In general, the only contribution that remains in infinite dimensions is the triv-

ial𝑚 = 0 diagram, so that

⟨𝑂R⟩ = ⟨𝑃†R𝑂R𝑃R⟩0. (2.79)

2.3.3 Nonlocal expectation values

The above procedure lets us calculate local expectation values. However, a typical Hamil-

tonian also requires hopping expectation values of the form ⟨𝑞R𝛼𝑞R′
𝛼
′⟩ with R ≠ R′

. While

we have demonstrated that such expectation values goes to zero, this does not mean that

the kinetic energy vanishes, as the number of neighboring sites diverges in turn (for a thor-

ough calculation of the kinetic energy in the Hubbard model in infinite dimensions see

Ref. [79]). Our goal is to isolate the leading term, that is, we need the slowest-vanishing

contribution as 𝑑 → ∞.
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2.3 Gutzwiller approximation

(a) (c)(b)

Figure 2.6: Example diagrams for the expansion of a nonlocal expectation value. The ver-

tices 𝑄 and 𝑄
′
here correspond to 𝑄R𝛼 and 𝑄R′

𝛼
′ .

Luckily, we can introduce a similar diagram series as for the local expectation values,

after which most arguments can be reused. Introducing the new set of operators

𝑂R𝛼 = 𝑃
†
R𝑞R𝛼𝑃R, (2.80)

the diagram series now has two fixed vertices instead of one, and is shown in Fig. 2.6. As

the 𝑄R are fermion-odd, they need to be connected by an odd number of blue lines. By

analogous arguments as before, the lowest-order diagram in infinite dimensions is thus

Fig. 2.6 (a), so that the final result is

⟨𝑞R𝛼𝑞R′
𝛼
′⟩ = ⟨𝑄R𝛼𝑄R′

𝛼
′⟩
0
. (2.81)

2.3.4 Final result

To summarize, expectation values of the Gutzwiller wave function can be calculated ex-

actly on infinite-dimensional lattices, provided the Gutzwiller conditions

⟨𝑃†R𝑃R⟩0 = 1, (2.82)

⟨𝑃†R𝑃R𝑞R𝛼𝑞R𝛽⟩0 = ⟨𝑞R𝛼𝑞R𝛽⟩0 (2.83)

are enforced. Local expectation values are calculated as

⟨𝑂R⟩ = ⟨𝑃†R𝑂R𝑃R⟩0, (2.84)

which can be used to calculate particle densities, spin densities, interaction energies, etc.

For R ≠ R′
correlation functions vanish in infinite dimensions, but the leading term can

be calculated as

⟨𝑞R𝛼𝑞R′
𝛼
′⟩ = ⟨𝑃†

R
𝑞
R𝛼
𝑃
R
𝑃
†
R′𝑞R′

𝛼
′𝑃R′⟩10. (2.85)

The superscript “1” on the expectation value indicates that one should only retain terms

with a singleWick contraction betweenR andR′
, as higher-order contractions are sublead-

ing (while terms of all orders are nonzero for finite 𝑑 , higher-order contractions should

still be disregarded for a consistent expansion around the infinite-dimensional limit).

Finally, it is also important to understand that, except in special cases,

⟨𝑞R𝛼𝑞R𝛽⟩ = ⟨𝑃†R𝑞R𝛼𝑞R𝛽𝑃
†
R⟩0 ≠ ⟨𝑃†R𝑃

†
R𝑞R𝛼𝑞R𝛽⟩0 = ⟨𝑞R𝛼𝑞R𝛽⟩0, (2.86)
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2 The bond fermion method

since 𝑞R𝛽 and 𝑃R are not guaranteed to commute.

The expectation values (2.84–2.85) are usually reasonable approximations even in finite-

dimensional lattices. While it is in theory possible to calculate corrections of order 𝑑
−1
,

to our knowledge this has only actually been carried out for the Hubbard model, where

the diagram series can be simplified [38]. For our purposes, this does not seem necessary:

the three sources of error are the restriction of the Hilbert space to the bond fermion

subspace, the Gutzwiller variational ansatz, and the expansion in infinite dimensions. The

first error will almost certainly be the largest for moderate 𝐽 , which is where we expect

most of the interesting magnetic dynamics. A more sophisticated treatment of the hard-

core constraint than the Gutzwiller approximation is likely only worth it for 𝐽 → ∞,

where the bond fermion approximation itself becomes exact.

The expressions in (2.82–2.85) are in principle easy to evaluate, since they do not con-

tain any lattice sums. However, practical implementation can be challenging. For a system

with 𝐹 local fermion degrees of freedom, 𝑃R is a complex matrix of size 2
𝐹
× 2

𝐹
. With a

completely general ansatz for 𝑃R, one then has around 2 · 4𝐹 real parameters to optimize,

not counting |Ψ
0
⟩.

For this general problem, we refer to the sophisticated algorithms developed in the

literature [20, 69]. Luckily, in many situations it is possible to get reasonable results even

with a much more restricted ansatz for 𝑃R. For example, Yao et al. [115] have 𝑃R diagonal

(in the fermion’s natural basis), which reduces the number of parameters to 2
𝐹
and leads

to a very efficient numerical solution. In our case the situation is even simpler, and much

of the calculation can be performed analytically.

2.4 Gutzwiller approximation for bond fermion theory

The role of the Gutzwiller projection operator in our case is to project onto states with 0 or

1 bond fermions on each site. While this still leaves some leeway, we will further assume

𝑃R to be hermitian (𝑃
†
= 𝑃 ) and conserve the electron number: consequently, 𝑃R should

give zero when applied to a state with 2 or more bond fermions, and not mix between

𝑎- and 𝑏-fermions (𝑎- and 𝑏-states have different electron amounts). However, it can still

influence the relative weights of 𝑎- and 𝑏-states, or influence the magnetic moment (terms

like 𝑎
†
R↑𝑎R↓ are allowed in 𝑃R, and in fact needed to fulfill the Gutzwiller conditions).

We can now start using the results of the previous section. The first ingredient is to

insert 𝑎
†
R𝜎𝑏

†
R�̃� into (2.83). This gives

⟨𝑃2R𝑎
†
R𝜎𝑏

†
R�̃�⟩0 = ⟨𝑎†R𝜎𝑏

†
R�̃�⟩0. (2.87)

The left-hand side is identically zero, as 𝑎
†
𝑏
†
creates a forbidden state that is projected

out. However, the right-hand side is generally nonzero andmay be energetically favorable

were it not for the hard-core condition, as (2.32) contains pairing terms
12

. To satisfy the

condition, we thus need to put a constraint on |Ψ
0
⟩:

0 = ⟨𝑎R𝜎𝑏R�̃�⟩0 = ⟨𝑎†R𝜎𝑏
†
R�̃�⟩0. (2.88)

12

These pairing terms are nonlocal, but without the hard-core constraint they would also cause nonvanish-
ing local expectation values in the ground state.
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2.4 Gutzwiller approximation for bond fermion theory

This shows that (2.83) is indeed nontrivial to implement
13

. In practice, (2.88) is either

automatically fulfilled because of some symmetry, or can be explictly enforced through a

set of Lagrange multipliers Λ𝜎�̃� corresponding to each choice of spins in (2.88); how this

works will be shown in Sec. 2.7.

We can now calculate 𝑃R explicitly. While this usually involvesminimizing theGutzwiller

variational energy, the simple form of the projection together with the Gutzwiller condi-

tions allows us to solve for all remaining parameters. The calculation is easiest in the

(|Ψ
0
⟩-dependent) eigenbasis of the local density matrix

𝜌R =

(
𝜌R𝑎 0

0 𝜌R𝑏

)
, (2.89)

𝜌R𝑎 =

(
⟨𝑎†R↑𝑎R↑⟩0 ⟨𝑎†R↑𝑎R↓⟩0
⟨𝑎†R↓𝑎R↑⟩0 ⟨𝑎†R↓𝑎R↓⟩0

)
. (2.90)

𝜌R𝑏 is defined similarly. There are no cross-terms ⟨𝑎†R𝜎𝑏R�̃�⟩, as this would violate electron
conservation. We introduce a four-component fermion vector bR as

©«
𝑎R↑
𝑎R↓
𝑏R↑
𝑏R↓

ª®®®¬ = 𝑈RbR, (2.91)

𝑈R =

(
𝑈R𝑎 0

0 𝑈R𝑏

)
, (2.92)

⟨b†R𝑖bR 𝑗 ⟩0 = ⟨𝑁R𝑖⟩0𝛿𝑖 𝑗 , (2.93)

𝑁R𝑖 = b
†
R𝑖bR𝑖 . (2.94)

While 𝜌R𝑎 and 𝜌R𝑏 can be diagonalized independently, we have combined them here to

simplify the notation; the former two components of b correspond to 𝑎, the latter to𝑏. The

Latin indices 𝑖 , 𝑗 , are used to differentiate b from the vector 𝑣 of Sec. 2.2, which contains

both creation and annihilation operators, whereas b only holds annihilation operators.

The unitary matrices 𝑈R𝑎 and 𝑈R𝑏 hold the eigenvectors of 𝜌R𝑎 and 𝜌R𝑏 ; more physically

speaking, they are the two-dimensional spin-rotationmatrices that respectively rotate the

spins of the 𝑎- and 𝑏-fermions to the 𝑧-axis. In a general setting, these rotations do not

have to be the same, as the spin polarizations of the 𝑎- and 𝑏-fermions can be different.

13

For a nonhermitian 𝑃R, (2.88) could be avoided. In the hermitian case, the Gutzwiller operator acting on a

forbidden state needs to give zero (schematically, 𝑃 |forbidden⟩ = 0). This is not true for a nonhermitian

operator, as thenwe only need 𝑃 |forbidden⟩ ∝ |allowed⟩ (such a termwould have to violate bond fermion

number conservation, but not necessarily electron conservation). One can convince oneself that the left-

hand side of (2.87), ⟨𝑃†R𝑃R𝑎
†
R𝜎𝑏

†
R�̃� ⟩0, is then nonzero in general. However, ⟨𝑎†R𝜎𝑏

†
R�̃� ⟩ = ⟨𝑃†R𝑎

†
R𝜎𝑏

†
R�̃�𝑃R⟩0 (see

(2.84)) would still vanish, as implied by the hard-core interaction.

Including such terms would make the analysis more complicated for questionable gain (the main error

will likely always be in the bond fermionmapping itself, not in the Gutzwiller approximation). Our choice

of 𝑃R (and |Ψ
0
⟩) is the minimal one that still allows for magnetic polarization of the bond fermions.
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2 The bond fermion method

In this diagonal basis, the secondGutzwiller condition implies a similarly diagonal form

for 𝑃R, meaning that it can be written solely in terms of the number operators 𝑁R𝑖
14

:

𝑃R = 𝑝R0

∏
𝑖

𝑁 R𝑖 +
∑︁
𝑖

𝑝R𝑖 𝑁R𝑖

∏
𝑗≠𝑖

𝑁 R 𝑗 , (2.95)

𝑁 R𝑖 = 1 − 𝑁R𝑖 . (2.96)

The first term is a projector onto the empty state at R, while each term in the sum projects

onto a state with exactly one b at R. 𝑝R0 and the 𝑝R𝑖 are parameters that we need to

solve for. This is done by explicitly computing the expectation values in the Gutzwiller

conditions (2.82–2.83), which after substituting (2.95) result in the system of equations

𝑝
2

R0

∏
𝑖

⟨𝑁 R𝑖⟩0 +
∑︁
𝑖

𝑝
2

R𝑖 ⟨𝑁R𝑖⟩0
∏
𝑗≠𝑖

⟨𝑁 R 𝑗 ⟩0 = 1, (2.97)

𝑝
2

R𝑖 ⟨𝑁R𝑖⟩0
∏
𝑗≠𝑖

⟨𝑁 R 𝑗 ⟩0 = ⟨𝑁R𝑖⟩0. (2.98)

The first line is the result of the first Gutzwiller condition; the second line follows from in-

serting b
†
R𝑖bR𝑖 into the second Gutzwiller condition. Another straightforward computation

then gives

𝑝
2

R0 =

(
1 −

∑︁
𝑖

⟨𝑁R𝑖⟩0
) (∏

𝑖

⟨𝑁 R𝑖⟩0
)−1
, (2.99)

𝑝
2

R𝑖 =

(∏
𝑗≠𝑖

⟨𝑁 R 𝑗 ⟩0
)−1
, (2.100)

so that 𝑃R is determined completely.

We can evaluate expectation values of the Gutzwiller state using (2.84–2.85). For this

we only need quadratic expectation values, as the variational energy (2.32) does not con-

tain any quartic terms (the hard-core condition is taken care of by form of the Gutzwiller

operator). Furthermore, it turns out that the local quadratic expectation values are com-

pletely unchanged from the uncorrelated state. For 𝑖 = 𝑗 we have

⟨𝑁R𝑖⟩ = ⟨𝑃R𝑁R𝑖𝑃R⟩0 = ⟨𝑃2R𝑁R𝑖⟩0 = ⟨𝑁R𝑖⟩0, (2.101)

as 𝑁R𝑖 commutes with 𝑃R because of (2.95). For 𝑖 ≠ 𝑗 we get

⟨b†R𝑖bR 𝑗 ⟩ = ⟨𝑃Rb
†
R𝑖bR 𝑗𝑃R⟩0 = 0 = ⟨b†R𝑖bR 𝑗 ⟩0, (2.102)

The second expression vanishes because, counting the contributions of the 𝑃R as well, the

indices 𝑖 and 𝑗 appear an odd number of times. Accordingly, in every Wick contraction

14

The only other terms that project on the allowed subspace and conserve the electron number would be

𝑝
12
b
†
1
b
2
𝑁

3
𝑁

4
, 𝑝

34
b
†
3
b
4
𝑁

1
𝑁

2
, and their complex conjugates, where 𝑝

12
and 𝑝

34
are undetermined parame-

ters (we suppressed the site index). Inserting e.g. b
†
2
b
1
into the second Gutzwiller can then be shown to

give 0 = ⟨b†
2
b
1
⟩
0
= ⟨𝑃2b†

2
b
1
⟩
0
∝ 𝑝

12
⇒ 𝑝

12
= 0.
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2.4 Gutzwiller approximation for bond fermion theory

there must be a factor ⟨b†R𝑖bR𝑘⟩0 with 𝑖 ≠ 𝑘 that vanishes by (2.93). The same holds for

anomalous terms, so that all in all we have

⟨𝑞R𝛼𝑞R𝛽⟩ = ⟨𝑞R𝛼𝑞R𝛽⟩0. (2.103)

The 𝑞 can stand for any b , or for any 𝑎 or 𝑏 by reversing the unitary transformation.

The nonlocal terms are slightly more work. For these, we need the operators

𝑃RbR𝑖𝑃R = 𝑝R𝑖𝑝R0bR𝑖

∏
𝑗≠𝑖

𝑁 R 𝑗 . (2.104)

The right-hand side follows easily from bR𝑖𝑁 R𝑖 = 0 and similar relations. (2.85) then gives

⟨b†
R𝑖
b
R′
𝑖
′⟩ = ⟨𝑃

R
b
†
R𝑖
𝑃
R
𝑃
R′bR′

𝑖
′𝑃R′⟩10 (2.105)

=

[
𝑝
R𝑖
𝑝
R0

∏
𝑗≠𝑖

⟨𝑁
R 𝑗
⟩
0

] 𝑝R′
𝑖
′𝑝R′

0

∏
𝑗
′
≠𝑖

′
⟨𝑁

R′
𝑗
′⟩0

 ⟨b†R𝑖bR′
𝑖
′⟩0 (2.106)

=
√︁
Z
R𝑖

√︁
Z
R′
𝑖
′ ⟨b†R𝑖bR′

𝑖
′⟩0, (2.107)√︁

Z R𝑖 =

√︄
1 − ∑

𝑗 ⟨𝑁R 𝑗 ⟩0
1 − ⟨𝑁R𝑖⟩0

. (2.108)

It follows from (2.104) that b
†
R𝑖
and b

R′
𝑖
′ need to be contracted with each other. Thus, the

hopping expectation values are renormalized (by renormalization factors

√︁
Z ) compared

to the uncorrelated wave function. The same is true for the anomalous hopping terms:

⟨bR𝑖bR′
𝑖
′⟩ =

√︁
Z R𝑖

√︁
Z R′

𝑖
′ ⟨bR𝑖bR′

𝑖
′⟩
0
. (2.109)

It is instructive to check some limiting values of

√︁
Z . For example, the hopping renormal-

izes to zero when the bond fermion density (the sum in the numerator) becomes unity. On

the other hand, if only a single one of the ⟨𝑁R𝑖⟩ is finite, then numerator and denomina-

tor cancel and the hopping is not renormalized at all. This is also expected because alike

fermions do not interact. Note that the expression in (2.108) is the same as the renormal-

ization in Kotliar and Ruckenstein’s slave boson theory when applied to a system with

four fermion degrees of freedom [62].

It is now time to reverse the unitary transformation and go back to 𝑎 and 𝑏. We define

the spin- and species-dependent renormalization matrix

√
𝑍R as

√
𝑍R = 𝑈R

√︁
Z R𝑈

†
R =

(√
𝑍R𝑎 0

0

√
𝑍R𝑏

)
, (2.110)

where

√︁
Z R is the matrix with the

√︁
Z R𝑖 on the diagonal.

√
𝑍R𝑎 and

√
𝑍R𝑏 are again two-

dimensional matrices, as 𝑎- and 𝑏-fermions are not mixed. This allows us to calculate

inter-site expectation values of the bond fermions as

⟨𝑎†
R𝜎
𝑎
R′
𝜎
′⟩ =

∑︁
�̃��̃�

′

[√
𝑍
†
R𝑎

]
�̃�𝜎

[√
𝑍R′

𝑎

]
𝜎
′
�̃�
′ ⟨𝑎†R�̃�𝑎R′

�̃�
′⟩0, (2.111)

⟨𝑎†
R𝜎
𝑏
†
R′
𝜎
′⟩ =

∑︁
�̃��̃�

′

[√
𝑍
†
R𝑎

]
�̃�𝜎

[√
𝑍
†
R′
𝑏

]
�̃�
′
𝜎
′ ⟨𝑎†R�̃�𝑏

†
R′
�̃�
′⟩0, (2.112)
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2 The bond fermion method

etc.

Finally, we can write down the energy (2.32) of the Gutzwiller state. The forms of 𝐻 𝐽

and 𝐻B are unchanged as they only involve local expectation values. From (2.111-2.112),

we get for the hopping Hamiltonian

⟨𝐻𝑡 ⟩ = −
∑︁
RR′

𝑡
RR′

〈
𝑣
†
R

√︁
𝑍
†
R
𝑊

†
R
𝑊

R′

√︁
𝑍
R′𝑣R′

〉
0

, (2.113)√︁
𝑍R =

(√
𝑍
∗
R𝑎 0

0

√
𝑍R𝑏

)
. (2.114)

All terms in this expression depend only on the uncorrelated wave function, i.e. given a

specific𝑊R and |Ψ
0
⟩ we can calculate

√
𝑍R and with it the energy. This expression forms

the basis of the later practical implementation.

2.5 Alternative methods

The derivation of the Gutzwiller approximation was somewhat involved; there are of

course simpler methods to approximately take the hard-core interaction into account. At

moderate to large 𝐽 (where magnetic transitions appear), the density of bond fermions

should be rather low, which can be exploited. We will describe two approximations, de-

scribing their original justifications and how they can be accommodated in our formalism:

one is the approach of Jurecka and Brenig, and the other is to ignore the hard-core nature

of the fermions as much as possible. Later on in Sec. 2.6, we will compare the results of

the methods in the simplest possible calculation. However, first of all we need to discuss

what we call physicality conditions, and what restrictions they place on approximations.

2.5.1 Physicality of expectation values

Let us try to evaluate how electrons are distributed over k-modes. First we define the

“Green functions”

𝐺𝜎𝜎 ′ (R,R′) = ⟨𝑐†
R𝜎
𝑐
R′
𝜎
′⟩, (2.115)

𝐺 (R,R′) = 𝐺↑↑(R,R′) +𝐺↓↓(R,R′). (2.116)

For R = R′
, we can use𝐺𝜎𝜎 ′ to calculate electron and spin densities (𝐺 is the total electron

density). To simplify the demonstration, we can here restrict ourselves to the paramag-

netic and translation invariant case (i.e. 𝑠R = 1, tR = 0), where we have

⟨𝑐†
R↑𝑐R′↑⟩ = ⟨𝑐†

R↓𝑐R′↓⟩, (2.117)

𝐺𝜎𝜎 ′ (R,R′) = 1

2

𝐺 (R − R′)𝛿𝜎𝜎 ′, (2.118)

𝐺 (R − R′) = 2⟨𝑐†
R↑𝑐R′↑⟩. (2.119)
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2.5 Alternative methods

From Sec. 2.2, we find that 𝐺 is given through two different expressions depending on R
and R′

. For R ≠ R′
, (2.28) should be used. The result is

𝐺 (R − R′) = 1 + ⟨𝑏†
R↑𝑏R′↑⟩ − ⟨𝑎†

R′↓𝑎R↓⟩ − ⟨𝑏†
R↑𝑎

†
R′↓⟩ − ⟨𝑎

R↓𝑏R′↑⟩ (2.120)

= 𝐺
′(R − R′). (2.121)

We introduced the “nonlocal Green function”𝐺
′
in the second line, which we understand

to be defined through the same expression even for R = R′
. It will give the k-dependence

of the electron occupation numbers. Meanwhile, for the “true” Green function we have

(using (2.24))

𝐺 (R − R′) =
{
𝐺

′(R − R′) R ≠ R′

1 − ⟨𝑎†R𝑎R⟩ + ⟨𝑏†R𝑏R⟩ R = R′ . (2.122)

One can see that in general,𝐺 ≠ 𝐺
′
for R = R′

(note that (2.122) has implicit spin sums in

the expectation values). Due to the hard-core fermion interaction, expectation values of

pairing terms like ⟨𝑏†R↑𝑎
†
R↓⟩ must vanish, with which (2.120) gives

𝐺 (0) = 𝐺′(0) − ⟨𝑎†R↑𝑎R↑⟩ + ⟨𝑏†R↑𝑏R↑⟩ (2.123)

We get the k-space occupation numbers by Fourier transforming 𝐺 :

⟨𝑐†k𝑐k⟩ = 𝐺 (k) (2.124)

=
∑︁
R

𝑒
𝑖kR
𝐺 (R). (2.125)

This sum can be split into a local and a nonlocal part, resulting in

𝐺 (k) =
∑︁
R≠0

𝑒
𝑖kR
𝐺

′(R) +𝐺 (R = 0) (2.126)

= 𝐺
′(k) −𝐺′(R = 0) +𝐺 (R = 0). (2.127)

The number of electrons in the k-mode is thus given by𝐺
′(k), with the second and third

term giving a constant offset.

