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Kurzfassung

Materialermüdung ist die häufigste Ursache für mechanisches Versagen. Die Degradationsmechanismen, welche die Lebens-

dauer von Bauteilen bei vergleichsweise ausgeprägten zyklischen Belastungen bestimmen, sind gut bekannt. Bei Belastungen

im makroskopisch elastischen Bereich hingegen, der (sehr) hochzyklischen Ermüdung, bestimmen die innere Struktur eines

Werkstoffs und die Wechselwirkung kristallografischer Defekte die Lebensdauer. Unter diesen Umständen sind die inneren

Degradationsphänomene auf der mikroskopischen Skala weitgehend reversibel und führen nicht zur Bildung kritischer Schä-

digungen, die kontinuierlich wachsen können. Allerdings sind einige Kornensembles in polykristallinen Metallen, je nach den

lokalen mikrostrukturellen Gegebenheiten, anfällig für Schädigungsinitiierung, Rissbildung und -wachstum und wirken daher

als Schwachstellen. Daher weisen Bauteile, die solchen Belastungen ausgesetzt sind, oft eine ausgeprägte Lebensdauerstreu-

ung auf. Die Tatsache, dass ein umfassendes mechanistisches Verständnis für diese Degradationsprozesse in verschiedenen

Werkstoffen nicht vorliegt, hat zur Folge, dass die derzeitigen Modellierungsbemühungen die mittlere Lebensdauer und ihre

Varianz in der Regel nur mit unbefriedigender Genauigkeit vorhersagen. Dies wiederum erschwert die Bauteilauslegung und

macht die Nutzung von Sicherheitsfaktoren während des Dimensionierungsprozesses erforderlich.

Abhilfe kann geschaffen werden, indem umfangreiche Daten zu Einflussfaktoren und deren Wirkung auf die Bildung initialer

Ermüdungsschädigungen erhoben werden. Die Datenknappheit wirkt sich nach wie vor negativ auf Datenwissenschaftler und

Modellierungsexperten aus, die versuchen, trotz geringer Stichprobengröße und unvollständigen Merkmalsräumen, mikro-

strukturelle Abhängigkeiten abzuleiten, datengetriebene Vorhersagemodelle zu trainieren oder physikalische, regelbasierte

Modelle zu parametrisieren. Die Tatsache, dass nur wenige kritische Schädigungen bezogen auf das gesamte Probenvolu-

men auftreten und die hochzyklische Ermüdung eine Vielzahl unterschiedlicher Abhängigkeiten aufweist, impliziert einige

Anforderungen an die Datenerfassung und -verarbeitung. Am wichtigsten ist, dass die Messtechniken so empfindlich sind,

dass nuancierte Schwankungen im Probenzustand erfasst werden können, dass die gesamte Routine effizient ist und dass die

korrelative Mikroskopie räumliche Informationen aus verschiedenen Messungen miteinander verbindet.

Das Hauptziel dieser Arbeit besteht darin, einen Workflow zu etablieren, der den Datenmangel behebt, so dass die zukünftige

virtuelle Auslegung von Komponenten effizienter, zuverlässiger und nachhaltiger gestaltet werden kann. Zu diesem Zweck

wird in dieser Arbeit ein kombinierter experimenteller und datenverarbeitender Workflow vorgeschlagen, um multimodale

Datensätze zu Ermüdungsschädigungen zu erzeugen. Der Schwerpunkt liegt dabei auf dem Auftreten von lokalen Gleitbän-

dern, der Rissinitiierung und dem Wachstum mikrostrukturell kurzer Risse. Der Workflow vereint die Ermüdungsprüfung von

mesoskaligen Proben, um die Empfindlichkeit der Schädigungsdetektion zu erhöhen, die ergänzende Charakterisierung, die

multimodale Registrierung und Datenfusion der heterogenen Daten, sowie die bildverarbeitungsbasierte Schädigungsloka-

lisierung und -bewertung. Mesoskalige Biegeresonanzprüfung ermöglicht das Erreichen des hochzyklischen Ermüdungszu-

stands in vergleichsweise kurzen Zeitspannen bei gleichzeitig verbessertem Auflösungsvermögen der Schädigungsentwick-

lung. Je nach Komplexität der einzelnen Bildverarbeitungsaufgaben und Datenverfügbarkeit werden entweder regelbasierte

Bildverarbeitungsverfahren oder Repräsentationslernen gezielt eingesetzt. So sorgt beispielsweise die semantische Segmen-

tierung von Schädigungsstellen dafür, dass wichtige Ermüdungsmerkmale aus mikroskopischen Abbildungen extrahiert wer-

den können. Entlang des Workflows wird auf einen hohen Automatisierungsgrad Wert gelegt. Wann immer möglich, wurde

die Generalisierbarkeit einzelner Workflow-Elemente untersucht. Dieser Workflow wird auf einen ferritischen Stahl (EN

1.4003) angewendet. Der resultierende Datensatz verknüpft unter anderem große verzerrungskorrigierte Mikrostrukturdaten

mit der Schädigungslokalisierung und deren zyklischer Entwicklung. Im Zuge der Arbeit wird der Datensatz wird im Hinblick

auf seinen Informationsgehalt untersucht, indem detaillierte, analytische Studien zur einzelnen Schädigungsbildung durch-

geführt werden. Auf diese Weise konnten unter anderem neuartige, quantitative Erkenntnisse über mikrostrukturinduzierte
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plastische Verformungs- und Rissstopmechanismen gewonnen werden. Darüber hinaus werden aus dem Datensatz abgelei-

tete kornweise Merkmalsvektoren und binäre Schädigungskategorien verwendet, um einen Random-Forest-Klassifikator zu

trainieren und dessen Vorhersagegüte zu bewerten. Der vorgeschlagene Workflow hat das Potenzial, die Grundlage für künfti-

ges Data Mining und datengetriebene Modellierung mikrostrukturempfindlicher Ermüdung zu legen. Er erlaubt die effiziente

Erhebung statistisch repräsentativer Datensätze mit gleichzeitig hohem Informationsgehalt und kann auf eine Vielzahl von

Werkstoffen ausgeweitet werden.
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Abstract

Materials fatigue poses the most frequent cause of mechanical failure. The degradation mechanisms that dictate component

life at comparatively large cyclic loads are well known. In contrast, when loads in the macroscopically elastic range are concer-

ned, the so-called (very) high-cycle fatigue regime, the inner structure of a material, and crystallographic defect interactions

therein govern the service life. Under these circumstances, the internal degradation phenomena at the microscopic scale are

largely reversible or do not culminate in the formation of critical damage instances which can undergo continued growth.

However, some grain ensembles in polycrystalline metals depending on their local microstructural character are vulnerable

to initial damage formation, crack initiation and growth and therefore act as weak points. Therefore, components exposed to

such loads, often exhibit pronounced service life scatter. The fact that a comprehensive mechanistic understanding of these

early degradation processes in various materials is yet to be unveiled, entails that current modeling efforts typically predict

the mean life and its variance with unsatisfactory accuracy. This in turn hampers the component design and necessitates the

application of safety factors during the dimensioning process.

Remedy can be provided by addressing the lack of data capturing initial fatigue damage evolution and its influence factors.

The data shortage continues to adversely affect data scientists and computational modeling experts attempting to derive micro-

structural dependencies, train predictive data-driven models, or parameterize physical rule-based models from small sample

size data with incomplete feature representations. The fact that only a few critical damage instances occur referred to the

whole specimen volume and high-cycle fatigue is characterized by a variety of distinct dependencies, placing some demands

on the data acquisition and processing routine. Most importantly, the measurement techniques should provide the sensitivity

to capture nuanced fluctuations in the specimen state, the whole routine should be efficient, and correlative microscopy should

link spatial information from different measurements.

The primary objective of this work is to establish a workflow to address the data shortage such that future virtual component

design can be rendered more efficient, reliable, and sustainable. To this end, this work proposes a combined experimental

and data post-processing workflow to generate multimodal fatigue damage data sets. Particularly, the focus is placed on the

emergence of slip markings, crack initiation, and microstructurally short crack growth. The workflow unifies fatigue testing

of mesoscale specimens to increase damage detection sensitivity, complementary characterization, multimodal registration

and data fusion to address and exploit data heterogeneity, and image processing-based damage localization and evaluati-

on. Mesoscale bending resonant cyclic testing enables reaching the high-cycle fatigue regime in comparatively short time

spans while maintaining unprecedented time resolution of damage evolution. Depending on the complexity of the individual

computer vision tasks and data availability, either rule-based image processing or representation learning methods are purpo-

sefully incorporated. For example, semantic segmentation of damage instances ensures retrieval of important fatigue features

from micrographs. Emphasis is placed on a high degree of automation. Whenever possible, the generalizability of individual

workflow elements is explored. This workflow is applied to a ferritic steel (EN 1.4003) case study. The resulting data set links

amongst others large distortion-corrected microstructure data with damage localization and its cyclic evolution. The data set

is explored with respect to its information content by performing detailed, analytical studies on individual damage instances.

This provided quantitative insights with respect to microstructural plastic deformation and crack arrest mechanisms. Further-

more, grain-wise feature vectors and binary damage categories derived from the data set are utilized to train and evaluate a

random forest classifier. The proposed workflow holds the potential to lay the foundation for future data mining and data-

driven modeling of microstructure-sensitive fatigue by efficiently providing statistically representative data sets with a high

information content extendable to a wide range of materials.
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1 Introduction

1.1 Motivation

A substantial portion of the current technological advances can be ascribed to materials development and improvement rende-

ring materials science a key technology [1]. For instance, steels whose worldwide production was estimated 1259 million tons

in the year 2005 [2] can adopt a vast range of properties depending on their composition and underwent thermo-mechanical

treatments. Therefore, steels with their generally good formability and machinability can serve optimal structural and ma-

gnetic characteristics to a wide range of sectors such as automotive, construction, energy, and plant engineering. However,

long development cycles are required for introducing tailored materials into production. This can be ascribed to necessary

adjustments in processing, which are nowadays largely addressed by trial-error-based approaches, as well as to materials and

component safety assessment. Furthermore, sustainability regulations such as decarbonization of production pose constraints

to manufacturers [3].

There are multiple national efforts addressing the digital transformation of materials aiming to reduce the time to market.

For instance, the Materials Genome Initiative (MGI) [4] in the United States, Materials Genome Engineering [5] in China,

and MaterialDigital [6] as well as NFDI MatWerk [7] in Germany are aiming to achieve this through structuring and con-

necting materials data [8] as well as transcribing materials knowledge into machine-readable representations. In the future,

digital twins of materials, e.g. predictive machine learning models, potentially can provide a remedy for time-consuming

experimentation and process optimization. Moreover, instances of such models could monitor the material’s state during ope-

ration. By combining materials knowledge and data to develop hybrid artificial intelligence-based digital twins, potentially

generalization to a variety of materials and high fidelity can be achieved simultaneously.

Materials fatigue testing often poses the time limiting factor in materials assessment but is crucial considering that over 80%

of materials’ mechanical failure can be accounted to fatigue [9]. Bearing in mind the current scarcity of structured fatigue

data, collecting and linking faithful fatigue data and knowledge according to the FAIR data principles (Findable, Accessible,

Interoperable, and Reuasble [10]) can not only reduce the time spent during testing and design but in the long run, could also

culminate in component longevity and increased sustainability. Furthermore, product recalls due to service failure could be

circumvented.

Fatigue describes the continuous degradation of a component exerted to cyclic loading. In the course of fatigue, damage

mechanisms take place that range from dislocation structure formation over the arrangement of slip bands and extrusions to

different crack states, ultimately culminating in terminal component failure. Therefore, fatigue phenomena encompass the

atomic scale through crystallographic defect interactions or point defect diffusion, the mesoscopic scale where interactions

between microstructural units in polycrystals modulate externally imposed loads, and the continuum level. This inherently

renders fatigue a multi-scale process.

When external cyclic loading amplitudes are concerned which result in a high number of withstood loading cycles (> 105),

initial fatigue states such as damage evolution, crack initiation and short crack growth govern most of the fatigue life. Another

attribute of this so-called high cycle fatigue (HCF) regime is that the damage and crack initiation sites are rather few and

localized to regions of critical microstructure (pronounced microstructure-sensitivity). However, neither sufficient data nor

exhaustive mechanistic understanding is available on the microstructure dependency of these early fatigue states. This leads

to the unsatisfactory lifetime prediction accuracy of current analytical and computational knowledge-driven models in the

HCF regime and beyond.
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1 Introduction

The material composition and processing can culminate in a variety of distinct microstructures, intrinsic stress states, and

surface properties collectively altering the material response to aforementioned cyclic loads and the underlying mechanisms

[11]. In addition, during service life, mechanical loading characteristics along with environmental conditions affect the fatigue

process severely.

Therefore, advancing the understanding in the field of HCF fatigue requires multimodal feature representations which take

the aforementioned dependencies into account. However, to date, despite the vast availability of distinct imaging techniques,

there is no individual characterization technique that can comprehensively capture all relevant features. Holistically, full-field

deformation and microtexture information in three dimensions would be preferred to derive a mechanistic understanding.

Simultaneously, in the HCF scenario, where typically elevated loading frequencies are utilized, sufficiently high time resolu-

tion would be beneficial to resolve individual cycles. Additional requirements posed are non-intermitted testing and spatial

resolutions allowing the extraction of microscopic defects, without relying on electron microscopy in vacuum environments

which alter the fatigue properties. While there are powerful aspiring experimental techniques able to collect data on the

three-dimensional microstructure evolution under cyclic loading such as in-situ near-field and far-field high energy X-ray

diffraction microscopy (HEDM) or diffraction contrast tomography (DCT) [12–14], these suffer from limited availability

and are not applicable for in-situ HCF testing [15, 16] on a wide variety of materials. Especially when sheet beams rather

than scanning pencil beams are utilized, these methods typically fall short of conventional electron backscatter diffraction

(EBSD) in spatial resolution by approximately one order of magnitude. While these X-ray-based approaches are predestined

to retrieve sub-surface information in a non-destructive fashion, nuanced intragranular deformation fields are comparatively

difficult to extract. In contrast, the vast majority of experimental works attempt to unify multimodal information from several

consecutive surface measurements [17–21].

The multimodal and multiscale character of the problem along with the diversity of the materials impede the data post-

processing required to convert the raw data into interpretable information. Conventional computer vision (CV) pipelines are

sometimes used to spatially align such data (registration [21]), detect damage, or infer deformation fields [22] but often rely on

extensive, manual feature engineering and user experience [23]. Adopting such rule-based CV approaches to another material

requires fine-tuning many model parameters. Owing to the fact that HCF damage formation only occurs in a few regions of

critical microstructure or defects and therefore poses rare events, data sets are often accompanied by severe data imbalance.

This scarcity of damage instances, in turn, raises the requirement for a large number of tests to collect statistically relevant

data. This is aggravated by the fact that most studies are built on incomplete feature representations without information about

sub-surface characteristics or local surface roughness. The increased uncertainty coming with it leads to a higher data demand

to infer causal relations in the high dimensional data. A significant portion — often even the majority — of time allocated

to research efforts is spent during data pre-processing stages, which highlights the importance of generalizable data post-

processing pipelines. However, due to the constraints introduced in this paragraph such standard post-processing routines are

at the moment unavailable.

Currently, machine learning (ML) approaches find increasing acceptance in the field of materials science. For problems

such as fatigue, where the mechanistic understanding is incomplete and the feature space is vast, ML can facilitate learning

complex, unknown relations from data to achieve higher fidelity in fatigue predictions. A criticism frequently posed to such

models is that the decision process of deep learning variants is not traceable [24], that representation learning methods require

a large number of input-output pairs due to their often limited data-efficiency [25], and that their generalization capability

is limited [25–27]. These limitations are in conflict with the pronounced expense associated with fatigue experimentation,

the costly data annotation through experts, and materials diversity. However, these limitations were the subject of much

research in the computer science field in the past decade. Nowadays, there are many novel techniques to bypass former

limitations. For instance, few-shot learning techniques address learning from few examples [28], domain adaptation models

tackle transferring between domains to achieve model transferability [29], and knowledge graph embedding [30] as well

as physics-informed models [31] achieve better generalization through the incorporation of existing knowledge. Extensive

knowledge-driven modeling efforts in the materials domain, from various computational techniques covering all scales, can

supplement synthetic data [32, 33]. Due to increased industrial automation and data acquisition rates, the discrepancy between

input data and annotated data is continuously rising. Therefore, the demand for semi- or unsupervised ML methods which
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require only a portion of the data to be annotated will inevitably gain relevance. Along with the digital transformation of the

materials science field improving the systematic collection and integration of disjoint materials data, these new techniques

can assist in unraveling unresolved problems such as fatigue.

1.2 Objectives and approach

The primary objective of this work is to establish an efficient workflow to collect and fuse multimodal experimental and com-

putational HCF fatigue data as well as complementary specimen characterization data. Thereby the expense to acquire and

process statistically relevant fatigue data should be reduced. Specifically, data on the early stages of fatigue damage evolution

on the microstructure level is addressed. Fatigue characterization of mesoscale specimens leveraging a bending resonance

setup presented in [34] and [35] represents the foundation of the workflow. The bending resonance characterization of me-

soscale specimens unifies a few beneficial properties. On one hand, the load is predominant in the surface near regions. These

regions are small enough to be characterized by time-consuming techniques such as EBSD providing crucial microtextural

features for fatigue. On the other hand, higher frequency loading permits accumulating many loading cycles within main-

tainable testing time spans. Moreover, the sensitivity is pronounced enabling the detection of initial damage. In terms of data

processing, multimodal data registration, segmentation, clustering, and filtering are core features of the workflow.

An overview of the workflow addressing experimental, computational and data analysis steps is depicted in figure 1.1 and

elaborated briefly in the following.
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Figure 1.1: Overview of the workflow including the experimental approach and the data handling [36].

After specimen preparation (1) and geometry assessment (2), automated mosaic image acquisition in a scanning electron

microscope is performed with a topography-sensitive detector (3). The subsequently stitched image serves the purpose of

providing information about the initial state (e.g. pore defects) in the whole highly loaded specimen area without sacrificing

resolution. Moreover, this image acts as a reference for registration due to the absence of deformation and its reduced imaging-

induced spatial distortion. Analogously, for some specimens, EBSD (4) is acquired for microtexture information (pixel-wise
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sampled crystallographic orientation). Upon later spatial alignment of the different image types, this facilitates attributing

fatigue damage instances to certain microstructural entities such as grains or their interfaces. A homogenized linear elastic

FE analysis (5) provides an initial estimate of the specimen geometry-induced stress distribution and determines the target

amplitude during testing. Subsequently, a bending resonance fatigue experiment (6) is performed. This experiment employs

a frequency drop criterion along with in-situ imaging to obtain information on integral and local damage formation. Another

SEM stitching image acquisition (7) aimed at attaining comparatively high-resolution damage information completes the

experimental procedure. By comparison with the initial SEM stitching, the degree of deformation and whether prior defects

were responsible for damage initiation can be deduced.

All aforementioned data undergoes extensive post-processing (8/9). This includes the following aspects:

1. Filtering, smoothing, and clustering of EBSD data to extract potentially relevant microstructural features

2. Registration of the in-situ image series correcting for slight specimen slip during fatigue

3. Multimodal registration of all image data sets

4. Semantic segmentation of damage instances, namely protrusions and cracks, from the post-mortem stitched SEM image

5. Damage segmentation in the light optical in-situ image series by utilizing the SEM-derived damage mask

6. Image processing for a quantitative damage evolution analysis from the registered in-situ image series

All functionalities are integrated into a graphical user interface (GUI) to facilitate user input at different stages, for instance

during the point correspondence selection for multimodal data registration.

