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Abstract

The human heart is the highly complex core part of the cardiovascular system, permanently,
reliably and autonomously keeping up the blood flow. In computational models, the cardiac
function is reproduced in silico to deduce simulation studies that deliver deeper insights
into underlying phenomena or investigate parameters of interest under perfectly controlled
conditions. In light of cardiovascular diseases being the number one cause of death in
Western countries, contributing to the early stage diagnosis is of high clinical relevance. In
this context, computational fluid dynamics simulations can deliver valuable insights into
blood flow dynamics and thus offer the opportunity to investigate a central area of physics
of this multi-physics organ. As the deformation of the endocardial surface triggers the
blood flow, the effects of elastomechanics have to be considered as boundary conditions for
such fluid simulations. However, to be relevant in the clinical context, a balance between
computational effort and necessary accuracy has to be met and models need to be both,
robust and reliable. Thus, in this thesis the opportunities and challenges of light and therefore
less complex coupling strategies are assessed focusing on three key aspects:

First, a fluid dynamics solver based on the immersed boundary approach is implemented,
as this method attracts with a highly robust representation of moving meshes. Basic func-
tionality was verified for various simplified geometries and showed a high accordance with
analytical solutions. Comparing the 3D simulation of a realistic left heart geometry to a
body-fitted mesh approach, basic global quantities were reproduced. However, variations in
the boundary conditions revealed a high influence on the simulation results.

The application of the solver to simulate the influence of pathologies on the blood
flow patterns showed results in good accordance with literature values. In mitral valve
regurgitation simulations, the regurgitation jet was visualized by a particle tracking method.
In hypertrophic cardiomyopathy, flow patterns in the left ventricle were assessed by a passive
scalar transport to visualize the local concentration of the initial blood volume.

As in the just mentioned studies, only a unidirectional flow of information from the elas-
tomechanical model to the fluid solver was considered, the retrograde effect of the spatially
resolved pressure field resulting from fluid dynamics simulations on the elastomechanics
is quantified. A sequential coupling approach is introduced to consider fluid dynamics
influences in a cycle-to-cycle coupling structure. The low deviations in the mechanical solver
of 2 mm vanished already after one iteration, implicating that the retrograde effect of fluid
dynamics in the health heart is limited.
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Summing up, especially in fluid dynamics simulations, boundary conditions have to be
set with caution as due to their high influence the vulnerability of the models is increased.
Nevertheless, light coupling strategies showed promising results in reproducing global fluid
dynamic quantities while the dependence between the solvers is reduced and computational
effort is saved.



Zusammenfassung

Das menschliche Herz ist das hochkomplexe Herzstück des kardiovaskulären Systems,
das permanent, zuverlässig und autonom den Blutfluss im Körper aufrechterhält. In Com-
putermodellen wird die Funktionalität des Herzens nachgebildet, um Simulationsstudien
durchzuführen, die tiefere Einblicke in die zugrundeliegenden Phänomene ermöglichen oder
die Möglichlkeit bieten, relevante Parameter unter vollständig kontrollierten Bedingungen
zu variieren. Angesichts der Tatsache, dass Herz-Kreislauf-Erkrankungen die häufigste
Todesursache in den Ländern der westlichen Hemisphäre sind, ist ein Beitrag zur frühzeit-
igen Diagnose derselben von großer klinischer Bedeutung. In diesem Zusammenhang
können computergestützte Strömungssimulationen wertvolle Einblicke in die Blutflussdy-
namik liefern und bieten somit die Möglichkeit, einen zentralen Bereich der Physik dieses
multiphysikalischen Organs zu untersuchen. Da die Verformung der Endokardoberfläche
den Blutfluss antreibt, müssen die Effekte der Elastomechanik als Randbedingungen für
solche Strömungssimulationen berücksichtigt werden. Um im klinischen Kontext relevant
zu sein, muss jedoch ein Mittelweg zwischen dem Rechenaufwand und der erforderlichen
Genauigkeit gefunden werden, und die Modelle müssen sowohl robust als auch zuverlässig
sein. Daher werden in dieser Arbeit die Möglichkeiten und Herausforderungen leichter und
daher weniger komplexer Kopplungsstrategien mit Schwerpunkt auf drei Schlüsselaspekten
bewertet:

Erstens wird ein auf dem Immersed Boundary-Ansatz basierender Fluiddynamik-Löser
implementiert, da diese Methode mit einer sehr robusten Darstellung von bewegten Netzen
besticht. Die grundlegende Funktionalität wurde für verschiedene vereinfachte Geometrien
verifiziert und zeigte eine hohe Übereinstimmung mit der jeweiligen analytischen Lösung.
Vergleicht man die 3D-Simulation einer realistischen Geometrie des linken Teils des Herzens
mit einem körperangepassten Netzbeschreibung, so wurden grundlegende globale Größen
korrekt reproduziert. Allerdings zeigten Variationen der Randbedingungen einen großen
Einfluss auf die Simulationsergebnisse.

Die Anwendung des Lösers zur Simulation des Einflusses von Pathologien auf die
Blutströmungsmuster ergab Ergebnisse in guter Übereinstimmung mit Literaturwerten. Bei
Simulationen der Mitralklappeninsuffizienz wurde der rückströmende Anteil mit Hilfe einer
Partikelverfolgungsmethode visualisiert. Bei hypertropher Kardiomyopathie wurden die
Strömungsmuster im linken Ventrikel mit Hilfe eines passiven Skalartransports bewertet, um
die lokale Konzentration des ursprünglichen Blutvolumens zu visualisieren.
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Da in den vorgenannten Studien nur ein unidirektionaler Informationsfluss vom elas-
tomechanischen Modell zum Strömungslöser berücksichtigt wurde, wird die Rückwirkung
des räumlich aufgelösten Druckfeldes aus den Strömungssimulationen auf die Elastomechanik
quantifiziert. Es wird ein sequenzieller Kopplungsansatz eingeführt, um fluiddynamische
Einflüsse in einer Schlag-für-Schlag-Kopplungsstruktur zu berücksichtigen. Die geringen
Abweichungen im mechanischen Solver von 2 mm verschwanden bereits nach einer Iteration,
was darauf schließen lässt, dass die Rückwirkungen der Fluiddynamik im gesunden Herzen
begrenzt ist.

Zusammenfassend lässt sich sagen, dass insbesondere bei Strömungsdynamiksimula-
tionen die Randbedingungen mit Vorsicht gewählt werden müssen, da sie aufgrund ihres
großen Einflusses die Anfälligkeit der Modelle erhöhen. Nichtsdestotrotz zeigten verein-
fachte Kopplungsstrategien vielversprechende Ergebnisse bei der Reproduktion globaler
fluiddynamischer Größen, während die Abhängigkeit zwischen den Lösern reduziert und
Rechenaufwand eingespart wird.
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Chapter 1
Introduction

The human heart is a masterpiece of highest complexity, responsible to reliably pump
blood throughout the whole human body all around the clock. In order to accomplish
this demanding task, the heart is a multi physics organ operating on a multi scale range,
beating autonomously to drive the cardiovascular system. In computational cardiac modeling,
this subject of interest is described by mathematical differential equations to adequately
reproduce the cardiac function in silico. By applying such models, deeper insights in
underlying phenomena can be gained, disease mechanisms can be further explored or the
influence of a certain parameter of interest can be investigated under perfectly controlled
conditions. Additionally, the models can be used to improve pathology diagnosis, to plan
surgical interventions, handle and combine large sets of measurement data and finally support
clinicians in decision making. All this is of high interest, as cardiovascular diseases are the
leading cause of death today and early stage diagnosis may reduce the high mortality rates.

On this basis, computational fluid dynamic techniques are successfully applied to sim-
ulate blood flow dynamics inside the heart chambers and the circulatory system. More
concretely, by executing fluid dynamics simulations, relevant effects like for example spa-
tially resolved washout fractions can be quantified and evaluated for the identification of
stasis areas which may increase the stroke risk due to cloth formation. However, due to
the multi physics nature of the investigated subject, modeling the fluid dynamics in the
heart can not be treated as an isolated problem, but has to be tackled under consideration
of all contributing areas of physics and their interactions, of which the latter are captured
by the respective coupling schemes. While electrophysiologic activity triggers each heart
beat by electrical depolarization of the myocardial cells, the elastomechanical contraction of
myocardial tissue results in a deformation and coordinated contraction-relaxation process of
the cardiac chambers. This periodic process is the mechanism that perpetuates blood flow
through a complex circulatory system to provide each cell in the whole human body with the
necessary supply.

1



2 Chapter 1. Introduction

1.1 Motivation and aims of the thesis

In this scope, the overall aim of the thesis project is to contribute to this highly relevant
area of research by further exploring the field of light coupling strategies. This discipline
is of particular interest, as computational models always have to meet a balance between
computational effort and necessary accuracy in the light of the respective application case,
especially to be relevant in a clinical context. In addition, the models have to prove robustness
and reliability. Thus, it is of relevance to investigate to which extent simple coupling
algorithms are capable of reproducing relevant fluid dynamic characteristics.

In a first step, a simple, but in terms of mesh handling highly robust fluid dynamics
solver is implemented based on an immersed boundary method approach. As the solver is
designed to be able to incorporate endocardial surface boundary data from various sources,
it is independent of other framework dependencies and follows a light coupling strategy
based on a unidirectional cycle-to-cycle coupling. Thus, on the one hand the endocardial
surface movement computed based on the existing mechanical solver framework, as well as
measurement data can directly be used to supply the constraining boundary condition data for
fluid simulations. This immediately leads to the first research question: Are simulations based
on the immersed boundary method capable to deliver results with a similar accuracy than
the already implemented body-fitted approach? To answer this question and systematically
assess the opportunities and limitations, a solver based on the immersed boundary approach
is implemented, verified on different simplified simulations scenarios and validated based on
measured data.

In the next stage, hence the implemented solver (as well as the existing one) has to
prove its capabilities in practical application and thus is applied to selected pathological
scenarios of clinical relevance. This simulation study is deduced to answer the second
research question: Can in silico fluid simulations reveal alterations in the flow conditions of
patients suffering from hypertrophic cardiomyopathy as well as mitral valve regurgitation?
Two independent simulation studies are deduced based on the immersed boundary method as
well as the existing solver approach to evaluate these clinically relevant pathology scenarios.

As so far only unidirectional coupling schemes are utilized, in a third focus area sub-
sequently the interdependence between the fluid solver and the elastomechanical solver is
investigated. In a novel, loosely coupled approach, the influence of the spatially resolved
fluid dynamic pressures on the deformation of the endocardial surface walls is quantified.
This methodology is used to close the loop of a coupling scheme relying on a bidirectional
exchange of state variables. In this context, the third question is addressed: Does the uni-
directional coupling scheme lead to significantly different flow patterns in comparison to
a bidirectionally exchange of information? Is it necessary to replace the unidirectional
coupling by a bidirectional one and which alterations are introduced by the bidirectional
coupling approach? To answer this question, a sequential coupling algorithm is introduced
and the influence of fluid dynamics on the elastomechanical simulations is quantified.
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Thus, as part of this thesis project two new methods are implemented and delivered to the
cardiac modeling community: First, a solver based on the immersed boundary method is set
up, verified and validated. On the other hand, a sequential coupling approach is introduced
to model bidirectional fluid structure interaction in a simple way. To be independent of com-
mercial and in-house software frameworks, the open source software package openFOAM
(version 7 and version 1806) is used throughout all projects to solve the fluid dynamics
equations [1, 2].

All in all, a realistic heart geometry obtained from measured data is evaluated to carve
out possibilities and limitations of the light coupling methods covered in the scope of this
thesis.

1.2 State of the art

1.2.1 Computational modeling

Advancements in computational resources as well as increasing availability of high per-
formance computing systems boosted the use of computational modeling especially in the
context of scientific research in the last decades. Nowadays, computational modeling is a
firm foundation of research engineering across a variety of application fields [3]: No matter
if in the clinical context [4] of the medical-biological field in the context of computational
modeling manufacturing in industry in the context of thermal modeling [5] or in modeling
behavioral data [6], computer models are the base to built on. This is not by chance, but
because of the variety of benefits computational modeling offers. Computer models enhance
the understanding of scientific phenomena [7], allow to predict certain simulation outcomes,
to analyze, explain, optimize and control complex natural systems. They enable decision
making and maximize efficiency and effectiveness in a design process [3] - just to name a
few. In the last years, especially the integration of huge amounts of data, big data science and
ubiquitous computing gained in importance [8]. Across the different application fields, the
basic principles of applying models for simulation, parameter estimation and the comparison
between models itself are common [6]. Basic procedures in scientific computing have been
set up [8].

Of course, despite all advances and advantages, computational modeling is not the golden
grail. Model specification and parameterization remains challenging as the knowledge of
the underlying phenomenon is rarely complete [7]. Often, only partial information on the
studied subject of interest is available, or can be measured or extracted from real world in
a limited way and the model complexity is not always adjusted adequately to the research
aim [7].

However, in the context of this thesis especially the advancements concerning the
clinical application of computational modeling for personalized medicine as well as machine
learning techniques are of great importance [4]. Diagnostics and treatment are improved
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by model based, individualized planning. Data integration across multiple measurement
instrumentation as well as model validity play a key role in current and future modeling [4].

1.2.2 Cardiac computational modeling

Computational modeling and simulation comprises an immense number of applications in
the context of cardiology without fully exploiting its overall potentials yet. However, the
amenities concerning large data sets, integration of multiple measurement data sets, simula-
tion studies, parameter variation, integration of different spatial and temporal scales, therapy
planning, model individualization, cohort studies and implant optimization among many
other make computer models an indispensable part of modern cardiology [9]. Computer
simulations convince as they are cheap, reproducible, repeatable, fast compared to a measure-
ment setup, enable a large scale, while all information is accessible, no risk is imposed to
the patient and the procedure itself is non invasive [10]. A very comprehensive and detailed
description of the historical developments in electrophysiology, elastomechanics and fluid
dynamic advancements in the modeling of the heart as well as the mutual interdependence
and coupling is presented by Verzicco et al. [11]. Many reviews on modeling the heart have
been published over the years [9–12].

As the computational grid forms the base for all in silico simulations, an overview of the
different mesh modeling approaches including structured and unstructured grids, tetrahedral
and hexahedral elements as well as mesh generation processes are presented by Lintermann
et al. [13]. An introduction to finite element modeling is included in the publication by Fish
et al. [14]. The geometric heart models are usually obtained by segmentation of medical
images. However, also deep learning approaches for direct model generation from images
exist [15].

As the different areas of physics in the human heart are strongly dependent on each
other, blood flow can not be computed without considering the electrophysiology and
elastomechanical influences, as well as the systemic and pulmonary circulation [11]. Of
course, all these disciplines are active fields of research and research groups focus either in
detail on one area of physics, model the coupling between two areas of physics or even model
all relevant parts for the whole heart at once. A huge number of groups focuses on cardiac
electrophysiology. Thus, many introductions and overviews on the topic exist [12, 16, 17].
As an example, innovative treatment strategies have recently been published in [18]. On the
other hand, other groups only focus on modeling the elastomechanical deformation. Jafari
et al. introduced a simulation framework to simulate cardiac elastomechanics based on an
idealized four chamber heart model [19]. This is similarly done with a high resolution mesh
in [20]. Uniting both areas of physics, other groups presented electro-mechanical whole
heart models [21–23]. To consider influences of the pulmonary and circulatory circulation,
0D lumped parameter models are common [20, 24–26]. While they differ in the elements
used to model the system, a validation is suggested in [26].

Uniting all areas of physics, only a small number of research groups introduced electro-
fluid-mechanic coupled simulation frameworks [27–30]. A very recent overview is presented
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in [11]. A strong coupling scheme between all areas of physics is applied in [24, 31]. Another
possibility is, to directly use boundary conditions from measured data to compute blood flow
dynamics. Mihalef et al. exemplarily use geometry data from 4D computed tomography
(CT) measurements to simulate the fluid dynamics in the heart [32].

In the context of computational cardiac modeling the personalization of models plays a
more and more important role for individualized treatment [33]. However, another emerging
field is the credibility assessment of such models [34, 35].

Focusing on the simulation of fluid dynamics, different techniques are used to analyze
fluid flow behavior and patterns which are relevant in the clinical assessment of heart function.
Doost et al. present a very thorough review article including a large list of computational
fluid dynamics (CFD) approaches, required stages in pre- and post-processing as well as an
analysis of relevant boundary conditions. Besides a broad introduction, the review by Mittal
et al. also highlights clinical applications [36]. A very recent study on the left atrium (LA)
hemodynamics is published in [37].

In recent literature, mostly an arbitrary Lagrangian-Eulerian formulation of the Navier-
Stokes equations was implemented to model the dynamic mesh behavior [28, 37–40]. Blood
is commonly modeled as a Newtonian fluid and under consideration of laminar flow in
the heart chambers and the great vessels [12, 41]. For modeling the valves, a variety of
implementations and simplifications exist. However, as medical imaging delivers time
resolved data, valves mostly are modeled as 3D structures by now [42]. Concerning the
implementation, fixed and moving grid methods can be distinguished as reviewed in [43].
Concerning validation of fluid solvers, 4D flow MRI is the current method of choice [44].
Blanken et al. published validation data based on 4D flow MRI measurements [45].

1.2.3 Fluid structure interaction

To solve fluid-structure interaction problems two different basic approaches are common
in literature (reviewed for example in [46–49]): On the one hand in the monolithic (also
called implicit) approach, fluid and solid mechanics equations are computed simultaneously
within one solver. Therefore, their mutual influence is directly taken into account, yielding
high stability. In that case no explicit coupling algorithm is required as all dependencies are
completely modeled in the system of equations. This approach impresses by its high accuracy
and inherent inter-dependency of all results. On the other hand the mathematical formulations
and their numerical implementation is a challenge. The time step is also restricted due to the
requirements of a sufficiently small Courant-Friedrichs-Lewy number [50]. Nevertheless, the
resulting quantities of both physical domains are immediately available in every time step.

On the other hand partitioned approaches have been suggested [51]. Fluid and elastome-
chanics equations are hereby solved separately, independent of each other by two single
solvers. Classically, these two solvers are solved sequentially. Thus, a coupling scheme
has to be implemented to account for the mutual influence of the two physical domains.
In such a routine information must be communicated between the two solvers in a bi- or
mono-directional manner. This approach is computationally more attractive and offers higher
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flexibility concerning the single solvers. Thus, in each solver the advanced techniques
concerning the respective physics can be applied independently of one another [46]. How-
ever, the required coupling routine has to map data between two temporally and spatially
asynchronous grid meshes.

Besides the two basic, purely implicit and explicit algorithms also semi-implicit schemes
[52], implicit-explicit variants [24] and multi-way coupled algorithms [53] have been pro-
posed. All in all, a high number of fluid-structure interaction (FSI) based algorithms and
application fields in the cardiovascular system have been published in recent years [46, 54].
The number of applications in a clinical context is continuously increasing with compu-
tational power and better algorithms. The opportunities and potentials of computational
modeling are immense, however not depleted.

1.2.4 Immersed boundary method

As it provides the necessary mathematical and computational frameworks, one method to
model FSI is the immersed boundary method (IBM) [55]. Peskin et al. first applied a method
that is nowadays referred to as the IBM in the 1970s [56]. This implementation was the first
to be based on a Cartesian grid that did not correspond to the heart geometry and a procedure
was formulated to model the effect of the IBM on the flow [57]. As reviewed in many
publications, such methods to simulate viscous flow on grids that do not model the shape
of the original geometries but immerse or embed the boundary have been investigated and
applied by many research groups [55, 57, 58]. What they have in common is, that typically
the Eulerian description is applied for the fluid, while the Lagrangian description is chosen
for the structure. Therefore, thin immersed boundaries can be used to model flexible or rigid
boundaries that move with a prescribed deformation kinematics [55]. Thus, applying the
IBM, solid (focus in review [57]) as well as moving (focus in review [55]) boundaries can
be immersed in the underlying grid structure. A number of methods have been proposed,
comprising the use of the framework of isogeometric analysis, Lagrange multiplier methods
or sharp-interface IBMs and proved good results in terms of accuracy [55]. Some of the latest
approaches comprise the following procedures: One method to model especially moving
boundaries was recently presented as a strongly coupled algorithm which treats the pressure
and the boundary force as Lagrange multipliers to enforce incompressibility and no-slip wall
constraints [59]. On the other hand, Wang et al. make use of the fractional step method to
compute the implicitly determined body force implied by the immersed body. This direct
forcing approach makes use of large-eddy simulation and enables the simulations of high
Reynolds number turbulent flows [60]. Another alternative was introduced by Xu et al.
to mimic details of tomographic particle image velocimetry experiments. A radial basis
function mesh morphing method is introduced to model the deforming wall boundaries in
an Arbitrary Lagrangian Eulerian (ALE) based manner [61]. In addition, the method that
is followed up in this project is based on the addition of a force term to the Navier Stokes
equation (NSE) to model the influence of the IBM and was introduced by Goldstein et
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al. [62]. To deduce the boundary of the immersed surface, a shape indicator can be computed
as the result of a level set function [63].

In the application context of modeling the human heart, IBM so far was mostly applied
for modeling the movement of the mitral valve (MV) plane and leaflets [55]. Exemplary, each
valve is modeled by the IBM and is mounted in a semi-rigid flow chamber [64]. Alternatively,
the 2D mitral leaflet flow can be computed based on an IBM scheme coupled to a Lattice
Boltzmann scheme [65]. In a next step towards whole heart modeling, solely an idealized
left ventricle (LV) geometry was modeled following the IBM approach [61, 66]. Kim et al.
modeled the whole left heart side coupled to a lumped element circulatory system. However,
the underlying heart geometry was not a 3D one but only a 2D approach [67]. A big step
towards whole heart modeling, fully relying on an IBM approach was done by Tay et al. [68].
Based on 4D magnetic resonance imaging (MRI) flow measurement data, an idealized heart
was simulated based on the model and the solver introduced by McQueen et al. [69]. In
addition to the LV modeled by idealized cones, a more realistic 3D four chamber heart model
model was presented [70] and used to simulate the flow in the LV obtaining realistic results
for the flow in the LV and across the aortic valve [71].

1.3 Structure of the thesis

To introduce the reader to the research field covered in the scope of this thesis project,
Chapter 1 includes the introduction. After the research project is motivated, the aims of the
project are stated. Subsequently the current state of the art is presented.

Part I comprises the basic fundamentals relevant in the context of this work in a concise
form. It includes:

• Chapter 2 that presents an overview of the medical fundamentals. Anatomic structures,
physiological processes, selected pathologies as well as measurement principles are pre-
sented.

• Chapter 3 includes the mathematical fundamentals necessary to model and simulate blood
flow.

Part II includes the fluid dynamics solver implementation details:

• Chapter 4 provides details on the immersed boundary solver implementation.
• Chapter 5 presents an automated pipeline to extract the necessary boundary conditions

from the elastomechanics simulation framework.
• Chapter 6 gives an overview on the different approaches for the representation of valves

investigated in the scope of this thesis project.
• Chapter 7 describes a study on the influence of the length of the prolonged trunks that

model the pulmonary veins and the aorta.
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Part III is dedicated to the verification of the solver: Its aim is to demonstrate the functional-
ity of the methods introduced in Part II and also show possible limitations.

• Chapter 8 presents various simplified simulation setups to verify different aspects of
the immersed boundary solver. Starting with simple geometries immersed in a 2D grid,
complexity rises incrementally up to a moving boundary immersed in a 3D grid.

• Chapter 9 focuses on the influence of the grid resolution and its effect on the simulation
results.

• Chapter 10 finally presents the 3D heart simulations based on the introduced procedure.
To demonstrate functionality, results are compared against the existing body fitted solver
implementation.

Part IV includes measured flow data to validate the introduced method against a measured
gold standard data set. This is done in chapter 11.

In Part V the investigated fluid solvers are applied to 3D heart models under pathological
conditions:

• Chapter 12 focuses on mitral valve regurgitation.
• Chapter 13 presents a study on altered fluid dynamics in hypertrophic cardiomyopathy.

Part VI presents a deeper investigation of the mutual influence between elastomechanics
and fluid dynamics. A simplified cycle-to-cycle coupling is considered. In this context, the
sequential coupling approach is introduced in Chapter 14

Finally, Part VII concludes the thesis with final remarks:

• Chapter 15 presents an overall discussion of the projects included in this thesis.
• Chapter 16 states the drawn conclusions as well as it gives an outlook on potential future

fields of investigation.

Part VIII includes the appendix and thus presents additional information on the time series
of the flow measurement, lists circulatory system parameters and presents the scripts for the
prolongation of the trunks.

Regularly, all chapters follow a common structure: Starting with a motivation for the
following study, an introduction is included where necessary. Subsequently, the applied
methods are explained before the results are explained. Each chapter is closed by a short
discussion section to finalize the respective topic.



PART I

FUNDAMENTALS





Chapter 2
Medical fundamentals

No life without blood – in its absence, human life would literally come to a standstill in
shortest time. This unique and essential fluid thus fulfills a key role in the human body: If its
supply is interrupted, permanent damage to the brain begins after just a few minutes [72].

The first of the following sections therefore summarizes the characteristics and tasks of
blood and describes how it is transported through the body. In the second section, the heart
with its anatomy and physiology is introduced as the driver of the cardiovascular system. To
conclude this chapter of medical basics, the cardiac diseases relevant in the context of this
thesis are presented.

2.1 Blood and the cardiovascular system

Blood is chemically a suspension – a heterogeneous medium consisting of a liquid that
transports a fine distribution of small components and chemicals. The liquid portion is also
referred to as the blood plasma. Depending on sex, plasma makes up a mean percentage of
53% (female) to 59% (male) of the overall blood volume of four to six liters (female four
to five l, male five to six l). It consists of water (about 92%) and the suspended substances,
mostly proteins with different functions. The cellular components mainly comprise of red
blood cells, the erythrocytes. In comparison to those, the proportion of leukocytes and
platelets, is small. With all these ingredients, blood behaves as a viscous medium, with
approximately the fivefold viscosity compared to water [73].

The central function of blood is the rapid transport of oxygen (mostly bound to the
erythrocytes) and nutrients (dissolved in the plasma) towards the body cells, as well as the
transport of carbon dioxide and other wastes away from the cells towards the organs that
excrete or recycle them. Additionally, other important substances are transported by the blood,
for example hormones that serve to regulate various body functions. The components present
in the blood also play a central role in immune defense and wound closure. Another central
function of the blood pool is the maintenance of homeostasis including many variables. For
example, by transporting heat from the body core to the periphery, temperature is regulated.
Blood also ensures the water balance, as well as chemical homeostasis (e.g. pH) [74].

11
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Figure 2.1: Compact schematic representation of the cardiovascular circulatory system: Oxygenated
blood (red) is transported via the systemic circulation towards the cells, while desoxygenated blood
(blue) is transported towards the lung to be oxygenated again. Adapted from [73], licensed under CC
BY 4.0.

For all these tasks, blood needs to move. In this context, two physical transport phe-
nomena play a central role: diffusion and convection. Diffusion describes the process of
a balancing movement of a substance from regions with higher concentration to regions
with lower concentration. This process is based on the self-motion of the particles and a
consequence of the increasing entropy in the system. This process e.g. takes place in the
capillaries of the lung and the tissue on a very small spatial scale (micrometer range) and
enables the exchange of oxygen. In figure 2.1 this happens at the strongly branched blood
vessels, where the color of the blood changes from blue to red (or vice versa). As this
process is only fast on very small spatial scales (time t proportional to squared distance
x2), a diffusive transport of blood throughout the whole body is not feasible. Thus, in a
second process, blood is actively transported by convection. To move between various
organs, tissues and vessels throughout the whole human body, blood is pumped through a
closed-loop circulatory system. This cardiovascular system is shown compactly in figure 2.1.

The cardiovascular system consists of numerous blood vessels of different sizes to link
all organs and deliver the necessary supply as described before. It can be separated in two
circulations that are connected in series to form a closed-loop system: While in the systemic
circulation oxygenated blood is pumped from the left side of the heart towards the organs
and back into the right heart, the pulmonary circuit connects the right heart via the lungs
to the left heart. The vessels that transport blood away from the heart are called arteries,
whereas the vessels ending at the heart are named veins. Thus, in the systemic circuit,
arteries transport oxygen-rich blood towards the organs (which are connected in a parallel
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Figure 2.2: Heart anatomy. Edited from [75], licensed under CC BY 4.0.

arrangement), while veins transport desoxygenated blood back to the heart. This is the other
way around in the pulmonary circulation: pulmonary arteries transport desoxygenated blood.

The blood flows through blood vessels, which are tubular, elastic structures. Due to their
elasticity, the larger blood vessels are able to fulfill a pressure reservoir function (Windkessel
effect). The pressure exerted by the blood against the vessels is known as blood pressure. As
a diagnostic parameter, it provides information about the condition of the circulatory system.

2.2 Heart anatomy and cardiac cycle

The centerpiece of the cardiovascular system is the heart, a muscular organ that is located
in the thorax centrally between both lungs. Constructed as a hollow muscle, its task is to
continuously and reliably pump blood between all organs and thus drive the convective
transport throughout the whole body as described above. The anatomic structures that are
relevant in this context are illustrated in the schematic in figure 2.2.

To accelerate and eject blood into the two separate circulation systems, the heart cavity
is vertically divided in two parts by the septal wall. Each side is again divided horizontally
in two cavities by the atrioventricular plane: the atrium (left atrium (LA) and right atrium
(RA)) and the ventricular chamber (left ventricle (LV) and right ventricle (RV)). This makes
an overall number of four cardiac chambers through which the unidirectional blood flow
(depicted by white arrows in figure 2.2) is guided by four valves that prevent regurgitating
flows. All chambers are surrounded by elastic heart tissue (myocardium) that is responsible
for the acceleration of the blood: A contraction of the chamber walls leads to an increased
pressure and consequently in combination with the opening of the corresponding valves, to a
volumetric change. Blood is ejected into the circulation systems. The inner endothelial layer
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of the myocardial tissue (endocardial surface) is in direct contact with the blood and forms its
natural boundary. The whole heart itself is surrounded by an additional layer that constrains
the overall movement and allows for a frictionless sliding. The pericardium, which is not
explicitly shown in figure 2.2, surrounds the outer layer of the myocardial wall (epicardium)
with a thin fluid film in between.

To fulfill the task of pumping blood autonomously, in a self sustaining manner and
independently of external impulses, the heart is triggered by electrical signals. Therefore,
the heart tissue is penetrated with a complex electrical excitation and activation propagation
system. The heart’s primary pacemaker is the sinoatrial node, located in the superior and
posterior RA wall close to the superior vena cava. There, a recurrent spontaneous depolariza-
tion of pacemaker cells result in an action potential. This impulse spreads along intraatrial
conduction paths towards the atrioventricular (AV) node as well as it is transferred to the
cells of the atrial contractile conduction paths. Within the depolarized cells of the contractile
myocardial tissue, the interaction of actin and myosin filaments results in a tension and
the contraction of the cell. This process is referred to as the electro-mechanical coupling.
A coordinated mechanical contraction of the excited atrial tissue results. Meanwhile, the
AV node delays the electrical excitation propagation to ensure that the atrial contraction
has ended before ventricular contraction starts. Subsequently, the electrical activation is
transmitted via the bundle of His, the left and the right bundle branch towards the Purk-
inje fibers. In a healthy heart, the stimulated myocardial cells contract in a coordinated
and directed movement from the bottom of the heart (apex) towards the top. This wring-
ing movement is boosted by the alignment of cardiomyocytes in the formation of fiber
layers. After the cells repolarize again, a refractory period follows until they are ready
for the next cycle of excitation. This continuous and regular pacing is referred to as sinus
rhythm – however, in many heart diseases this structured excitation propagation is disordered.

All in all, the human heart is a multi physics organ operating on a multi scale range – a
masterpiece of highest complexity beating reliably all around the clock. To adapt the per-
formance of the heart in correspondence with the physiological conditions, several control
and feedback loops are implemented. Most important in this context is the Frank Starling
mechanism that describes the reaction on varying pre- or afterload.

The heart thus works as a time-varying pulsed pump that transports a certain stroke volume
(SV) of blood with each beat of the heart. In the following paragraph, the cardiac cycle is
explained based on its pressure volume (pV) relationship. Figure 2.3 shows a pV diagram,
which also serves as a diagnostic tool in the clinical context. There the chamber pressure is
plotted versus the volume. The numbers added in brackets in the following mark the relevant
characteristic points in time and are depicted in the pV diagram in figure 2.3.

The beginning of a cardiac cycle is usually chosen at the diastatic state (position 1 in
figure 2.3), in which the heart is completely relaxed. During the previous (ventricular)
diastole both AV valves that separate the atrial chambers from the ventricles were open. Thus,
both sides of the heart were passively filled with blood: Oxygen-rich blood had flown from
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Figure 2.3: Pressure volume diagram of one full heart cycle exemplary for the LV. The course of the
cardiac cycle is described in the text.

the pulmonary veins through the LA into the LV as well as desoxygenated blood from the
systemic circulation into the RA and RV. The other two valves that are located at the outflow
trunks of both ventricles (aortic valve in the left heart and pulmonary valve in the right side of
the heart) are closed. At the diastatic state, both ventricles are filled between 70% and 80%
of their maximal volume. The end diastatic state is followed by the contraction of the atria,
the atrial systole, which is also referred to as the late filling phase (2). This atrial kick pumps
an additional blood volume into the ventricles, such that they are filled with an end-diastolic
volume (EDV) of approximately 130 ml (literature value, in the existing geometry 190 ml).
As the ventricular myocardium starts to contract (3), the AV valves (mitral valve (MV) in the
left heart and tricuspid valve in the right side of the heart) close and prevent a regurgitating
flow from the ventricles towards the atria. An isovolumetric compression (4) follows. When
the ventricular pressure exceeds the aortic (respectively pulmonary artery) pressure, the aortic
(respectively pulmonary) valve opens (5) and blood is ejected in the systemic (pulmonary)
circulation. The amount of ejected blood is the SV, while its relation to the EDV, known as
the ejection fraction (EF) (EF = SV

EDV ), is a diagnostically relevant measure for the cardiac
performance. The ventricles contract until the chamber volume is minimal, the so called
end-systolic volume (ESV) (6). This marks the end of the (ventricular) systole and is directly
followed by the beginning of the diastole. As soon as the relaxation of the ventricles begins,
both valves in the outflow trunks close and an isovolumetric relaxation phase (7) follows.
When the ventricular pressure falls back below the atrial pressure, the AV valves open and
blood is sucked into the ventricles (8). The filling phase resumes and thus the heart cycle can
begin once again.
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2.3 Heart valves

To ensure unidirectional blood flow in the cardiovascular system and to enable isovolumetric
phases during the heart cycle, valves are included in the system. They thus separate the heart
into different compartments, just as in a classic mechanical system. As mentioned before,
those valves open and close at characteristic points of the cardiac cycle to ensure proper
functionality of the heart. Their opening and closing results in the characteristic shape of the
pV-loop. Separating the ventricular chamber from the atrium, the AV valves are located in
the transversal cutting plane in the so called atrioventricular septum or the base of the heart.
The valves itself are called mitral (bicuspid) valve in the left heart side and tricuspid valve in
the right heart. Both of them are made of endocardial tissue and consist of two (respectively
three) flaps, which are connected to the papillary muscles via the chordae tendineae. These
small, string-like structures ensure a correct closing of the valves and prevent from bulging
into the atrial chamber during the strike back of the flaps while the valve is closing. A
close-up of the left heart side depicting the MV, namely the anterior and the posterior leaflet
is visualized in figure 2.4.

Figure 2.4: Schematic figure of the closed mitral valve. Adapted from [75], licensed under CC BY 4.0.

The closing of a valve is triggered by the blood flow: as soon as for example the
left ventricle contracts and blood tries to regurgitate into the left atrium, the MV closes
immediately. In contrast, the opening of the valve is controlled by the pressure difference
between the area before and after the valve: If the pressure in the atrial chamber exceeds
the ventricular pressure during the atrial kick, the AV valve opens. Two additional valves
are located at the outflow area of each ventricle, separating them from the subsequently
following artery. In the left heart side, the aortic valve separates the chamber from the aorta;
in the right heart side the pulmonary valve (pulmonary semilunar valve) separates the right
ventricle from the pulmonary artery (see also figure 2.4). Both of them are not linked to
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string-like structures, but with their pocket-like shape of the three leaflets in each valve, the
ventricular blood seals the valves and prevents from regurgitating flows.

2.4 Selected cardiac pathologies

Cardiovascular diseases are the most common cause of death in Western countries [76] and
the variety of cardiac and cardiovascular diseases is huge. In this section, two prevalent
diseases are introduced that are investigated in computational studies in this thesis (chapter 12
and 13). Causing altered flow conditions in the heart chambers, valvular defects are relevant
from a fluid point of view. In this work, more concretely mitral valve regurgitation is
investigated and thus introduced here from a medical point of view. Second, the basics of
hypertrophic cardiomyopathy are explained. In this disease, altered LV volume conditions
also lead to altered flow conditions.

2.4.1 Mitral valve regurgitation

Mitral valve regurgitation (MVR) describes the inability of the MV leaflets to close tightly
and thus not sufficiently covering the orifice of the mitral annulus, resulting in a regurgitating
flow from LV to LA [77]. Anterior and posterior leaflet (visualized in figure 2.4) do not
form a closed surface and do not ensure unidirectional flow as intended. Thus, this disease is
characterized by a regurgitation of parts of ventricular blood back to the LA instead of being
ejected in the systemic circulation. The regurgitation fraction (RF) represents the volume of
blood that regurgitates into the LV (VBF ) in relation to the SV in percent:

RF =
VBF

SV
·100% (2.1)

The biggest volume regurgitates during ventricular systole, small regurgitation continues
until the diastolic relaxation phase and occurs already at the beginning of contraction [78].
MVR has a high prevalence and affects every fifth person at least in a mild state [79]. After
a myocardial infarction this prevalence is increased up to the threefold [80]. Beneath my-
ocardial infarction, MVR arises mainly in the context of (mostly congenital) MV prolapse.
Rheumatic MVR is only relevant in developing countries. Two types of MVR are distin-
guished: Organic (primary) MVR, in which changes at the valve itself are the cause of the
regurgitation, is differentiated from functional (secondary) MVR, in which the valve is intact
but the surrounding tissue or the LV is the primary cause of the disease [81]. Commonly
a classification in three severity stages is made: mild, moderate or severe, depending on
regurgitation area (see table 12.1 based on [82]) or regurgitation fraction [83]. The reduced
forward SV may limit physical capabilities and lead to long term overload of the heart. Main
symptoms are palpitations, dyspnea and fatigue. At low severity levels MVR often remains
undetected.
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2.4.2 Hypertrophic cardiomyopathy

The term ’cardiomyopathy’ summarizes several diseases concerning structural changes in
the myocardial muscular tissue. A relatively common type in this context is the hypertrophic
cardiomyopathy (HCM). The specification ’hypertrophic’, which means as much as ’en-
larged’, implies that the myocardial wall is pathologically thickened. This pathology is
diagnosed if the LV end diastolic wall thickness exceeds dED,LV > 13 mm [84] respectively
the latest if dED,LV > 15 mm [85]. HCM is also associated with myocardial fiber disarray,
which is quantified by fractional anisotropy. The latter was found to be lowered in HCM
patients [86]. Additionally, remodeling changes occur and passive ventricular stiffness is
increased (decreased compliance) [78]. With HCM, often an LA enlargement comes along.
This, as well as a ST-segment depression can be diagnosed using a 12-lead-electrocardiogram
(ECG), which is abnormal in 75 % to 95 % of the patients. However, the differentiation
of HCM and other pathologies from the ECG is challenging. HCM is characterized by a
non-dilated LV, resulting in normal or slightly diminished EDV and ESV [78]. In 90 % of
cases an asymmetric disease pattern with a septal location is predominant [78]. HCM is
an autosomal-dominant inherited genetic disorder with large genomic heterogeneity and
the most common monogenetic cardiovascular disease [87]. Approximately 60 % of HCM
patients have a familial predisposition. In two of three patients the thickened myocardial
tissue in the area of the LV outflow tract leads to a functional aortic stenosis (peak gradient
above 30 mmHg), as the outflow tract is cramped. Therefore, patients are categorized in three
LV outflow tract obstruction categories, which all are of the same prevalence: obstruction at
rest, obstruction in exercise (labile) and no obstruction. The overall prevalence of HCM was
estimated between 0.16 % and 0.29 %, so approximately one in 500 adults is affected [84].
HCM is without doubt the most common cardiovascular disorder [88]. The incidence of
sudden death is significantly increased by the fivefold in HCM patients. While patients with
diagnosed HCM have normal or near-normal life expectancy, it remains the most common
cause of sudden cardiac death in those younger than 35 years [89]. HCM symptoms are
shortness of breath, chest pain, dizziness, a decrease of physical performance as well as
cardiac arrhythmia like syncope. A preserved or increased EF make the diagnose more
difficult. For further reading, the reviews [84, 90] or books [78, 88, 91, 92] provide deeper
insights.

2.5 Cardiac imaging

The medical imaging technique of particular interest for this work is magnetic resonance
imaging (MRI), as it is able to visualize blood flow by non-invasive measurements. The so
called 4D-flow MRI acquisition is a further development of conventional MRI, in which
only cross-section images of the human body are acquired. It is discussed in several re-
views [93–96]. MRI imaging also provides better contrast of soft tissue compared to
computed tomography (CT).
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In general, MRI is based on the principle of nuclear magnetic resonance, which states that
hydrogen protons in a strong magnetic field respond with a measurable electromagnetic signal
when excited by a radio-frequency pulse. This phenomenon is based on the spin of nuclei
and a the torque-induced precession caused by a constant outer magnetic field. Thus, an
MRI scanner combines the three main components of a strong magnetic field (background),
gradient coils that induce magnetic gradient fields and thirdly coils that induce waves (pulses)
in the radio frequency spectrum (the so called Larmor frequency). Measurement coils capture
the emitted signal. Unlike CT, MRI does not use ionizing radiation. The resulting images
reflect the density of protons and are often computed as stacks of slices (2D image planes).
As different materials are related to different T1 and T2 relaxation times, a contrast between
them is visible. The resulting different resonance behavior of body tissue and blood enables
to extract the heart geometry as a basis for the computer model from the classic MRI images.
The contrast is thereby determined by the T1- and T2-weighting. Image acquisition is
triggered by different possible options, either for example the ECG or respiration-gated, i.e.
triggering on position of diaphragm. During data acquisition the Fourier-space (k-space) of
the image is sampled [97]. With an inverse Fourier transformation, the resulting image is
computed. Based on the 2D slices, computers are able to reconstruct the corresponding 3D
images [98].