A subtle but important consequence of (2.127) is that we need to be careful about how

to enforce the hard-core condition on the bond fermions. 𝐺 (k) gives the total number of

electrons in a momentum state k, so clearly

0 ≤ 𝐺 (k) ≤ 2. (2.128)

This physicality condition is automatically enforced as long as all bond fermion expec-

tation values are evaluated on an admissible state, meaning one that does not include

any double occupancies. For a generic state however, or when approximations are made,

(2.127) can lead to violations of (2.128) and result in negative or too-large occupation

numbers. This is clearly undesirable and should be kept in mind when solving the system

approximately. One can also derive similar physicality conditions for the spin densities
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2 The bond fermion method

(they should be bounded by ±1/2), which come into play once magnetic order is added to

the system.

While we have been unable to prove that the Gutzwiller approximation of Sec. 2.3 gen-

erally fulfills the physicality condition, from the limit of infinite dimensions we consider

this to be sensible. Since the Gutzwiller approximation is exact in infinite dimensions, it is

sure to produce a state fulfilling (2.128). As the dimensionality enters the approximation

only indirectly through the density of states, we expect the physicality rule to hold also

in finite dimensions. Furthermore, we have not found any violations of physicality in our

numerical investigations.

2.5.2 The method of Jurecka and Brenig

A different bond fermion method was introduced by Jurecka and Brenig [53]. Here, the

translation between electrons and bond particles happens entirely on the operator level.

Instead of choosing a particular ground state |Ω⟩R, the bond particle operators act on a

vacuum state that does not correspond to any state in the original Hilbert space. All local

states of the Kondo lattice are treated on a similar footing by introducing bond bosons 𝑠
†
R

and t̃†R to generate the singlet |𝑆⟩R and the triplet |T⟩R (we use the tildes to differentiate

these operators from the ones in our own derivation). The result of the procedure is

an exact (but interacting) mapping of the Kondo lattice model, provided the physicality

condition

1 = 𝑎
†
R𝑎R + ˜𝑏

†
R
˜𝑏R + 𝑠†R𝑠R + t̃†Rt̃R (2.129)

is enforced (each site must be in exactly one physical state).

For actual calculations, the bosons were considered to be condensed, with (2.129) ful-

filled on average. The condensation amplitudes ⟨𝑠R⟩ and ⟨t̃R⟩ correspond to our param-

eters 𝑠R and tR from Sec. 2.2. However, unlike our description, these amplitudes are not

normalized to unity. Instead of (2.10), the condition (2.129) results in��⟨𝑠R⟩��2 + ��⟨t̃R⟩��2 = 1 − ⟨𝑎†R𝑎R⟩ + ⟨ ˜𝑏†R ˜𝑏R⟩. (2.130)

The kinetic energy contribution is quadratic in ⟨𝑠R⟩ and ⟨t̃R⟩, compare (2.30). The smaller

values of these amplitudes thus result in an automatic renormalization of the band struc-

ture.

For an equivalent calculation in the language of the present paper, we normalize the

parameters to unity as in the main text, but use the much simpler definition

√
𝑍R =

√︃
1 − ⟨𝑎†R𝑎R⟩0 + ⟨𝑏†R𝑏R⟩0, (2.131)

with no matrix structure in spin or bond fermion space. This result can alternatively

be derived from our own formulation by treating the hard-core constraint using Barnes’

slave boson mean-field theory [12, 13] instead of the Gutzwiller approximation.

(2.131) effectively corresponds to neglecting the denominator in (2.108). One can see

that the Jurecka-Brenig approximation leads to a stronger renormalization of the hopping

matrix elements than the Gutzwiller approximation, as the role of the denominator is to
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2.5 Alternative methods

“divide out” the self-interaction of equal-state fermions. As this correction is not present

in the Jurecka-Brenig method, it will tend to distribute the bond fermions more evenly in

spin space, i.e. paramagnetism is favored.

One should note that this derivation does not prescribe any specific technique on how

to handle the “forbidden” expectation values describing local pair creation. They were

implicitly accepted by Jurecka and Brenig, although one could equally well introduce the

conditions (2.88) here as well. Later on we will implement both methods and compare

their results to that of the Gutzwiller approximation.

2.5.3 “Ad-hoc” neglecting the hard-core interaction

The first approximation proposed [35] is even simpler, and consists of simply replacing the

hard-core fermions with normal fermions. The variational energy is then minimized by

an ordinary Slater determinant wave function. Such an approximation seems reasonable

as long as the bond fermion density 𝜌
BF

is not too large: the probability of bond fermions

meeting is approximately 𝜌
2

BF
.

However, it was soon recognized that some modifications were required to recover the

expected band structure for general electron densities 𝑛𝑐 [34]. In our language, the mod-

ifications can be interpreted as a consequence of the physicality condition in Sec. 2.5.1:

numerically, one finds that (2.128) is not fulfilled otherwise, which precludes reasonable

physical interpretation.

The method that was used to remedy this is in some sense the most straightforward.

Namely, one can check from (2.121) that the physicality rule holds for 𝐺
′
by itself even

on inadmissible states, meaning that

0 ≤ 𝐺′(k) ≤ 2 (2.132)

no matter whether the hard-core condition is enforced. This means that we can fulfill the

physicality condition by requiring

𝐺 (k) = 𝐺′(k) ⇔ 𝐺 (R = 0) = 𝐺′(R = 0), (2.133)

which can be enforced through a Lagrange multiplier [35]. This choice is purely for con-

venience: there is no reason (2.133) should hold (and it does not hold in e.g. the Gutzwiller

approach), but requiring it does fix the more pressing problem of unphysical expectation

values. For this reason, we find “ad-hoc” to be an appropriate description of the method.

(2.133) can be phrased somewhat differently: in the references, the condition was in-

stead interpreted as enforcing consistency between “two ways of counting the electrons”.

Specifically, we have

𝑁𝑒 = 𝑁 𝐺 (R = 0) =
∑︁
R

[
1 − ⟨𝑎†R𝑎R⟩ + ⟨𝑏†R𝑏R⟩

]
, (2.134)

𝑁
′
𝑒 = 𝑁 𝐺

′(R = 0) =
∑︁
R

⟨𝑣†R𝑊
†
R𝑊R𝑣R⟩, (2.135)

⇒ 𝑁𝑒 = 𝑁
′
𝑒 . (2.136)
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2 The bond fermion method

𝑁𝑒 is the “correct” electron number, and 𝑁
′
𝑒 the “incorrect” one (i.e., calculated as if (2.28)

held also for local expectation values). However, in our calculation 𝑁
′
𝑒 is more or less

meaningless (it has no real physical interpretation), so we find this line of reasoning to

be somewhat dangerous as well.

In the presence of magnetic order, we should in principle introduce separate physicality

rules and Lagrangemultipliers for each inequivalent site and spin direction; (2.136) is only

an “averaged” form of the constraints. However, for reasonable results this averaged form

seems to be enough. This was the approach in Ref. [33], and will also be used in Chapter

5. Finally, it should also be noted that the “ad-hoc” method explicitly requires the local

pairing terms to be nonzero: (2.136) cannot be fulfilled otherwise, as can be shown by

comparing (2.121) and (2.122). For example, for (2.123) it was assumed that pairing terms

vanish, which results in an explicit contradiction with (2.133).

2.6 Preliminary analytic calculation

Generally speaking, bond fermion calculations require performing momentum integrals

and solving for the variational parameters, which is not possible analytically. An excep-

tion to this is the simplest possible casewith nomagnetic polarization (tR = 0), a half-filled

conduction band (𝑛𝑐 = 1), and a flat density of states (with half-bandwidth𝐷). In this case,

only a single (transcendental) function needs to be inverted at the end of the calculation.

As this calculation also helps to build some intuition for the results of the bond fermion

method in more general cases, we will present it here. Further, it already allows us to

demonstrate some properties of each of the three methods presented before.

Let us first use the Gutzwiller approximation. Assuming that |Ψ
0
⟩ has the above sym-

metries, one can easily convince oneself that the density matrix 𝜌R is proportional to the

unit matrix,

⟨𝑎†R𝜎𝑎R𝜎⟩0 = ⟨𝑏†R𝜎𝑏R𝜎⟩0 = const. =
𝜌
BF

4

, (2.137)

⟨𝑎†R𝜎𝑎R𝜎⟩0 = ⟨𝑏†R𝜎𝑏R𝜎⟩0 = 0, (2.138)

and that condition (2.88) is automatically fulfilled
15

. 𝜌
BF

< 1 is the total bond fermion

density. Following from this,

√
𝑍 =

√︁
Z is also proportional to the unit matrix, (2.108)

giving

√
𝑍 =

√︄
1 − 𝜌

BF

1 − 𝜌
BF
/4 . (2.139)

15

In bond fermion language, particle-hole symmetry schematically corresponds to exchanging 𝑎 ↔ 𝑏, so

that ⟨𝑎𝑏⟩ = ⟨𝑏𝑎⟩ = −⟨𝑎𝑏⟩ = 0.
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2.6 Preliminary analytic calculation

The Gutzwiller approximation thus gives a simple multiplicative renormalization of the

kinetic energy, albeit of a different form from that of Jurecka and Brenig. After inserting

𝑠R = 1 into (2.30), the kinetic energy (2.113) can then be simplified to

⟨𝐻𝑡 ⟩ = −
∑︁
RR′

𝜎

𝑍𝑡RR′

2

〈
𝑣
†
R𝜎
(𝜏

0
− 𝜎𝜏𝑥 )𝑣R′

𝜎

〉
0

, (2.140)

𝑣R𝜎 =

(
𝑎
†
R𝜎 𝑏R𝜎

)
, (2.141)

The spin-directions are thus decoupled: in the absence of magnetism, the bond fermion

spin is conserved in both hopping and pair production process. Adding the interaction

energy and performing a Fourier transform, we find that the energy expectation value is

𝐸 ( |Ψ
0
⟩) = ⟨𝐻 ⟩ =

∑︁
k𝜎

〈
𝑣
†
k𝜎

[
−3
4

𝐽𝜏𝑧 +
𝑍𝜖k

2

(𝜏
0
− 𝜎𝜏𝑥 )

]
𝑣k𝜎

〉
0

+ 3

4

𝐽 . (2.142)

The final constant term comes from inverting two sets of 𝑎
†
R𝜎 operators.

To minimize 𝐸 over |Ψ
0
⟩, one must take into account that 𝑍 is itself a function of |Ψ

0
⟩

through 𝜌
BF
. To solve this problem, one introduces an effective Hamiltonian [115]: 𝐸

depends on |Ψ
0
⟩ through the expectation values of a set of operators {𝐴𝑖}, with

⟨𝐴𝑖⟩0 =
⟨Ψ

0
|𝐴𝑖 |Ψ0

⟩
⟨Ψ

0
|Ψ

0
⟩ . (2.143)

Differentiating 𝐸 (with respect to ⟨Ψ
0
| for convenience) and setting the result to zero, we

have

0 =
d𝐸 ({⟨𝐴𝑖⟩0})

d⟨Ψ
0
| =

∑︁
𝑖

𝜕𝐸

𝜕⟨𝐴𝑖⟩0
d⟨𝐴𝑖⟩0
d⟨Ψ

0
| (2.144)

=
1

⟨Ψ
0
|Ψ

0
⟩
∑︁
𝑖

𝜕𝐸

𝜕⟨𝐴𝑖⟩0
[𝐴𝑖 |Ψ0

⟩ − ⟨𝐴𝑖⟩0 |Ψ0
⟩] . (2.145)

The right-hand side can be identified as an eigenvalue equation with an effective Hamil-

tonian 𝐻
eff

and an effective energy 𝐸
eff
:

0 = 𝐻
eff

|Ψ
0
⟩ − 𝐸

eff
|Ψ

0
⟩ , (2.146)

𝐻
eff

=
∑︁
𝑖

𝜕𝐸

𝜕⟨𝐴𝑖⟩0
𝐴𝑖, (2.147)

𝐸
eff

= ⟨𝐻
eff
⟩
0

(2.148)

|Ψ
0
⟩ is an eigenstate of𝐻

eff
. However, the eigenvalue equation is still nonlinear due to the

partial derivative on the right-hand side, and must be solved self-consistently. Only when

𝐸 is a linear function of the ⟨𝐴𝑖⟩0 (the usual case in quantum mechanics) is the eigenvalue

equation also linear.
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2 The bond fermion method

In our case, finding the effective Hamiltonian is easy. It mostly corresponds to the

term in angle brackets on the right-hand side of (2.142), but with a correction to the local

(momentum-independent) term. Using

𝜕𝜌
BF

𝜕⟨𝑏†k𝜎𝑏k𝜎⟩0
=

𝜕𝜌
BF

𝜕⟨𝑎†k𝜎𝑎k𝜎⟩0
= 1, (2.149)

the result is
16

𝐻
eff

=
∑︁
k𝜎

𝑣
†
k𝜎

[
−𝜖

eff
𝜏𝑧 +

𝑍𝜖k

2

(𝜏
0
− 𝜎𝜏𝑥 )

]
𝑣k𝜎 , (2.150)

𝜖
eff

=
3

4

𝐽 + 𝑍 ′
𝐷𝑓 , (2.151)

𝑍
′
=

d𝑍

d𝜌
BF

, (2.152)

𝑓 =
⟨𝐻𝑡 ⟩
𝑁𝑍𝐷

. (2.153)

𝑍
′
𝐷𝑓 (the normalization has been chosen tomake 𝑓 dimensionless) can be seen as a renor-

malization of the creation energy due to the blocking effect bond fermions have on each

other. An occupied site can no longer participate in hopping or creation processes, so that

an energy ∼ ⟨𝐻𝑡 ⟩/𝑁 is lost. Alternatively, one can view this as an effective (positive) cor-

rection to 𝐽 ; however, the variational energy should still be calculated with (2.142) which

does not contain𝑍
′
𝐷𝑓 . Note that a blocking term also arises in the (perhapsmore familiar)

Gutzwiller calculation for the Hubbard model, where it is usually unimportant: because

the electron number is conserved, the blocking only results in a renormalization of the

Fermi energy. In our case, bond fermions are generated by spontaneous pair production,

and the blocking term is physically important because it inhibits this production.

The 2 × 2 Hamiltonian matrices in (2.150) can be diagonalized and give an effective

k-dependent band structure with a positive-energy and a negative-energy band, see Fig.

2.7. The eigenvalues and eigenvectors are

𝐸
±
k𝜎 =

𝑍𝜖k

2

±

√︄
𝑒
2

eff
+
𝑍
2

𝜖
2

k

4

, (2.154)

𝜓
±
k𝜎 =

(
∓𝜎𝛼∓k
𝛼
±
k

)
, (2.155)[

𝛼
±
k
]
2

= 1 ± 𝜖
eff√︃

4𝜖
eff

+ 𝑍 2

𝜖
2

k

. (2.156)

The particles are Bogoliubov fermions formed as mixtures of 𝑎-holes and 𝑏-particles. It

follows from (2.24) that the density of Bogoliubov particles corresponds to the total den-

sity of electrons 𝑛𝑒 = 1 + 𝑛𝑐 , so that for half-filling (𝑛𝑐 = 1) the negative-energy bands

16

It should be appreciated that the simple form of (2.150) was derived assuming |Ψ
0
⟩ does not break any

symmetries. For an unrestricted |Ψ
0
⟩,
√
𝑍 would be much more complicated and so would 𝐻

eff
. The

reasoning is self-consistent, in the sense that we assume |Ψ
0
⟩ to be symmetric, thus 𝐻

eff
turns out to be

symmetric, thus it has a symmetric |Ψ
0
⟩ as its ground state (which closes the circle).
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Figure 2.7: Quasiparticle bands 𝐸
±
k𝜎 for 𝜖eff = 0.7𝐷 and 𝑍 = 0.9, with the free band energy

𝜖k for comparison. Energies are given in units of 𝐷 .

are occupied. The bond fermions form a condensate: for example, removing a negative-

energy Bogoliubov particle with momentum k corresponds to removing (𝛼−k )
2

𝑏-fermions

from the condensate, and adding (𝛼+k )
2

𝑎-fermions. Since (𝛼+k )
2 ≥ 1/2, the lower band is

“more 𝑎 than 𝑏”, which is why we refer to it as an 𝑎-band (and the upper band as a 𝑏-band).
The form of (2.154) shows the (possibly suprising) similarity of the strongly interact-

ing Kondo lattice to the noninteracting periodic Anderson model (see Sec. 1.2.3), as the

effective single-particle energies can be related by renormalizing the kinetic energy by 𝑍

and replacing the Anderson hybridization 𝑉 with 𝜖
eff
.

The rest of the calculation can be simplified by introducing the dimensionless variable

𝑟 = 𝜖
eff
/𝑍𝐷 . It corresponds to the ratio between the energy needed to create a bond

fermion, and the average hopping energy of each bond fermion. Intuitively, bond fermion

production is strongly suppressed for 𝑟 ≫ 1. We can explicitly calculate

𝜌
BF
(𝑟 ) = 4

𝑁

∑︁
k

⟨𝑏†k𝜎𝑏k𝜎⟩0 =
4

𝑁

∑︁
k

(𝛼−k )
2

=
4

𝑁

∑︁
k

[
1

2

− 𝐷𝑟

4𝐷
2

𝑟
2 + 𝜖2k

]
(2.157)

= 2 − 2𝑟 ln

(
1 + 2𝑟

2 +
√︁
1 + 4𝑟

2

2𝑟
2

)
, (2.158)

𝑓 (𝑟 ) = 2

𝑁𝐷

∑︁
k

𝜖k

2

[
𝜓
−
k↑

]⊺ (𝜏
0
− 𝜎𝜏𝑥 )𝜓−

k↑ =
1

𝑁𝐷

∑︁
k

𝜖k

(
1 − 𝜖k

4𝐷
2

𝑟
2 + 𝜖2k

)
(2.159)

= −1
2

√︁
1 + 4𝑟

2 + 2𝑟
2

arcoth(
√︁
1 + 4𝑟

2). (2.160)

The flat density of states allows for an analytic evaluation of the momentum sums. From

the definition of 𝑟 and 𝜖
eff

we find the self-consistency equation

𝐽

𝐷
=
4

3

(
𝑍𝑟 − 𝑍 ′

𝑓
)
, (2.161)

which can be solved for 𝑟 (and thus all other parameters) using a numerical root-finding

algorithm.
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Figure 2.8: System parameters for the three different solution strategies. (a) dimensionless

ratio 𝑟 (b) bond fermion density 𝜌
BF

(c) ground state energy density 𝐸 = ⟨𝐻 ⟩/𝑁
(d) band gap Δ.

The above analysis can also be applied to the other two strategies of dealing with

the hard-core constraint, which correspond to different choices of 𝑍 . We use subscripts

G (Gutzwiller), JB (Jurecka-Brenig), and ah (“ad-hoc”) to differentiate between different

methods; the Gutzwiller 𝑍
G

is as before, while 𝑍
JB

= 1 − 𝜌
BF
, and 𝑍

ah

= 1.

The results for 𝑟 are shown in Fig. 2.8 (a). The “ad-hoc” 𝑟
ah

is directly proportional

to 𝐽 , as (2.161) reduces to 𝐽/𝐷 = 3/4 𝑟 ah, whereas for the other two methods 𝑟 never

vanishes. The reason for this is that 𝑟 characterizes the total creation energy of a bond

fermion, which includes both the Kondo as well as the hard-core interaction energy; as

the “ad-hoc” method ignores the hard-core interaction, the second term vanishes. The

consequences of this can be seen in Fig. 2.8 (b). For small 𝐽 , it is energetically favorable to

generate a large number of bond fermions, since there is no term enforcing 𝜌
ah

BF
< 1. The

Gutzwiller and Jurecka-Brenig calculations are more correct, as the bond fermion density

is limited to around 0.3 even for 𝐽 = 0.

The ground-state energy density can be calculated as

⟨𝐻 ⟩
𝑁

= −3
4

𝐽 (1 − 𝜌
BF
) + 𝑍𝐷𝑓 (2.162)

and is shown in Fig. 2.8 (c). The light dashed line primitively estimates the ground-state

energy as 𝐸
prim

= min(−𝐷/2,−3/4𝐽 ): −𝐷/2 is the kinetic energy for uncorrelated elec-
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2.6 Preliminary analytic calculation

trons (𝐽 = 0), and −3/4𝐽 is the energy of the fully localized singlet state. The true ground-
state energy will interpolate between these limits.

This plot demonstrates both strengths andweaknesses of the bond fermionmethod. For

moderate-to-large 𝐽 all three strategies give essentially the same result (and are signifi-

cantly better than the primitive approximation), as this is the limit we have constructed

the bond fermions from. Deficiencies appear at small 𝐽 . At first glance, 𝐸
ah

might be

regarded as the most successful version, as it predicts the lowest energy and correctly re-

produces the 𝐽 = 0 limit (with 𝑟
ah

= 0 and𝑍
ah

= 1). However, this region is also where 𝜌
ah

BF

is unphysical, and the difference between 𝐸
ah

and the less crude approximations quickly

diminishes when increasing 𝐽 . Furthermore, 𝐸
ah

is nonmonotonic as the Kondo energy

term in (2.162) is positive for 𝜌
ah

BF
> 1, which is obviously also unphysical.

𝐸
G

and 𝐸
JB

do not suffer from these specific problems, but they do not recover the

correct ground state for 𝐽 = 0 (𝐸
G ≈ 𝐸

JB ≈ −0.3𝐷). As we have mentioned before, in the

actual free electron system all local states are equally likely, and not just the five states we

have retained in the bond fermion calculation. Due to this restriction, the kinetic energy

must then be (significantly) underestimated. Note however that we always have 𝐸
G

< 𝐸
JB

:

as discussed, the Jurecka-Brenig method includes a self-interaction, so that it suffers even

more badly than the Gutzwiller calculation in this limit.

Let us now take a closer look at the quasiparticle band structure of the system. We

identify this with that of the effective Hamiltonian (Fig. 2.7). This is usual practice [115],

but some care must be taken. The Gutzwiller bond fermion method is a ground-state the-

ory and is in principle limited to static quantities. If we generate an additional 𝑎-𝑏-pair

for example, this influences the Gutzwiller parameters (reducing the kinetic energy) and

causes all other quasiparticles to rearrange themselves. The band structure of the effective

Hamiltonian includes the reduction in kinetic energy through the 𝑍
′
𝐷𝑓 -term, but not the

rearrangement (the other quasiparticles are effectively assumed to be static). The identi-

fication is thus only approximate, but should be sufficiently accurate for most purposes.