Since the post-processing culminates in displacement boundary conditions, specimen geometry, and microstructure being

fused and the relevant, highly-loaded domain size is manageable in terms of computational expense, the data sets provide

straightforward integration into computational modeling efforts (10a). For instance, these data sets facilitate the parame-

trization and validation of computational micromechanical fatigue models such as crystal plasticity finite element method

(CPFEM) or related fast Fourier transform (FFT)-based approaches. A small portion of the work at hand is dedicated to

comparing hotspots in CPFEM-derived so-called fatigue indicator parameter (FIP) maps with experimental damage masks

regarding their spatial correlation. In opposite direction, the data space can be further enriched by supplementing features

derived from crystal plasticity.

Through this workflow, a data foundation for HCF damage prediction appropriate for training ML models shall be created.

Here the aim is to produce highly quantitative data sets for data-driven fatigue damage evolution modeling or data mining to

find sensitive features. A case study is conducted where different microtextural, micromechanical, topological, morphological,

and loading features are extracted from the fused data to predict damage initiation locations. Therefore, a binary classification

algorithm is applied considering grains as instances. Exemplary, decision tree and random forest-based approaches are tested

(10b). Thereby, the interplay and relevance of such quantitative features in determining damage-prone grain ensembles are

explored. The derived knowledge can then provide the groundwork for future modeling purposes (11).

Moreover, the work at hand aims to provide methodological insights into fatigue characterization and data post-processing

techniques. Both classical computer vision and machine learning elements are integrated into the workflow to achieve a

high degree of automation. Within this workflow, in particular, the appropriate usage of deep learning models (DL) for the

segmentation of initial damage is investigated. In this regard, the focus lies on convolutional neural network (CNN) models

for segmentation tasks. Such models are typically composed of an encoder and decoder portion. The encoder extracts relevant

image textural features and the decoder recovers the spatial resolution for the dense prediction task. The influence of model

weight initialization, image data pre-processing, and data augmentation on the final model performance is explored. Emphasis

is placed on methodologies reducing the data demand and improving generalizability. In conclusion, major shortcomings of

DL methodologies (introduced in section 1.1) preventing the applicability in materials science are tackled.
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Prospectively, this workflow is supposed to address the present lack of microstructure-informed fatigue data for a wide range

of metals. Therefore, the generalizability of essential workflow elements to alternate materials is explored and discussed.

While the majority of the work is performed on a highly chromium alloyed ferritic steel, for the generalization study of seg-

mentation models, martensitic steel and high-purity copper are considered additionally. Ideally, the data registration routines

should enable spatial correlations between further relevant modalities and the linking of data on distinct length scales.

The present doctoral thesis draws from four previously published journal articles. Primarily, it is based on a publication that

presented the machine learning-assisted experimental workflow to generate data on initial fatigue damage efficiently [36].

The contents of that publication were created by the author by conducting experiments, data processing, analysis, and writing.

Another effort that is fundamental to the doctoral thesis presented here is the one on deep learning segmentation of damage

instances [37]. In that work, major contributions were made by conceptualizing the study, data analysis, and writing, and minor

contributions to writing the training code. Furthermore, a few contents of two other journal publications are included here.

Both address the validation of crystal plasticity fatigue simulations performed by industrial partners. While one introduces

the validation methodology and utilizes it to compare predicted hotspot maps with segmented damage maps [38], the other

assesses the fidelity of microstructural short crack growth paths predicted by a phenomenological CPFEM model against

experimental data [39]. In the former case, the validation methodology and metrics were proposed and implemented by the

candidate and major contributions were made in terms of data analysis and writing. For the microstructural crack growth

paper, minor contributions were made in terms of conceptualization and writing.
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2 Fundamentals

2.1 Microstructure and fatigue mechanisms

2.1.1 Microstructure of ferritic steels and crystallographic descriptors

There is a vast variability of steels resulting in substantial customization potential and tailored steel materials for specific

applications. The thermo-mechanical processing history and alloying composition of steel strongly affect its microstructu-

re and thus the properties of steel. There are various steel categories distinguished by their alloying element content (e.g.

carbon) into grade standards such as those of the Society of Automobile Engineers (SAE). Application fields are amongst

others construction, transportation, plant engineering, energy, and automotive which each requires certain combinations of

mechanical, magnetic, and corrosion resistance properties. Despite steels’ longstanding usage in many applications, there is

significant progress in the development of advanced high-strength steels (AHSS). For instance, dual-phase steels combining

ferrite and martensite phases or twinning/transformation-induced plasticity (TWIP/TRIP) steels [40, 41] belong to this group.

The development of these is driven by the demand for steels that combine both, outstanding strength and toughness [42].

Another branch of steel research attempts to attain competitive properties from recycled materials despite the high contents

of tramp elements [43].

In polycrystalline materials, microstructural units, so-called grains, are defined as volumetric regions with a regular lattice

composed of periodic elementary unit cells (see figure 2.1a). In reality, even within grains, lattice rotations, so-called intragra-

nular misorientations, exist which can be ascribed to defects present in the individual grains. The shown elementary cell with

atoms situated at the corners and the center (single atom basis) is referred to as body-centered cubic (bcc). In mildly-alloyed

steels, this atomic configuration is reflected in the thermodynamically stable low-temperature phase ferrtite.

a) b)

x1

x2

x3

d

SP

Figure 2.1: a) Body-centered cubic elementary cell with indicated slip planes (SP) and slip directions (d). b) Microstructure map in inverse pole figure color

coding with two unit cells illustrating the orientation distribution. The dashed line represents the grain boundary.

7



2 Fundamentals

The unit cell exhibits octahedral voids situated at the centers of faces and edges. The unit cells’ symmetry is characterized

by its point group m3m, corresponding to 24 symmetry operations to which the unit cell is invariant. Present asymmetries in

this unit cell give rise to anisotropic (=direction-dependent) materials properties in individual grains. For instance, the elastic

anisotropy factor proposed by Zener [44] for cubic crystals describes the anisotropy in elastic modulus using individual tensor

elements of the second-order stiffness:

Az =
2c44

c11 − c12

. (2.1)

In the case of iron, pronounced elastic anisotropy arises (Az ≈ 2.4 [45]).

There are multiple ways to describe the crystallographic orientation of grains with respect to a specimen coordinate system

(CSS) including the 3×3 orientation matrix g. This orientation matrix maps CSS into the crystal coordinate system (CSC) and

is composed of the direction cosines between each of the axes.

CSC = g ·CSS =









cosα1X cosα1Y cosα1Z

cosα2X cosα2Y cosα2Z

cosα3X cosα3Y cosα3Z









·CSS (2.2)

Here the subscripts denote the axes between which the angles are measured, where the first refers to crystal axes (1 = [100],

2 = [010], 3 = [001]) and the second to specimen axes X, Y, Z. From this general representation, different other means to

describe crystallographic orientations, directions, or planes can be derived including the Euler angle, quaternion, Rodrigues

vector, or Miller index representations. When orientations are encoded in Miller notation [46], the last and first columns are

extracted from g, posing the specimen Z and X axis directions in crystal coordinates, respectively. Then both vectors are

multiplied with their least common multiple NZ/X to obtain integer values:

(h,k, l)[u,v,w] = (NZcosα1Z ,NZcosα2Z ,NZcosα3Z)[NX cosα1X ,NX cosα2X ,NX cosα3X ]. (2.3)

Accordingly, directions, planes, and their symmetrically equivalent families can be described in Miller’s notation. This nota-

tion provides an intuitive understanding of which crystallographic axis/plane is aligned with relevant specimen axes (i.e., the

tensile axis or the rolling direction for sheet materials). In Miller notation, square, round, curly, and triangular brackets are

used to refer to crystallographic directions, planes, sets of equivalent planes, and set of equivalent directions, respectively. The

Miller indices of a plane are computed by finding its intersections with the crystal coordinate system in terms of multiples of

lattice spacing, computing the reciprocals, and subsequent multiplication with the least common multiple.

An alternative and commonly used way of encoding orientations is the Euler representation, where arguably the Bunge

convention is the most widespread in the domain of crystallography. This convention applies three consecutive rotations with

angles φ1, Φ and φ2 around the specimen Z axis, the transformed X axis, and finally the transformed Z axis to map CSS onto

CSC. These angles are defined in the ranges 0° ≤ φ1,φ2 ≤ 360° and 0° ≤ Φ ≤ 180°.

When considering full polycrystals, rather than individual grains, pole figures are a common tool to visualize the distribution

of specific crystal axes/planes in the specimen coordinate system. This is achieved by computing the intersections of the target

plane normals with a unit sphere and mapping them into the equatorial plane by stereographic projection. For more details,

the author refers to [47]. For instance, rolling can result in non-uniform orientation distributions. This so-called macroscopic

texture can be measured by pole figures and more extensive Euler or Rodrigues space representations.
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On the microscopic scale, when transitioning into a neighboring grain, an orientation discontinuity is present at the grain

boundary (GB), see the dashed line in figure 2.1b. GBs are two-dimensional defects that form networks and are affecting

materials properties to a large extent. They can be described by five macroscopic parameters [48], three accounting for the

crystallographic misorientation ∆g across the boundary, and two for the GB plane orientation. Especially when considering

its additional microscopic degrees of freedom such as the curvature, internal dislocation structure, or GB segregation, the

parameter space becomes vast [49, 50]. A change in orientation between grain 1 (reference) and grain 2 can be expressed by

∆g = g−1
1 ·g2. (2.4)

The angle-axis representation poses a frequently-used descriptor, where an axis, given in Miller indices, and a rotation around

it, given as a disorientation angle, maps the reference crystal coordinate system into the second crystal coordinate system.

Sometimes the disorientation angle is used to categorize GBs into small-angle GBs (< 15°) and large-angle GBs (> 15°)

which are associated with distinct characteristics. While absent in single-phase materials, phase boundaries are the analogous

concept separating two different phases. Moreover, there are so-called twin boundaries, where the atomic configuration on

both sides is mirrored. In coincident site lattice (CSL) boundaries the adjoining grains share potential lattice sites, where the

reciprocal of the Σ-parameter measures their portion. Such boundaries in some cases exhibit special properties [51].

The crystallographic planes characterized by the highest planar packing density of atoms and relatively large plane distances

(small Miller indices) are referred to as slip planes. Equivalently, slip directions are defined as directions within the slip planes

which possess the highest linear atom packing. An individual (110) slip plane (SP) of the bcc crystal along with its slip

directions (d) [111] and [111] are shown in figure 2.1a. However, owing to the symmetry of the bcc unit cell, six equivalent

{110} slip planes with two 〈111〉 slip systems each exist, amounting to twelve slip systems. As the name implies, slip

systems compared to arbitrary directions and planes, require lower resolved shear stresses in order to permit dislocation slip

and hence glide of crystallographic planes against each other. Moreover, there are thermally-activated slip planes (12 {211}
type and 24 {321} type) with one 〈111〉 direction each. The activity of these systems depends on chemical composition,

strain rate, strain amplitude, and temperature mainly [52].

2.1.2 Dislocations and their role in fatigue

Dislocations are often portrayed as infinite atom half-planes that are inserted into a crystal. They are considered line defects

since the lattice irregularity is localized to the dislocation core (tip of the inserted plane defined by the line vector ~l). The

dislocation core is surrounded by an elastic stress field. Dislocation line defects nucleate beyond a critical loading at all types

of defects, such as grain boundaries, precipitates, inclusions, and the free surface. The dislocations’ density and velocity

in the crystal determine the amount of plastic deformation observed in the material. According to [53], dislocation slip is

activated once the resolved shear stress τRSS on a dislocation exceeds the critical resolved shear stress τCRSS. The mobility of

dislocations as well as τCRSS show a dependence on temperature, strain rate, material, and the slip plane family. While the

so-called Burgers vector (~b) defines the direction and magnitude of the caused atomic displacement, the line vector defines its

geometry. Depending on the relative orientation of those two vectors to each other, the literature distinguishes between edge

dislocation (~b ⊥~l) and screw dislocation (~b ‖~l).

Dislocation glide or slip is a mechanism, which describes the motion of dislocations on crystallographic densely-packed

planes and directions (slip systems). Due to their characteristics (~b ‖~l), screw dislocations can operate on all slip planes

which contain the dislocation line. The mechanism by which screw dislocation segments can change the slip plane is denoted

as cross-slip [54]. This phenomenon allows screw dislocations to circumvent obstacles. The process of cross-slip is thermally

activated and, when activated on a large scale, can cause dynamic recovery due to the annihilation of screw dislocations

with opposing signs. In contrast, edge dislocations glide only on slip planes that contain both, the line and Burgers vector.

However, when vacancies interact with an edge dislocation it can give rise to a displacement of the dislocation out of the slip
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plane, so-called dislocation climb. This process is largely dependent on the environmental temperature as vacancy mobility is

affected strongly.

Despite the conceptual view of edge and screw types, dislocations observed in transmission electron microscopy studies are

typically a mixture of both types. Typical are so-called dislocation loops or dislocation dipoles [55]. As the name implies, in

dislocation loops the dislocation line vector is a closed loop. In contrast, dipoles represent two dislocations on parallel planes

with identical Burgers vectors but opposing line vectors. These dipoles are usually composed of edge portions as cross-slip

in screw components results in annihilation. Dislocation loops are typically formed by Frank-Read sources, which represent

partial, sessile (i.e., immobile) dislocations with both ends pinned causing dislocation multiplication. In some materials, when

energetically favorable, dislocations can dissociate into dislocation segments with different characters. Also, the interaction of

dislocations often leaves sessile partial dislocations behind, referred to as dislocation debris. This debris functions as obstacles

for glissile dislocations and thereby contributes to cyclic hardening.

Dislocations in fatigue. Aforementioned orientation differences between adjacent crystalline regions in conjunction with

elastic modulus anisotropy cause microstructural stress concentrations at grain boundaries. Such elastic incompatibilities,

along with mismatched plastic properties at intermediate strains, cause microstructure-based modulation of the specimen

geometry-induced stress distribution [56]. This gives rise to a local increase in dislocation density in the vicinity of grain

boundaries [57]. Especially in such regions, irreversibilities in dislocation motion occur and a portion of the total cumulative

plastic shear γp,cum within one loading cycle remains. This portion is the irreversible plastic shear γp,irr. Their ratio, the cyclic

slip irreversibility p is defined in the range 0 ≤ p ≤ 1 and depends amongst others on the loading amplitude [58].

p =
γp,irr

γp,cum

(2.5)

According to Mughrabi [58], phenomenons in fcc materials causing irreversibilities are cross-slip of screw dislocations, the

annihilation of screw or edge dislocations, and to-and-fro glide of dislocations. The mechanisms of microplasticity in fcc

materials are comparatively well understood and will be introduced briefly in the following as they lay the foundation for bcc

materials.

In the course of further cycling, dislocation multiplication and the formation of low-energy dislocation structures takes place.

Dislocation-rich regions (veins) form consisting of regions with clustered edge dislocation dipoles, and dislocation loops all

oriented perpendicular to the primary slip plane and the slip band. The stress field surrounding individual straight dislocations

decays with 1/r, while the decay in dislocation loops and dipoles is more pronounced. Therefore, dislocation loops and dipoles

represent low energy configurations which also permit higher dislocation densities in veins as the repulsive forces, which

dipoles exert onto each other are comparatively less. The vein regions are separated by dislocation-depleted channels, together

forming a (persistent) slip band (PSB). This alternating configuration in the bulk is coined ladder structure. Depending on the

material and load, these ladder structures come in different manifestations and are enclosed by the matrix in which typically

veins exist as well. Irreversible plastic strain is localized in PSBs after their formation. During cyclic loading an increase of

vacancies is observed due to the annihilation of predominant vacancy-type dislocation dipoles [59]. Vacancies are produced

in the channels of the PSB and flow into vacancy sinks (edge dislocation-rich veins in PSB) or the matrix. Therefore, atoms

are flowing from the matrix into the channels and from the veins into the channels. In Polák’s extension [59] of the EGM

model [60], the continuous production of vacancies in PSBs and their flow into sinks cause mass transport into the PSBs.

Therefore, in contrast to the EGM model, [59] explains not only the extrusion relief formation at the free surface of the PSB

but also the intrusion formation where the PSB-matrix interface meets the surface.

Dislocations in bcc materials. As this work addresses fatigue in ferritic (bcc) steel, in the following a brief survey of

microscopic plasticity in such materials is presented and peculiarities are emphasized. In the low-temperature regime of

bcc materials, the dynamics of dislocations differ from that of fcc materials. It is defined as the regime where higher yield

stresses occur due to the low mobility of screw dislocations. The transition temperature depends on the strain rate, where
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2.1 Microstructure and fatigue mechanisms

higher strain rates effectively increase the transition temperature [61]. Since plasticity-governing cross-slip of 1/2〈111〉 screw

dislocations is inhibited at low temperatures, bcc materials behave brittle. At low stresses, slip is facilitated by thermally-

activated nucleation of in-plane steps on the dislocation line (kink pairs) lowering the required load to move the dislocation

[62]. The immobility at low temperatures suppresses the Frank-Read dislocation multiplication mechanism strongly [61].

Dissociation of dislocation cores was reported to be absent in bcc materials since there are no related metastable stacking

faults [63]. Furthermore, it is observed that also non-shear components couple with dislocations (non-Schmid behavior),

which can be ascribed to the fact that the 1/2〈111〉 dislocation core extends across multiple planes of the 〈111〉 zone [63]. This

extended core is also considered the origin of the pronounced lattice friction (Peierls stress) resulting in comparatively higher

yield stresses in bcc materials and the temperature/strain rate dependence. Another anomaly encountered is the influence

on the sign of shear (twinning-antitwinning asymmetry or slip plane asymmetry) on slip activation. This mechanism causes

irreversibilities in slip due to distinct screw dislocation paths during tension and compression.

In a fatigue setting (often at high strain rates), the reversible to-and-fro glide of edge dislocation segments in mixed disloca-

tions or individual edge dislocations accommodates the plasticity, when small strains are concerned [58]. Irreversibilities are

caused due to the interaction of such dislocations with defects and predominantly the free surface. The elastic strain energy is

minimized when a dislocation moves to the free surface. To accommodate the cyclic plasticity, multiple slip is initiated which

upon cycling is accompanied by hardening and dislocation cell formation confined to some surface near regions. As the loads

are increased, these regions extend further into the bulk. While classical dislocation structures, e.g. ladder structures as in fcc

are typically absent in bcc metals, extrusions and intrusions still form at the surface.

As opposed to this, in alloyed materials, the dislocation slip behavior is amongst others altered by dynamic strain aging. This

mechanism refers to an increase in pinning strength of the otherwise mobile edge dislocations, which effectively assimilates

the mobilities of screw and edge segments and results in dislocation dynamics more similar to fcc. This was hypothesized

to contribute to the formation of PSB structures [61] otherwise atypical for pure bcc metals. In an extensive slip marking

formation study, Man et al. [64] found ladder structures in ferritic X10CrAl24 steel similar to those in fcc materials with

edge dislocations-enriched walls and channels containing few screw dislocations. In general, such ladder structures were only

found in alloyed bcc microstructures, e.g. [65, 66]. As opposed to typically reported fcc cases, the ladder-type PSB structures

reported in [64] and [66] are not surrounded by high dislocation density regions (veins) in the matrix. This is argued to

affect the mass redistribution (diffusion of vacancies) [64]. Wavy slip is observed on the surface and argued to be typical

for bcc metals due to the importance of dislocation cross-slip. Cracks are formed from intrusions which are accompanying

individual extrusions. Comparatively high loads in bcc materials facilitate slip markings across the whole grain area with a

slight localization towards grain boundaries. In individual instances, slip markings were observed to penetrate through grain

boundaries [64]. Crack initiation at the location where PSBs impinge on GB was reported to be another dominant mechanism

[67].