It can be distinguished between two different procedures: While with classic MRI,
geometric images of the (static) anatomy are acquired as described previously, in functional
MRI time resolved physiological processes are captured. In the classic MRI analysis, the
majority of diagnostic findings are based on the signal amplitude [99].

Quantitative flow imaging is based on the phase contrast principle. This works in the
following way: If a gradient magnetic field is applied to a test object and additionally an
equal, but opposite gradient field is applied subsequently, the protons that are stationary will
show no phase shift. However, those protons that are moving will undergo a phase shift
because their location along the gradient is constantly changing. This concept can be used to
identify protons that are moving through the relevant plane during the measurement process
(or through the 3D space in 3D acquired imaging). During this phase shifting process, faster
protons will experience a greater phase shift than slower protons [99]. In this way, the
application of a bipolar gradient enables an encoding of the velocity data in the image. To
calculate a phase shift image, the area of interest is compared with a background image to
compute the difference between the phases. In general, phase-contrast methods are widely
used in cardiac imaging for functional assessment of blood flow across the valves and to
visualize and quantify velocity [99].

With the transition from single-directional flow (which is commonly referred to as
2D-flow imaging) to way more complex acquisition in phase contrast MRI, the use of three-
directional velocity-encoded gradient fields is required. This acquisition, however, allows for
visualization of spatial and temporal evolution of 3D blood flow patterns within the acquired
3D volume [93]. This technique is referred to as 4D MRI flow measurements [100]. To fully
construct the 3D blood flow, the velocity encoding has to be applied for each of the three
principal spatial directions x, y and z.
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This results in three phase images in addition to the background image for each time
step [101]. This is exemplary shown in figure 2.5.

Figure 2.5: Exemplary 4D flow measurement: For one specific point in time and one specific slice of
the heart four images are acquired. In addition to the static background that reflects the magnitude
image (left), three phase images are captured, representing the phase shift in the three principal spatial
directions. Phase shifts encode flow velocity in left-right (LR), anterior-posterior (AP) and superior-
inferior (SI) direction.



Chapter 3
Mathematical fundamentals

In this chapter, the mathematical basics are introduced that form the ground for the in silico
simulations in the scope of this thesis. In this context, two areas of physics are of central
importance: fluid and solid mechanics. The main focus is laid on modeling fluid dynamics.
As blood flow is driven by the deformation of the myocardial walls, elastomechanics are also
covered in a subsequent section in a concise form. An overview of the circulatory system
finalizes this chapter. While the third highly relevant area of physics in the context of the
cardiac function, electrophysiology, is not directly considered in this work, the reader may
be directed to literature for further details [102, 103].

3.1 Fluid mechanics

Fluid mechanics describe the behavior of liquids. For this aim, various field quantities are
introduced to fully describe a flow process. For these field quantities, several conservation
laws have to be fulfilled at each point in time. While the basics of this branch of science are
deduced in many educational books, in this section only a condensed overview is included
based on [104–106].

3.1.1 Basic principles

The first basic principle is the law of conservation of mass. The quantity of mass has to be
conserved at each point in time, meaning that the sum of in- and outflow of mass, as well as
mass accumulated in the system has to be constant:

∂ρ

∂ t
+∇ · (ρu) = 0 . (3.1)

Equation 3.1.1 is the continuity equation, where ρ stands for the volumetric mass density
and u for the velocity vector. The second term of this equation, the divergence of the flux, can
be interpreted as the net loss of mass at a point due to the divergence of the flux. Therefore,

21
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since this term transfers quantities from one location to another, it is also called transport
term.

With constant density ρ , which corresponds to the assumption of an incompressible fluid,
both derivatives vanish and the continuity equation simplifies to

∇ ·u = 0 . (3.2)

The second basic principle is the conservation of momentum. It is based on the
fundamental principle of Newton’s second law and it is deduced following the Gauss theorem
as follows:

∂

∂ t
(ρu)+∇ · (ρuu) = ρg+∇ ·σ , (3.3)

with the stress tensor σ and its divergence ∇ · σ . This equation is also called Cauchy’s
equation of motion. It relates fluid-particle acceleration to net body forces (first term on right
side) and surface forces (second term on right side) on the fluid particle. Depending on the
application, additional external force terms f can be added on the right hand side. Assuming
again a constant density ρ and neglecting the influence of gravity g due to the small height
differences in the heart, to a simplified form is obtained:

ρ(
∂u
∂ t

+(u ·∇)u) = ∇ ·σ . (3.4)

In general, the stress tensor σ can be split up in two parts: The influence of the static
pressure, as well as the deviatoric part τ following

σ =−pI + τ . (3.5)

Newtonian fluids are characterized by a linear viscous behavior, which means that the
shear stress τ is linearly proportional to the shear rate d

dt γ . This ends up in the Newtonian
law of viscosity:

τ = µ · d
dt

γ , (3.6)

in which the constant proportionality factor µ is called dynamic viscosity. This is also
referred to as the constitutive equation for Newtonian fluids. Thus, the stress tensor for an
incompressible Newtonian fluid results as

σ =−pI +µ(∇u+(∇u)T ) . (3.7)

In all projects of this thesis, blood flow was modeled as laminar and incompressible like
previously reported in [107]. Even though blood is physically a suspension of particles in
a fluid (see also section 2.1) and thus blood flow actually is a multi phase flow, modeling
blood as a Newtonian fluid results in bulk velocity differences below 3 % in the large vessels
because of the high percentage of water [107]. So the blood flow throughout the whole heart
can be modeled as a Newtonian fluid, as also common practice in literature [12].
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3.1.2 Navier Stokes Equation

Using equation 3.4 in combination with the Newtonian constitutive law (equation 3.7) and
considering external forces f , the basic form of the Navier Stokes equation (NSE) results:

∂u
∂ t

+(u ·∇)u =− 1
ρ

∇p+
µ

ρ
∇

2u+ f , (3.8)

which is one of the most famous fluid dynamics equations. It includes the velocity
vector u, the constant density ρ , the static pressure p, the dynamic viscosity µ and the
external body forces f . These external forces offer a huge flexibility in computational
modeling, as they can be used, for example to force different local conditions, as seen later
on, e.g., in the context of valve or boundary modeling.

Solving the NSE in combination with the continuity equation (equation 3.2) delivers the
velocity vector field u as well as the scalar pressure field p.

3.1.3 Boundary conditions

To calculate a specific solution, every partial differential equation needs boundary conditions
(BC)s. Therefore, computational simulations start from the relaxed state, in which the cardiac
wall does not have any initial velocity assigned. The flow (or other relevant quantities)
through the computational cells located at the edge of the grid requires special treatment. As
there are no further points in which equations can be computed, the relevant quantities must
be computed based on extrapolation or on one-sided differences. Additionally, the flow at
the boundary faces have to be either known (prescribed) or composed of internal parameters.
Thus, either the values are prescribed (Dirichlet BC) or their gradient (Neumann BC) in a
specific direction (mostly surface normal direction) is presumed. In practice, most commonly
convective flows (at in- or outflow patches) or a zero velocity BC are assumed at the walls.

3.2 Numerical fluid dynamics

As the previously deduced coupled nonlinear partial differential equations in most pratical
situations can’t be solved analytically, an approximated solution has to be found instead.
With the help of computational fluid dynamics (CFD), such a solution of the set of governing
algebraic equations can be computed. For this aim, the continuous problem has to be
discretized in space and in time.

3.2.1 Basic principles

The continuous domain is therefore converted to a computational grid with a finite number
of grid points and volumes, allowing for the definition of relevant quantities such as pressure
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at each grid point. The continuous variables are thus transformed to discrete ones, e.g. the
continuous pressure p is then defined at a discrete point or center of a control volume (also
referred to as a cell), resulting with the pressure denoted as pi.

On the way to a discretized representation, the continuous NSE representation equa-
tion 3.8 can be transformed into index notation

∂ui

∂ t
+u j

∂ui

∂x j
=− 1

ρ

∂ p
∂xi

+
∂

x j

(
µ

ρ

∂ui

∂x j

)
+ fi , (3.9)

with the velocity vector ui, the Cartesian coordinates xi, which denote the three coordinate
directions, the constant density ρ , the static pressure p, the dynamic viscosity µ and the
external body forces fi. The continuity equation from equation 3.2 results as

∂ui

∂xi
= 0 . (3.10)

In the scope of this thesis, the blood density ρ = 1055kgm−3 and the dynamic blood
viscosity µ = 0.004kgm−1s−1 are applied as in [40, 107].

For the computation of the discrete solution, mainly three numerical methods are used:
Finite Difference Method, Finite Element Method and Finite Volume (FV) Method. In the
scope of this thesis, the latter is applied. To solve the governing equations, the computational
grid is discretized in non-overlapping control volumes (mesh elements). All conservation
laws are applied to each volume. The computational node is modeled in the center of each
volume: One algebraic equation for each control volume is computed as the result of its own
variable values and the impact of neighboring nodes. The integral form of the conservation
laws is used.

In distinction to this, using the Finite Difference Method does not rely on control volumes.
One algebraic equation is evaluated per grid point. The Finite Element Method is quite
similar to the FV Method but makes use of a weight function before the integration across
the whole computational domain is computed.

In the 2D case, the net flow through a control element equals the integral over the
four sides (in case of tetrahedral elements) shared with the other neighboring elements.
Computing the solutions of the algebraic equations based on the FV Method requires an
approximation scheme for this surface integral. The easiest way is to approximate the integral
by the mean value for the side, with, e.g., the overall flow at point e is approximated by

Qe =
∫

Se

q dS = q̄eSe ≈ qeSe , (3.11)

with q̄e denoting the mean flow. Of course, more complex and more accurate formulations
can be applied. This can be directly transferred to the 3D case and for the volume Qp ≈ qP∆V .

The most basic and most known method to solve systems of linear equations is the
Gaussian elimination scheme. However, the computational costs of this direct solver rise
significantly with the number of equations n (∼ n3) due to the costly forward elimination
scheme. LU decomposition as well as various other techniques have been proposed to
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improve. However, the computed triangular matrices are not sparse and thus computational
cost remains high. Also, the discretization error is clearly lower than the discretization length
itself, which is a non necessary accuracy. Therefore, iterative solvers, which are the method
of choice in nonlinear systems anyway can drastically improve computational cost while still
keeping a sufficient accuracy. In this method, an approximated solution is computed. This
approximated solution is then used to systematically improve the solution accuracy until a
certain threshold (in accuracy or number of iterations) is reached. For an effective procedure,
each iteration has to be cheap in terms of computational cost and effort in combination with
the fast convergence of the method.

As discretization affects not only spatial but also time scale, all time-dependent equations
have to be solved (time) step by (time) step. Compared to the analytical solution in the
continuous case, depending on the approximation scheme, implicit and explicit schemes
can be distinguished in the discrete case. While in an explicit scheme only the current state
is used to compute the system state of the following time step, data needs to be extrapolated:
yn+1 = yn + c · dy

dt |(yn,tn). This yields to good results, only if the time step is sufficiently small
and it holds the risk of the solver to diverge. The error increases exponentially with the
time step width. On the other hand, implicit solvers also consider the future state of the
system for the computation of this future state: yn+1 = yn + c · dy

dt |(yn+1,tn+1). This results in
high computational cost per time step. However, the benefits coming along with it are worth
the effort: In this case, the method allows larger time increments, convinces with a high
stability as well as high convergence rate and accuracy.

3.2.2 Mesh movement

An additional challenge while modeling the heart in silico is the periodical beating and the
resulting movement of the mesh. To model this dynamic behavior, two basic approaches can
be distinguished: Either the mesh, more concretely the mesh points move or while the mesh
stays static, a boundary interface moves.

To model a moving boundary, the wall velocity can be considered as an additional term in
the Navier Stokes equation. To account for the movement, the system of equations is solved
in an Arbitrary Lagrangian Eulerian (ALE) framework, where the mesh motion velocity ci is
included in the NSE [108]. This yields the equation

∂ui

∂ t
+u j

∂ (ui − ci)

∂x j
=− 1

ρ

∂ p
∂xi

+
µ

ρ

(
∂ 2ui

∂x j∂x j

)
, (3.12)

in which blood material parameters are chosen equal to those previously reported in [107].
The index i again represents the respective concerning coordinate direction. This is a straight-
forward implementation with a preserved number of mesh points. However, the displacement
of the nodes may result in large differences in cell size of the volume elements and extremely
distorted elements that lead to numerical instability. As a compromise, an additional Poisson
equation can be solved to equally distribute the node displacement also to nodes located
in the inner region of the geometry. Nevertheless, the risk of highly deformed or even
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corrupted volume elements remains a challenge, especially in highly deformed geometries,
as it is the case in the left ventricle (LV). An alternative to counteract highly deformed cells
is provided by the procedure of remeshing the geometry from time to time. This would
significantly increase mesh quality, but results to additional computational effort and poses
high requirements to ensure mesh continuity.

Chapter 4 presents an alternative method: While the mesh remains completely static
throughout the simulation, a time-varying indicator function can specify the location of the
wall. For a static wall, the normal component of the velocity at that interface region has to be
forced to zero. This method attracts as no changes in the grid have to be applied, a simple,
structured Cartesian grid can be used and wall velocity is considered as an external forcing
term in the NSE. This method is therefore highly robust but challenges introduced by the
method (e.g., the possible leaking of flow through the walls) have to be assessed.

3.3 Mesh representation

As described in section 3.2, the continuous geometry has to be discretized in space to be
processed in CFD tools. A discrete grid results, which splits up the computational domain in
small control volumes. Following the FV method, the governing equations in the integral
form are solved for each of these control volumes to obtain the desired quantities of interest.

For modeling the required mesh, two basic representations can be distinguished: Struc-
tured or unstructured grids, as visualized in figure 3.1.

The structured grid is the most simple structure as it is topologically easy and similar
to the Cartesian grid structure. In cubic grids all nodes are equidistant from one another
and a straight-forward labeling of the 3D geometry in the coordinate directions is possible.
Therefore, the coordinates of a node can be calculated from the indices. This type of grid
is characterized thereby that each set of lines does only cross other lines once. The main
drawback of this structure is the missing option to realize a mesh refinement in important

Figure 3.1: Left: Body fitted mesh of a sphere consisting of tetrahedral finite elements. Center: Same
sphere projected on a structured hexahedron blockmesh (light gray)with the correspondingwall bound-
ary area (dark gray). Right: Block structured grid with refined structure at the border of the interface.
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regions. That is why a specialized type of this grid is the block structured grid: Here, a
separation of the grid in different areas can be realized, such that more relevant structures
such as a wall can be resolved with a finer grid.

In comparison, the unstructured grid convinces with an optimal surface modeling.
While the grid points are arranged such that the shape of the modeled geometry is matched,
the labeling of the elements does not follow a structured order. This results in a higher
computational effort: As the matrix of the algebraic equation system is not in a diagonal
structure because the points do not have a predefined ordered structure, the solver is slower.
While also for structured grids the matrix is not diagonal, the corresponding neighbors of one
node can easily be found. However, the unstructured grid is the most flexible one, especially
for modeling complicated geometries: For a smooth shape of the geometry, mostly triangular
surfaces are used and volume elements consequently are modeled as tetrahedra.

3.4 Structural mechanics

The second area of physics that plays a central role in modeling the cardiac function is
elastomechanics, which is responsible for reproducing the deformation of the myocardial
tissue. Since the details of the mechanical solver itself did not play a key role in this project,
only a concise overview is included. For further basics on the structural mechanics the reader
may be directed to [25, 109–112].

3.4.1 Balance of force

A central aspect of mechanical modeling is the displacement d of the tissue at each point of
the cardiac cycle. To compute this displacement, the equilibrium condition for the balance of
forces has to be fulfilled: At each point in time, external and internal forces acting on the
heart tissue have to be balanced. This results in the mechanical differential equation

Md̈+ f int(d(t), t)+ f ext(d(t), t)+Cḋ = 0 . (3.13)

with the mass matrix M, the displacement vector d, damping matrix C as well as the internal
and external (nodal) forces. For the damping matrix, Rayleigh damping following

C = αM+β∇ f int (3.14)

with the damping parameters α and β is applied. In the context of this work, mass inertia
is neglected, with Md̈ = 0 causing the first term in equation 3.13 to vanish.

External forces that are considered in the model are the pressure in each heart chamber
as well as the forces resulting from the surrounding pericardial tissue. The relevant internal
forces comprise the passive material behavior and the influence of active forces. All of the
forces are shortly introduced in the following.

To simulate the dynamic behavior in the mechanical solver, time integration is imple-
mented based on the Newmark-Beta scheme [109].
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3.4.2 Passive material model

As introduced in [40], the myocardial tissue of both ventricular chambers was modeled as
a hyperelastic, nearly incompressible material with the constitutive relation introduced by
Guccione et al. [113]. The strain-energy function W follows equation 3.15 with the indices
f for fiber, s for sheet and n for sheet normal direction and the four constants C, b f f , bxx and
b f x. Incompressibility was enforced with a penalty formulation related to the Jacobian of the
deformation gradient J = det(F) scaled by a bulk modulus κ ≫ 0 kPa.

W =
C
2
(eQ −1)+

κ

2
(J−1)2 (3.15)

Q = b f f E2
f f +bxx(E2

nn +E2
ss +E2

ns +E2
sn)+b f x(E2

f n +E2
n f +E2

f s +E2
s f ) , (3.16)

with C = 162.78, b f f = 11.01, bxx = 4.4 and b f x = 7.71 as default values.
Fiber directions are assigned by the Laplace Dirichlet Rule-Based (LDRB) algorithm

proposed by Bayer et al. [114]. Fiber angles are +60◦ on the endocardial wall and −60◦ on
the epicardial wall.

3.4.3 Active force model

Since no electromechanical coupling is implemented in the projects of this thesis, the spread
of activation that usually is computed by the 3D electrophysiology model has to be supplied
by an additional mathematical function. The so called ’double Hill model’ introduced by
Stergiopulos et al. [115] as a mathematical model to quantify active force is applied to trigger
contraction and relaxation of the heart tissue.

The relevant free parameters for periodicity, onset time, contraction and relaxation
time offsets as well as constants for contraction and relaxation rates are chosen as listed in
table 3.1.

The resulting time courses of the normalized active stress in the left atrium (LA) and LV
are shown exemplary for one heart cycle in figure 3.2.

Figure 3.2: Time course of the normalized active stress in LA (blue) and LV (red) resulting from the
double Hill function for one heart cycle.
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onset contraction relaxation contraction relaxation
parameter periodicity time time offset time offset rate rate

in s in s in s in s
value LV 1.247 0.184 0.335 0.563 1.32 21.9
value LA 1.247 0.0 0.066 0.251 1.99 11.2

Table 3.1: Parameters set chosen for LA and LV modeled by the double Hill function to compute active
strain.

3.4.4 Prestress

As the geometric model is based on measurement data, the problem of computing a stress-
free state has to be addressed: While measurement data is acquired in the diastatic state,
stresses in the myocardial tissue are minimal, but not zero. Therefore, an unloaded geometry
has to be estimated. Assuming that the pressure-free state corresponds to the stress-free state,
e.g. an iterative algorithm introduced by Bols et al. [116] can be applied to compute the
initial and stress-free geometry. A study on the main influencing factor of this method was
published in Brenneisen et al. [117]. Alternatively, estimating the unloaded geometry based
on the Klotz curve is possible [118, 119].

3.4.5 Boundary conditions

To reproduce the influence of the surrounding organs and tissue as well as the pericardial sac,
which constrains the movement of the heart, a surrounding pericardial layer was included, as
proposed in [120]. While the contact surfaces of the epicardial wall and the endocardium are
determined, a sliding of both surfaces perpendicular to the normal direction of the layer is
possible. If the heart expands, the interface ensures that an external force counteracts the
intended movement in a physiological way.

Of course, to deduce in-silico simulations also the continuous computational domain
has to be discretized. While a finite element model (FEM) formulation is used and the heart
geometry is split up in small tetrahedral volume elements, nodal internal and external forces
are computed at every node of the grid. This also results in a discretization of the included
vectors, e.g. transforming the continuous displacement d to a discrete vector with an entry
for each node di. Time step width ∆t is adjusted dynamically.

3.5 Circulatory system

As explained in section 2.1 the main task of the cardiovascular system is to pump blood
throughout the body. Thus, to physiologically reproduce the whole cardiac function, the four
heart cavities are complemented by a model of the systemic and the pulmonary circulation.
As common practice in literature the circulatory system is modeled by a 0D model. The
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closed-loop lumped element model, in detail described in [25, 112, 121, 122] is strongly
coupled to the 3D FEM simulation: Pressure and volume are balanced in an iterative
procedure in each time step. Volumetric changes resulting from the deformations in the
mechanical solver step serve as a BC to the circulation. Balancing variations of the chamber
volumes, a mean spatial pressure is computed for each heart chamber, such that the system is
in balance. In the subsequent time step, the pressure again serves as an external force acting
on the endocardial surfaces that is considered by the mechanical solver. In this way, the
circulatory system with its Windkessel elements reproduces the pre- and after-load of the
heart chambers.

A schematic overview of the closed-loop system is provided in figure 3.3 with the resis-
tances R and the static or dynamic compliance C, as well as the nonlinearly modeled valves.

Figure 3.3: 3D-0D coupled model of the circulatory system.

Volume changes are caused by the balance of in- and outflow of blood to a chamber,
exemplary for the LV:

dVLV

dt
= QMV −QAV (3.17)

Exemplary the flow QSysVen which quantifies the amount of blood transported from the
systemic circulation into the right atrium (RA) is computed based on the pressure differences:

QSysVen =
pSysVen − pRA

RSysVen
(3.18)

All parameters chosen for the individual elements are listed in appendix B.
A key element in the closed-loop circulatory system model are the four cardiac valves. As

the remaining part of the circulatory system they all are modeled as 0D elements. However,
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their behavior is nonlinear and varies over time. The pressure drop across the valve is
accordingly computed depending on the respective flow Q, its time derivative Q̇ and the
valve area A by a differential equation:

∆pnet = αρ ·A−β

E f f ·
∂Q
∂ t

+
1
2
·ρ( 1

AE f f
)2 ·Q2 , (3.19)

using the effective area Ae f f calculated as

Ae f f =
AEO ·Are f

Are f −AEO
. (3.20)

This 0D valve model was introduced by Garcia et al. [123] and results from the flow
conditions in the schematic overview in figure 3.4. Due to the narrowing by the reduced
valve diameter, a speedup of the flow can be observed and the static pressure is reduced. A
transvalvular pressure gradient ∆p arises in dependence of the distance to the valve. Due to
the turbulence occurring behind the valve, the pressure does not return to the state before the
valve, an overall pressure drop remains due to the loss of energy.

The assumed areas for the different valves are parameterized as listed in table 3.2. While
AEO,min denotes the surface if the valve is closed, the open valve state corresponds to AEO,max.
While in the initial publication, only the parameters for the aortic valve have a physiological
basis on measured data, the parameters for the mitral valve (MV) were adapted based on
fluid simulations in the scope of the student thesis [124]

Figure 3.4: Schematic overview of the quantities included in the 0D valve model in accordance
with [123]: Blood accelerates while passing by the narrow valve region. Thus, the static blood pres-
sure which is plotted in the upper part of the images reduces and retains a pressure drop.
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3.6 Fluid and solid mechanics interaction

As different areas of physics are united and interdependent to fully reproduce the cardiac
function, the interaction among them has to be computed. A special focus is on the interaction
between fluid and elastomechanics, the so called fluid-structure interaction (FSI), which is
discussed in many review articles [47, 49].

Two basic approaches can be distinguished: The monolithic and the partitioned approach.
Following the monolithic approach, fluid and solid mechanics equations are computed in
the same mathematical framework, meaning they form one single system of equations. These
equations are solved simultaneously by a single solver. This realization captivates with a
high accuracy, but is bought with high computational effort as well as a specialized code that
needs great expertise.

In contrast, fluid and elastomechanics are computed in two separate computational fields
in a partitioned approach. Individual meshes with individual resolution as well as numerical
algorithms can be implemented - thus independent solvers for each area of physics can be
used. In order to model the interaction of the two solvers, an interface must be created to
exchange information among them. This communication results in additional effort but
because of the independent solver structure, a clear overall benefit in computational effort
is achieved. Depending on the implementation of the coupling interface, the partitioned
approach can be further classified in a strong coupling and a loose coupling approach. In the
former, information is exchanged in an iterative manner in each time step, such that a balance
between the influences resulting of both areas of physics is reached. In the loose coupling
approach the exchange of the coupling quantities is less often, e.g., with an independent
coupling step size or also after a whole heart cycle.

Depending on the exchange of information, unidirectional approaches in which infor-
mation only is communicated from one area of physics to the other without any feedback
is differentiated from a bidirectionally coupled system in which the loop is closed and
information is handed back from one solver to the other after a certain time series is com-
puted. In chapter 14 the influence of such a bidirectionally coupled approach is investigated
and compared to a unidirectional one. In the remaining part of this thesis, a loose coupling
approach with a unidirectional flow of exchange of information is investigated for the sake
of simplicity. Therefore, the movement of the endocardial surfaces is computed by the
existing mechanical solver framework for a few heart cycles. After the dynamic processes
have decayed and a steady state is reached, the deformation of the walls is extracted and
transferred to the fluid solver where it is considered as a BC. In addition, the pressures

Surface in cm2 aortic valve mitral valve pulmonary valve tricuspid valve
Aref 7 15 7 15
AEO,max 6.65 10.5 6.86 10.5
AEO,min 0.007 0.015 0.007 0.015

Table 3.2: Reference and effective opening surfaces of the four valves in cm2.
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computed by the circulatory system are extracted for the inlet surfaces in the pulmonary
veins, as well as the outlet pressure in the aorta.





PART II

FLUID DYNAMICS SOLVER





Chapter 4
IBM solver implementation

4.1 Introduction and motivation

Simulating the cardiac function based on a tetrahedral element mesh implementation, compu-
tational modeling faces the problem of the partially large deformation of grid cells. Especially
in the systole, when the left ventricle (LV) contracts and significantly reduces its volume,
cells are deformed to a high extent and low quality cells result. As experienced in the
projects of this thesis, this leads to instabilities of the algorithm and the robustness of the
method is not ensured any more. One possible alternative is delivered by the immersed
boundary method (IBM). Without the need for remeshing or issues with highly deformed
cells, the IBM approach is able to provide a more robust representation of the geometry
and its boundaries. While the IBM is a method that has existed for many years and has
been applied successfully in different fields of engineering, in cardiac modeling it is mainly
used to account for the movement of the mitral valve (MV) throughout the cardiac cycle.
In this context, it is often combined with regular body fitted mesh approaches. However,
IBM comes along with a number of convincing benefits which all concern the simplicity of
the mesh. While the moving surfaces are immersed into the static mesh, no remeshing is
required and using a structured grid is permitted. Structured grids allow for a high efficiency
while solving the equation in every time step. Moreover, the preprocessing workload is
small as no complicated meshes have to be set up. Thus, using the IBM complex moving
geometries can be modeled.

In the context of this thesis, it is investigated to which extent the IBM is capable of
modeling a realistic whole heart geometry. Therefore, the IBM solver is introduced here
(chapter 4), in chapters 8 to 9 different verification scenarios in 2D and 3D geometries are
conducted in several computational experiments. In chapter 11 the solver is validated based
on measurement data.

Parts of the content of this chapter are adapted from the conference publication [125]
under the Creative Commons Attribution 4.0 (CC BY 4.0) international license.

Fluid dynamics simulations are executed in the open-source software framework openFOAM
under the version 7 [2] based on an IBM implementation by Müller [126].
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4.2 Methods

The central characteristic of the IBM approach is that the boundary of the computational grid
not necessarily equals the fluid boundary. Therefore, the fluid boundary is prescribed by an
additional wall inside the computational domain. To force the velocity in the introduced wall
to meet the desired, prescribed value, the force term fi in the Navier Stokes equation (NSE),
(equation 3.9) is set [62]. The body force necessary to enforce the velocity of the wall Uw,i is
computed based on the constants Pc and Ic which act as proportional and integral controllers
as

fi =
∂Φ

∂Λ

[
Pc (ui −Uw,i)+ Ic

∫ t

t0
(ui −Uw,i)dτ

]
. (4.1)

The correct choice of the controller parameters forces the blood velocity to meet the
prescribed wall velocity. For this approach a simple, static and well structured hexahedron
Cartesian grid can be used, either structured or block structured as introduced in section 3.3.

To correctly prescribe the wall velocity Uw,i, a smoothed indicator field Φ is intro-
duced [63] for all cells, acting like a mask function to indicate the wall location following
the equation

Φ =


1 at the exact position of the wall

0 < Φ < 1 for a thin interfacial region,where|Λ|< w

0 everywhere else.

(4.2)

In equation 4.2, Λ is the distance from the interface. To compute this distance, a
continuous distance field that contains the euclidean distance from each cell center to the
closest point of the immersed wall has to be computed. The parameter w represents the
thickness of a narrow region close to the solid-fluid-boundary. The indicator field Φ is
computed from the distance field Λ by applying a cosine function under consideration of the
width parameter w:

Φi =

{
0 Λ > w

cos(Λi
w · π

2 ) else
(4.3)

This straightforward procedure of first computing the distance field, then computing
the indicator field and with that weighing the wall velocity field already succeeds in the
static case. In the more relevant dynamic case, which is indispensable to reproduce any
movement over time, the distance field has to be shifted in each time step. In a simple 2D
case this is rather straightforward to implement: The movement of a circular region can be
computed for each point in time as the result of a sine function, e.g. the radius r resulting as
r = r0+dr · sin(ωt) with a certain angular frequency ω . From this function the distance field
Λ can directly be computed for each cell center. In more complex scenarios the distance field
cannot be deduced by computing the distance from an analytical function, but prescription
can be done via surface files (e.g. in the stl format). For such a constraining surface the
shortest euclidean distance to each cell has to be computed.
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The most simple approach is to find the nearest neighbor for each cell center. However,
especially if the structured grid is smaller than the unstructured one that is used as the
constraining surface (which typically is the case), an introduced error may be the result
for the cell centers located on the connecting line between two points or rather close to it
(compare figure 4.1). Therefore, additionally the distance between the grid point x0 and the
vertex that connects the two closest points x1 and x2 can be evaluated. The geometrical setup
that illustrates the situation for the relevant equation is shown in figure 5.4.

Figure 4.1: Minimum distance from point to line (dashed black line). Lower than vertex to vertex dis-
tance (dashed blue line).

In figure 4.1, d is the distance between the point x0 and the line connecting the two
closest points of the geometry and results as

d2 = [(x1−x0)+a ·(x2−x1)]
2+[(y1−y0)+a ·(y2−y1)]

2+[(z1−z0)+a ·(z2−z1)]
2 (4.4)

using the factor a resulting from

a =−(x1 − x0) · (x2 − x1)

|x2 − x1|2
(4.5)

with the · in the numerator referring to the scalar (dot) product.
Following these equations, the distance field is computed for each update time step dtu.

This additional time step is introduced to mark the time step in which an external surface file
is read and the new distance field Λt is computed. It is a multiple of the ’normal’ solver time
step dt and computed based on the number of available geometries ne for the duration of a
complete heart cycle cl. In every solver time step dt it is evaluated whether the geometry has
to be updated. This is the case if the current and the previous stl step are different:

nST L,t = round(
t

cl ·ne
) (4.6)

nST L,t−1 = round(
t −dt
cl ·ne

) (4.7)

If nST L,t ̸= nST L,t−1, a new distance field is computed.
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In addition to the current distance field Λt the upcoming update step’s distance field
Λt+dtu is computed. To cover all solver steps in between, the distance field is linearly
interpolated between the two processed points in time by weighing the computed distance
fields Λt (current) and Λt−dtu (previous) with the fraction of time that has passed since the
last update step:

Λt = Λt−dtu +(nSTL,t +0.5) ·
cl
ne
− t
cl
ne

· (Λt −Λt−dtu) (4.8)

Applying this linear interpolation, computational resources are saved. While geometrical
changes between the update time steps are small, the introduced error is low. Following
equation 4.2 the indicator field Φ is updated based on the distance field Λ in every solver
time step.

While the scalar indicator field Φ denotes which elements are part of the wall and
therefore are constrained by the controller, the vector field Uw,i denotes which velocity is
assumed for the corresponding cells. Following the approach of prescribing wall motion by
external geometries, the wall velocity can also be computed from the constraining surface
(stl) files. To obtain the velocities in the three coordinate directions, the nodes of the current
and the upcoming update time step dtu are matched. This is necessary, if it is not assumed
that the order and labeling of the constraining mesh points is unchanged. Even the number
of points are allowed to vary in this case. In the most simple strategy, again the nearest
neighbor can be determined and the vector between both of them d = x2 −x1 can serve as
the input for the computation of the wall velocity field. As this again leads to interpolation
errors, especially for control volumes near edges and bended areas, alternatively the point
in the center of the two closest points can be examined. If a lower distance is obtained, the
optimization is applied. The wall velocity Uw,i can be obtained by a division of the distance
to the closest point by the time step size following

Uw,y =
yt+1 − yt

dt
. (4.9)

4.3 Results

To demonstrate the functionality of the suggested procedure, to systematically investigate the
influence of the parameters introduced and to quantify the impact of different approximation
steps listed in section 4.2, resulting fields (distance field Λ, indicator field Φ and wall velocity
field Uw) are simulated for a simple 3D sphere immersed into the structured 2D block mesh
introduced in figure 3.1.

The prescribed constraining surface geometry can be seen in figure 4.2 (A): Three update
geometries are visualized, while the first time step corresponds to the sphere with the smallest
volume (most inner). In the subsequent time steps, the radius increases, which models an
inflation. For a better visualization of the geometries, the spheres with higher diameter
are cut along the y-plane. As described before, the indicator field Φ is computed from the
distance field Λ. The results for both are visualized in figure 4.2B and D.
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Figure 4.2: Top row: Input geometry (A) for three update time steps which prescribe the wall location
and resulting distance field Λ in mm for the first time step (B). Bottom row: Indicator field Φ (D) for the
first time step computed from the distance field (B) and wall velocity Uw,i in m/s (C) for the first time
step resulting from the prescribed geometries.

All result visualizations in figure 4.2B to D show the expected results and clearly
symmetric fields. As expected, the distance (B) is minimal at the desired location and
increases towards the corners of the simulation grid. The resulting ring structure is reflected
by the indicator field in the desired cosine-weighting: The center line is prescribed by a
high indicator Φ > 0.96, while a second and third row of cells are added with a reduced
indicator value directly attached to the center line. In this way at least two cells in each
circumferential direction are covered with an indicator value Φ > 0.8, which ensures that also
in the direction diagonal to the grid orientation no flow can penetrate the wall and exit the
cylinder. The wall velocity field computed from the constraining input geometries (C) shows
a symmetric behavior with velocity vectors of the same length in all directions pointing from
the cylinder center outwards (inflation). This is the intended shape and therefore also fulfills
the requirements.

In a second simulation, the same simulation setup is used to quantify the impact of the
point-to-line interpolation as introduced in figure 4.1. While all parameters are kept constant,
solely the interpolation is turned off. Therefore, it allows for a comparison between only
point-to-point and point-to-line interpolation in figure 4.3.

While both indicator fields in figure 4.3A and B show the same basic and symmetric
structure, a clear difference in smoothness can be observed: As expected using the point-to-
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Figure 4.3: Top row: Close-up of the dimensionless indicator field: In the first plot, the connecting ver-
texes are included during the distance field calculation (A). In contrast thereof, the distance is computed
only on the point-to-point distance (B). Bottom row: Difference of both distance fields ΛC = ΛA −ΛB
for each control volume in m (C).

point method, a systematic error in the control volumes located exactly or closely between
two points of the constraining geometry is introduced. In those elements, it’s not the distance
to the constraining surface which is computed (which would be 0 mm as the control volume
is located on or close to the connecting vertex). Instead the distance between the two closest
constraining grid points is used as the basis for calculation and an error up to a deviation
of half the mesh resolution of the constraining geometry results. Visually this results in a
rippled edge structure following the superposition of the individual circular distances around
each point of the constraining geometry. This error continues radially to the edge of the grid
as seen in figure 4.3C. Following equation 4.3, for the computation of the indicator field Φ

anyway only distances smaller than the threshold w are considered. As the circumferential
rays are distant to the center line, they will not have any impact on the indicator field.
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Concerning the cells in the proximity of the walls center line, the distance of up to 0.001 m
makes only one tenth of the grid edge length in the wall area of 0.01 m. For all cells with an
indicator Φ > 0.5 the differences are given in more detail: while the maximum difference
equals ∆Λmax = 0.994 mm, the mean difference is ∆Λmean = 0.336305 mm. Therefore the
introduced error is considered to be neglectable. However, to also exclude influences on the
resulting flow quantities the reader has to be directed to chapter 8, where this is investigated
on relevant geometries that comprise an inflow and outflow tract.

Finally, these influences of the parameter w are investigated: While w weighs the distance
field Λ during the indicator Φ computation following equation 4.3, it thereby determines
the thickness of the wall region. Therefore, the identical simulation setup as before is used,
resulting in an unchanged distance field. The factor which weighs the thickness of the region
w around the wall is decreased to 75 % and increased to 150 % from the standard value of
w0 = 0.023m. to evaluate the influence on the indicator field Φ. In figure 4.4 a close-up
of the upper wall region shows the influence of the parameter. The indicator field Φ is
visualized for the three named scenarios.

Figure 4.4: Close-up of the indicator field (dimensionless) under variation of the thickness parameter
w. In the left column the indicator field for all cells of the close-up is shown. On the right hand side,
only the indicator field for cells that have an indicator value that meets ind > 0.8 and therefore reliably
blocks blood flow is depicted. In the first row Φ results for 0.75w0 is shown, in the middle row the
standard value w0 is included, and lastly the lower row depicts Φ for w = 1.5w0.
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While on the left hand side in figure 4.4 the indicator field is shown for all cells in
the close-up, on the right hand side a threshold Φ > 0.8 is applied to show the cells that
reliably close the cavity and prevent from leaking flows. It can be seen that after applying
the threshold the standard parameter w = w0 delivers a closed ring (D). In comparison, the
reduced w results in holes in the ring (B) and the increased parameter leads to a thickening of
the wall (F). While this wall thickening prevents a flow throughout the wall, it significantly
reduces the remaining internal volume enclosed by the wall. This also illustrates a problem
imposed by the procedure: while the prescribed surface is assumed to be the center line of the
wall, half the wall thickness is subtracted from the free enclosed volume, because the wall
velocity is prescribed. This has to be taken into account when prescribing the endocardial
wall.

In table 4.1 the quantitative results for the remaining enclosed surface in dependence of
the three wall thickness parameters w is listed. In the first two result columns, only cells that
are assigned an indicator value Φ = 0 are counted. The number of cells ni enclosed by the
wall and the resulting enclosed surface Ai is denoted. In the following columns, the condition
Φ < 0.5 holds. Additionally, considering the radius of the constraining cylinder r = 0.1m a
prescribed surface of A0 = 0.031m2 is used to compute the remaining fraction.

Φ= 0 Φ= 0 Φ< 0.5 Φ< 0.5 Φ< 0.5

w ni Ai in m2 ni Ai in m2 Ai
A0

0.75w0 664 0.02324 750 0.02625 83.7%
w0 566 0.01981 688 0.02408 76.7%
1.5w0 418 0.01463 579 0.02027 64.6%

Table 4.1: Resulting number of cells ni enclosed by the indicated wall as well as the resulting enclosed
surface area Ai in m2 for different indicator Φ conditions and varied wall thickness w.

4.4 Discussion

Referring to literature, for a good mesh quality, three main criteria have to be assessed [10]:
The dimensionless characteristic factor of the cell’s skewness has to be as low as possible.
Good values are in a range below 0.5, whereas the skewness at least has to be below 0.98.
Additionally, the mesh has to be smooth, thus no jumps are allowed. Finally, the aspect
ratio denoting the relation of the side lengths in a cell has to be assessed. Of course, in the
optimal case it is balanced. Evaluating all these mesh criteria, a static, structured hexahedron
grid offers one of the best possible results in terms of mesh quality. In the body-fitted
mesh, especially during the systolic contraction, in which a significant decrease in cell
volume occurs, the large deformation of the cells leads to a low mesh quality and even to an
unstable algorithm. Thus, the IBM is highly promising in terms of a high quality of the mesh
representation. However, this approach introduces the burden of an accurate representation
of the wall shape, resulting in higher demands on the grid resolution.
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On top, the structured grid representation coming along with the IBM implementation
is superior compared to the unstructured mesh in the body-fitted representation. A fast
convergence of the solver is achieved [10].

First simulations evaluating the resulting geometric fields proved the expected behavior.
While the position of the immersed surface can be deduced by evaluating the distance field
Λ based on equation 4.3, this raises the question how to adequately choose the thickness of
the wall, which is prescribed by the distance w. As assessed in chapter 9, it proved good
results to model the wall with at least four cells. This ensures, that at least two cells with an
indicator Φ > 0.8 prevent a flow across the wall through diagonally neighboring cells. This
results in an wall thickness chosen based on the grid resolution.