Note that the same caveat applies also to other theories that optimize a variational state

using an effective Hamiltonian, such as mean-field theory [61].

As we mentioned, the band structure is formally the same as that of the periodic An-

derson model with 𝑈 = 0. Since the lower quasiparticle band is fully occupied, the bond

fermion method leads us to conclude that the system is a Kondo insulator : this can be

interpreted as an extreme version of the “large” Fermi surface, as we have 𝑛𝑐 = 1 and thus

𝑛𝑒 = 2 total electrons. The gap is indirect with the maximum of the lower band (minimum

of the upper band) at 𝜖k = +𝐷 (𝜖k = −𝐷). The size of the gap (Fig. 2.8 (d)) increases with 𝐽 ,
as an increasing amount of energy is needed to generate bond fermions. For 𝐽 ≫ 𝐷 (not

shown) we get Δ → 3/2𝐽 in all three cases, corresponding to the ground-state energy of

two singlets. Again, only the “ad-hoc” method gives the correct limiting value at 𝐽 = 0

(where the system should be conducting). In the other two cases we get a gap of around

Δ ≈ 0.2𝐷 . This is of similar magnitude to the total energy per site ⟨𝐻 ⟩/𝑁 (which is just

the kinetic energy for 𝐽 = 0), which makes sense since this is approximately the energy

lost when blocking a site with a bond fermion.

In summary, all three methods seem to give a satisfactory description of the Kondo

lattice for 𝐽 > 𝐷 . The system is a Kondo insulator as expected, and the ground-state
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2 The bond fermion method

energy clearly shows the trend towards localized singlets. For 𝐽 < 𝐷 , the “ad-hoc”method

behaves quite differently from the others: It gives the correct noninteracting limit, but at

the cost of several physically nonsensical predictions. Meanwhile, the more sophisticated

methods underestimate the kinetic energy because of the hard-core interaction.

This however need not be too discouraging. Magnetic phase transitions are generally

found at intermediate 𝐽 (our calculations will support this), where the performance of

the bond fermion methods appears acceptable. Furthermore, even in parameter regions

where numerical accuracy may be lacking, results may still be qualitatively correct.

2.7 Gutzwiller approximation for general calculations and
summary of expressions

To perform a bond fermionGutzwiller calculation inmore general settings (featuringmag-

netic order, for example), the procedure is somewhat more complicated. We will present a

mostly straighforward approach here that does not directly rely on the symmetries (trans-

lation invariance, paramagnetism, particle-hole symmetry) used in the previous section;

instead, possible symmetries can later be used to simplify the final expressions derived

here. This method presented here is used in Chapters 3 and 4; Chapter 5 uses the “ad-hoc”

method which is simpler to implement.

2.7.1 Equations

The general recipe is still the same as before: We write an effective Hamiltonian 𝐻
eff

to

optimize the wave function |Ψ
0
⟩, but terms have to be added to explicitly enforce the

constraints that were before fulfilled automatically. First of all we have the Gutzwiller

constraint (2.88), that is 0 = ⟨𝑎R𝜎𝑏R�̃�⟩0. This condition is taken care of by a set of Lagrange
multipliers ΛR𝜎�̃� , which we add to 𝐻

eff
as part of the operator 𝐻Λ:

𝐻Λ = −
∑︁
R𝜎�̃�

[ΛR𝜎�̃�𝑎R𝜎𝑏R�̃� + h.c.] (2.163)

= −
∑︁
R

𝑣
†
RΛR𝑣R, (2.164)

ΛR =

©«
0 0 ΛR↑↑ ΛR↑↓
0 0 ΛR↓↑ ΛR↓↓

Λ∗
R↑↑ Λ∗

R↓↑ 0 0

Λ∗
R↑↓ Λ∗

R↓↓ 0 0

ª®®®®¬
. (2.165)

The ΛR𝜎�̃� are as yet undetermined, and will need to be solved for to enforce (2.88).

Next up is the conduction electron number, for which we introduce another Lagrange

multiplier ` (the bond fermion chemical potential). The term added to the Hamiltonian

is, taking the electron density from (2.24),

𝐻` = −`𝑁𝑐 = −`
∑︁
R

[
1 − 𝑎†R𝑎R + 𝑏†R𝑏R

]
= −`

∑︁
R

𝑣
†
R𝑣R + const. (2.166)
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` also needs to be solved for: For a given conduction electron density 𝑛𝑐 , we want 𝑁𝑛𝑐 =

⟨𝑁𝑐⟩0. The constant term (equal to `𝑁 ) can be safely dropped from (2.166), as we do not

care about the effective energy. The only utility of𝐻
eff

is that |Ψ
0
⟩ is its ground state, so a

constant offset (even if it depends on the as yet undetermined parameter `) is irrelevant.

Now that the constraints are taken care of, we again need to calculate derivatives of ⟨𝐻 ⟩.
This remains simple for the local energy terms𝐻 𝐽 and𝐻B, as these terms are linear in the

bond fermion expectation values. For the kinetic energy 𝐻𝑡 , we have to take into account

the nontrivial matrix structure of

√
𝑍R. Specifically, the kinetic energy contribution to

the effective Hamiltonian is

𝐻
eff,𝑡 =

∑︁
RR′

𝛼𝛼
′

𝜕⟨𝐻𝑡 ⟩
𝜕⟨𝑣†

R𝛼
𝑣
R′
𝛼
′⟩0
𝑣
†
R𝛼
𝑣
R′
𝛼
′ (2.167)

= −
∑︁
RR′

𝑡
RR′𝑣

†
R

√︁
𝑍
†
R
𝑊

†
R
𝑊

R′

√︁
𝑍
R′𝑣R′ −

∑︁
R

𝑣
†
R𝑚R𝑣R + irrelevant (2.168)

Here we inserted (2.113) for ⟨𝐻𝑡 ⟩. The contribution (2.168) can again be separated into

two terms, one of which is the kinetic energy itself, and the other the blocking effect (the

“irrelevant” terms will be explained momentarily). The blocking term𝑚R has a nontrivial

matrix structure, which reflects that the “blocking strength” can depend on both species

(𝑎 or 𝑏) and the spin of a specific fermion. Specifically,𝑚R takes the form

𝑚R =

(
−𝑚R𝑎 0

0 𝑚R𝑏

)
, (2.169)

[𝑚R𝑎]𝜎�̃� =
∑︁
R′

〈
𝑡
RR′𝑣

†
R

𝜕
√︁
𝑍
†
R

𝜕⟨𝑎†R𝜎𝑎R�̃�⟩0
𝑊

†
R
𝑊

R′

√︁
𝑍
R′𝑣R′

〉
+

∑︁
R′

〈
𝑡
R′R
𝑣
†
R′

√︁
𝑍
†
R′𝑊

†
R′𝑊R

𝜕
√︁
𝑍R

𝜕⟨𝑎†R𝜎𝑎R�̃�⟩0
𝑣R

〉
, (2.170)

and analogous for𝑚R𝑏 . The easiest way to calculate the derivatives of
√︁
𝑍R is numerically:

In Sec. 2.4, we introduced

√︁
𝑍R by first diagonalizing the density matrix 𝜌R (whose entries

are the ⟨𝑎†R𝜎𝑎R�̃�⟩0 etc.). In the eigenbasis of 𝜌R, the calculation of the renormalization

(the coefficients

√︁
Z R𝑖 ) was straightforward, and

√
𝑍R (and

√︁
𝑍R) results after undoing the

unitary transformation. For our implementation we simply perform these steps multiple

times with slight offsets in the components of 𝜌R.
17

In theory, one should also take into account anomalous contributions, i.e. nonzero

entries in the off-diagonal blocks of 𝑚R, as (2.167) contains derivatives with respect to

the “forbidden” terms ⟨𝑎R𝜎𝑏R�̃�⟩0. These derivatives actually form the “irrelevant” terms:

Their contribution to the effective Hamiltonian will be proportional to 𝑎R𝜎𝑏R�̃� (and its

conjugate), which means that we can get rid of them by simply redefining our Lagrange

multipliers ΛR𝜎�̃� .

17

Due to the block structure of 𝜌R an analytic calculation of the derivatives is possible, but the (complicated)

result is not any more useful than a numerical derivative.
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To get the final 𝐻
eff
, we gather the constituent terms and add the local terms, which

gives

𝐻
eff

=
∑︁
R

𝑣
†
RℎR𝑣R +

∑︁
RR′

𝑣
†
R
𝐾
RR′𝑣R′, (2.171)

ℎR = ℎ
0

R −𝑚R − ΛR − `, (2.172)

ℎ
0

R = 𝑒Rdiag(−1,−1, 1, 1) −
B
2

(
−𝝉 0

0 𝝉

)
, (2.173)

𝐾
RR′ = −𝑡

RR′

√︁
𝑍
R
𝑊

R
𝑊

R′

√︁
𝑍
R′ . (2.174)

The ground state of 𝐻
eff

is |Ψ
0
⟩. As a reminder, this is a nonlinear eigenvalue equation, as√︁

𝑍R and𝑚R itself depend on |Ψ
0
⟩. Alternatively, we can see this as a linear eigenvalue

equation, but augmented by a complicated set of equations for the parameters

√︁
𝑍R and

𝑚R (this view is more useful for actual calculations).

The Lagrange multipliers ΛR𝜎�̃� and ` need to be adjusted so that

0 = ⟨𝑎R𝜎𝑏R�̃�⟩0 = ⟨𝑎†R𝜎𝑏
†
R�̃�⟩0, (2.175)

𝑛𝑐𝑁 = ⟨𝑁𝑐⟩0, (2.176)

which can also be seen as a nonlinear system of equations (note that the number of equa-

tions matches the number of unknowns). Using these definitions, the expectation value

of the Gutzwiller energy is

⟨𝐻 ⟩ =
∑︁
R

⟨𝑣†
R
ℎ
0

R
𝑣
R
⟩
0
+

∑︁
RR′

⟨𝑣†
R
𝐾
RR′𝑣R′⟩0 +

∑︁
R

𝑒
R
. (2.177)

For future reference, we will also recapitulate the other definitions used here; if there

is any confusion, the reader should reference the original sections:

𝑣R =

(
𝑎
†
R↑ 𝑎

†
R↓ 𝑏R↑ 𝑏R↓

)⊺
, (2.178)

𝑊R =
1

√
2

(
[𝑠∗R + t∗R𝝉 ] 𝑖𝜏𝑦 [−𝑠R + tR𝝉 ]

)
, (2.179)

𝑒R =
3𝐽

4

𝑠
2

R − 𝐽

4

t2R − 𝑖B(t∗R × tR), (2.180)

𝜌R =
©«
⟨𝑎†R↑𝑎R↑⟩0 ⟨𝑎†R↑𝑎R↓⟩0
⟨𝑎†R↓𝑎R↑⟩0 ⟨𝑎†R↓𝑎R↓⟩0

0

0 𝑎 → 𝑏

ª®®¬, (2.181)
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diag{⟨𝑁R𝑖⟩0} = 𝑈 †
R𝜌R𝑈R, (2.182)√︁

Z R𝑖 =

√︄
1 − ∑

𝑗 ⟨𝑁R 𝑗 ⟩0
1 − ⟨𝑁R𝑖⟩0

, (2.183)

√
𝑍R = 𝑈R

√︁
Z R𝑈

†
R =

(√
𝑍R𝑎 0

0

√
𝑍R𝑏

)
, (2.184)√︁

𝑍R =

(√
𝑍
∗
R𝑎 0

0

√
𝑍R𝑏

)
. (2.185)

2.7.2 Optimization

Wenow describe how to actually use the above equations to optimize our variational state.

First of all, one should choose a proper ansatz for the symmetry of the system. If one is

interested in describing e.g. a translation invariant phase, the parameters in the equations

will also be independent of R. Thus, in the following, we take e.g. “𝑠” to mean a suitable

parametrization of 𝑠R, or “Λ” to mean a suitable parametrization of ΛR𝜎�̃� (note that the

parametrization should respect the self-adjointness and block structures of ΛR,
√
𝑍R, and

𝑚R).

To understand the numerical procedure, it helps to be somewhat explicit about which

objects depend on which parameters. We take the effective Hamiltonian (2.171) to be a

function of six types of parameters, 𝐻
eff
(𝑠, t,

√
𝑍,𝑚,Λ, `), which is quadratic in fermion

operators and can be diagonalized (e.g. in k-space on a suitably fine grid, for translation

invariant phases) to find the ground state |Ψ
0
⟩ (𝑠, t,

√
𝑍,𝑚,Λ, `). All the parameters need

to be solved for, which we will do “from inside to outside”:

• If parameters 𝑠 through 𝑚 are fixed, we can solve for Λ = Λ∗(𝑠, t,
√
𝑍,𝑚) and ` =

`
∗(𝑠, t,

√
𝑍,𝑚) by requiring (2.175–2.176) to hold for |Ψ

0
⟩ (𝑠, t,

√
𝑍,𝑚,Λ∗

, `
∗). These

conditions form a nonlinear system of equations, for which standard algorithms are

available. Our implementation uses the freely available solver MINPACK [80] for the

parameters in Λ (the single real parameter ` is determined by a one-dimensional

solver at each MINPACK iteration).

• If parameters 𝑠 and t are fixed, we solve for
√
𝑍 =

√
𝑍
∗(𝑠, t) and𝑚 =𝑚

∗(𝑠, t) through
self-consistency iteration: We start with guesses for

√
𝑍 and𝑚, and then calculate

|Ψ
0
⟩ (𝑠, t,

√
𝑍,𝑚,Λ∗

, `
∗), which gives us new guesses for

√
𝑍 and 𝑚 through equa-

tions (2.169–2.170) and (2.181–2.184). If repeated, this procedure can sometimes by

itself converge to a solution. Our implementation only performs a few steps of self-

consistency iteration to get a rough starting guess, which is then refined by direct

search with MINPACK solver.

• The above procedure gives |Ψ
0
⟩ (𝑠, t,

√
𝑍
∗
,𝑚

∗
,Λ∗

, `
∗), from which we can calculate

the Gutzwiller energy ⟨𝐻 ⟩(𝑠, t) through equation (2.177). It remains to solve for

𝑠 and t by minimizing ⟨𝐻 ⟩(𝑠, t) through a (standard) optimization algorithm, our

implementation uses NLopt [52, 97].
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2 The bond fermion method

The solution thus proceeds in three nested loops. The main cost is that one has to repeat-

edly diagonalize𝐻
eff

in the innermost loop. All other operations consist of comparatively

minor bookkeeping, as the number of free parameters to be solved for in each loop is

typically small (< 20). Empirically, this solution method appears to work well with little

oversight; for example, it is usually enough to take the simple ΛR𝜎�̃� ′ = 0 as a starting

guess in the innermost loop, and still have the solver converge. The main danger is to

miss some minima of ⟨𝐻 ⟩(𝑠, t), which can be mitigated by either using a global optimiza-

tion algorithm (over some physically reasonable range of parameters), or by repeated

local optimizations from different starting points. To calculate momentum sums, we use

a static grid and “smear out” the Fermi surface by using a small fictional temperature 𝑇

(usually 𝑇 ∼ 0.005𝑡 with 𝑡 the nearest-neighbor hopping), which we found to be small

enough for qualitative convergence), as this is the simplest way to avoid the numerical

problems caused by the step discontinuity at the Fermi energy. We expect the numerical

error introduced by this to be much smaller than the inherent inaccuracies in the bond

fermion method.
18

Of course, some variations on the above method are possible. For example, we chose√
𝑍R and𝑚R to solve the self-consistency equation, as was suggested by Yao et al. [115]

in a similar calculation. Instead, one could try working with 𝜌R directly; however, we

found this to be much less numerically stable. Another variation is to exchange some

operations in the innermost loops, like solving first for

√
𝑍 and𝑚 with fixed Λ. This also

only slowed convergence. Loosely speaking, we think that future work would be better

served by improving the method itself instead of its implementation.

18

Note that the fictional temperature introduces a slight ambiguity: Should we now optimize the free

energy 𝐹 = ⟨𝐻 ⟩ − 𝑇𝑆 instead of ⟨𝐻 ⟩? While we have tried multiple methods and found no significant

differences because of the smallness of𝑇 (indeed, if there was any difference the method could likely not

be trusted), for peace of mind we have settled on ⟨𝐻 ⟩ −𝑇𝑆/2, which should lead to the best extrapolation

of the energy to zero temperature [63].
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3 Implementation for the square lattice

The square lattice is the “standard” setting to study the Kondo latticemodel, as it is the sim-

plest possible without the many peculiarities of one-dimensional systems; furthermore,

many real materials have a strongly anisotropic layer structure, so that assuming a two-

dimensional lattice is not entirely unrealistic (the experimental relevance of our results

will be discussed later). This makes it a good test case for new techniques, since a num-

ber of more established methods have been applied to map out the phase diagram and

band structure of the model. We will investigate these problems using the bond fermion

methodwith the Gutzwiller approximation of Sec. 2.3. Our focus will be onmagnetic tran-

sitions, which seem to occur in regions of moderate 𝐽 ∼ 𝑡 , i.e. where the bond fermion

method should be a good approximation. As the method is quite versatile (different types

of magnetic order corresponding to different choices of tR), we will go beyond usual Néel
antiferromagnetism and also present results on incommensurate and ferromagnetic or-

dering. In the Néel case, we can compare the Gutzwiller approximation with the previous

iterations of the bond fermion method.

Regarding previous work on this system, exact results are available in some special

cases. At half-filling, the numerically exact quantum Monte Carlo results by Assaad [9]

show that there is indeed a phase transition between a Néel antiferromagnetic phase at

small interaction and a Kondo screened paramagnetic phase at large interaction. A vari-

ety of other numerical schemes that are less accurate but more generally applicable have

been used. Most directly relevant for us are those investigating antiferromagnetic phase

transitions, citing as examples the dynamical cluster approximation calculation byMartin

and Assaad [76], the Gutzwiller approximation study by Lanatà et al. [68], and Watanabe

and Ogata’s variational Monte Carlo results [111]. Incommensurate phases were investi-

gated through mean-field theory by Costa et al. [27] and Pankratova et al. [91]. Peters

and Kawakami used dynamical mean-field theory to investigate both commensurate but

nonstandard magnetic order [94] and more general spin- and charge-ordered phases [93].
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3 Implementation for the square lattice

3.1 Implementation

The geometry of the lattice enters into the Hamiltonian only through the hopping terms.

Our focus is on the case of nearest-neighbor hopping (particle-hole symmetry), but we

will also discuss the effects of a second-nearest-neighbor term. We thus set

𝐻𝑡 = −
∑︁
RR′

𝑡
RR′𝑐

†
R
𝑐
R′, (3.1)

𝑡RR′ =


𝑡 R and R′

N. N.

𝑡
′ R and R′

2nd N.N.

0 else.

(3.2)

𝑡 is used as the energy unit from here on. After a Fourier transform, the kinetic energy

Hamiltonian yields the free band structure

𝐻𝑡 =
∑︁
k

𝑐
†
k𝜖k𝑐k, (3.3)

𝜖k = −2𝑡
(
cos

(
𝑘𝑥

)
+ cos

(
𝑘𝑦

))
− 4𝑡

′
cos

(
𝑘𝑥

)
cos

(
𝑘𝑦

)
. (3.4)

In this chapter, we will set the magnetic field to zero (B = 0). We take the bond fermion

background |Ω⟩ to have an in-plane, spiral magnetic moment of the form

𝑠R = 𝑠 =

√︃
1 − |t|2, (3.5)

tR = |t|
(
cos(QR)𝑒𝑥 + sin(QR)𝑒𝑦

)
. (3.6)

Q is the magnetic wave vector. Néel antiferromagnetism has Q = (𝜋, 𝜋), while pure

ferromagnetic order has Q = (0, 0). 𝑠 and |t| are constant, so that there is no modulation

of the spin magnitude or of the charge density.

Our numerical implementation is as described in Sec. 2.7, and it is possible to insert

this ansatz directly into the expressions therein. However, (3.6) is not translation invari-

ant, which makes the implementation somewhat more tedious than it needs to be. This

can be solved by taking advantage of a remaining symmetry: the system is unchanged

when translating by R and simultaneously rotating all spins by 𝜑R = −QR around the

𝑧-axis. Based on this, we can perform a canonical transformation of our electron oper-

ators that will result in a translation-invariant system. Effectively, we should perform a

site-dependent rotation, so that in the rotated system the spins are all parallel (as opposed

to the spiral form in (3.6). The most straightforward definition of the rotated operators 𝑐
′

and 𝑓
′
would be

𝑐
†
R𝜎 = 𝑒

−𝑖𝜑R 𝜎
2 𝑐

′†
R𝜎 = 𝑒

𝑖QR𝜎
2 𝑐

′†
R𝜎 , (3.7)
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3.1 Implementation

and analogously for 𝑓 . Actually, we will use an equivalent but slightly more convenient

formulation: in addition to the spin rotation, we perform a further site-dependent gauge

transformation, specifically

𝑐
†
R↑ = 𝑐

′†
R↑, (3.8)

𝑐
†
R↓ = 𝑒

−𝑖QR
𝑐
′†
R↓, (3.9)

𝑓
†
R↑ = 𝑒

𝑖QR
𝑓
′†
R↑, (3.10)

𝑓
†
R↓ = 𝑓

′†
R↓. (3.11)

(3.12)

Note that for both 𝑐- and 𝑓 -electrons, the relative phase between up and down is QR, just
like in (3.7). By replacing electron operators with these primed equivalents in (2.2–2.5)

we get the new basis states��𝑆′〉R = |𝑆⟩R , (3.13)��𝑇 ′
𝑧

〉
R = |𝑇𝑧⟩R , (3.14)��𝑇 ′

𝑥

〉
R = cos(QR) |𝑇𝑥⟩R + sin(QR)

��𝑇𝑦〉R , (3.15)��𝑇 ′
𝑦

〉
R = cos(QR)

��𝑇𝑦〉R − sin(QR) |𝑇𝑥⟩R . (3.16)

|𝑆⟩R and |𝑇𝑧⟩R are unchanged while |𝑇𝑥⟩R and

��𝑇𝑦〉R are rotated into each other, as to be

expected from a spin-1 vector. |𝐴𝜎⟩R and |𝐵𝜎⟩R transform as spin-1/2 states (like 𝑓
†
R𝜎 ).

Under this definition, (3.6) gives

tR |T⟩R = |t|
��𝑇 ′
𝑥

〉
R . (3.17)

We now set

𝑠
′
R = 𝑠

′
= 𝑠, (3.18)

t′R = |t|𝑒𝑥 , (3.19)

which lets us recover |Ω⟩R as

|Ω⟩R = 𝑠
′
R
��𝑆′〉R + t′R

��T′〉R . (3.20)

This has the exact same form as (2.9). However, in the primed frame themagnetic moment

is constant and parallel to 𝑒𝑥 .