As the contribution of screw dislocations to plastic deformation increases (through alloying, higher loads, or higher tempera-

tures), the impact of slip plane asymmetry becomes relevant. Effectively, this results in shape changes of crystals, especially

when they are weakly constrained such as in surface regions. This has been shown to favor intercrystalline crack initiation

[68]. When screw dislocation glide is activated, cross-slip occurs readily in bcc materials due to their multitude of intersecting

slip planes. For iron activation of both {110} and {112} slip was reported [69].

Furthermore, intergranular crack growth was reported to be dependent on the grain size, where larger grain bcc materials tend

towards intergranular crack initiation as observed in the case of low carbon steels [70]. Typically, grain boundaries orthogonal

to the loading axis connecting grains with a substantially different plastic response were affected.

Previously, GBs and ledges in them were argued to be the dominating source for dislocations [57]. Therefore, high GB den-

sities are associated with high dislocation densities [70]. The importance of the grain boundary plane for the grain boundary

energy was highlighted by [71] in bcc metals using first principle methods. By molecular dynamics simulations, the static

grain boundary energy was shown to have an inverse relationship with the dislocation nucleation energy from GBs as well

as the energy barrier for dislocation-GB transmission [72]. Therefore, GBs affect the local hardening response of the mate-

rial. Depending on the grain sizes and dislocation densities present in the material, the influence of slip transmission on the
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mechanical properties varies [73]. In pioneering transmission electron microscopy studies [74–76] different criteria for slip

were determined. In [77], mechanisms, influence factors and models of slip transmission are reviewed extensively. The ideal

transfer of dislocations across GBs requires identical Burgers vectors of the adjoining slip systems. Otherwise, a residual

dislocation remains in the boundary plane [78]. If slip transmission is inhibited, dislocation pile-up arises. These insights

have led to the formulation of a multitude of slip transmission metrics. In nanoindentation experiments, Soer and De Hosson

[79] as well as Britton et al. [80] found, that slip transmission was preceded by dislocation pile-up exerting stress at the tip

dislocation. Lattice interstitial atoms (carbon) were pointed out to affect slip transmission substantially due to the formation

of Cottrell atmospheres pinning the dislocations. Confirming previous observations, large slip plane and Burgers vector misa-

lignments led to increased critical stresses to conquer the boundary. Furthermore, grain boundary segregation was previously

reported to affect slip transmission [81].

2.1.3 Fatigue – A multi-scale problem

Fatigue refers to the degradation of materials under cyclic loading, which eventually culminates in failure. Typically, fatigue

properties are characterized in S-N curves by imposing constant cyclic load amplitudes and measuring the cycle number

to failure N f , where failure is often defined in terms of a load drop. An exemplary S-N diagram is depicted in figure 2.2.

The phenomenon of fatigue has been observed over a large range of stress or strain amplitudes, even at amplitudes well

below the macroscopic elastic limit. In the regime of small cyclic load amplitudes, and particularly pronounced in ferritic

materials, the S-N curve exhibits a plateau (the so-called high cycle life endurance limit) indicating infinite life in the absence

of internal non-metallic inclusions or pores [82]. The amount of plasticity and dissipated energy in an individual cycle can be

quantified by the area within the stress-strain (σ-ǫ) hysteresis loop. While loading amplitudes below the classical endurance

limit result in elastic behavior, the limit itself can be perceived as the threshold to crack propagation, where plasticity, damage

accumulation and crack initiation can still occur.

Figure 2.2: Schematic of a S-N diagram.

Fatigue is a multi-scale problem, which ranges over multiple length scales from dislocation interactions to macroscopic crack

growth and failure. The amplitude, amongst other influence factors, strongly affects the underlying mechanisms of fatigue
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and its sensitivity to the internal local structure of the material. While in and beyond the so-called high cycle fatigue (HCF)

regime under low cyclic loads the accumulated cycle number N f depends strongly on specimen intrinsic influence factors, the

opposite holds true for high cyclic loads. Therefore, for low loading amplitudes generally, a larger scatter in life is observed

(see figure 2.2). Under these conditions, the global lifetime is to the largest extent determined by the stages up to crack

initiation [83, 84] as highlighted in figure 2.3.

Figure 2.3: S-N diagram (blue) with additional curves indicating cycles to crack initiation (green) and cyclic saturation (red), after [85].

In literature, depending on the scientific domain, multiple ways of subdividing fatigue life into hierarchical stages were

proposed, which renders comparisons difficult. The categorization in figure 2.4 is used throughout this work. Initially, in the

course of cycling, dislocations are moving on preferably-oriented slip systems and interact with each other, grain boundaries,

the free surface, and other types of defects. This renders dislocations immobile and causes cyclic hardening. Usually, the

dislocations, carriers of plasticity, localize in the vicinity of grain boundaries, which pose barriers to dislocation motion,

and there form dislocation structures and slip bands in the bulk. These regions of high dislocation density are accompanied

by irreversible plastic slip steps at internal interfaces and, most evidently, at the free surface. Through the accumulation of

irreversible micro plasticity, pronounced surface topographies form. Depending on their shape, such topographies are referred

to as protrusions, extrusions, intrusions, and combinations thereof. The manifestation of such surface damage is strongly

related to the underlying microstructure and loading. As a result of such topography and the stiffness mismatch between the

matrix and the dislocation enriched (i.e., hardened) regions, cracks are likely to nucleate at the corresponding interface.

As opposed to figure 2.3, crack propagation is distinguished into microcrack growth, short crack growth, and long crack

growth due to their inherently distinct mechanisms. This partitioning is in line with [84], where microcrack and short crack

growth are referred to as microstructurally small crack growth and physically small crack growth, respectively. Microcrack

growth, also referred to as stage I growth, is typically confined to individual grains and slip systems that are favorably oriented

for shear-activated slip (around 45° to the loading axis). The crack is dominated by fracture mode II (in-plane shear) and

mode III (out-of-plane shear) [86]. In the (physically) small crack growth regime, the crack length exceeds that of multiple

microstructural units but the plastic zone at the crack tip is comparable to characteristic microstructural length scales (e.g.

grain size) affecting the fracture mechanisms. As a consequence of the higher stress intensity at the crack tip, multiple slip

(i.e., activation of multiple slip systems) can occur in the plastic zones at the crack tip. In both aforementioned regimes,

linear elastic fracture mechanics are invalid. Upon further crack growth, the long crack growth stage is reached, where the

crack path deviates from slip planes and aligns orthogonally to the load axis (normal stress-dominated crack opening mode I).

Depending on whether the crack transitions through grains or coincides with grain boundaries, they are distinguished into

trans- and intercrystalline cracks.
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In the initial stages of fatigue, the microstructure-sensitivity is pronounced, as dislocation slip is localized to a few grains,

and grain boundaries pose barriers to dislocation motion and micro-/short cracks.

Cycle number
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Figure 2.4: Schematic representation of the multi-scale characteristic of fatigue process covering microstructure sensitive (a–d) and insensitive (e–f) states.

The blue color indicates persistent slip bands and slip markings. Closed green circles and lines represent crack initiation and growth, respectively.

A non-exhaustive overview and categorization of influence factors are given in the following:

• Geometric: The macroscopic stress state is substantially affected by the component or specimen geometry. Specimen

surface topography such as waviness and microscopic roughness represent notches acting as stress concentrators on

different scales. Moreover, the volume of the specimen exposed to high loads can alter the fatigue properties substan-

tially. In particular, in brittle and high-strength materials, where manufacturing-induced critical defects or inclusions

determine the fatigue life, the volume affects the likelihood of encountering a critical defect [87]. This results in a larger

scatter in small highly loaded volumes (size effect). The same applies to mesoscale specimens, depending on the ratio

between specimen dimension and size of microstructural units (grains) in polycrystalline materials. In this case, the

specimen orientation distribution (macroscopic texture) often is not representative of the overall material orientation

distribution. In mesoscale specimens, microscopic plasticity influences the overall specimen deformation more sensi-

tively. When the scale of the specimen approaches that of grains, scale effects become relevant. These are associated

with altered physical mechanisms governed by the free surface or interfaces, e.g. pronounced dislocation irreversibility

due to free surface interactions in thin film materials [88].

• Loading: The loading amplitude plays a crucial role as it affects all stages and mechanisms of fatigue. It determines

whether plasticity can be accommodated by the quasi-reversible glide of dislocations [58], whether strain hardening due

to dislocation structure formation occurs, and whether cracks can transition through obstacles such as grain boundaries

[89]. Especially body-centered cubic metals and alloys show strain rate effects. Due to the character of screw dislo-

cations in these materials, these are usually immobile (=sessile) at room temperatures and high excitation frequencies

used for fatigue [58]. This affects the plasticity onset and irreversibility. Mean offset stresses applied aside from the

cyclic amplitude affect crack opening or closure and thereby can alter the sustained life substantially. Residual stresses

introduced through fabrication are often detrimental to fatigue life.
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• Ambient conditions: Changes in temperature alter the defect mobility of dislocations and different point defects.

Therefore, thermally-activated processes such as diffusion are emphasized. Furthermore, the tendency of oxidation and

corrosion is increased at higher temperatures and specific gas compositions. Thomson et al. [90] and Boyce et al. [91]

investigated the influence of oxidation at slip bands. The mechanism found was that metal atoms exposed during the

slip in the forward cycle undergo oxidation and are then incorporated into the bulk during the reverse cycle. This results

in plasticity-induced oxidation at the free surface of slip bands where oxides often substantially thicker than the native

oxide form [91]. Under vacuum conditions often longer lifetimes and smaller cyclic crack growth rates are reported, e.g.

for chromium and molybdenum-alloyed martensitic steel [92]. Atmosphere composition can be an important influence

factor as well. For instance, the presence of hydrogen can affect the mobility of defects or enhance local plasticity and

thereby cause material embrittlement [93].

• Material-intrinsic: The internal structure of the material i.e. the microstructure and the defect distribution governs

HCF characteristics to a large extent. The interaction of different lattice defects is the origin of cyclic irreversibilities

which culminate in failure. For instance, the size of grains plays a decisive role in grain boundary strengthening de-

scribed by the Hall-Petch relation. [94, 95]. Grain boundaries, depending on their exact character, can pose barriers to

dislocation motion resulting in so-called dislocation pile-up at boundaries. The amount of dislocations in a pile-up is

proportional to the grain size and since the dislocations in such a configuration typically exert a repulsive force on-

to each other, grain boundaries pose a smaller barrier in large grains. Grain boundaries also pose obstacles for crack

growth where the Schmid factor difference with the most favorably oriented slip system in the grain ahead of the

crack tip is attributed significance [89]. The alloying composition, aside from obvious changes in the atomic structure

modifying dislocation slip, changes the oxidation tendency and propensity for dynamic strain aging. Latter describes

the interaction of interstitial or substitute solutes in the crystal with pinned or relatively immobile dislocations. For

instance, provided time to diffuse, carbon can form so-called Cottrell atmospheres around dislocations hampering their

initial mobility. Furthermore, in highly-alloyed materials in particular, when the solubility limit of the host lattice is

exceeded inclusion formation, precipitation as well as grain boundary segregation [96] can occur.

Depending on the material, the fatigue mechanisms and thus the sites for crack initiation within the microstructure differ.

While in single-phase materials the PSB-matrix interfaces often pose favorable sites, in brittle and highly-alloyed materials

inclusions represent the critical elements. In this work, the focus is set on the initial stages of fatigue, covering slip band

formation, crack initiation, and the propagation of microcracks. For these stages, a comprehensive mechanistic understanding

is still lacking.

2.1.4 Damage modeling

In the past decades, a variety of damage models were developed focusing on different stages of fatigue. Moreover, different

approaches were developed, where analytical models were adopted in computational efforts [97]. Computational methods

that account for microstructure-defect interactions range from first principles simulations at the atomic length scale (e.g. to

model dislocation-GB interactions [98, 99] or cracking [100, 101]) over the defect scale (e.g., discrete dislocation dynamics

of double kink formation in bcc [102]) to phenomenological or physics-based crystal plasticity simulations to predict fatigue

damage and crack growth in polycrystals [103, 104]. Additionally, there are data-driven approaches emerging that attempt to

predict crack paths or the crack driving force [105, 106], however, are hampered by the lack of data.

In the following, analytical models to estimate crack initiation are introduced, which extend upon Basquin or Coffin-Manson

type relations by considering microstructural entities or resolved stresses.

Tanaka and Mura crack initiation model. The microstructure-based fatigue crack initiation model proposed by Tanaka

and Mura [107] predicts crack initiation life Ni in favorably-oriented surface grains and is based on irreversible motion and

pile-up of dislocation dipoles on two coupled parallel slip planes within planar slip bands. Each of the slip planes is assumed

to accommodate either forward or backward dislocation motion in an irreversible fashion. This model relies on the energy
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balance assumption, that crack initiation occurs once sufficient planar cyclic slip or stored strain energy is accumulated to

exceed the slip band fracture energy.

(∆τ −2k)N
1/2
i =

(

8µsWs

πd

)1/2

(2.6)

In this equation, ∆τ is the shear stress range on the slip system, and k is the corresponding friction stress that needs to be

overcome by a dislocation. The shear modulus µs, specific slip band fracture energy per unit area Ws, and the grain size

d complete the formulation. This model postulates an inverse relationship between the grain size of the critical grain and

crack initiation life. The degree of slip reversibility is not considered explicitly in this formulation. On the contrary, slip is

considered to be fully irreversible by utilizing a higher frictional stress for the slip plane responsible for reverse motion.

The parameter Ws can be used interchangeably with the specific grain boundary fracture energy per unit area WG if in-

tercrystalline crack initiation is the relevant mechanism. Subsequently, the model was adapted to incorporate crack initiation

at inclusions [108]. The dependence of friction stress on strain rates or temperature is not considered in these models.

Chan crack initiation model. Chan [109] expanded upon the crack initiation model proposed by Tanaka and Mura for crack

initiation at slip bands and inclusions. The objective was to include the crack length at nucleation into a closed-form crack

initiation model such that it can be linked with crack growth models. In order to achieve this, the Gibbs free-energy change

formulation for the nucleation of a fatigue crack from a double pile-up of dislocation dipoles according to Mura and Nakasone

[110] was employed.

(∆σ −2Mk)Nα
i =

(

8µ2
s M2

λπ(1−ν)

)1/2(
h

d

)

( c

d

)1/2

(2.7)

In contrast to the model of Tanaka and Mura, here the exponent α is generalized to the range 0 < α ≤ 1 and proposed to

be dependent on the stacking fault energy [111] and slip irreversibility. The parameter M represents the Taylor factor which

is the conversion factor between normal stresses and shear stresses in polycrystalline materials. Furthermore, the Poisson’s

ratio ν , slip band width h, surface crack length of a semi-circular crack c, and λ ≈ 0.005 [112] is employed. As a threshold

for the cyclic accumulation, the factor 2 ·M · k is used and in practice substituted by the fatigue limit of the material [109].

However, slip and crack initiation can occur below the macroscopic fatigue limit, which can rather be perceived as a limit

to crack growth. Both models are based on the notion of planar slip materials, where dislocation cell and PSB formation

are inhibited [109]. Therefore, its mechanistic validity in materials exhibiting multiple slip is debatable. Moreover, the grain

boundary character at which the parallel slip bands impinge is not considered.

While these works represented major advances, the analytical description of all microstructural and extrinsic influence factors

is a challenge that remained unsolved. Instead, models were gradually adopted in computational approaches to tackle the

extensive complexity.

Computational modeling. State-of-the-art in modeling of fatigue crack initiation in polycrystalline materials are computa-

tional methods such as the crystal plasticity finite element method (CPFEM). These approaches resolve externally imposed

loads on a microstructural level and are able to capture stress concentrations arising from elastic and plastic incompatibilities

between adjacent grains. While phenomenological crystal plasticity approaches utilize stress and strain tensors as state va-

riables, physics-based approaches consider dislocation densities. In order to estimate the vulnerability to fatigue, these state

variables are translated into so-called fatigue indicator parameters (FIPs) [97]. Among the most frequently used FIPs there

is the dissipated energy [113], and the Fatemi-Socie critical plane metric [114]. Recently, a so-called stored energy density

FIP was proposed and its potential demonstrated [19, 115]. This FIP is based on the idea that the portion ζ of the plastic

deformation energy per unit volume and per cycle U̇ =
∮

c σ : dε p, which is stored in dislocation structures (and not dissipated
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by heat) causes crack nucleation when accumulated over multiple cycles. It relates the stored energy portion per cycle to

a storage volume, which is computed by the reference area and it’s computed (or measured) statistically stored ρSSD and

geometrically necessary dislocation density ρGND [115].

Ġ =
U̇∆Vs

∆As

=
∮

c

ζ σ : dε p

√
ρSSD +ρGND

(2.8)

While this metric computes the stored energy density per cycle, it is multiplied by the number of cycles to measure it against

a critical value associated with crack nucleation. It predicted fatigue crack nucleation life in ferritic steel accurately and its

localization at inclusions correctly [19].

2.2 Characterization techniques

2.2.1 Electron backscatter diffraction

Electron backscatter diffraction (EBSD) is a characterization technique typically employed in a scanning electron microscope

(SEM) in order to gain knowledge on the so-called microtexture of a specimen. Microtexture involves spatially-resolved

crystallographic orientations from which grains can be reconstructed to estimate their shape, GB misorientations, and crystal-

lographic phase. Especially in the context of a fatigue study, such full-field information is crucial to infer microstructural

influence factors.

Electrons are accelerated as a high-energy incoherent beam towards the specimen which is tilted by typically 70° for a rather

small electron incidence angle. A schematic illustration of the typical setup used for EBSD is depicted in figure 2.5. The

high incidence angle results in a superficial electron interaction volume which renders the EBSD technique highly surface-

sensitive. Upon interacting with the specimen surface, electrons are diffracted. As a matter of fact, low miller index lattice

planes, for which the Bragg condition is fulfilled, are channeling the incident electrons partially. A phosphor screen collects

the impinging channeled electrons which form the so-called electron backscatter patterns (EBSPs). Imaging of the phosphor

screen with a sensitive camera results in image representations of the EBSP. During the EBSD measurement, the specimen

surface is sampled with a regular grid culminating in a distinct EBSP pattern at each grid position. These EBSPs are affected

by the grain orientation, the present allotrope, residual strain, local defect density, and surface condition. Latter dependency

results in the requirement of a highly polished specimen surface absent of deposited residuals. In practice, this prerequisite is

achieved by preceding an EBSD scan by electropolishing or chemo-mechanical polishing. Depending on the surface quality,

material, and present lattice distortions, a specific exposure time is prescribed which determines the time for which the

electron beam remains at each grid position.

In EBSPs there are straight bands present referred to as Kikuchi bands (see figure 2.5) which are related to the gnomonic

projection of the various lattice planes. The width of these bands is inversely-proportional to the lattice distance.

Based on these EBSPs, different image post-processing routines can be utilized to derive crystal orientation or further in-

formation. Typically, an edge detection algorithm followed by a Hough transformation is performed in order to localize the

bands and transform them into the Hough space [116]. A set of phases assumed to be contained in the material is prescribed.