In addition, the reduction of the effective area, respectively of the enclosed volume was
observed. In order to actually obtain the prescribed volume, this circumstance has to be
considered in the applied geometric surface. Therefore, the prescribed surfaces have to be
inflated prior to their application, taking into account the wall thickness parameter w.

Of course, it has to be verified whether the implemented IBM solver is capable of
reproducing central fluid dynamics quantities. This is assessed in the chapters 8 to 10.





Chapter 5
Workflow automation

5.1 Introduction

As previously described, the loosely coupled scheme for solid and fluid mechanics inter-
action requires the transfer of relevant quantities. The main focus in this context is on the
geometrical data, more precisely the endocardial surface in the form of a connected mesh for
the whole heart side. In this procedure, also the small trunk bases included in the mechanical
geometry have to be prolonged to straight tubes as will be discussed in chapter 7. To quickly,
robustly and reproducibly compute this fluid boundary mesh, an automated pipeline was
implemented and evaluated. In this chapter, the workflow is illustrated exemplary for the left
heart. Implemented scripts are attached in appendix A.

5.2 Methods

The structure of the implemented pipeline is modular and comprises three scripts, such that
partial functions can also be used separately. Basic data for this algorithm are provided by
the mechanical solver. In a first step, a continuous mesh for the initial geometry (t0 = 0 s) is
processed. As the different tissue areas are modeled by characteristic tissue properties in
the mechanical domain, a material index is available to distinguish between them. For most
relevant areas, the surfaces can directly be extracted by thresholding this property. For all
materials that are only available as volumetric meshes, which are characterized by a material
index smaller than 100, the surface is extracted additionally. Relevant indices are listed in
table 5.1.

All extractions of the single material classes in correspondence with table 5.1 are au-
tomatized in the function extractFluidSurfaces. This function, as well as an overview of the
whole workflow parts and the included relations and their interdependence are depicted in
figure 5.1.

The various exported surfaces serve as an input to the prolongTrunks function, which
forms the core part of the workflow. In this script, all surfaces are connected to a single
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surface name ventricle atrioventriuclar plane atrium semilunar valve plane short trunks
material index 131 37 133 38 38left heart side
material index 130 36 132 38 38right heart side

Table 5.1: Material indices of surfaces relevant for fluid geometry creation.

Figure 5.1: Schematic overview of the trunk prolongation algorithm. The three modular functions
are sequentially executed one after the other. Input data are directly obtained from the mechanical
simulation framework. In the end, a time series of fluid surface files are exported which in the following
can be used to constrain the endocardial wall in fluid simulations.

surface, associated inlet and outlet surfaces are exported as separate surface files and the
trunks are prolonged. A flow chart of the relevant surfaces and interdependencies is included
in figure 5.2.

For this script, the desired length of the trunks as a multiple of the average edge length
serves as an additional input. To create the connected mesh, the endocardial surfaces of the
ventricle, atrium and atrioventricular plane are merged and duplicated faces at intersecting
regions are removed. The short trunks and the semilunar valve plane are first split into a
subset comprising all elements which belong to the left heart by searching for intersecting
areas. Duplicated faces as well as trunk bases belonging to the other heart side are again
removed. In the subsequent step, all trunks are prolonged. While the lower lid is identified
based on the contact to the atrial wall, the outer lid is on the opposite side. In comparison
to prolonging the trunks in the normal direction of the upper lid, it was found to be way
more robust to prolong the trunks in the direction of the vector connecting the mean point of
both lids. This is especially the case if upper and lower lid are not in parallel as illustrated
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Figure 5.2: Schematic flow chart of the sub module to prolong the trunks. Based on the surfaces
obtained from the extraction sub module and the desired trunk length, the prolonged trunks for the
corresponding atrium and the corresponding ventricle are computed.

in figure 5.3. If simply the upper lid normal vector is chosen, the trunk is bend with a high
angle (see center of figure 5.3) and may intersect with other trunks. In the symmetric case,
both variants are identical.

Figure 5.3: Comparison of different possible vectors denoting the prolongation direction of the trunks.
Left and center: Normal vector of the upper lid. In asymmetric trunk bases this leads to a bend trunk.
Right: Vector connecting lower lid center point with upper lid center point.



50 Chapter 5. Workflow automation

For the prolongation of each trunk, the upper lid points are iteratively duplicated with a
shift of the average edge length in the direction of the previously calculated direction vector.
The length of the trunk is prescribed by the additional length parameter and set in relation
to the average edge length of the mechanical surfaces. To create a closed triangular surface
mesh, the inserted points are connected by edges. Each three of those edges are grouped
as a triangle, following the schematic procedure illustrated in figure 5.4. In this way, for a
number of points n in the upper ring of the trunk, 2 · (n−1) triangular surface elements are
added per row and merged with the existing mesh. This is repeated row by row until the
desired length is met.

Figure 5.4: Visualization of the trunk prolongation procedure. To create a closed surface mesh, each
trunk is prolonged row by row in the direction of the vector determined before as exemplary visualized
for the first two faces. Each new node is immediately connected via vertices to form a triangle. The
schematic code can be applied to compute triangles in a loop for the number of rows j and the number
of points n in the upper lid edge.

Finally, the lid is added at each end of the trunk and exported in a separate surface file
for further processing. This procedure is repeated iteratively until all trunks are prolonged in
both heart sides.

5.3 Results

The introduced workflow was successfully applied on three whole heart geometries. The
algorithm was able to reliably determine the desired fluid surfaces as exemplary visualized in
figure 5.5: A left ventricle (LV) of a healthy heart geometry (A) as well as a heart geometry
burdened by hypertrophic cardiomyopathy (HCM) (B-D) are included. While the green lids
show the inlet surfaces, the outlet boundaries are marked in red color. Besides a HCM LV
(D) also a right ventricle (RV) (C) and an exemplary time series (B) consisting of three time
steps (diastole, systole and in between) is included.

Regarding computational resources, the trunk prolongation sub module takes approxi-
mately 0.5 s to compute all concerning trunk prolongations and export the surfaces. The time
extraction for the whole heart cycle time series in the following module needs approximately
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Figure 5.5: Resulting surfaces for healthy LV (A) and diseased case. B-D HCM with C LV, D RV and B
time series of LV, smallest corresponds to systolic volume.

0.8 s for each geometry, such that a full heart cycle covered with 80 geometries is computed
in below 70 s.
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5.4 Discussion

The introduced routine to automatize the setup of the boundary conditions (BC) revealed a
fast and successful creation of the constraining endocardial surfaces. The initial geometry, as
well as the time series and the lids for the inlet and outlet surface are created in a reliable way.
However, main drawback of the implemented procedure of cause is the high dependence on
the mechanical mesh availability and quality. As the trunks are just a prolongation of the
existing short trunk bases, potential errors would propagate across the whole trunk geometry.
Thus, the accurate segmentation of these trunks is of high relevance, however challenging as
the segmentation of the relevant regions is error-prone.

In addition, the trunks are simply prolonged as straight tubes, not based on any physio-
logic structural condition. This of course could be improved, if the concerning geometries
would be delivered from measurement data. As this is not the case for the studied geometries,
this limitation has to be taken in mind.

The partitioned structure of the algorithm also allows to model data acquired by other
modalities than the elastomechanical simulation framework. Exemplary, measurement data
may be considered. However, as the pipeline is implemented for the input data resulting of
the elastomechanics simulation up to now, the methods to establish correspondence have to
be adapted. Rigid alignment methods, such as the iterative closest point algorithm as well as
non rigid-body transformations can be applied to establish correspondence. High demands
on the alignment of the individual surfaces are required to ensure to obtain an adequate
resulting closed surface mesh.



Chapter 6
Valve representation

6.1 Introduction

As they regulate the inflow into the ventricular chambers as well as the ejection of blood
out of the ventricle, a central element in the computation of cardiac blood flow dynamics
are the valves. Other than in the circulatory system (described in section 3.5), in the fluid
simulations, all valves are represented by volumetric structures. Thus, a 3D representation of
the geometry has to be modeled. In addition, the time dependent procedure of the opening a
closing process has to be modeled. Depending on the chosen implementation of the valve,
this temporal controlling during the heart cycle varies. This chapter provides an overview and
a comparison of the different valve models utilized in the different simulation studies of this
thesis. From the implementation point of view, four different models can be distinguished.

First, the existing implementation of a simplified planar mitral valve (MV) model
published in [38] is introduced. This simplified model originally was assessed in an idealized
left ventricle (LV) geometry. It proved to reproduce the characteristic asymmetric shape
of the vortex ring to a sufficient extent. This valve representation is implemented based
on a porous zone approach, as well as a simplified 3D valve geometry with only two
states immersed in the immersed boundary method (IBM) grid. In the scope of this thesis,
both realizations of this valve model are integrated into a more realistic framework of an
individualized, realistic LV geometry.

In addition, two further representations of the MV have been implemented and evaluated
in the scope of a student project [127]. On the one hand, the Linköping valve is a realistic
3D valve based on data measured in an animal heart. Based on biplane radiography with
radiopaque markers that have been implanted surgically in a sheep heart, Ingels et al.
measured the motion sequence of the MV [128]. On the other hand, the St. Jude medical
valve is a prosthetic valve, that was implanted in a high number of patient since the late
1970 years [129]. Both 3D valves are assessed by immersing them in the IBM grid.
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6.2 Methods

6.2.1 Porosity model

In literature, the porous zone approach was introduced to model really small structures
that have characteristic edge lengths below the mesh resolution [130]. For such zones, the
behavior of a classic sponge is taken as a prototype: While the direct convective flow is
obstructed, permeable pores allow for a limited amount of flow to penetrate the membrane
structure. The size of the pores determines the amount of flow across the valve and thus
by introducing a permeability factor kp ∈ [0,1], this approach perfectly fits the demands in
valve modeling. While the permeability is prescribed as a mean value for the whole valve,
adjusting the permeability of the zone over time can be regarded as a simplified method to
model the valve behavior. By the porous structure, not only the flow is decreased depending
on the porosity. Also a pressure drop occurs.

To model this porous zone influences, a forcing term Fp is inserted into the Navier Stokes
equation (NSE) (equation 3.8). The porosity model forces the velocity within the zone to be
equal to the motion of the respective plane and adjusts each time step dependent on ci:

Fp =−µ

ρ

φp

kp
· (ui − ci)−

1.75
√

φp√
150kp

· (ui − ci) |ui − ci| , (6.1)

considering the density ρ , the kinematic viscosity µ and the porosity φp = 1, which
is kept constant. The valve plane permeability kp varies between infinitesimally small
(impermeable) and kp = 1 (permeable). As this valve representation is applied in chapter 14,
the time course of the porosity kp is shown in figure 14.3.

6.2.2 Model geometry and implementation

On the contrary to the porous zone approach that effectively models the valves based on
spatially averaging all influences in the time dependent permeability factor kp, the IBM
solver offers the great benefit to enable a spatially resolved model of the valves. Thus, a
3D construction of the valve is possible and a higher level of physiological accuracy can be
achieved. To be considered in the IBM solver framework, the geometries of the valve are
prescribed by a stack of external surface files. Based on this time course for one full heart
cycle, the geometry is updated at the correct point in time.

The first and most simple implementation is to again model the valve based on the planar
MV model approach [38]. In this case, the opened and closed state are prescribed by external
surface files and immersed into the grid, resulting in an additional indicator field ΦMV for the
MV. However, in this case the influence of the MV leaflets is neglected and a infinitesimally
rapid opening process is assumed.
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To increase accuracy and take benefit of the IBM implementation, more physiologic
valves can be considered: With the Linköping valve and the prosthetic valve representation
implemented in the scope of the student thesis, two time resolved motion sequences are
modeled based on literature data. To fit these models to the individualized LV geometry
evaluated in the context of this thesis, an algorithm was developed to fit the valve, located in
an arbitrary coordinate system to a predefined position of the mitral annulus ring [127]: First,
a plane is fitted through the MV geometry that will be transformed and all corresponding
annulus vertices are projected into this plane. The same is done for the desired annulus ring
position. In the subsequent step, a local Cartesian grid is created for each plane. Finally,
the local coordinate systems of the valve geometry is transformed into the desired annulus
position. All cells inside the outer shape of the valve are scaled with a factor based on the
distance between the center point and the annulus vertices. With this process, the geometry
of the valve is slightly changed. However, the aim of modeling the movement of the MV is
achieved with only a small deviation.

To correctly reproduce the MV movement throughout the cardiac cycle from a temporal
point of view, the cycle length of one heart beat is adapted in accordance with the simulation
setup.

6.3 Results

For modeling the valves based on the porous zone approach, the aortic and mitral valve
geometry are obtained from the mechanical solver framework. For the initial time step, their
shape and position is shown in figure 6.1 with the original spacing between them.

In figure 6.2 the resulting geometry for the prosthetic valve, transformed into the individ-
ualized LV geometry is shown. Different configurations in time including the closed and the
fully opened state, as well a position during the opening process are depicted.

Figure 6.1: Geometry of the porous zones denoting the shape and position for the initial time step
t = 0 s. The geometry is extracted from the mechanical solver results. The geometry of the left heart is
shown for orientation reasons (A). The aortic valve (B), as well as the mitral valve (C) are shown.
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Figure 6.2: Geometry of the prosthetic valve based on the data set of the St. Jude prosthetic valve
model [129]. The valve is adapted to fit the annulus position of the individualized left heart geometry,
which is shown for orientation reasons in B. The valve is shown in the closed (A) and the fully open (D)
state, as well as during the opening process (C).

Figure 6.3: Geometry of the Linköping valve based on the measured animal data set [128]. Adapted
to fit the annulus position of the individualized left heart geometry shown for orientation reasons in B.
The valve is shown in the closed (A) and the fully open (D) state, as well as during the opening process
(C).
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Figure 6.4: Scalar field ψ visualizing the flow patterns in the LV. Comparison of the Linköping valve
(left hand side) and the prosthetic valve (right). Figure from [127].

Figure 6.5: Time course of the residual volume Vres in ml for four full heart cycles. Comparison be-
tween the porous zone implementation, the prosthetic valve and the Linköping valve. Figure adapted
from [127].
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Figure 6.6: Time course of the pressure in the left atrium (LA) (top row) and the LV (bottom row) in
mmHg. Comparison between the prosthetic valve and the Linköping valve. Figure adapted from [127].

The same holds true for the geometry based on the measurement data taken at the
Linköping university. In figure 6.3 the resulting valve shape, transformed to fit the individu-
alized LV geometry is shown. Different configurations in time including the closed and the
fully opened state, as well a position during the opening process are shown.

To assess the resulting flow patterns, a passive scalar transport equation is implemented
as will be introduced in section 14.2.7.2. The scalar ψ is considered as a measure of local
concentration of blood that was initially located in the LV when the simulation started.
Therefore, it is initialized with a value of ψ(x, t0) = 1 for all cells located in the LV, such
that the local washout fraction can be visualized.

Comparing the spatially resolved scalar field ψ in a long axis view of the left heart which
is cut in two halves, the differences between the Linköping valve (left hand side) and the
prosthetic valve (right) can clearly be seen in figure 6.4. Because in the Linköping data
set blood from the left atrium (LA) enters in a central position and with a higher velocity
magnitude, it penetrates deeper towards the MV. In comparison, in the prosthetic valve,
atrial blood enters besides the central partition wall that to which the two artificial flaps are
attached and subsequently spreads laterally.
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The time course of the scalar field ψ is shown in figure 6.5. Comparing the two
approaches reveals that in the Linköping data set higher variations occur. While at the
beginning, the decrease is higher, in the plateau phase a similar value compared to the
prosthetic valve is reached. This can be explained by the different inflow patterns visualized
in figure 6.4. Compared to the porous zone approach, the residual volume resulting after
four heart cycles is the same as in the Linköping valve. However, in the first three cycles,
differences of up to 20 ml occur. These differences can again be explained by the different
geometric implementation of the valves: As the porous zone approach averages the valve
characteristics over the whole valve diameter, the significantly higher effective orifice area
leads to a jet that penetrates deeper towards the apex. This has the consequence that in
the first cycles more blood that initially started in the LV is ejected. Due to the periodic
contraction of the endocardial surface walls and the induced mixing of the blood, after a few
cycles the deviations are gone and an end state with low deviations (∆Vres < 1 ml) is reached.

The pressure curves for the LA and the LV are plotted over time for four full heart
cycles in figure 6.6. A comparison between the two approaches reveals a high overall
correspondence. In the LA (upper part of figure 6.6), the maximum deviation is approximately
11 mmHg in the first cycle, in the following cycles ∆pLA,max = 5 mmHg. In the LV a
significant pressure deviation of approximately 100 mmHg occurs during the opening of the
valve. This deviation is due to a variation in the timing: While the opening of the MV in
the Linköping data set is slow at the beginning and then accelerates, the prosthetic valve has
a linear opening process. Due to the slow opening, the opened orifice area is significantly
smaller at the beginning of the opening process. To achieve the same volume flow, a higher
negative pressure is necessary.

6.4 Discussion

The four valve models introduced in this chapter hold different characteristics as well as
prerequisites and thus are convenient to fulfill different application purposes. While the most
simple model, the porous zone approach only relies on a mean value for the whole valve area
and does not consider the spatial geometry of the leaflets, it still reproduces the characteristic
flow patterns. Due to the direct consideration as an external force in the NSE, it is the method
of choice for the body fitted implementation. In the IBM solver framework, the spatially
resolved leaflet geometries of the two alternative 3D implementations provide a higher level
of detail. As the Linköping and the prosthetic valve are both representations of the MV, for
the aortic valve representation still the planar valve model introduced by Daub et al. is in
use [38]. As the volume that is ejected from the LV through the aortic valve flows in the
prolonged aortic trunk, the spatially resolved flow patterns in this artery are of secondary
importance, anyway.

Comparing the Linköping and the prosthetic valve, a direct comparison is impeded by
the different geometric conditions prescribed by each of the models. During the opening
procedure, the nonlinear behavior of the Linköping valve introduces pressure differences that
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have to be considered. This is due to a boundary condition of the solver: As the movement
of the endocardial surfaces is prescribed, the volume flow through the valve is fixed. Thus,
a difference in the valve diameter directly results in a pressure difference. However, when
comparing this to the real heart under physiological conditions, this would be the same.
Blood is sucked into the LV due to the relaxation of the endocardial wall and therefore an
increase of the chamber volume results. This movement triggers the blood flow.

Considering the the long-term quantities of the residual volume which are of high
relevance in terms of stroke risk assessment, the compared valve models show a high
accordance in the time course of the residual volume. While after a small number of cycles,
the deviations are gone, this implies that the choice of the valve geometry does not influence
the long-time residual volume. Thus concerning this quantity, all valve models provide
sufficient simulation results. However, especially when analyzing and comparing the models
in the first cycles, this deviation due to the different model realizations has to be taken into
account.

A comparison to literature values reveals a good accordance for the pressure conditions
in both chambers [131, 132]. Small deviations of up to ∆p =−2.2mmHg occurred, but in
the scope of the time course do not seem to have a big impact.



Chapter 7
Trunk length

To compute blood flow dynamics in the heart, in most research groups, the inlet and outlet
pressures are described at the orifices. In case of the left heart side, this is at the pulmonary
veins and the aorta. However, the veins and arteries are often not segmented from the medical
images, as most tools do not offer an automatic segmentation at least for the pulmonary veins.
In addition, during the acquisition of whole heart stacks, they normally are not included in the
measured data set at all. For this reason and to allow for a straight tube vessel approximation
that minimizes the influence of dynamic processes, the inlet and outlet trunks are commonly
prolonged by straight tubes. The aim is that at the end of the rigid tubes and thus where the
blood enters the left atrium (LA), the flow profile is fully developed and the flow patterns
are not influenced by dynamic flow profile development processes. At the outer end of
these trunks, pressure boundary conditions provided by the circulatory system model are
prescribed.

In this study, we systematically investigate the influence of a variation of the trunk
length on the blood flow in the heart chambers. The aim is to answer the question, how a
variation of trunk length alters LA inflow conditions. Additionally, the effects on the global
fluid dynamics results are assessed. The content of this chapter was presented at the iHeart
"Modelling the Cardiac Function" 2022 conference [133].

7.1 Methods

Three simulation scenarios are implemented: For the reference case, all trunks are initialized
with a reference length l0, which is approximately 95 mm and corresponds to the 6-fold aortic
diameter. Before this study, the length l0 was used as the standard trunk length throughout
the simulations. To systematically evaluate the influence of shortened trunks, the initial
length was reduced by 25 % and 50 %, respectively. Beneath the standard length l0, the two
shortened versions with 0.5 · l0 and 0.75 · l0 result as visualized in figure 7.1.

To assess the resulting flow patterns, a passive scalar transport equation is implemented
as will be introduced in section 14.2.7.2. The scalar ψ is considered as a measure of local
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Figure 7.1: Resulting geometry of the trunks with varied length. Left: Exemplary pulmonary vein com-
paratively visualizing the the different trunk length 0.5 · l0 (blue color), 0.75 · l0 (gray color) and l0 (black
wireframe visualization). Right: Overall geometry of the left heart side as a superposition of the three
trunk length variations.

Figure 7.2: Initialization of the scalar field ψ . All cells in the LA are set to ψ = 1.
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concentration of blood. It is initialized with a value of ψ(x, t0) = 1 for all cells located in the
LA, such that the local washout fraction can be visualized.

In comparison to other applications of the scalar transport equation throughout this thesis,
in this case all atrial cells are set to a value of ψ = 1 at the initialization. Thus, not the
ventricular cells are evaluated but with this choice, flow patterns in the LA directly at the
junction of the pulmonary veins can be analyzed. The initial values of the scalar field ψ are
visualized in figure 7.2.

7.2 Results

The resulting scalar field ψ during the atrial filling phase is shown in figure 7.3. In this
relaxed state, blood from the pulmonary veins passively flows into the LA and mixes with
the initial blood volume. While basically, the flow patterns visually are similar, deviations in
the mixing procedure can be observed. The differences between the shortest and the standard
trunk length are the smallest, only resulting in slight difference in the central area of the
LA. In the scalar field of the 0.75 · l0 trunk, an increased inflow through the right visualized
pulmonary vein can be observed in the cut plane. A small circular vortex develops in the
central region. In the wall region, as well as close to the mitral valve (MV) no changes occur
during the first cycle filling phase.

Figure 7.3: Scalar field ψ color-coded in a cut of the long axis view of the geometry to visualize the flow
patterns in the LA. Time point t = 0.7 s during the atrial relaxation phase. Left: Reference geometry l0,
center: 0.75 · l0 and right: 0.5 · l0.
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Figure 7.4: Scalar field ψ color-coded in a cut of the long axis view of the geometry to visualize the
flow patterns in the LA. Time point t = 0.83 s during contraction of the atrial chamber. Left: Reference
geometry l0, center: 0.75 · l0 and right: 0.5 · l0.

In figure 7.4 the same setup is shown for a later point in time in the cardiac cycle. At
t = 0.83, during the atrial contraction phase, blood is ejected trough the MV in the ventricular
chamber. The transition of the blood volume that initially started in the LA into the left
ventricle (LV) can be observed. While the overall pattern is again similar, the biggest amount
of initial blood volume has already left the atrium during the first heart cycle. Quantitatively,
the washout fraction of the LA is reduced by up to 1 %. Visually, a moderate variation in the
blood flow patterns can be observed, especially in the center of the LA. While in the shortest
trunk geometry (0.5 · l0, right hand side), the amount of remaining blood volume close to
the MV is the highest, in the center geometry, the inflowing blood volume has distributed
directly in the visualized cut plane and forms a big area with blood that entered in the current
cycle. A small fraction of blood that entered in the current cycle is directly ejected through
the MV.

In addition, the time course of the LV pressure is plotted in figure 7.5 to evaluate a
possible influence on the whole left heart simulation. The time course shows an concordant
course for all three trunk length scenarios with deviations smaller than ±2 mmHg for
nearly the whole cycle. The only exception is the begin of the ventricular contraction at
approximately t = 0.7 s. For the trunk shortened by 25 % of the standard length l0, a drop in
the averaged chamber pressure of up to ±2 mmHg in the LA and ±6 mmHg in the LV can
be observed.
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Figure 7.5: Time course of the LV pressure in mmHg for a full heart cycle. The three different trunk
length scenarios are color-coded.

7.3 Discussion

Simulating the flow patterns in the LA for different lengths of the prolonged inflow and
outflow trunks revealed only slight variations in the visual and quantitative evaluation of
the flow patterns. While the washout fraction of the LA is reduced by a factor of up to 1%
(0.75 · l0 compared to l0), it can be argued, whether this low difference is of high relevance.
However, as seen in the visual comparison, the flow patterns changed - even if this is not
adequately reflected in the time course of the values. As the quantitative value is computed
as the sum of ψ over all single cells in the LA, local deviations are neglected.

The differences in the LV pressure simulations can be explained by the shorter distance
between the pressure inlet and the atrial chamber, as the pressures are prescribed at the end
of each trunk. A comparison to the Hagen–Poiseuille equation, which links the pressure
drop in a straight tube to the length of the tube, supports this hypothesis. Therefore, as the
difference between inlet orifice pressure and the mean LA pressure is determined by the
circulatory system model beforehand, the length of the trunks is interrelated to the choice of
the circulatory system model parameters.

Coming back to the questions raised in the introduction, a variation in trunk length has
only limited influence on the atrial flow patterns, as long as a minimum length is maintained.
Flow patterns and pressure curves are changed slightly. Thus, for an optimal simulation
result, the trunk length has to be chosen in accordance with the circulatory system parameters.

All in all, the results highlight the importance of accurate boundary conditions as well as
an accurate interaction of circulatory system and fluid dynamics model. It also indicates that
the optimal length of the trunk has to be computed individually for each geometry and most
notably in accordance with the circulatory system parameters to obtain accurate flow results.
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For further investigation, it has to be considered to which extent the curvature of a bend
trunk influences the inflow conditions, as of course the veins and arteries in the human body
do not form a straight tube geometry. In addition, it would be valuable to determine, to which
extent flexible trunks would alter the flow patterns in the LA. This is especially of interest,
as physiologically the aorta fulfills a Windkessel function to smooth the pressure edges of
the pulsating flow.



PART III

SOLVER VERIFICATION





Chapter 8
Simplified geometry simulation

To verify the moving immersed boundary method (IBM) implementation and parameter-
ization with respect to different aspects of its functionality, four simple either static or
time-dependent test scenarios are set up and evaluated in this chapter. All verification steps
are based on simulated data. The main focus of this chapter lies on 2D patch simulations, as
results can be interpreted more comprehensively. In the last section the extension to a cubic
grid is included to also emerge to the 3D application scenario.

While this introduction presents a short overview over the implemented test cases, it
additionally defines the requirements that are proven in each test setup. In each discussion
part, these requirements are picked up again.

In the first section, the setup of a flat plate scenario is introduced. The static plate is
exposed to a constant flow. Applying the Blasius’ solution, the aim is to verify the developing
boundary layer versus the analytical solution. In the next section, the setup is time dependent:
while the fluid is in rest at the initiation, the plate accelerates and then moves through the
channel with a constant velocity. The symmetric displacement of the fluid and the resulting
laminar boundary layer is verified. Thirdly, the inflation process of the heart is mimicked by
a cylinder that inflates and deflates periodically. While the enclosed volume changes, the
inflow and outflow of the fluid can be modeled. Therefore, it can be verified that the amount
of blood that is prescribed analytically by the shape variation of the cylinder (prescribed by
an analytical function) leaves and enters the channel as calculated (deduced from the change
in the geometry). In addition, the scenario serves to prove that the enclosed blood does not
leave the geometry throughout the wall. This is done on the one hand by demonstrating
a constant flow through the channel, on the other hand the fluid volume leaving the patch
through the input output boundary Ωio outside the channel has to be inverse to it. The third
requirement that can be investigated using this test setup relates to the way the wall movement
is prescribed: on the one hand the distance field Λ can be computed by an analytical function,
on the other hand it can be computed from external geometries. In this context, this section
additionally aims to verify the conformity of both procedures. Finally, the 2D cylindrical
scenario is extended to a 3D inflating sphere to also show the functionality on a higher
dimensional grid. In this section, the aim is to verify that the 2D velocity profiles can be
transferred to the 3D case and that no blood leaves the channel through the wall.
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8.1 Static plate

8.1.1 Simulation setup

In 1904, Ludwig Prandtl introduced the fluid dynamic boundary layer theory as a specialized
field of fluid mechanics. Therefore, he separated the flow in the proximity of a body in two
parts and distinguished between the flow inside and outside of the boundary layer. While in
the outer area friction is neglectable, inside the narrow region close to the wall friction takes a
central role. The conditions inside the boundary layer allow for a simplification of the Navier
Stokes equation (NSE) such that an analytical solution for them can be found [134].

This analytical solution is used in this section to verify the resulting boundary layer
in an infinite channel setup. Therefore, an infinite plate in an infinite channel is set up.
As visualized in figure 8.1 A and B, a thin plate in the center of the computational grid
is prescribed by the IBM. Therefore, with a small distance from the left wall, a velocity
u = 0 ms−1 is prescribed for all plate cells. On the left wall itself, a constant flow of
u = ux = u∞ = 1 ms−1 is prescribed in positive x-direction (inside the channel). Upper and
lower wall are prescribed as symmetry planes and thus do not influence the flow. The right
wall is assigned a zero gradient velocity condition and thus serves as an outlet patch where
the flow can leave the grid. To achieve a high resolution of grid cells, a 0.02 m ×0.02 m grid
with 400 cells in each direction is used.

The analytical solution for the NSE in the context of an infinite plate in an infinite channel
is computed based on the Blasius solution. The thickness δ of the resulting boundary layer
depends on the distance to the beginning of the plate: δ = δ (x). It can be computed based
on the following equation:

δ (x) =
5√
Rex

· x , (8.1)

while the Reynolds number computed as

Rex =
u∞ · x

ν
(8.2)

and uδ = u(y = δ ) := 0.99 ·u∞, as well as the viscosity ν .

8.1.2 Simulation results

The resulting static indicator field Φ is shown in figure 8.1A, as well as in the close-up (B).
The first two cells are not included to not force a zero velocity ux = 0 ms−1 in the plate while
the boundary is set to the constant velocity u∞. The velocity field u (figure 8.1C) reveals the
expected laminar flow profile with a low velocity close to the wall and an unchanged flow
velocity u∞ outside the boundary layer. On the right hand side, a close-up of the flow profile
is shown. The color bar is chosen such that only two discrete values for velocities above or
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below the limit of u = 0.99 ·u∞ result. While in black color the position of the static plate
is denoted, the green line represents the analytically computed Blasius solution following
equation 8.1. The thickness δ of the boundary layer matches the analytical solution with
deviations below the grid size.

Figure 8.1: Top row: indicator field Φ that denotes the position of the infinite flat plate. Bottom row:
resulting velocity field u in ms−1. The right hand side figure delivers a close-up (D) of the area framed
in (C) comprising the indicator Φ in black and the thickness of the boundary layer computed by the
analytical Blasius solution in green.

To further investigate the boundary layer, the velocity ux in flow direction is plotted
over a perpendicular analysis line. While the x-coordinate is kept constant at x = 0 m, the
velocity is plotted over the y-coordinate in figure 8.2. As expected, the velocity equals the
prescribed flow velocity u∞ throughout nearly the whole the grid. In the center of the grid
(y = 0 m), where the plate is cut, a steep decay to the prescribed zero-velocity occurs. As
this decay at the edge (in the proximity of the edge) of the plate is the region of interest, this
area is enlarged in the right part of the figure. While the five black vertical lines mark the
edges of the four cells that model the static plate, the velocity equals ux = 0 ms−1 at each
center of the four grid cells. Due to the cell-to-point interpolation and the linear connection
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between the interpolated points, a velocity ux ̸= 0 occurs in the outer half of the outer cells.
The comparison to the analytical Blasius solution depicted by the green line shows a good
accordance.

Figure 8.2: Velocity ux in flow direction in ms−1 plotted over a line in y-direction (x = 0m). The static
plate is cantered at the position y = 0m. On the right hand side, a zoomed view on the relevant area
is included. The black vertical lines denote the position of the edges of the four cells that model the
static plate. The green curve shows the analytic Blasius solution.

8.1.3 Interpretation and discussion

In the first simplified simulation setup, a static plate in an infinite channel which is flowed
with a constant velocity was implemented. A comparison to the Blasius solution verified the
flow profile to be in good accordance with the analytical solution for the boundary layer.

In the evaluation, it seemed that a velocity greater than zero occurred inside the solid
plate. However, when assessing the velocities, it turned out to be an artifact introduced by the
cell to point interpolation. Nevertheless, this artifact can be further reduced by an increase of
the mesh resolution, as it will always be half the size of the edge length.

Apart from that, following the Blasius solution, the steepest gradient directly has to occur
at the edge of the plate. However, when considering the zero-velocity on the edge of the
plate, this is fulfilled in the current simulations.
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8.2 Moving plate

8.2.1 Simulation setup

The second verification setup is similar to the first one. Again an infinite plate and an infinite
channel are used. However, this time the fluid is in rest and the plate moves with a constant
velocity (after acceleration ended). Therefore, this is the first dynamic verification setup
and the moving IBM approach can be verified. The plate is modeled as a completely solid
medium. While the plate thickness is 0.1 m, the prescribed plate velocity in the channel
direction is ux = 0.005 ms−1. With the start of the simulation, the plate accelerates from rest
until the velocity ux is reached. Afterwards the constant velocity is applied.

8.2.2 Simulation results

The prescribed indicator field Φ is shown on the left hand side of figure 8.3. For three specific
points in its position is shown in shades of red with increasing opacity. On the right hand
side of figure 8.3, the resulting velocity field u2 is plotted for the specific point in time t2.
Despite the angularly shaped plate, a resulting parabola-like flow profile can be observed.
Even if the conditions compared to the first simulation setup are switched (now the wall
moves in a resting fluid), a laminar boundary layer emerges (compare figure 8.1D).

Figure 8.3: Left: Indicator function Φ denotes the position of the plate at three specific steps in time
t1 < t2 < t3. A movement in x-direction from the left edge of the grid towards the right hand side is
prescribed. Right: Resulting velocity field u in m/s for time step t2
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Figure 8.4: Velocity field u in m s−1 for the time step t2 split up in x-component (left) and y-component
(right) of the velocity vector.

Figure 8.5: Difference of the resulting velocity field and the prescribed wall velocity ∆u = Uw −u in
m s−1 for the close-up view of the plate.

In figure 8.4 the components of the velocity vector are split up in x- and y-components.
The x-component ux of the velocity contributes the largest share, while uy is only relevant at
the front of the plate where the fluid is displaced. The results are fully symmetric.

In figure 8.5 the difference of the prescribed and the resulting velocity is shown. The
maximal difference arises at the front end of the plate. However, in relation to the prescribed
wall velocity the difference is smaller than 0.35%.

8.2.3 Interpretation and discussion

In the second simplified simulation setup, a solid plate moves in an infinite channel through
a resting fluid. First of all, the simulation proved that the prescription of a movement by
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applying the wall velocity Uw,i in the IBM setup is enabled. In addition, the prescribed
velocity was achieved in all wall cells, exactly as prescribed. In this fully symmetric
simulation setup, also the resulting flow field proved to show a symmetric behavior.
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8.3 Inflating cylinder

8.3.1 Simulation setup

To further verify the IBM implementation and parameterization in a setup that allows for the
enclosed volume to change and to accelerate and decelerate blood in a periodic manner, an
inflating cylinder scenario is set up. This again covers a really simple scenario on a 2D patch
(2 m x 2 m with the x and y range between -1 m < x,y < 1 m). A circular cylinder with radius
r = r(t) following equation 8.3 is located in the upper part of the quadratic patch around
the center yc. This cylinder is attached to a rectangular channel which connects the cylinder
with the boundary of the simulation domain and thus serves as an in-/outlet channel that
allows for blood being sucked in the cylinder (inflation) or ejected out of it (deflation). The
geometry of the setup is illustrated in figure 8.6.

Figure 8.6: Inflating cylinder schematic. Left: 2D patch from top view, cylinder and attached channel.
Red dashed lines denote minimum and maximum cylinder size. Right: Annotation of the geometric
compartments and variables.

While on the three walls of the patch Ωpatch (left, right and top, marked in light yellow)
a zero velocity boundary condition and a zero gradient pressure condition are applied, for
the inlet respectively outlet boundary Ωio (whole lower boundary, marked in light green) a
zero gradient velocity is assumed and a pressure of 0 Pa is prescribed.
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As the ground truth reference value, the geometric variation of the fluid surface over time
can be computed analytically. The resulting surface A is calculated on the underlying simple
geometries and in dependency of time. While A1 is a circular surface and A2 a rectangle, the
overlapping area A4 has to be subtracted (compare figure 8.6). That can be calculated based
on the triangle A3 and the circle segment A3 +A4 based on the following equations:

r = r(t) = r0 +dr · sin(ωt) (8.3)

γ = 2 ·arcsin(
d

2 · r
) (8.4)

A1 = π · r2 (8.5)

A2 = (yc − r) ·d (8.6)

A3 =
d
2
· r · cos(

γ

2
) (8.7)

A3 +A4 = π · r2 · γ

2 ·π
(8.8)

A = A1 +A2 −A4 (8.9)

The variables denote the initial radius r0 = 0.3 m, radius change dr = 0.15 m, location of
the center point yc = 1.2 m above the lower channel edge, the channel width d = 0.1 m and
the resulting angle γ . The surface change is given by the derivative dA

dt , the resulting surface
flow into the channel can be obtained by multiplying with the patch height h = 0.01 m as

q =
dA
dt

·h . (8.10)

This flow value computed from the variation of the geometrical shape in the following
serves as the ground truth value.

For the computation of the necessary indicator field Φ, a distance field is computed as
introduced in chapter 4. In this geometrically simple scenario, the distance field Λ can be
prescribed analytically for each cell center xi = (xi,yi) based on the Euclidean distance (ED)
to the circular wall:

Λi =

{
|edi − r(t)| yi > yc

|min((xi − xc −0.5d),(edi − r(t)))| else
(8.11)

with
edi =

√
(xi − xc)2 +(yi − yc)2 (8.12)

The wall velocity Uw for each point xi in the directions x and y can be computed based
on the cylinder radius. Velocities Uw are weighed by the sine and cosine function to account
for the circular structure. Therefore the angle γ that each point encloses with the x-axis
is computed by equation 8.15. This method to prescribe the moving wall is based on and
therefore referred to as an analytical function wall prescription.
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r = r(t) = r0 +dr · sin(ωt) (8.13)

∂ r
∂ t

= dr ·ω · cos(ωt) (8.14)

γ = tan−1{yi − yc,i

xi − xc,i
} (8.15)

Uw,x =
∂ r
∂ t

· cos(γ) (8.16)

Uw,y =
∂ r
∂ t

· sin(γ) (8.17)

Alternatively, as introduced in chapter 4, the location of the wall can be prescribed by
external surface files. This way of prescription is additionally used for this simulation setup
to enable a comparison between both procedures. A time series of 300 geometries is supplied
for one periodic inflation and deflation cycle. It is referred to as the external file prescription.

8.3.2 Simulation results

The results for this simulation setup are presented in a triply divided structure: the solution
with the analytically prescribed wall motion (equations 8.11 to 8.17) is visualized on the
left hand side (A) of the figure. In the center (B), the results obtained by the prescription
of the wall movement by external surface files is shown. The image on the right hand side
(C) shows the difference between both methods. Most of the figures focus on the prescribed
boundary and deliver a close-up of the wall region, as the main differences arise there.

In figure 8.7 the resulting distance field is shown. While the distance increases in the
normal direction of the cylinder as expected, the deviations between the two prescription
procedures are low. With a maximum value of |∆Λ|= 0.005 m, the difference between both
methods is lower than half the edge length. The average deviation throughout the wall’s
center line cells is in an even lower range and decays with increasing distance from the center
line.

The resulting indicator field Φ is shown in figure 8.8. While the basic structure is the
same, the deviations observed in the difference ∆Λ of the distance fields (see figure 8.7C)
result in a deviation of the indicator field of up to 6 % (figure 8.8C). The number is that
high due to the sharp decay of the cosine function weighing the distance field (equation 4.3).
Comparing ∆Λ and ∆Φ, the corresponding high value cells can be observed in both figures.

Finally, the resulting velocity field u is shown in figure 8.9. While the basic structure is
the same, close to the prescribed wall deviations of up to 5 mm/s occur.

Figure 8.10 shows the velocity field u for the whole simulation grid. The upper row
shows the inflation of the cylinder with the fluid entering through the channel and spreading
across the two sides of the cylinder. During the deflation process an outflow can be seen in
the lower row. The deviations again occur on a small scale of less than 1 mm/s in average.
While during the inflation process, deviations mainly occur in the enclosed volume, during
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Figure 8.7: Distance field Λ in m. Analytic function (A) and external file (B) prescription as well as their
difference ∆Λ = ΛA −ΛB.

Figure 8.8: Indicator field Φ (dimensionless). Analytic function (A) and external file (B) prescription as
well as their difference ∆Φ = ΦA −ΦB.

deflation they mainly occur in the channel and the wall area. However, in relation to these
velocities, the deviation of below 1 % does not seem to be significant.

The velocity vectors in figure 8.11 show a behavior as expected. While during rapid
inflation (A) the highest velocities occur in the channel due to the fluid sucked in, in the
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Figure 8.9: Velocity field u in m/s. Analytic function (A) and external file (B) prescription as well as their
difference ∆u = uA −uB.

outside area close to the cylinder wall the external fluid is pushed away in a circular manner.
When inflation retards, maximum velocities arise in the cylinder itself before the velocity
inverts due to the transition to the deflation process. Due to the boundary conditions (BC)
for Ωwall the external volume leaves the grid at the lower end Ωio during inflation. The same
or the exactly inverse behavior can be seen in the other figure parts. Even if the figures may
mistake because not every velocity vector is plotted (except for C), the results are perfectly
symmetric. This is proven in (C), which shows exactly the same time step as (D) with the
only difference that all velocity vectors are depicted.