We also have to express the kinetic terms and the interaction using the primed oper-

ators. The interaction 𝐻 𝐽 is isotropic, so its form is unchanged. Regarding the kinetic

energy, we see from (3.8–3.9) that

𝑐
†
k↑ = 𝑐

′†
k↑, (3.21)

𝑐
†
k↓ = 𝑐

′†
k−Q↓, (3.22)

𝐻𝑡 =
∑︁
k

𝑐
′†
k 𝜖k𝑐

′
k, (3.23)

𝜖k =

(
𝜖k 0

0 𝜖k+Q

)
. (3.24)
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3 Implementation for the square lattice

𝜖k is the (spin-dependent) effective kinetic energy matrix, in which all dependence on Q
is isolated. This is the main utility of the transformation, as the system is now effectively

translation invariant again. This is in particular also true for𝑊R and

√
𝑍R, for example:

otherwise, one would have to carry factors of 𝑒
𝑖QR

inside these matrices as well. The

reasonwe chose the definition (3.8–3.11) over (3.7) is that this simplifies the kinetic energy;

(3.7) would result in an annoying (and confusing) offset ofQ/2 in (3.24). It should be noted
that the summation in (3.23) goes over the whole Brillouin zone: while for special values

of Q (like Q = (𝜋, 𝜋)) one can introduce a smaller magnetic Brillouin zone, for general Q
this is not possible.

From this point on, we will drop the primes. To solve the system, we have to insert our

ansatz (3.19) and kinetic energy (3.24) into the expressions of section 2.7, and then simplify

because of the symmetries present in our system. This leads to the effective Hamiltonian

(after a Fourier transform) of

𝐻
eff

=
∑︁
k

𝑣
†
k [ℎ + 𝐾k] 𝑣k, (3.25)

ℎ = 𝑒 diag(−1,−1, 1, 1) − Λ −𝑚 − `, (3.26)

𝑒 =
3𝐽

4

𝑠
2 − 𝐽

4

|t|2, (3.27)

𝐾k =
√
𝑍𝑊

⊺
𝜖k𝑊

√
𝑍 . (3.28)

Due to the effective translation invariance, we can drop the site index from 𝑒 ,𝑊 , Λ, and
𝑚. We also used that 𝑊 is real (because 𝑡𝑦 = 0), from which it is possible to derive

that all quantities in the Hamiltonian are real. In particular, this means that𝑊 ,

√
𝑍 =√︁

𝑍 , 𝑚, and Λ are all real (the block structure of these matrices is as in Sec. 2.7). The

only complication encountered is that we earlier assumed the kinetic energy to be spin-

independent, see (2.174). The expression (3.28) with 𝜖k “sandwiched” can be derived from

the (much earlier) bond fermion result (2.28), but is also quite intuitive: 𝜖k is the kinetic

energy for electrons, and the matrix𝑊 “translates” it into the bond fermion language

(note the matching dimensions: 𝜖k is 2 × 2 and𝑊 is 2 × 4).

While one could further reduce the number of independent parameters to be solved for

by taking into account that the magnetization is entirely in-plane, we have not found this

necessary since the method is computationally cheap enough anyway. By noting only

that the matrices must be real and symmetric, we get that each of the 2 × 2 blocks in

√
𝑍

and𝑚 has three independent entries, and Λ has four.

Once a parametrization has been chosen, the numerical solution can proceed by the

procedure specified in Sec. 2.7. The variational energy is minimized for fixed external

parameters 𝑡
′
, 𝐽 , and 𝑛𝑐 ; the nested loops are

• Solve for Λ and `, which fixes the electron number and the Gutzwiller constraint

⟨𝑎R𝜎𝑏R�̃�⟩0 = 0.

• Solve for

√
𝑍 and𝑚, the Gutzwiller renormalization parameters.

• Optimize ⟨𝐻 ⟩ over |t| and Q, which parametrize 𝑠R and tR. This determines the

magnetic structure of the solution.
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3.2 Antiferromagnetic phase diagram
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Figure 3.1: Phase diagram when taking only antiferromagnetism into account. The

dashed line indicates that the AFI-P transition is continuous, while the full

line implies that the AFII-P and AFII-AFI transitions are discontinuous. The

size of the discontinuity decreases when approaching half-filling (more infor-

mation the text). For 𝑛𝑐 = 1 (stripes), the system is insulating and the AFII-AFI

transition is also continuous.

Since there are competing phases in the model, we perform local optimizations with dif-

ferent starting values for |t| and Q, corresponding to different magnetization strengths

and ordering vectors.

3.2 Antiferromagnetic phase diagram

3.2.1 Phase diagram and band structure

We first focus on the case of pure antiferromagnetic ordering with only nearest-neighbor

hopping, which corresponds to fixing Q = (𝜋, 𝜋) and 𝑡 ′ = 0. This is the most symmet-

ric and most well-studied setting. While our method also allows us to perform calcula-

tions in the more general case, it is reassuring to first show that we can reproduce the

main features of the model that have been established in previous investigations, with

quantitative improvements over the previous bond fermion theory. Incommensurate and

ferromagnetic ordering will be discussed in a later section.

When varying 𝐽 and 𝑛𝑐 , three different phases emerge (Fig. 3.1). At large 𝐽 , formation

of magnetic moments is suppressed by the interaction which favors singlets (t = 0), giving

the paramagnetic (P) phase. Two antiferromagnetic phases (we will refer to them as AFI

and AFII) are found for moderate 𝐽 : the symmetry of the magnetic ordering is the same

in both cases, but away from half-filling (𝑛𝑐 ≠ 1) there is a discontinuous drop in |t|
across the transition from AFII to AFI (Fig. 3.2). The difference between the phases lies

in their Fermi surfaces and band structures (Fig. 3.3); as in Sec. 2.6, we identify the
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3 Implementation for the square lattice

nc=1
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Figure 3.2: Magnetic parameter |t| across the AFII-AFI and AFI-P transitions. The transi-

tion to P (which has |t| = 0) shows a square-root behavior. At half-filling, |t|
is continuous (the critical point 𝐽𝑐,2 = 1.04𝑡 for the AFII-AFI transition is not

distinct), while away from half-filling there is a jump in |t| (dashed).

band structure with the eigenvalues of the effective Hamiltonian
1

. Note that no error is

committed when using this band structure to calculate the position of the Fermi surface.

Unlike the excitation energies, the position of the Fermi surface is a ground state quantity,
since it corresponds to points of discontinuity in ⟨𝑐†k𝑐k⟩.
The Bogoliubov nature of the quasiparticles should be kept in mind when interpret-

ing the band structures. The negative-energy bands in Fig. 3.3 (b) are mostly of 𝑎-hole

character, as the gap is quite large. Upon lowering 𝑛𝑐 away from half-filling, the Fermi

energy cuts into the 𝑎-hole band, which is equivalent to injecting 𝑎-particles. Thus, the

Fermi surfaces in Fig. 3.3 (a) are formed by 𝑎-particles. Of course, physically all transport

phenomena correspond to (renormalized) 𝑐-electron hopping.

A special feature of the Fermi surfaces is that they are “locked”: k appears in the effec-

tive Hamiltonian solely through 𝜖k and 𝜖k+Q in (3.23), which for 𝑡
′
= 0 satisfy 𝜖k+Q = −𝜖k,

so there is only a single free parameter. The Fermi surfaces must thus be lines of constant

𝜖k. As the Fermi surfaces of a trivially solvable free-electron (𝐽 = 0) system follow these

same lines (with 𝜖k = 𝐸Fermi
, the Fermi energy), the sheets of the interacting Fermi surface

can be directly identified with those of a free-electron system. However, this associated

non-interacting system does not necessarily need to have the same conduction electron

density 𝑛𝑐 as the interacting one; depending on this “effective” 𝑛𝑐 , we can identify the

Fermi surfaces as large or small (as in Sec. 1.2.3).

Specifically, the P and AFI phases have heavy hole pockets around (𝜋, 𝜋) (and for AFI

around the magnetically backfolded (0, 0)). These are large Fermi surfaces, as the Fermi

surface is that of a noninteracting system filled with 𝑛𝑐 + 1 itinerant electrons; it is as

if the 𝑓 -electrons (despite being localized) still contribute to the Fermi surface volume.

Meanwhile, the AFII (small Fermi surface) phase has the same Fermi surface as a nonin-

teracting system filled with 𝑛𝑐 itinerant electrons, albeit with a larger band mass and and

1

Our effective Hamiltonian actually gives the excitation spectrum in the rotated system. A 𝑐
′
-excitation

with momentum k corresponds to a 𝑐-excitations with momenta k and k − Q. In plots with |t| = 0 (for

example, P in Fig. 3.3 (b)) we use the lab frame (i.e., Q = 0) to avoid a redundant doubling of the bands.
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3.2 Antiferromagnetic phase diagram
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Figure 3.3: Evolution of the Fermi surfaces and band structures across the antiferromag-

netic transition. Detailed interpretations and explanations are in the text.

(a) Possible Fermi surfaces for 𝑛𝑐 = 0.8. Specifically, the Fermi surfaces for each

phase are: P: red full line. AFI: both red lines. AFII: both blue lines. The full blue

(full red) line is also the Fermi surface for a free electron system with 𝑛𝑐 = 0.8

(𝑛𝑐 = 1.8) conduction electrons.

(b) Band structures for 𝑛𝑐 = 1. From left to right and top to bottom, we have 𝐽 = 2𝑡

(P, the dashed line is the free band structure for comparison), 𝐽 = 1.6𝑡 (AFI),

𝐽 = 0.7𝑡 (AFII), and 𝐽 = 1.04𝑡 (critical point with a flat band, see the text).
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3 Implementation for the square lattice
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Figure 3.4: Quasiparticle residue Δ𝐺 across the AFII-AFI transition for 𝑛𝑐 = 0.9, explana-

tion in the text.

antiferromagnetically folded. This behavior of the bands is qualitatively very similar to

the results of the dynamical cluster approximation [76]. While real-space DMFT predicts

non-Néel ordered states, there is a very similar transition in Fermi surface topology there

as well [93].

Wemust reiterate that this interpretation is superficial. While it is commonly suggested

that the change in band structure is a consequence of the 𝑓 -electrons “dropping out” or

“localizing”, this interpretation is not obvious in bond fermion theory, as we do not have a

direct measure for the degree of “localization”. However, there are other ways to judge the

influence of correlations (and thus the 𝑓 -electrons) on the quasiparticle properties. First

is the larger band mass at the Fermi surface in the AFI phase, as this indicates an effective

hybridization with the localized 𝑓 -electrons. Further, the large Fermi surfaces phases also

feature “heavy fermions” in the Fermi liquid sense. We can measure this by calculating

the discontinuity in the conduction electron occupation𝐺 (k) at the Fermi surface
2

, which

corresponds to the quasiparticle residue (usually called 𝑍 , but we will refer to it as Δ𝐺
to avoid confusion with the related Gutzwiller matrix) and is a measure for the mass

enhancement due to correlations (𝑚
∗ ∝ 1/Δ𝐺). From Fig. 3.4, it is apparent that the AFII-

AFI transition is accompanied by a stark change in the quasiparticle residue from almost

free (Δ𝐺 ≈ 0.8) to strongly renormalized (Δ𝐺 ≈ 0.1). The large Fermi surface phases

thus would be classified as much more correlated, indicating an increased influence of

the 𝑓 -electrons on the dynamics of the conduction electrons.

Approaching half-filling, all three phases develop band gaps (Fig. 3.5). Aswas discussed

for pure paramagnetism in Sec. 2.6, a gap of order 𝑡 remains even at 𝐽 = 0. The addition of

antiferromagnetism does not change this: on the contrary, the gap is larger than it would

be for pure paramagnetism, since antiferromagnetism would lead to gap formation even

by itself. Speaking more quantitatively, the exact ground state energy of the 𝐽 = 0 system

is 𝐸
exact

= −16/𝜋2

𝑡 = −1.62𝑡 . Our result compares poorly with the variational energy

2

𝐺 (k) is defined as in Sec. 2.5.1, 𝐺 (k) = ⟨𝑐†k𝑐k⟩. For 𝐺
′
, the k-dependent part of 𝐺 , we have 𝐺

′ (k) =

⟨𝑣†k
√
𝑍𝑊

⊺
𝑊𝑣k

√
𝑍 ⟩

0
(compare this to the kinetic energy in (3.28)). Δ𝐺 , the size of the discontinuity at the

Fermi surface, can be calculated with either 𝐺 (k) or 𝐺 ′ (k), as they only differ by a constant.
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Figure 3.5: Band gap Δ at half-filling. The kinks correspond to the AFII-AFI and AFI-P

phase transitions; for 𝐽 ≫ 𝑡 (not shown) we get Δ → 3

2
𝐽 .

𝐸
var

= −1.08𝑡 . Reiterating a previous point, predictions should be interpreted as having

at best qualitative character in this parameter region.

Luckily, the region of antiferromagnetic phase transitions is found atmoderate 𝐽 , where

our approximations are easier to justify. At half-filling, the critical value for the transi-

tion to magnetic order is 𝐽𝑐 = 1.85𝑡 , which is a lot closer to the quantum Monte Carlo

(QMC) value of 𝐽𝑐 = 1.45𝑡 ± 0.05𝑡 [9] than the original bond fermion prediction (using

the “ad-hoc” method for the constraint) of 𝐽𝑐 = 2.3𝑡 [33]. The QMC result is considered

to be exact, in the sense that the bound ±0.05𝑡 estimates all sources of error (for QMC,

these are statistical fluctuations and the extrapolation to an infinite system). To compare,

the variational Monte Carlo of Watanabe and Ogata gives a value of 𝐽𝑐 = 1.7𝑡 [111]. In

our view, this value represents something of a “gold standard” for calculations that do

not explicitly include long-range fluctuations (the wave function of Watanabe and Ogata

consists of an uncorrelated state multiplied by a purely local projection operator). From

this standpoint, the accuracy of the bond fermion prediction for 𝐽𝑐 appears adequate. Dy-

namical mean-field theory gives 𝐽𝑐 = 2.2𝑡 [93], and the dynamical cluster approximation

𝐽𝑐 = 2.1𝑡 [77].

A mean-field description gives the critical value as 𝐽𝑐 = 0.4𝑊 = 3.2𝑡 (𝑊 = 8𝑡 is the

free bandwidth) [27]. The underlying reason for this significantly larger value is that the

Kondo singlet is by nature correlated, i.e. it cannot be written as a Slater determinant.

For example, for 𝐽 ≫ 𝑡 , the correct expression for the energy per site is −3

4
𝐽 , while

the mean-field result is −3

8
𝐽 . This means that mean-field theory is biased against Kondo

screening (and in turn biased towardsmagnetic fluctuations). However, mean-field theory

does reproduce the correct behavior for 𝐽 = 0. It is thus accurate in the opposite limit as

bond fermion theory, with a crossover in the ground state energy somewhere in between.

The bond fermion theory of Jurecka and Brenig [53] deserves special consideration, we

will discuss it in Sec. 3.2.3; before this, we will discuss some interesting phenomena that

appear for 𝑛𝑐 = 1.
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Figure 3.6: (Signed) width of the valence band 𝐷 = 𝐸
v
(0, 0) − 𝐸

v
(𝜋/2, 𝜋/2), where 𝐸

v
(k)

is the band energy of the second-lowest (valence) band. |𝐷 | is the width of

the band, and the sign determines the phase (𝐷 > 0 is AFI and 𝐷 < 0 AFII).

Note that 𝐷 = 0 at the transition for 𝑛𝑐 = 1; the density of states 𝜌 ∼ 1/𝐷
thus diverges. For 𝑛𝑐 = 0.9 the density of states does not diverge, but there

are metastable states with very small |𝐷 | (dashed). The kinks in the graphs at

larger 𝐽 correspond to the AFI-P transition.

3.2.2 Special features at half-filling

An interesting property of the phase diagram is that the AFII-AFI transition in a sense

exists even at half-filling. There are no Fermi surfaces due to the gap, but the change in

the band structure can still be detected. A “peak” in the valence band at the 𝜖k = 0 line

(which contains (𝜋/2, 𝜋/2) for example) flips and turns into a “trough”. Away from half-

filling, this is accompanied by the aforementioned discontinuous change in Fermi surface

(Lifshitz transition). While there is no Lifshitz transition at half-filling, the change in band

structure still occurs. In this sense, half-filling is “smoothly connected” to the doped case,

as on each side of the AFII-AFII transition the chemical potential simply wanders into the

gap when approaching half-filling.

A further consequence of the gap is that the AFII-AFI transition itself is also smooth at

half-filling: In the doped regime, there is a jump in |t| because of the Lifshitz transition.
With a gap, the flipping of the band structure can happen continuously, without a jump

in |t|. Even more dramatically, at the critical point 𝐽𝑐,2 = 1.04𝑡 (when the maximum turns

into a minimum), the whole band is perfectly flat (bottom right in Fig. 3.3 (b)). Intuitively,

we can imagine moving an infinitesimal distance away from half-filling. On either side

of the transition the Fermi surface is locked to either the red or the blue lines in Fig. 3.3

(a), so for a continuous phase transition the surface must be ill-defined at 𝐽𝑐,2. Exactly

this happens for the flat band. A rigorous mathematical treatment is found below in Sec.

3.2.2.1.

This should not be confused with a complete decoupling of the 𝑐- and 𝑓 -electrons (as

appears for example in mean-field calculations at small 𝐽 [27]). In our ansatz, localized

and delocalized electrons have some degree of coupling no matter the phase, and the flat

band arises at the critical point between two such phases.
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3.2 Antiferromagnetic phase diagram

It is to be emphasized that this leads to a divergent density of states and band mass at

the transition point (note that Δ𝐺 remains finite and nonzero). While the square lattice is

pathological in the sense that even in the free system the density of states diverges at zero

energy, this is “only” logarithmic (a consequence of the saddle point of 𝜖k for k = (0, 𝜋) and
similar points), while in our case the two bands around the gap are each compressed into

zero-width slivers. In fact, the symmetries that lead to the flat band (most significantly

that 𝜖k = −𝜖k+Q) are also present in the nonpathological three-dimensional cubic lattice,

so we expect a similar situation to occur there also.

At finite doping the band becomes narrower close to the transition, but a perfectly

flat band is not realized. Instead, the density of states increases when approaching the

transition from either side, but does not diverge (Fig. 3.6). Around the critical point there

is a coexistence region with two separate local minima in the energy, corresponding to

each of the antiferromagnetic phases. One of these minima is only metastable, and the

transition is the point where their energies cross. As shown in the figure, the valence band

becomes very narrow in both the metastable regions, but the transition occurs before

a flat band is realized. We speculate that even at finite doping, inclusion of long-range

fluctuationsmaymove the phase transition closer towards these regions, as a large density

would enhance them. As discussed in Sec. 3.4, some heavy fermion magnetic transitions

show a significant (possibly divergent) mass enhancement near the phase transition; the

“band flattening” mechanism we find may be a candidate to explain this phenomenon.

3.2.2.1 Mathematical details of the flat band

As mentioned before, we have 𝜖k+Q = −𝜖k in (3.23). From (3.25) one gets the effective 4×4

band structure Hamiltonian

𝐻k = ℎ + 𝜖k ^, (3.29)

^ =
√
𝑍𝑊

⊺

(
1 0

0 −1

)
𝑊

√
𝑍 . (3.30)

The matrices ℎ and ^ are functions of the Gutzwiller parameters

√
𝑍 and𝑚 obtained from

solving the self-consistency equations, and the value of |t| from the minimization. As

such, they are implicitly functions of 𝐽 . Note that they do not depend on k, and the only

momentum dependence is in 𝜖k.

The band energies are the eigenvalues of 𝐻k. At 𝐽𝑐,2 = 1.04𝑡 , one finds that one pair

of eigenvalues is constant, meaning independent of 𝜖k. However, an explicit numerical

calculation shows that ℎ and ^ neither commute nor anticommute (in fact, ℎ^ ± ^ℎ both

have full rank). From this one can infer that there is no k-independent transformation to

block-diagonalize𝐻k. This illustrates why the flat band does not correspond to a physical

symmetry: the symmetry operation involves both a translation in k-space as well as a

rotation in the abstract bond fermion space.
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3 Implementation for the square lattice

To give some mathematical insight into the circumstances required for the flat band,

we calculate the eigenvalues 𝐸
∗
as the roots of the characteristic polynomial 𝑝 (𝐸). We

can infer the form (abbreviating 𝜖k as 𝜖)

𝑝 (𝐸) = det(𝐸 − 𝐻k) (3.31)

= det(𝐸 − ℎ − 𝜖^) (3.32)

=
∑︁

0≤𝑖+ 𝑗≤4
𝑐𝑖 𝑗 (ℎ, ^)𝐸𝑖𝜖 𝑗 . (3.33)

Since the characteristic polynomial of a 𝑁 × 𝑁 matrix is a polynomial in its entries (of

total degree 𝑁 ), we can write 𝑝 (𝐸) as a degree four polynomial in 𝐸 and 𝜖 . For a flat band,

this polynomial should have a root (as a function of 𝐸) whose value is independent of 𝜖 .

It is clear that this can only be true for a quite special class of polynomials, and our task

is to show that the symmetries of the system appropriately constrain the parameters 𝑐𝑖 𝑗 .

Specifically, we will demonstrate that the band flattening can be achieved by tuning our

final free parameter 𝐽 .

The particle-hole symmetry implies that the roots 𝐸
∗
of 𝑝 (𝐸) are symmetric about zero,

which implies that only terms even in 𝐸 appear. Further, from the derivation in Sec. 3.1

one can see that flipping the sign of 𝜖 (or rather exchanging k ↔ k + Q) is the same

as flipping spin-up and spin-down, which should not have any effect as the magnetic

moments are located in the 𝑥-𝑦-plane. As a result, 𝑝 (𝐸) must also be even in 𝜖 . Thus

𝑐𝑖 𝑗 ≠ 0 only if 𝑖 and 𝑗 are both even.

To proceed further, we consider the limits 𝜖 = 0 and 𝜖 → ∞. They respectively yield∑︁
0≤𝑖≤4

𝑐𝑖0(ℎ, ^)𝐸𝑖 = det(𝐸 − ℎ), (3.34)

𝑐
04
(ℎ, ^) = det(^) = 0. (3.35)

The second equality in (3.35) follows from (3.30): ^ is a 4 × 4 matrix, but its definition

also includes the 2 × 4 matrix𝑊 . If we take a (four dimensional) vector 𝑣 so that

√
𝑍𝑣 is

orthogonal to both vectors corresponding to the two rows of𝑊 , we have ^𝑣 = 0. Thus, ^

must be singular.