During so-called indexing, dictionaries of these phases and their Hough peaks are matched with the experimentally derived

EBSP in Hough space to obtain orientation measurements. Typically this procedure achieves an absolute orientation error and

relative disorientation error down to 2° and 0.5°, respectively. Extending upon this approach, more elaborate techniques were

introduced. For instance, HR-EBSD [117] relying on cross-correlation functions between two adjacent EBSP were employed

to increase the orientation measurement accuracy and therefore enable the measurement of lattice rotations, elastic strains,
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Figure 2.5: Schematic EBSD setup and an EBSP.

and geometrically necessary dislocations (GND) densities. Moreover, convolutional neural networks operating on EBSP have

been employed to measure crystal orientations [118].

Consequently, a file is obtained which specifies three Euler angles in the Bunge convention φ1, Φ and φ2 defining the grain

orientation with respect to the specimen coordinate system at each sampled position in the scanning coordinate system.

Depending on the vendor further metrics, such as phase identifiers, an image quality metric (IQ), and a confidence index

(CI) are supplied. In [119], the capability of different image quality metrics to provide grain boundary, strain, phase, and

topography contrast is discussed. While each considered IQ metric resulted in distinct contrasts, an image quality metric

computed as the average Hough peak height showed the best description of strain and grain boundaries and hence is frequently

found in commercial systems. Therefore, the image quality metric can be perceived as a measure of EBSP band quality. The

confidence index quantifies the confidence in the selection of a specific orientation based on a voting scheme [120]. Since

for some materials containing substantial deformation and internal stresses poor pattern quality can be obtained, different

techniques such as neighbor pattern averaging schemes were introduced [121]. In these cases, prior to data analyses, another

post-processing step is often required to clean and reconstruct the data and grain structure. The highly quantitative data set can

then be analyzed to derive the macroscopic texture of a material, local orientation-related metrics, and various morphological

microstructure metrics. As an example, the EBSD map of a martensitic steel shown in figure 2.6 depicts the sample coordinate

system normal direction (ND) in the local crystal coordinate system in inverse pole figure color-coding.

Furthermore, in terms of phase distinction, phases with an identical or similar crystal structure are difficult to distinguish. This

applies amongst others to ferrite, martensite, and bainite phases commonly occurring in steels. The distribution of these phases

and the local morphology affects the crack initiation processes and thus is relevant information. Bainite is a phase mixture that

consists of ferrite and a phase exhibiting a high carbon concentration, the latter being either cementite or austenite. While the

distinction of ferrite and the retained or reverted austenite is state of the art due to the distinct crystal symmetry, it is not trivial

and part of ongoing research to differentiate between ferrite, martensite and bainite with EBSD. Approaches to differentiate

martensite and bainite from ferrite utilized grain average values of another EBSP quality parameter referred to as band

slope [122, 123]. Typically grains of bainite and in particular martensite display a smaller band slope due to the contained

lattice distortions. Nevertheless, since EBSP quality metrics additionally show a pronounced dependence of surface quality

and contamination the discrimination between phases based on quality metrics can be ambiguous. An alternate approach
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Figure 2.6: Exempary hierarchical microstructure of a martensitic steel. The pixel color in the map describes the orientation of the sample normal direction

in the measured crystal coordinate system of each pixel according to the depicted reference triangle. Therefore, each pixel in the map is derived

from a single EBSP.

proposed in [124] uses the kernel average misorientation (KAM) metric. This metric relies on orientation measurements

rather than on raw EBSP and describes the average of local disorientations between the center pixel and each surrounding

pixel contained in a kernel of size N ×N.

KAMi, j =
1

N2 −1
∑

(k,l)∈NN(i, j)

ω(gi, j,gk,l) (2.9)

Here NN(i, j) denotes the subset of neighbor pixels for the center pixel at position (i, j) and ω(gi, j,gk,l) the disorientation

between the center pixel and another pixel within the kernel. The KAM metric has been employed to characterize dislocation

structures within grains. In order to avoid that sub-grain boundaries, with their comparatively high disorientation, conceal

dislocation structures, typically an upper bound for the disorientation value is applied.

A metric that characterizes grain-level average disorientations is represented by the grain orientation spread (GOS). This

metric leverages the mean grain orientation gn by averaging the disorientation at each pixel contained in the grain with

respect to it ω(gn,gp).

GOSn =
1

Np

Np

∑
p=1

ω(gn,gp) (2.10)

The subscripts n and p are indices for the grain and pixel, respectively.

Since EBSD is a surface-sensitive technique, information such as the grain boundary orientation and the 3D grain shape

can not be derived unless serial sectioning is applied. Serial sectioning refers to the sequential removal of material which
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is combined with conventional EBSD measurements to sample along the third dimension. The removal is often induced by

(plasma) focused ion beam (FIB), laser ablation [125] or chemo-mechanical polishing [126].

2.3 Statistical methods and machine learning

Recently, machine learning (ML) and deep learning (DL) is being introduced to material science in order to solve various

problems as summarized in numerous surveys, e.g. [127–129]. Amongst others, problems approached by data-based approa-

ches comprise microstructure classification [130, 131], synthetic microstructure generation [132], steel phase segmentation

[133], crystallographic defect segmentation [134], crack detection [135], prediction of materials properties from atomistic

structures [136] or from microstructure [137–139], predicting mechanical load distribution [140] or crack paths [105, 141] in

polycrystals, and identifying relevant microstructural features for crack propagation [106].

ML algorithms attempt to learn representations from training data. The process of model optimization is referred to as trai-

ning. In research questions where complexity is pronounced and the knowledge is incomplete, ML approaches can outperform

knowledge-driven models in terms of achieved accuracy by large margins. For instance, deep learning variants superseded

rule-based computer vision (CV) models in many areas [142]. The reason for the superiority of ML in such scenarios lies in

their pronounced expressivity, i.e., the capability of describing highly nonlinear relations in high dimensional feature spaces

which facilitates taking account of even nuanced correlations.

In so-called supervised learning, a mapping between input variables X (features) and a supervisory signal Y (target variable)

is extracted from a training set of X-Y pair examples (instances) by applying dedicated algorithms. Aside from supervised

learning approaches, partially supervised methods (semi-supervised learning), unsupervised learning, and self-supervised

learning exist. These methods attempt to learn regularities and patterns in the data despite the (partial) absence of the super-

visory signal Y. This is motivated in the fact that target variables in many cases are difficult to obtain and sometimes require

extensive manual annotation efforts. Therefore, by avoiding the necessity of target variables, the available data is increased

severely. Self-supervised learning attempts to learn inherent regularities in the data through artificially constructed supervi-

sory signals from the data itself, so-called pretext tasks. For instance, predicting words that were removed from a sentence is

a classical pretext task in natural language processing (NLP) that facilitates learning a linguistic syntax. Models pre-trained

on such pretext tasks are subsequently fine-tuned in another subsequent training routine to a downstream task. The general

procedure of re-training a pre-trained network to benefit from the prior learning is commonly referred to as transfer learning

and was shown to increase model generalizability, accelerate convergence, and improve performance in case of low data avai-

lability for downstream task [143]. During the past decade, applying large annotated data sets such as ImageNet [144] has

become a standard procedure in pre-training. In contrast, fine-tuning of self-supervised pre-trained models was recently de-

monstrated to culminate superior NLP and CV downstream tasks performance in comparison to fine-tuning their supervised

counterparts or direct supervised learning on the downstream task [145–147]. This can be attributed to the access to substanti-

ally more training data in conjunction with appropriate model capacity [147], and the capability of extracting superior feature

representations from strong supervisory signals [146, 148].

As hinted at in the aforementioned materials science applications, there is a range of tasks that can be addressed through

machine learning approaches, including the following, to name a few.

• Regression: Prediction of a continuous quantity (from the set of real numbers), e.g. number of fatigue cycles to failure.

• Clustering: Clustering of data instances in an unsupervised fashion depending on specific distance metrics.

• Classification: Prediction of the semantic category of each data instance X. Special cases include binary and multi-class

classification.

• Segmentation: Assignment of a semantic category to each pixel in an image. Special cases include binary, semantic,

instance and panoptic segmentation.
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• Detection: Object detection refers to the task of locating objects of defined semantic categories in images or higher

order tensors by retrieving their bounding boxes.

The models applied to address these tasks differ strongly in their complexity (i.e., model capacity) and thus interpretability

[149]. There are models such as linear regression or decision trees which offer algorithmic transparency, comparatively high

degree of decomposability and even simulatability for smaller variants [150]. The latter two notions refer to the comprehen-

sibility of individual model parts (e.g. nodes in a decision tree) and the whole model, respectively. In contrast so-called deep

learning (DL) methods, which represent a sub-class of ML, are often characterized by their high expressivity at the expense of

poor interpretability and are therefore commonly referred to as black-box models. However, there are some fairly translucent

[151] approaches to analyze DL methods’ internal operating principle to achieve decomposability such as GradCAM [152]

or NetDissect [153]. As the name implies, deep learning methods such as multi-layer perceptrons (MLP) and convolutional

neural networks (CNN) often exhibit high network depth, i.e. apply a series of transformations to the data, see section 2.3.4.

In the past two decades, a manifold of highly specialized DL network architectures was tailored to address specific tasks

[154]. The network size, training approach, and problem complexity dictate the amount of necessary training data. Common

applications of DL methods comprise classification, detection, and semantic segmentation.

Aside from model interpretability, there are two major remaining technological challenges impeding the increased utilization

of deep learning in the material science field:

• Limited data-efficiency: Human cognition permits learning new concepts through the observation of a few examples.

Deep learning models, in contrast, require a vast amount of instances [25]. The limited data efficiency adversely affects

domains such as materials science in particular owing to the expense associated with acquiring and annotating data.

This challenge is amplified by the inherent imbalance of some problems. For instance, as a consequence of fatigue

with low loading amplitudes, the plasticity onset is exceeded only in a few grain ensembles culminating in a scarcity

of damage instances. The limitation in data efficiency has led to the emerging research field of few-shot learning.

Moreover, aforementioned transfer learning concepts in ML [155] and DL [156] alleviate this problem to some extent.

• Poor generalization capability: Another critical drawback of supervised learning techniques is their limited transfe-

rability to alternate domains, i.e. to achieve acceptable performance on out-of-distribution instances [25–27, 150]. An

example brought up frequently in this context is the failure of CNNs to detect mammals out of their usual habitat (e.g.

cow on a beach) [25]. This problem is associated with so-called spurious correlations that the network learns (grass

−→ cow). Analogously, this raises the question of whether a classifier trained to detect martensite in dual-phase steel

can discern martensite from other phases in complex-phase steels. However, annotating the same entities in distinct

environments is infeasible considering the variety of materials that exist. Within the broad concept of transfer learning,

there are transductive approaches [156] which specialize in transferring between data domains despite the unavailability

of target domain annotations. This sub-field is referred to as domain adaptation [157].

In the work at hand, both ML and DL are applied for four tasks. While addressing these tasks, emphasis is put on tackling the

aforementioned challenges. The data set creation for most of these tasks is a central aspect of this work.

1. Semantic segmentation of fatigue damage, namely protrusions and cracks, in secondary electron SEM images of single-

phase steel. Therefore, a CNN architecture, designed for dense prediction tasks called U-Net was trained in a supervised

fashion.

2. Identification of relevant microstructural and micromechanical features affecting the localization of fatigue damage

nucleation. Since the objective lies in extracting relations within the data, conventional ML with lower model comple-

xity and increased interpretability such as decision trees are suited particularly. Decision tree algorithms have internal

feature importance metrics and allow for analyzing the interdependence of features in a multivariate feature space by

analyzing the structure of the learned tree, see sections 2.3.1 and 2.3.2.
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3. Prediction of damage sites within the microstructure given a microtexture and load distribution. Therefore, the balanced

random forest algorithm which extends upon the decision tree algorithm is used. Similar approaches were previously

used by [137, 138] to predict twinning events and by [139] to predict stress hotspots in crystallites.

2.3.1 Decision tree algorithm for classification

A decision tree is a learning concept that takes data in a tabular setting. Data instances are arranged in rows while features as

well as the respective labels (target variable) constitute columns. The features span an M-dimensional orthonormal basis and

can either be of categorical or continuous data type. Depending on whether the target variable Y is categorical or continuous,

the tree can be distinguished into classification and regression type. During training, the decision tree picks some of the M

features and performs orthogonal splits in the feature space in order to optimize the information gain. Thereby, the algorithm

classifies the data in different groups and a decision tree is constructed. Figure 2.7 depicts a schematic decision tree.

X

n0

true false

feature vector

root node

Y

node

branch and condition
X2 > X2,t

leaf nodes

Figure 2.7: Schematic decision tree composed of nodes, branches, and leaf nodes. Depending on how the branching conditions are met, the instance of a

feature vector can result in different leaf nodes.

A decision tree consists of a root, nodes, branches, and leaves. The root is the node, where the first decision (split) takes place.

In figure 2.7, when feature two X2 of an instance exceeds the threshold value for feature two X2,t , the instance is passed to the

left branch. During the training procedure, the algorithm decides on which feature and which respective threshold to split at

each node. Thus, nodes are junctions present in the decision tree, at which the instances are separated into different groups

(branches) depending on whether the branching condition is met or not. The terminating nodes, after which no branching

occurs, are denoted as leaf nodes. The algorithm is recursive since the branching conditions need to be set for every node

except the leaf node. In the case of binary classification, the outcome at each leaf could be true or false. If a certain feature for

splitting appears close to the root node and/or is used frequently, it indicates substantial relevance of that feature with regard

to the target variable.

There are two widely used algorithms for decision trees called Gini-Index and ID5. In the latter case, the decision, of which

features and conditions to utilize for the data splits, happens by information gain maximization. Therefore, the Shannon

entropy

H(Y ) = ∑
c∈CY

−p(c) · log2 p(c) (2.11)
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is considered with c, CY , and p(c) denoting a class, a set of classes in Y , and the probability of that class to occur in the label,

respectively. The entropy is a measure of the impurity of a label and amounts to unity if the possible classes in it (e.g., true

and false) are distributed evenly and zero if there is no variance in the label. The conditional entropy

H(Y | Xi) = ∑
c∈CX

−p(Y |c) ·H(Y | Xi|c) (2.12)

is computed for every feature Xi in the data set and every split on feature Xi. Here, H(Y | Xi|c) indicates the post-split entropy

and CX the classes after a split. In the case of continuous feature data types, typically midpoints between the ranked features’

numeric values are evaluated as split candidates in equation 2.12 to determine the ideal splitting threshold.

In order to compute the information gain, also referred to as Kullback-Leibler divergence DD(Y ‖ Xi), characteristic for the

feature, the entropy of the labels H(Y ) before the split is subtracted by the conditional entropy H(Y | Xi) for each feature and

split on it.

DD(Y ‖ Xi) = H(Y )−H(Y | Xi) (2.13)

The Kullback-Leibler divergence is a measure of mutual information between the target variable Y and a feature Xi and

measures the distance between two density distributions [158]. The boundary at which the feature is separated is the one at

which the information gain is maximal. The whole procedure is performed recursively to define multiple branching conditions.

By default, decision trees are rather prone to so-called overfitting. Overfitting describes the state when a model learns features

in the data that are specific to the training data set (e.g., noise characteristics) and hence is unable to generalize to other data

sets. This problem is often associated with models that have too high expressivity with respect to task complexity and data

quantity. Different strategies for preventing overfitting are available. In decision trees, hyperparameters such as the maximum

tree depth, the minimum required data instances for a node split, and the number of leaf nodes can be specified. Moreover,

there are pruning methods in which certain branches, which are based on features having a low impact on the prediction, are

discarded.

Apart from pruning, different concepts have been proposed utilizing ensembles of decision trees to achieve better performance

and generalization, eventually resulting in the random forest algorithm.

2.3.2 Random forest algorithm

Ensemble learning methods rely on the concept, that by unifying many weak learners, a good predictive performance can be

achieved [159]. Based on this, in [160], an algorithm named AdaBoost was introduced, relying on the concept of boosting.

However, the random forest algorithm as it is utilized in most implementations exploits a slightly different concept. As the

name implies, the random forest algorithm [161] aggregates predictions of multiple decision trees (ensembles), see figure

2.8. Rather than constructing a multitude of decision trees on the complete data, subsets of the data are used to grow weak

classifiers. Namely, features and instances are randomly sampled with replacement (bootstrap samples) and provided to

each decision tree, which is the other reason for the designation random forest. The combined principle of aggregating the

predictions of weak classifiers, which were trained with random data subsets, is denoted as bootstrap aggregating (bagging).

Random forest models typically surpass decision trees in terms of prediction accuracy for data sets, where the number of

instances exceeds a few hundred [162]. Furthermore, bagging mitigates the issue of overfitting. In the case of classification

forests, a majority vote of all trees is performed. On the other hand, regression forest models average the values obtained by

the individual trees to predict continuous variables.

In the case of M total features, m features with m ≪ M are sampled at each node, and the best split among them is computed.

The value of m is constant for all nodes in every tree. Contrary to individual decision trees, the trees within a random forest

are grown deeper and their pruning is omitted.
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Figure 2.8: Schematic random forest composed of multiple decision trees fed with subsets of the data.

Models have been developed that are capable of handling imbalanced data sets, where the classes among labels are distributed

unevenly [163]. This is required since typical classifiers achieve substantially higher accuracy on the majority compared to

the minority class [164]. This skewed behavior can be attributed to the characteristic of classification algorithms to minimize

the overall error rate. Therefore, there is demand for algorithms that put emphasis on the minority class, because they are

frequently of high importance (e.g., rare instances of diseases or scarce microstructure-scale fracture in materials fatigue).

Common approaches to tackle this issue comprise artificially balancing the data set by over-/ under-sampling the minori-

ty/majority class or applying increased class weights to minority class instances to take them into consideration more during

training. For instance, the SMOTE algorithm, inspired by data augmentation techniques, oversamples the minority class by

synthesizing minority instances [164]. A random forest incorporating the aforementioned balancing concepts was proposed

in [165]. An implementation thereof is provided by the imbalanced learn python package [166], where under-sampling of the

majority class for each bootstrap sample is performed and optional class weights can be applied.

For model training, the available data is split into training, validation, and test subsets. The validation set facilitates monitoring

the model performance during training on unseen instances and can give indications of overfitting (e.g. through an increase in

the validation loss). The test set is necessary since the validation set is used during model optimization and hyperparameter

tuning. When data scarcity and pronounced imbalance play a role, drawing conclusions from ablation studies is hampered. A

commonly applied practice when training models is so-called k-fold cross-validation. The complete data set is sampled into

k partitions out of which k training and test sets are constructed. This allows investigation of the influence of sampling when

training the model to recognize selection bias. Stratified k-fold cross-validation attempts to sample the data such that each

partition contains equal class label distribution.

2.3.3 Feature importance and feature selection

Aside from data curation, feature engineering and feature selection are the initial steps in designing a machine learning

model. Feature engineering describes the process of deriving features using existing domain knowledge or hypotheses to

facilitate a more descriptive feature space. This step is often followed by a feature selection step which serves the purpose

of obtaining a feature subset with the highest relevance and lowest redundancy (avoiding correlated variables) regarding

a target variable. It attempts to avoid unnecessary model complexity by discarding irrelevant features, which ultimately

increases model interpretability and prevents overfitting. While their objective is similar, so-called dimensionality reduction

techniques, in contrast, to feature selection approaches, transform the data into a lower dimensional space. For instance, in
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principal component analysis (PCA), a multivariate feature space and the variance therein are expressed efficiently by an

orthonormal basis with lower dimensionality than the original feature space. However, criticism posed to these techniques is

that the projections into the principal component space hamper physical interpretability [167]. Moreover, importance metrics

exist that aim to deduce an insight into data or the model relations.