To additionally evaluate the velocity field over time and to account for flow leaking
through the prescribed walls, the flow through the channel is analyzed over time. In fig-
ure 8.12 the flow through the channel is plotted over time for three cut planes perpendicular
to the channel. The location of the slices perpendicular through the channel can be seen in
figure 8.6. The planes are close to the inlet and outlet of the channel, as well as in between.
Additionally, the flow is integrated over the positive and negative flow areas. In the same
way, the sign of the integrated volume distinguishes between an inflow and an outflow
through the channel, where negative values correspond to an outflow of blood. While the
flow nearly perfectly matches the solution calculated based on the underlying geometry
(following equation 8.9), also the integration of the flow delivers convincing results: the
deviation of 0.035 cm3s−1 is small compared to the overall integral. As another verification
step, the fluid volume leaving the computational grid outside the channel is summed up.
While the movement of the cylindrical wall during the inflation process not only sucks blood
into the enclosed surface, the same amount of volume has to be displaced from the outside
area. Following the boundary conditions for the walls, the volume leaves the grid at the lower
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Figure 8.10: Velocity field u in m/s for the whole simulated grid. Analytic function (A) and external file
(B) prescription as well as their difference ∆u = uA −uB. The upper row is extracted during inflation of
the cavity, while the lower row shows the deflation process.

wall Ωio of the grid. For mass balance reasons, the amount of fluid leaving Ωio outside the
channel has to be inverse to the amount entering through the channel. Figure 8.12 shows the
flow outside the channel in green color and verifies that this condition is fulfilled throughout
the whole time series.

Computing the volume difference obtained by the integration of the flow and using the
averaged flow over the last two corresponding cycles (annotated in figure 8.12) delivers

50.303cm3s−1 −50.268cm3s−1

50.268cm3s−1 =
0.035cm3s−1

50.268cm3s−1 = 6.96 ·10−4 < 0.07% (8.18)

Deviations in this order of magnitude are neglectable compared to other influences.
In figure 8.13 the comparison between the analytically and the externally prescribed wall

is shown. For both scenarios, the flow through the cylinder is analyzed in three different
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Figure 8.11: Vector plot representing the velocity u across the whole grid in ms−1 in different phases.
The upper row shows the inflation process (fast inflation (A) and retarding inflation (B)), while the lower
row figures are taken during deflation (beginning deflation (D) and rapid ejection (E)). On the left hand
side (C) a zoom view is shown in which a velocity vector is included for each single cell.

heights (in relation to the inlet surface, for the exact position in the grid see figure 8.6A) to
ensure that no fluid is lost throughout the channel. The different heights do not imply any
difference, as the lines fully overlap. The deviation between the analytic and the externally
prescribed geometry is so little that it can hardly be recognized.

In the last simulation setup with focus on the inflating cylinder geometry, the shape of the
prescribed wall is optimized. Up to now, the round cylinder and the rectangular channel are
simply assembled side by side to one another. This results in a square edge at the transition
from the cylinder to the channel. Thus, the fluid has to flow around a sharp corner when
entering the cylinder and recirculation may be supported. Therefore, a smooth transition from
the channel geometry to the circular cylinder shape is introduced. The resulting indicator
field is shown in figure 8.14B. The influence on the velocity field is shown in the two bottom
rows of figure 8.14. On the left hand side of the figure, the standard geometry is shown,
while on the right the results for the optimized shape are depicted.

It can be seen, that during deflation (center row in figure 8.14) higher velocities occur in
the transition area from the cylinder to the channel if the sharp edges are used (C). Especially,
the acceleration of the ejected fluid occurs already at a higher position in the channel. With
the smoothed transition area also the resulting flow field is smoothed. The flow follows the
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Figure 8.12: Time resolved flow resulting in the channel in cm3s−1. The numbers above the time course
denote the flow integrated over time for a plane perpendicular to the channel inflow and outflow,
located close to the lower end of the channel (y = −0.9m). While positive signs of the integrated
volume denote an inflow in the cylinder, the negative sign indicates an outflow.

Figure 8.13: Time resolved flow resulting in the channel in cm3s−1. Comparison of different cut plane
heights along the cylinder and for the analytic function and the external file prescription geometry.

shape prescribed by the wall. During inflation the same phenomenon can be observed in a
less strong occurrence. While the fluid enters through the channel, the spread throughout the
cylindrical shape starts with a minimal offset in height (E). The transition from channel to
cylinder geometry is more smooth in the optimized wall (figure 8.14F).
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Figure 8.14: Upper row: indicator, lower and center row velocity in m s−1. Comparison of round and
edge corners.
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8.3.3 Interpretation and discussion

Simulating a periodically inflating and deflating cylinder geometry, a first simplified 2D
scenario simulated under similar conditions as required by the deforming left ventricle (LV)
in 3D cardiac simulations is evaluated. While the deformation of the fluid boundary triggers
an inflow or an outflow of fluid through the attached channel by the change of the enclosed
volume, the simulation setup showed that blood is sucked into the cylinder (or pushed out
of it) in a periodical manner as expected. If no deformation of the geometry is prescribed,
the flow also comes to a still-stand. Thus, the basic functionality of the heart to drive blood
through the circulatory system like a mechanical pump is fulfilled. Also the resulting flow
patterns show the expected behavior: The maximum flow velocity is reached in the channel
during deflation as well as during inflation phase due to the lower width compared to the
cylinder. A laminar flow profile with a decay towards the channel walls in x-direction can
be observed. Additionally, during the inflow of the fluid a half-circular distribution towards
the wall occurs from the top of the cylinder towards the lower ends, while the wall moves
outwards. On the left and the right hand side of the inflow jet, a stasis area occurs on the
horizontal center line of the cylinder, as the fluid continues to flow in y-direction due to mass
inertia. During deflation, the stasis area is located in the center of the cylinder as the fluid is
symmetrically pushed into the channel due to the movement of the constraining walls.

This simulation scenario proved, that no flow leaves the geometry throughout the walls.
Thus, a major requirement towards the application of the IBM solver for cardiac modeling is
fulfilled.

Additionally, the simulation results clearly show that the deviations between the analytic
and the externally prescribed geometry are only present on a really small scale. These
deformations are induced by the mesh resolution of the constraining surface file and could
be further decreased by a decrease of the edge length in the prescribed geometry. Another
possibility would be to increase the grid mesh resolution, as the deviation between the
cell center and the prescribed geometry can be decreased further. However, the deviations
between the two methods are already below the mesh resolution in every time step and thus
neglectable compared to other mesh resolution errors. Therefore, a further harmonization of
the compared wall prescription methods does not yield any further benefit.

In both cases, with a wall prescribed by the analytical function as well as a wall prescribed
by the external files, the resulting flow meets the ground truth flow nearly perfectly at each
point in time of the periodic cycle. Thus, the simplified simulation setup of the 2D inflating
cylinder proves the basic fulfillment of all relevant requirements for modeling a moving wall
by the IBM approach.
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8.4 Inflating sphere

8.4.1 Simulation setup

This simulation setup is the next step in dimension compared to the inflating cylinder
geometry presented in 8.3: The circular 2D cylinder geometry that models the blood cavity
is extended to a 3D shape. While the inflating cylinder is replaced by a sphere with the same
radius r, the channel that supplies the inflow and outflow is replaced by a cylinder. This
cylinder is the 3D equivalent of the channel and covers the radius rc. The underlying basic
grid is extended to form a cube with equal sides. The mesh is utilized in a block structured
implementation with a refinement of second order (one cell is divided in 4× 4 = 16 cells) in
the whole internal area. The grid orientation is set in correspondence with the 2D case: To
ensure comparability, the cylinder height is furthermore oriented in y-direction. The circular
diameter of the cylinder is thus located in the x-z plane.

In this geometrically simple setup, the ground truth solution for the expected flow again
can be calculated analytically by the variation of the geometrical surface. The volume of the
inflating sphere, as well as the volume of the flow supplying cylinder have to be summed up.

V =
4
3

πr3 +π(rc −
w
2
)2 · (ym − r)−Vr,h (8.19)

In the overlapping region, the volume of the spherical segment Vr,h is subtracted based
on the height h of the segment.

Vr,h =
π

3
·h2 · (3r−h) (8.20)

h = r−
√

r2 − r2
c (8.21)

The resulting flow in the channel can be computed based on the derivative ∂V
∂ t .

Switching to a 3D sphere causes the volume change and thus the expected velocity to
change proportional to the third power of the radius (q ∝ r3). If the cylinder radius rc is
chosen to be equal to the half channel width (0.5d), the velocity in the cylinder (q ∝ r2

c ) will
exceed the velocity in the inflating cylinder test case scenario. This is not intended, as the
Reynolds number would increase (re>100) and turbulent influences may occur. Therefore,
the radius rc of the cylinder is adapted, such that the expected flow is in the range of the 2D
inflating cylinder scenario. This also allows a comparison of the resulting velocity profiles
between the 2D and the 3D case. The radius rc is calculated based on the resulting cylinder
surface Ac. The velocity uc through the cylinder is prescribed. As the main geometrical
changes appear in the inflating sphere itself, the overall volume can be approximated by
the sphere volume to simplify the computation of the expected flow (only for the radius rc

calculation, not for the ground truth).
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This results in:

V ≈ 4
3

πr3 =
4
3

π(r0 +dr · sin(ωt))3 (8.22)

∂V
∂ t

≈ 4π(r0 +dr · sin(ωt))2 ·dr ·ω · cos(ωt) (8.23)

uc ≈
∂V
∂ t

· 1
Ac

(8.24)

For the initial time step t0 = 0, in which the maximal flow through the channel occurs
(due to cos(ωt0) = 1), the velocity uc results as

uc ≈ 4r2
0 ·dr ·ω · 1

r2
c
. (8.25)

Assuming a flow uc ≈ 0.25 m/s to allow comparability with the 2D case, the radius of the
cylinder can be computed based on equation 8.25 as r′c = 0.15 m. However, it has to be taken
into account that this is the necessary effective radius which must be available to the flow.
Due to the thickness of the impermeable wall cells located inwards from the wall center line
(half the wall thickness as found in section 4.3), the effective value has to be multiplied with
the correction factor resulting from table 3.2:

rc =
r′c

76.7%
=

0.15m
76.7%

= 0.2m . (8.26)

The radius r of the sphere is adjusted to always meet the cylinder width at least, such
that

r(t) = max(r(t),rc) . (8.27)

The wall position and the wall velocity Uw are again prescribed by an analytical function
in this simulation setup. The underlying distance field Λ is calculated based on the following
equations.

Therefore, the ED introduced in equation 8.12 is extended in the third dimension for
each cell center xi = (xi,yi,zi):

edi =
√

(xi − xc)2 +(yi − yc)2 +(zi − zc)2 . (8.28)

The distance Λ results in analogy to equation 8.11 under consideration of the condition
in equation 8.27:

Λi =

{
|edi −max(r(t),rc(t))| yi > yc

|min((
√

(xi − xc)2 +(zi − zc)2 − rc),(edi − r(t)))| else
(8.29)

The indicator field Φ is calculated from the distance field Λ as previously, following
equation 4.3. The wall velocity vectors are assigned based on the change of the radius r(t)
as introduced in the 2D case in equation 8.13 also considering the extension to the third
dimension:
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γ = tan−1{yi − yc,i

xi − xc,i
} γ1 = tan−1{xi − xc,i

zi − zc,i
} (8.30)

γ2 = tan−1{ zi − zc,i

xi − xc,i
} γ3 = tan−1{yi − yc,i

zi − zc,i
} (8.31)

Uw,x =
∂ r
∂ t

· cos(γ) · sin(γ1) (8.32)

Uw,y =
∂ r
∂ t

· sin(γ) · sin(γ3) (8.33)

Uw,z =
∂ r
∂ t

· cos(γ3) · sin(γ2) (8.34)

8.4.2 Simulation results

In figure 8.15 the cubic grid is cut in x- and z-direction through the center point of the grid.

Figure 8.15: 3D grid with cut planes in x and z direction. Left: distance field Λ in m. Right: indicator
field Φ computed from the distance field.
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On the left hand side of the grid the distance field Λ is plotted, while on the right hand
side the resulting indicator field Φ is shown. While the grid edges are visualized in the right
part, the refined area can be seen. Distance and indicator field match the 2D case with the
exception that the 3D channel is wider, as it was prescribed by the analytical function.

In figure 8.16 the cubic grid is clipped along the z-axis and depicts the indicator field with
the cell edges being visible. In addition, in x-direction the indicator field with a threshold
value of Φ > 0.2 is shown, resulting in the half-spherical reddish shape. While the inner cells
are dark red, with a rising distance from the wall’s center line, the indicator value decreases.
Finally the prescribes wall velocities Uw are depicted by vectors on top of the spherical
surface. All in all, the fully symmetric results reproduce the 2D case in 3D as expected.

Figure 8.16: 3D grid with cut planes in x and z direction. Indicator function Φ plotted with underlying
grid edges in z-plane (right hand side). In the x-plane, the thresholded indicator (Φ > 0.2) field resulting
in a cut spherical red shape is shown. Additionally, the resulting vectors of the prescribedwall velocities
are shown.
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Figure 8.17: Prescribed wall velocity Uw magnitude, split up in the three spatial directions
Uw,x(le f t),Uw,y(center) and Uw,z (right) in ms−1. For easier comparability, all grid cells are thresholded
such that Φ > 0.8 and the same view angle is kept for all directions.

The wall velocities Uw as computed in equation 8.34 are visualized on the geometry
in figure 8.17. For better comparability, only the wall cells (Φ > 0.8) are visualized. The
maximum velocities of Uw,max are reached for the highest distances in the respective direction
- either in positive or negative direction. In central areas (e.g., for a point xi ≈ 0) the resulting
velocity in the corresponding direction equals zero (Uw,x = 0). The resulting fields again are
completely symmetric.

Figure 8.18: Time course of the flow through the cylinder in cm3s−1. While positive values denote
an inflow of fluid through the cylinder into the sphere (inflation process), negative values correspond
to an outflow. The flow is plotted in different heights from the channel end (compare 2D inflating
cylinder scenario) to evaluate the loss throughout the cylinder walls. All values are compared against
the computed ground truth (equation 8.19) and the inverted flow leaving the computational grid outside
the channel.



8.4. Inflating sphere 91

The time course of the flow through the supplying cylinder is shown in figure 8.18. While
positive values denote an inflow into the sphere (during inflation), negative signs arise in
the deflation process when blood is ejected out of the sphere. Flat areas (no flow) denote
the phases, in which the minimum sphere radius (equal to the cylinder radius, r(t) = rc) is
reached due to the constraining equation 8.27. The three different heights located close to the
front and the end of the cylinder, as well as in between (compare also the 2D inflating cylinder
case in figure 8.6) are evaluated. While no deviation at all can be seen in the comparison
of the three evaluated heights, no fluid leaves the cylinder through the wall. Therefore, the
impermeability of the wall is proven. Additionally, the comparison with the ground truth
value computed based on equation 8.19 delivers accordant results. Small deviations at the
start of the simulation vanish after the first full cycle. Thirdly, the comparison with the fluid
volume that leaves or enters the inlet and outlet surface Ωio outside of the cylinder is drawn
(purple line). While this flow is inverted compared to the flow entering and leaving through
the cylinder, both magnitudes agree. This again proves correctness of the inflow and outflow
volumes as well as the impermeability of the wall.

Figure 8.19: Flow through the attached channel for a series of four cycles. In addition, integration of
the flow in the compartments.

In addition to this, the integration of the flow through the cylinder is evaluated in the last
two cycles of figure 8.19. Comparing the inflow volume to the outflow volume shows an
agreement also in the 3D inflating sphere scenario. The deviation between the volumes is in
a low range and smaller than 1.2%.

Finally, the velocity field u of the inflating sphere scenario is compared with the 2D
inflating cylinder scenario (left hand side) in figure 8.20. The resulting flow patterns are
of the same basic appearance, while at specific locations varied effects can be observed.
Comparing the begin of the inflow phase (top row), the velocity in the 3D scenario (B)
is higher. This is the case, even if the supplying cylinder is enlarged compared to the 2D
channel and is due to the faster volume change in the 3D scenario. However, the expected
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Figure 8.20: Comparison of the velocity field u in the 3D inflating sphere scenario (right hand side) to
the 2D inflating cylinder scenario (left hand side). Three specific points in time are shown exemplary:
during the begin of inflation (top row) and towards the end of the inflation process (center row), as well
as during deflation (bottom row).

pattern with the maximum velocity in y-direction that leaves the supplying cylinder and then
spreads in a circular manner towards the wall is retained in the 3D scenario. This holds true
also for the end phase of the inflation process (center row of figure 8.20). While the velocity
magnitude in the 3D case is higher than in the 2D case, areas with nearly resting flow occur
close to the maximum velocity inflow area. During deflation (bottom row) maximum flow
velocities can again be observed in the outlet cylinder (F) and channel (E). The fluid ejected
in that phase is in both scenarios accelerated directly in the wall area and thus a resting fluid
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Figure 8.21: Velocity uy plotted over the spatial coordinate in y-direction starting from the bottom of
the computational grid (y = −1 m). The x-coordinate is set to x = 0 m, as well as the z-coordinate
z = 0 m in the 3D scenario. Comparison for two different points in the cycle (deflation and inflation), as
well as for the 2D scenario and the 3D scenario. The dashed vertical lines denote the position of the
prescribed wall (inflation in black, deflation in blue color). The horizontal line denotes the prescribed
velocity in the same color than the wall position.

region forms in the upper part of the deflating sphere, respectively cylinder. In the deflating
sphere (F), the region is smaller due to the higher speedup of the fluid.

For a direct comparison, the fluid velocity uy in the y-direction is plotted over a line
(y ∈ (−1,1) m, x = 0 m and z = 0 m) in figure 8.21. The location of the prescribed wall is
denoted by dashed vertical lines, while the prescribed velocity in this region is visualized
by the solid horizontal lines for the inflation process (black color) and the deflation process
(blue color). On the right edge of the figure, in all cases the prescribed velocity at the edge
of the computational domain uΩpatch = 0 ms−1 is met. The prescribed wall velocities Uw are
perfectly met in the center of each wall. Towards the ends of the prescribed walls, where the
prescribed indicator Φ already decays, an increase (respectively decrease) in velocity can be
observed. After a transition phase through the 2D cylinder or the 3D sphere volume a steady
flow through the 2D channel respectively the 3D cylinder occurs. It can again be confirmed
that the flow magnitudes vary, while the overall basic structure corresponds the expected
profiles in both cases.
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8.4.3 Interpretation and discussion

In the inflating sphere scenario, the 2D inflating cylinder scenario was successfully extended
to the 3D grid. While the flow patterns observed in the 2D setup have been reproduced in the
3D simulations, a good accordance with the expected flow computed from the geometric
volume changes was proven. The integration of the in- and out-flowing fluid volume showed
a good accordance and no flow left the geometry through the prescribed moving walls.

However, the loss of the effective volume that is introduced by the prescription of the
wall velocity has to be considered.



Chapter 9
Grid independence study

9.1 Methods

To ensure that the chosen grid resolution does not falsify any results, its influence on the
simulated quantities is assessed in this chapter. Therefore, the previously introduced 3D
setup of the inflating sphere scenario is analyzed regarding varied mesh resolution. The
underlying cubic computational grid is kept constant at the size of 2 m × 2 m × 2 m.
The basic resolution for all scenarios is 50 cells in each grid direction, resulting in a basic
edge length of 4 cm. In the relevant region of the sphere, this basic edge length (refinement
level 0) is refined. In each refinement step, the concerned cells are divided in two cells in
each coordinate direction, resulting in 23 = 8 refined cells per initial cell. The resulting edge
length and the total number of cells for the three investigated refinement stages are listed in
table 9.1. The setup previously evaluated in section 8.4 corresponds to refinement level 2 and
is referred to as the standard resolution. Accordingly, refinement level 1 is a coarser mesh
and refinement level 3 a more fine mesh.

refinement level cell division edge length in cm number of cells number of nodes
1 8 2 190,128 203,233
2 64 1 722,100 757,458
3 512 0.5 4,924,144 5,048,498

Table 9.1: Quantitativemeshmetrics for the three refinement stages of the 3D inflating sphere scenario.
In one refinement step, each concerning cell is divided in 23 = 8 cells.

9.2 Results

To ensure comparability to previous result sections, the 3D grid is always clipped centrally
along the z-axis (z = 0 m). In all result figures, in which quantities are plotted across the

95
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inflating sphere geometry, the standard case (refinement level 2) is visualized in the center
column, while the coarse mesh (refinement level 1) is shown on the left and the fine mesh on
the right hand side.

The resulting grid resolution for the three refinement stages, as well as the refined area is
visualized in figure 9.1, highlighted by the dark blue cell edges. In addition, the resulting
indicator field Φ is color-coded in this figure. In the coarse mesh, only two neighboring cells
form the wall of the supplying cylinder (in x-direction). Thus, a cosine-shaped decay of the
indicator field as prescribed by equation 4.3 is not possible: the maximum value of Φ = 1 is
not reached in the cylinder wall. In the sphere wall region, Φ does not fulfill the requirement
of two diagonally connected cells with an indicator field value Φ > 0.5. Thus, flow may
leave through the wall.

In comparison, the fine grid on the right hand side enables a higher resolution of the
cylinder wall cells: In x-direction 8 cells model the wall and enable for a graded indicator
field. On the one hand, this allows a more detailed modeling of the wall. On the other hand
it would allow for a reduction of the wall thickness w prescribed in equation 4.3. However,
in comparison to the standard resolution, the indicator field Φ of the fine grid does not reveal
significant shape differences.

Figure 9.1: Resulting indicator field Φ for the three refinement stages. Left: coarse mesh, center: stan-
dard mesh, right: fine mesh. In the background, grid size and refinement area are highlighted by the
dark blue cell edges. In the respective right corner, a close-up of the cylinder wall indicator field is
shown.
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Figure 9.2: Resulting velocity field u for the three refinement stages in m s−1. Specific point in time
during inflation. Left: coarse mesh, center: standard mesh, right: fine mesh.

Figure 9.3: Resulting velocity field u for the three refinement stages in m s−1. Specific point in time at
the beginning of the deflation phase. Left: coarse mesh, center: standard mesh, right: fine mesh.
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Figure 9.4: Resulting velocity field u for the three refinement stages in ms−1. Specific point in time at
the end of the deflation phase. Left: coarse mesh, center: standard mesh, right: fine mesh.

In figure 9.2, the resulting velocity field is plotted for the corresponding cut plane during
the inflation of the sphere geometry. Between the standard and the fine geometry, almost
no difference can be observed. While the jet seems to penetrate deeper into the sphere
area of the fine grid simulation, a horizontal line shows the contrary and confirms the same
penetration distances. This phenomenon also affects the coarse mesh result. However, in
this case additionally the low resolution contributes to this effect. The velocity in the coarse
mesh is slightly reduced compared to the other cases. The overall shape of the fluid patterns
with the spread towards the sphere wall is obtained in all grids.

Figures 9.3 and 9.4 show the velocity fields during the deflation of the sphere. Again,
all grid resolutions show the same overall flow patterns as expected. However, close to the
end of the deflation phase (figure 9.4) the velocity in the coarse mesh is slightly reduced
compared to the other cases. Between the standard and the fine grid resolution, no difference
is observed.

Finally, the time course of the flow through the cylinder is shown in figure 9.5. While
all lines are symmetric, only the standard grid resolution matches the ground truth solution
perfectly. In the coarser mesh, the computed flow rate is slightly increased. On the other
hand, the flow rate is slightly decreased in the finer mesh. As discussed in the following
subsection, this may occur due to a variation in effective cylinder diameter. The plateau
phases in which no flow leaves or enters the cylinder are due to the minimum sphere radius
(equal to the cylinder radius, r(t) = rc), caused by the constraining equation 8.27 as explained
in section 8.4.
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Figure 9.5: Time course of the flow through the cylinder for the coarse, standard and fine mesh resolu-
tion. For comparison, the geometrically computed ground truth solution is shown in red color (overlaps
with the standard mesh).

To conclude this study on the grid resolution influence, the consumed computational
resources are listed in table 9.2. All simulations were carried out on the bwUniCluster (2.0)
to use the parallel computation infrastructure. In each case, a division in 4×4×4 blocks
was applied, resulting in a parallel computation using 64 cores. Simulation duration includes
two and a half deflation and inflation cycles (as shown in figure 9.5), up to t = 150 s. The
listed job wall clock times include the decomposition and reconstruction of the grid.

refinement level number of cells wall clock time in hh:mm:ss
1 190,128 00:18:16
2 722,100 00:54:33
3 4,924,144 09:42:54

Table 9.2: Consumed simulation resources for coarse, standard and fine mesh resolution.

While the standard mesh grid including 720,000 cells is computed in below one hour,
the fine grid results needed the ten fold amount of computational time. The coarse mesh was
simulated completely in below 20 minutes.
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9.3 Discussion

Concerning the visual comparison of flow patterns and the resulting velocity fields, no
significant difference is observable while comparing the three mesh refinement stages. Even
while evaluating the coarse grid, which revealed significant differences in the resulting
indicator field Φ in figure 9.1, only slight variations in the velocity magnitude can be
observed. However, comparing the flow rates over time (figure 9.5), a systematic offset of
up to 5% can be observed between the three grid refinement stages. These deviations may
be caused by the variations in the effective diameter of the supplying cylinder geometry.
While the indicator field Φ is computed from the very same distance field Λ in all scenarios,
the refinement level has an influence on the resulting indicator field distribution and also
the resulting radius of the channel rc,eff. Even if the parameter w is kept constant while
computing Φ based on equation 4.3, the center of the coarser mesh grid cells may already be
outside the assumed threshold w. Thus, in the coarser grid, the higher edge length leads to a
wider channel diameter, resulting in a lower absolute velocity but a higher flow. The wall
is effectively thinner. This phenomenon arises the other way around in the fine mesh and
explains an increased flow rate while the velocity magnitudes are the same. Because the wall
thickness is already considered in the computation of the geometrical ground truth solution,
it matches the standard grid resolution best.

Summing up, mesh resolution did not play a key role for the resulting flow patterns in
the investigated scenarios. With all considered resolutions, global effects were successfully
reproduced. However, when comparing absolute values, this has to be done with caution,
taking into account the variation in effective volume deviations and geometrical diameters
resulting in increased or decreased volume flow rates. Concluding, the finer mesh did not
reveal a benefit over the standard mesh resolution. As the standard mesh requires less than
one tenth of fine grid computation time and way less memory, the standard resolution is
preferred compared to a finer grid.



Chapter 10
3D heart simulations

As motivated in the introduction of chapter 4, one of the aims of this thesis project is the
assessment of a fluid dynamics solver based on the immersed boundary method (IBM) to
model the fluid dynamics in the human heart. While up to now, only simplified scenarios have
been evaluated, the 3D geometry of the left part of the human heart is assessed in this chapter.
Therefore, blood flow dynamics are simulated in a realistic 3D heart geometry obtained from
measurement data. The assumed boundary conditions and prescribed geometric surfaces are
obtained from the mechanical simulation framework. Fluid and pressure boundary conditions
(BC) are prescribed based on the simulation results of the circulatory system. To verify the
results, a comparison to the body-fitted mesh representation is drawn.

10.1 Methods

Simulations are carried out on a 3D cubic grid of the size 0.225 m × 0.19 m × 0.245 m
with a basic edge length of approximately 6 mm. The fluid boundary is prescribed as in the
scenarios evaluated before and immersed into this grid. To accurately model the areas of
interest with a high enough resolution, the cells in the wall region, as well as in the valve
region are refined. As the wall moves throughout the cardiac cycle, the diastolic and the
systolic geometry are both used to define the refinement area. This process ensures that
no additional dynamic remeshing is necessary and still all cells in the wall region are fine
enough. The fluid boundary is prescribed by a series of 250 external stl geometries which
model the endocardial wall movement throughout the whole cardiac cycle. The geometry
consists of a single closed surface to model the whole left side of the heart. It comprises the
left ventricle (LV) and left atrium (LA) endocardial walls, as well as the outer hull of the
mitral valve (MV). In addition, the pulmonary veins, as well as the aorta are included with
the prolonged trunks. For modeling the IBM scenario, the length of the trunks is increased
such that the surface of the cubic mesh grid is cut. All necessary underlying geometries result
from the mechanical simulation framework implemented by Fritz et al. [110]. The applied
external surface file exemplary is shown for the initial state (end diastole) in figure 10.2.
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Following the procedure suggested in chapter 4, the distance field Λ is computed based
on the Euclidean distance (ED) between each cell center and the constraining geometry. The
indicator field is computed based on equation 4.3 assuming a wall thickness of w=0.004 m.

Beneath introducing the simulation setup and results, one aim of this chapter is to compare
the fluid dynamics solver based on the IBM to the previous body-fitted implementation.
Taking into account the findings of chapter 8, for a comparison between both solvers, the cells
constrained by the wall velocity prescription have to be considered, as they do not contribute
to the flow any more. Thus, instead of the full enclosed volume, the effective volumes have
to be aligned between the two scenarios. To enable a comparison, the prescribed endocardial
surface wall is inflated in normal direction. After ensuring that all face normal vectors nf

point outwards of the geometry, for each grid point i, the point normal vector np,i is computed
as the average of all face normal vectors nf adjoining the point. The shifted point position xi

can be computed from the initial position x0,i as

xi = x0,i + cinf ·np,i , (10.1)

under consideration of a constant scaling factor cinf which by default is chosen to meet
the half wall thickness cinf = 0.5 ·w.

As the length of the trunks necessarily had to be increased to cut the edge of the
computational domain, the prescription of the pressure at the inlet and outlet surface can
no longer be applied. Based on the findings in chapter 7, instead of the pressure boundary
conditions, the adequate flow is prescribed at the inlet and outlet surface. Therefore, the flow
simulated by the circulatory system is prescribed in normal direction of the inlet and outlet
surface. The computed normal vectors are visualized in figure 10.2. In addition, the outlet
pressure is prescribed at the end of the aortic trunk.

Both valves are represented by 3D geometries and immersed into the grid as introduced
in chapter 6. For the MV, the Linköping valve is assumed while for the aortic valve the 3D
planar valve model is used.

For a simplified comparison, as well as the assessment of the effective volume which is
not constrained by prescription of the wall velocity, a mapping field κ , which can take three
discrete values and is also referred to as denoting the inside cells, is introduced:

κ =


1 cell inside the prescribed wall and Φ = 0

0.5 cell inside the prescribed wall and Φ > 0

0 else

(10.2)

Thus, all cells with κ = 1 contribute to the effective volume, while the cells with κ = 0.5
have the velocity of the prescribed wall. If a threshold filter is applied to hide all cells with a
value of κ > 0.5, the remaining cells correspond to the compared body-fitted implementation.

To assess flow patterns as well as to evaluate the fraction of the initial blood volume that
remains in the LV, a passive scalar transport equation is implemented as will be described in
section 14.2.7.2. The scalar ψ is considered as a measure of local concentration of blood. It
is initialized with a value of ψ(x, t0) = 1 for all cells located in the LV.
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10.2 Results

In the first subsection, the resulting geometries, as well as the scalar fields necessary to
compute the wall movement (distance Λ, inside κ and the indicator field Φ) are shown. In the
two following subsections, the comparison between the IBM solver results and the existing
body-fitted mesh approach is carried out.

10.2.1 Resulting geometry

In figure 10.1, the cubic computational grid is visualized. On the right hand side of the
figure, the endocardial surface in the diastolic state is shown in red color. It determines the
maximum LV size and thus forms the outer limit for refinement. The smallest LV volume
results during systole, which is the point in the cardiac cycle that corresponds to the green
endocardial surface. All cells around and in between these two layers are refined by a factor
of 2, resulting in 64 cells per original cell. The MV position is visualized in orange, while
the aortic valve is colored purple. The region around both valves is refined with a factor
of 3, resulting in 512 cells per initial cell, which corresponds to an average edge length of
approximately 0.75 mm. The cell edges shown in dark blue color show the refined cells. All
in all, the model comprises 741,345 volume elements.

Figure 10.1: Grid for the IBM simulations of the left heart side. Left: 3D cubic grid with the edges visu-
alized in dark blue color. Right: Cut in long axis direction through the 3D grid. The cell edges visualize
the refined areas, while in red and green color the surfaces used for the refinement are depicted. The
prescribed endocardial surface in the diastolic state (red) denotes the maximal size of the LV, while the
systolic state (green) results in the smallest volume. The MV position is illustrated in orange, while the
aortic valve is colored purple.
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Figure 10.2: Prescribed endocardial geometries which are immersed in the cubic grid. Left: Results of
the inflation of the left ventricular geometry. While the initial geometry is shown in light gray color,
the inflated geometry is shown in dark blue (in the front part as a wireframe, in the back in surface
representation). Right: The inlet and outlet normal vectors are depicted by lines through the origin of
the grid.

Figure 10.3: Resulting scalar fields for the first time step (t = 0.01 s): On the left hand side the distance
field Λ in m is mapped on the grid that is cut in long axis direction. On the right hand side, the inside
field κ is plotted for all cells with κ > 0. In addition, the geometry is clipped in long axis direction to
distinguish the wall cells from the effective volume. In the center, the indicator field is plotted for all
cells that fulfill the condition κ > 0.

Figure 10.2 shows the original (light gray color), as well as the resulting inflated endo-
cardial surface geometry for the wall prescription. On the right hand side of the figure, the
resulting normal vectors for the inlet and outlet surfaces are depicted.
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Figure 10.3 provides an overview of the resulting scalar fields which are relevant to
model the moving boundary wall. On the left hand side, the distance field Λ denotes the ED
of each cell center to the closest point or vertex in the constraining endocardial surface. On
the right hand side, the introduced scalar field κ marks all cells enclosed by the prescribed
wall. While all cells with a sufficient distance to the wall contribute to the effective volume
and are not constrained by any velocity prescription, they are marked with an inside value
of κ = 1. Cells that have a prescribed wall velocity are marked with κ = 0.5. By applying
a filter that excludes all cells outside the moving wall (κ = 0), the shape similar to the
body-fitted approach is extracted. In the center panel, the indicator field deduced from the
distance field is plotted. As expected, it shows a decay from the outside (Φ = 1) towards the
inside (Φ = 0) of the geometry.

10.2.2 Geometry comparison

In this section, a comparison between the resulting geometries is included.

Figure 10.4: Comparison of the resulting IBM geometry, filtered by κ > 0.5 (right), to the body-fitted
mesh formulation. Color-coded is the initial distribution (t = 0.01 s) of the scalar field ψ , which marks
all cells located in the LV with ψ = 1.

In figure 10.4 the filtered (κ > 0) IBM mesh is visualized on the left hand side. It visually
corresponds to the body-fitted mesh on the right hand side. A small deviation can be seen in
the pulmonary vein on the left (closest to the aortic trunk): As the scalar fields are computed
in the first time step, the geometry visualized here corresponds to the first exported time step
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Figure 10.5: Comparison of the resulting LV geometries cut along the long axis, in front and back
perspective. The IBM result which is shown in blue color is compared to the gray body-fitted cells.

at t = 0.01 s. The color coded initialization value for the scalar field ψ , as well as the shape
of the ventricular chamber also look concordant.

However, a more detailed view of the LV is shown in figure 10.5, which offers a long axis
cut through the two superposed ventricular chambers from the front and from the back view.
The IBM geometry is visualized in blue, while the body-fitted mesh is colored in light gray.
While an overall accordance between both geometries can be confirmed, many blue edges
penetrate the gray surface. As the smooth body fitted shape is approximated by the cubic
cells in the IBM approach, this behavior is intended. However, considering that the volume
should fully be approximated by the cubic cells, the penetration should even be higher. In
addition, in the region around the valves, the blue cubic cells are not included up to the edges
of the endocardial walls.

An integration of the volume of all cell located in the LV confirms this observation: In
the diastolic state, the IBM models yields a volume of 165 ml in comparison to 184 ml of the
body-fitted mesh. This offset remains more or less constant and results in volumes of 125 ml
and 144 ml respectively in the systolic state.

10.2.3 Fluid quantities comparison

Finally, the fluid quantities comprising the velocity u, the pressure p and the flow patterns
based on the scalar field ψ are evaluated. To simplify the comparison, the body-fitted data is
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always plotted on the left hand side of each figure, while the results obtained based on the
IBM model are represented on the right.

Figure 10.6 visualizes the flow patterns computed based on the passive scalar transport
equation. In both geometries, a clear jet towards the apex can be observed with a clear
focus on washing out the upper two thirds of the chamber. While in the body fitted mesh, a
circular vortex forms in the center of the chamber, a considerable fraction of initial blood is
retained in this region. In the IBM mesh, a more straight jet towards the apex can be noticed,
whereas it does not penetrate as deep towards the apex as in the body-fitted case. Due to the
movement of the wall, in the IBM case the fluid close to the wall is not in complete rest any
more. In the aortic trunk, the resulting laminar flow profile can be seen quite well in the IBM
geometry.

Similar flow patterns are obtained during the systolic state of the second heart beat, which
is shown in figure 10.7. While in both scenarios, a major part of the upper chamber volume
is ejected, in the body-fitted case a vortex-like structure causes a region with a low washout
in the upper center part of the LV. In the IBM case, the upper part of the volume that initially
started in the LV is ejected completely. For both scenarios, already in the second cycle a
high fraction of the ejected volume has a value of ψ < 50 %. This confirms a high rate of the
direct flow component, which quantifies the amount of blood that enters and leaves the LV in
the current heart beat.

The explained behavior can also be observed in the time course of the residual volume in
figure 10.8: While in the IBM scenario a high fraction of the initial blood volume leaves the
LV in the first beat, this fraction decays in the following cycles. In the end, a significantly
higher amount of residual volume remains in the apex region. On the contrary, in the body-
fitted approach the ventricle is further washed out each cycle with only a small Vres remaining
after four heart beats. The increase in residual volume is not caused by a regurgitated flow,
but by a change in the volume of the considered cells due to the valve plane movement.

The resulting velocity fields for both implementations are visualized in figure 10.9 during
diastole and in figure 10.10 for the systolic state. The color bar is the same for the two
compared mesh implementations to enable a comparison. In the diastolic state, the IBM
approach shows the maximum velocity in the MV region. During the passive filling of the
LV, due to the small opening orifice of the Linköping valve discussed in section 6.3, a high
velocity occurs. In comparison, in the body fitted mesh a more homogeneous distribution
of the flow can be visualized with only an increased velocity at the edge of the MV region.
In the IBM case, also velocities in the same order of magnitude occur in the LA and LV.
However, the magnitude is increasing towards the valve and not as homogeneous as in the
body-fitted case.

The same phenomenon can be observed in the systolic state. Again, the maximum
velocity in the IBM scenario occurs in the valve region due to the small valve diameter.
The laminar flow profile in the aortic trunk can be observed again. In the body-fitted mesh,
the highest velocities occur along the center line of the aortic trunk. Velocities magnitudes
around the half of the maximum value occur all over the ventricle, while in the IBM case
this is only the case for the upper part.
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Figure 10.6: Scalar field ψ visualizing the flow patterns in the LV depicted in the diastolic state after
the first heart cycle (t = 1.35 s).

Figure 10.7: Scalar field ψ visualizing the flow patterns in the LV depicted in the systolic state of the
second heart cycle (t = 1.85 s).
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Figure 10.8: Residual volume Vres in % plotted over the time for four consecutive heart beats. Compar-
ison of the body-fitted (blue color) and the IBM approach (red).

Comparing the pressure in the two different scenarios delivers the most interesting insight
of this comparison. On the first glance, the pressure distribution is similar, as the pressure in
the aortic trunks and the ventricular chamber are the same. After a pressure drop over the
MV, the pressure in the LA is lower. However, this visual correspondence is only achieved
by an adaptation of the color bar. This reveals a shortcoming of the immersed representation
of the valve leaflets: As the velocity of the valve is prescribed by an external forcing term
of the Navier Stokes equation (NSE) (compare equation 3.8), the areas before and after
the valve are decoupled. Thus the pressure drop that occurs across the valve can not be
resembled.

Considering the computational cost, the body-fitted mesh consumed a wall-clock time
of 114,546 s = 31.8 h ≈ 1.5 d for the simulation of four full heart cycles on a single core
processor (i5 processor, 3.7 GHz). In comparison, with 117,701 s = 32.7 h, the IBM approach
needed roughly the same computational time without any optimization of the code yet.
However, the IBM implementation offers the great benefit that it can be solved on the cluster
machines in parallel mode. Using an amount of 64 parallel processors, the four heart cycles
were simulated in approximately 5.5 h including decomposition and reconstruction of the
mesh.

10.3 Discussion

The application of the computational fluid dynamics (CFD) solver based on the IBM ap-
proach showed a good basic functionality to compute the fluid dynamics in the human
heart. However, taking into account the variation in the absolute values of the pressure, the
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Figure 10.9: Magnitude of the velocity field u in m s−1 in a long axis cut of the left heart depicted in
the diastolic state after the first heart cycle (t = 1.35 s).

Figure 10.10: Magnitude of the velocity field u in ms−1 in a long axis cut of the left heart depicted in
the systolic state of the second heart cycle (t = 1.85 s).
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Figure 10.11: Pressure field p in mmHg mapped on the clipped left heart geometry. Systolic state of
the second heart cycle (t = 1.85 s).

simulations revealed the high influence of the choice of the BC. With the use of the 3D
resolved valves immersed into the computational grid, the pressure drop that was modeled
by the porosity of the porous zone approach is not considered any more. To obtain accordant
absolute pressures, this pressure drop has to be modeled again. One option would be the
external prescription of the absolute pressure values in the proximity of the valves. However,
this would again have a high influence on the flow patterns, impose an additional quantity
that has to be deduced from the circulatory system results in correspondence with the valve
diameter and thus increase the algorithm vulnerability. On the other hand, an alternative
would be to additionally prescribe the pressure at the inlet surfaces. As at least one valve is
always closed throughout the cardiac cycle, this would not over-constrain the simulation but
allow for a prescription of the pressure at both sides of the currently closed wall. However,
this again highlights one limitation of the light coupling strategy. While such influences
are considered in every single time step in a strongly coupled approach, in unidirectionally
coupled solvers all data has to be prescribed by the mechanical simulation results and the
circulatory system data beforehand. The missing exchange of geometrical deformation in a
bidirectionally manner imposes the main drawback of light coupling approaches. Due to the
choice of the valve implementation, a higher number of parameters have to be prescribed in
unidirectionally light coupling strategies.