Putting these things together we get

𝑝 (𝐸) = det(𝐸 − ℎ) + 𝑐
02
𝜖
2 + 𝑐

22
𝐸
2

𝜖
2

. (3.36)

We now set 𝐸 to one of the eigenvalues of ℎ, 𝐸
∗(ℎ). This results in

𝑝 (𝐸∗(ℎ)) = 𝜖2
(
𝑐
02
+ 𝑐

22
𝐸
∗(ℎ)2

)
(3.37)

= 𝜖
2

𝑓 (𝐽 ). (3.38)

If we can tune 𝐽 so that 𝑓 (𝐽 ) vanishes, the right side will be identically zero. Thus, 𝐸∗(ℎ) is
a root of the characteristic polynomial independent of 𝜖 and forms a flat band. Of course,

if and where such roots occur depends on 𝑐
02
and 𝑐

22
, which are complicated functions of

𝐽 . In our calculation we have one root at 𝐽 = 1.04𝑡 , the transition point from AFII to AFI.

Summarizing, the following conditions facilitate the existence of the flat band:
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Figure 3.7: Band structure calculated using the method of Jurecka and Brenig, 𝐽 = 1.1𝑡

(the antiferromagnetic phase). Note that the band crossing at (𝜋/2, 𝜋/2).

• The effective Hamiltonian is only four-dimensional.

• Particle-hole symmetry reduces the number of independent eigenvalues.

• The kinetic energy matrix ^ has a zero mode.

3.2.3 Antiferromagnetism in the Jurecka-Brenig theory

Jurecka and Brenig applied their technique (described in Sec. 2.5.2) to the square lattice at

half-filling, yielding a critical interaction strength 𝐽𝑐 = 1.5𝑡 (very close to the QMC result)

[53]. We have repeated their calculation and extended it to the doped case: as described in

Sec. 2.5.2, this corresponds to modifying the definition of

√
𝑍 . Further, we also mentioned

that they ignored local pairing terms ⟨𝑎R𝜎𝑏R�̃�⟩0, etc., whereas in the Gutzwiller approx-

imation they are explicitly set to zero using the Lagrange multiplier matrix Λ (which

needs to be solved for). We can simulate their calculation by, instead of solving for Λ as

for the Gutzwiller approximation, simply dropping Λ altogether (or equivalently, fixing

Λ = 0). This corresponds to minimizing the variational energy without any restrictions

on ⟨𝑎R𝜎𝑏R�̃�⟩0, etc. For completeness, we have also tried the “hybrid” approach of using√
𝑍 as in the Jurecka-Brenig calculation, but Λ as in the Gutzwiller approximation.

The most striking difference to the Gutzwiller approximation is that there is no indi-

cation of the small Fermi surface (AFII) phase, as a large Fermi surface state is found for

any interaction strength. Let us first discuss the calculation with Λ = 0.

The underlying reason for the lack of a phase transition was, in fact, already mentioned

by Jurecka and Brenig themselves. Looking at the band structure in the antiferromagnetic

phase (Fig. 3.7), one notices that the lower (upper) bands touch each other at (𝜋/2, 𝜋/2).
This should be compared with Fig. 3.3 (b), where the AFI phase shows a clear gap between

the bands. The discrepancy exists because in the Jurecka-Brenigmethod the antiferromag-

netic scattering in the effective Hamiltonian is also proportional to 𝜖k. For (𝜋/2, 𝜋/2), we
have 𝜖k = 0, so the bands do not repel. Accordingly, the mechanism of the band minimum

at (𝜋/2, 𝜋/2) turning into a maximum is also impossible, and the AFII phase cannot be

obtained.
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Figure 3.8: Same as Fig. 3.1, but for 𝑡
′
= −0.4𝑡 .

Since the magnetic vector points in the 𝑥-direction, antiferromagnetic scattering terms

are precisely the spin-flip terms in the effective Hamiltonian. In (3.25), such terms ap-

pear as the off-diagonal terms of𝑚 and in Λ, which result in a band coupling (and thus

repulsion) independent of k. Of these,𝑚 is numerically much more important, as it cor-

responds to scattering that conserves the bond fermion number, while Λ corresponds to

creation or annihilation of bond fermions (which is suppressed by the excitation gap). The

Jurecka-Brenig theory in contrast has a diagonal𝑚, as

√
𝑍 is proportional to the identity

matrix.

Choosing the “hybrid” option (meaning, adding Λ) results only in a very small cor-

rection to the band structure. This is too little to induce the Lifshitz transition. It also

changes the position of the critical point to 𝐽𝑐 = 1.3𝑡 , less accurate the previous result.

The Gutzwiller approximation thus seems more in line with other numerical calculations

(which also found a Lifshitz transition in the antiferromagnetic phase).

3.2.4 Next-nearest neighbor hopping

Wewill now also briefly discuss the 𝑡
′
≠ 0 case. The phase diagram is qualitatively similar,

although the antiferromagnetic regions become smaller (Fig. 3.8). Especially the size of

the AFII phase is reduced, which can be interpreted as a consequence of the decreased

nesting in the free band structure. The two magnetic phases can again be recognized

by their qualitatively differing Fermi surfaces (Fig. 3.9). However, since the lattice is no

longer bipartite and particle-hole symmetry is broken, one can no longer directly identify

the Fermi surfaces with those of a free system. 𝜖k and 𝜖k+Q are essentially independent

quantities and act as two different k-dependent parameters in the effective Hamiltonian,

so the hole pockets do not have to follow lines of constant 𝜖k. The AFII Fermi surface

is no longer ring-like surrounding the center of the Brillouin zone, but instead consists

of disconnected hole pockets at (𝜋/2, 𝜋/2) and symmetrically equivalent positions. Still,

the AFI-AFII transition is similar to before, as the maximum near (𝜋/2, 𝜋/2) flips around
at the transition. One must note that due to the reduced symmetry, the conduction band
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Figure 3.9: Fermi surface and band structures for 𝑡
′
= −0.4.

(a) Fermi surfaces for AFI (𝐽 = 0.5𝑡 , red) and AFII (𝐽 = 0.62𝑡 , blue), with 𝑛𝑐 = 0.9.

Unlike for 𝑡
′
= 0, the Fermi surfaces cannot be identified with those of a free

system.

(b) Band structures for 𝑛𝑐 = 1. From left to right and top to bottom, we have 𝐽 =

1.62𝑡 (P, the dashed line is the free band structure for comparison), 𝐽 = 1.3𝑡 (AFI),

𝐽 = 0.5𝑡 (AFII), and 𝐽 = 0.82𝑡 (critical point).
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Figure 3.10: Phase diagram with incommensurate and ferromagnetic phases. The dashed

line indicates a second-order transition, all other transitions are discontinu-

ous. Explanations of each phase can be found in the main text.

no longer becomes globally flat at the critical point, but there remains a line of almost

dispersionless excitations along the diagonal of the Brillouin zone (Fig. 3.9 (b)). The

density of states will thus still drastically increase near the transition point.

3.3 Ferromagnetic and incommensurate phases

We now turn our attention to the more general case of arbitrary Q. This includes the an-
tiferromagnetic phases that were already discussed, but also ferromagnetism (Q = (0, 0))
and more general spiral order. It turns out that all phases except AFI are unstable against

such non-Néel ordering. The resulting phase diagram is pictured in Fig. 3.10. Notably,

the paramagnetic phase is replaced by ferromagnetism (F). The other major change is in

the area previously occupied by the small Fermi surface AFII phase, which is replaced by

a sequence of phases with non-trivial Q:

• ID: incommensurate phasewith awave vector lying along a diagonal of the Brillouin
zone, Q = (𝑞, 𝑞)

• IE: incommensurate phase with a wave vector lying along an edge of the Brillouin
zone, Q = (𝑞, 𝜋)

• S: commensurate phase with stripe magnetic order along a coordinate axis, Q =

(0, 𝜋)

Pure antiferromagnetism remains only at half-filling, and in the AFI phase. More gener-

ally, the situation at half-filling is completely unchanged, and the two critical interaction

values have the same values as before.
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Figure 3.11: Band structure in the ferromagnetic (F) phase with 𝑛𝑐 = 0.9 and 𝐽 = 2.02𝑡 .

Dashing indicates the quasiparticle spin of each band.

We will now discuss possible explanations for the appearance of each of these phases,

beginning with the F phase. Close to half-filling, the band structure is qualitatively iden-

tical to the paramagnetic phase, except for a splitting of the bands (Fig. 3.11). In fact, the

splitting is always strong enough to completely polarize the Fermi surface, resulting in

one conducting and one insulating band. This type of “spin-selective” Kondo insulator

has previously been proposed by Peters et al. in both infinite dimensions [95] and in one

dimension [92] (in this case, perturbatory expansion in 𝑡/𝐽 leads to a rigorous proof of

ferromagnetism in the 𝐽 → ∞ limit [103]). The same phase was also found in two dimen-

sions [27, 94]. Further details of this ferromagnetic phase will be discussed in Chapter

4.

The results of these studies differ from ours in that ferromagnetism is only present at

low conduction electron concentration𝑛𝑐 ≲ 0.5, whereas in our calculation polarization is

present at arbitrarily small doping. From a purely mathematical standpoint, it seems that

the F phase is caused by a Stoner-likemechanism aided by the large density of states of the

very heavy conduction band. A small ferromagnetic admixture to the triplet background

is only weakly punished by the Kondo interaction, but increases hopping processes for

the polarized bond fermions. Furthermore, the number of hard-core collisions is reduced

by a polarization of the conduction bands. Only at quite large 𝐽 ∼ 8𝑡 does the Kondo

interaction win out and the system becomes paramagnetic.

While this ferromagnetic phase at small doping seems unphysical to us, we can very

roughly judge how “far off” we are from the more likely paramagnetic solution. For this

we turn to previous dynamical cluster approximation (DCA) [15] and Gutzwiller approx-

imation [68] studies, where the model was investigated with an applied magnetic field.

In both cases, the calculated magnetization profile was qualitatively similar (Fig. 3.12):

with increasing 𝐵-field the magnetization quickly saturates (we call this field 𝐵𝑠 ), with a

metamagnetic transition at larger field strength. The ferromagnetic phase we have found

corresponds to the saturated region. While quantitative comparisons are difficult, the

figures in the references indicate that the magnetic field needed for saturation is quite

small: In the DCA calculation, which has 𝑛𝑐 = 0.9, 𝐽 = 1.3𝑡 , and a ratio of Landé fac-

tors 𝑔𝑓 /𝑔𝑐 = 4, the magnetization saturates at 𝐵𝑠 ≈ 0.002𝑡 . In the Gutzwiller calculation,
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Figure 3.12: Magnetization as a function of an external magnetic field found by (a) Bercx et

al. using DCA for two different temperatures [15], and (b) Lanatà et al. using

Gutzwiller approximation [68]. The results are not directly comparable (see

the text for more information), but a “saturated” plateau is visible in both

graphs.

which has 𝑛𝑐 = 0.88, 𝐽 = 0.45𝐷 (where 𝐷 is the half-bandwidth, in our case 4𝑡 ), and

equal Landé factors 𝑔𝑓 = 𝑔𝑐 , 𝐵 = 0.01𝐷 is already in the saturated region. We take these

small values of the magnetic field needed for full polarization as a sign that even at low

doping the Kondo lattice is energetically quite close to the fully polarized ferromagnetic

state; however, triplet fluctuations (which we do not take into account) should destroy

ferromagnetism near half-filling. A closer discussion of the effect an external field has on

the system (and of the metamagnetic transition) is found in Chapter 4.

We now turn to the incommensurate phases. Doping away from half-filling with 𝐽 <

𝐽𝑐,2, Q smoothly moves away from the Néel vector (𝜋, 𝜋), towards the origin along the

diagonal of the Brillouin zone (Fig. 3.13). This forms the ID phase. For 𝐽 ≳ 0.6𝑡 , further

doping leads directly to a phase transition to F. In the case of small 𝐽 , one instead first

finds another incommensurate phase of different symmetry, where Q jumps towards the

edge of the Brillouin zone (IE). From there, the system transitions smoothly to a commen-

surate phase of the form Q = (0, 𝜋): the magnetic moments are laid out in alternating

stripes with inequivalent 𝑥- and 𝑦-axes (S).

We can compare these results to themean-field calculations of Costa et al. [27] and Pankra-

tova et al. [91], which should be reasonably accurate for small 𝐽 . While Costa et al. allow

for 𝑐-𝑓 hybridization, this is only relevant in phases featuring Kondo screening. In our re-

gion of interest, their calculation is equivalent to that of Pankratova et al., except that the

latter allow for phase separation. As we have not investigated phase separation ourselves,

we will focus on the results of Costa et al.

The bond fermion and mean-field phase diagrams are similar to a point, as the mean-

field theory also predicts two different kinds of antiferromagnetism and stripe magnetism.

However, there are significant quantitative differences. For example, as Fig. 3.13 shows,

when fixing 𝐽 = 0.5𝑡 the crossover between the ID and IE phases occurs near 𝑛𝑐 = 0.76 in

our calculation. For Costa et al., the transition always occurs for 𝑛𝑐 > 0.9 even at larger

𝐽 = 2.4𝑡 .
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Figure 3.13: Evolution of the optimalQ for fixed 𝐽 = 0.5𝑡 at varying doping. Q is restricted

either to the diagonal (ID, Q = (𝑞, 𝑞)) or the edge (IE, Q = (𝑞, 𝜋)) of the
Brillouin zone. The vertical line signifies the phase transition between ID

and IE: on the right side, (𝑞, 𝑞) has lower energy, to the left it is (𝑞, 𝜋). For
𝑞 = 0 or 𝑞 = 𝜋 , we have commensurate magnetic order.

Similar to how the diagonal parts of the Gutzwiller matrix 𝑚 cause a gap to remain

even for 𝐽 = 0, they here also “amplify” 𝐽 (compare 𝜖
eff

in Sec. 2.6). Thus, the choice

of Q still influences the strength of the hopping (and the variational energy) even for

a very small or vanishing 𝐽 , which is unphysical. From this standpoint it may actually

be a positive surprise that, even in the region where the bond fermion wave function is

not an appropriate ansatz, our phase diagram is still comparable to the mean-field result.

However, we must assume that the ID phase is in truth confined to a much smaller region

that in our phase diagram, the IE phase growing larger in turn. For another opinion, one

can consult the DMFT results of Peters and Kawakami [94]. While they did not investigate

incommensurate order, they also support the existence of a striped magnetic phase near

𝑛𝑐 = 0.5.

3.4 Discussion and comparison to experiments

In summary, the bond fermion theory generally performed according to expectations.

Restricted to antiferromagnetism, we find both a magnetic transition and a transition be-

tween small and large Fermi surface phases. The Gutzwiller approximation improved

results compared to the previous bond fermion calculations, and leads to the novel pre-

diction of a divergent band mass at the critical point 𝐽𝑐,2 and half-filling. Other features

like the quasiparticle pole can also be calculated and show expected behavior.

For general ordering vectors, some problems appear. While quantitative inaccuracies

at small interaction may be excused by the strong-coupling nature of the ansatz, we also

find a likely unphysical ferromagnetic region at larger 𝐽 . We will discuss ferromagnetic

polarization more in depth in the next chapter. Before this, however, we will give a small

overview over possible connections to experimental results for heavy fermion systems.

While the Kondo lattice model is generally seen as providing a good description of basic

heavy fermion physics, it is clear that such simple and abstract model will not adequately
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Figure 3.14: Measurements for CeRhIn
5
under pressure by Shishido et al. [102]. Shown

are (a) de Haas-van Alphen frequencies and (b) mass enhancement based on

the cyclotron resonance, for selected Fermi surfaces (𝛽 and 𝛼
2,3 to the left of

the transition and 𝛼
2
to the right).

describe a real material. Nevertheless, there are some compounds that seem to relate quite

directly to model calculations like ours, which we will summarize here.

A chief example isCeRh
1−𝑥Co𝑥 In5, which shows some striking similarities to the Kondo

lattice model phase diagram obtained above [39]. Ignoring its superconducting phase, the

compound is incommensurately ordered at 𝑥 = 0. Doping first leads to a transition to a

commensurate antiferromagnetic phase with a reconstructed Fermi surface, and then to

a paramagnetic phase. Fermi surface imaging suggests that the incommensurate phase

has a small Fermi surface, while the commensurate phase has a large one. reconstruction

they should be included in the Fermi surface volume. Superficially, this mirrors multiple

aspects of our phase diagram, as we can find analogues of these phases in our calculations.

The incommensurate phase would correspond to either IE or ID (which both have a small

Fermi surface) and the commensurate one to the AFI phase (large Fermi surface). If we

start out in IE/ID and assume Co-doping to be equivalent to increasing 𝐽/𝑡 , we have a

similar sequence of phase transitions to the experiment. At the first transition the Fermi

surface is reconstructed to include the 𝑓 -electrons, and the ordering vector becomes com-

mensurate. Magnetic order as a whole vanishes later, at a second transition.

Of course, the analogy is imperfect. The real material is three-dimensional and strongly

anisotropic, with a quasi-layered HoCoGa
5
structure [46]: instead of in-plane spiral or-

der as in our two-dimensional description, the incommensurability is in the out-of-plane

direction with a wave vector Q = (𝜋/𝑎, 𝜋/𝑎, 𝑞/𝑐). Further, unlike our calculation, no sign
of a significant narrowing of the bands was found near the transition.

If one instead takes pure CeRhIn
5
and applies pressure, one gets a direct transition

from incommensurate antiferromagnetism to paramagnetism [102], with no intermediate

commensurate state. According to our calculation this is also possible in the Kondo lattice,

albeit only at lower electron densities. Results from de Haas-van Alphen and cyclotron

resonance measurements are shown in Fig. 3.14. What is particularly interesting here

is that while the de Haas-van Alphen frequencies (Fig. 3.14 (a)) of each band seem to

be almost constant on each side of the transition (indicating that the Fermi surface does
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not change much), some of the effective masses seem to diverge (Fig. 3.14 (b)). This is

unlike the doping-induced transition, and fits with our observation that the Fermi surface

reconstruction is associated with a significant flattening of the valence band near the

transition. A similar pressure-induced transition was observed in CeRh
2
Si

2
as well [8],

also featuring the mass enhancement.

A different, much-studied example for incommensurate magnetic order is given by the

systemCeCu
2
(Si

1−𝑥Ge𝑥 )2 [58, 59, 87, 105]. This compound has the layered ThCr
2
Si

2
struc-

ture and the Fermi surface takes the form of warped cylinders [105] so that a description

by a planar model may be reasonable. This system shows incommensurate magnetic or-

der with an ordering vector close toQ = (𝜋/2𝑎, 𝜋/2𝑎, 𝜋/𝑐), whereby the ordered moment

forms a spiral in the plane perpendicular to Q [59]. It has to be noted, however, that

in CeCu
2
Si

2
the ordering vector has been shown [105] to correspond to a nesting vec-

tor of the heavy quasiparticle Fermi surface obtained for the paramagnetic phase by the

renormalized band structure method. In this picture the antiferromagnetic phase would

correspond to a spin-density-like instability of the large Fermi surface, that is the AFI

phase in the present theory. This interpretation would therefore not be consistent with

the present theory, where the incommensurate phase replaces the AFII phase.
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4 Effect of a magnetic field

Inspired by the results of the previous chapter, we will try to understand the effect of

an externally applied magnetic field B on the phase diagram of the system. As the bond

fermion method predicts a saturated ferromagnetic state even without a magnetic field,

some limitations exist. For example, we cannot describe the transition to the saturated

region, or give an estimate of the magnetic field 𝐵𝑠 required to reach it (in this sense we

have 𝐵𝑠 = 0, while the references have 𝐵𝑠 > 0). However, this does not a priori imply

that we cannot describe the saturated region itself or the behavior of the system at much

larger field strengths. In this parameter region we can also investigate the interplay of

antiferromagnetism and ferromagnetic polarization.

4.1 Calculation

To stay within the mathematical description of the investigation so far, we apply the mag-

netic field out-of-plane in the 𝑧-direction. This implies that we should allow a (spatially

constant) triplet component 𝑡𝑧 in our ansatz for the wave function, in addition to the

in-plane antiferromagnetism of the previous sections. As a vector in the 𝑧-direction is

unaffected by the transformation in Sec. 3.1, the ansatz reads

B = 𝐵𝑒𝑧, (4.1)

t = 𝑡𝑥𝑒𝑥 + 𝑡𝑧𝑒𝑧, (4.2)

𝑠 =

√︃
1 − 𝑡2𝑥 − 𝑡2𝑧 . (4.3)

In the original (laboratory) system, this corresponds to a canted ordering vector that is con-
stant out-of-plane and rotating in-plane. For simplicity, we restrict ourselves to in-plane

Néel order (Q = (𝜋, 𝜋)). A purely ferromagnetic phase in this formulation corresponds

to 𝑡𝑥 = 0 (unlike the previous section, the ferromagnetic polarization is out-of-plane and

parallel to the magnetic field).

Other choices for the ordering vector are possible. For example, one might include an

oscillating component in the 𝑧-direction (possibly even setting 𝑡𝑥 = 0, corresponding to

ferrimagnetic ordering). This would however have the side effect of charge disproportion-
ation, as different sites cannot be related through a symmetry transformation. Reflecting

this, the canonical transformation to the primed system cannot remove a fluctuation in

𝑡𝑧 , so the calculation would have to explicitly introduce multiple sublattices. As we are

mostly interested in purely magnetic dynamics, we stick with (4.2).
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Figure 4.1:

(a–b) Net magnetization𝑚𝑧 and bond fermion parameter 𝑡𝑧 across the metamagnetic

transition, for 𝑛𝑐 = 0.9.

(c) Critical field 𝐵𝑐 .

(d) Critical interaction 𝐽𝑐,𝐵 (and the critical field 𝐵𝑐 at the critical interaction). For

𝐽 > 𝐽𝑐,𝐵 , the metamagnetic transition is continuous. The dashed lines are linear

fits, 𝐽𝑐,𝐵/𝑡 ≈ 2.62 − 5.54𝛿 and 𝐵𝑐 (𝐽𝑐,𝐵)/𝑡 ≈ 2.50 − 5.50𝛿 with 𝛿 = 1 − 𝑛𝑐 .

To implement the calculation, only a few expressions of (3.25–3.28) have to be modified.