2.3.3.1 Tree-based feature importance measures

Many commonly used decision tree or random forest implementations contain embedded feature importance measures, which

are summarized in [168]. For instance, the mean decrease in impurity (MDI) is frequently utilized [169, 170]. For calculating

the MDI of a certain feature, every node where the feature is used for a split is assessed. For each of these nodes, the product of

the sample fraction reaching the node with the impurity decrease at that node is computed. Finally, the sum of these products

represents the MDI for that feature. In case of tree ensemble models, the MDI is either averaged or cumulated over all trees

depending on the implementation.

Another feature importance metric incorporated in tree-based models is referred to as permutation accuracy or mean decrease

in accuracy (MDA) importance [169]. As the names imply, this measure relies on random permutations of single features

X j, such that its relation to the target variable Y is nullified. When this permuted feature along with the other unpermuted

features are used for prediction, a reduction in prediction accuracy representing the MDA is expected, depending on the prior

correlation of X j and Y. In contrast to the MDI, the MDA measure is typically less biased towards features exhibiting a

pronounced cardinality. Another advantage over the MDI is, that the MDA is typically evaluated on the test set rather than

during training. However, the MDA measure was shown to overestimate the importance of correlated input variables [171].

2.3.3.2 Feature selection methods

This section aims to provide a brief overview of different feature selection techniques. These techniques attempt to identify

the smallest feature subset in the data set that contains relevant information with respect to the target variable, i.e. the active

predictors, before model selection and training. The appropriate selection method depends on the number of features, their

types, correlations in the data set, noise levels as well as the number of instances [172]. All subsequently mentioned fea-

ture selection methods struggle when complicated, non-linear functional dependencies exist and combinations of variables

are particularly relevant. In this regard, the aforementioned tree-based feature importance metrics are typically better suited.

Since the following heuristic feature selection algorithms were designed to identify relevant features for comparatively less

expressive model types such as linear regression, caution is required to avoid the exclusion of relevant features when combi-

ning them with stronger models that can extract intricate relations in the data. When feature selection is to be performed in

advance, especially for intricate tasks, reviewing and adjusting selected feature subsets based on domain knowledge is crucial.

In the first instance, frequently, a metric denoted as Pearson correlation coefficient is utilized. It poses means to quantify

how linear the correlation between a variable Xi and Y is. The Pearson correlation coefficient is computed by dividing the

covariance between both variables by the product of their standard deviations. It ranges from negative to positive unity, the

boundaries representing either positive or negative perfect linear correlation, respectively. Another common feature selection

tool is the least-angle regression (LARS) algorithm. This iterative algorithm determines coefficients to all features in order to

compute a linear combination of features that is descriptive of the target variable [173]. These coefficients give an indication

of which variable or feature to include into the model. Initially, the algorithm identifies the feature variable X1 which exhibits

the strongest correlation with respect to the target variable Y and adjusts its coefficient β1 while keeping track of the residual

r =Y −Ŷ where Ŷ = β1 ·X1. As soon as the residual is correlated with another feature as much as with the initial feature, both

of their coefficients are tuned jointly. This procedure is repeated until all features are considered. While the LARS algorithm

is computationally efficient, there are drawbacks when dealing with data sets containing noise or outliers [174] owing to the

iterative minimization of the residual. It is argued that the LARS algorithm is less aggressive than other forward selection

approaches when it comes to discarding somewhat correlated features that contain useful information [173]. However, this
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can lead to the inclusion of highly correlated features [175]. The so-called Lasso algorithm [172] differs from LARS in

that regularization of the covariate coefficients is performed by setting the condition that the sum of absolute values of all

regression coefficients (i.e. their L1 norm) is less than a predefined constant. This effectively leads to the suppression of

unimportant covariates by setting their coefficients to zero. However, this limits the number of selectable features (limited to

the number of data instances) [176]. The choice of the regularization parameter and the data set size can affect the robustness

i.e. consistency of selected feature sets. Feature grouping information is not respected by any of the aforementioned feature

selection techniques which poses an issue when considering grouped variables such as genes or crystallographic orientation

representations. Different extensions have been proposed to tackle these shortcomings [176, 177]. Another extension of Lasso

is the so-called FeaLect algorithm [178]. FeaLect applies the Lasso algorithm multiple times on bootstrap samples of the data

set. Then a score is computed for each feature that indicates the frequency of how often Lasso incorporates a feature in

the relevant subset. This scoring approach differs from [177] where features are required to occur in all bootstrap runs to be

considered relevant. Moreover, in contrast to Bolasso [177], Fealect takes the whole regularization path into account. Different

empirical studies on real, i.e., non-simulated data sets, indicate the superiority of FeaLect for feature selection [178], amongst

others, a study on stress hotspot classification in microstructures [179].

2.3.4 Deep learning

In contrast to previously discussed conventional machine learning approaches, which typically require manual feature engi-

neering, a sub-domain of ML referred to as deep learning (DL) is used for representation learning. Here, feature extraction is

performed automatically by the algorithm, rather than by the user. Images share comparatively more commonalities (edges or

corners are present irrespective of the task) than data sets with highly specific feature vectors. This fact is frequently exploited

in transfer learning which finds use in DL particularly. The efficient feature extraction in DL is enabled through the interplay

of the key concepts — loss functions, backpropagation, and optimizers, which will be addressed subsequently. Therefore, for

example, by supplying examples of input and desired output data to a network in a supervised learning setting, it can learn to

put emphasis on certain features while discarding others. Furthermore, these DL methods are prevalent in image or higher-

order tensor processing, rather than in tabular numerical and categorical data. The tasks that are commonly tackled with deep

learning range from classification over detection to segmentation. Challenges such as object detection in autonomous driving

and segmentation of carcinoma in magnetic resonance images rank among the most confronted ones.

Generally, the instances where DL has been applied to material scientific problems and particularly mechanics of materials

or fatigue-related challenges are comparatively sparse. In the context of this work, DL has amongst others been utilized to

achieve automatic fatigue damage semantic segmentation from scanning electron microscopy images. Semantic segmentation

represents a dense prediction task and, in the context of images, describes the assignment of a class label to every pixel. While

there are classical rule-based computer vision techniques to perform this task, recent DL models perform substantially better

in challenging scenarios where pixel intensities are not sufficient to discern classes. Hence, in the following, the focus is

placed on DL fundamentals and concepts that enable accurate segmentation from images. A typical DL workflow includes

data acquisition, systematic labeling, model selection, data pre-processing, data augmentation, training, and model evaluation.

2.3.4.1 Semantic segmentation

With the advent of data-driven techniques, neural networks called multilayer perceptrons (MLP) were utilized for segmenta-

tion tasks. These MLPs rely on serial connections of building blocks referred to as layers which are in turn composed of

multiple so-called perceptrons. Perceptrons map their inputs to an output by computing a weighted sum with its internal

weights and its bias. Typically, these feedforward neural networks are fully connected, which means perceptrons of a specific

layer are linked to each perceptron of the prior and subsequent layer in the network. This along with so-called activation func-

tions permits these models to approximate non-linear relations in the data. However, with the introduction of convolutional

neural networks (CNNs), MLPs were superseded in the field of image processing. This can be attributed to two characteristics

of CNNs.
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• Memory and training time efficiency: The analogy to a neural network’s perceptrons in CNNs are convolution ope-

rations between the input and convolution kernels. Since the comparatively small convolution kernels are slid across

the whole input, the weights, now part of the convolution kernel, are shared. The shared weights result in a pronounced

memory and training time efficiency as fewer weights need to be optimized. Therefore, during CNN training, multiple

images (batch size) can be passed to the network simultaneously. Especially as image sizes increase, the amount of

parameters to optimize in fully connected perceptron architectures increases rapidly — the fully-connected networks

do not scale well with input size.

• Invariance to image transformations: Since in CNNs, the same kernels are applied iteratively to all regions of an

image, an invariance to translations and other image transformations is attained. This represents an inductive bias

introduced by the convolution operation. Such models are referred to as being spatial-agnostic and channel-specific

(i.e., each channel in the input to a convolution is treated distinctly) [180].

In the following, the key concepts of convolutional neural networks and CNN semantic segmentation models are introduced.

Convolutional layers: The name CNN implies that convolutional layers are fundamental to the functionality of these net-

works. These layers allow the extraction of features such as edges or corners from the input images and at later stages of

the network the identification of relevant structures in the intermediate tensors. Each convolutional layer includes multiple

convolution filters. The size of these filters is a fundamental hyperparameter of a CNN affecting to which extent contextual

information is considered at each layer. In figure 2.9a the operation is illustrated.

Figure 2.9: Schematic description of a) Convolution operation and b) Max pooling operation

In a convolutional layer, multiple convolution kernels (filters) are swept across the whole image. A hyperparameter referred

to as stride indicates how large the pixel step size is at which the filter is moved. This parameter directly affects the feature

resolution. The computation of each element in the output volume during the convolution process amounts to the Frobenius

inner product of the filter with the region of the input which is swept plus a bias term, see figure 2.9a. When a 3×3 filter is

applied to an input image, the lateral dimensions of the output volume are reduced relative to the input. This can be ascribed to

the missing information when the center of the filter is applied to the border of the input. Frequently, this problem is alleviated

by applying padding. Padding describes the artificial expansion of the input through repetition of the border value, appending

a constant value, or mirroring boundary regions. Each filter F1 – FX is applied across the whole channel dimension of the
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input tensor. Hence, the extent of the channel dimension in the output feature volume is determined solely by the number of

filters in the convolutional layer.

Different types of convolution operations were introduced in literature including atrous convolutions [181] and separable

convolutions [182]. Atrous convolutions utilize an additional hyperparameter, the dilation rate which spreads the filter to a

wider range while maintaining the number of trainable parameters. This spreading results in gaps in the filters. In particular,

segmentation tasks can benefit from replacing conventional convolutions through atrous convolutions as shown in [183].

Networks are able to produce denser feature maps when pooling steps are discarded and atrous convolutions are employed

to compensate for the loss in the receptive field. In order to receive contextual information on multiple scales, multiple

atrous convolutions with different dilation rates are applied to achieve an improved segmentation performance. Separable

convolutions are interesting when mobile applications where efficiency plays a significant role are concerned. For a more

comprehensive description and visualization of convolution operations, it is referred to [184].

Activation functions: Activation functions are utilized subsequently to convolutions in order to enable describing complex

relationships better by introducing non-linearity into the network. Typically, activation functions map elements in the feature

tensor to an output element-wise. Arguably, the most commonly used activation function is the Rectified Linear Unit (ReLU)

[185], which shows beneficial characteristics compared to hyperbolic tangent or sigmoid activation functions. A common

problem, which is encountered when training a deep CNN with latter activation functions, is the vanishing gradient problem.

This problem describes the vanishing of error gradients during the training stage leading to diminishing weight updates and

therefore slow training. It applies in particular to the initial layers as these activation functions are bound to a range between 0

and 1 successively decreasing the update rates when propagating backward. On the other hand, ReLu mimics the behavior of

cortical neurons as these are typically not saturated as pointed out by Glorot et al. [186]. The absence of an upper saturation

and of a limitation in terms of the range of values results in ReLu being comparatively less prone to the vanishing gradient

problem. Aside from these reasons, training with the ReLU activation is computationally efficient and leads to a sparse

activation output resembling the behavior of the human brain. This gives the network robustness against noise [186].

Batch normalization: The batch normalization operation was introduced comparatively recently in [187] to accelerate the

training process. The fact that model parameters in each layer are updated simultaneously during training and their adjust-

ments are interdependent impedes the efficient computation of an optimal model state. This manifests in discontinuities and

flat regions present in loss functions [188]. Batch normalization renders the inputs to each activation function more stable

by normalizing the input distribution. When batch normalization is not applied, input distributions evolve together with prior

layer parameters in the course of training. This change in the input distribution of the network activations is referred to as

internal covariate shift and its reduction was considered the reason for the undeniable effectiveness of batch normalization.

However, a recent study [189] suggests that the impact of batch normalization can be ascribed to a smoothing effect on the

loss function and gradient of the loss function. Through batch normalization, the vanishing gradient problem is circumvented

since the likelihood of an activation to remain saturated is reduced, resulting in comparatively faster learning. In practice,

batch normalization facilitates the acceleration of the training process by allowing for higher learning rates. The original

implementation [187] utilizes the statistics of mini-batches to compute the mean and variance for each feature channel.

Consider a four-dimensional feature tensor where the dimensions i, j, k, and l represent the batch B, spatial X, spatial Y, and

channel C dimensions, respectively. Such a feature tensor exhibits the size [NB, NX , NY , NC] and is the output of an arbitrary

convolution layer. The computation of the mean µ and variance σ2 is performed along all dimensions except the channel

dimension. Therefore, this operation results in a one-dimensional vector with extent [NC] for the mean µ , variance σ2 as well

as for the learnable shift β and scale γ parameters. In equations 2.14–2.17, x
(l)
i, j,k represent an element of the feature tensor at

position i, j, k and (static) l. Hence, this set of computations is performed for each channel in NC.
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x̂
(l)
i, j,k =

x
(l)
i, j,k −µ(l)

√

σ2,(l)+ ε
(2.16)

y
(l)
i, j,k = γ(l) · x̂(l)i, j,k +β (l) (2.17)

The shift and scale parameters β and γ per channel fulfill the purpose of driving the output distributions y
(l)
i, j,k into the

saturation range of the activation function for specific channels, whenever beneficial for the learning process. Further, batch

normalization introduces robustness to different learning rates and parameter initialization [187]. There are several derivatives

of batch normalization in literature including layer [190] or instance [191] normalization.

Pooling layers: In order to keep the network size and thus computational expenses maintainable despite introducing many

feature channels in the convolution step, a non-learnable pooling operation can be utilized. Additionally, these layers help

to generalize and to attain the translation invariance [185]. There are different types of pooling layers that are commonly

utilized in CNNs. In comparison to average pooling, max pooling has been shown to improve performance and result in faster

training convergence [192]. Therefore, the max pooling operation depicted in figure 2.9b is applied most commonly. This

operation downsamples the feature map in the spatial dimensions (applied equally to all channels without downsampling

the channel dimension). In the illustration, the omnipresent 2× 2 max pooling is shown. Generally, the pooled regions are

directly adjoining without any overlap. The maximum value from within each region is considered in the output in order to

preserve characteristic edges and textures in the image. The concept of the receptive field describes the input image region

that is considered at a specific layer. The extent of image context taken into consideration is significantly affected by the

architecture. In particular, the amount of repeated consecutive convolution and max pooling operations in CNN architectures

affects it distinctly. Therefore, pooling operations help the network to take image features at different scales into account.

However, the contents inside the receptive field are typically not taken into account equally but the emphasis is placed on the

center of the receptive field. In literature, this concept was referred to as an effective receptive field [193].

Upsampling layers: In segmentation models, upsampling layers are frequently utilized after multiple convolutions and poo-

ling stages to achieve dense predictions by retrieving the spatial resolution of the input image. A summary of different upsam-

pling strategies can be found in [194]. Here, it can be observed that for the segmentation task no substantial differences arise

from the choice of the upsampling strategy. The most commonly utilized upsampling operation is the transposed convolution.

As opposed to other upsampling strategies such as image interpolation [195], transposed convolution is a learnable operation.

Rather than performing an element-wise multiplication between the kernel and input region as in convolutional layers. Each

element of the input is multiplied with all kernel elements (learnable), which results in multiple matrices. The positions and

connectivity of the inputs are preserved when positioning the matrices in the output. Subsequently, potentially overlapping

regions of the matrices are summed which can result in checkerboard patterns in the spatial coordinates of the feature space

[196] depending on the stride and kernel size hyperparameters. Similar to the pooling operation, the upsampling operation

layer does not affect the channel dimension but operates on all channels. So-called skip connections are a common tool used

in dense prediction tasks to recover the spatial resolution after the successive compression through max-pooling operations.

Such skip connections essentially bypass larger portions of the network to concatenate largely unprocessed feature volumes

where spatial information is unperturbed with reconstructed ones [197].

Loss functions: The loss function is computed in the course of model training in order to evaluate the difference between

the prediction probability distribution and the supplied ground truth segmentation. For segmentation problems, frequently

the pixel-wise cross-entropy loss [198] LCE has been employed whose definition matches equation 2.11. In segmentation
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problems, however, this operation is computed and averaged over each pixel. This implies equal weighting for all pixels. In

some cases, a pixel or class weighting scheme can be of interest. For instance, when a pronounced class imbalance occurs

where the foreground class constitutes only a small portion of the image. The imbalance is accompanied by the issue that

the typically dominant negatives do contribute to learning only to a small extent. Furthermore, despite the diminishing loss

contribution from straight-forward negative pixels, the sheer mass can distract the model from learning based on the positive

and difficult negative samples. Therefore, different approaches have been proposed to tackle the imbalance problem including

weighting each class channel in the output distinctly [199].

Furthermore, focal loss [200] extends upon the weighted cross-entropy loss by introducing a modulating factor (1− pt)
γ .

It is described by the authors as a "dynamically scaled cross-entropy loss", which puts emphasis on difficult samples while

reducing the impact of simple instances.

LFL =−αt(1− pt)
γ log2 pt (2.18)

Here αt ∈ [0,1] describes a weighting factor to address the class imbalance and the focusing parameter γt ≥ 0 a weighting

factor describing how much emphasis is put on difficult examples compared to trivial examples. However, the standard

implementation of the focal loss does not address the need for multiple α values in the case of semantic segmentation where

multiple foreground classes contain relative imbalance to each other.

Another question concerning loss functions is pixel-based loss weighting for accentuating image proximity-related weighting.

In [197] the problem of close foreground objects separated by a small gap was tackled by applying higher pixel weighting

at the border pixels. To be precise, pixel weights were sampled from a Gaussian distribution where the independent variable

was the sum of the euclidean distances between a specific pixel and the closest two foreground object borders.

Backpropagation: An indispensable contribution to the functionality of neural networks is made by backpropagation as

it enables the iterative optimization of network parameters. Similar to the loss function, it is rather a methodology than a

core part of the network architecture. It utilizes the computed loss and propagates the error gradients backward by applying

the chain rule to compute partial derivatives with respect to the trainable network parameters in all layers. Obviously, this

necessitates that every operation implemented by the network architecture is differentiable. On the basis of the computed

partial derivatives, an optimizer tweaks the trainable parameters and optionally hyperparameters such as the learning rate in

the multidimensional optimization space to reduce the loss. The learning rate is a parameter that specifies to which extent the

parameters in the network are adjusted in each iteration. In practice, the gradient descent and more elaborate approaches such

as the Adam algorithm [201] are used as optimizers. The Adam optimizer is a stochastic optimizer, which relies on first-order

derivatives. During learning, learning rates for specific parameters are adapted by consulting the first moments (mean) and

second moments (uncentered variance) of their corresponding derivatives. It was devised to be applicable to sparse gradients,

to have update rates that are invariant to gradient rescaling, and to perform step size annealing intrinsically [201]. In different

empirical studies, its effectiveness as compared to other optimizers was demonstrated [202].

2.3.4.2 Network architectures

From this building blocks, many sophisticated architectures were devised in literature, including U-Net [197], 3D U-Net

[203], DeepLab [204], or fully-convolutional DenseNets [205], to name a few. The architectural decision depends on the

complexity of the task, computational capabilities, quantity of data, its annotation type, and data characteristics. An example

of the latter is the distribution of features within the image, which affects the decision of whether the architecture requires a

larger receptive field. In order to address this, Yu and Koltun developed a backbone with dilated convolutions [206]. However,

the concept of fully-convolutional networks and the convolution operation specifically involves an inductive bias and hence

constraints the achievable performance. Namely, the assumption that only the vicinity of each pixel contributes to the decisi-

on of assigning a specific class to a pixel might not be justified for every dense task. Recently, architectures that reduce the
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inductive bias have shifted into the focus of research. These include transformer-based models which rely on so-called atten-

tion heads and were introduced in natural language processing initially. Such networks can potentially consider wide-range

features, while also applying its weighting dynamically rather than the static weights in convolution kernels [207, 208].