The representation of the valve geometry showed to have a big impact on the flow
patterns in the ventricular chamber. Even if this could have been expected, it has to be
taken into account when evaluating the results. Especially the flow patterns and the location
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of local velocity maxima are influenced. Nevertheless, the comparison to the body-fitted
approach revealed a basic accordance.

In the context of the determination of the geometry, a reduced LV volume occurred due
to the approximation of the smooth wall by cubic cells in the wall region. This offset in the
resulting volume has to be considered. While it can be corrected by a further inflation of the
geometry, it needs to be ensured that the space between the prolonged trunks is big enough
and does not lead to intersections. Alternatively, the wall thickness can be further decreased,
resulting in an increase of the effective volume of the LV. To prevent from introducing holes
in the wall by this process, the wall cells could be refined an additional stage.

All in all, the simulations based on the IBM implementation showed promising results,
revealing limitations of the algorithm that can be overcome. The prescription of the moving
wall geometry turned out to work quite well: Even if the prolonged trunks are close to
one another, while one of them simulated inflow dynamics and the other one simulated an
outflow, they did not interfere.
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Chapter 11
Insights from measured data

11.1 Motivation and aim

The initial aim of this sub project was to close the loop of implementing, verifying and
validating a fluid dynamics solver based on the immersed boundary method (IBM) approach.
Based on the measured endocardial deformation, the necessary boundary conditions can be
extracted and flow boundary conditions can be prescribed at the inlet and outlet surfaces.
After simulating the results based on the measured conditions, a direct quantitative compar-
ison between the two flow fields was intended. As 4D flow magnetic resonance imaging
(MRI) is the method of choice in this context, a set of MRI measurement data was acquired
from a healthy volunteer. However, while the flow measurement data was not captured
with a sufficient resolution, the segmentation of the correct planes was challenging. The
evaluation of a 3D resolved velocity vector field was not possible. In addition, the long
axis slice of the four chamber view crops the left atrium (LA) centrally. Therefore, even
a manual segmentation of the whole left side of the heart was not possible. Due to these
circumstances, only a 3D geometry segmentation of the left ventricle (LV) as well as the path
lines of the flow in a cut plane through the LV were assessed for a qualitative comparison
between in-silico and in-vivo data.

11.2 Flow measurement data

In the context of this project a complete MRI measurement data set was recorded at the
Theresienkrankenhaus in Mannheim. Measurements comprise electrophysiology, mechanical
and fluid dynamic data and were taken from a 29-year-old male healthy volunteer. Informed
consent was provided. An overview on the most important global quantities is given in
table 11.1, whereas the resulting mechanical movement of the endocardial surfaces (cine
images of the 2 chamber view, as well as short axis slices) for some characteristic points in
the cardiac cycle is attached in appendix C.
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Heart rate LV EDV LV ESV LV EF Blood pressure (arm)
62.5bpm 186.4ml 83.1ml 55.4% 120/70mmHg

Table 11.1: Global measured quantities.

The complete measurement data set comprises the following recordings: For global
alignment and organ positions, a static whole torso image is acquired during diastole. Static
whole heart slices are acquired during diastole in short and long axis view to create the 3D
mechanical model of the heart. To capture the endocardial surface movement throughout the
cardiac cycle, cine-movies are recorded in 2-, 3- and 4-chamber view. For further mechanical
validation, strain evaluation can be deduced from these images. 4D-flow measurements
throughout the whole heart were acquired during a full heart beat for fluid solver validation.

To finalize the electro-mechanic-fluid data set, a full 12-lead-ECG signal was recorded
additionally for several minutes in rest and in exercise condition.

Evaluation of clinical data was done in cvi42 software (Circle Cardiovascular Imaging,
Calgary, Canada, Release 5.14.2) mainly relying on the modules for functional analysis
(short and long axis based), the strain and the 4D flow module. Automatic segmentation
based on the included artificial intelligence algorithm was applied to receive a 3D geometry
of the LV (endocardial and epicardial) and the right ventricle (RV) over time.

11.3 Methods

To segment all relevant surface geometries, the artificial intelligence engine included in the
clinical evaluation tool was applied.

Figure 11.1: Automatic segmentation of chamber contours for the left heart side. The endocardial LV
surface is colored in red, while the epicardial surface is marked in green. The orange color denotes
the shape of the LA, the yellow line denotes the position of the mitral valve (MV). Left: diastolic state.
Right: systolic state.



11.4. Results 117

Based on the available measurement data set, a time series of the LV geometry is extracted.
It can be used for a visual comparison of the shape variation throughout the cardiac cycle
and delivers a basis for future model creation from measurement data.

Finally, the flow in a long axis cut of the whole heart geometry is assessed to visu-
ally compare the resulting pathlines. Based on these visualizations, at least a qualitative
comparison to the acquired measurement data is enabled.

11.4 Results

The clinical evaluation tool reliably determined the LV endo- and epicardial surfaces in
most of the slices and time steps. An exemplary screenshot for the segmented diastolic and
systolic geometry is included in figure 11.1.

Figure 11.2: Right: Surface files representing the geometry of the LV segmented from measured data.
While in the diastolic state, the maximum LV volume results in the largest endocardial surface, during
the systolic state the lowest volume results. The blue surface models the endocardial surface for a
point in time between the two extremes. On the left hand side, the left endocardial wall of the LV of
the geometry used for all simulations is shown for comparison.
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Figure 11.3: Pathline representation indicating the velocity field in ms−1 for a long axis cut trough the
whole heart for different points in time. Left: Ejection of ventricular blood in the aortic trunks through
the systole. Right: Flow across the mitral valve (MV) during the relaxation of the LV.

In addition to the endocardial surfaces, the long axis height of the ventricle is evaluated
to denote the longitudinal strain, which results in -16 %.

The time series of the LV endocardial surfaces in included in figure 11.2. While diastolic
and systolic geometry yield the highest, respectively lowest LV volume, a time step in
between is shown in addition. Compared to the in silico geometry used for the simulations
so far, a less high, but more wide geometry results from the segmentation. However, the
bend structure that forms a smooth transition into the aortic trunk region is clearly visible.
Considering the time course, the dilatation towards the right hand side of the image is higher.
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This also makes sense, as on the other side, the right ventricle is attached and thus constrains
the motion.

Figure 11.4: Time course of the flow trough a cut plane in ml s−1 comprising aortic flow (first positive
wave) and mitral flow (first negative wave).

The most interesting insights were delivered by the pathline representation of the blood
flow velocity in a long axis cut of the whole heart. In the systolic state visualized in the left
part of the figure, the inner volume of the aortic trunk can clearly be assessed. In addition,
the close up view reveals a smooth and bent transition of the blood leaving the ventricular
chamber towards the aortic valve. This corresponds quite well to the velocity fields that have
been observed in the simulations deduced in the projects of this thesis, exemplary visualized
in the bottom row of figure 10.10. However, to a great extent, this resulting velocity field
is already indicated by the shape of the geometry. In the diastolic state, the flow across the
mitral valve (MV) can be assessed. The pathlines depicting the flow enable to deduce the
diameter of the opened valve orifice area. In the close up of the valve zone, first a straight
jet through the MV can be observed which after a few centimeters drifts apart towards the
lateral direction. However, as the flow velocity decays after this point, it can not longer be
distinguished from the omnidirectional background flow. Thus the screenshot does not allow
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Figure 11.5: Wall shear stress in Pa for a long axis cut through the whole heart. The central green area
reveals the shape of the LV.

for the evaluation of the penetration depth towards the apex. However, assessing the relevant
valve diameters offers a possibility of adapting the valve parameters. In the systolic phase,
the high density of pathlines in the aortic trunk denotes a high flow rate.

Figure 11.4 provides a temporal statistics of the flow rate in a specific plane located
perpendicular to the long axis view in figure 11.3. However, in this plane as well the aortic
trunk resulting in the first positive wave in the figure, as well as the mitral valve resulting in
the first negative wave, are included. As the time course starts with the aortic ejection, the
time course in the measurement data does not start from the diastatic state. However, this is
due to the system being triggered on the r-peak of the electrocardiogram (ECG). The second
negative wave therefore is caused by the atrial kick.

Finally, the wall shear stress analysis is shown in figure 11.5 comprising the same long
axis view as previously applied. With an increased wall shear stress rate, the geometry of the
LV chamber can be assessed.
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11.5 Discussion

Summing up, the assessment of acquired measurement data delivered first promising insights
in the validation based on 4D flow MRI data. A basic accordance with the qualitative data
can be confirmed. However, as up to now only qualitative comparisons were deduced, the
explanatory power of this statement is bounded. In future studies relying on a sufficient
resolution of the flow data and a correct acquisition of the short and long axis geometrical
data, a more thorough statement can be deduced. The basic functionality of the method for
the application in hemodynamic evaluations was confirmed in [135].

In addition, parameters like the MV plane displacement or the segmentation of the blood
volume can be assessed. Acquiring a full multi-physics data set would still deliver additional
insights and also allow for a validation of the coupling procedures.
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Chapter 12
Mitral valve regurgitation

In a first application scenario, an in silico model is utilized to compute the fluid dynamics in
a heart suffering from mitral valve regurgitation (MVR). Three characteristic severity stages
are artificially introduced to a mitral valve model to systematically evaluate influences with
focus on vortex formation and ventricular washout.

The content of this chapter is adapted from the conference publication [39] under the
Creative Commons Attribution 4.0 (CC BY 4.0) international license. Results are also based
on the student theses [136, 137].

12.1 Introduction

MVR is of increasing prevalence and currently the second-most frequent valvular heart
disease in Europe [82, 138]. As explained in detail in section 2.4.1, this phenomenon is
caused by a diseased mitral valve (MV) that is not closing properly. Thus, blood regurgitates
from the left ventricular chamber into the left atrium (LA). Using the implemented fluid
solver based on the Finite Volume (FV) method in combination with an adaptation of the
valve model, altered blood flow in the left heart can be simulated to assess qualitative and
quantitative measures non-invasively. In this context, the visualization of different flow
patterns and simulation-based blood flow component analysis is a powerful tool to reveal
disease-induced flow alterations. These are clinically relevant because the medical doctor
has to decide at what stage of the disease a surgery is mandatory.

So in this chapter, first an in silico fluid dynamics simulation is executed to simulate the
time course of the retrograde jet throughout the heart cycle. With a systematic investigation
of the the impact of different MVR severities, the qualitative impact on ventricular flow
patterns, as well as the quantitative impact on regurgitation fraction, wash-out and flow
volumes are revealed. Secondly, three different positions of the valvular leakage position are
assessed to investigate the deviations between the central and two eccentric retrograde jets.
In addition, alterations of the different blood flow components are quantified in this chapter.
A visualization tool based on a particle tracking algorithm is provided to quantitatively and
visually evaluate altered flow patterns.
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Figure 12.1: Left: Finite elementmodel of the left heart. Mitral valve zonemarked in blue. Right: Porous
zones that model mitral regurgitation with severity mild, moderate and severe from top to bottom.
Figure adapted from [39], published under CC BY 4.0 license.

12.2 Methods

12.2.1 Basic model generation

The basis of this model is a patient-specific healthy heart geometry represented by a body-
fitted mesh that was created from magnetic resonance imaging (MRI) scans and discretized
using finite volume techniques. Focusing on the mitral valve, the model comprises the LA
and left ventricle (LV) as well as the prolonged trunks (compare section 7), as visualized in
the left part of figure 12.1.

Unidirectional coupling of cardiac continuum mechanics to the fluid dynamics solver is
established by considering the endocardial surface movement obtained from the mechanical
simulation framework [120] and the pressures resulting from the closed-loop circulatory
system model [25] as boundary conditions in the fluid solver. The Arbitrary Lagrangian
Eulerian (ALE) formulation is used [139]. To resemble flow characteristics, all heart valves
are represented by a planar model based on a porous material law [38]. For an idealized
heart geometry, Daub et al. [38] already showed, that the planar MV model was able to
reproduce flow fields that show physiological behavior. The Darcy-Forchheimer law [140] is
used to quantify the pressure drop across the MV by adjusting the permeability of the porous
zone. Extending this approach, the diseased valve is modeled based on the porous zone
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MVR severity mild moderate severe
EROA in mm2 <20 20-39 ≥ 40
Regurgitation volume in ml <30 30-59 ≥ 60

Table 12.1: MVR severity according to European Society of Cardiology guidelines [82]. Classification
based on effective regurgitation orifice area (EROA) and regurgitation volume (Vre).

Figure 12.2: Geometry of the porous zone modeling the MV. Position of circular holes, which model
the regurgitation orifice area. Different colors highlight the three severity stages: Mild MVR in green,
moderate in orange and severe MVR colored in red. P2 denotes the central position, while the loca-
tion of the eccentric nodes is labeled P1 (left) and P3 (right). LV geometry for orientation on the left.

implementation in this study. The variation of this zone’s permeability over time models the
valve characteristics in a compact way and is controlled depending on flow.

By solving the Navier Stokes equation (NSE), the pressure distribution and the velocity
field across the left part of the heart geometry are computed. Blood is modeled as an
incompressible Newtonian fluid, with density ρ = 1055 kg

m−3 and dynamic viscosity ν =

0.004 kg
m·s .

12.2.2 Disease model

The starting point of the disease model is the planar MV model of a healthy heart geometry. Its
outer surface is applied as the boundary of the porous zone implementation in the FV method
that was described in section 6. To resemble the pathology, a circular hole is added in medial
direction. By including holes of different diameters in the posterior leaflet of the MV, mitral
regurgitation with different severities is modeled by different effective regurgitation orifice
areas according to the European Society of Cardiology guidelines for primary MVR [82].
The hole diameter for mild, moderate and severe MVR and the corresponding regurgitation
volumes can be found in Table 12.1. While for mild and severe MVR the referenced limits
are chosen, for moderate MVR the mean value of EROAmoderate = 30mm2 is chosen.

To additionally evaluate the influence of different hole positions, three different locations
are investigated. Besides the central hole (P2), two eccentric positions in the left (P1) and
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right (P2) side of the anterior leaflet are simulated. The three locations combined with the
three severity stages are shown in figure 12.2.

12.2.3 Scalar transport evaluation

To evaluate the fraction of the initial blood volume that remains in the LV, a passive scalar
transport equation is implemented as will be described in section 14.2.7.2. The scalar ψ

is considered as a measure of local concentration of blood (e.g. in the LA), that initially
started in the LV and is calculated following equation 14.7. Initialization is the same as in
figure 14.2 with the initial value ψ(x, t0) = 1 for all cells located in the LV and ψ(x, t0) = 0
for all others.

12.2.4 Blood flow components analysis

Introduced by Bolger et al. [141], the separation of blood flow in four different flow com-
ponents is a common method to quantify component fractions and to visualize trajectories.
The blood volume starting in the LA is composed of the direct flow (DF) that directly leaves
the LV in the same cycle and the retained inflow (RI) that remains in the LV during the
concerning cycle. The blood component that is already located in the LV at the beginning
of the heart cycle and then ejected through the aorta is named delayed ejected flow (DEF),
whereas the volume remaining in the LV is the residual volume Vres. Considering the back
flow (BF) that regurgitates through the MV as a fifth component, the visualization of the
components can be seen in figure 12.7.

The flow components are mathematically computed based on the volume relations at
the end of the systole tES, at the end of the diastole tED and at the initial point in time t0.
Therefore, the definition of two auxiliary quantities is the most descriptive way: At first, the
blood that is located inside the LV at the begin of the evaluation (t = t0) is labeled Vv. This
quantity changes over time and is computed by integration:

Vv(t) =
∫ ∫ ∫

Vendo

Ψ(x, t) dV . (12.1)

The same way, blood that is located outside the LV at the begin of the evaluation is labeled
Vo.

Vo(t) =
∫ ∫ ∫

Vendo

(1−Ψ(x, t))dV (12.2)
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With these two volumes, the blood volumes of the flow components can be computed as
following:

Vrev =Vv(tES)

VRI =Vo(tES)

VDF =Vo(tED)−Vo(tES)

VDEF =Vv(tED)−Vv(tES)

(12.3)

12.2.5 Particle Tracking

The particle tracking algorithm was introduced and initially investigated in a student the-
sis [137]. To examine the behavior of the flow field and to enable a tracking of single
particles, the Lagrangian coherent structures are identified on the basis of the finite-time
Lyapunov exponent. Thus, in a post-processing step the velocity field U resulting from the
simulation is processed such that n ≈ 15000 particles are analyzed.

The position x of a particle at time t is determined by its initial position x0:

x = x(x0, t) (12.4)

To deduce the position based on the velocity field U from the simulation, the following
ordinary differential equation has to be solved.

ẋ(x0, t) =U(x(x0, t), t) (12.5)

The solution is obtained by a time integration in the interval [t0, te], with te being the time
that

x(x0, t) =
∫ te

t0
U(x(x0, t), t) dt (12.6)

In figure 12.3, the distribution of the five different blood flow components in the initial
state t0 are visualized. Following their definition, DF and RI components start in the LA.
DEF as well as Vres are located in the LV.

12.3 Results

Throughout all positions and severity stages, a clear regurgitating jet is observed. As
exemplary shown in figure 12.4 for the stage of severe MVR caused by a hole located at
the right side of the anterior leaflet (P3), a jet develops with the beginning of the systolic
phase (t = 0.3s) and spreads deeper inside the LA as time progresses. Additionally, a mixing
process with LA blood is initiated by the ascending, slightly rotating upper end of the jet,
which can be observed at the left boundary of the LA. A slight back flow into the pulmonary
veins can also be observed.
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Figure 12.3: Initial distribution of blood flow components in the initial state t0. Color codes for the flow
components: DF (green), RI (yellow), DEF (blue), Vres (red) and BF (pink).

While comparing different severity stages at the same spatial position (P3), altered flow
patterns (particular in end-diastole) and wash-out fractions are observed in the diseased
geometry. Compared to a healthy case (figure 12.5A), the blood spreads deeper towards
the apex in the diseased case (figure 12.5B-D) while the LV itself is less washed out. The
vorticity in the diseased case was higher throughout all severity grades. With increasing MVR
severity, a non-linear behavior of remaining initial blood volume was observed. Comparing
four heart cycles, depending on the cardiac phase and MVR severity, sections with de-
and increased values were obtained. For example, for moderate mitral regurgitation, the
ventricular wash-out was up to 6% lower than in the healthy control case (see figure 12.6).

The investigation of flow components revealed a significant decrease of the DF compo-
nent for all MVR severity stages. Quantitative results, exemplary for moderate MVR can be
found in table 12.2. For this case the regurgitant blood causes a DF decrease of 18%. All
other blood flow components vary slightly around ±2%. Already for a moderate MVR, the
regurgitant volume was around 15% of LV volume. Evaluating the results of the particle
tracking algorithm confirmed the previous results. The direct flow was reduced by more than
10%, accounting for the slower washout progress. The visualization of all five blood flow
components confirms the high concentration of residual volume blood in the apex as well as
a low mixture of Vres blood with blood entering the LV in the current cycle in the lower part
of the LV (figure 12.7).

Finally, the impact of the disease location is evaluated. Table 12.3 presents an overview
of the regurgitation volume and the fraction of regurgitating flow to the severity stage and
the position of MVR. The flow quantities are averaged over the last three simulated heart
cycles to average variability. It clearly can be observed, that the major differences in BF
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Figure 12.4: Long axis cut through the left heart with the scalar Ψ color coded. Different points in
time during the ventricular systole: The begin of the ventricular contraction at t = 0.3s (left), as well as
t = 0.5s during the contraction (central). On the right hand side the end of contraction and thus the
begin of relaxation phase (t = 0.7s) is shown. The clipping plane is kept constant, the reduced size of
the LV is not only caused by the contraction, but also due to a twisting movement out of the clipping
plane. Clearly visible is the regurgitating flow from LV to LA with increasing intensity over time.

condition direct flow retained inflow delayed ejection residual volume back flow
DF RI DEF Vres BF

healthy 35.3% 16.0% 21.9% 26.8% -
moderate MVR 17.3% 17.5% 24.3% 25.5% 15.4%

Table 12.2: Ratio of blood flow components, exemplary for moderate MVR (P3), in comparison to the
values for the healthy case. Table adapted from [39], published under CC BY 4.0 license.

are caused by the different stages of MVR. However, also for the same severity of MVR,
slight differences between the three positions exist: Comparing P1 and P2, the BF varies
up to 3.2% for severe MVR. While these differences can be explained by the difference
in resulting EROA surface of up to 0.05mm2, a systematic decrease of Vres and BF can be
observed for position P3. While all EROA values are higher than the ones for P2, BF is
always decreased. This effect cannot be observed with a hole located at P1. Thus, with
a more lateral hole in the MV, located at the P3 posterior leaflet, regurgitation volume is
reduced.

Summing up, modeling the MV with a simple planar valve model had shown to deliver
accurate results in healthy heart models [38]. Extending this approach to patients suffering
from MVR clearly reveals an alteration of blood flow patterns as well as altered ventricular
wash-out fractions and significantly reduced direct flow. Additionally, the implementation of
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Figure 12.5: Long axis slices of the healthy heart (A) and mild, moderate and severe MVR (B-D). Time:
Atrial contraction of the second cycle t = 1.39s. Figure adapted from [39], published under CC BY 4.0
license.

a particle tracking algorithm for post-processing the computational fluid dynamics (CFD)
simulation data enables to visualize the different flow components and to analyze start and
end positions of the concerning trajectories. However, the full quantitative analysis and
comparison of different severity stages remains challenging and further analysis tools have
to be implemented to further measure LV vorticity. All in all, this work and the implemented
methods build a good basis to characterize vortex structures in mitral valve disease in future
studies.

12.4 Discussion

Comparing the three severity stages presented in the long axis view in figure 12.5, a clear
distinction between the severity stages is hard to define. Additionally, the visualized long
axis views only show a single plane of the whole LV volume. Taking into account the
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Figure 12.6: Scalar Ψ as a measure for local concentration of initial blood volume that remains in the
LV over a time course of four heart cycles. Different degrees of mitral regurgitation. Figure adapted
from [39], published under CC BY 4.0 license.

MVR severity hole location EROA averaged Vreg averaged BF
in mm2 in ml in %

P1 0.099 13.6 12.3
mild P2 0.109 16.2 14.6

P3 0.126 15.4 13.9
P1 0.282 24.3 21.9

moderate P2 0.224 24.1 21.8
P3 0.259 20.9 18.9
P1 0.342 29.3 26.5

severe P2 0.396 32.9 29.7
P3 0.419 28.9 26.0

Table 12.3: Simulated regurgitation volumes Vreg as well as regurgitating flow (BF) in depending on
effective regurgitation orifice area (EROA) and MVR severity. Results adapted from [136].

non-linear behavior of the Vres time courses in figure 12.5 additionally intends that only
analyzing a mean value across the whole LV does not account for local variations in altered
flow conditions. Therefore, the presented measures may not be sufficient to fully quantify the
resulting flow alterations. In addition to the presented methods, 2D short axis slices of the LV
could be analyzed regarding their vorticity behavior. An analysis and quantification of vortex
structures in different heights could be carried out to account for vorticity location maps.
This method could also be used as a measure for the immersion depth of the ventricular
jet. This may link to the work of Collia et al. [142], that clearly associated a prolapsed
MV with a higher amount of residual volume close to the apex as expected from a lower
jet energy. However, a literature comparison will remain challenging, as the classification
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Figure 12.7: Visualization of blood flow components (moderate MVR) in end-diastolic state. Color
codes for the flow components: DF (green), RI (yellow), DEF (blue), Vres (red) and BF (pink). Figure
adapted from [39], published under CC BY 4.0 license.

of MVR severities is only based on upper and lower limits instead of exact values, as
shown in table 12.1. Another point to further investigate is the capability of the MV model.
As different severity stages are only distinguished by a de- or increased hole diameter,
the circular symmetric hole in the medial direction of the posterior leaflet may not fully
cover all MVR effects. Implementing a 3D parametric valve model parameterized on the
basis of measurement data will serve as a comparison in further studies. Additionally, a
closed-loop model of the whole circulatory system, combined with the investigation of both
heart sides could deliver further insights in right ventricle (RV) function and the risk of RV
failure, as Bonini et al. showed [143]. The method of using a scalar transport to account
for blood concentrations however delivered accurate results. A comparison to literature
e.g., to Eriksson et al. [144] 4D MRI measurement data showed good accordance with our
simulation results of the healthy heart geometry with deviations around ±2% for the single
flow components.
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Hypertrophic cardiomyopathy

13.1 Introduction

In hypertrophic cardiomyopathy (HCM), the myocardial wall of the left ventricle (LV) is
pathologically thickened. In this disease of clinical relevance, the risk for sudden cardiac
death is significantly increased. Therefore, an early-stage diagnosis is valuable in terms of
decreasing the mortality rate. While in addition to the thickened wall, a myocardial fiber
disarray is characteristic for the disease, the movement of the endocardial wall may be altered.
Thus, the simulation of fluid dynamics in a HCM heart geometry is of interest to assess to
which extent fluid dynamic quantities are altered. Another relevant impact of the disease is
the possible outflow tract obstruction. With partial occlusions of different size, an impact
on the ejected volume and the flow patterns may occur. However, as the occlusion is not
modeled in the data set of the elastomechanics simulations, it is not possible to investigate
this scenario in the scope of this thesis. Thus, with a focus on the wall thickening and the
fiber disarray, the influence of the pathological conditions on the fluid dynamics in the LV is
assessed to address the question, if flow patterns are altered.

13.2 Methods

Fluid dynamic simulations are carried out on a structured cubic grid, based on the immersed
boundary method (IBM) approach. All cells close to the endocardial surface as well as
the valves are refined. The endocardial surfaces to prescribe the moving wall velocity are
obtained from the elastomechanical simulation framework. Inlet and outlet velocity, as
well as the outlet pressure are prescribed with the same reasoning as in chapter 10 and are
extracted from the circulatory system simulation results. For the 3D representation of the
aortic and the mitral valve (MV), the planar (aortic) as well as the Linköping valve model
are considered. To assess flow patterns as well as to evaluate the fraction of the initial blood
volume that remains in the LV, a passive scalar transport equation is implemented as will be
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described in section 14.2.7.2. The scalar ψ is considered as a measure of local concentration
of blood. It is initialized with a value of ψ(x, t0) = 1 for all cells located in the LV.

The increased wall thickness is visualized in the right part of figure 13.1. It is compared
to a model of the healthy heart to visualize differences. In addition, the vectors depicting the
fiber direction are included for the healthy (left) and the diseased case.

Figure 13.1: Right column: visualization of the pathological HCM geometry. The thickened wall of
the LV is visualized from the top perspective. In addition, the vectors indicating the fiber direction are
included. For a comparison, on the left hand side, a healthy heart geometry is included.
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13.3 Results

The cubic grid is of size 0.225 m × 0.19 m × 0.245 m with a basic edge length of approxi-
mately 6 mm. During a refinement step all cells close to the moving wall are divided in 64
cells, while all cells in the valve regions are divided in 512 cells. The resulting edge length
in the valve zone is approximately 0.75 mm. All in all, the model comprises 697,027 volume
elements.

To compute the position of the moving wall prescribed by the external surface geometry
files, again a distance field is computed to deduce the scalar indicator field. The resulting
distance field Λ is visualized in figure 13.2. Based on equation 4.3 the indicator field Φ

is processed and the velocities resulting from the displacement in the endocardial wall
geometries are prescribed.

Figure 13.2: Distance field Λ in m. Euclidean distance (ED) of each cell center to the constraining
endocardial surface.

In figure 13.3, the mapping field κ visualizing the effective enclosed volume is shown for
the initial diastolic state (left), as well as the systolic state with a minimum left ventricular
volume. In addition, the cells with the velocity prescribed by the wall movement are
visualized in gray.

The prescribed 3D geometry of both applied valve models is immersed in the structured
grid. The position of the valves is shown in figure 13.4: The aortic valve (left) as well as the
MV are visualized in the open state.
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Figure 13.3: Mapping field κ , denoting the volume enclosed by the moving wall. Left: diastolic state.
Right: systolic state.

Figure 13.4: Scalar field indicating the location of the aortic (right) and the mitral valve (left) immersed
in the cubic grid. Both valves are shown in then opened state.
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Figure 13.5: Flow patterns in the left part of the HCM heart computed based on the indicator field ψ

for several heart cycles: The diastolic state after the first heart cycle (A), as well as the following systole
(B) is presented in the top row. In the lower row, the diastolic state after the second (C) and third (D)
heart cycle are included.
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Figure 13.6: Magnitude of the velocity field u in m s−1 at different times throughout the cardiac cycle:
At the beginning of the ventricular contraction (A), as well as immediately afterwards, when blood is
ejected through the aortic trunk (B). The systolic state (C) as well as a time step during the relaxation
phase with an inflow across the MV (D) are included in the bottom row.
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Figure 13.7: Pressure field p in mmHg mapped across the long axis view of the clipped HCM heart
geometry. Left: Systolic state. Right: Diastolic state.

In figure 13.5, the flow patterns resulting in the LV are shown for different points in time
throughout the series of the simulated four consecutive heart beats. While the flow patterns
in the diastolic state after the first heart cycle (A) show a clear jet penetrating towards the
apex, a circular washout structure can be observed in the center of the LV. While it seems as
if the ejected blood of the first cycle does not reach the end of the aortic trunk, this is just
a visualization problem: As the aortic trunks bends out of the cut plane, the corresponding
volume is not clipped any longer. In the systolic state of the second heart beat (B), it can
be observed, that a considerable amount of blood that entered the LV in this cycle, directly
leaves the LV. The following relaxation phase (C) reveals a similar behavior than the first
one: The vortex structure is present, however, it seems to prevent blood to fully penetrate
towards the apex. In the diastolic phase after the third heart cycle (D), beneath a proceeding
washout, the same patterns are observed. This results in a retained fraction of initial LV
blood close to the apex region. The observed retained volume is confirmed by the time
course of residual volume Vres computed based on the scalar field ψ: After five full heart
cycles, a residual volume of 15 % remains.

The resulting velocity fields are plotted for different points in time during the cardiac
cycle. At the exact start of the ventricular contraction, an increased velocity in the whole
center part of the LV can be observed (A). In the subsequent time step (B), the velocity in the
aortic valve rises rapidly, up to a maximum value of 1.5ms−1 in the center of the valve. In
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accordance with the previous simulations, this indicates that the narrow valve region may be
modeled to tight. When the lowest chamber volume occurs just before the inflation of the LV
begins (C), the flow nearly comes to a still stand. As soon as the LV inflates, blood is sucked
from the left atrium (LA) through the mitral valve, again resulting in a local maximum of the
velocity.

Finally, the pressure across the left heart side is included in figure 7.5. During the systolic
state (left), the pressure level in the LV and the aortic tube is in the same range, as the aortic
valve is opened. While the mitral valve is closed, a pressure drop towards the LA is modeled
as expected. In comparison, just before the start of the ventricular contraction, both valves
are closed during the isovolumetric contraction. Due to the IBM representation of the valves,
the LA is completely decoupled from the outlet pressure in the aortic trunk and thus a higher
pressure above 60 mmHg occurs.

13.4 Discussion

Applying the IBM fluid dynamics solver, the flow quantities in a HCM heart geometry were
evaluated successfully. Simulating these pathological conditions, the most prominent finding
was a vortex forming in the upper part of the LV that prevents the jet from fully penetrating
towards the apex. This also results in a comparably high residual volume of 15 % after four
heart cycles. However, now it has to be argued whether these finding are really based on the
flow conditions implied by the pathological geometry or if an influence of the valve model
supports the formation of this vortex structure. In the previous chapters it was already found
that the influence of the valve geometry and timing may have a strong impact on the blood
flow dynamics. To validate this procedure, measurement data e.g. 2D flow across the valve
would increase the reliability of the model.

For future studies, it would be of high relevance to simulate geometries that also include
the obstruction of the outflow trunk. Assessing fluid simulations, the impact on flow patterns
and blood flow velocities, but also global quantities as ejection fraction and residual volume
may be significant.
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Chapter 14
Sequential coupling algorithm

At the interface between the fluid and the solid mechanics domain, this sub project aims to
closer investigate the mutual influences and dependencies of the two central areas of physics
in the context of cardiac hemodynamics. In addition to the analysis of the influence in an in
silico model of a healthy heart, the implementation and test of a novel coupling approach is
in the focus of this chapter.

The content of this chapter is adapted from the publication in the journal Frontiers in
Cardiovascular Medicine by Brenneisen at al. under the Creative Commons Attribution 4.0
(CC BY 4.0) international license [40]. First results concerning the pressure factor (PF) were
additionally presented at a conference [145].

14.1 Introduction

To accomplish its central task, the heart tissue contracts to eject blood from the heart chamber
and beat by beat drive the blood flow. On the first glance, this is a simple cause and effect
chain of an elastic tissue. But through its multi-physics nature on different temporal and
spatial scales, modeling this process in silico as accurate and computationally beneficial as
possible remains a tremendous challenge [146, 147]. Especially striking a balance between
high numerical accuracy and low computational effort remains a bottleneck for the transition
of numerical simulation tools into clinical applications [148, 149]. In this context fluid-
structure interaction (FSI) between the heart muscle and the blood flow plays a key role:
As the endocardial walls form the physiological boundary layer for the blood, a close
interdependence of the concerning quantities is essential for a correct model. Common
concepts and basic strategies of implicit and explicit coupling strategies have been included
in the state of the art section 1.2.3. The exchange of information between the single solvers
for each different area of physics is one of the key aspects in the cardiac modeling process.
However, the degree to which the spatially resolved blood flow has a retrograde effect on the
cardiac mechanics in this multi-physics problem remains unresolved up to now [53].

Thus, this in silico study gives an insight to which extent the flow influences the local
variations of cardiac wall deformation. This is of interest as widely used 3D-0D coupled cir-
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culation systems only consider mean spatial chamber pressure values (compare section 1.2.2).
There, the spatial deviations of the flow velocity field are averaged over the whole chamber.
Thus, local increases or decreases are neglected and a unique pressure is considered across
the whole chamber. Especially in specific phases of the cardiac cycle like e.g., the ejection
phase during the ventricular systole, it can be hypothesized that this procedure neglects rele-
vant spatial information. This phenomenon is evaluated quantitatively under physiological
conditions in this study.

Second, the retrograde effect of local spatial deviations in the pressure field caused by the
blood flow in the heart cavities has an influence on the structural mechanics. Thus, changes
in the local deformation of the heart caused by forces resulting from the blood flowing
against the myocardial tissue are quantified. Following Bernoulli’s principle, areas with an
increased flow rate are linked to a lower static pressure acting orthogonal to the myocardial
wall. Therefore, it can be expected to find local deviations in the displacement of endocardial
wall nodes.

Based on the results of [150] wall shear stress is assumed to be neglectable compared
to the internal stresses of the myocardium. Therefore, the endocardial wall pressure field
due to flow dynamics is analyzed. Subsequently, a pressure factor is introduced to the solid
mechanical simulation. This factor incorporates the information of the spatially resolved
pressure deviations from the mean chamber pressure from the fluid dynamics simulation. It
is considered in the mechanics simulation to quantify deviations in wall deformation due to
the effect of the flow.

Summing up, in this chapter two central basic questions concerning the fluid and solid
mechanics coupling procedure are investigated: First, whether decreases or increases of the
local pressure resulting on the endocardial surface elements are quantified and localized.
These deviations are neglected in the unidirectionally coupled algorithm so far. Second,
whether the deviation of the mechanical displacement, that results if the pressure deviations
are considered in the solid mechanical simulation, is quantified. Thereby, a cycle-to-cycle
coupling algorithm that accounts for the influence of FSI in a computationally and structurally
beneficial way is introduced. The previously utilized unidirectional coupling is replaced by a
simple and low effort bidirectional approach.

14.2 Methods

In this section, first the organizational scheme of the coupling algorithm is introduced. After
some details on the mechanics domain and fluid solver, the coupling procedure itself based
on the extraction of the pressure gradient field is introduced.

14.2.1 Algorithm structure

The basic structure of the sequential coupling algorithm is a partitioned approach. This
takes advantage of the fact that two stand-alone single area of physics solvers for fluid
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Figure 14.1: Overview of coupling procedure. The arrows denote the flow of information between
the two domains. The upper arrow shows the unidirectional information flow from the mechanical
domain to the fluid solver as it was implemented before (e.g., [38]). Now the lower arrow takes into
account the retrograde effect from fluid dynamics in the mechanical simulation. This sums up to an
iterative sequential procedure (gray arrow). Both - in themechanics and in the fluid domain - several full
heart beats are simulated before handing over the data to the other domain. Figure adapted from [40],
published under CC BY 4.0 license.

dynamics [107] and solid mechanical deformations [110] are already available from previous
projects. In the previously existing unidirectional coupling, information about deformation
and pressure conditions are passed from the solid mechanics simulation tool including the
circulatory system model to the stand-alone fluid dynamics simulation. By closing the loop of
a classical partitioned FSI approach, the two independent solvers are linked by the feedback
of fluid dynamic information towards the solid mechanical solver after each heart cycle.
Therefore, the local pressures are accessed, allowing for a quantification of the fluid dynamic
influence in a first evaluation step. Taking into account these retrograde effect in the solid
mechanics simulation also closes the loop of a bidirectional coupling algorithm on the second
stage. It fulfills the purpose of a coupling algorithm, which is categorized between a loosely
coupled and a strongly coupled approach, as the iterative exchange of data is not realized
each time step, but iteratively with each full heart cycle. This sequential cycle-to-cycle
coupling accounts for the influence of FSI in a computationally and structurally beneficial
way. The basic structure of the sequential coupling algorithm is visualized in figure 14.1.
Details of the coupling procedure are explained in the following section 14.2.5.

14.2.2 Mechanics domain

Simulations are performed on an individualized whole-heart geometry created from medi-
cal imaging data of a healthy volunteer. To estimate the stress distribution present during
image acquisition, the pressure free geometry is estimated by applying the unloading al-
gorithm introduced in section 3.4.4 assuming a pressure of p0,LV = p0,LA = 7.5 mmHg and
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Figure 14.2: (A) Clipped heart geometry with the myocardial tissue of the four chambers colored in
shades of blue. The endocardial surfaces of the left atrium (ΩLA), left ventricle (ΩLV), right atrium (ΩRA)
and right ventricle (ΩRV) form the boundary layer for the fluid simulation. Additionally labeled is the
pericardial layer (red, ΩPer) as well as in gray color the area, in which the pulmonary veins (left side
of the heart) and the superior vena cava (right heart) open into the corresponding atrium. The blue-
gray volume between the atrium and the ventricle denotes the position of the mitral valve (mitral valve
(MV), left heart side) and the tricuspid valve (right heart side). (B) Fluid geometry of the left side of
the heart with elongated vessel trunks. The pressure inlet surfaces (pulmonary veins) are highlighted
in green color, whereas the pressure outlet (aorta) is colored yellow. Also depicted is the initial spatial
distribution of the scalar Ψ of the scalar transport equation, color coded in red (Ψ = 1) and blue (Ψ = 0).
The gray colored background structures represent the pericardial layer as well as the myocardial tissue
in the initial, diastatic state. Figure adapted from [40], published under CC BY 4.0 license

p0,RV = p0,RA = 4 mmHg [151]. In addition, the influence of the pericardial layer is consid-
ered to represent the influence of surrounding tissue [120]. The mechanical finite element
mesh comprises 8,700 nodes and 49,900 linear tetrahedral elements. A clipped model of the
resulting heart geometry is shown in figure 14.2A.

As introduced in section 3.4, the myocardial tissue (depicted in different shades of blue
in figure 14.2A) is modeled as a hyper-elastic material. The parameters to model the passive
material properties are listed in table 14.1.

For the rule-based determination of fiber orientation [114], fiber angle of +60◦ (endocar-
dial wall) and -60◦ (epicardial wall) are applied. The periodicity in the active tension devel-
opment of the double Hill model [115] is set to the duration of one heart cycle (t = 1.247 s)
in accordance with the magnetic resonance imaging (MRI) measurement data.

14.2.3 Fluid domain

Fluid dynamics simulations are executed in the open-source software framework openFOAM
under the version v1912 [2]. The fluid solver is based on a finite volume representation
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Tissue Domain Model C bf bt bft K ρ0
in kPa in kPa in kg m−2

Ventricle LV, RV Guccione 0.278 12.0 4.8 8.4 200 1,082
Atrium LA, RA Neo-Hooke 7.45 - - - 200 1,082
Surrounding pericardium Neo-Hooke 10.0 - - - 1,000 1,082
Surrounding fat Neo-Hooke 3.725 - - - 1,000 1,082
Vein pulmonary Neo-Hooke 14.9 - - - 200 1,082

vena cava
Artery pulmonary, aorta Neo-Hooke 14.9 - - - 200 1,082
Valve plane mitral, tricuspid, Neo-Hooke 200 - - - 200 1,082

aortic, pulmonary

Table 14.1: Passive material parameters used for the different tissue areas in the mechanical simulation.
Table adapted from [40], published under CC BY 4.0 license.

of the mesh accounting for the blood volume. The system of equations is solved in an
Arbitrary Lagrangian Eulerian (ALE) framework as introduced in section 3.2.2 to represent
cardiac contraction. The wall movement (displacement of endocardial boundary) resulting
from the mechanical solver is provided as a time series for one full heart cycle. A Laplace
equation with quadratic diffusivity is solved to determine the mesh motion velocity of the
inner volume cells. Hence, a no-slip condition is applied at the ventricular wall for both
velocities: the blood velocity, ui, and the mesh motion velocity, ci. The spatially resolved
pressure is obtained for each element using a PIMPLE loop (PISO algorithm [152] with
iterative marching).