Of course, 𝑡𝑧 has to be included in𝑊 , see (2.179). The magnetic field B must be added to

the local part of the effective Hamiltonian, which now reads

ℎ = 𝑒 diag(−1,−1, 1, 1) − 𝐵

2

diag(−1, 1, 1,−1) − Λ −𝑚 − `. (4.4)

We used 𝐵 ≥ 0.2𝑡 for our calculation. In the regions of 𝐽 and 𝑛𝑐 we are interested in, this

should easily be strong enough for a completely polarized conduction band (no matter

whether the solution method is bond fermion theory, dynamical cluster approximation,

or anything else). Since we have fixed Q, the optimization parameters determining the

energy are now 𝑡𝑥 and 𝑡𝑧 , which are handled analogously to the previous chapter.
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4.2 Metamagnetism

4.2 Metamagnetism

Let us first fix 𝑡𝑥 = 0 (corresponding to a purely ferromagnetic phase) and apply an in-

creasing 𝐵, since this is the most commonly studied case in the literature. As mentioned

in the previous chapter (and demonstrated in Fig. 3.12), the usual result is that of a metam-

agnetic transition: At first, the magnetization remains constant (saturated) at small fields.

We call this phase FI, and it is equivalent to F in the previous section. Then, at a critical

value 𝐵𝑐 , there is a transition to a qualitatively different phase, which we refer to as FII.

However, the details of this transition in the Kondo lattice are not entirely clear: for ex-

ample, Bercx and Assaad (Fig. 3.12 (a)) find that the magnetization is continuous across

the transition, whereas Lanatà et al. (Fig. 3.12 (b)) show a curve with a clear jump.

We also reproduce the transition, but with a twist. Typical curves for the magnetization

𝑚𝑧 and the bond fermion parameter 𝑡𝑧 are show in Fig. 4.1 (a–b) (the negative sign of 𝑡𝑧 will

be discussed later), and indeed themagnetization is constant in the FI phasewith𝑚𝑧 = (1−
𝑛𝑐)/2 corresponding to the completely polarized band structure. The magnetization only

starts rising in the FII phase, with a transition at the critical field 𝐵𝑐 (shown in Fig. 4.1 (c)).

As one can see, 𝐵𝑐 increases with 𝐽 , but is only weakly dependent on𝑛𝑐 . What is striking is

that the metamagnetic transition in Fig. 4.1 (a–b) shows qualitatively different behavior

depending on 𝐽 : for smaller 𝐽 , there is a clear jump in the magnetization, whereas for

large 𝐽 no discontinuity is visible. We call this behavior selectively continuous; the critical
interaction strength below (above) which the transition is discontinous (continuous) is

called 𝐽𝑐,𝐵 and shown in Fig. 4.1 (d). The selectively continuous behavior suggests a simple

resolution to the literature controversy: it is possible that each of the literature results

gives a snapshot of the complete phase diagram, with Berckx and Assaad below 𝐽𝑐,𝐵 , and

Lanatà et al. above 𝐽𝑐,𝐵 .

Before we proceed further however, we do have to make some remarks on the numer-

ical procedure. Fig. 4.1 (d) shows some numerical noise, especially far away from half-

filling. This is because the real value of 𝐽𝑐,𝐵 is difficult to establish. The energy profile

as a function of 𝑡𝑧 is shown in Fig. 4.2 (a). (a1) shows that for 𝐽 < 𝐽𝑐,𝐵 we have a re-

gion in 𝐵 where two local minima 𝑡
∗
𝑧,1 (blue) and 𝑡

∗
𝑧,2 (red) coexist, the minima respectively

corresponding to FI and FII. The discontinuous transition takes place when the energies

of the minima cross. (a2) has 𝐽 > 𝐽𝑐,𝐵 and no coexistence region is found; instead, 𝑡
∗
𝑧,1

smoothly morphs into 𝑡
∗
𝑧,2 and there is no discontinuity. The numerical problems arise

because the minima in (a1) are both very shallow, and that 𝑡
∗
𝑧,2 (the minimum at large 𝑡𝑧)

moves very quickly as a function of 𝐵 (Fig. 4.1 (a–b) show square-root behavior above

the transition, so that 𝜕𝑡
∗
𝑧,2/𝜕𝐵 → ∞). For our calculation, we find 𝑡

∗
𝑧,1 by minimizing the

energy for 𝐵 ≪ 𝐵𝑐 (note that 𝑡
∗
𝑧,1 is constant); 𝑡

∗
𝑧,2 is traced by starting at 𝐵 ≫ 𝐵𝑐 and

then slowly lowering 𝐵, each time starting the optimization at the previous value of 𝑡
∗
𝑧,2.

Due to the divergence of 𝜕𝑡
∗
𝑧,2/𝜕𝐵, we continuously have to reduce the size of the steps

in 𝐵; the procedure is continued until we can no longer find a separate minimum (that is,

until the optimization returns 𝑡
∗
𝑧,2 = 𝑡

∗
𝑧,1 within a small tolerance). Results are shown in

Fig. 4.2 (b), where Δ𝑡𝑧 is the distance between the minima at 𝐵 = 𝐵𝑐 . Several “steps” are

visible, which are artifacts of the rather error-prone tracing procedure. We calculate 𝐽𝑐,𝐵
by fitting a (quadratic) polynomial to Δ𝑡𝑧 and extrapolating it to zero.
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Figure 4.2:

(a) Variational energy ⟨𝐻 ⟩(𝑡𝑧) for different magnetic fields. For low fields (𝐵 < 𝐵𝑐 )

the minimum’s position is constant (red dots), but then starts to shift (blue dots).

(a1) has 𝐽 < 𝐽𝑐,𝐵 , and there is a small range where two minima coexist (𝐵 =

1.4𝑡 ); the (discontinuous) metamagnetic transition corresponds to the energy

crossover between the minima.

(a2) has 𝐽 > 𝐽𝑐,𝐵 , where no coexistence region is detected; the minimum starts

moving continuously at the transition.

(b) Discontinuity Δ𝑡𝑧 at the transition. The shaded regions correspond to the posi-

tion of the 𝐽𝑐,𝐵 extrapolated from the (noisy) data.

While this method gives a smooth result at least for 𝑛𝑐 ≳ 0.85 (see Fig. 4.1 (d)), there is

certainly room for improvement. For example, by lowering the grid spacing and temper-

ature for our numerical integration (here 𝜋/50 and 0.005𝑡 , respectively) one may be able

to smooth out the curves in Fig. 4.2 (b) somewhat further, at the cost of significantly in-

creased processor time. However, we do not regard this as too critical and have relegated

it to future work: in the pathological region, the accuracy of the bond fermion calcula-
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tion will be inherently limited due to the neglect of fluctuations, no matter how well the

numerical procedure is carried out.

Let us now give a more thorough description of the metamagnetic transition from a

band structure perspective, starting with the continuous region (𝐽 > 𝐽𝑐,𝐵). The Fermi

surfaces and band structures are shown in Fig. 4.3. At small 𝐵 (FI phase, red line in Fig.

4.3 (a)), the Fermi surface resembles that of the paramagnetic, large Fermi surface from

before (compare the Fig. 3.3 (a)), with a single hole pocket at (𝜋, 𝜋). However, the diameter

of the hole pocket has increased as compared to the paramagnetic phase, as it now only

holds quasiparticles of one spin direction (spin-down, to be specific), the others having

wandered below the Fermi energy due to the magnetic polarization (the top two graphs

in Fig. 4.3 (b)). This behavior is the same as the F phase in Chapter 3. The magnetization

is saturated and the Fermi surface locked to a specific line of constant 𝜖k. This continues

until 𝐵 = 𝐵𝑐 , when the bottom of an electron band “breaks through the band gap” due to

the strongmagnetic field (bottom two graphs in Fig. 4.3 (b)), causing an electron pocket to

form around (0, 0). The metamagnetic transition is thus a Lifshitz transition. Increasing 𝐵

further expands both the old hole pocket and the new electron pocket. In the bond fermion

description, this corresponds to the generation of many spin-up 𝑎- and 𝑏-fermions, as

for large enough magnetic field this becomes favorable energetically. Accordingly, the

magnetization of the system also starts to rise again coincident with the Lifshitz transition,

leading to the metamagnetic behavior we saw in Fig. 4.1 (a–b). It should be noted that,

while both the Fermi surfaces still have to follow lines of constant 𝜖k inside the FII phase,

they are no longer “locked”: as the pocket around (0, 0) is an electron pocket, only the

difference in the volumes of both pockets must be constant.

In other words, the transition occurs when the magnetic field is large enough to over-

come the lowest excitation energy above the gap. Calling the energy of this band 𝐸Δ(k),
the minimum is at k = (0, 0), so that we have 𝐵𝑐 = 𝐸Δ(0, 0)1. This also explains why we

seem to have 𝐵𝑐 ∝ 𝐽 in Fig. 4.1 (c), as 𝐵𝑐 ∼ 𝐸Δ(0, 0) ∼ Δ ∝ 𝐽 .

The relation 𝐵𝑐 = 𝐸Δ(0, 0) breaks down at 𝐽𝑐,𝐵 , as one can see in Fig. 4.4 (a). This cor-

responds to the discontinuous region: at smaller 𝐽 , a significant deviation from a Kondo

singlet (i.e. a large 𝑡𝑧) is not punished as strongly by the Kondo interaction. This means

that the metamagnetic transition is energetically favorable even before 𝐵 = 𝐸Δ(0, 0); the
rest of the “effective field” needed to overcome the gap is provided by a spontaneous po-

larization of the system itself. As for the evolution of the Fermi surface for 𝐽 < 𝐽𝑐,𝐵 , it is

effectively the same as for 𝐽 > 𝐽𝑐,𝐵 , except that one jumps directly from the first to the

last graph in Fig. 4.3 (b): before the band around (0, 0) touches the Fermi surface, there is

a discontinuous transition to a Fermi pocket with finite size.

1

𝐸Δ (0, 0) should be computed for 𝐵 = 0, but 𝑡𝑧 at its saturated value. Note that for 𝑛𝑐 = 1, we get

𝐸Δ (0, 0) = Δ because 𝑡𝑧 = 0.
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Figure 4.3: Evolution of the Fermi surface across the metamagnetic transition, with 𝑛𝑐 =

0.9 and 𝐽 = 2.5𝑡 fixed and varying 0.5𝑡 ≤ 𝐵 ≤ 3.6𝑡 . See Fig. 4.1 (a) for the

corresponding magnetization𝑚𝑧 (𝐵).

(a) The Fermi surfaces for varying 𝐵. Solid (dashed) lines correspond to spin-down

hole (spin-up particle) surfaces. For 𝐵 ≤ 2.4𝑡 the system is in the FI phase with

only a hole pocket (red), above the critical value 𝐵𝑐 = 2.45𝑡 (𝐵 = 2.5𝑡, 2.6𝑡, 3.5𝑡 ) a

particle pocket gradually emerges around (0, 0). A free electron band structure

is shown in grey for comparison.

(b) The corresponding evolution of the band structures. The dashing again corre-

sponds to the quasiparticle spin. For 𝐵 = 0.5𝑡 the bands above and below the

gap are still well-separated, for 𝐵 = 2.4𝑡 they have almost touched (but the Fermi

surface has not actually changed yet, so the system is still FI). At 𝐵 = 2.5𝑡 a small

pocket forms (the metamagnetic transition), which then gradually grows in size

(𝐵 = 3.6𝑡 ).
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Figure 4.4:

(a) Difference between 𝐸Δ(0, 0), the lowest excitation above the gap, and 𝐵𝑐 . The

difference vanishes at 𝐽𝑐,𝐵 .

(b–c) Decomposition of the magnetization and electron density into individual contri-

butions across the metamagnetic transition, for 𝑛𝑐 = 0.9 and 𝐽 = 2.5𝑡 .

(d) Quasiparticle residue for 𝑛𝑐 = 0.9 and 𝐽 = 𝑡 < 𝐽𝑐,𝐵 . On the right side of the

transition there are two inequivalent Fermi surfaces, the full (dashed) line cor-

responds to the 𝑎- (𝑏-) like Fermi surface. The 𝑏-like surface vanishes at 𝐽𝑐,𝐵 .

Let us now take a closer look at how the magnetic polarization actually arises in the

bond fermion wave function. First, let us explain the sign of 𝑡𝑧 For this, one should look

back all the way to Sec. 2.2. As was noted there, for real tR, the background polarization

is exactly opposite for 𝑐- and 𝑓 -electrons and thus does not carry any net spin, no matter

the value of 𝑡𝑧 . Writing (2.2–2.5) out explicitly we have

|Ω⟩R =
(𝑠 + 𝑡𝑧)𝑐†R↑𝑓

†
R↓ + (𝑠 − 𝑡𝑧)𝑐†R↓𝑓

†
R↑√

2

|0⟩R . (4.5)

The effect of 𝑡𝑧 is only that it becomes easier or harder to generate bond fermions with

a given spin direction, which does result in a net spin. As the spin of a bond fermion

is physically carried by 𝑓 -electrons, we should choose 𝑡𝑧 in a way that the weight of

85



4 Effect of a magnetic field

background 𝑓 -electrons with spin-up is increased; from (4.5) we then get 𝑡𝑧 < 0. In

general, the magnetization of the system is roughly opposite to tR.

We can decompose the magnetization into its 𝑐- and 𝑓 -parts, see Fig. 4.4 (b)
2

. Thus, as

one can guess from (4.5), the spins of conduction and localized electrons point in opposite

directions because of 𝐽 . However, the conduction spin is reduced from its background

value by charge fluctuations, so a net magnetization remains. This effect is even stronger

in the FII phase, where conduction, spin, and net magnetization are significantly larger.

For a physical interpretation of the FII phase, it is helpful to decompose the spin even

further into the spin-dependent electron densities (Fig. 4.4 (c)). We see that inside the FI

phase, we have 𝑛
𝑓

↓ = 𝑛
𝑐
↑, a tell-tale sign of the spin-selective Kondo insulator of Peters et

al. [95]. This identity can be interpreted as a spin-dependent Kondo screening, as each

spin-down 𝑓 -electron is paired with a screening spin-up electron, while some spin-up

𝑓 -electrons remain unscreened. Earlier, we have associated such a screening breakdown

with two other features: A Fermi surface transition (from large to small) and an increase

in the quasiparticle residue Δ𝐺 . Both of these phenomena are also present here:

The large-small transition is not as clear-cut as before, but a connection to a free elec-

tron system can still be made. FI is easily interpreted as a large Fermi surface phase (the

free system having𝑛𝑐+1 electronswith completely polarized charge carriers, a half-metal).
For FII, one should think about what happens to a free system with 𝑛𝑐 electrons (gray line

in Fig. 4.3 (a)) if we add a magnetic field: the gray line will Zeeman-split in two and

come to resemble that of the FII Fermi surfaces. Curiously, the behavior with increasing

𝐵 is opposite to that of the Kondo lattice, as the distance between the spin-split Fermi

surfaces increases with 𝐵. In the Kondo lattice the distance decreases, as the breakdown
of screening causes the Fermi surface to resemble that of the free system more and more.

Finally, we do in fact find the expected transition in Δ𝐺 , see Fig. 4.4 (d): the FI phase is
more strongly correlated (has a smaller Δ𝐺) than the FII phase.

4.2.1 An alternative ansatz

Wewill end this section with a small digression. So far, we have tacitly accepted that the 𝑐-

and 𝑓 -spins should be opposed to each other because of the Kondo interaction. However,

in a magnetic field a parallel orientation of spins is quite natural. Should we then not also

allow admixture of such a state to the background? This was indeed the approach in Ref.

[110], where the background state was chosen as (in our notation, with Q = 0)

|Ω⟩R = 𝑠 |𝑆⟩R + |t| |↑↑⟩R , (4.6)

|↑↑⟩R = 𝑐
†
R↑𝑓

†
R↑ |0⟩R . (4.7)

2

Here we have 𝐽 > 𝐽𝑐,𝐵 ; 𝐽 < 𝐽𝑐,𝐵 is qualitatively the same, but with a jump instead of a continuous rise.
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While this is an obvious choice (|↑↑⟩R is the ground state for 𝐵 → ∞), in practice some

problems arise. Namely, |𝑆⟩R and |↑↑⟩R have different spin, so that the resulting state does
not conserve the 𝑧-spin. Indeed, comparing with (2.3), one finds that

|↑↑⟩R =
− |𝑇𝑥⟩R + 𝑖

��𝑇𝑦〉R√
2

, (4.8)

⇒ t =
|t|
√
2

(−𝑒𝑥 + 𝑖𝑒𝑦). (4.9)

(2.26–2.27) then give background expectation values of

⟨Ω |S𝑐R |Ω⟩R = −𝑠 |t|√
2

𝑒𝑥 +
|t|2

2

𝑒𝑧, (4.10)

⟨Ω |S𝑓R |Ω⟩R = +𝑠 |t|√
2

𝑒𝑥 +
|t|2

2

𝑒𝑧 . (4.11)

While the total background spin is parallel to the 𝑧-axis, both 𝑐- and 𝑓 -spin have sig-

nificant in-plane components (typically larger than the 𝑧-components, since these are

quadratic in t). As the 𝑐-spin is reduced by charge fluctuations and can be mostly ne-

glected, the final magnetization will point mostly along the 𝑥-axis. This also explains

why Ref. [110] found a decrease in |t| when turning on a magnetic field in the 𝑧-direction.

As with most issues in bond fermion calculations, the problem with ansatz (4.9) lies in

the neglect of fluctuations: in this case, the particular problem is phase fluctuations. (4.6)
has specified a particular phase relationship between |𝑆⟩R and |↑↑⟩R (specifically, that they
have the same phase). Multiplying |↑↑⟩R with a complex phase corresponds simply to a

𝑧-rotation (for example, multiplying by 𝑖 would result in polarization along the 𝑦-axis in

(4.10–4.11)). By fixing the phase, one has thus introduced an artificial breaking of the a
priori cylindrical symmetry of the problem.

The symmetric choice (t ∝ 𝑒𝑧) we made in our own calculation does not suffer from

these drawbacks. Furthermore, it also has the advantage that flipping 𝐵 → −𝐵 simply

results in 𝑡𝑧 → −𝑡𝑧 (whereas in (4.6) one needs to replace |↑↑⟩R by |↓↓⟩R), which is likely

to be advantageous for small-to-moderate values of 𝐵. Our choice of real 𝑡𝑧 does not

break any further symmetry, as from (2.27) it is apparent that choosing a different phase

influences ⟨𝑆 𝑓𝑧 ⟩ (with real 𝑡𝑧 giving the largest possible background value).

However, simply neglecting |↑↑⟩R is quite unsatisfactory, which again calls for further

research into a proper treatment of triplet fluctuations. If all phase fluctuations are treated

on even footing, the effect of fluctuations into |↑↑⟩R could be included while correctly

preserving the cylindrical symmetry.

4.3 Canted phase diagram

We now allow for both 𝑡𝑥 ≠ 0 and 𝑡𝑧 ≠ 0. We emphasize that we still have B ∝ 𝑒𝑧 ,

so that a finite 𝑡𝑥 (which corresponds to an in-plane antiferromagnetic polarization) is

entirely spontaneous. The resulting phase diagram for 𝐵 = 0.2𝑡 is shown in Fig. 4.5.
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Figure 4.5: The phase diagram for 𝐵 = 0.2𝑡 , taking into account canted and ferromagnetic

phases.

Due to the magnetic field, we find that 𝑡𝑧 is always nonzero. There are two types of

phases, depending on whether 𝑡𝑥 is zero or finite: The ferromagnetic phases (FI and FII)

have 𝑡𝑥 = 0 and have been discussed in the previous section; the canted phases (CI and

CII) have 𝑡𝑥 ≠ 0. The canted phases respectively are the analogues of the AFI and AFII

phases. The magnetic phase diagram is superficially similar to the nonmagnetic phase

diagram Fig. 3.1: roughly speaking, the paramagnetic region is replaced by FI and FII,

and the antiferromagnetic phases AFI and AFII are replaced by their canted equivalents.

However, this neglects some striking differences that have appeared due to the magnetic

field, which we will discuss now.

4.3.1 Softening of the heavy fermion transition

We start with the most significant difference. In Fig. 3.1, the phase transition between

AFI and AFII was discontinuous except at exactly half-filling. Meanwhile, in Fig. 4.5, the

dashed phase border implies that the CI-CII transition is continuous in a finite region

around half-filling. Only for 𝑛𝑐 ≲ 0.9 do we find a discontinuity across the transition, see

for example t in Fig. 4.6 (a). The size of the jump is shown in Fig. 4.6 (b): in the region

where the jump is zero, the transition corresponds only to a Lifshitz transition, with no

discontinuity in any other system parameters. We thus have again have a selectively

continuous transition, but this time between canted phases.

This behavior is quite unexpected: recall that for each of the AFI and AFII phases, the

Fermi surfaces were locked, so that a continuous transition could only happen at half-

filling (where there are no Fermi surfaces at all because of the gap). It turns out that

this argument does not apply to the canted phases CI and CII, as one can see from the

Fermi surfaces and band structures in Fig. 4.7: the Fermi surface is not locked throughout
the CII phase. Instead, for small 𝐽 it starts out near the original AFII Fermi surface, i.e.

near (𝜋/2, 𝜋/2), and then (for increasing 𝐽 ) “wanders” towards (0, 0). The transition to

CI then corresponds to the vanishing of one of the Fermi surfaces as the “ring” closes
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Figure 4.6:

(a) 𝑡𝑥 and 𝑡𝑧 for 𝑛𝑐 = 0.86 / 𝑛𝑐 = 0.97 and 𝐵 = 0.2𝑡 . (a1) shows two phase transitions:

A clear jump (dashed lines) between CII and CI, and then a continuous vanishing

of 𝑡𝑥 at larger 𝐽 (FI phase). In (a2), the transition between CII and CI only results

in a kink in the curves, without a discontinuity. Note that 𝑡𝑧 < 0 as before,

whereas the sign of 𝑡𝑥 is arbitrary.

(b) Size of the discontinuity |Δt| at the CI-CI transition. No discontinuity is detected
𝑛𝑐 ≥ 0.9. The AFI-AFII transition is shown for comparison; there, |Δt| only
vanishes for 𝑛𝑐 = 1.

around (0, 0) (inside the CI phase the Fermi surface is indeed locked). For 𝑛𝑐 > 0.9, the

wandering is continuous all the way through (the Fermi surface smoothly deforms with

𝐽 ); for 𝑛𝑐 < 0.9 the wandering is cut short (the Fermi surface smoothly deforms part of

the way towards (0, 0), but then suddenly jumps the rest of the way), which is associated

with the discontinuity in t. One should note that this is very similar in essence to the

selectively continuous metamagnetic transition of the previous section, but described in

reverse (for themetamagnetic transition, the “natural starting point” is the low-𝐵 FI phase,

whereas for the canted transition it is the low-𝐽 AFII phase).