2.3.5 Performance metrics

The selection of appropriate performance metrics is central for evaluating models and prevents drawing incorrect conclusi-

ons. Depending on the task and data properties, different metrics are advised. While dense prediction tasks for images have

dedicated metrics such as intersection over union or average precision for semantic and instance segmentation, respectively,

classification models often are assessed using accuracy, F1 score, or the area under the receiver operator characteristic cur-

ve (ROC-AUC). Most classification metrics are based on the so-called confusion matrix. The confusion matrix relates the

classifier predictions (columns) with the actual labels (rows) for all instances, see table 2.1.

Table 2.1: A schematic structure of a confusion matrix for binary classification.

Prediction

Positive Negative

Actual
Positive TP FP

Negative FN TN

Here, TP, TN, FP, and FN are the amount of true positive, true negative, false positive, and false negative classified instances,

respectively. In multi-class scenarios, the confusion matrix expands according to the number of classes present. There is a

multitude of derived metrics that attempt to measure specific properties of the classifier or its performance as a whole. For

instance, the sensitivity or true positive rate (T PR) expresses the proportion of correctly predicted positives among all actual

positives. Similarly, the false positive rate (FPR) is defined as the ratio of the falsely positive predicted samples to all actual

negative samples. Their mathematical definitions are provided along with those of a few more relevant metrics in Table 2.2.

Table 2.2: Different relevant evaluation metrics based on the confusion matrix.

True positive rate False positive rate Precision

T PR =
T P

T P+FN
(2.19) FPR =

FP

FP+T N
(2.20) PPV =

T P

T P+FP
(2.21)

F1 score Accuracy Intersection over union (IoU)

F1 = 2 · T PR ·PPV

T PR+PPV
(2.22) Acc =

T P+T N

T P+T N +FP+FN
(2.23) IoU =

T P

T P+FP+FN
(2.24)

All metrics are defined in the range from zero to unity (or 0–100%), where the upper bound corresponds to an ideal model

prediction. The accuracy and IoU metrics are used in this work to evaluate image segmentation models. While the accuracy

metric measures the correctly predicted pixel percentage, the IoU measures the ratio between the intersection and union of

predicted and labeled pixel areas. The accuracy metric suffers from limited sensitivity in case of notable class imbalance

when the negative class is stronger represented. Note that T N occurs in additive terms in the nominator and denominator of

Equation 2.23. Nevertheless, due to its intuitiveness, it is provided in this work whenever appropriate. In contrast, the IoU

captures the model differences more adequately for data sets skewed towards the negative class, which is why we focus on it

for the comparison between the individual models. In the case of semantic segmentation where multiple foreground classes
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are supposed to be distinguished from the background and each other, the IoU is evaluated for each foreground class and

background distinctly and subsequently averaged. For non-dense classification tasks, and in the presence of data imbalance,

G-mean, weighted accuracy, and the F1 score are often employed [209].

Many classifier models provide probabilities or their unnormalized variants, i.e., logits as their output. The decision threshold

in such cases needs to be selected optimally and affects the confusion matrix. One way of selecting a favorable decision

threshold is to evaluate the so-called receiver operator characteristic (ROC). It represents the true positive rate (TPR) plotted

against the false positive rate (FPR) for varying decision thresholds. An exemplary ROC curve is illustrated in figure 2.10.

Figure 2.10: A schematic receiver operator characteristic plot with different depicted scenarios.

The angle bisector of the ROC plot, represents no expressivity of the model with respect to the target variable, i.e., an entirely

random model (dashed line in figure 2.10). An ideal ROC curve would be a step function. Typically, real models exhibit

an intermediate ROC curve progression. An ideal decision threshold would then coincide with the point where the distance

to the random model is maximal. The area under the curve (ROC-AUC) is a measure of model performance as it describes

separatability between two or multiple classes. As the name implies it computes the integral under the ROC curve. It is an

aggregate metric that takes all decision thresholds into account and indicates the degree of overlap in the class probability

distributions. The ROC-AUC ranges from zero to unity, where unity represents ideal separability, 0.5 no separability, and zero

inverted prediction. The ROC-AUC metric has the characteristics of scale invariance and decision threshold invariance. In

cases where either false negatives or false positives are substantially more relevant than the other, additional metrics should be

involved since the ROC-AUC, due to its integral character, does not provide the means for such an optimization. In general,

it is good practice to consider multiple of the aforementioned metrics. Especially, when imbalanced data is concerned and

different models are compared, some of the metrics such as ROC-AUC can produce a deceptive ranking of the models [210].
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3 Method development

3.1 Fatigue setup development

The resonant fatigue setup presented here expands upon [211] and [35]. It achieves a sensitivity that enables the detection of

early damage states starting with the formation of persistent slip bands (PSBs). The necessary signal-to-noise ratio is achieved

through miniaturization, specific loading conditions, and the sensitive control mechanism.

As depicted in figure 3.1a, the mesoscale planar hourglass-shaped specimen (blue) is mounted in a specimen holder. Two

piezoelectric actuators induce a deflection on the specimen holder, which excites a resonant state in the specimen.
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Figure 3.1: a) Micro fatigue setup for sensitive detection of early fatigue states composed of two piezoelectric actuators (khaki), a laser (yellow), a beam

splitter (transparent blue), position-sensitive device (olive) LED spot lights (black), and a specimen (blue). The viewing direction (VD) describes

the orientation of the imaging optics. b) The von Mises stress distribution induced in mesoscale specimens for bending and torsion scenarios.

c–d) Angular arrangement, i.e., azimuthal and polar orientation, of the LED spot lights for stroboscope illumination. Adapted from [36].

Depending on the phase between the two piezo actuators φp either a bending, torsional or multi-axial resonance can be

induced. The bending and torsion loading states are depicted in figure 3.1b. In the following, the bending case is addressed

mainly, since it represents the central loading scenario in this work. The out-of-plane bending resonance mode is induced

by applying a cyclic bending deflection of the corresponding frequency at the specimen holder. Since the specimens are

designed such that their relevant resonance frequencies and higher-order harmonics are far off those of the specimen holder,

the deflection of the latter is comparatively negligible. By the virtue of this configuration, only fully reversed loading (R = -1)
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is attainable. Aside from specimen miniaturization, the first-order bending loading further confines the highly loaded volume

to the specimen surface. This fosters the high sensitivity of the setup since changes in this small volume define the specimen

response.

The bending slope is acquired by illuminating the unconstrained end of the gauge section with a laser and measuring the

displacement of the reflected laser spot on a position-sensitive detector (PSD). If the specimen is bent, the laser spot reflected

from the specimen is deflected up or downwards. Underlying geometrical considerations tying the specimen deflection with

the laser shift on the PSD, are explained in detail in [211]. Since the displacement detected on the PSD is used as a control

parameter for adjustments in the piezo displacement and frequency, the setup can be considered bending slope-controlled.

In order to estimate the stress state for a given PSD amplitude, continuum simulations are performed in advance of the

experiment.

The sinusoidal piezo actuator signal and the sinusoidal PSD signal represent an input and output signal, see figure 3.2. In the

resonant state, the relative phase shift between these signals corresponds to φ = 90 °. In the course of cyclic loading, resonant

frequency changes occur due to softening/hardening, damage evolution, or oxidation in the whole loaded region (integral

measurement). The frequency of the actuation signal is being controlled to maintain the 90 ° phase shift. Hence, the resonant

frequency changes are traced by continuously altering the actuation frequency to match the change in specimen resonant

frequency. This contributes to the pronounced sensitivity since the phase response exhibits a steep slope in the vicinity of

the resonant frequency. Additionally, the piezo input amplitude is controlled using a proportional-integral-derivative (PID)

control to preserve a constant specimen bending slope during the test. Since amplitude and frequency are correlated through

dampening phenomena, both, the frequency and amplitude control are acting simultaneously. This control mechanism, and

specifically the control parameter being measured at the end of the gauge section come with a few implications. When a crack

exceeding a critical length is present, the bending and stress state deviates from the simulation. This applies especially to the

section of the beam between the crack and the gauge-mass transition (where the laser measures the bending slope) in which

the load diminishes. Therefore, this setup is typically applied to characterize fatigue states ranging from PSB development up

to physically short-crack growth.

φ = 90 °

texp

tst

Figure 3.2: The top diagram illustrates the cyclic piezo actuation and the response on the position-sensitive detector schematically. In the center, the timing

of the LED stroboscope illumination is displayed. The camera remains open to accumulate the light retrieved from the specimen surface over

several fatigue cycles.
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While the actuation frequency signal gives integral information on the specimen damage state, an additional methodology to

capture local changes based on [35] is introduced in the following. Retrieval of spatial information was achieved by acquiring

images of the specimen surface. This has the objective of observing the cyclic evolution of local damage instances and cor-

relating it with the underlying microstructure. Therefore, the setup was extended with a stroboscope illumination and camera

system (Basler® beat beA4000-62km monochrome camera and Canon® MP-E 65mm f/2.8 1–5× macro objective) capturing

a series of in-situ light optical images. The monochrome camera variant was selected due to its superior quantum efficiency,

i.e., more efficient conversion of photons into electrons which facilitates shorter exposure times. In terms of illumination,

a bidirectional oblique illumination by two light emitting diode (LED) spot lights (2× CCS® HLV2-22BL-1220_3W LED

spot light, see figure 3.1a) in the blue wavelength range with its peak at 465 nm was utilized. Previously, superior contrast and

resolution obtained by oblique illumination techniques was reported [212]. The image formation is based on light scattered

at damage emerging from the specimen surface facing the camera. Therefore, surface defects such as protrusions and cracks

appear as regions of high intensity.

The orientation of both LED spots lights in the azimuthal and polar plane of the spherical coordinate system, see figure 3.1c

and 3.1d, was chosen such, that the azimuthal angles differed by approximately 90 ° to capture surface defects independent

of their surface topography. Moreover, it was empirically ensured that the optical yield on the camera is maximized and

that the interference on the position-sensitive device is negligible. An influence of the illumination orientation on the image

formation is shown in [213]. Due to the fairly flat light incidence angle and the camera viewing direction, it is assumed that

both, specular reflection and predominantly diffusive reflection (scattering) contribute to the image formation. The scattering

portion strongly depends on the ratio between surface roughness (or scale of surface features) and the wavelength [214].

Both distinctly oriented LED spot lights illuminate the specimen at the inflection point of the fully reversed bending motion

(i.e., the non-defected state) as illustrated in figure 3.2. Note that the fast motion of the specimen at typically 1–2 kHz in

bending resonant mode raises the demand for accurate timing and short duration of the stroboscope light pulses. Hence, short

pulses with tst in the range of 5–10µs are utilized ensuring imaging with minimized specimen motion blurring. The camera

integrates for an exposure time texp over multiple cycles and multiple light pulses to retrieve a detectable scatter signal from

the specimen surface. Typically an exposure time in the order of texp=100 ms is employed. Depending on the specimen surface

quality it is slightly varied to avoid under- or overexposure.

An image series acquired in the course of a fatigue test typically comprises several thousand images, and a subset of it

is showcased in figure 3.3. The figure shows the highly loaded region of the specimen (red region in figure 3.1b). In these

intensity-inverted images, the dark spots present at the beginning of an experiment originate from light diffraction at particles,

pores, or residuals on the specimen surface. As cyclic loading is applied, see figure 3.3b–i, multiple protrusions, and a few

cracks initiate (black arrows) across the specimen. While some of the protrusions and cracks stagnate, others manage to grow

and propagate (red arrows). The underlying hypothesis is that as protrusions grow, more light is scattered at these surface

defects, and the local intensity associated with damage instances increases. This would enable tracking the local evolution

of cracks and protrusions. The validity of this hypothesis is explored in the results section by employing correlative surface

topographies obtained by atomic force microscopy.

Despite the high mechanical frequencies, it is anticipated that the mesoscale specimens’ pronounced surface-to-volume ratio,

the low plastic strain, and forced convection through specimen motion permit cycling at faster rates without notable heating

on the global specimen scale. Moreover, the influence of the LEDs in terms of heating is assumed to be negligible. This can

be ascribed to the high reflectance due to the polished specimen surface condition and the flat light incidence angle.

3.2 Automation of scanning electron microscope

Another fundamental requirement for the creation of statistically representative multimodal damage data sets is the automa-

tion of analytical techniques. Due to the nature of HCF and VHCF only a few damage locations emerge in distinct locations
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Figure 3.3: Inverted oblique illumination image series with annotations. Black and red arrows indicate the emergence and growth of a damage instance,

respectively. The red box marks a protrusion that is treated in figure 3.10. Numbers at the bottom of individual images represent the approximate

cycle numbers at which they were acquired. Adapted from [36].
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where critical microstructural scenarios occur. Aside from being sparsely distributed across the specimen, the damage instan-

ces exhibit very fine features. Therefore, when imaging damaged specimens, typically large areas need to be scanned with

high magnification to capture relevant damage features in the image texture for a multitude of damage instances. The scanning

electron microscope was chosen as an automation target as it allows for resolving relevant damage features and exhibits a

pronounced depth of focus. In order to address the problem of limited field of view at high optical magnifications, alternate

methods other than standard single frame capture were required.

Therefore, in a collaboration with a co-worker, Mathis Bellmer, multiple C# control programs for the Zeiss Supra 40VP were

written using the Zeiss API. While the SEM provides different detectors that collect various kinds of specimen informati-

on, for the characterization of damage morphology the surface topography-sensitive Everhart-Thornley secondary electron

detector was utilized. Subsequently, these programs were extended to operate also under the specific EBSD configuration.

• Tile image acquisition for stitching: Subsequently to optimizing the acquisition parameters, this control program ac-

quires a set of images (tiles) given a rectangular region of interest by corner points. Therefore, a tile overlap, resolution,

and dwell time are prescribed. In the following, these tiles are combined into a single image (stitching).

• Targeted coordinate image acquisition: This approach rigidly transforms an image pixel coordinate list into SEM

stage coordinates in order to capture high-resolution images at target locations. For the coordinate transformation,

reference markers or invariant characteristic features in both imaging domains can be employed. The objective behind

this approach was to derive an image pixel coordinate list corresponding to damage locations directly from frame

differencing and morphological operations on the images in figure 3.3.

Since at a later stage, the objective is to register (spatially align) SEM data with data from other imaging modalities, the former

imaging methodology of tile image acquisition for stitching was followed predominantly. This subsequent registration requi-

res point correspondences of features which ideally should be taken from regions where substantial mechanical deformation

and image distortions are absent. As opposed to the targeted coordinate image acquisition at damaged locations, this imaging

methodology captures more undeformed regions which facilitates the straightforward assignment of point correspondences.

As indicated in the introduction, this stitching image acquisition was performed twice, before and after fatigue testing with

slightly different settings.

The acquisition parameters used to capture the tile images are described in section 4.3.1. Image resolutions of 2048 × 1536

to avoid information loss and typically 15 × 13 tiles with a tile overlap of 3–5% were selected. Consequently, the resulting

stitched images had a resolution in the order of 30,000 × 20,000. This was required to differentiate between protrusions and

cracks by resolving the distinct features. A frequent issue that occurs when acquiring a set of images automatically includes

actuator backlash and slip at the motorized translation stages which results in a shift between the adjacent images [215]. In

literature, Chen et al. [20] applied normalized cross-correlation to correct such shifts for stitching SEM images of magnesium

surfaces decorated with gold nanoparticles. To identify the appropriate peak in the correlation map, background estimation

(using a Savitzky-Golay smoothing filter) and background subtraction was performed in their work. In our case, for stitching,

the implementation in [216] was utilized. The algorithm uses the inverse Fourier transform of the phase correlation in order

to determine the translational shift between the neighboring tiles. This assumes that the tile overlap is chosen sufficiently high

to compute the phase correlation even in presence of tile shifts. A stitched image is depicted in figure 3.4.

Furthermore, the brightness between tiles can differ substantially, which is referred to as shading. These differences arise

due to the imaging configuration in the SEM. Amongst others, shading can be ascribed to a change in specimen surface

orientation with respect to the detector and to a change in electron source luminescence between tiles. Other potential sources

of brightness differences are electron beam-induced oxide deposition and other sources of charging. Shading can be to some

extent accounted for by background subtraction or different image blending strategies in the tile overlap regions [216]. In

our case, two different image types were considered for stitching – the as-acquired input images as well as segmentation

masks derived from the former by manual annotation. The same image positions, i.e., translational shifts, as computed based

on the raw input images, were also applied to the mask images. Linear blending was applied at the overlapping regions for

the stitching of the input images. However, for the mask tiles, this was not appropriate since interpolation would lead to
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Figure 3.4: a) A stitched secondary electron scanning electron microscopy image of a mesoscale fatigue specimen and some detail views in b) and c). b) A

miscellaneous area on the specimen to indicate the tiling approach used for deep learning. c) A region containing a microstructurally short crack

and slip markings with the manually labeled damage mask superimposed. The colors red, blue, and green represent the background, extrusion,

and crack classes, respectively. Adopted from [37].

invalid class labels in regions of conflicting class labels. In order to resolve the latter, the maximum class label value was

chosen in case of conflicts, while the class labels were chosen such that they correlate with the severity of the damage type

(cracks >extrusion >background). These pixel class label conflicts can either occur due to (inadequately corrected) tile shifts

or distortions present in images.

Depending on the magnification, different types of physical mechanisms determine the contained image distortions. For

instance, at higher magnifications, as the electron beam is confined to the center region of the electron optics, the time-

independent spatial distortions [217] are reduced. This can potentially allow for better relative tile alignments. Charging,

temperature drift or stage drift can induce time-dependent and non-uniform drift distortions in the SEM images, which are

particularly relevant at high magnifications [217]. However, appropriate grounding and short dwell times can provide a reme-

dy. During image acquisition, SEM operators are responsible for setting imaging parameters such as brightness and contrast,

for ensuring electrical conductivity, and for avoiding defocus, and astigmatism. These parameters collectively influence the

signal-to-noise ratio. Amongst others, robust automatic astigmatism and defocus correction being the state of research and

therefore unavailable in standard SEM devices [218], results in images containing notable variance. Moreover, the applicabi-

lity of these correction approaches is often limited to specific surface morphologies or specimen geometries.

These distortions do not only affect the stitching and registration procedure. The local image texture can be influenced by

distortions as well. Depending on the specimen geometry, such distortions can vary from tile to tile. Aside from SEM and

operator subjectivity-induced variances, the appearance of slip traces and cracks in surface-sensitive SE2 SEM images can

differ due to several inherent factors including the material, specimen fabrication, and loading condition during fatigue. For

instance, the microstructure and crystal structure determine how materials accommodate applied loads through the dislocation

slip processes and therefore affect the shape and size distributions of slip traces and cracks. The large variety of materials

employed in engineering leads to a substantial versatility of damage-related image textures. In Nickel specimens, several

parallel but distinct and spaced extrusions delimited by grain boundaries were observed [219]. The specimen fabrication,

such as metallographic polishing steps, can alter the surface roughness and therefore the image background texture as well

as the formation mechanisms of fatigue damage. A common issue is that specimen edges are often poorly preserved during

polishing steps which impacts local image textures. Loading conditions, e.g. axiality, determine the slip characteristics [220]

and thus the shape of the slip traces to a large extent. Furthermore, slip markings have shown to form a cyclic load-induced
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oxide layer at their surface, which significantly exceeds native oxides in thickness [91]. This can influence the representation

of slip markings in SE2 images. Nonetheless, comparatively stable imaging conditions in terms of a consistent viewpoint,

minimal occlusion, and irrelevance of environmental influence factors are obtained for SEM imaging with respect to the vast

majority of natural image data sets.