For the fluid simulations, all inlet and outlet trunks are prolonged as described in
section 7. The flux boundary conditions at the inlets Ωin and outlets Ωout are Neumann
boundary conditions, such that the global volume flux, V̇ , is in accordance with the volume
change prescribed by the boundary conditions from the mechanics simulation. The inlet
pressure is prescribed at the pulmonary veins. The outlet pressure is prescribed at the aorta.
These Dirichlet-type boundary conditions are provided by the circulatory system model.
The left heart as well as its embedding in the surrounding layers (gray color) is shown in
figure 14.2B.

All four valves are modeled by means of a porous material law that generates a pressure
drop across the respective valve plane as shown in [38]. Since the whole heart and therefore
also the valve planes are moving with time, the porosity model developed by [153] is
incorporated. It considers an increased kinetic energy term fi in the NSE (equation 3.8)
based on the mesh displacement. The valves are controlled by the ventricular volume
changes resulting from the boundary conditions such that all valve planes are blocked if∣∣V̇ ∣∣ < 20mls−1. Up to a flux of

∣∣V̇ ∣∣ < 160mls−1, the permeability rises linearly with the
flow and the valve plane is fully permeable if

∣∣V̇ ∣∣> 160mls−1. The same limits in reverse
order apply for the closure of the valves. The porosity φp = 1 is kept constant. Exemplary,
the valve plane permeability kp is shown in figure 14.3 for one heart cycle.

Based on the mitral valve diameter dMV = 15 mm, the Reynolds number reached at
maximum velocity umax in the valve plane is remax =UmaxρdMV/µ = 2760. The Womersley
number lies in the physiological range [154], as wo = dMV

√
ωρ/µ = 19.3, where ω repre-
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Figure 14.3: Porosity of the valves during the time course of one heart cycle. Both sub-figures show
the valve plane permeability kp for the left side of the heart. Horizontal lines depict a fully opened or
closed valve state. (A): Mitral valve. (B): Aortic valve. Figure adapted from [40], published under CC BY
4.0 license.

sents the angular frequency. The tetrahedral fluid volume mesh consist of 143,000 cells in
the left heart, which corresponds to the number of cells found to be sufficient by [155]. The
simulations start with an initial time step of ∆t0 = 0.001 s. Afterwards, the time stepping is
adjusted automatically to satisfy a Courant-Friedrichs-Lewy number of CFL ≤ 0.7. At the
initialization of the solver, the fluid is at rest.

14.2.4 Pressure gradient

Up to now, only unidirectional coupling influences from the solid mechanics simulation
are considered by means of a moving boundary condition in the fluid solver. To account
for the retrograde influences the blood has on the myocardial tissue walls, the forces fluid
dynamics impose to the local blood pressure are investigated. In this context, the force
resulting parallel to the myocardial wall is calculated by the wall shear stress τwss with the
following correlation:

τwss =
F ||

A
. (14.1)

In an ideal fluid, the molecules react instantaneously to an external deflection parallel to the
wall by establishing a new rest position. Thus, in an ideal fluid, wall shear stress is assumed
to be τwss = 0. Even though blood is far from being an ideal fluid, it can be argued that the
influence of wall shear stress is small compared to the force resulting transversal to the wall.
This can be justified by the fact that the anatomy of the heart chambers as a large cavity
does not allow to form a classic pipe flow profile. The blood close to the wall moves and
exchanges much less than the blood volume in the central area. This supports the observation
that the influence of shear stress is small compared to static pressure and can be neglected.
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Thus, based on the results of [150] we assume wall shear stress to be neglectable compared
to the internal stresses of the myocardium.

In the current state, the circulatory system only considers a mean pressure value pLA, pRA,
pLV and pRV throughout each heart chamber. Local pressure deviations are not considered
and get neglected by the averaging. To adequately model the local influence, the pressure
field has on the mechanical motion a 3D spatially resolved relative pressure factor r has to
be introduced as proposed in [156]. This factor captures the local deviation of the single face
compared to the chamber mean value. In each face i, the factor ri is calculated based on the
mean, maximum and minimum value of the chamber pressure pc for each time step j [145]:

ri, j = ys, j ·
pi, j − pmean, j

pmax, j − pmin, j
+1 (14.2)

for each element i at the time t = j ·∆t. The statistical values minimum (pmin), maximum
(pmax) and mean (pmean) pressure are evaluated spatially for the concerning heart chamber at
the current time t [145]. An additional scaling factor ys weighs the influence of the relative
pressure factor based on the absolute pressure values p in the fluid mechanics simulation.

The subtraction of the mean pressure pmean and the choice of the denominator in equa-
tion 14.2 ensures that the mean value of the pressure factor is equal to one. Therefore, the
equation

1
Nc

Nc

∑
i=1

ri, j = 1 (14.3)

is fulfilled for each of the four heart chambers, where Nc is the number of surface elements
in the corresponding heart chamber c with c ∈ {LA,LV,RA,RV}. This definition of a
mean-free pressure factor is consistent with the circulatory system model, with one average
pressure pmech,c for each heart chamber only. Thus, the pressure conditions in the circulatory
system model do not get out of balance due to the influence of the fluid solver. For a scaling
factor ys = 1, the dimensionless pressure factor r ranges between r ∈ (0,2), where r ∈ (1,2)
for a fluid pressure higher than the mean pressure provided by the circulatory system.

As a static scaling factor ys = const, that maps all element pressures pi on the scaling
factor interval ys ∈(0 , 2) is not capable to fully reproduce the absolute pressure ranges, a
time-resolved scaling factor ys(t) is introduced [145]:

ys,t = 2 · pmax,t − pmean,t

pmax,t
(14.4)

also based on the statistic quantities of the fluid simulation. This choice ensures that a
multiplication of the scaling factor y with the mean pressure pmean reproduces the fluid
pressure pi without changing the mean pressure factor ymean = 1. In order to ensure the
robustness of the procedure, the scaling factor is limited to the range ys ∈ (−3,3).

Finally, this computed pressure factor r serves as an input to the subsequent mechanical
simulation, thus closing the loop of the iterative coupling procedure. The adapted mechanical
pressure p∗mech is calculated by a multiplication of the pressure estimated by the circulatory
system with the pressure factor r following equation

p∗mech,i,t = pmech,c,t · ri,t . (14.5)
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Figure 14.4: Schematic overview of the coupling procedure. Starting with a mechanical simulation, the
last heart cycle deformation is used as a boundary condition for the subsequent fluid simulation. The
processed PF is used as an input in the next mechanical simulation, when it has reached a steady state.
This procedure is repeated. The Euclidean distance (ED) is evaluated between the last cycle of two
subsequent mechanical simulations. Figure adapted from [40], published under CC BY 4.0 license.

14.2.5 Fluid-structure coupling

Figure 14.4 shows a schematic overview of the coupling procedure. The initial mechanical
simulation is run for ten heart cycles to reach a steady state. The deformation, i.e., the
coordinates of the endocardial surface of the last heart cycle is extracted. Also the pressure at
the pulmonary veins and the aorta is extracted from the circulatory system for the last heart
cycle. These quantities are respected as a boundary condition in the fluid simulation. After
four cycles of fluid simulation, a limit cycle is reached. The spatially resolved pressure pi

with i = 1, . . . ,N for all N endocardial wall elements from the three-dimensional pressure
field p is extracted. For all elements on the endocardial wall, the pressure factor r(i, t) is
calculated following equation 14.2. This pressure factor is then respected as a boundary
condition in the last cycle of the subsequent solid mechanical simulation. The number of ten
mechanics simulations is also applied in this stage to ensure that all transients have decayed.
This procedure is applied iteratively. For this study, NL ≈ 2,200 endocardial surface elements
were evaluated in the left heart (NLV ≈ 1,500 and NLA ≈ 700).

14.2.6 Circulatory system model

The model of the circulatory system comprising all four heart chambers and the dynamic
model for the valves is implemented as described in section 3.5. To consider the PF r in the
computations of the circulatory system plugin, the equations are adapted. A change in the
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overall structure is not necessary, as r(i, t) was chosen to maintain the mean pressure value
in each heart chamber as implied by equation 14.3. In the function, in which previously
the chamber pressure was applied to each element during the calculation routine, now a
multiplication with the PF r(i, t) based on equation 14.5 is added. To account for the correct
PF, the current time step needs to be mapped to the corresponding PF index continuously.
For a flexible control, the pressure gradient can be considered for computation by setting a
bool variable in the setup configuration.

The parameters are initialized similar as in Gerach et al [25]. However, no static valve
model is used. Instead, the valve is modeled by a dynamic approach to adequately capture
opening and closing effects like introduced in section 3.5. For the detailed values, see
appendix B.

14.2.7 Measures for evaluation

In this section, the three criteria used for quantification and evaluation later on, are introduced.
First, the mechanical deformation difference between the different iterations is analyzed.
Additionally, a scalar transport equation to evaluate fluid simulations is introduced. Finally,
simulation results are evaluated based on pressure volume (pV)-loops. The latter have already
been described in section 2.2.

14.2.7.1 Deformation

To evaluate the effect on the mechanical simulation, the displacement of the endocardial wall
throughout a heart cycle is analyzed. Therefore the Euclidean distance (ED), d, is calculated:

di, j =
√
(xi, j+1 − xi, j)2 +(yi, j+1 − yi, j)2 +(zi, j+1 − zi, j)2 (14.6)

for each node i in time and space, based on the node location (x,y,z) in the two subsequent
iterations j and j+1. A graphical overview over the iterations j = 0, j = 1 and j = 2 of the
mechanical solver computations is given in figure 14.4.

14.2.7.2 Hemodynamics

As a measure for the fluid simulation results with diagnostic value, the mixing procedure of
blood in the ventricles is analyzed by solving a scalar transport equation. It is a convection-
diffusion equation suggested by [104] and it accounts for the passive transport of the scalar
Ψ by the velocity field u. Ψ can therefore be considered as the local concentration of initial
blood and enables a tracking of residual blood volume. The passive transport equation

∂Ψ(x, t)
∂ t

+Ui(x, t)
∂Ψ(x, t)

∂xi
− ∂

∂xi

(
D

∂Ψ(x, t)
∂xi

)
= 0 (14.7)
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Figure 14.5: Time course of the PF over one heart cycle. Calculated by equation 14.2, it visualizes
the influence of the fluid dynamics simulation. Values PF > 1 denote a fluid pressure higher than the
one calculated by the circulatory system. The statistical distribution of the minimum and the maximum
value, as well as the area which covers 50% and 90% of all values are highlighted in red as well as dark
and light blue color. For temporal orientation, the vertical gray lines mark the start and the end of the
systolic phase. Left: First iteration of the fluid solver. Right: Second iteration of the fluid solver. Figure
adapted from [40], published under CC BY 4.0 license.

with i ∈ {1,2,3} also comprises an artificial diffusion coefficient D = 10−10 m2s−1 for
numerical stability. For t0 = 0 s, the scalar Ψ is initialized with

Ψ(x, t0) =

{
1 forallelementsintheLV

0 elsewhere
(14.8)

The distribution of Ψ in the initial state is shown in figure 14.2B.

14.3 Results

Following this sequential coupling approach, three iterations of mechanics simulations and
the associated two fluid simulations are simulated like it is visualized in figure 14.4. In
this section, the results of the introduced pressure factor as well as the ED as performance
measures are presented. Finally, the influences onto the fluid domain as well as the pV-loops
are shown.

14.3.1 Pressure factor

To investigate the pressure deviations in the fluid simulation, we evaluated the time course of
the normalized pressure factor in figure 14.5. The first fluid simulation is shown in figure
14.5A, the second iteration in figure 14.5B.
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Figure 14.6: Time course of ED for the last heart cycle in every iteration of the mechanical solver.
For an overview see again figure 14.4. The statistical distribution of the minimum and the maximum
value, as well as the area which covers 50% and 90% of all values are highlighted in red as well as
dark and light blue color. A: ED0 - ED between initial mechanical simulation (j=0) and subsequent
iteration (mechanical simulation 1). B: ED1 - ED betweenmechanical simulation 1 (j=1) and subsequent
mechanical iteration. See figure 14.4 for an overview. Figure adapted from [40], published under CC
BY 4.0 license.

The PF is in the range of −1.5 < PF < 3 for both simulations. The mean value is
PFmean = 1 per definition, but also the 50 % quantile is pretty close to PFmean = 1 throughout
most of the time. At two characteristic points of the heart cycle, higher deviations can clearly
be observed: On the one hand, at the beginning of the heart cycle (t = 0.1 s) and on the other
hand during the ventricular systole (t = 0.7 s). The highest deviations occur during systole
close to the aortic valve.

If we investigate a spatially resolved map of the pressure factor, it is clearly visible that
the large pressure deviations occur close to the aortic valve, where blood is ejected during
systole. Thus, a pressure higher than the mean pressure of the chamber (which is the one
corresponding to the boundary conditions from the mechanical simulation) is present. This
is also accompanied by the spatial distribution of the Euclidean distance in figure 14.7.

While comparing the two fluid iterations shown in the overview figure 14.4, the basic
shape of the PF time course stays equal throughout the plots of figure 14.5A and figure 14.5B.
On the one hand, this confirms a consistent behavior of the coupling algorithm: The timing
of the coupling framework matches the two single physics solvers. On the other hand the
reduced amplitude of the pressure factor by around 10 % shows the tendency to converge
towards a limit cycle.
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Figure 14.7: Spatial distribution of ED across the left ventricle. The first column shows the maximum
values, the second column the median values. In the upper row, the ventricle is visualized from a septal
position, the bottom row shoes the opposite view. ED between the initial mechanical simulation (j =0)
and the subsequential one. Figure adapted from [40], published under CC BY 4.0 license.

14.3.2 Deformation

In the second step the ED between the corresponding nodes of the mechanics simulation in
subsequent iterations is evaluated. The time course of the overall ED for the last heart cycle
is shown in figure 14.6.

For the left ventricle (left ventricle (LV)), the maximal ED of all endocardial wall nodes
was smaller than 2 mm between the first and second iteration. The maximal distance between
the second and third iteration was 70 µm, thus the limit of necessary cycles was already
reached after two iterations.

The spatial distribution of the ED throughout the LV is shown in figure 14.7.
In the left part, the maximum ED is shown from the direction of the septum (upper part),

as well as from the opposite side (lower part). The maximum deviation clearly occurs in
the area of the aortic valve and close to the apex. These two locations correspond to the
two characteristic points in the cardiac cycle: While blood flows into the ventricle during
atrial contraction, the jet towards the apex increases the pressure. In turn, during ventricular
systole, blood moves towards the aorta and increases the pressure in this area.

Comparing to the right part of figure 14.7 reveals that the median ED is distributed
uniformly across the LV and is in the range below 1 mm. Minimum, maximum and mean
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Euclidean distance ED left ventricle (LV) left atrium (LA) overall
in mm min max mean min max mean min max mean
iteration 0/1 (j=0 / ED0) 0.00 2.07 0.06 0.00 2.05 0.03 0.00 2.07 0.04
iteration 1/2 (j=1 / ED1) 0.00 2.06 0.06 0.00 1.66 0.03 0.00 2.06 0.04

Table 14.2: Euclidean distance in mm. It is calculated as the deviation of a node comparing two sub-
sequent iterations of the mechanical solver. In this case, the ED between iteration 0 and 1 (j=0) as
well as the ED between iteration 1 and 2 (j=1) are given and quantified for the three regions LV, right
ventricle (RV) and the overall geometry. Minimum, mean and maximum values are listed. Table adapted
from [40], published under CC BY 4.0 license.

absolute numbers for the ED are listed for two iterations in Table 14.2. These results show
that the changes in deformation as a reaction to the pressure gradient distribution are small
but still exist. Comparing the right part of the time course in figure 14.6 reveals an extremely
small difference between the ED of the first (iteration 0/1) and the following iteration. With
a deviation that is two orders of magnitude smaller than the ED itself, it can be stated that a
limit cycle is already reached after one iteration of the fluid solver.

14.3.3 Hemodynamics

To evaluate the effects of the coupling on the fluid dynamic quantities, the residual volume
Vres in the left ventricle is investigated. The time course of four heart cycles is shown in
figure 14.8. Hereby, the residual volume is calculated by a multiplication of the scalar Ψ

computed by the passive scalar transport (equation 14.7). Therefore, the blood volume that
initially (at t = 0 s) started in the LV and still remains there is depicted in milliliters. If the
influence of the pressure factor is not yet considered (fluid simulation phase 1), a residual
volume Vres,1 ≈ 20 ml is achieved. Considering the influence of the pressure factor, a residual
volume of Vres,2 ≈ 16 ml results. So to sum up, a difference of ∆Vres = 4 ml, compared with
a VED ≈ 180 ml describes a deviation of approximately 2 %. Therefore, the slight changes in
deformation of the boundary surface reveal a small but not neglectable accumulated residual
volume. Consideration of the coupling algorithm thus increases the influence of the washout
process in the ventricle.

Figure 14.9 additionally presents the spatial distribution of the scalar field Ψ for three
different consecutive iterations of the fluid dynamics solver. As visualized in the schematic
overview (figure 14.4), fluid iteration 1 which is shown on the left hand side of the figure
does not yet consider influences of the local pressure field. The first pressure factor PF1 is
considered in the consecutive iteration 2. In the long axis cuts of the geometry, flow patterns
inside the left ventricle can be compared. The point in time t = 1.1 s during the relaxation
phase (compared to the whole cycle length of t = 1.247 s) is chosen closely around the
diastatic state with a fully relaxed mechanical state. On the other hand, in comparison with
figure 14.8, the statistical value of the overall residual volume Vres indicates a completely
matching value in both iterations based on the evaluations of the scalar field Ψ. However,
the spatial distribution of Ψ indicates, that even with an exactly matching residual volume
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Figure 14.8: Time course of the residual volume introduced to quantify the washout during the fluid
simulation. It is computed based on the transport of the scalar Ψ, which can be seen as a local concen-
tration of initial blood volume in the LV. Shown is the curve for the four full heart cycles, color coded
are the two iterations of the fluid solver. Figure adapted from [40], published under CC BY 4.0 license.

Vres, the flow patterns as well as the ventricular washout differ. Compared to the second fluid
dynamics iteration, the jet towards the apex is qualitatively lower in the first iteration. This
reveals an influence of the sequential coupling algorithm and shows an underestimation of the
washout if the coupling is not considered. Comparing the second to the third iteration again
confirms the analyses from the mechanical results: The deviations in the flow patterns are
not significant any more. This observation can also be confirmed throughout the following
time steps and highlights that the influence of the coupling algorithm is already completely
incorporated after one iteration and the limit cycle is reached.

14.3.4 Pressure-volume-loop

PV-loops are often used to represent the work and efficiency of a mechanical system. The
same holds true for the human heart: The pV-loops in figure 14.10 show the mean ventricular
chamber pressure plotted against the ventricular chamber volume and reveal the influence of
our coupling framework. As the mean pressure of each chamber pmean,c is per definition kept
constant (equation 14.3), deviations in the pV-loop are only caused by an altered chamber
volume. Therefore, the changes in the diagram are not that great. However, some deviations
exist and a low alteration of the chamber volume can be found. While the blue line shows the
resulting pV-loop after the nine heart cycles of mechanical simulations (limit cycle, compare
overview in figure 14.4), the red and green lines show the result of considering the pressure
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Figure 14.9: Long axis cut through the fluid simulation mesh. Color coded the spatial distribution of
the scalar field Ψ during the ventricular relaxation period at the time t = 1.1s. From left to right, three
iterations of fluid simulation results are included (fluid iteration 1 at the left hand side, for indexing also
compare figure 14.4). While between the first and the second iteration, a slightly altered flow pattern
and a reduced jet to the apex can be observed, the comparison between iteration 2 and 3 reveals less
differences.

factor. Deviations can clearly be observed in the lower left part of the curve. At this point in
time, the isovolumetric relaxation (left vertical line) and the diastolic filling (lower horizontal
line) take place.

Comparing the pV-loops of the two iterations again confirms the convergence of the sys-
tem towards a limit cycle: Deviations in the chamber volume become smaller. Furthermore,
it can be recognized that the deviations in the mean chamber volume are below ∆Vc < 1 ml
at every point in time.

However, while comparing the initial iteration (blue) to the first (red) and second (green)
also reveals differences: On the one hand, at the end of the systole, a pressure peak can be
observed in the top left area of the loop. On the other hand, especially in the lower and left
part of the loop, oscillations are introduced by the iterative coupling procedure. However,
we observe that the amplitudes of both artifacts decrease in the second iteration.
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Figure 14.10: PV-loop for the right (right ventricle (RV)) and left LV ventricle. Color-coded are the three
iterations of the mechanical solver while the first iteration depicts the limit cycle after nine iterations
of the mechanical solver (mechanical simulation 0, blue color). For the LV, two characteristic areas are
shown enlarged in the center of the figure to highlight the differences between the three iterations.
Figure adapted from [40], published under CC BY 4.0 license.

14.4 Discussion

The novel coupling approach combines realistic feedback with comparably low compu-
tational effort and independence of the two single area of physics solvers. The coupling
interface can be used independently from the exact solver architecture and therefore offers a
high degree of flexibility and applicability. It unites simulation software packages focusing
on only one area of physics to exchange relevant information in a bidirectional manner. In this
way, we enable to consider fluid dynamical influences in structural mechanics simulations
without a need of direct interaction during the simulation itself.

The main task and also the biggest challenge that partitioned FSI solvers face is the
adequate exchange of coupling data. In most cases, different underlying mesh geometries
have to be compared and resulting quantities have to be mapped and interpolated onto the
concerning meshes. This process is highly dependent on the accuracy of all models, as well
as a correct mapping. Therefore, coupling frameworks are prone to introduce errors [46].
Since in our approach, the solvers do not exchange information in each time step ∆t, the
correct temporal alignment of the simulation results is of high importance as well. As we
experienced during testing, already a small shift in the alignment of the timing can cause
simulations not to converge.

When comparing the novel approach with existing approaches in literature, we can
find that partitioned approaches continue to gain in importance. The group around [147]
implemented a monolithic solver to tackle the multi-physics problem. To account for the
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influences of the fluid simulation in the mechanics domain, a fluid Cauchy stress tensor
is considered. Thus, in each time step, fluid and mechanics equations are solved within
one single solver. Like in this work, the Navier Stokes equation (NSE) are formulated in
ALE description. However, when using measurement data as a boundary condition for fluid
simulation in the application part, the motion equations are no longer solved. Based on the
measured time courses, the deformation of the myocardial walls is known a priori and is
not computed based on the monolithic equations any more. This approach still delivered
accurate results. Lately, [24] additionally implemented an implicit-explicit scheme based on
an inter-grid transfer operator to enable the computation using different mesh resolutions
and discretizations in space and time. Their coupling scheme is therefore segregated and
staggered. In the fully coupled model suggested by [28], a partitioned FSI simulation
was used. They tackled the multi-physics problem of cardiac simulations by a division in
two domains with a Dirichlet-Neumann decomposition each. Based on a strongly coupled
staggered approach, the electro-mechanical domain is bidirectionally coupled to the fluid
domain. A fluid-structure interface is implemented to compute the discrete position of
the nodes based on [51]. Also [53] presented a multi-way coupled computational model
based on an immersed boundary grid for the left part of the heart. In their fluid-structure-
electrophysiology coupling approach, a central structure evolution equation is solved to
link between the three named physical domains. So in each time step, the new mechanical
geometry is used as an input for the three single area of physics solvers. The approach
was found to deliver accurate results on an idealized left heart geometry. Another approach
suggested by [157] is also based on a partitioned solver. A block Gauss–Seidel implicit
scheme is used, but there the three domains fluid, mechanics and mesh motion are considered.
Overall, there are many FSI approaches and applications, with most of them based on
a partitioned approach. The review of [46] concisely presents a large number in their
corresponding application fields.

Summing up, all approaches listed in this section are based on a staggered scheme. Thus,
our approach is based on the same basic decomposition, that is used in established processes.
However, as we suggest a cycle to cycle coupling, the effort of implementing an elaborated
coupling scheme, that closely couples both areas of physics, is circumvented.

An abstract way to model the influence of the circulatory system is to use a 3D-0D
coupled approach [25, 31, 158, 159]. To adequately define the interface between the
circulatory system pressures and the fluid simulation boundary pressures, we introduced the
prolonged trunks in the left heart to model the pulmonary veins and the aorta. These rigid
tubes also allow for steady state flow conditions.

To replicate realistic blood flow patterns, [38] showed that a comparably simple valve
model can be sufficient. Inserting a tripping ring along the valve annulus enhances vortex
formation such that the typical vortex ring develops in the left ventricular chamber. In this
way, previous limitations of the comparably simple valve model can be overcome [160, 161].
In the present study, the valve planes between atria and ventricles incorporate a notable
narrowing, which already represents the effective blockage of the valve leaflets considered
sufficient to demonstrate the basic performance of the coupling algorithm. The same
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holds true for the limitation already discussed by [38]: This highly efficient numerical
representation of the mitral valve (MV) may not be sufficient to study MV flow characteristics
or MV pathology in detail.

In hemorheology studies, the characteristics of the blood are investigated. It is a matter
of debate whether blood can be modeled as a Newtonian fluid, such that the Navier stokes
equations as presented above hold true. As for example [162] state, length and time scales
are sufficiently large in macroscopic views of the heart chambers, such that the continuum
hypothesis holds true. Therefore, we model blood as a Newtonian fluid in this study. However,
non-Newtonian effects could potentially play a role in the prolonged trunks [163].

Considering the scalar transport equation introduced in section 14.2.7.2, the consideration
of an artificial diffusion factor D may have an impact on the resulting flow quantities.
However, as the factor is on a really small scale (∝ 1 · 10−9 m2s−1), the impact on the
resulting flow and pressure field is not significant.

The results presented in this study show that the sequential coupling approach can
be successfully applied for a healthy heart model. In particular, the Euclidean distance
converged for successive mechanical iterations. A limit cycle was reached after already one
iteration and oscillations decreased significantly.

The numerical stability of the novel approach was high for the investigated heart model.
However, as mentioned in section 14.2.4, the pressure factor has an impact on the absolute
pressure values and the absolute deviations. Thus, a non-limited scaling factor could lead
to instabilities of the mechanical simulation. Especially if the fluid and the mechanical
simulation differ strongly, e.g., caused by a time offset, numerical stability can be impaired.
The oscillations appearing in the pV-loop are probably introduced by the application of the
pressure factor: A steady state system that is exposed to a pressure step, in our case the
multiplication with a pressure factor, is brought out of balance and starts to oscillate. To
cope with this scenario, normally several iterations are computed, until a new steady state
is reached. As in our case the circulatory system does not compute several iterations, the
discontinuity of the multiplied pressure factor (pressure step) has to be handled. We observed
that oscillations decreased in a subsequent coupling iteration. Pressure discontinuities in the
fluid simulation that arise locally, i.e., in neighboring elements could lead to instabilities
in the subsequent mechanical simulation. These local pressure discontinuities could for
example be caused by a wrong labeling of cells: As the pressure factor is computed based on
the mean pressure in each chamber, the correct classification of cells is of high importance,
especially at the edges of neighboring regions.

With a mean ED of 0.06 mm in the LV when comparing the initial (iteration 0) and the
first iteration, the tissue deformation resulting from the fluid pressure field is considerably
low. Especially compared to the uncertainty that is introduced during the imaging process,
during image segmentation and during mesh creation, the mean deviation is neglectable. With
the same reasoning, the resulting volume alteration of below 1 ml can be neglected compared
to the overall chamber volumes. Thus, the additional effort of a fully coupled simulation is
likely not justified. Nevertheless, it can be argued that the maximum geometrical alteration
of up to 2 mm is in the same order of magnitude as the imaging uncertainty. However, the
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maximum deviation is limited to a very small number of nodes in time and space. In the
regions around the aorta and the apex, fluid dynamics had a higher influence on the model
displacement at characteristic points in time (figure 14.6).

We contextualize these deviations with an increased blood flow velocity. As increased
blood flow results in a lower static wall pressure, it deflects the wall to a lower extent than
areas in a mean flow range. This phenomenon is expected to occur in the area around the
aorta during ventricular systole, when the blood is ejected out of the LV. As we observe high
blood velocities (up to 200 ml/s) in the aortic region, we would expect the fluid to have an
influence on the mechanical deformation through FSI. During the ventricular filling phase,
the area around the apex is affected by this phenomenon. As the scalar transport confirms,
there is a jet towards the apex. This jet also accounts for a local velocity increase, resulting
in a higher ED comparing iterations 0 and 1.

Thus, if the focus of interest is exactly in the detailed resolution of these regions, the
impact of fluid dynamics has to be considered especially at the mentioned characteristic
points in time. However, even in this case, it is sufficient to compute one iteration of the
sequential pressure-deviation coupling algorithm.

Considering the washout of the LV in figure 14.8, the altered mechanical deformation
leads to a noticeable increase. This is due to the fact that residual volume is summed up
cycle by cycle, which finally leads to an increased washout of 4 %. Thus, in the case of
simulating subsequent heart cycles, considering one iteration of the sequential coupling
procedure would lead to more precise results.

In conclusion, the retrograde influence of fluid dynamics on mechanical deformation
appears as not particularly relevant for most of the time of the heart cycle in a healthy
configuration. In other cases, one iteration of the fluid-mechanic coupling would be sufficient
to account for the minor deviations.

Regarding other coupling approaches, the main advantage of the sequential coupling
approach is the independence of the mechanics and fluid solvers. The presented approach
enables to use different, completely independent software packages for the simulation of
the different areas of physics. The solvers are only linked by exchanging the pressure factor
and the only requirement for the mechanical solver is the ability to incorporate the external
pressure factor during simulation.

In future work, this iterative coupling approach will have to prove its ability to deliver ac-
curate results also for diseased heart models. To improve stability of the coupling framework
and to increase smoothness of the results, a time window for the determination of the scaling
factor ys can be introduced. Additionally, the degree of automation can be increased towards
a fully automatic pipeline.

Summing up, we observed that the influence of fluid dynamic pressure resulted in a
structural deviation of up to 2 mm. These deviations could already be resolved after one
coupling iteration. In conclusion, the sequential coupling approach with its comparably low
computational effort delivered promising results for modeling fluid-structure interaction in
cardiac simulations.
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Chapter 15
Outlook and conclusions

15.1 Outlook

To accurately reproduce quantitative values obtained from simulations based on body-
fitted mesh approaches with the immersed boundary method (IBM) solver, the accordance
between the solvers for the different areas of physics has to be increased. More concretely,
the representation of the valve dynamics revealed to have a high influence on blood flow
dynamics and introduced deviations. Thus, either the valve geometry can further be improved
by modeling diameter and opening times based on the circulatory system parameters. On the
other hand, the circulatory system parameters can be adjusted in accordance with the valve
geometry.

While the acquired 4D flow measurements only allowed for a basic qualitative validation
of the IBM solver, an additional study has to be set up to quantitatively validate the solver
results. However, the acquisition of a complete data set comprising electrophysiology,
elastomechanical and fluid dynamics data of the same heart geometry would form a thorough
base for the validation of the elastomechanics and the fluid dynamics solver. This would also
be a necessary requirement for a potential use in the clinically relevant context.

Investigating further application fields of the solver, of course the direct incorporation of
measured data as the constraining endocardial surface would broaden potential application
areas. Under consideration of the necessary match between the solvers for the different areas
of physics, also further relevant diseases can assessed. Closing the loop of the multi-physics
modeling, also a coupling to the cardiac electrophysiology is conceivable to directly model
the influence of alterations in atrial electrophysiology on the resulting flow patterns.

Evaluating the influences of the fluid dynamics simulations on the elastomechanical
deformations with the sequential coupling algorithm revealed a deviation in a low range.
In addition, already after one iteration, all influences had been balanced and no further
deviations in the displacement occurred. Therefore, it was concluded that this implies that
already one iteration of the sequential coupling process is sufficient to model all retrograde
effects. However, to really prove that unidirectional coupling is sufficient, a fully coupled
solver would be needed as a reliable, ground truth reference solution.
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15.2 Conclusions

In the scope of this thesis, two novel approaches in the context of light coupling strategies
to simulate the fluid dynamics in the human heart were proposed and assessed concerning
adequate functionality. While verifying and evaluating both of them, possibilities and limita-
tions of the light coupling methods were carved out.

At first, a unidirectionally coupled Finite Volume (FV) solver based on an IBM approach
was introduced. The movement of the endocardial surfaces was prescribed by applying
external surface files, boundary conditions (BC)s as pressure values and flow rates were
extracted from the circulatory system framework. Simulations showed to basically be ca-
pable to deliver results with a similar accuracy than the already implemented body-fitted
approach. However, simulations also revealed a clear challenge in unidirectionally coupled
solver frameworks: While both solver for the different areas of physics have to be matched
correctly to not introduce deviations due to differences in the models. This was found to
be especially a challenge in the context of the correct representation of the geometric valve
shape and time control.

Applying the fluid dynamics solver to diseased heart geometries, flow quantities were
computed under pathological conditions. Fluid simulations revealed alterations in the flow
conditions in both considered pathologies, in patients suffering from hypertrophic cardiomy-
opathy as well as in patients with mitral valve regurgitation. Applying a particle tracking
algorithm to post process the simulated data set, flow components were distinguished.

Focusing on the interdependence between the elastomechanical and the fluid dynamics
solver, the retrograde effect on the elastomechanical simulation were assessed. A sequential
coupling algorithm was introduced to hand over fluid simulation quantities to the elas-
tomechanics solver in a bidirectionally coupled manner. It was found, that the introduced
deviation is in the millimeter range and thus considerably low. The bidirectional exchange of
information did not show a significant impact on the resulting flow patterns. Therefore, it
was not mandatory to consider the bidirectional exchange of information in the considered
healthy heart geometry. However, when sequential coupling is considered, the effects are
already balanced after only one iteration.

Summarized, light coupling strategies have to be used with caution and only for cases,
in which an appropriate accordance between the involved solvers for the different areas of
physics is ensured. If this condition is fulfilled, a significant reduce in computational effort
and in the exchange of data between the solvers can be achieved. Based on the results of the
studies in the scope of this thesis, the following conclusions can be drawn:
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The IBM implementation proved to be a reliable method to model a moving bound-
ary. Thus, it successfully can be applied to simulate blood flow dynamics in the heart.
While the method was verified on various simplified scenarios, it revealed a good accordance
with the compared analytical solution: The boundary layer, as well as flow quantities in 2D
patch simulations were adequately reproduced.

The missing feedback loop between the fluid dynamics and the elastomechanics
solver in unidirectionally coupled frameworks showed to increase the influence of the
BC on the fluid simulation results. Exemplary, the representation of the valves had a
high impact on flow quantities: While the volume change is prescribed by the results of the
circulatory system, an alteration in the valve diameter leads to an increased pressure drop
across the valve diameter. Taking this into account, light coupling strategies can only be
applied, if the different area of physics solvers are correctly matched.

Fluid dynamic solvers based on a unidirectional coupling approach can deliver
valuable insights into the flow conditions in pathological heart geometries. Flow patterns
can be visualized, flow components can be distinguished and quantified and also measures
relevant in the clinical context can be assessed.

A sequential coupling algorithm can be applied to consider the influences of the fluid
dynamics simulations in the elastomechanical simulation framework. This bidirectional
coupling approach leads to a balanced state in only one iteration. Considering the
influences of the spatially resolved pressure gradient field resulting from the fluid dynamics
simulation showed a limited impact on the elastomechanical simulation results. Differences
vanished after one iteration of the cycle-to-cycle based approach.
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Appendix A
Trunk prolongation script

The following MATLAB scripts are used to automatically compute the heart geometry with
prolonged inlet and outlet trunks as introduced in chapter 5.
extractFluidSurfaces.m:

1 % extractFluidSurfaces.m

2 % Read mechanic simuation result, extract surfaces for fluid ...

simulation and save stl files.

3 % Works for T4 and T10 input files - T10 geometries are converted ...

to T4.

4 % Input: [req].vtu file of CardioMechancis Simulation result

5 % Output: .stl file of LA, LV, RA, RV, LAV, RAV, shortTrunks

6 % jb072, 14.01.2022

7
8 %% clear

9 clear

10 close all

11 clc

12
13 %% Input data

14 mfile='/Users/.../Baseline.vtu'; %mechanics input file

15 fpath='/Users/.../fluidGeo/'; %fluid output folder

16
17 %% Material indexes

18 names=[{'LA'}, {'LV'}, {'RA'}, {'RV'}, {'LAV'}, {'RAV'}, ...

{'tinyTrunks'}, {'shortTrunks'}];

19 mats=[{133}, {131}, {132}, {130}, {37}, {36}, {38},{[38, 39]}]; ...

% earlier (in Ekis simulations)

20 mats=[{133}, {131}, {132}, {130}, {37}, {36}, {[38, 35]},{[38, 39, ...

35]}]; % now (in Tobis simulations)

21 mats=[{133}, {131}, {132}, {130}, {37}, {36}, {[38, 233]},{[38, ...

39, 233]}]; % now (in fluid simulations)

22
23 %% Read mechanical geometry

24 m=readVTK(mfile);

25
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26 %% Extract cells by material and export .stl surfaces

27 for i=1:1:size(mats,2)

28 %extract cells by material

29 [cells, points, surf_e]=extract_cellByMaterial(m, mats{i});

30
31 % Export stl surfaces

32 stlwrite(surf_e,[fpath names{i} '.stl'])

33 end

34
35 disp(['Exported stl file of different surfaces relevant for fluid ...

simulation to ' fpath])

36
37 %% End of pipeline

38
39
40
41 %% FUNCTIONS

42
43 function [ST_points_new, ST_cells_new] = ...

delete_RemainingPoints(ST_points, ST_cells_new)

44 % Delete points that are not longer needed and shift cell IDs

45 % identify outdated points

46 todelete=[];

47 for i=size(ST_points,1):-1:1

48 if isempty(find(ST_cells_new(:,:)==i))

49 todelete=[todelete;i];

50 end

51 end

52
53 % shift pointIDs and delete outdated points

54 ST_points_new=ST_points;

55 for i=1:1:size(todelete,1)

56 ST_cells_new = ST_cells_new - double(ST_cells_new>todelete(i));

57 ST_points_new(todelete(i),:)=[]; %delete points inside the ...

(deleted) surface

58 end

59
60 end

61
62 function [cells, points, surf_e]=extract_cellByMaterial(m, mat)

63 % extract all cells with corresponding material and return ...

triangulation

64 cells=[];

65 for i=1:1:size(mat,2)

66 idx_c=(m.cellData.Material==mat(i));

67 cells=[cells; double(m.cells(idx_c,:))];

68 end

69
70 %check if surface or volume elements

71 if sum(cells(:,4)̸=0) >0

72 terminal=zeros(1,size(cells,2)-3); %fill up with zeros (1x for ...

T4, 7x for T10)
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73 for i=1:1:size(cells,1)

74 if cells(i,4)̸=0

75 cells(end+1,:)=[cells(i,2) cells(i,3) cells(i,4) ...

terminal];

76 cells(end+1,:)=[cells(i,1) cells(i,2) cells(i,4) ...

terminal];

77 cells(end+1,:)=[cells(i,1) cells(i,3) cells(i,4) ...

terminal];

78 end

79 end

80 end

81
82 cells(:,4:end)=[];

83
84 %extract surface - remove internal faces (caused by volume cells ...

or 2 materials)

85 for i=size(cells,1):-1:1

86 [b,¬]=find(cells(i,1)==cells);
87 [c,¬]=find(cells(i,2)==cells(b,:));
88 [d,¬]=find(cells(i,3)==cells(b(c),:));
89 if size(d,1)>1

90 cells(b(c(d(1))),:)=[NaN NaN NaN];

91 cells(b(c(d(2))),:)=[NaN NaN NaN];

92 end

93 end

94
95 idx_k=¬isnan(cells(:,1));
96 cells=cells(idx_k,:);

97
98 % Check if T10. If yes, convert to T4

99 if size(m.cells,2)==10

100 allcells=double(m.cells);

101 idxT10=min(allcells(allcells(:,5)>0,5)); %Minimum value ...

greater than 0

102 centrals=cells(sum(cells≥idxT10,2)==3,:); %list central T10 ...

surface element

103 if ¬isempty(centrals)
104 cells_init=cells;

105 cells=[];

106
107 for i=1:1:size(centrals,1)

108 [b,¬]=find(centrals(i,1)==cells_init);
109 [c,¬]=find(centrals(i,2)==cells_init(b,:));
110 [d,¬]=find(centrals(i,3)==cells_init(b,:));
111 [e,¬]=find(centrals(i,2)==cells_init);
112 [f,¬]=find(centrals(i,3)==cells_init(e,:));
113 allPoints=[cells_init(b(c),:) ; cells_init(b(d),:) ; ...

cells_init(e(f),:)];

114 cells=[cells;(allPoints(allPoints<idxT10))'];

115 end

116 end

117 else
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118 idxT10=[];

119 end

120
121 % triangulate

122 if ¬isempty(idxT10)
123 m.points(idxT10:end,:)=[];

124 end

125
126 [points, cells] = delete_RemainingPoints(double(m.points), cells);

127 surf_e=triangulation(cells, points);

128 %trisurf(surf_e)

129 end



177

prolongTrunks.m:

1 % prolongTrunks.m

2 % Read heart geometry, prolong trunks and save stl files.

3 % Input: [req] .stl file of short trunks from mechanical mesh ...

(material 38+39+(35/34))

4 % Input: [req] .stl file of LV (material 131)

5 % Input: [req] .stl file of LA (material 133)

6 % Input: [req] .stl file of RV (material 130)

7 % Input: [req] .stl file of RA (material 132)

8 % Input: [req] .stl file of LAV or RAV plane (material 37 or 36)

9 % Input: [req] left or right heart (default isleft=true))

10 % Input: [opt] length of trunks (default length=10 [times avgLength])

11 % Input: [opt] .stl file of tiny trunks from mechanical mesh ...