The form and evolution of the Fermi surfaces requires some further explanation. First of

all, one notices that the canted Fermi surfaces are not symmetric when mirroring around
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Figure 4.7: Evolution of the Fermi surface across the CI-CII transition, with 𝑛𝑐 = 0.9 and

𝐵 = 0.2𝑡 fixed and varying 0.72𝑡 ≤ 𝐽 ≤ 1.2𝑡 (note that in Fig. 4.3 it was instead

𝐵 that was varying). The 𝑧-spin is not conserved, so we cannot unambiguously

identify bands as spin-up or spin-down.

(a) Fermi surfaces for varying 𝐽 . The system gradually evolves from a ring-like

structure in the CII phase (𝐽 = 0.72𝑡, 0.88𝑡 , blue and orange) to a single Fermi

pocket in the CI phase (𝐽 ≥ 1.0𝑡 ). The AFII band structure is shown in grey for

comparison. Note that only AFII is symmetric about the diagonal.

(b) Corresponding evolution of the band structures. The maximum of the va-

lence band, and thus the Fermi surface, gradually moves towards (0, 0) (𝐽 =

0.72𝑡, 0.88𝑡 ). After the transition to the CI phase (𝐽 = 1.0𝑡 ), the band structure

keeps changing but the position of the Fermi surface is constant (𝐽 = 1.2𝑡 ).
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Figure 4.8: Quasiparticle residues for the canted phases across the CII-CI transition, 𝑛𝑐 =

0.9 and 𝐵 = 0.2𝑡 . There are two inequivalent Fermi surfaces: The full (dashed)

line corresponds to the Fermi surface further from (closer to) (0, 0). The Fermi

surface closer to (0, 0) vanishes when the “ring” closes around (0, 0), see Fig.
4.7 (a).

the diagonal (𝜋, 0)–(0, 𝜋). This may seem impossible since, after all, we still have Néel-

like two-sublattice order, which usually implies exactly such a symmetry: actually, in a

description with two explicit sublattices, k and k+Q are the same point. However, we are
not using such a two-sublattice description, but instead use a canonically rotated system

with only one sublattice. Here, as we remarked in Sec. 3.2.2.1, the mirror symmetry

instead corresponds to a spin-flip symmetry: k and k+Q are different points, but they can
be related by flipping the 𝑧-spin. In a two-sublattice description, the momentum k would

include all the degrees of freedom which are in our description split over k and k + Q.
This is closer to the physical reality, but does not reflect the mathematical symmetries of

the system as well
3

.

The reason the AFI and AFII Fermi surfaces (Fig. 3.3 (a)) are still mirror-symmetric in

the canonically rotated system is that they are unaffected by a 𝑧-flip (the magnetization

was purely in-plane). We cannot transform AFI and AFII into each other without intro-

ducing another intermediate phase with different Fermi surface topology. However, with

the magnetic field, the 𝑧-flip symmetry (and with it mirror symmetry) is broken. This has

two direct consequences. First, the AFII Fermi surface, which was locked to the diagonal

as it had to obey the mirror symmetry, is now the CII Fermi surface, which is “mobile”.

Second, one of the AFI pockets is pushed below the Fermi energy (giving the CII Fermi

surface), as there is now a Zeeman-like energy difference between the bands at (0, 0) and
(𝜋, 𝜋). These two effects combined allow for a continuous transformation between CI

and CII.

This “softened” transition between CI and CII further demonstrates that, once a mag-

netic field is added, the distinction between large and small Fermi surface is looser than

before. Instead, the CII phase can smoothly go from large (with the Fermi surface near

(𝜋/2, 𝜋/2) to small (near (0, 0)). Equivalently, in the common parlance, the 𝑓 -electrons

3

In simpler words, to get to the physical Fermi surfaces (the ones that would be found by e.g. ARPES), an

antiferromagnetic partner should be added to each Fermi surface in Fig. 4.7 (a).
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Figure 4.9:

(a) The effect of the canonical rotation on the ferromagnetic Fermi surfaces (FII in

blue and FI in red), compare Fig. 4.3 (a): the spin-down Fermi surfaces (full lines)

are translated by Q by the transformation.

(b) The CII-FII transition (𝐵 = 0.2𝑡 , 𝐽 = 0.5𝑡 , 𝑛𝑐 = 0.8, 0.76 respectively) with the FII

band structure drawn in the rotated frame, compare to FII in Fig. 4.3 (b). The

transition causes an antiferromagnetic gap to close, but no Lifshitz transition

occurs. The CI-FI transition is analogous.

“drop out” gradually, instead of abruptly, as is the common situation. For further evi-

dence of this, we can again estimate the importance of correlations using the quasiparticle

residue Δ𝐺 , see Fig. 4.8. Δ𝐺 drops sharply but continuously, at least for the Fermi surface

that is retained across the Lifshitz transition. If and how this new mechanism could be

measured experimentally is discussed in Sec. 4.4.

As a final note, the continuity of the transition even for 𝑛𝑐 < 1 also means that half-

filling is no longer “special”, except that the system becomes insulating. For example, the

flat band at the AFI-AFII transition (section 3.2.2) is no longer present. Mathematically,

this results from the inequivalence of k and k +Q (see for example the band structures in

Fig. 4.7 (b)).
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Figure 4.10: Phase diagrams for (a) 𝐵 = 0.4𝑡 and 𝑡
′
= 0 and (b) 𝐵 = 0.2𝑡 and 𝑡

′
= −0.4𝑡 .

4.3.2 Canted-ferromagnetic transitions

The smaller novelty in the phase diagram Fig. 4.5 is that the transition from CII to FII is

now also continuous. Earlier, only the AFI-P transition was continuous, whereas AFII-P

was always associated with a finite jump in t. To explain why this is possible, we again

have to “match up” the Fermi surfaces. At first glance, they do not seem to fit each other:

Comparing the FII Fermi surface (e.g. orange lines in Fig. 4.3 (a)) to the CII Fermi sur-

face (e.g. orange lines in Fig. 4.7 (a)), their topologies are superficially different; FII has

pockets around (0, 0) and (𝜋, 𝜋), whereas CII has both pockets around (0, 0). To resolve

this, we must again take into account the canonical rotation, as Fig. 4.3 (a) is drawn in

the unrotated (Q = 0) system. The transformation is shown in Fig. 4.9 (a): effectively, the

solid lines (which are Fermi surfaces made out of spin-down quasiparticles) are translated

byQ (equivalently, flipped along the diagonal), which results in the same “ring” structure

we have in the CII phase. An analogous reasoning applies to the FI and CI phases. Note

that this means that the canted-ferromagnetic transitions are not accompanied by Lif-

shitz transitions. Indeed, Fig. 4.9 (b) shows that the effect of 𝑡𝑧 → 0 is a closing of an

antiferromagnetic gap significantly above the Fermi energy.

The last transition to discuss is the FI-FII border in Fig. 4.5. This is simply the metam-

agnetic transition, but at constant 𝐵 and with varying 𝐽 (as opposed to the earlier case of

constant 𝐽 and varying 𝐵).

4.3.3 Stronger magnetic field and 𝑡 ′ ≠ 0

Finally, we want to quickly check how robust the previous results are against a modifi-

cation in some of the system parameters. First, we choose a somewhat higher magnetic

field, 𝐵 = 0.4𝑡 . The resulting phase diagram (Fig. 4.10 (a)) is almost identical to the pre-

vious one. The main effect of the magnetic field (i.e., a strong polarization of the system)

was already achieved by the lower field, so it makes sense that a further increase would

not greatly alter our findings. Qualitatively, the relative sizes of the CII and FII regions

have increased, as these are the unscreened (or rather, lightly screened) phases, which are

favored by a magnetic field. Of course, as we mentioned at the start, the more interesting

case of 𝐵 → 0 is sadly unavailable to us.
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The other modification is to include a second-nearest neighbor hopping term 𝑡
′
= −0.4𝑡

(with 𝐵 = 0.2𝑡 ). Our previous arguments regarding the (dis-) continuities relied on the

specific forms of the Fermi surfaces, so it is not clear whether they will survive the com-

plication of having 𝜖k+Q ≠ −𝜖k. The phase diagram (Fig. 4.10 (b)) shows that they do, as

we again find a very similar phase diagram, including the softening of the CI-CII transi-

tion. The evolution of the Fermi surfaces is analogous, see Fig. 4.11 (a), and we have a

single Fermi pocket that wanders to the center of the Brillouin zone. The reasoning is the

same as before: As the 𝑧-spin symmetry is broken, the Fermi surfaces do not need to be

mirror symmetric in the canted phases, allowing for a continuous transition. The FI-FII

transition (here driven by 𝐽 ) is also equivalent to before (i.e. a particle pocket around

(0, 0) appears in the FII phase).

We thus see that the softened CI-CII transition is not dependent on the particle-hole

symmetry present at 𝑡
′
= 0, but rather more general. In fact, we expect the results for a

three dimensions to be similar, as our arguments did not explicitly refer to the dimension-

ality of the system.

4.4 Summary and discussion

Summarizing, we have found that an out-of-plane magnetic field results in strong qualita-

tive changes in the physics of the Kondo lattice, both in the presence and in the absence of

in-plane antiferromagnetism. For strong magnetic fields or strong doping, Zeeman split-

ting overpowers the gap and Kondo screening breaks down. At smaller fields, the break-

ing of spin-flip symmetry softens the transition between small and large Fermi surface

phases. In fact, even the concept of large and small Fermi surfaces must be approached

with care, as the transition between them becomes continuous.

Regarding the details of the metamagnetic transition, we find it to be selectively conti-

nous, i.e. depending on 𝐽 , it may or may not be associated with a discontinuity. A very

similar observation was also made by Kubo [64] for the related periodic Anderson model.

A different controversy we have not yet discussed is about the true “nature” of the

metamagnetic transition. The DCA band structures show that the Kondo gap does not

close in the metamagnetic phase, but is merely moved away from the Fermi energy. The

mean-field calculation of Kusminskiy et al. [109] instead predicts a complete localization

of the 𝑓 -electrons at the transition, so that the spectrum is gapless. Our results (which fea-

ture only “partial” 𝑓 -localization) are naturally closer to that of DCA, as the bond fermion

ansatz cannot describe a complete decoupling of localized and itinerant electrons. In con-

trast however, the bond fermion method predicts a 𝐵𝑐 ∼ 𝐽 (as 𝐵𝑐 ∼ Δ), which is similar to

mean-field theory. DCA instead gives a much smaller gap and critical field (𝐵𝑐 ≲ 0.1𝑡 for

𝐽 ≈ 𝑡 ). To add onto the confusion, quantum Monte Carlo [9] gives a gap of Δ ≈ 0.6𝑡 in

this range, which seems to imply that the true 𝐵𝑐 is somewhere in between the DCA and

bond fermion results.

Metamagnetic transitions (i.e. step-like anomalies in the magnetization at a finite mag-

netic field) are very common in real heavy fermion materials, although their origins are

unclear. The most important question is whether the transition actually involves a heavy

fermion transition (somewhat equivalently, a breakdown of screening), as predicted by the
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4.4 Summary and discussion
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Figure 4.11: The different phases for 𝑡
′
= −0.4𝑡 and 𝐵 = 0.2𝑡 .

(a) The CII-CI transition, analogous to Fig. 4.7 (a), with 𝑛𝑐 = 0.9 constant and

varying 𝐽 .

(b) Band structures for each of the possible phases. CII and CI have 𝑛𝑐 = 0.9 and 𝐽 =

0.5𝑡, 1.1𝑡 respectively. FII and FI have 𝑛𝑐 = 0.74 and 𝐽 = 0.34𝑡, 0.6𝑡 respectively.
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4 Effect of a magnetic field

Kondo lattice model, or is caused by some other effect. The case for the heavy fermion

transition can be made by comparing the critical field to other quantities relevant for

Kondo screening: for example, the critical field 𝐵𝑐 seems to be proportional to 𝑇
max

𝜒 , the

temperature atwhich the zero-field susceptibility ismaximal andwhich can be interpreted

as the onset of heavy fermion behavior [6].

However, this is controversial even for CeRu
2
Si

2
, which has the most well-studied the

most well-studied metamagnetic transition [41]. While de Haas-van Alphen experiments

indicate a strong discontinuous change in the band structure [7] (implying a similar large-

small Fermi surface transition as CeRh
1−𝑥Co𝑥 In5 discussed in chapter 3), some other fea-

tures are missing that would be expected from 𝑓 -electron localization. For example, mag-

netoresistancemeasurements by Daou et al. [28, 96] show no sign of a strongmodification

in either the longitudinal or the Hall resistance at the transition; a modification of the Hall

resistance would be expected based on our calculation, as a large number of electron-like

(negatively charged) charge carriers are introduced for 𝐵 > 𝐵𝑐 . The alternate mechanism

put forth by Daou et al. is that the real metamagnetic transition corresponds not to the

transition at 𝐵𝑐 , but instead to the transition to the saturated band at 𝐵𝑠 (which we are

unable to resolve). However, it is not clear how this could explain the step in the magneti-

zation. Since other heavy fermion compounds (such as CeTiGe [30]) have metamagnetic

transitions that fit more closely with the screening breakdown scenario, it seems ques-

tionable whether there is a single underlying reason for heavy fermion metamagnetism,

again illustrating the limited applicability of model calculations such as ours.

The softening of the antiferromagnetic transition by a magnetic field is an interesting

possibility, but we expect that this would require significant effort to investigate experi-

mentally. In the case of CeRh
1−𝑥Co𝑥 In5, the strongest candidate for a Fermi surface quan-

tum phase transition, the response to high magnetic fields has only been investigated for

the pure compounds (see Ref. [49] and the references therein). Establishing the effect of

a magnetic field on the 𝑓 -localization transition requires measurements at intermediate

𝑥 . Further, it is unclear whether the mechanism behind the softening described here (a

“wandering” of the Fermi surface due to the breaking of spin-flip symmetry) is possible

in systems with more realistic band structures.
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5 Implementation for the triangular
lattice

In this chapter, we will study the Kondo lattice model on a triangular lattice. This brings

with it the complication of geometric frustration, as the triangular lattice is not bipartite:
while the Kondo lattice usually tends to order (close to) antiferromagnetically, a straight-

forward collinear ordering is unlikely in this case. The two most natural ways to resolve

the frustration are pictured in Fig. 5.1 (a). The first is a three-sublattice antiferromagnetic

order, where the magnetic moments form an angle of 120
◦
with respect to each other.

This type of ground state is realized in both classical and quantum Heisenberg antiferro-

magnets on triangular lattices [16, 17, 21].

A more interesting possibility, which is not available in a pure spin model, is that of

partial Kondo screening [11, 66, 67, 86, 113]. Here, magnetic moments are formed only on

a subset of sites, while the remaining ones are in singulet (screened) states. Specifically

for the triangular lattice, if one third of the sites are non-magnetic, the other sites can

form a honeycomb lattice which allows for standard two-sublattice Néel order.

Experimentally, there is some support for partial screening. For some geometrically

frustrated heavy fermion compounds (such as UNi
4
B [78, 82, 90], CePdAl [54, 71], or

Ce
5
Ni

2
Si

3
[70]) experiments indicate that part of the Ce- or U-ions remain paramagnetic

even in magnetically ordered phases, consistent with the notion of partial Kondo screen-

ing.

5.1 Implementation

We here implement the bond fermion method in the “ad-hoc” form that ignores the hard-

core constraint (see Sec. 2.5.3). Three kinds of magnetic ordering are considered: the

above-mentioned 120
◦
antiferromagnetic (AF) and partially Kondo screened (PKS) phases,

as well as ferromagnetic (F) order. The first two break the translational symmetry of the

model; we will implement them using the three sublattices in Fig. 5.1 (a).

Using the basis vectors 𝑒
1
= (1, 0) and 𝑒

2
= (1,

√
3)/2 (the lattice spacing is set to unity),

the nearest neighbors of a site R are given by R±𝑒
1
, R±𝑒

2
, and R± (𝑒

2
−𝑒

1
). The hopping

Hamiltonian is then

𝐻𝑡 = −𝑡
∑︁
R

[
𝑐
†
R𝑐R+𝑒

1

+ 𝑐†R𝑐R+𝑒
2

+ 𝑐†R𝑐R+𝑒
2
−𝑒

1

+ h.c.

]
. (5.1)
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5 Implementation for the triangular lattice

M
Γ K

(a1)

(a2)

(b)

Figure 5.1:

(a) Schematic view of the net magnetic moments in the (a1) 120
◦
Néel and (a2) par-

tial Kondo screening phases. The colored numbers indicate the sublattice index,

atoms with same-colored arrows belong to the same sublattice. The atoms un-

derlaid in gray form a single unit cell of the ordered system. Note that sublattice

3 does not carry a net magnetic moment in the partial Kondo screening phase.

(b) The original (full line) and antiferromagnetic (dashed line) Brillouin zones of the

triangular lattice. Γ, 𝑀 , and 𝐾 are symmetry points. k-sums are constrained to

the antiferromagnetic Brillouin zone.

We now split the lattice into the three sublattices, indexed by I ∈ {1, 2, 3}, and Fourier

transform each sublattice individually:

𝔠
†
kI =

∑︁
R∈𝑆

I

𝑒
𝑖kR
𝑐
†
R, (5.2)

𝑐
†
R =

∑︁
k

𝑒
−𝑖kR

𝔠
†
kI if R ∈ 𝑆

I
. (5.3)

𝑆
I
is the set of sites included in sublattice I, and 𝔠 the “decomposed” electron operator. The

momentum sum goes over a smaller Brillouin zone (Fig. 5.1 (b)).
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5.1 Implementation

Using this, (5.1) can be rewritten as (first split the sum using

∑
R =

∑
I∈{1,2,3}

∑
R∈𝑆

I

, then

apply (5.3); note that if e.g. R ∈ 𝑆
1
, then R + 𝑒

1
∈ 𝑆

2
, etc.)

𝐻𝑡 =
∑︁
k

𝔠
†
k𝜖k𝔠k, (5.4)

𝜖k =
©«
0 𝑓k 𝑓

∗
k

𝑓
∗
k 0 𝑓k
𝑓k 𝑓

∗
k 0

ª®¬, (5.5)

𝑓k = −𝑡𝑒𝑖𝑘𝑥 − 2𝑡𝑒
−𝑖𝑘𝑥/2

cos

(√
3

2

𝑘𝑦

)
. (5.6)

𝔠
†
k contains the 𝔠

†
kI (since each 𝔠

†
kI also carries a spin index, 𝔠

†
k has in total six components).

𝜖k is the kinetic energy matrix. Note that 𝑓k → 𝑓
∗
k when k is rotated by

𝜋
3
, reflecting the

symmetry of the triangular lattice.

As explained in Sec. 2.5.3, we need to enforce some constraints on the local expectation

values to avoid physically unreasonable occupation numbers. For simplicity, we use only

the “averaged” constraint (2.134–2.136), from which we get

𝑁𝑒 =
∑︁
R

[
1 − ⟨𝑎†R𝑎R⟩ + ⟨𝑏†R𝑏R⟩

]
(5.7)

=
∑︁
R

[
⟨𝑎R𝑎

†
R⟩ + ⟨𝑏†R𝑏R⟩ − 1

]
(5.8)

=
∑︁
k

[
⟨𝔞k𝔞

†
R⟩ + ⟨𝔟†k𝔟k⟩ − 3

]
. (5.9)

In (5.8) we used that ⟨𝑎†R𝑎R⟩ = 2 − ⟨𝑎R𝑎
†
R⟩ (the 2 arises from the implicit spin sum). For

(5.9) we introduced 𝔞 and 𝔟 which decompose 𝑎 and 𝑏 into sublattices analogously to 𝔠

did before (the 3 arises because the momentum sum is restricted to the magnetic Brillouin

zone, i.e.

∑
k 1 = 𝑁 /3).

We can also calculate

𝑁
′
𝑒 =

∑︁
R

⟨𝑣†R𝑊
†
R𝑊R𝑣R⟩. (5.10)

𝑊R is constant on each sublattice, meaning𝑊R = const. =𝑊
I
if R ∈ 𝑆

I
, for𝑊𝐼 still defined

according to (2.179). Introducing 𝔳 analogously to before, we then rewrite 𝑁
′
𝑒 as

𝑁
′
𝑒 =

∑︁
k

⟨𝔳†k𝑊
†
𝑊 𝔳k⟩, (5.11)

𝑊 =
©«
𝑊

1
0 0

0 𝑊
2

0

0 0 𝑊
3

ª®¬, (5.12)

where we also introduced the “combined” transformationmatrix𝑊 . Since 𝔳 contains a set

of four bond fermions for each sublattice, 𝔳k has a total of twelve components. Similarly,

𝑊 is a 6 × 12 matrix, as each𝑊
I
is 2 × 4. The physicality condition reads 𝑁𝑒 = 𝑁

′
𝑒 .
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5 Implementation for the triangular lattice

Putting these things together, the energy expectation value (2.32) is minimized by the

ground state of the effective Hamiltonian

𝐻
eff

=
∑︁
k

𝔳
†
k

[
ℎ +𝑊 †(𝜖k − _)𝑊

]
𝔳k, (5.13)

ℎ =
©«
ℎ
1

0 0

0 ℎ
2

0

0 0 ℎ
3

ª®¬, (5.14)

ℎ
I
= 𝑒

I
diag(−1,−1, 1, 1) − ` diag(1, 1, 1, 1). (5.15)

The chemical potential ` and the additional Lagrangemultiplier _ respectively correspond

to the “electron numbers” 𝑁𝑒 and 𝑁
′
𝑒 , allowing us to tune 𝑁𝑒 to its correct value and

enforce 𝑁𝑒 = 𝑁
′
𝑒 .

The explicit forms of 𝑠R and tR we use are

AF 𝑠
I
= cos(Θ), t

I
= sin(Θ)©«

cos

(
2𝜋
3
I

)
sin

(
2𝜋
3
I

)
0

ª®¬, (5.16)

PKS 𝑠
1
= 𝑠

2
= cos(Θ), t

1
= −t

2
= sin(Θ)𝑒𝑧,

𝑠
3
= 1, t

3
= 0, (5.17)

F 𝑠
I
= cos(Θ), t

I
= sin(Θ)𝑒𝑧 . (5.18)

In all three cases, the angle Θ controls the degree of triplet (magnetic) admixture in |Ω⟩
(with |tR | = sin(Θ) on magnetic sites). Paramagnetism corresponds to Θ = 0. For mag-

netic sites the exchange energy is given by 𝑒
I
= 𝐽/4 (1 + 2 cos(2Θ)).