Since achieving a robust and automated workflow for damage data set generation irrespective of the material is one objective,

the aforementioned stitching image acquisition routine was applied to create data sets for three materials. These materials and

corresponding data sets are described in the subsequent section and were utilized to train data-driven models and characterize

their damage detection performance. The selection of materials was based on obtaining a range of diverse microstructures

and fatigue mechanisms. Despite the different globular and hierarchical microstructures as well as face- and body-centered

cubic elementary cells prevalent for the chosen materials, they represent only a subset of the microstructural diversity found

in engineering alloys. Nevertheless, it enables an investigation with respect to the generalization of damage detection models

for distinct engineering materials.

3.3 Establishment of surface fatigue data sets

This section covers the pixel-wise manual annotation of the acquired SE2 images and the resulting data set. A systematic

reference data set was established as a fundamental requirement for data-driven techniques. Due to the demand of accurate

damage localization with respect to grain boundaries and other defects, segmentation (i.e. assigning a class label to each

pixel in the input image) was selected as the task of choice. The decision to perform a pixel-wise manual annotation is

justified by the superior performance of supervised learning segmentation models which require many input and segmentation

mask image correspondences during the training stage. Since the objective is to distinguish between crack, extrusion, and

background regions, the classes were chosen accordingly. In this section, unless explicitly specified otherwise, the concept of

extrusions is used synonymously with arbitrary slip marking types.

The annotation process involved drawing the perceived border of damage locations manually, fine-tuning the regions, and

assigning a semantic class label. However, the signal-to-noise ratio in the images impeded the accurate identification of the

damage borders for some materials. Labeling was performed on the raw input images rather than the stitched image in order

to allow for subsequent adjustments in the stitching procedure. Moreover, prospectively having manual annotations before

stitching can assist in the stitching process if the overlap region between adjacent raw images contains damage instances.

After the annotation and stitching process, the data was split into multiple tiles of 760 × 760 pixels as shown in figure 3.4.

This was done in order to avoid GPU memory limitations during training, as proposed in [197]. Since image border padding

was not performed in the encoder convolution layers of the applied U-Net architecture (see Section 4.5.2), the predicted mask

tile size is reduced in comparison with the input tile. Therefore, prior to extracting the tiles, mirror padding was applied at the

stitched image boundary. Furthermore, the tiles were extracted with an appropriate overlap to account for the reduced mask

tile size and to take the entirety of the data into consideration for training and testing. This procedure was followed for each

material. The set of tiles obtained was split in a training (≈ 80%) and testing data set (≈ 20%) with the exception of copper

which owing to limited data availability was solely used for testing purposes. For domain generalization and adaptation

studies, where the transferability of a model to another domain is investigated, it is a common practice to distinguish between

so-called source and target domains. In this case, the ferritic steel material, posing the main research objective, is considered

the source domain and the transfer to alternate target material domains is examined.

3.3.1 Source data set: Slip markings and cracks in ferritic steel

Initially, the damage observed in a ferritic steel EN 1.4003 with a body-centered cubic crystal structure was investigated.

Training tiles originated from multiple specimens, which were fatigued with differing strain amplitudes. Cracks ranging from

microstructurally short cracks to long ones were observed in the material.
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Figure 3.5: Pairs of SE2 input tiles and their manually labeled mask correspondences showing the diversity of the input data set. The figures show a subset

of the ferritic steel data set (source domain). The scale bar applies to all subfigures. Adapted from [37].
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3.3 Establishment of surface fatigue data sets

As apparent in figure 3.5 typical cracks (green) present in the data set show distinct contrast compared to the background

and frequently are encompassed by extruded volume (blue). This extruded volume is either present due to the accumulation

of plasticity prior to crack initiation (figure 3.5h) or resulting from stress concentration in the plastic zone of the crack tip

(e.g. figure 3.5f). While in micromechanics the term extrusion refers to the formation of a unique surface topography through

the accumulation of dislocation steps and vacancies prior to crack nucleation, here both cases are merged into the extrusion

class. Even though slip markings, according to [221, 222], can be classified based on their shape in ribbon-like, tongue-like,

chord-like, and band-like extrusions, as well as macroscopic protrusions superimposed with the former types, the ferritic

steel data set contains almost exclusively protrusions. This can be ascribed to the low defect density in the ferritic steel and

the corresponding unimpeded movement of dislocations. The data was not annotated to distinguish between these extrusion

sub-classes. Some protrusions are fissured and few even contain a multitude of tiny cracks. It is noteworthy that the labels do

not exhibit pixel-level accuracy since the boundaries of the extruded areas in the ferritic steel are faded and thus not always

evident.

In the appendix section A.1, sources of variance in all three damage data sets are assessed.

3.3.2 Target data set i: Slip markings in copper

Additionally, a fatigue damage data set of polycrystalline oxygen-free high conductivity (OHFC) copper exhibiting a face-

centered cubic crystal structure was created. The specimen was fabricated and fatigued as outlined in a preceding work

[211] and generously provided for further analysis. Due to its low yield strength, scarcity of defects, and the applied loading

conditions, slip markings observed in this data set are extensive and spread across grain boundaries (not depicted). The

extrusion class entails instances where plastic deformation bands extend nearly across the whole specimen width (for a tile

of which, see figure 3.6a–c as well as moderately localized protrusions comparable in scale to the ones observed in ferritic

steel (figure 3.6d). Moreover, multiple fine tongue-like extrusions can be observed, see arrow annotation at the right border

of figure 3.6c. Former larger slip bands observed in copper do not show unique well-defined slip trace orientations but rather

indications of wavy slip and multi-slip. The copper data set in the context of this work was utilized solely for testing purposes.

3.3.3 Target data set ii: Extrusions in martensitic steel

Concluding the damage data sets, a complementary slip marking data set comprising extrusions in a steel EN 1.7228 with a

martensitic microstructure was prepared. The lattice distortions and the hierarchical microstructure of the material result in

confined extrusions, as apparent in figure 3.6e–h. In contrast to extrusions observed in ferritic steel, these extrusions can be

classified as tongue-like and are one order of magnitude smaller. These confined tongue-like extrusions are at a similar size-

scale as present OP-S particle agglomerates, see arrow annotation in 3.6h. Another image feature owed to the hierarchical

microstructure is the distinct background texture. It is comparatively spotted and non-uniform, see figure 3.6h, and shows

sub-structures comparable in size to the emerging damage instances.

Since the martensitic steel microstructure exhibits much smaller effective grain sizes than ferritic steel, the microstructure

variance in a given area is comparatively more pronounced. This leads to the fact that more martensite images contain

extrusions despite the lower number of total extrusion pixels, see table 3.1.

Each of these material domains contains distinct slip markings and distinct processing-induced variance which results in

unique image textures. As a result, the performance of a trained network to segment damage in an alternate unseen material

(domain generalization) can be evaluated and conjunct training with diverse materials data can be tested.
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Figure 3.6: Pairs of SE2 input images and their manually labeled mask correspondences showing the diversity of the input data set. The figures show a

subset of the copper (a–d) and martensitic steel (e–h) data sets representing target domains. The scale bar in subfigure g) applies to all subfigures

except the detail view in subfigure h). Adapted from [37].
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3.4 Image series registration

3.3.4 Quantitative data set comparison

In the following, a quantitative comparison of the data sets is performed using a few characteristic data set metrics that

describe the distribution of the background, extrusion, and crack class in each material data set. A general data set overview

is provided in terms of the number of tile images Nt used for training and testing as well as the number of original stitched

images N they originate from. Furthermore, image/pixel percentage for both damage classes p
y
x, and 80% percentiles of the

pixel area ratio for both damage classes P
p80
x are described. Subscripts x denote the damage classes crack c and extrusion e,

while the superscripts y denote whether it is an image i or pixel p percentage value. For instance, the value P
p80
e = 10% for

the ferrite testing data indicates that 80% of the images have an extrusion area percentage of 10% or less. Whenever possible,

the metrics are provided for the training and test set, denoted by subscripts tr and te, respectively.

Table 3.1: Overview of data sets. The annotations (s) and (t) indicate whether the data set is a source domain or a target domain. As an example to explain

the notation of the data subsets, the ftr refers to the ferritic steel training data set. Adopted from [37].

ferritic steel (s) copper (t) martensitic steel (t)

metric training ( ftr) testing ( fte) testing (cte) training (mtr) testing (mte)

N [] 12 1 3

Nt [] 3940 860 357 763 168

pi
c [%] 5.35 6.97 - - -

pi
e [%] 33.70 34.30 89.92 36.56 33.92

p
p
c [%] 0.06 0.09 - - -

p
p
e [%] 2.34 2.21 12.13 0.18 0.17

P
p80
c [%] 1.15 2.00 - - -

P
p80
e [%] 10.75 10.00 20.45 0.62 0.63

From table 3.1 and the p
p

c/e
values, the substantial intrinsic class imbalance of the three data sets becomes obvious since

extrusion and in particular crack pixels account for few percent, especially in the ferritic and martensitic steel data sets. Only

a small portion of the pixels containing damage can be ascribed to the fatigue loading in the HCF/VHCF regime, which

leads to the degradation of a few critical grain clusters. Moreover, a comparison between the different materials in table 3.1

indicates that there are more labeled ferritic steel instances which culminates in an additional imbalance between the data

sets. When training on combined data sets is concerned, this needs to be accounted for.

3.4 Image series registration

Due to subtle specimen movement in the course of a fatigue experiment, an automated image registration routine was required

to align individual images of the image series. Shifts amongst the in-situ acquired light optical images as illustrated in figure

3.7 occurred impeding damage tracking. The image features in magenta and green, representing the initial and last image,

respectively, being shifted uniformly across the whole image indicates that the misalignment originates from a shift rather

than a deformation. These shifts are typically in the order of 10 µm. Presumably, the slippage movement can be ascribed to

the relatively large inertial forces acting at high frequent actuation, imperfect clamping, and to a lesser extent to gravitational

forces. The exact specimen movement path is highly dependent on the actuation and clamping conditions.

Different feature and intensity-based registration algorithms were tested. Due to modest local fluctuations in image texture

between subsequently acquired images resulting from stroboscope illumination timing and fatigue damage evolution, feature-

based registration proved difficult for this task. The present noise levels caused by the stroboscope lighting and camera as well

as damage-induced image changes complicate feature matching between subsequent images. An aggravating circumstance is

the scarcity of surface features across the specimen due to the applied specimen surface finish (see inlay of figure 3.7). Par-

ticles and predominantly pores provided somewhat constant image features in these light optical image series. However, the
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Figure 3.7: Pair of inverted oblique illumination images acquired in-situ at the beginning (magenta) and end (green) of a fatigue experiment in false color

representation indicating specimen movement in the course of the experiment. Dark regions represent regions of overlap.

arising intensity distributions around different pores within one image are not distinctive (repetitive image texture). Compu-

tationally efficient utilization of unique long-range pore patterns would require image downscaling operations since pores are

sparsely distributed across the image. However, downscaling does not preserve the small pore’s features well. In conclusion,

feature detection and feature matching algorithms proved unsuitable for the present surfaces. An alternative is altering the

surface by applying dedicated speckle patterns typical in the field of digital image correlation (DIC). It was refrained from

this to avoid affecting the very surface-sensitive fatigue test.

On the other hand, for the present task, an intensity-based method utilizing the so-called Mattes mutual information metric

[223] proved appropriate yielding reproducible and stable registrations throughout the whole image series. Depending on

the loading conditions and image acquisition rate, typical image numbers range from 100 to 12,000 images per fatigue

experiment. The employed mutual information metric measures the similarity between pixel samples of two images in their

intensity distribution and thus how well they can be mapped onto each other. In the course of the registration procedure

of two images, the moving image is displaced such that the entropy between the two pixel distributions is minimized. The

permitted degrees of freedom are displacements, translations, and rotations, i.e., rigid transformations. This euclidean distance

preserving, linear transformation type is adequate if plasticity and crack growth do not cause major specimen deformation.

Indeed, the macroscopic deformation is largely negligible due to the fully reversed bending load at very low stress amplitudes.

The registration implementation employs pyramids, a concept used in image processing to capture features on multiple scales.

In a nutshell, pyramids are generated by subsequent filter and downsampling operations [224] and increase the robustness of

the algorithm.

On a higher level, the structure of the image series registration code is an iterative process where initially the first image I0 is

used as a reference for registering subsequent ones Ik in ascending order until the last image IK . The computed transformation

matrix from the prior image registration Mk−1 is utilized as an initial guess for the consecutive one since the specimen

shift seemed to be of continuous nature. Moreover, after Kp=10 registered images, the reference was replaced by the newly
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registered image in order to avoid erroneous registration owing to large changes in damage structure. Finally, an image

contrast estimate is computed by convolving the image with a Laplace kernel and averaging all pixel values. This metric

allows for the removal of outliers affected by motion blurring from the further analysis. In the final stages of the fatigue test,

such outliers can occur to due drastic changes in resonant frequency culminating in poorly timed stroboscope illumination.

Establishing an efficient routine to register the large image quantity alleviated the problem of image shifts and enabled the

correct assignment of damage instances and therefore the assessment of damage kinetics.

3.5 Multimodal registration

Correlative microscopy holds the potential to give access to previously inaccessible information [225]. For instance, investi-

gating the local interdependencies between localized cyclic damage evolution data and microstructure information requires

spatial alignment of both. While many commercial correlative microscopy tools exist, they often rely on vendor-specific

specimen holders and do not correct for non-linear distortions in the data sets [226]. In contrast, we applied image registra-

tions to match the coordinate systems and correct distortions of the data sets. Registration methods can be subdivided into

feature-based and intensity-based techniques. While automated feature-based techniques require methods of feature detec-

tion, extraction, matching, and outlier exclusion, intensity-based ones rely on the correlation of intensity textures in images

or sub-images, see [227]. Multimodal data registration refers to the spatial alignment of the source to target data sets and

is accompanied by challenges concerning data heterogeneity. This comprises aspects such as different imaging modalities,

specimen states, physical pixel sizes, dimensionalities, viewpoints, and field of views [228].

With regard to this study, the image-based data sets depicted in figure 3.8 were registered, where (s) denotes source, (it)

intermediate target, and (t) target data sets. The in-situ images were optimized to have minimal optical geometric distortions

by considering solely the center of the frame where the highly loaded specimen region was positioned. Moreover, the relatively

narrow spectrum of the LED spotlights circumvents chromatic aberrations. When it comes to SEM image data, it was claimed

that distortion correction is required for accurate overlay [229]. However, in our case, appropriate imaging conditions for

image tiles, their stitching (see section 3.2), and the usage of a custom specimen holder throughout the whole fatigue and

analytical process chain minimized distortions in SEM images and specimen alignment-induced relative distortions between

the data sets. Therefore, the EBSD data was the only data set for which distortion correction was necessary.

In this multi-stage registration procedure, the undeformed and comparatively undistorted stitched SE2 SEM image of the

specimen surface before fatigue acts as an intermediate registration target. This intermediate state facilitates subsequent

collective transformation of all (s) and (it) data sets to the target EBSD stage by the same transformation. Hence, it could

be ensured that all individual fairly undistorted source data sets are aligned well amongst each other. Note that using direct

transformations to the distortion containing EBSD map possibly results in an erroneous alignment amongst the transformed

source images. In literature, automatic feature detection and matching for light optical and SEM data was reported [230]

employing scale-invariant feature transform (SIFT) [231]. However, this proved inadequate for the data at hand since the

data sets exhibit a wide range of physical pixel sizes and distinct grayscale textures. Therefore, a landmark approach using a

selection of point correspondences is conducted to derive most affine transformations. Pores and static particles visible on the

specimen surface in various modalities facilitate the user’s selection and matching of these features. Initially, the stitched SE2

image after fatigue and the in-situ light optical image time series are affine transformed to match the SE2 image before fatigue,

see arrow (1) and (2) in figure 3.8, respectively. Additionally, a deep learning model-inferred segmentation map indicating

damage locations is derived from the SE2 image after fatigue testing (see section 3.3) and transformed accordingly. Thus,

every experimental source data set is at the stage of the SE2 image before fatigue.

Carrying along the idealized geometry (without fabrication-induced variances except for actual specimen dimensions) and

loading conditions, together with the embedded microstructure enables straightforward incorporation in micromechanical

simulations. The absence of defect-related features in the geometry necessitates a different approach for its registration. An

intensity-based algorithm relying on shape-based features is used to transform the idealized specimen geometry represented
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Figure 3.8: Overview of the multimodal registration process. The regular arrows and the one labeled with the asterisk describe affine transformations and

distortion correction by an elastic transformation, respectively. Adopted from [36].

by a binary mask onto a binary mask derived from the light optical images as indicated by the arrow (3) in figure 3.8,

followed by the transformation (2). Therefore, the Mattes mutual information metric [223], which measures the relation

between two-pixel distributions, was employed. In the case of image registration, the measure contains information on how

well pixel samples from both images are mapped onto each other. During registration, the alignment is optimized by reducing

the entropy between the two-pixel distributions, see [232] for algorithmic details. In the employed Matlab implementation,

so-called image pyramids, relying on subsequent filter and downsampling operations, are employed, e.g., [233]. These ensure

that larger-scale features such as the specimen shape are taken into account as well.

Subsequently, using the landmark approach, a transformation is inferred to commonly transform every data set from the in-

termediate target stage (SE2 before fatigue) to the target EBSD data stage (4). To derive this affine transformation, common

image features related to volume defects in the SE2 before fatigue and the SEM signal channel of the EBSD data are utili-

zed. However, the superposition after this affine transformation is non-ideal, since the EBSD data contains spatial, non-linear

distortions. The 70° specimen tilt during the EBSD measurement resulting in a position-dependent working distance, in con-

junction with electron Larmor precession, causes such distortions [234]. These are amplified by specimen surface curvature

that is prominent in the vicinity of specimen edges. The polishing introduces deviations up to 3° from an ideal planar speci-

men surface (see figure 3.9). Additionally to the spatial distortions, the orientation measurements are affected if large sample

surfaces are scanned, see [235, 236]. Primarily, the spatial distortions in EBSD-inferred microstructures impede the correct

assignment of damage derived from comparatively undistorted image sources to its underlying microstructural feature. Over-

coming this challenge is an essential step towards performing reliable microstructure-property relationship analysis when

dealing with large-area EBSD scans. This motivated the acquisition of the preliminary undistorted and undeformed reference

since it allows for a spatial distortion correction of EBSD data as proposed by [236–238].

Finally, the correction of the EBSD data (5) takes place by computing its elastic transformation field relative to the affine

transformed SE2 image before fatigue, illustrated in figure 3.8f. Therefore, a b-spline optimization incorporating landmark

selection was performed, following [239]. The employed implementation in the software imageJ is called bUnwarpJ. This

elastic transformation utilizes the minimization of an energy functional consisting of several weighted energy terms. Name-

ly, the terms are represented by dissimilarity energy between the images, optional landmark constraints, regularization, and

bidirectional consistency. For the purpose of registration, the dissimilarity term attempts to minimize the pixel intensity diffe-

rence between the warped source image and the target image. The regularization term ensures gradual displacements without

discontinuities in regions where landmark information is absent. Landmark information from selected point correspondences
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Figure 3.9: Overview of the specimen shape captured by laser confocal scanning microscopy. A heatmap superimposed onto the specimen, in the highly-

loaded, tapered region shows angular deviations (partial derivatives in width direction) from an ideal plane surface. The path AB is plotted to

scale in the top right subfigure. In a histogram, the distribution of the angular deviations for the whole heatmap is illustrated.

constrains the deformation. Depending on the weight applied to it, it can act as a soft or hard constraint. The bidirectional

consistency energy refers to the inverse transformation and ensures the invertibility of the deformations. Images and displace-

ments are constituted by cubic b-splines, as proposed by [240]. This information is translated to pixel-wise displacements to

determine each sampled data point’s corrected positions on the hexagonal EBSD grid. After computing the updated positions,

the EBSD attributes (Euler angles, confidence index, image quality, etc.) are assigned to the closest grid point without altering

the grid point positions. Subsequently, data cleaning and grain reconstruction as described in section 4.3.2 are applied.