(material 38)

12 % Input: [opt] delPoints: List of nodes. For each node, del. ...

connected cells

13 % Input: [opt] path to .stl input files

14 % Output: .stl file of prolonged trunks (whole heart side geometry)

15 % Output: .stl file of pressure inlet

16 % Output: .stl file of pressure outlet

17 % jb072, 04.01.2022

18
19 %% clear

20 clear

21 close all

22 clc

23
24 %% Input data

25 inpath='/Users/.../fluidGeo';

26 isleft=true;

27 length=12; %multiple of avgEdgeLength, with which the trunks are ...

prolonged.

28
29 delPoints=[];

30 % delPoints=[0.01,0.01,0.01]; %if there are faulty tets in the ...

mechanical mesh, list the top point here to remove connected ...

cells.

31
32 %% Output folder

33 if ¬exist([inpath '/left'], 'dir')

34 mkdir([inpath '/left'])

35 end

36 if ¬exist([inpath '/right'], 'dir')

37 mkdir([inpath '/right'])

38 end

39
40 %% Read geometry

41 RV=stlread([inpath,'/RV.stl']);

42 LV=stlread([inpath,'/LV.stl']);

43 RA=stlread([inpath,'/RA.stl']);
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44 RAV=stlread([inpath,'/RAV.stl']);

45 LA=stlread([inpath,'/LA.stl']);

46 LAV=stlread([inpath,'/LAV.stl']);

47 ST=stlread([inpath,'/shortTrunks.stl']); %shortTrunks

48 if isfile([inpath,'/tinyTrunks.stl'])

49 TT=stlread([inpath,'/tinyTrunks.stl']); %tinyTrunks

50 end

51
52 ST_i=triangulation(ST.faces, ST.vertices);

53
54
55 %% If left heart, mark right heart trunk for deletion and other ...

way around

56 if isleft

57 V=LV; %Ventricle = left ventricle

58 delV=RV; %RV to delete

59 A=LA;

60 delA=RA;

61 AV=LAV;

62 else

63 V=RV; %Ventricle = right ventricle

64 delV=LV;

65 A=RA;

66 delA=LA;

67 AV=RAV;

68 end

69
70 %% visualization

71 % V_t=triangulation(V.faces, V.vertices);

72 %

73 % figure

74 % trisurf(V_t)

75 % hold on

76 % trisurf(ST_i)

77
78 %% Preprocess: Delete points that appear multiple times

79 % First: Reduce points that appear multiple times

80 [V_points,V_cells] = reduce_MultiplePoints(V);

81 [A_points,A_cells] = reduce_MultiplePoints(A);

82 [ST_points,ST_cells] = reduce_MultiplePoints(ST);

83 [delV_points,delV_cells] = reduce_MultiplePoints(delV);

84 [delA_points,delA_cells] = reduce_MultiplePoints(delA);

85 [AV_points,AV_cells] = reduce_MultiplePoints(AV);

86
87 %% Delete unneeded trunks

88 %Ventricle

89 [ST_points, ST_cells, ST_u] = delete_AllConnectedCells(ST_points, ...

ST_cells, delV_points);

90 %trisurf(ST_u)

91
92 %Atrium
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93 [ST_points, ST_cells, ST_u] = delete_AllConnectedCells(ST_points, ...

ST_cells, delA_points);

94 %trisurf(ST_u)

95
96 %% Process ventricular trunks

97 % Delete shared surfaces ventricle

98 [ST_points_new, ST_cells_new, V_points, V_cells, ...

edge_Points_v,deletedV]=delete_sharedSurfaces(ST_points, ...

ST_cells, V_points, V_cells);

99
100 % Prolong ventricular trunks

101 [v_trunks_c, v_trunks_p,LT_VT, v_lids_c, ...

v_lids_p]=prolong_chamberTrunks(edge_Points_v, ST_cells_new, ...

ST_points_new, length);

102
103 %triangulate and export lid

104 ST_VL=triangulation(v_lids_c{1}, v_lids_p{1});

105
106 if isleft

107 stlwrite(ST_VL,[inpath,'/left/outlet.stl'])

108 disp(['Exported stl file of outlet geometry to ' inpath ...

'/left/outlet.stl'])

109 else

110 stlwrite(ST_VL,[inpath,'/right/outlet.stl'])

111 disp(['Exported stl file of outlet geometry to ' inpath ...

'/right/outlet.stl'])

112 end

113
114 %% If available: Process tiny trunks and export (for volumeMesh ...

creation)

115 % Extract semilunar valve (SLV): aortic/pulmonary valve

116 if exist('TT','var')

117
118 % First: Reduce points that appear multiple times

119 [TT_points,TT_cells] = reduce_MultiplePoints(TT);

120
121 % Find common points with ventricular trunk

122 [match] = find_CommonPoints(TT_points, v_trunks_p{1});

123
124 %Extract all connected cells

125 [connected_faces,rest,found_edge_Points] = ...

identify_ConnectedCells(TT_cells, match(:,1), false);

126 [TT_points_new, TT_cells_new] = ...

delete_RemainingPoints(TT_points, ...

TT_cells(connected_faces,:));

127
128 %Triangulate

129 TT_s=triangulation(TT_cells_new, TT_points_new);

130 %trisurf(TT_s);

131
132 %Export

133 if isleft
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134 stlwrite(TT_s,[inpath,'/left/SLV.stl'])

135 disp(['Exported stl file of semiliunar valve geometry to ' ...

inpath '/left/SLV.stl'])

136 else

137 stlwrite(TT_s,[inpath,'/right/SLV.stl'])

138 disp(['Exported stl file of semiliunar valve geometry to ' ...

inpath '/right/SLV.stl'])

139 end

140
141 % Also export a version without the elements at the side for ...

the gmsh volume mesh

142
143 % Delete side cells

144 [dSLV_points, dSLV_cells, ¬, ¬...
,¬,¬]=delete_sharedSurfaces(TT_points_new, TT_cells_new, ...

v_trunks_p{1}, v_trunks_c{1});

145
146 %Triangulate

147 TT_s=triangulation(dSLV_cells, dSLV_points);

148 %trisurf(TT_s);

149
150 %Export

151 if isleft

152 stlwrite(TT_s,[inpath,'/left/SLV_gmsh.stl'])

153 disp(['Exported stl file of semiliunar valve geometry for ...

gmsh to ' inpath '/left/SLV_gmsh.stl'])

154 else

155 stlwrite(TT_s,[inpath,'/right/SLV_gmsh.stl'])

156 disp(['Exported stl file of semiliunar valve geometry for ...

gmsh to ' inpath '/right/SLV_gmsh.stl'])

157 end

158 end

159
160 %% Process atrial trunks

161 % Delete shared surfaces atrium

162 [ST_points_new, ST_cells_new, A_points, A_cells, edge_Points_a, ¬...
]=delete_sharedSurfaces(ST_points_new, ST_cells_new, A_points, ...

A_cells);

163
164 % %% Visualization

165 % ST_t=triangulation(ST_cells_new, ST_points_new);

166 %

167 % figure

168 % trisurf(ST_t)

169 % hold on

170 %

171 % stlwrite(ST_t,[path,'/sTrunks.stl'])

172 % disp(['Exported stl file of short trunks geometry to ' path ...

'/sTrunks.stl'])

173 %

174 % A_t=triangulation(A_cells, A_points);

175 %
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176 % figure

177 % trisurf(A_t)

178 % hold on

179 %

180 % stlwrite(A_t,[path,'/LA_wholes.stl'])

181 % disp(['Exported stl file of LA geometry to ' path ...

'/LA_wholes.stl'])

182
183 % Prolong atrial trunks

184 [a_trunks_c, a_trunks_p,LT_AT, a_lids_c, ...

a_lids_p]=prolong_chamberTrunks(edge_Points_a, ST_cells_new, ...

ST_points_new, length);

185
186 %triangulate and export lids

187 inlet_p=[];

188 inlet_c=[];

189
190 for i=1:1:size(a_trunks_p,2)

191 %ST_AL{i}=triangulation(a_lids_c{i}, a_lids_p{i}); ...

%triangulate each lid single

192 inlet_c=[inlet_c;a_lids_c{i}+size(inlet_p,1)];

193 inlet_p=[inlet_p;a_lids_p{i}];

194 end

195
196 ST_in=triangulation(inlet_c, inlet_p); %triangulate all lids

197
198 if isleft

199 stlwrite(ST_in,[inpath,'/left/inlet.stl'])

200 disp(['Exported stl file of inlet geometry to ' inpath ...

'/left/inlet.stl'])

201 else

202 stlwrite(ST_in,[inpath,'/right/inlet.stl'])

203 disp(['Exported stl file of inlet geometry to ' inpath ...

'/right/inlet.stl'])

204 end

205
206 %% Process AV geometry: Delete cells shared with atrium and ventricle

207 % delete cells AV/ventricle

208 [AV_points_new, AV_cells_new, V_points, V_cells, ¬...
,deletedCells1]=delete_sharedSurfaces(AV_points, AV_cells, ...

V_points, V_cells);

209 ST_V=triangulation(V_cells, V_points);

210 ST_AV=triangulation(AV_cells, AV_points);

211
212 %Visualization

213 %trisurf(ST_V)

214 %trisurf(ST_AV)

215
216 % save deleted cells AV/ventricle

217 delCellsAV1=AV_cells(deletedCells1,:);

218 [del1_AV_p, del1_AV_c] = delete_RemainingPoints(AV_points, ...

delCellsAV1);
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219
220 % delete cells AV/atrium

221 [AV_points, AV_cells, A_points, A_cells, ¬...
,deletedCells2]=delete_sharedSurfaces(AV_points_new, ...

AV_cells_new, A_points, A_cells);

222 ST_A=triangulation(A_cells, A_points);

223 ST_AV=triangulation(AV_cells, AV_points);

224
225 % Visualization

226 %trisurf(ST_A)

227 %trisurf(ST_AV)

228
229 % save deleted cells AV/atrium

230 delCellsAV2=AV_cells_new(deletedCells2,:);

231 [del2_AV_p, del2_AV_c] = delete_RemainingPoints(AV_points_new, ...

delCellsAV2);

232
233 % combine and export deleted surfaces (for volume mesh creation)

234 dAV_cells=[del1_AV_c; del2_AV_c+size(del1_AV_p,1)];

235 dAV_points=[del1_AV_p; del2_AV_p];

236
237 dAV=triangulation(dAV_cells,dAV_points);

238 %trisurf(dAV)

239
240 if isleft

241 stlwrite(dAV,[inpath,'/left/AV_gmsh.stl'])

242 disp(['Exported stl file of LAV geometry for gmsh to ' inpath ...

'/left/AV_gmsh.stl'])

243 else

244 stlwrite(dAV,[inpath,'/right/AV_gmsh.stl'])

245 disp(['Exported stl file of AV geometry for gmsh to ' inpath ...

'/right/AV_gmsh.stl'])

246 end

247
248 clearvars deletedCells1 deletedCells2;

249
250 %% Combine all part surfaces into one complete surface

251 all_p=[];

252 all_c=[];

253
254 %combine all parts in one surface (excluding lids) - for GMSH

255 allpoints=[{A_points,V_points,AV_points} ,a_trunks_p,v_trunks_p];

256 allcells=[{A_cells,V_cells,AV_cells} ,a_trunks_c,v_trunks_c];

257 allnames={'A_points','V_points','AV_points'};

258 for i=1:1:size(a_trunks_p,2)

259 allnames(end+1)={['atrialTrunk ' num2str(i)]};

260 end

261 for i=1:1:size(v_trunks_c,2)

262 allnames(end+1)={['ventricularTrunk ' num2str(i)]};

263 end

264
265 disp(newline)
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266 for i=1:1:size(allpoints,2)

267 all_c=[all_c;allcells{i}+size(all_p,1)];

268 all_p=[all_p;allpoints{i}];

269 disp(['Center point of ' allnames{i} ' is (' ...

num2str(mean(allpoints{i})) ') >>use in set batch'])

270 end

271 disp(newline)

272
273 %% Optimization: If mechanical mesh is faulty correct surface

274 % Appears especially, when single points (and 3-4 connected cells) is

275 % shifted inside/outside the true surface

276 del_cells=[];

277 del_points=[];

278
279 for i=1:1:size(delPoints,1)

280 dist=(all_p(:,1)-delPoints(i,1)).^2 + ...

(all_p(:,2)-delPoints(i,2)).^2 + (all_p(:,3)-delPoints(i,3)).^2;

281 [¬, id_ex]=min(dist);

282
283 [connected_faces,¬,found_edge_Points] = ...

identify_ConnectedCells(all_c, id_ex, true);

284
285 %store deleted cells and points for visualization

286 [del_p, del_c] = delete_RemainingPoints(all_p, ...

all_c(connected_faces,:));

287 del_cells=[del_cells;del_c+size(del_points,1)];

288 del_points=[del_points;del_p];

289
290 all_c(connected_faces,:)=[]; %delete concerning cells

291
292 if size(found_edge_Points,1)==3

293 all_c=[all_c; found_edge_Points'];

294 elseif size(found_edge_Points,1)==4 %find point that is most ...

far away

295 dist=rms((all_p(found_edge_Points(2:4),:)-all_p(found_edge_Points(1),:))');

296 [¬,p]=max(dist);
297 vec1=[2;3;4];

298 vec2=vec1;

299 vec2(p)=1;

300 all_c=[all_c; found_edge_Points(vec1)'; ...

found_edge_Points(vec2)'];

301 end

302 end

303
304 if ¬isempty(del_points)
305 del_t=triangulation(del_cells,del_points);

306 %trisurf(del_t,'Facecolor','red')

307
308 [all_p, all_c] = delete_RemainingPoints(all_p, all_c);

309 end

310
311 %% Triangulate and export without lids
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312 %triangulate and export all surfaces

313 ST_all=triangulation(all_c, all_p); %triangulate all lids

314
315 if isleft

316 stlwrite(ST_all,[inpath,'/left/fluid_gmsh.stl'])

317 disp(['Exported stl file of whole fluid geometry for GMSH to ' ...

inpath '/left/fluid_gmsh.stl'])

318 else

319 stlwrite(ST_all,[inpath,'/right/fluid_gmsh.stl'])

320 disp(['Exported stl file of whole fluid geometry for GMSH to ' ...

inpath '/right/fluid_gmsh.stl'])

321 end

322
323 %% Add lids, triangulate and export with lids

324 %combine all parts in one surface (including lids) - for MATLAB

325 allpoints=[{inlet_p},v_lids_p];

326 allcells=[{inlet_c} ,v_lids_c];

327
328 for i=1:1:size(allpoints,2)

329 all_c=[all_c;allcells{i}+size(all_p,1)];

330 all_p=[all_p;allpoints{i}];

331 end

332
333 %triangulate and export all surfaces

334 ST_all_l=triangulation(all_c, all_p); %triangulate all lids

335
336 if isleft

337 stlwrite(ST_all_l,[inpath,'/left/fluid.stl'])

338 disp(['Exported stl file of whole fluid geometry to ' inpath ...

'/left/fluid.stl'])

339 else

340 stlwrite(ST_all_l,[inpath,'/right/fluid.stl'])

341 disp(['Exported stl file of whole fluid geometry to ' inpath ...

'/right/fluid.stl'])

342 end

343
344 %% visualization

345 % single components

346 % figure

347 % hold on

348 % %trisurf(ST_u) %Updated small trunks

349 % trisurf(LT_VT{1}) %ventricular trunks = aorta

350 % trisurf(ST_VL) %ventricular lid = outlet

351 % for i=1:1:size(LT_AT,2)

352 % trisurf(LT_AT{i}) % plot atrial trunk i;

353 % end

354 % trisurf(ST_in) % plot atrial lids;

355 % trisurf(ST_V)

356 % trisurf(ST_A)

357 % trisurf(ST_AV)

358
359 % all components
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360 figure

361 hold on

362 trisurf(ST_all)

363
364 if exist('del_t','var') %corrected any cell

365 trisurf(del_t,'Facecolor','red')

366 end

367
368 %% End of pipeline

369
370
371
372
373 %% How to create a video

374 % Set a breakpoint at line 95. Run until there.

375 %

376 % if ¬exist([inpath '/video'], 'dir')

377 % mkdir([inpath '/video'])

378 % end

379 %

380 % [AV_points, AV_cells, V_points, V_cells, ¬...
,¬]=delete_sharedSurfaces(AV_points, AV_cells, V_points, V_cells);

381 % ST_V=triangulation(V_cells, V_points);

382 % ST_AV=triangulation(AV_cells, AV_points);

383 % [AV_points, AV_cells, A_points, A_cells,¬, ¬...
]=delete_sharedSurfaces(AV_points, AV_cells, A_points, A_cells);

384 % ST_A=triangulation(A_cells, A_points);

385 % ST_AV=triangulation(AV_cells, AV_points);

386 %

387 % figure

388 % hold on

389 % xlim([-0.1 0.1])

390 % ylim([-0.1 0.1])

391 %

392 % trisurf(ST_V)

393 % trisurf(ST_A)

394 % trisurf(ST_AV)

395 % trisurf(ST_u)

396 %

397 % uncomment block starting with line 985: "step-by-step-video"

398 % continue execution

399 %

400 % % if you also want to plot the lids, use this section

401 % trisurf(ST_VL) %ventricular lid = outlet

402 % trisurf(ST_in) % plot atrial lids;

403 % f=1;

404 % inpath='/Users/.../fluidGeo';

405 % while isfile([inpath '/video/prolongTrunk_' num2str(f) '.png'])

406 % f=f+1;

407 % end

408 % saveas(gcf,[inpath '/video/prolongTrunk_' num2str(f) '.png'])

409
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410
411 %% FUNCTIONS

412
413 function [V_points,V_cells] = reduce_MultiplePoints(V)

414 % sort out double points

415 [V_points,¬,V_pointID]=unique(V.vertices,'rows');
416
417 for i=1:1:size(V.faces,1)

418 for j=1:1:size(V.faces,2)

419 V_cells(i,j)=V_pointID(V.faces(i,j));

420 end

421 end

422 end

423
424 function [match] = find_CommonPoints(ST_points, V_points)

425 % find ST_points in V_points and store in matrix match.

426 % Syntax: ST_point_ID, V_point_ID, distance

427 match=[];

428
429 for i=1:1:size(ST_points,1)

430
431 dist=(V_points(:,1)-ST_points(i,1)).^2 + ...

(V_points(:,2)-ST_points(i,2)).^2 + ...

(V_points(:,3)-ST_points(i,3)).^2;

432
433 if(find(dist<1E-10))

434 match=[match; ...

i,find(dist<1E-10),dist(find(dist<1E-10))]; %list ...

of ST_pointID found in V_pointID and corresponding ...

distance

435 end

436 end

437 end

438
439 function [ST_cells_double] = find_CommonCells(ST_cells, match)

440 % Based on common points (correspondency in match), extract cells

441 % identify double faces (also included in V) included in ST_cells

442 commfaces=zeros(size(ST_cells,1),size(ST_cells,2));

443
444 for i=1:1:size(match,1)

445 commfaces=commfaces+(ST_cells==match(i,1));

446 end

447
448 ST_cells_double=find((commfaces(:,1)+commfaces(:,2)+commfaces(:,3))==3);

449 end

450
451 function [ST_cells_new] = delete_CellsbyCells(ST_cells, ...

ST_cells_double)

452 % Delete cells ST_cells_double from ST_cells

453 % delete double cells from ST_cells

454 ST_cells_new=ST_cells;

455 for i=size(ST_cells_double,1):-1:1
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456 ST_cells_new(ST_cells_double(i),:)=[];

457 end

458 end

459
460 function [T1_cells] = delete_CellsbyIDs(T1_cells, distant_cellIDs)

461 % Delete cells by ID from T1_cells

462
463 distant_cellIDs=sort(distant_cellIDs);

464 for i=size(distant_cellIDs,1):-1:1

465 T1_cells(distant_cellIDs(i),:)=[];

466 end

467 end

468
469 function [ST_points_new, ST_cells_new, edgePoints] = ...

delete_RemainingPoints_KeepEdge(ST_points, ST_cells_new, match)

470 % Delete points that are not longer needed and shift cell IDs

471 % identify outdated points

472 todelete=[];

473 for i=size(ST_points,1):-1:1

474 if isempty(find(ST_cells_new(:,:)==i))

475 todelete=[todelete;i];

476 end

477 end

478
479 % shift pointIDs and delete outdated points

480 ST_points_new=ST_points;

481 edgePoints=match(:,1);

482
483 % %Visualization

484 % tt=triangulation(ST_cells_new,ST_points)

485 % trisurf(tt)

486 % hold on

487 % scatter3(ST_points(edgePoints,1), ST_points(edgePoints,2), ...

ST_points(edgePoints,3),'r*')

488 % text(ST_points(edgePoints,1), ST_points(edgePoints,2), ...

ST_points(edgePoints,3),num2str(edgePoints))

489 % scatter3(ST_points(todelete,1), ST_points(todelete,2), ...

ST_points(todelete,3),'b*')

490
491 for i=1:1:size(todelete,1)

492 ST_cells_new = ST_cells_new - double(ST_cells_new>todelete(i));

493 edgePoints = edgePoints - double(edgePoints>todelete(i));

494 ST_points_new(todelete(i),:)=[]; %delete points inside the ...

(deleted) surface

495 edgePoints(find(edgePoints==todelete(i),1,'first'),:)=[]; ...

%points on the edge of the surface

496 end

497 end

498
499 function [ST_points_new, ST_cells_new] = ...

delete_RemainingPoints(ST_points, ST_cells_new)

500 % Delete points that are not longer needed and shift cell IDs
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501 % identify outdated points

502 todelete=[];

503 for i=size(ST_points,1):-1:1

504 if isempty(find(ST_cells_new(:,:)==i))

505 todelete=[todelete;i];

506 end

507 end

508
509 % shift pointIDs and delete outdated points

510 ST_points_new=ST_points;

511 for i=1:1:size(todelete,1)

512 ST_cells_new = ST_cells_new - double(ST_cells_new>todelete(i));

513 ST_points_new(todelete(i),:)=[]; %delete points inside the ...

(deleted) surface

514 end

515 end

516
517 function [connected_faces,rest,found_edge_Points] = ...

identify_ConnectedCells(ST_cells_new, all_edge_Points,only_first)

518 % Use edge points to identify connected cells.

519 % Then loop until all connected faces are identified.

520 %start with 1st edge point.

521 edge_Points=all_edge_Points(1);

522
523 %Find all connected cells

524 connected_faces=[];

525 num_connected_faces=[NaN,NaN];

526 found_edge_Points=[];

527
528 while size(connected_faces,1)̸=num_connected_faces(2)

529 %Repeat stage 1 and 2 until no more cells are added!!

530
531 %stage 1

532 for i=1:1:size(edge_Points,1)

533 [c,¬]=find(ST_cells_new==edge_Points(i));
534 connected_faces=unique([connected_faces;c]);

535 end

536
537 %stage 2

538 for i=1:1:size(connected_faces,1)

539 edge_Points=unique([edge_Points;ST_cells_new(connected_faces(i),:)']);

540 end

541
542 %stop criterion

543 if only_first %if only first runthrough is performed, ...

still return edge points

544 found_edge_Points=edge_Points;

545 found_edge_Points(found_edge_Points==all_edge_Points,:)=[];

546 rest=[];

547 return;

548 end

549 num_connected_faces(2)=num_connected_faces(1);
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550 num_connected_faces(1)=size(connected_faces,1);

551 end

552
553 %Check if all edge points are captured or if there is an ...

independant part

554 for i=size(all_edge_Points,1):-1:1

555 if find(edge_Points==all_edge_Points(i,1))

556 found_edge_Points=[found_edge_Points; ...

all_edge_Points(i,1)];

557 all_edge_Points(i,:)=[];

558 end

559 end

560
561 %If there are leftover points, return them

562 rest=all_edge_Points;

563 end

564
565 function [n,a] = calc_NormalVector(ST_points_new, T1_points, ...

edge_Points)

566 % plane trough remaining points (that for the edge of the surface

567 a=fit([ST_points_new(edge_Points,1),ST_points_new(edge_Points,2)], ...

ST_points_new(edge_Points,3),'poly11');

568 n=[a.p10 a.p01 -1]; %normal vector

569 n=n/norm(n);

570
571 % ensure that normal vector points inside the trunk direction

572 b=mean(ST_points_new(edge_Points,:))+n*rms(mean(ST_points_new(edge_Points,:))); ...

%center of edge point shifted in normal direction

573 c=mean(ST_points_new(edge_Points,:))-n*rms(mean(ST_points_new(edge_Points,:))); ...

%center of edge point shifted oppposite to normal direction

574
575 if rms(mean(T1_points)-b)<rms(mean(T1_points)-c)

576 n=-n; %change direction of n

577 end

578 end

579
580 function [n] = correct_NormalVector(edge_Points_up,edge_Points_low)

581 % Calculate normal vector as mean of upper and lower edge Point field

582 % Also ensure direction corresponds to n_old

583 % vector trough mid points of upper and lower plane

584 n=mean(edge_Points_low)-mean(edge_Points_up);

585 n=n/norm(n);

586
587 % %Visualization

588 % p_m=mean(edge_Points);

589 % moved=p_m-0.05*n_old;

590 % moved2=p_m-0.05*n;

591 % test=[p_m;moved];

592 % test2=[p_m;moved2];

593 %

594 % figure

595 % plot(a, [edge_Points(:,1) edge_Points(:,2)], edge_Points(:,3))
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596 % hold on

597 % plot3(p_m(1),p_m(2),p_m(3),'o')

598 % plot3(moved(1),moved(2),moved(3),'o')

599 % line(test(:,1),test(:,2),test(:,3))

600 % plot3(moved2(1),moved2(2),moved2(3),'o')

601 % line(test2(:,1),test2(:,2),test2(:,3),'Color','red')

602 % axis equal;

603 end

604
605 function [distant_cells, distant_cellIDs] = ...

extract_perpendicularCells(T1_points, T1_cells, n)

606 % identify all cells that have the same (similar) normal vector ...

like n

607 ang=zeros(size(T1_cells,1),1);

608
609 for i=1:1:size(T1_cells,1)

610 x=T1_points(T1_cells(i,1),:);

611 y=T1_points(T1_cells(i,2),:);

612 z=T1_points(T1_cells(i,3),:);

613
614 c=cross((z-x),(y-x));

615 c=c/norm(c);

616
617 ang(i) = atan2d(norm(cross(c,n)),dot(c,n));

618 end

619
620 % % plot

621 % plot3(x(1),x(2),x(3),'*')

622 % plot3(x(1)-0.05*c(1),x(2)-0.05*c(2),x(3)-0.05*c(3),'*')

623
624 distant_cellIDs=find(ang<45|ang>135);

625 distant_cells=T1_cells(distant_cellIDs,:);

626
627 % Up to this point, the cells are only categorized by angle.

628 % Additionally evaluate connected cells.

629 rest=1:1:size(T1_points,1);

630 rest=rest';

631 all_connected_faces=[];

632 k=1;

633
634 while ¬isempty(rest)
635 [connected_faces,rest,¬]=identify_ConnectedCells(distant_cells, ...

rest, false);

636 if ¬isempty(connected_faces)
637 all_connected_faces{k}=connected_faces;

638 k=k+1;

639 end

640 end

641
642 %chose surface with most cells.

643 maxel=0;

644 for k=1:1:size(all_connected_faces,2)
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645 numelems=size(all_connected_faces{k},1);

646 if numelems>maxel

647 maxel=numelems;

648 id=k;

649 end

650 end

651
652 %choose correct distant cells

653 distant_cells=distant_cells(all_connected_faces{id},:);

654
655 %choose correct distant cellIDs

656 distant_cellIDs=distant_cellIDs(all_connected_faces{id},:);

657
658 % Up to this point, the cells are only categorized by angle and ...

connectivity.

659 % Additionally evaluate if cells at the edge are missing:

660 % This is the case, if all three point are already in the ...

triangulation

661 % because they are used by neighbouring points

662 allpoints=unique(distant_cells);

663 found_cells=[];

664
665 for i=1:1:size(allpoints,1)

666 [a,¬]=find(T1_cells==allpoints(i));
667 if ¬isempty(a)
668 for j=1:1:size(a,1)

669 [e,¬]=find(T1_cells(a(j),1)==allpoints);
670 [f,¬]=find(T1_cells(a(j),2)==allpoints);
671 [g,¬]=find(T1_cells(a(j),3)==allpoints);
672 if ¬isempty(e)&&¬isempty(f)&&¬isempty(g)
673 found_cells=[found_cells;a(j)];

674 end

675 end

676 end

677 end

678
679 distant_cellIDs=unique(found_cells);

680 distant_cells=T1_cells(unique(found_cells),:);

681 end

682
683 function [avg_edgeLength, neighbours] = ...

calc_averageEdgeLength(outerEdge_points)

684 % Find 2 neighbours for each node and calc distance. Calc average.

685
686 % find two neighbours for each node

687 neighbours=zeros(size(outerEdge_points,1),3);

688
689 for i=1:1:size(outerEdge_points,1)

690 dist=sqrt((outerEdge_points(:,1)-outerEdge_points(i,1)).^2 + ...

(outerEdge_points(:,2)-outerEdge_points(i,2)).^2 + ...

(outerEdge_points(:,3)-outerEdge_points(i,3)).^2);

691 [¬,d]=min(dist);
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692 dist(d)=NaN;

693 neighbours(i,1)=d; %first minimum ist point itself // ignored ...

// equals i

694 [c,d]=min(dist);

695 neighbours(i,2)=d; %second minimum is closest neighbour point

696 neighbours(i,4)=c; %distance to closest neighbour point

697 dist(d)=NaN;

698 [c,d]=min(dist);

699 neighbours(i,3)=d; %third minimum is second closest neighbour ...

point

700 neighbours(i,5)=c; %distance to second closest neighbour point

701 dist(d)=NaN;

702 end

703
704 % calculate mean value

705 avg_edgeLength=mean(mean(neighbours(:,4:5)));

706 end

707
708 function [longTrunk_points, longTrunk_cells] = ...

add_CellRow(longTrunk_points, longTrunk_cells, ...

outerEdge_points,neighbours, avg_edgeLength,j,n, match)

709 %add points

710 addedpoints=outerEdge_points-avg_edgeLength*j*n;

711 longTrunk_points=[longTrunk_points; addedpoints];

712 %scatter3(addedpoints(:,1),addedpoints(:,2),addedpoints(:,3),'*')

713
714 %compute faces

715 idx=[1 NaN];

716 numNeigh=size(neighbours,1); %number of points in edge ring ...

(added each cycle)

717 offset=size(longTrunk_points,1)-numNeigh;

718
719 while true

720 if j==1 %first loop: points at the edge are not at the end ...

of the list

721 if neighbours(idx(1),2)̸=idx(2)

722 f1=[match(idx(1),2) match(neighbours(idx(1),2),2) ...

idx(1)+offset];

723 f2=[match(neighbours(idx(1),2),2) ...

neighbours(idx(1),2)+offset idx(1)+offset];

724 idx(2)=idx(1);

725 idx(1)=neighbours(idx(1),2);

726 else

727 f1=[match(idx(1),2) match(neighbours(idx(1),3),2) ...

idx(1)+offset];

728 f2=[match(neighbours(idx(1),3),2) ...

neighbours(idx(1),3)+offset idx(1)+offset];

729 idx(2)=idx(1);

730 idx(1)=neighbours(idx(1),3);

731 end

732 else

733 if neighbours(idx(1),2)̸=idx(2)
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734 f1=[idx(1)+offset-numNeigh ...

neighbours(idx(1),2)+offset-numNeigh ...

idx(1)+offset];

735 f2=[neighbours(idx(1),2)+offset-numNeigh ...

neighbours(idx(1),2)+offset idx(1)+offset];

736 idx(2)=idx(1);

737 idx(1)=neighbours(idx(1),2);

738 else

739 f1=[idx(1)+offset-numNeigh ...

neighbours(idx(1),3)+offset-numNeigh ...

idx(1)+offset];

740 f2=[neighbours(idx(1),3)+offset-numNeigh ...

neighbours(idx(1),3)+offset idx(1)+offset];

741 idx(2)=idx(1);

742 idx(1)=neighbours(idx(1),3);

743 end

744
745 end

746
747 longTrunk_cells=[longTrunk_cells;f1;f2]; % add 2 new cells

748
749 if idx(1)==1

750 break

751 end

752 end

753 end

754
755 function [ST_points, ST_cells, ST_u] = ...

delete_AllConnectedCells(ST_points, ST_cells, delA_points)

756 % Find all connected Cells, delete them and corresponding points, ...

update

757 % triangulation ST_u

758
759 %Find points included in both geometries

760 [match] = find_CommonPoints(ST_points, delA_points);

761 %scatter3(ST_points(match(:,1),1),ST_points(match(:,1),2),ST_points(match(:,1),3))

762
763 %Find and delete all connected cells

764 rest=match;

765 all_connected_faces=[];

766
767 while ¬isempty(rest)
768 [connected_faces,rest,¬] = identify_ConnectedCells(ST_cells, ...

rest, false);

769 all_connected_faces=[all_connected_faces;connected_faces];

770 end

771
772 [ST_cells] = delete_CellsbyIDs(ST_cells, all_connected_faces);

773
774 %Identify outdated points, delete them and shift cell IDs

775 [ST_points, ST_cells] = delete_RemainingPoints(ST_points, ST_cells);

776
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777 %Update triangulation

778 ST_u=triangulation(ST_cells, ST_points);

779 end

780
781 function [ST_points_new, ST_cells_new, V_points, V_cells, ...

edge_Points,ST_cells_double]=delete_sharedSurfaces(ST_points, ...

ST_cells, V_points, V_cells)

782 % Identify shared surface, delete from both triangulations. Return ...

edge and deleted cells.

783
784 %% Find shared points and cells and delete them from ST (lower lid ...

of trunks)

785 %Find points included in both geometries

786 [match] = find_CommonPoints(ST_points, V_points);

787
788 %Same for cells. Also delete them.

789 [ST_cells_double]=find_CommonCells(ST_cells, match(:,1));

790 [ST_cells_new] = delete_CellsbyCells(ST_cells, ST_cells_double);

791
792 %Identify outdated points, delete them and shift cell IDs

793 [ST_points_new, ST_cells_new, edge_Points] = ...

delete_RemainingPoints_KeepEdge(ST_points, ST_cells_new, match);

794
795 %% visualization

796 % ST_t=triangulation(ST_cells_new, ST_points_new);

797 %

798 % figure

799 % trisurf(ST_t)

800 % hold on

801
802 %% Also find shared points and cells and delete them from V

803 %Same for cells. Also delete them.

804 [V_cells_double]=find_CommonCells(V_cells, match(:,2));

805 [V_cells] = delete_CellsbyCells(V_cells, V_cells_double);

806
807 %Identify outdated points, delete them and shift cell IDs

808 [V_points, V_cells] = delete_RemainingPoints(V_points, V_cells);

809
810 %% visualization

811 % V_t=triangulation(V_cells, V_points);

812 %

813 % figure

814 % trisurf(V_t)

815 end

816
817 function [longTrunk_cells, longTrunk_points, LT_t, lid_cells, ...

lid_points] = calc_prolongedTrunk(T1_cells, T1_points, ...

ST_points_new, edge_Points, length)

818 % Calculates points and cells for one prolonged trunk, given by

819 %% visualization

820 % ST_t=triangulation(T1_cells, T1_points);

821 %
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822 % figure

823 % trisurf(ST_t)

824 % hold on

825
826 %% Fit a plane through the EdgePoints and calculare normal vector

827 [n,a] = calc_NormalVector(ST_points_new, T1_points, edge_Points);

828
829 %% Alternatively (to be independant from plane fit) determine n

830 % by calculating the vector between

831 % mean(allTrunkPoints)-mean(EdgePoints)

832 n=mean(T1_points)-mean(ST_points_new(edge_Points,:));

833 n=n/norm(n);

834
835 % %% visualization

836 % %calculate mean of all remaining points

837 % p_m=mean(T1_points);

838 % moved=p_m-0.05*n;

839 % test=[p_m;moved];

840 %

841 % ST_t=triangulation(T1_cells, T1_points);

842 %

843 % figure

844 % plot(a, [ST_points_new(edge_Points,1) ...

ST_points_new(edge_Points,2)], ST_points_new(edge_Points,3))

845 % hold on

846 % plot3(moved(1),moved(2),moved(3),'o')

847 % plot3(p_m(1),p_m(2),p_m(3),'o')

848 % line(test(:,1),test(:,2),test(:,3))

849 % trisurf(ST_t)

850
851 %% determine if triangle normal vector is parallel to plane normal

852 [distant_cells, distant_cellIDs] = ...

extract_perpendicularCells(T1_points, T1_cells, n);

853 [distant_points, distant_cells] = ...

delete_RemainingPoints(T1_points, distant_cells);

854
855 % Delete distant cells and points from T1 mesh.

856 [T1_cells] = delete_CellsbyIDs(T1_cells, distant_cellIDs);

857 [T1_points, T1_cells] = delete_RemainingPoints(T1_points, ...

T1_cells);

858
859 % %% visualization

860 % ST_t=triangulation(distant_cells, distant_points);

861 %

862 % figure

863 % trisurf(ST_t)

864
865 %% identify common points of T1_cells and distant_cells ...

(=upper plane)

866
867 % find points included in both geometries

868 [match] = find_CommonPoints(distant_points, T1_points);
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869
870 %% compute average edge length of outer edges

871 % Extract Edge

872 outerEdge_points=distant_points(match(:,1),:);

873
874 %Calc avg length

875 [avg_edgeLength, neighbours] = ...

calc_averageEdgeLength(outerEdge_points);

876
877 %% Correct normal vector (use upper plane normal vector)

878 [n] = ...

correct_NormalVector(outerEdge_points,ST_points_new(edge_Points,:));

879
880 % %% visualization

881 % %calculate mean of all remaining points

882 % p_m=mean(T1_points);

883 % moved=p_m-0.05*n;

884 % test=[p_m;moved];

885 %

886 % ST_t=triangulation(T1_cells, T1_points);

887 %

888 % figure

889 % plot(a, [ST_points_new(edge_Points,1) ...

ST_points_new(edge_Points,2)], ST_points_new(edge_Points,3))

890 % hold on

891 % plot3(moved(1),moved(2),moved(3),'o')

892 % plot3(p_m(1),p_m(2),p_m(3),'o')

893 % line(test(:,1),test(:,2),test(:,3))

894 % trisurf(ST_t)

895 % axis equal

896
897 % %% visualization

898 % T1_t=triangulation(T1_cells, T1_points);

899 %

900 % figure

901 % hold on

902 % trisurf(T1_t)

903 %

904 % for i=1:1:size(outerEdge_points,1)

905 % plot3(outerEdge_points(i,1), outerEdge_points(i,2), ...

outerEdge_points(i,3),'o')

906 % text(outerEdge_points(i,1), ...

outerEdge_points(i,2),outerEdge_points(i,3),string(i),'FontSize',18)

907 % end

908
909 %% add points and cells with avg_edgeLength distance in normal ...

direction

910 longTrunk_points=T1_points;

911 longTrunk_cells=T1_cells;

912
913 for j=1:1:length
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914 [longTrunk_points, longTrunk_cells] = ...

add_CellRow(longTrunk_points, longTrunk_cells, ...

outerEdge_points,neighbours, avg_edgeLength,j,n, match);

915
916 % % If step-by-step-video should be recorded

917 % LT_t=triangulation(longTrunk_cells, longTrunk_points);

918 % trisurf(LT_t)

919 % f=1;

920 % inpath='/Users/.../fluidGeo';

921 % while isfile([inpath '/video/prolongTrunk_' num2str(f) ...

'.png'])

922 % f=f+1;

923 % end

924 % saveas(gcf,[inpath '/video/prolongTrunk_' num2str(f) ...

'.png'])

925 end

926
927 LT_t=triangulation(longTrunk_cells, longTrunk_points);

928
929 %% add lid to the top of the trunk (move plane in normal ...

direction)

930 lid_points=distant_points-n*avg_edgeLength*length;

931 lid_cells=distant_cells;

932 end

933
934 function [trunks_c, trunks_p, triang, lids_c, ...

lids_p]=prolong_chamberTrunks(edge_Points_v, ST_cells_new, ...

ST_points_new, length)

935 % prolong all trunks belonging to the concerning chamber

936
937 %% separate the concerning single trunk(s) and prolong it

938 rest=edge_Points_v;

939 all_connected_faces=[];

940 k=1;

941
942 % list all cells that are connected to the edge ring.

943 % write one cell element for each closed surface.

944 while ¬isempty(rest)
945 [connected_faces,rest,edge_Points{k}] = ...

identify_ConnectedCells(ST_cells_new, rest, false);

946 all_connected_faces{k}=connected_faces;

947 k=k+1;

948 end

949
950 %% for each trunk (=1 cell element) prolong the trunk.

951 for k=1:1:size(all_connected_faces,2)

952 %% create seperate triangulation

953 % extract connected cells

954 T1_cells=ST_cells_new(all_connected_faces{k},:);

955
956 %Identify outdated points, delete them and shift cell IDs
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957 [T1_points, T1_cells] = ...

delete_RemainingPoints(ST_points_new, T1_cells);

958
959 ST_t=triangulation(T1_cells, T1_points);

960
961 %figure

962 %trisurf(ST_t)

963
964 %prolong one single trunk

965 [longTrunk_cells, longTrunk_points, LT_t, lid_cells, ...

lid_points] = calc_prolongedTrunk(T1_cells, T1_points, ...