The phase diagram is found by minimizing the energy over the range 0 ≤ Θ ≤ 𝜋/3 =

1.05 for each type of magnetic order. The reason for the specific upper bound is that the

“ad-hoc” method of dealing with the hard-core constraint becomes inapplicable for 𝜋/3 <

Θ. In this region, the bond fermion energy of formation 𝑒
I
is negative. Consequently, it is

energetically favourable to create as many bond fermions as possible and due to the pair

creation terms ∝ 𝑎
†
R𝜎
𝑏
†
R′
𝜎
′ the system is filled with fermions (in a Gutzwiller calculation,

this would be prevented by a large blocking term𝑚). The “ground states” in the region

Θ > 𝜋/3 usually have bond fermion densities 𝜌
BF

of 2 to 3 per site, which makes little

sense in view of the hard core constraint. For a similar reason, we also restricted our

calculation to 𝐽 > 1.3𝑡 ; as seen in the analytic calculation (Sec. 2.6), for very small 𝐽 one

would find unphysically large 𝜌
BF

no matter tR. This keeps the bond fermion density at an

acceptable level (𝜌
BF
≲ 0.8, with the probability for a constraint violation always below

20%).

To implement the variational optimization, we use a similar structure of nested loops

as in Sec. 3.1, although this is much simplified because of the “ad-hoc” approximation.

One does not have to solve for the matrices

√
𝑍 , 𝑚, or Λ: instead, one can use a simple

one-dimensional root finding procedure to adjust _ so that 𝑁𝑒 = 𝑁
′
𝑒 . This is also a reason

for why we have not used more of the symmetries of our different magnetic states: in

the Gutzwiller approximation, we could reduce the number of independent parameters

to solve for this way, but in the “ad-hoc” method this is not really worth the effort. The

effective temperature was set to 𝑇 = 0.0025𝑡 in this calculation.
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5.2 120
◦ antiferromagnetic phases

Figure 5.2: The phase diagram when considering only paramagnetic and antiferromag-

netic phases. Colors denote different phases; the 𝑧-axis shows the optimal

angle Θ.

5.2 120
◦ antiferromagnetic phases

For the sake of clarity we first present the results with only AF order taken into account.

We find four qualitatively different phases, depicted in Fig. 5.2. For example, if we were

to start with a large 𝐽 and then reduce it while holding 𝑛𝑐 > 1 constant (note that since

the triangular lattice is not bipartite, there is no particle-hole symmetry and the behavior

for 𝑛𝑐 < 1 is qualitatively different), we would first encounter a second-order transition

from the paramagnetic phase to the ordered AFI phase (with finite Θ), followed by two

successive first-order transitions to the AFII and AFIII phases, respectively. While the

symmetry of all three ordered phases is the same, they are (as in the previous chapters)

distinguished by their band structures and Fermi surfaces (Fig. 5.3).

AFI and AFII have Θ < 0.35 and are analogous to the antiferromagnetic phases of

the square lattice. The AFI Fermi surface is almost the same as what would be found by

a paramagnetic calculation, consisting of a pocket at the Γ point (more precisely: two

slightly acircular pockets rotated 60
◦
relative to each other), and its antiferromagnetic

copies around the Brillouin zone edges. The interpretation is analogous to the square

lattice as well: the quasiparticles have a large (band) mass, so that the system is strongly

correlated. Meanwhile, for the AFII phase, the Fermi surface is more similar to the free

Fermi surface, so that the system is weakly correlated.

The quasiparticle band structures in both AFI and AFII are gapped. Approaching half-

filling from above, the jump inΘ at the AFI-AFII transition vanishes continuously, and no

transition between them occurs for 𝑛𝑐 ≤ 1. The reason is that the difference in behavior

of AFI and AFII is caused by a slight shift of the minima of the lowest band above the gap

(from Γ and 𝐾 for AFI to𝑀 and halfway between Γ and 𝐾 for AFII) whereas the topmost
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5 Implementation for the triangular lattice
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Figure 5.3: Band structures for the paramagnetic and antiferromagnetic phases on a path

through the symmetry points of the large Brillouin zone, with the correspond-

ing Fermi surfaces (𝑛𝑐 = 1.025). From top to bottom, we have 𝐽 = 1.83𝑡 (P,

the dashed line is the free band structure), 𝐽 = 1.63𝑡 (AFI), 𝐽 = 1.51𝑡 (AFII),

and 𝐽 = 1.25𝑡 (AFIII). Note the similarity between P and AFI Fermi surfaces,

whereas AFII and AFIII are more similar to the free Fermi surface.
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5.3 Partial Kondo screening

band below the gap has has the same appearance in both cases. This means that below

half-filling, when the Fermi surface cuts into the band below the gap, the phases coalesce.

AFIII covers the region of 𝐽 ≲ 1.45𝑡 and all electron densities considered. The optimal

angle is large, Θ ∼ 0.5. As a consequence of this, the hybridization between localized and

itinerant bands is rather weak: (2.179) shows that𝑊R is formed from two 2 × 2 matrices,

which respectively have determinants 𝑠
2

R − t2R and its complex conjugate. These matrices

become singular for Θ = 𝜋/4 = 0.79, at which point flat and itinerant bands decouple.

One is left with two effectively independent systems: one set of bands that mimics the

band structure of a mean-field calculation, where the interaction with the localized spins

is replaced by a sublattice-dependent Zeeman term, and one set of perfectly flat bands

above and below the Fermi energy. This is most easily shown in the simpler case of a

system fixed ferromagnetic polarization. Specifically, if we were to set 𝑠R = 1/
√
2 and

tR = 𝑒𝑧/
√
2, (2.28–2.30) would result in

𝑊R =

(
0 1 0 0

0 0 0 −1

)
, (5.19)

⟨𝑐†
R↑𝑐R′↑⟩ = ⟨𝑎

R↓𝑎
†
R′↓⟩, (5.20)

⟨𝑐†
R↓𝑐R′↓⟩ = ⟨𝑏†

R↓𝑏R′↓⟩. (5.21)

Thus, only spin-down bond fermions take part in hopping processes (forming the itinerant

bands), while the others are completely localized (forming the flat bands).

The current situation is slightly more complicated as tR depends on the site, but is

analogous
1

. The AFIII phase has a Θ close enough to 𝜋/4 that the residual hybridization
can be ignored for a qualitative description of the dynamics near the Fermi energy (see

again Fig. 5.3): the Fermi surface is the result of folding the non-interacting electron bands

to the antiferromagnetic Brillouin zone (AFBZ) and hybridizing them. Accordingly, this

phase remains conducting even at half-filling, in contrast to the other magnetic phases.

For 𝑛𝑐 = 1, the Fermi energy is located inside the gap and the system becomes insulat-

ing. Our calculation predicts a critical value of 𝐽 = 1.96𝑡 for the formation of magnetic

moments, and 𝐽 = 1.45𝑡 for the transition to the metallic AFIII phase. In the case of 𝑛𝑐 < 1,

Θ vanishes much more slowly and magnetic order survives to larger 𝐽 : the “combined”

AFI/AFII phase (which we refer to as AFI because its Fermi surface is the same as AFI

phase at 𝑛𝑐 > 1) extends up to 𝐽 ∼ 4𝑡 (not pictured).

5.3 Partial Kondo screening

We now repeat the above calculation, but for PKS type order. Phases of this type may

be favored over AF order in easy-axis anisotropic systems, where noncollinear order is

suppressed. On the other hand, since the PKS phase’s sublattices cannot all be related

by symmetry transformations, they will have a charge disproportionation and a higher

1

For the simplest demonstration, perform a site-dependent rotation so that t ∝ 𝑒𝑧 everywhere. (5.19) then
applies, implying that two bond fermion modes are decoupled (at the cost of introducing spin-dependent

hopping amplitudes).
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5 Implementation for the triangular lattice

Figure 5.4: Same as Fig. 5.2, but for PKS order.

Coulomb energy that is unaccounted for in the Kondo lattice model. As was the case

for the AF phase, we find three different ordered phases (Fig. 5.4), PKSI through PKSIII,

which are reached for 𝑛𝑐 > 1 by lowering 𝐽 . Somewhat surprisingly, the critical value of

the interaction at half-filling is unchanged at 𝐽 = 1.96𝑡 .

The band structures of the PKS phases are shown in Fig. 5.5. A significant difference

between these and the AF phases is the different band degeneracy, which is caused by

a nonobvious symmetry. For the PKS phases, spatial parity inversion (P) about a non-

magnetic lattice site exchanges the two magnetic sublattices (compare Fig. 5.1 (a) bottom).

The original state of the lattice can then be restored by flipping the magnetic moments

through time reversal (T ), so that a PT operation is a remaining (antiunitary) symmetry

of the ordered system. When acting with PT on a Bloch state ∝ 𝑒
ikR

, each of P and T
involve exchanging k → −k, so that the crystal momentum remains unchanged. However,

T does not commute with 𝑆𝑧 , the bond fermion spin in 𝑧-direction, which is conserved as

the system is spin rotation invariant about the 𝑧-axis. Accordingly, for every k, we must

have degenerate states that can be distinguished by their spin direction. In contrast, P is

not a symmetry operation for the AF phases (compare Fig. 5.1) which explains why the

bands in these phases are non-degenerate.

PKSI and PKSII are qualitatively very similar to AFI and AFII respectively. Fermi pock-

ets are found in the same spots as before. Note the relative decrease in area of the Fermi

pockets between AFII and PKSII, which is a consequence of the absence of spin degener-

acy in the AF phases: since for PKSII each band in a pocket can accomodate two electrons

instead of one, their sizes must be halved for the total fermion number to stay the same.

This is not the case for AFI and PKSI because (as mentioned earlier) the pocket for AFI

actually consists of two slightly different and rotated pockets.

PKSIII does not have an AF analogue. Unlike AFIII, the band structure is gapped and

becomes insulating when approaching 𝑛𝑐 = 1. In fact, it is most similar to AFII and PKSII:
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5.3 Partial Kondo screening
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Figure 5.5: Same as Fig. 5.3, but for the PKS phases. Interactions are 𝐽 = 1.63𝑡 (PKSI),

𝐽 = 1.51𝑡 (PKSII), and 𝐽 = 1.25𝑡 (PKSIII).

while the Fermi surfaces of these phases consist of pockets along the edges of the small

BZ, they are now placed at the corners. The bands below the gap are still unaffected, so

that no transition between PKS phases is found at all for 𝑛𝑐 < 1 and PKSI extends to lower

𝐽 .

Fig. 5.6 summarizes some physical properties at half-filling, namely the angle Θ in

(5.16), the charge disproportionation 𝑛
3
− 𝑛𝑐 between magnetic and nonmagnetic sites

in the PKS phase, and the probabilities 𝑝
I
for violation of the hard-core constraint on

sublattice I. The critical values are 𝐽 = 1.96𝑡 for P to PKS and 𝐽 = 1.38𝑡 for PKS to

AF (see section 5.4). Note that Θ = 0 for the paramagnetic phase and 𝑛
3
− 𝑛𝑐 ≠ 0 only

for the PKS phase, whereas 𝑝
3
= 𝑝

1,2 for the paramagnetic and AFIII phases. Θ shows

square-root behavior directly below the PKS transition, while 𝑛
3
−𝑛𝑐 is linear. In addition,

𝑝
I
< 0.16 in the whole range of the plot (somewhat justifying the applicability of the “ad-

hoc” method). In the PKS phase there is a sizable charge disproportionation𝑛
3
−𝑛𝑐 : 𝑛3, the

electron density on the third (nonmagnetic) sublattice is found to be significantly higher

(in excess of 10% for some parameter regions) than on the other (magnetic) sublattices. On-

site Coulomb repulsion will thus be a significant obstacle to PKS phases in more realistic

systems.
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Figure 5.6: Details of the system at half-filling. The dashed lines indicate the position of

the AFIII-PKS and the PKS-P transitions.

(a) Order parameter Θ.

(b) Charge disproportionation 𝑛
3
− 𝑛𝑐 (where 𝑛3 is the conduction electron density

on sublattice 𝐼 = 3). 𝑛
3
− 𝑛𝑐 is only finite in the PKS phase.

(c) Probability of a constraint violation on the different sublattices. Outside the

PKS phase, all sites are equivalent (𝑝
1
= 𝑝

2
= 𝑝

3
), whereas in the PKS phase the

violation probability is higher on the magnetic sublattices (𝑝
1/2 ≠ 𝑝3).

5.4 Full phase diagram

We now consider all phases simultaneously, resulting in the combined phase diagram in

Figures 5.7 and 5.8. A large part of the PKS region is replaced by AF phases: in particular,

PKSIII is completely covered by AFIII. However, PKS is still found in a kite-shaped region

around the (insulating) line of 𝑛𝑐 = 1 and 1.37𝑡 < 𝐽 < 1.96𝑡 and a disconnected region for

𝑛𝑐 < 1 and 𝐽 ≈ 3.2𝑡 .

The P metal is replaced by a weakly ferromagnetic phase up to 𝐽 ∼ 5𝑡 . Its properties are

quite similar to those of ferromagnetic phase on the square lattice. The magnetic moment

is again comparatively small, with the angle Θ < 0.05, and the the Fermi surface is com-

pletely polarized, see Fig. 5.9. Accordingly, the area of each Fermi pocket must be doubled
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Figure 5.7: Same as Figs. 5.2 and 5.4, but with all kinds of magnetic order included.
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Figure 5.8: Extended vertical view of Fig. 5.7.

compared to the paramagnetic phase. The order parameter vanishes continuously when

approaching half-filling, so that no insulating ferromagnetic phase is observed.

5.5 Summary and discussion

In summary we have studied the phase diagram of the Kondo lattice model on a two-

dimensional triangular lattice with the “ad-hoc” method, which brings about the addi-

tional complication of geometrical frustration. We investigated two ways for the ordered

moment to circumvent the frustration, three-sublattice Néel order which is realized in

Heisenberg antiferromagnets, and partial Kondo screening where magnetic moments are

formed only on a subset of sites which form a honeycomb lattice. Our calculations indi-

cate that both types of magnetic order become stable for smaller 𝐽 and that they are in
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Figure 5.9: Same as Figures 5.3 and 5.5, but for the F phase (𝐽 = 2.01𝑡 ). Note the slight

band splitting, which results in an enlarged Fermi pocket when compared to

the paramagnetic phase.

fact energetically very close to each other. For example, at half-filling the critical value

of 𝐽𝑐 where magnetic order sets in is practically the same for AF and PKS. As was the

case for the two-dimensional square lattice, the antiferromagnetic phases themselves ac-

tually consist of several phases which differ in their Fermi surface topology. For larger

𝐽 < 𝐽𝑐 and for both types of magnetic order the band structure and Fermi surface may

be obtained by backfolding the paramagnetic band structure, so that one has Fermi pock-

ets formed by the heavy part of the paramagnetic band. Accordingly, the phase transition

from paramagnetic to antiferromagnetic is of second order. Upon further reducing 𝐽 there

is a first-order transition to a phase whose band structure and Fermi surface are consis-

tent with that of the mere conduction band under the influence of decoupled magnetic

moments.

We will now try to relate our results to previous works on PKS in the triangular lat-

tice. While some studies have focused on chiral-type magnetic order and treated the

localized moments classically [3, 4, 75], Motome et al. investigated PKS at half-filling us-

ing variational Monte Carlo (VMC) [81]. In contrast to our calculation, they do not find

any indication that a PKS state exists for 𝑛𝑐 = 1, unless it is stabilized by an Ising-like

interaction between the localized moments. While VMC should in principle yield more

accurate results than bond fermion theory, one has to keep in mind that the precision of

VMC is limited by its restriction to considerably smaller finite systems. The energy dif-

ferences we find between the different phases are typically very small (the bond fermion

theory predicts a maximum relative difference of 2% across the whole parameter region

under consideration), while Motome et al. estimate a relative accuracy of 3% for their

calculation.

PKS has also been investigated in the context of the periodic Anderson model on a

triangular lattice. In the mean-field approximation, Hayami et al. [43, 44] found a phase

diagram qualitatively similar to ours for 𝑈 = 2𝑡 [44]. Keeping in mind that we restrict

ourselves to homogeneous phases and are thus unable to reproduce the phase separated

regions discussed by Hayami et al., both calculations predict the same phases at half-

filling: paramagnetic Kondo insulator for large 𝐽 , antiferromagnetic metal for small 𝐽 ,

and PKS in an intermediate region. Additionally, their phase diagram shows a similar

tendency towards AF (F) order below (above) half-filling. However, the numerical values
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of 𝐽 at the phase transitions seem to be considerably higher than in our calculation: if

we estimate 𝐽 as 8𝑉
2/𝑈 (noting that this may be somewhat inaccurate in the present

parameter region), phase transitions take place between around 3𝑡 and 6𝑡 . At larger𝑈 , the

PKS phase is replaced first by a collinear “up-up-down” (UUD) antiferromagnetic phase

and then by an insulating 120
◦
AF state [43]. While we did not investigate UUD order, an

insulating AF phase at intermediate coupling qualitatively matches our results with PKS

disregarded.

Aulbach et al. [10] considered the same problem using DMFT. These authors took

into account UUD, PKS, and ferromagnetic phases whereas antiferromagnetic 120
◦
order

was disregarded. They found magnetic order at less than half-filling (corresponding to

𝑛𝑐 > 1 as they chose the opposite sign for the kinetic energy). There, ordered phases

are found in two disconnected parameter regions, one with PKS that gives way to UUD

order upon lowering 𝐽 , and, at even further reduced electron densities, one displaying

ferromagnetism. In particular, no PKS insulator is found. We have so far been unable to

explain this stark contrast to our results (where magnetically ordered phases are favored

compared to paramagnetism in much larger regions of parameter space).

Additionally, there is theoretical evidence for PKS at other commensurate fillings [45,

85]. We cannot expect our approximations to give reliable results so far away from half-

filling. For example, Noda et al. predict a PKS state and a metal-insulator transition for

𝑛𝑐 = 2/3, which in our formulation of the bond fermion theory would consists of a state

with 5 filled bands. However, the band degeneracy in the PKS makes such a transition

impossible, as insulating phases can only exist for an even number of filled bands. To

replicate the behavior found by Noda et al. would thus seem to require a significantly

different (and more complicated) ansatz for a bond particle theory, perhaps one where

entanglement between different sites in a unit cell is already included in the definition of

|Ω⟩ and the bond fermions.

As demonstrated, there is considerable variance in literature results. From this aspect,

it is thus quite difficult to evaluate the performance of the bond fermion calculation in gen-

eral, and the “ad-hoc” method in particular. We expect that a Gutzwiller approximation

as in the previous chapters would lead to broadly similar results, but with the antiferro-

magnetic transitions shifted to smaller 𝐽 (analogous to the results for the square lattice).

However, due to the aforementioned small energy differences, more substantial changes

cannot be ruled out without a complete calculation (an avenue for future work). Espe-

cially the fate of the AFIII phase is unclear: it may be that the larger gap in a Gutzwiller

approximation destroys (part of) this conducting phase.

Regarding the ferromagnetic phase near half-filling, we find its presence in the triangu-

lar lattice rather more justified than for the square lattice. Ferromagnetism is the simplest

type of magnetic ordering that does not suffer from frustration, and the results of Hayami

et al. are concurrent in this regard. Still, similar criticism as in the square lattice applies

here as well.
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In this thesis we have investigated the dynamics of the Kondo lattice model (KLM), a sim-

ple yet strongly correlated system that illustrates the interplay between heavy fermion

physics and magnetic phenomena. To this end we employed the bond fermion method,

wherein the system is described by the strong-coupling ground state “dressed” with effec-

tive fermions (which act as the excitations of the theory). A thorough description of both

the philosophy and the mathematics of the theory are given in Chapter 2. Departing from

the literature, the residual bond fermion interaction is treated more rigorously through

the well-known Gutzwiller approximation. We were also able to explain and improve on

some of the shortcomings in previous descriptions of the method (in particular regarding

the “physicality” of expectation values).

This improved method was then applied to the standard KLM on the square lattice

(Chapter 3), where we found both antiferromagnetism and a Lifshitz transition between

phases with qualitatively different (either large or small) Fermi surfaces. In addition to

general agreement with literature results (and, in some aspects, marked improvements

compared to previous bond fermion studies), we also found a novel phenomenon: our

calculation suggests a strong narrowing of the conduction band near the Lifshitz transi-

tion. The resulting increase in the band mass mirrors the behavior of some heavy fermion

compounds, for example CeRhIn
5
. Somewhat less successful was the inclusion of incom-

mensurate and ferromagnetic order parameters. Incommensurate order was only found in

the region of weak interaction, for which a strong-coupling theory like the bond fermion

method is an inappropriate tool. However, the resulting phase diagram was still qualita-

tively reasonable, except for an extended and likely unphysical ferromagnetic phase.

This ferromagnetic phase and the phenomenon of metamagnetism (a phase transition

at a large external field, which is ubiquitous in real materials) were investigated more

closely in Chapter 4, where we added an out-of-plane magnetic field to the calculation.

The nature of the metamagnetic transition was found to be different depending on the

interaction strength: at large (small) interaction it is first- (second-) order. The antiferro-

magnetic phases and the Lifshitz transition between large and small Fermi surfaces are

also strongly modified by the magnetic field: whereas before the Lifshitz transition was

strongly discontinuous, it now proceeds continuously through intermediate stages whose

Fermi surfaces do not fit neatly into the large-small dichotomy.

Finally, in Chapter 5 we calculated the phase diagram of the triangular KLM, which

brings with it the complication of geometric frustration. For this we used a more basic

form of the bond fermion method, where the bond fermion interaction is mostly disre-

garded. Special focus was on the phenomenon of partial Kondo screening: due to the

frustration, it may be energetically favorable for only a subset of all lattice sites to par-

ticipate in magnetic ordering. Our calculation predicts that this is indeed the case in a

significant region of the phase diagram.

111



6 Conclusion and outlook

In conclusion, the bond fermion method is a valuable tool to investigate heavy fermion

physics in regions where many other approaches struggle (for example mean-field theory,

which is suited for weakly interacting systems), and not too difficult to implement. Indeed,

the “ad-hoc” version of the method is only slightly more complicated than mean-field

theory. It is also easy to adapt to other geometries, or add couplings to external fields

(like the magnetic field in this thesis) or degrees of freedom.

However, we can also see many regions that could be improved. The most pressing

is a proper treatment of the degrees of freedom ignored by the bond fermion method

(specifically, triplet fluctuations). Without this, the experimentally important region of

small interaction is difficult to describe. This should also allow for calculations on more

realistic models (e.g. ones with local spins greater than 1/2), as at present the method is

very reliant on the specifics of the KLM, whose simplicity makes it inherently unable to

describe the many complicated and varied phase transitions real systems display.
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