ST_points_new, edge_Points{k}, length);

966
967 %% save trunk in cell array

968 trunks_c{k}=longTrunk_cells;

969 trunks_p{k}=longTrunk_points;

970
971 %% save lids in cell array

972 lids_c{k}=lid_cells;

973 lids_p{k}=lid_points;

974
975 %% save triangulation in cell array

976 triang{k}=LT_t;

977
978 end

979 end
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extractTunksTimeSeries.m:

1 % extractTrunksTimeSeries.m

2 % Read mechanic simuation results, adapt trunks and save stl files.

3 % Input: [req].vtu file of CardioMechancis Simulation results ...

(time series)

4 % Assumes the first vtk file to represent the inital geometry! ...

And also

5 % to be the base for the fluid surface (created with prolongTrunks.m)

6 % Input: [req].stl file of fluid surface

7 % Input: [req].stl file of inlet

8 % Input: [req].stl file of outlet

9 % Output: .stl file of fluid geometry (whole heart side time series)

10 % jb072, 12.01.2022

11
12 %% clear

13 clear

14 close all

15 clc

16
17 %% Input data

18 fpath='/Users/.../fluidGeo/left'; %fluid input data

19 mpath='/Users/.../Baseline_vtu'; %mechanics input path

20
21 %% Output folder

22 if ¬exist([fpath '/fluidTimeSeries'], 'dir')

23 mkdir([fpath '/fluidTimeSeries'])

24 end

25
26 %% List mechanical simulation results

27 % get number of simulation steps and filename

28 l = dir(mpath);

29 l(1:2)=[]; %delete '.' and '..' directory from list

30 for i=size(l,1):-1:1

31 if l(i).isdir==1 % ignore folders

32 l(i)=[];

33 elseif l(i).name(1)=='.' % ignore mac files (starting with .)

34 l(i)=[];

35 end

36 end

37 if size(l,1)==0

38 disp(['No files in mechanical simulation results path ' mpath]);

39 return

40 end

41
42 %% sort in natural order (not ascii based)

43 natnum=zeros(size(l,1),1);

44 for i=1:1:size(l,1)

45 idx=strfind(l(i).name,'.');

46 natnum(i,1)=str2double(l(i).name(idx(1)+1:idx(end)-1));

47 end
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48 natnum=sort(natnum);

49
50 idx=strfind(l(1).name,'.');

51 pre=l(1).name(1:idx(1)); %file name prefix

52 post=l(1).name(idx(2):end); %file name ending

53
54 %% Read initial mechanical geometry

55 m0=readVTK([mpath '/' pre num2str(natnum(1)) post]);

56
57 %% Read fluid geometry

58 FL=stlread([fpath,'/fluid.stl']);

59 inl=stlread([fpath,'/inlet.stl']);

60 outl=stlread([fpath,'/outlet.stl']);

61
62 FL_i=triangulation(FL.faces, FL.vertices);

63 %trisurf(FL_i)

64
65 %% Preprocess: Delete points that appear multiple times

66 % First: Reduce points that appear multiple times

67 [F_points,F_cells] = reduce_MultiplePoints(FL);

68 [inl_points,inp_cells] = reduce_MultiplePoints(inl);

69 [outl_points,outp_cells] = reduce_MultiplePoints(outl);

70
71 %% Find correspondances

72 % moving fluid cells point IDs

73 [match] = find_CommonPoints(F_points, m0.points);

74
75 mov_pointsF_id=match(:,1);

76 mov_pointsM_id=match(:,2);

77
78 [mov_cells]=find_CellsByPointID(mov_pointsF_id, F_cells);

79 [mov_points, mov_cells] = delete_RemainingPoints(F_points, mov_cells);

80
81 % static fluid cells point IDs

82 stat_pointsF_id=(1:1:size(F_points,1))';

83
84 for i=size(stat_pointsF_id,1):-1:1

85 [c,¬]=find(stat_pointsF_id(i)==(mov_pointsF_id));
86 if ¬isempty(c)
87 stat_pointsF_id(i)=[];

88 end

89 end

90
91 [stat_cells]=find_CellsByPointID(stat_pointsF_id, F_cells);

92 [stat_points, stat_cells] = delete_RemainingPoints(F_points, ...

stat_cells);

93
94 % inlet and outlet point IDs

95 [match] = find_CommonPoints(F_points, inl_points);

96 inl_pointsF_id=match(:,1);

97
98 [inl_cells]=find_CellsByPointID(inl_pointsF_id, F_cells);
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99 [inl_points, inl_cells] = delete_RemainingPoints(F_points, inl_cells);

100
101 [match] = find_CommonPoints(F_points, outl_points);

102 outl_pointsF_id=match(:,1);

103
104 [outl_cells]=find_CellsByPointID(outl_pointsF_id, F_cells);

105 [outl_points, outl_cells] = delete_RemainingPoints(F_points, ...

outl_cells);

106
107 % remove inlet and outlet from static points

108 for i=size(stat_pointsF_id,1):-1:1

109 [c,¬]=find(stat_pointsF_id(i)==(inl_pointsF_id));
110 [d,¬]=find(stat_pointsF_id(i)==(outl_pointsF_id));
111 if ¬isempty(c)||¬isempty(d)
112 stat_pointsF_id(i)=[];

113 end

114 end

115
116 [stat_cells]=find_CellsByPointID(stat_pointsF_id, F_cells);

117 [stat_points, stat_cells] = delete_RemainingPoints(F_points, ...

stat_cells);

118
119 %% Visualization

120 F_m=triangulation(mov_cells, mov_points);

121 F_s=triangulation(stat_cells, stat_points);

122 F_in=triangulation(inl_cells, inl_points);

123 F_out=triangulation(outl_cells, outl_points);

124
125 % figure;

126 % hold on;

127 % ...

trisurf(F_m,'Facecolor','black','FaceAlpha',.2,'EdgeColor','black','EdgeAlpha',.4)

128 % ...

trisurf(F_in,'Facecolor','red','FaceAlpha',.2,'EdgeColor','red','EdgeAlpha',.4)

129 % ...

trisurf(F_out,'Facecolor','red','FaceAlpha',.2,'EdgeColor','red','EdgeAlpha',.4)

130 % trisurf(F_s)

131
132 %% Detect edge loops (edge only used by 1 triangle)

133 [outl_edgepointIDs]=determine_edgePoints(outl_cells);

134 %scatter3(outl_points(outl_edgepointIDs,1),outl_points(outl_edgepointIDs,2),outl_points(outl_edgepointIDs,3),'b*')

135
136 [inl_edgepointIDs]=determine_edgePoints(inl_cells);

137 %scatter3(inl_points(inl_edgepointIDs,1),inl_points(inl_edgepointIDs,2),inl_points(inl_edgepointIDs,3),'g*')

138
139 [mov_edgepointIDs]=determine_edgePoints(mov_cells);

140 %scatter3(mov_points(mov_edgepointIDs,1),mov_points(mov_edgepointIDs,2),mov_points(mov_edgepointIDs,3),'y*')

141
142 %% Split up trunks and lids in single triangulations (only ...

connected cells)

143 rest=(1:1:size(stat_points,1))';

144 trunk=[];
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145 k=1;

146
147 while ¬isempty(rest)
148 [connected_faces,rest,found_edgePoints]=identify_ConnectedCells(stat_cells, ...

rest);

149 if ¬isempty(connected_faces)
150 trunk{k}=stat_pointsF_id(found_edgePoints);

151 k=k+1;

152 end

153 end

154
155 % visualization

156 % for i=1:1:5

157 % figure

158 % a=stat_points(trunk{i},:)

159 % scatter3(a(:,1),a(:,2),a(:,3),'o');

160 % end

161
162 %same for mov_edgepointIDs

163 [¬, neighbours] = ...

calc_averageEdgeLength(mov_points(mov_edgepointIDs,:));

164 neighbours(:,1)=mov_edgepointIDs(neighbours(:,1),1);

165 [mov_edgeLoops]=find_edgeLoops(neighbours);

166
167 %same for inl_edgepointIDs

168 [¬, neighbours] = ...

calc_averageEdgeLength(inl_points(inl_edgepointIDs,:));

169 neighbours(:,1)=inl_edgepointIDs(neighbours(:,1),1);

170 [inl_edgeLoops]=find_edgeLoops(neighbours);

171
172 clearvars mov_edgepointIDs inl_edgepointIDs;

173
174 %% Match edge loop and corresponding trunk

175 % outlet

176 m=mean(outl_points(outl_edgepointIDs,:));

177
178 % figure

179 % hold on

180 % scatter3(m(:,1),m(:,2),m(:,3),'*')

181
182 for k=1:1:size(trunk,2)

183 p=F_points(trunk{k},:);

184 % scatter3(p(:,1),p(:,2),p(:,3))

185 ed(k)=min(sqrt((p(:,1)-m(1)).^2+(p(:,2)-m(2)).^2+(p(:,3)-m(3)).^2));

186 end

187
188 [¬,outl_trunkID]=min(ed);
189
190 % inlet

191 for j=1:1:size(inl_edgeLoops,2)

192 m=mean(inl_points(inl_edgeLoops{j},:));

193
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194 % figure

195 % hold on

196 % scatter3(m(:,1),m(:,2),m(:,3),'*')

197 %

198 for k=1:1:size(trunk,2)

199 p=F_points(trunk{k},:);

200 % scatter3(p(:,1),p(:,2),p(:,3))

201 ed(k)=min(sqrt((p(:,1)-m(1)).^2+(p(:,2)-m(2)).^2+(p(:,3)-m(3)).^2));

202 end

203 [¬,inl_trunkID(j)]=min(ed);
204 end

205
206
207 % moving // edge Points of lower end

208 for j=1:1:size(mov_edgeLoops,2)

209 m=mean(mov_points(mov_edgeLoops{j},:));

210
211 % figure

212 % hold on

213 % scatter3(m(:,1),m(:,2),m(:,3),'*')

214
215 for k=1:1:size(trunk,2)

216 p=F_points(trunk{k},:);

217 % scatter3(p(:,1),p(:,2),p(:,3))

218 ed(k)=min(sqrt((p(:,1)-m(1)).^2+(p(:,2)-m(2)).^2+(p(:,3)-m(3)).^2));

219 end

220 [¬,moving_trunkID(j)]=min(ed);
221 end

222
223 % store in lo_pointID matrix

224 for k=1:1:size(moving_trunkID,2)

225 lo_pointID{moving_trunkID(k)}=mov_pointsF_id(mov_edgeLoops{k});

226 end

227
228 % store in up_pointID matrix

229 for k=1:1:size(inl_trunkID,2)

230 up_pointID{inl_trunkID(k)}=inl_pointsF_id(inl_edgeLoops{k});

231 end

232
233 up_pointID{outl_trunkID}=outl_pointsF_id(outl_edgepointIDs);

234
235 clearvars moving_trunkID mov_edgeLoops inl_trunkID inl_edgeLoops;

236
237 %% Visualization

238 figure

239 hold on

240 for i=1:1:size(trunk,2)

241 a=F_points(up_pointID{i},:);

242 scatter3(a(:,1),a(:,2),a(:,3),'b*')

243 b=F_points(lo_pointID{i},:);

244 scatter3(b(:,1),b(:,2),b(:,3),'r*')

245 c=F_points(trunk{i},:);
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246 scatter3(c(:,1),c(:,2),c(:,3),'g*')

247 end

248
249 %% Find vertical lines

250 % all needed cellIDs (referred to Fpoints) in lo_pointID, trunk, ...

up_pointID

251 for i=1:1:size(trunk,2)

252 %calc normal vector form lo to up

253 n=mean(F_points(up_pointID{i},:))-mean(F_points(lo_pointID{i},:));

254
255 %points per horizontal surfaces

256 h_pts=size(lo_pointID{i},1);

257
258 %points per vertical surfaces

259 v_pts=size(trunk{i},1)/h_pts;

260
261 trunk_trace{i}=zeros(v_pts+2,h_pts);

262
263 for j=1:1:h_pts

264 trunk_trace{i}(1,j)=lo_pointID{i}(j); %point in lo surface

265 trunk_trace{i}(v_pts+2,j)=up_pointID{i}(j); %point in lo ...

surface

266
267 for k=1:1:v_pts

268 a=F_points(trunk_trace{i}(k,j),:);

269 a_pre=a+n*1/(v_pts+1); %predicted point position in n ...

direction

270 all=F_points(trunk{i},:);

271 [¬,d]=min(sqrt((all(:,1)-a_pre(1)).^2+(all(:,2)-a_pre(2)).^2 ...

+(all(:,3)-a_pre(3)).^2));

272 trunk_trace{i}(k+1,j)=trunk{i}(d); %add point in trace

273 end

274 end

275 end

276
277 %% Visualization

278 % figure

279 % hold on

280 % for i=1:1:size(trunk_trace,2)

281 % for k=1:1:size(trunk_trace{i},2)

282 % a=F_points(trunk_trace{i}(:,k),:);

283 % scatter3(a(:,1),a(:,2),a(:,3),'*')

284 % end

285 % end

286
287 %% Time loop: For each available mechanic time step: extract trunk ...

displacement

288 for k=1:1:size(natnum,1) %each time step

289 disp(['Processing Time Step ' num2str(k)])

290
291 % read vtu

292 m=readVTK([mpath '/' pre num2str(natnum(k)) post]);
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293
294 %process trunks

295 for i=1:1:size(trunk_trace,2) %each trunk

296
297 for j=1:1:size(trunk_trace{i},2) %each trace line

298 % extract points

299 idx_F=trunk_trace{i}(1,j);

300 pos_F=find(mov_pointsF_id==idx_F);

301 idx_M=mov_pointsM_id(pos_F);

302
303 % extract displacement

304 n=m.points(idx_M,:)-F_points(idx_F,:); %vector with ...

displacement of lo node

305
306 % displace points for each trace line

307 v_pts=size(trunk_trace{i},1); %vertical number of ...

trunk points (including 2 lids)

308 for y=1:1:v_pts %each point in trace line

309 F_points(trunk_trace{i}(y,j),:)=F_points(trunk_trace{i}(y,j),:)+n*((v_pts-y)/(v_pts-1));

310 % a=n*((v_pts-y)/(v_pts-1))/sqrt(3);

311 % sqrt(a(1)^2+a(2)^2+a(3)^2) %to test geometric length

312 end

313 end

314 end

315
316 %copy LA/LV movement

317 F_points(mov_pointsF_id,:)=double(m.points(mov_pointsM_id,:));

318
319 %triangulate and export

320 F=triangulation(F_cells, F_points);

321 %trisurf(F)

322
323 %export with index k-1

324 stlwrite(F,[fpath '/fluidTimeSeries/LV_' num2str(k-1) '.stl'])

325 end

326
327 disp(['Exported stl file of whole fluid geometry to ' fpath ...

'/fluidTimeSeries/ - filename starting with LV_0.stl'])

328 %% End of pipeline

329
330
331 %% FUNCTIONS

332 function [V_points,V_cells] = reduce_MultiplePoints(V)

333 % sort out double points

334 [V_points,¬,V_pointID]=unique(V.vertices,'rows');
335
336 for i=1:1:size(V.faces,1)

337 for j=1:1:size(V.faces,2)

338 V_cells(i,j)=V_pointID(V.faces(i,j));

339 end

340 end

341 end



206 Appendix A. Trunk prolongation script

342
343 function [match] = find_CommonPoints(ST_points, V_points)

344 % find ST_points in V_points and store in matrix match.

345 % Syntax: ST_point_ID, V_point_ID, distance

346 match=[];

347 for i=1:1:size(ST_points,1)

348
349 dist=(V_points(:,1)-ST_points(i,1)).^2 + ...

(V_points(:,2)-ST_points(i,2)).^2 + ...

(V_points(:,3)-ST_points(i,3)).^2;

350
351 if(find(dist<1E-10))

352 match=[match; ...

i,find(dist<1E-10),dist(find(dist<1E-10))]; %list ...

of ST_pointID found in V_pointID and corresponding ...

distance

353 end

354 end

355 end

356
357 function [ST_points_new, ST_cells_new] = ...

delete_RemainingPoints(ST_points, ST_cells_new)

358 % Delete points that are not longer needed and shift cell IDs

359 % identify outdated points

360 todelete=[];

361 for i=size(ST_points,1):-1:1

362 if isempty(find(ST_cells_new(:,:)==i))

363 todelete=[todelete;i];

364 end

365 end

366
367 % shift pointIDs and delete outdated points

368 ST_points_new=ST_points;

369 for i=1:1:size(todelete,1)

370 ST_cells_new = ST_cells_new - double(ST_cells_new>todelete(i));

371 ST_points_new(todelete(i),:)=[]; %delete points inside the ...

(deleted) surface

372 end

373 end

374
375 function [found_cells]=find_CellsByPointID(PointIDs, all_cells)

376 % Given a list of pointIDs, this function extracts all cells that are

377 % spanned by only these points

378 allpoints=unique(PointIDs);

379 found_cellIDs=[];

380
381 for i=1:1:size(all_cells,1)

382 [a,¬]=find(all_cells(i,1)==allpoints);
383 [b,¬]=find(all_cells(i,2)==allpoints);
384 [c,¬]=find(all_cells(i,3)==allpoints);
385
386 if ¬isempty(a)&&¬isempty(b)&&¬isempty(c)
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387 found_cellIDs=[found_cellIDs;i];

388 end

389 end

390
391 found_cells=all_cells(found_cellIDs,:);

392 end

393
394 function [edgepointIDs]=determine_edgePoints(cells)

395 edges=zeros(3*size(cells,1),2);

396 for i=1:1:size(cells,1)

397 edges(3*i-2,:)=[cells(i,1), cells(i,2)];

398 edges(3*i-1,:)=[cells(i,2), cells(i,3)];

399 edges(3*i,:)=[cells(i,1), cells(i,3)];

400 end

401
402 for i=1:1:size(edges,1)

403 [c,d]=find(edges(i,1)==edges);

404 [e,f]=find(edges(i,2)==edges(c,:));

405 if size(e,1)>1

406 edges(c(e),:)=NaN;

407 end

408 end

409
410 edgepointIDs=unique(edges(¬isnan(edges)));
411 end

412
413 function [connected_faces,rest,found_edge_Points] = ...

identify_ConnectedCells(ST_cells_new, all_edge_Points)

414 % Use edge points to identify connected cells.

415 % Then loop until all connected faces are identified.

416 %start with 1st edge point.

417 edge_Points=all_edge_Points(1);

418
419 %Find all connected cells

420 connected_faces=[];

421 num_connected_faces=[NaN,NaN];

422 found_edge_Points=[];

423
424 while size(connected_faces,1)̸=num_connected_faces(2)

425 %Repeat stage 1 and 2 until no more cells are added!!

426
427 %stage 1

428 for i=1:1:size(edge_Points,1)

429 [c,¬]=find(ST_cells_new==edge_Points(i));
430 connected_faces=unique([connected_faces;c]);

431 end

432
433 %stage 2

434 for i=1:1:size(connected_faces,1)

435 edge_Points=unique([edge_Points;ST_cells_new(connected_faces(i),:)']);

436 end

437
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438 %stop criterion

439 num_connected_faces(2)=num_connected_faces(1);

440 num_connected_faces(1)=size(connected_faces,1);

441 end

442
443 %Check if all edge points are captured or if there is an ...

independant part

444 for i=size(all_edge_Points,1):-1:1

445 if find(edge_Points==all_edge_Points(i,1))

446 found_edge_Points=[found_edge_Points; ...

all_edge_Points(i,1)];

447 all_edge_Points(i,:)=[];

448 end

449 end

450
451 %If there are leftover points, return them

452 rest=all_edge_Points;

453
454 end

455
456 function [avg_edgeLength, neighbours] = ...

calc_averageEdgeLength(outerEdge_points)

457 % Find 2 neighbours for each node and calc distance. Calc average.

458 % find two neighbours for each node

459 neighbours=zeros(size(outerEdge_points,1),3);

460
461 for i=1:1:size(outerEdge_points,1)

462 dist=sqrt((outerEdge_points(:,1)-outerEdge_points(i,1)).^2 + ...

(outerEdge_points(:,2)-outerEdge_points(i,2)).^2 + ...

(outerEdge_points(:,3)-outerEdge_points(i,3)).^2);

463 [¬,d]=min(dist);
464 dist(d)=NaN;

465 neighbours(i,1)=d; %first minimum ist point itself // ignored ...

// equals i

466 [c,d]=min(dist);

467 neighbours(i,2)=d; %second minimum is closest neighbour point

468 neighbours(i,4)=c; %distance to closest neighbour point

469 dist(d)=NaN;

470 [c,d]=min(dist);

471 neighbours(i,3)=d; %third minimum is second closest neighbour ...

point

472 neighbours(i,5)=c; %distance to second closest neighbour point

473 dist(d)=NaN;

474 end

475
476 % calculate mean value

477 avg_edgeLength=mean(mean(neighbours(:,4:5)));

478 end

479
480 function [edgeLoop]=find_edgeLoops(neighbours)

481 k=1;

482 toCheck=(1:1:size(neighbours,1))';
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483
484 while ¬isempty(toCheck)
485 el=[];

486 idx=[toCheck(1) NaN];

487 idx_e=idx(1);

488
489 while true

490 if neighbours(idx(1),2)̸=idx(2)

491 idx(2)=idx(1);

492 idx(1)=neighbours(idx(1),2);

493 else

494 idx(2)=idx(1);

495 idx(1)=neighbours(idx(1),3);

496 end

497
498 el=[el;neighbours(idx(2),1)];

499 toCheck(toCheck==idx(2))=[];

500
501 if idx(1)==idx_e

502 break

503 end

504 end

505
506 edgeLoop{k}=el;

507 k=k+1;

508 end

509
510 end





Appendix B
Elastomechanics and circulatory

system parameters

The included parameter file contains an overview of the underlying models and the material
parameters assumed for the elastomechanical simulations. Additionally, the parameters of
the circulatory system are listed.

1 <settings>Baseline Simulation for geo01</settings>

2 <General>

3 <LogFile>./Baseline_T4_CFD_Pressure/Baseline.log</LogFile>

4 </General>

5
6 <Mesh>

7 <Type>T4</Type>

8 <Format>Tetgen</Format>

9 <Sorting>None</Sorting>

10 <Tetgen>

11 <Unit>1e-3</Unit>

12 <Nodes>../Geometry/Fluid/heartT4.node</Nodes>

13 <Elements>../Geometry/Fluid/heartT4.ele</Elements>

14 <Bases>../Geometry/Fluid/heartT4.bases</Bases>

15 <Surfaces>../Geometry/Fluid/heartT4.sur</Surfaces>

16 <DetermineNeighbors>true</DetermineNeighbors>

17 <EnforceOrthonormalBases>false</EnforceOrthonormalBases>

18 </Tetgen>

19 <Surfaces>

20 <!-- LV -->

21 <Surface_131> <Type>CAVITY</Type> </Surface_131>

22 <!-- RV -->

23 <Surface_130> <Type>CAVITY</Type> </Surface_130>

24 <!-- LA -->

25 <Surface_133> <Type>CAVITY</Type> </Surface_133>

26 <!-- RA -->

27 <Surface_132> <Type>CAVITY</Type> </Surface_132>

28 <!-- epicardium -->
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29 <Surface_159> <Type>CAVITY</Type> </Surface_159>

30 <!-- pericardium -->

31 <Surface_160> <Type>CONTACT_MASTER</Type> </Surface_160>

32 <Surface_161> <Type>CONTACT_SLAVE</Type> </Surface_161>

33 <!-- CFD surfaces -->

34 <Surface_230> <Type>T3</Type> </Surface_230>

35 <Surface_231> <Type>T3</Type> </Surface_231>

36 </Surfaces>

37 <Transform>

38 <T4toT10>false</T4toT10>

39 <T3toT6>false</T3toT6>

40 </Transform>

41 </Mesh>

42
43 <Materials>

44 <Global>

45 <Damping>

46 <Rayleigh>

47 <Alpha>500</Alpha>

48 <Beta>0.01</Beta>

49 </Rayleigh>

50 </Damping>

51 </Global>

52
53 <Mat_Default>

54 <IgnoreCorruptElements>true</IgnoreCorruptElements>

55 </Mat_Default>

56
57 <Mat_30>

58 <!-- RV -->

59 <Type>Guccione</Type>

60 <Density>1082</Density>

61 <Guccione>

62 <C>278.0</C>

63 <b1>12.0</b1>

64 <b2>4.8</b2>

65 <b3>8.4</b3>

66 <K>2e5</K>

67 </Guccione>

68 <TensionMax>120000</TensionMax>

69 <TensionModel>FromFunction</TensionModel>

70 <FromFunction>

71 <Type>DoubleHill</Type>

72 <StartTime>0.0</StartTime>

73 <StopTime>30.0</StopTime>

74 <DoubleHill>

75 <Period> 1.247 </Period>

76 <ContrTimeOffset> 0.335</ContrTimeOffset>

77 <RelaxTimeOffset> 0.563</RelaxTimeOffset>

78 <ContrRateConst> 1.32 </ContrRateConst>

79 <RelaxRateConst> 21.9 </RelaxRateConst>

80 <OnsetTime> 0.184 </OnsetTime>
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81 </DoubleHill>

82 </FromFunction>

83 </Mat_30>

84
85 <Mat_31>

86 <!-- LV -->

87 <Type>Guccione</Type>

88 <Density>1082</Density>

89 <Guccione>

90 <C>278.0</C>

91 <b1>12.0</b1>

92 <b2>4.8</b2>

93 <b3>8.4</b3>

94 <K>2e5</K>

95 </Guccione>

96 <TensionMax>120000</TensionMax>

97 <TensionModel>FromFunction</TensionModel>

98 <FromFunction>

99 <Type>DoubleHill</Type>

100 <StartTime>0.0</StartTime>

101 <StopTime>30.0</StopTime>

102 <DoubleHill>

103 <Period> 1.247 </Period>

104 <ContrTimeOffset> 0.335</ContrTimeOffset>

105 <RelaxTimeOffset> 0.563</RelaxTimeOffset>

106 <ContrRateConst> 1.32 </ContrRateConst>

107 <RelaxRateConst> 21.9 </RelaxRateConst>

108 <OnsetTime> 0.184 </OnsetTime>

109 </DoubleHill>

110 </FromFunction>

111 </Mat_31>

112
113 <Mat_32>

114 <!-- RA -->

115 <Type>MooneyRivlin</Type>

116 <Density>1082</Density>

117 <MooneyRivlin>

118 <C1>7450</C1>

119 <C2>0</C2>

120 <B>2e5</B>

121 </MooneyRivlin>

122 <TensionMax>40000</TensionMax>

123 <TensionModel>FromFunction</TensionModel>

124 <FromFunction>

125 <Type>DoubleHill</Type>

126 <StartTime>0.0</StartTime>

127 <StopTime>30.0</StopTime>

128 <DoubleHill>

129 <Period> 1.247 </Period>

130 <ContrTimeOffset> 0.066</ContrTimeOffset>

131 <RelaxTimeOffset> 0.251 </RelaxTimeOffset>

132 <ContrRateConst> 1.99 </ContrRateConst>
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133 <RelaxRateConst> 11.2 </RelaxRateConst>

134 <OnsetTime> 0.0 </OnsetTime>

135 </DoubleHill>

136 </FromFunction>

137 </Mat_32>

138
139 <Mat_33>

140 <!-- LA -->

141 <Type>MooneyRivlin</Type>

142 <Density>1082</Density>

143 <MooneyRivlin>

144 <C1>7450</C1>

145 <C2>0</C2>

146 <B>2e5</B>

147 </MooneyRivlin>

148 <TensionMax>40000</TensionMax>

149 <TensionModel>FromFunction</TensionModel>

150 <FromFunction>

151 <Type>DoubleHill</Type>

152 <StartTime>0.0</StartTime>

153 <StopTime>30.0</StopTime>

154 <DoubleHill>

155 <Period> 1.247 </Period>

156 <ContrTimeOffset> 0.066</ContrTimeOffset>

157 <RelaxTimeOffset> 0.251 </RelaxTimeOffset>

158 <ContrRateConst> 1.99 </ContrRateConst>

159 <RelaxRateConst> 11.2 </RelaxRateConst>

160 <OnsetTime> 0.0 </OnsetTime>

161 </DoubleHill>

162 </FromFunction>

163 </Mat_33>

164
165 <Mat_34>

166 <!-- RAV ring -->

167 <Type>Guccione</Type>

168 <Density>1082</Density>

169 <Guccione>

170 <C>5000</C>

171 <b1>14.4</b1>

172 <b2>5.76</b2>

173 <b3>10.08</b3>

174 <K>2e5</K>

175 </Guccione>

176 <TensionMax>120000</TensionMax>

177 <TensionModel>FromFunction</TensionModel>

178 <FromFunction>

179 <Type>DoubleHill</Type>

180 <StartTime>0.0</StartTime>

181 <StopTime>30.0</StopTime>

182 <DoubleHill>

183 <Period> 1.247 </Period>

184 <ContrTimeOffset> 0.335</ContrTimeOffset>
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185 <RelaxTimeOffset> 0.563</RelaxTimeOffset>

186 <ContrRateConst> 1.32 </ContrRateConst>

187 <RelaxRateConst> 21.9 </RelaxRateConst>

188 <OnsetTime> 0.184 </OnsetTime>

189 </DoubleHill>

190 </FromFunction>

191 </Mat_34>

192
193 <Mat_35>

194 <!-- LAV ring -->

195 <Type>Guccione</Type>

196 <Density>1082</Density>

197 <Guccione>

198 <C>5000</C>

199 <b1>14.4</b1>

200 <b2>5.76</b2>

201 <b3>10.08</b3>

202 <K>2e5</K>

203 </Guccione>

204 <TensionMax>120000</TensionMax>

205 <TensionModel>FromFunction</TensionModel>

206 <FromFunction>

207 <Type>DoubleHill</Type>

208 <StartTime>0.0</StartTime>

209 <StopTime>30.0</StopTime>

210 <DoubleHill>

211 <Period> 1.247 </Period>

212 <ContrTimeOffset> 0.335</ContrTimeOffset>

213 <RelaxTimeOffset> 0.563</RelaxTimeOffset>

214 <ContrRateConst> 1.32 </ContrRateConst>

215 <RelaxRateConst> 21.9 </RelaxRateConst>

216 <OnsetTime> 0.184 </OnsetTime>

217 </DoubleHill>

218 </FromFunction>

219 </Mat_35>

220
221 <Mat_36>

222 <!-- RAV plane -->

223 <Type>MooneyRivlin</Type>

224 <Density>1082</Density>

225 <MooneyRivlin>

226 <C1>2e5</C1>

227 <C2>0</C2>

228 <B>2e5</B>

229 </MooneyRivlin>

230 </Mat_36>

231
232 <Mat_37>

233 <!-- LAV plane -->

234 <Type>MooneyRivlin</Type>

235 <Density>1082</Density>

236 <MooneyRivlin>
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237 <C1>2e5</C1>

238 <C2>0</C2>

239 <B>2e5</B>

240 </MooneyRivlin>

241 </Mat_37>

242
243 <Mat_38>

244 <!-- inner trunks -->

245 <Type>MooneyRivlin</Type>

246 <Density>1082</Density>

247 <MooneyRivlin>

248 <C1>14900</C1>

249 <C2>0</C2>

250 <B>2e5</B>

251 </MooneyRivlin>

252 </Mat_38>

253
254 <Mat_232>

255 <!-- Pulmonary Valve -->

256 <Type>MooneyRivlin</Type>

257 <Density>1082</Density>

258 <MooneyRivlin>

259 <C1>14900</C1>

260 <C2>0</C2>

261 <B>2e5</B>

262 </MooneyRivlin>

263 </Mat_232>

264
265 <Mat_233>

266 <!-- Aortic Valve -->

267 <Type>MooneyRivlin</Type>

268 <Density>1082</Density>

269 <MooneyRivlin>

270 <C1>14900</C1>

271 <C2>0</C2>

272 <B>2e5</B>

273 </MooneyRivlin>

274 </Mat_233>

275
276 <Mat_39>

277 <!-- outer trunks -->

278 <Type>MooneyRivlin</Type>

279 <Density>1082</Density>

280 <MooneyRivlin>

281 <C1>14900</C1>

282 <C2>0</C2>

283 <B>2e5</B>

284 </MooneyRivlin>

285 </Mat_39>

286
287 <Mat_40>

288 <!-- fat -->
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289 <Type>MooneyRivlin</Type>

290 <Density>1082</Density>

291 <MooneyRivlin>

292 <C1>3725</C1>

293 <C2>0</C2>

294 <B>2e5</B>

295 </MooneyRivlin>

296 </Mat_40>

297
298 <Mat_60>

299 <!-- surrounding tissue -->

300 <Type>MooneyRivlin</Type>

301 <Density>1082</Density>

302 <MooneyRivlin>

303 <C1>1000</C1>

304 <C2>0</C2>

305 <B>1e4</B>

306 </MooneyRivlin>

307 </Mat_60>

308 </Materials>

309
310 <Export>

311 <Format>VTK</Format>

312 <Prefix>./Baseline_T4_CFD_Pressure/CM</Prefix>

313 <TimeStep>5e-3</TimeStep>

314 <Options>

315 <Material>true</Material>

316 <Fixation>true</Fixation>

317 <FiberAllQuadraturePoints>false</FiberAllQuadraturePoints>

318 <SurfaceElementID>false</SurfaceElementID>

319 <SurfaceID>false</SurfaceID>

320 <SurfaceNormal>false</SurfaceNormal>

321 <ActiveStress>true</ActiveStress>

322 <TetgenBases>false</TetgenBases>

323 <Deformation>false</Deformation>

324 <Lambda>true</Lambda>

325 <Cauchy>false</Cauchy>

326 <LocalActivationTime>false</LocalActivationTime>

327 <Fiber>true</Fiber>

328 <Sheet>true</Sheet>

329 <SheetNormal>true</SheetNormal>

330 <AbsDisplacement>true</AbsDisplacement>

331 <Displacement>false</Displacement>

332 <Velocity>false</Velocity>

333 <Acceleration>false</Acceleration>

334 </Options>

335 </Export>

336
337 <Solver>

338 <NonZeros>2000</NonZeros>

339 <DomainDecomposition>false</DomainDecomposition>

340 <Precision>1e-12</Precision>



218 Appendix B. Elastomechanics and circulatory system parameters

341 <Verbose>true</Verbose>

342 <LU>true</LU>

343 <Type>NewmarkBeta</Type>

344 <NewmarkBeta>

345 <!-- Dissipation of higher frequencies for Gamma ≥ 0.5 -->

346 <!-- Unconditional stability for 2*Beta ≥ Gamma ≥ 0.5 -->

347 <Beta>0.3</Beta>

348 <Gamma>0.6</Gamma>

349 <ConsistentMassMatrix>true</ConsistentMassMatrix>

350 </NewmarkBeta>

351 <Formulation>TotalLagrangian</Formulation>

352 <StartTime>0</StartTime>

353 <StopTime>18.705</StopTime>

354 <TimeStep>1e-3</TimeStep>

355
356 <SNES>

357 <Export>

358 <Filename>Baseline_data/SNES.dat</Filename>

359 </Export>

360 </SNES>

361
362 <Plugins>

363 <acCELLerate>false</acCELLerate>

364 <Circulation>true</Circulation>

365 <LoadUnloadedState>true</LoadUnloadedState>

366 <ContactHandling>true</ContactHandling>

367 </Plugins>

368 </Solver>

369
370 <Plugins>

371 <acCELLerate>

372 <ProjectFile>./AccFiles/settings.aclt</ProjectFile>

373 <acCELLerateMesh>./AccFiles/Geometry/Bar_LVL2.vtu</acCELLerateMesh>

374 <MaterialFile>./AccFiles/materialIntra.def</MaterialFile>

375 <ForceOffset>0.0</ForceOffset>

376 <ResultPreFix>Acc</ResultPreFix>

377 <ResultFolder>./Baseline_T4_CFD_Pressure/</ResultFolder>

378 <PvdFileName>Acc</PvdFileName>

379 <NumberOfQuadP>1</NumberOfQuadP>

380 <Material>31</Material>

381 <UpdateSysA>true</UpdateSysA>

382 <minStretchVal>0.0</minStretchVal>

383 <maxStretchVal>2.0</maxStretchVal>

384 <constStretchRate>false</constStretchRate>

385 <valStretchRate>0.0</valStretchRate>

386 <Permute>false</Permute>

387 <Export>true</Export>

388 </acCELLerate>

389
390 <LoadUnloadedState>

391 <Nodes>/Users/jb072/00_Projects/CardioMechanics/04_CFD/Unloading_T4/UnloadedState_Cycle18.node</Nodes>

392 </LoadUnloadedState>
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393
394 <ContactHandling>

395 <Export>./Baseline_T4_CFD_Pressure/ContactHandling.dat</Export>

396 <MaxDistance>0.05</MaxDistance>

397 <TransitionDistance>1e-4</TransitionDistance>

398 <MaxAngle>90</MaxAngle>

399 <Alpha>1e7</Alpha>

400 <Beta>1</Beta>

401 <InitType>Linear</InitType>

402 <Steps>5</Steps>

403 </ContactHandling>

404
405 <Circulation>

406 <UsePressureGradient>false</UsePressureGradient>

407 <PressureGradientFilePath>/Users/jb072/00_Projects/CardioMechanics/04_CFD/Phase_2/pSeperatedAtriaVentricle.txt</PressureGradientFilePath>

408
409 <Tolerance>1e-7</Tolerance>

410 <MaxIterations>200</MaxIterations>

411 <Perturbation>false</Perturbation>

412 <SecantIterations>0</SecantIterations>

413
414 <PreloadingTime1>0.0</PreloadingTime1>

415 <PreloadingTime2>0.0</PreloadingTime2>

416
417 <PressureUnit>mmHg</PressureUnit>

418 <VolumeUnit>ml</VolumeUnit>

419
420 <CouplingDamping>

421 <InitialFactor> 0.5 </InitialFactor>

422 <DeclineFactor> 0.9 </DeclineFactor>

423 </CouplingDamping>

424
425 <Circs>

426
427 <Circ_1>

428 <Active>true</Active>

429 <Type>CircWholeHeartValvesDynamic</Type>

430 <ExportFile>./Baseline_T4_CFD_Pressure/Circ_1.dat</ExportFile>

431 <MaxIntegrationTimeStep>1e-4</MaxIntegrationTimeStep>

432
433 <CircParameters>

434 <BloodDensity>7.95e-4</BloodDensity>

435
436 <SysArtValveMax> 0.95 </SysArtValveMax>

437 <SysArtValveMin> 0.001 </SysArtValveMin>

438 <SysArtValveAreaRef> 7.0 </SysArtValveAreaRef>

439 <SysArtValveRateOpening> 20.0 ...

</SysArtValveRateOpening>

440 <SysArtValveRateClosing> 10.0 ...

</SysArtValveRateClosing>

441
442 <SysArtResist>0.07</SysArtResist>
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443 <SysArtCompli>2.0</SysArtCompli>

444 <SysArtVolumeUnstr>800.0</SysArtVolumeUnstr>

445
446 <SysPerResist>0.9</SysPerResist>

447
448 <SysVenResist>0.03</SysVenResist>

449 <SysVenCompli>100.0</SysVenCompli>

450 <SysVenVolumeUnstr>2850.0</SysVenVolumeUnstr>

451
452 <RavValveMax> 0.7 </RavValveMax>

453 <RavValveMin> 0.001 </RavValveMin>

454 <RavValveAreaRef> 15.0 </RavValveAreaRef>

455 <RavValveRateOpening> 20.0 </RavValveRateOpening>

456 <RavValveRateClosing> 6.0 </RavValveRateClosing>

457
458 <PulArtValveMax> 0.98 </PulArtValveMax>

459 <PulArtValveMin> 0.001 </PulArtValveMin>

460 <PulArtValveAreaRef> 7.0 </PulArtValveAreaRef>

461 <PulArtValveRateOpening> 20.0 ...

</PulArtValveRateOpening>

462 <PulArtValveRateClosing> 10.0 ...

</PulArtValveRateClosing>

463
464 <PulArtResist>0.02</PulArtResist>

465 <PulArtCompli>10.0</PulArtCompli>

466 <PulArtVolumeUnstr>150.0</PulArtVolumeUnstr>

467
468 <PulPerResist>0.07</PulPerResist>

469
470 <PulVenResist>0.03</PulVenResist>

471 <PulVenCompli>15.0</PulVenCompli>

472 <PulVenVolumeUnstr>200.0</PulVenVolumeUnstr>

473
474 <LavValveMax> 0.7 </LavValveMax>

475 <LavValveMin> 0.001 </LavValveMin>

476 <LavValveAreaRef> 15.0 </LavValveAreaRef>

477 <LavValveRateOpening> 20.0 </LavValveRateOpening>

478 <LavValveRateClosing> 6.0 </LavValveRateClosing>

479 </CircParameters>

480
481 <InitialConditions>

482 <TotalVolume>5500.0</TotalVolume>

483 <SysArtVolume>959.733</SysArtVolume>

484 <PulArtVolume>279.737</PulArtVolume>

485 <PulVenVolume>311.339</PulVenVolume>

486 <LvPressure>7.5</LvPressure>

487 <RaPressure>4.0</RaPressure>

488 <RvPressure>4.0</RvPressure>

489 <LaPressure>7.5</LaPressure>

490 </InitialConditions>

491
492 <Cavities>
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493 <LvSurface>131</LvSurface>

494 <RaSurface>132</RaSurface>

495 <RvSurface>130</RvSurface>

496 <LaSurface>133</LaSurface>

497
498 <LvPreloading>0.0</LvPreloading>

499 <RaPreloading>0.0</RaPreloading>

500 <RvPreloading>0.0</RvPreloading>

501 <LaPreloading>0.0</LaPreloading>

502 </Cavities>

503 </Circ_1>

504 </Circs>

505 </Circulation>

506
507 </Plugins>





Appendix C
Measurement time series

The mechanical movement of the endocardial surfaces for some characteristic points in the
cardiac cycle are included in this section. While each heart beat is resolved with 30 frames,
each fifth frame is included in the figure.
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Figure C.1: Two chamber long axis view.
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Figure C.2: Short axis view.
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