3.6 Data fusion for segmentation of damage in light optical images

The objective of the in-situ image series is to derive the evolution kinetics of individual damage instances. Therefore, the

damage locations need to be segmented correctly and the damage amount needs to be quantified in every image of the

time series. In order to achieve this, an oblique illumination method is proposed for in-situ imaging since it achieves a

better contrast and better directional resolution as compared to brightfield lighting [241, 242], which facilitates retrieving

information on the surface defect height and enables segmentation. If uni- or bidirectional oblique illumination as described

in section 3.1 is concerned, shadowing effects can occur due to the high aspect ratios present at slip markings and cracks.

The shadowing prevents a gray value-based thresholding segmentation, as illustrated in figure 3.10a and 3.10b. In this il-

lustrative case, the segmentation threshold was selected automatically by Otsu’s method [243], which attempts to minimize

the intra-class variance in both the foreground and background classes. Even though the protrusion is continuous, see figure

3.10c, the segmentation leads to three separated regions. Presumably, this issue can to some degree be alleviated by increa-

sing the azimuthal illumination directions in light optical imaging. Conditions of the illumination were chosen as indicated

in figure 3.1 in order to promote the protrusion visibility regardless from their topography. However, due to non-symmetric

illumination conditions, protrusions with a suitable topography appear relatively brighter than others. Therefore, a relative

comparison of protrusion height between different protrusions remains difficult. This will be more thoroughly investigated in

section 5.2.
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(a) Oblique illumination microscopy (b) Threshold segmentation (Otsu’s method) (c) Everhart-Thornley SEM

Figure 3.10: Segmentation of an extrusion based on a gray value threshold compared to the actual geometry from SEM.

The inverse issue, where two damage instances appear connected in the light optical images, arises as well, see blue arrow

annotation in figure 3.11. This can be ascribed to the limited resolution or wear debris at the surface. In figure 3.11, spatially

aligned and superimposed segmentation masks of light optical and SEM images are depicted for a highly loaded region,

see figure 3.1b. The SEM damage map acts as a ground truth. It is not shown in a class-resolved state but rather unifies

slip markings and cracks in the magenta color channel. The binarization threshold of the light optical modality (green) was

selected to maximize the agreement in terms of the IoU metric (see equation 2.24) with the reference SEM damage mask.

Regions of overlap between the segmentation masks of both modalities are represented in black.

Figure 3.11: Comparison of the manually labeled SE2 segmentation mask (magenta) used as a reference with a binarized difference image (green) from the

light optical image before and after fatigue. The binarization threshold of the latter was chosen such that the intersection over union metric with

the reference image is maximized. Black regions indicate intersections between both modalities.
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Both segmentation masks are generally in good agreement. This applies especially to the larger damage instances which are li-

kely to dictate cyclic failure. There are few segmented areas in the reference that are not accompanied by instances in the light

optical images. Mostly these cases correspond to spatially confined and shallow protrusions. Light optical damage instances

that are not attended by the corresponding reference ones arise on one hand due to overexposure at the upper specimen edge

(orange annotation in figure 3.11) in the automatically acquired SEM stitch maps. In these regions, no appropriate ground

truth can be deduced. On the other hand, the light optically detected instances annotated in orange could be false positives.

Specifically, particles settling at the specimen surface during the experiment are considered in the light optical segmentation

as opposed to the SEM-based segmentation. Furthermore, shadowing of defect locations can occur due to the oblique illu-

mination which does not pose an issue in SEM imaging and segmentation. Intuitively, the substantial directionality of the

oblique illumination calls for a pixel-wise, asymmetric distribution of segmentation thresholds or sophisticated background

subtraction techniques [244]. This was not implemented in the current version of the post-processing routine.

In contrast to the locations, the shape of the segmented instances frequently differs. This can be quantitatively assessed by

computing instance-wise IoU values [245] and plotting them as a histogram. For instance, the crack instance marked with a red

arrow in figure 3.11 appears broadened in the light optical modality. It can be ascribed to the debris originating from friction

and fretting of the crack faces. In post-mortem SEM analyses, such debris was predominantly observed at microstructurally

short and physically short cracks. The formation of this wear debris is closely linked to the fully reversed bending loading

and to asperities of crack faces [246]. Previously, friction and roughness-based effects were demonstrated to attenuate the

growth of slip-mediated crystallographic crack growth. During manual annotation of SEM damage instances, the debris was

considered as background.

Despite their distinct topography, the distinction of protrusions and cracks in the light optical images poses a challenge. This

applies especially to marginal cases such as the early stages of microstructurally short crack initiation and growth when the

crack aspect ratio and opening is still small. Plastically deformed regions and extruded volumes accompanying such short

cracks can also hamper the differentiation. Interfaces between highly plastically deformed regions and the largely unimpaired

matrix often act as precursors to crack initiation [58]. In this case, locally recessed regions, so-called intrusions, are typically

considered to be nucleation sites for cracks. These fine details in the slip marking topography suffer from shadowing effects of

neighboring protrusions and are typically not resolvable in the images. On the other hand, plastic deformation often arises as a

consequence of stress concentration at the crack tip [247]. This type of extruded volume, however, promotes the identification

of cracks since it is typically confined to the immediate crack vicinity, especially in earlier stages of crack growth, and acts

as a scattering site for the incident light.

As opposed to light optical images, SEM images allow for straightforward distinction of cracks and protrusions due to sub-

stantial differences in their pixel intensity profiles and image texture. In the SEM image, even with moderate magnifications

of a few 1000×, subtle topographic information within slip markings can be resolved. Moreover, despite the increased depth

of focus in SEM, unless the crack opening is pronounced, typically no secondary and backscatter electron signal can be

retrieved in crack regions which culminates in characteristic dark regions.

In this work, it was attempted to alleviate these inadequacies in imaging through multimodal data registration. Specifically, the

attempt included transferring the high spatial resolution and class-resolved information from post-mortem SEM segmentation

maps (see section 3.3) to aid the segmentation of the light optical images. The implementation uses soft constraints by

applying distinct thresholds for the different semantic categories transferred from SEM. The three threshold values for the

semantic categories (background, extrusion and crack) are chosen automatically to maximize the overall intersection over

union between both modalities. Since the registration and segmentation are integrated into a graphical user interface user

intervention is possible. This was necessary in some cases to appropriately apply the class-sensitive threshold throughout the

whole in-situ light optical image series.

Applying a semantic category-depended threshold matrix to the light optical images enables not only capturing more damage

instances but also effectively suppresses false positives originating from particles. This is the case since particles are con-

sidered as background during the annotation of the SEM image and the background is assigned a higher threshold during

optimization. Furthermore, the damage class labels are adopted from the SEM images. This is implemented such that, in
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case of spatial overlap between a light optical intensity peak and an SEM crack instance, the segmented region of elevated

intensity is considered cracked.

3.7 Analysis of damage evolution and crack initiation kinetics

In this section, the data processing methodology for evaluating the damage evolution based on the in-situ image series is intro-

duced. Specifically, a rule-based computer vision pipeline is designed encompassing morphological and filtering operations

along with the previously introduced segmentation to achieve tracking and quantification of damage instances.

As the surface topography of protrusion and crack defects is altered due to cyclic loading, their image representation evolves

along with it. When protrusions are concerned, the change typically manifests in an increase of intensity which is monotonous

in a first approximation. This is postulated to coincide with a height increase. The correlation between protrusion topography

and its image texture in the applied oblique illumination light microscopy has been investigated and is described in section

5.2. In contrast, the primary mode of damage evolution for cracks is their propagation. This is reflected in the images by

spatial propagation as well as alterations in intensity owing to plasticity and wear debris at cracks.

This section describes how the elevated intensity regions in the registered image series (see section 3.4) are evaluated. For the

following stages, rather than using the full frame, as-acquired images, the images after multimodal registration are utilized

which are confined to the region investigated by EBSD. In the following, the symbols as introduced in section 3.4 are used

which here describe the registered images instead.

The final image of the series serves as a reference that contains information on damage instances and provides a starting point

for the algorithm. Initially, as a pre-processing step, frame differencing was applied where the initial state was subtracted.

Assuming an ideal registration, this difference image contains only information about all alterations that occurred during

cyclic testing such as damage accumulation and particles adhering to the surface. Static image features related to pores,

fabrication-induced surface contamination, and specimen edge are then effectively suppressed.

Subsequently, the difference image is segmented according to section 3.6. Every distinct elevated intensity instance in the

resulting binarized image, see the green channel in figure 3.11, is indexed with consecutive numbers. Subsequently, connected

foreground and embedded background regions smaller than five pixels are discarded. Such artifact regions can either arise due

to impulse noise from defective pixels and memory errors [248] or due to subtracting frames with residual image shifts, i.e.,

non-optimal registration. Therefore a pixel connectivity of eight is specified, which means that adjoining horizontal, vertical,

and diagonal pixels are considered connected. The result effectively represents an instance segmentation of damage locations.

The semantic damage category of each instance is determined by identifying its overlap with the segmented SEM images and

applying a voting scheme. Since the light optical and SEM images have distinct physical pixel sizes, resizing with a bi-cubic

interpolation scheme is applied to the SEM segmentation mask. Multiple damage descriptors were extracted for each instance

including physical area, the aspect ratio of a fitted ellipse with the equivalent area, and accumulated as well as median pixel

intensity within the segmented instance. In the case of cracks, a skeletonization step of the crack instances was performed to

obtain an estimate of the crack length.

For the reference difference image (IK − I0), each set of pixels establishing an instance was stored in a list. In contrast, for

the subsequently analyzed difference images, this pixel list was employed to assign contained damage instances to the ones

in the reference image. Cracks observed in a final image sometimes result from bridging sub-cracks that were originally

separated by one or multiple grain(s) posing a barrier. In such cases, the instances ascribed to the sub-cracks are assigned to

the final connected crack instance in the reference image and their damage descriptors are aggregated. Analogous steps were

performed for protrusion instances.

Images were analyzed in anti-chronological order, such that in the second iteration, IK−1 − I0 was analyzed. The damage

descriptors for each difference image and each instance are stored in a three-dimensional array. Assessing the degree of da-

mage through such light optical difference images in a quantitative fashion is not straightforward. While the accumulated
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3.7 Analysis of damage evolution and crack initiation kinetics

pixel intensity damage metric is presumably associated with the protrusion volume, the median pixel intensity is assumed

to contain information about its height. The asymmetric illumination conditions and the specimen surface curvature hamper

the quantitative analysis as topographies and positions on the specimen play an important role in the total integrated scatter

at damage locations [214, 249]. In particular, this complicates comparing different protrusion instances quantitatively. None-

theless, an empirical study presented in the results section showed a decent correlation between specific topographic damage

features with intensity over a set of protrusions. Moreover, evaluating the cyclic evolution of individual protrusions is feasible

nevertheless, assuming that no severe changes in their topography cause shadowing.

When plotting the accumulated pixel intensity I for an individual protrusion as a function of the cycle number, typically

trends as depicted in figure 3.12 are obtained. Alongside, the protrusion area A and area-averaged accumulated intensity H

of a protrusion is plotted. All values are normalized with respect to their concluding values which is indicated by (·). The

asterisk indicates fitted curves.

Figure 3.12: Damage features for an exemplary protrusion and fitted logistic functions. The two dashed vertical lines indicate the settling phase of the

amplitude control.

From the evolution of accumulated intensity, specifically the early increase and saturation, it seems that the protrusion for-

mation occurs fairly early with respect to the total fatigue life. This is in agreement with observations in the literature on

extrusions in different materials [60, 222] where a static protrusion occurred early followed by subsequent roughening. Ano-

ther observation that can be made is that fluctuations in the saturated portions mainly arise due to area fluctuations since

the fluctuations are attenuated in H. These area fluctuations can be ascribed to topography evolution, non-ideal illuminati-

on/blurring, and image noise in conjunction with threshold segmentation. The intensity curve progressions can be modeled

by generalized logistic functions of the form

I =
Ic

1+ e−κ(N−N50)
+ Ibias. (3.1)

The fitting parameters I, Ic, Ibias κ , N50 represent the intensity, the intensity increase, an intensity bias term, growth rate, and

cycle number at half intensity. The performed fitting method uses a least-squares approach to optimize the fit by applying the

trust-region-reflective algorithm [250]. Analogously, the curve fits for the area, and the area-averaged accumulated intensity

are conducted.
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3 Method development

A similar approach utilizing a limited exponential growth formulation was proposed in [251] to model the damaged surface

portion in thin films. The underlying assumption of such a formulation with a single growth rate is that the growth of protrusi-

ons is governed by only one mechanism. The validity of such an assumption is assessed in the discussion section. Moreover,

the relations of such curves to different stages of protrusion growth [221] and microstructural features are addressed there.

Initial estimates and threshold values for the fitting procedure are summarized in table 3.2.

Table 3.2: Fitting parameters applied to approximate experimental intensity evolution data related to protrusion and crack formation and growth with

equation 3.1.

Protrusion Crack

Fitting parameter Lower bound Ini. guess Upper bound Lower bound Ini. guess Upper bound

Ic 0.75 1.00 2.00 0.75 1.00 2.00

κ 1E-6 1E-5 1E-4 1E-10 1-E-6 1E-4

N50 N0 N(∆Imax) Nend N0 N(∆Imax) Nend

Ibias 0.00 0.00 0.05 0.00 0.00 0.10
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4 Experimental

4.1 Material and specimen specifications

Exemplarily, in this work, the focus lies on a ferritic stainless steel material EN 1.4003 (AISI 3Cr12). In table 4.1 the average

values in weight % of the alloying elements obtained from spark emission spectroscopy are summarized. The high chromium

alloying content renders this material corrosion-resistant and enables applications e.g. in hydrogen environments.

Table 4.1: Average chemical composition of ferritic stainless steel 1.4003 in weight %.

Material C Si Mn P S N Cr Ni Mo

EN 1.4003 0.013 0.67 1.08 0.018 0.021 0.013 11.9 0.43 0.33

The material was supplied as a rod with a diameter of 21 mm, which previously underwent hot rolling, grinding, cold drawing,

and annealing. Monotonous, macroscopic tensile tests in rod drawing direction revealed a macroscopic elastic-plastic transi-

tion which is dominated by the formation of Lüders’ bands in the range 265–280 MPa (lower and upper yield strength) [252].

Furthermore, the material exhibits a Vickers hardness of 145 ± 3 HV1 in the region of the rods from which the specimens

were extracted.

Planar, mesoscale fatigue specimens were produced from the as-received rod material. The primary objective of this work

was to develop a methodology to investigate the microstructure dependence on the HCF response of such a bcc material.

Therefore, some conditions set on the specimen preparation techniques comprise minimal induced residual stress, surface

roughness, pitting, waviness, notching relief, and the absence of scratches. These surface defects can lead to stress concen-

trations and thus can mask stress concentration effects arising from the microstructure. Moreover, such defects can act as

sites for dislocation generation and distort the material’s response. Surface-sensitive electron diffraction techniques, such as

the employed EBSD, require material-dependent surface finishes. Namely, the absence of oxide layers, contamination, lattice

distortions, and minimal topography is recommended [119]. On the other hand, unvarying features at the specimen surface

need to be present which are visible in the utilized microscopic characterization techniques. This requirement can be ascribed

to correlative microscopy, which is relying on feature correspondences to align images from different modalities accurately

as introduced in section 3.4.

Apart from the surface properties, specimen geometry poses an important factor. This is due to its influence on stress distribu-

tion and on resonant modes in the frequency domain. The planar mesoscale fatigue specimen geometry is illustrated in figure

4.1. Corresponding nominal geometry parameters for its clamp, beam and mass sections are summarized in table 4.2. The

beam shape was adapted to avoid stress intensity at the beam transition to the constraint clamp area [211]. This was achieved

by employing the so-called tensile triangle method introduced in [253]. It led to a relatively homogeneous stress distribution

across the tapered part of the gauge section. At the same time, the geometry was optimized through modal FE analyses to

solely induce out-of-plane first-order bending motion while suppressing in-plane bending or torsional modes. The following

fabrication methods were chosen to comply with the above-mentioned surface-related and geometrical conditions.
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Figure 4.1: Isometric view of mesoscale specimen with relevant nominal parameters indicated.

Table 4.2: Target parameters for specimen preparation.

section width wx [mm] length lx [mm] thickness t [mm]

clamping (c) 6.00 7.8 0.35

beam (b) 0.48 5.00 0.35

mass (m) 4.00 3.00 0.35

4.2 Specimen preparation

4.2.1 Electrical discharge machining and laser cutting

In this section, the experimental procedure is outlined to extract the aforementioned mesoscale fatigue specimen shape from

the as-received rod material. The specimens’ fabrication employed different processing steps, including electrical discharge

machining to fabricate disks and laser cutting to define the specimen contours, shown in Figure 4.1. Wire electrical discharge

machining was performed with a single pass of a brass wire of 0.02 mm and culminated in disks of 650µm thickness. A

single pass was considered sufficient since subsequent polishing was necessary to achieve surfaces apt for EBSD in any case.

An ultrasonic cleaning step of approximately 1 min duration in 15% citric acid ensured a surface quality suitable for the

subsequent laser cutting.

Two planar specimens were extracted from each disk such that the rod axis (i.e. rod drawing direction) was oriented orthogo-

nally to the specimen plane. The positions at which the specimens were extracted were chosen such that a fixed distance from

the disk center is kept to avoid regions with higher segregation emergence in the core of the rod. Aside from this, due to disk

area constraints, the specimen was neither oriented radially nor tangentially within the disk. An allowance of 20µm was used

as opposed to the nominal geometry to compensate for the later electropolishing step which reduces the lateral dimensions as

well. After pulsed laser cutting the heat-affected zone from laser cutting was removed from the specimen sidewalls. Initially,

through metallographic cross-section investigation and Nital etching, the region that exhibited an altered microstructure was

found to be approximately 10µm wide. Such heat-affected surface layers, especially when mesoscale specimen, bending

loading, and HCF are concerned, can impact materials properties significantly.

4.2.2 Metallographic polishing

For metallographic polishing, the specimens were then separated from the laser-cut disks. A thickness measurement with a

micrometer screw was performed to sort the specimen into batches of five with uniform thickness. To increase the specimen

throughput each specimen batch was bonded to aluminum cylinders for parallel processing. For this purpose, the aluminum

cylinders were heated to 150°C on a hotplate and a thin film of epoxy resin adhesive was applied by melting it. The prere-

quisites for the adhesive are mainly negligible deformation during polishing and sufficient bond strength at both interfaces

(specimens and cylinders) to avoid failure during the rotatory polishing where normal and shear loads act. Moreover, cavities
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4.3 Material & specimen assessment

formation along the bond interfaces or in the bulk of the adhesive can be detrimental. Individual specimens were placed

radially on the aluminum cylinders. Then the cylinders are transferred individually to a hydraulic compression stage where

a force corresponding to 3 bar hydrostatic pressure is enacted onto the specimens via a piston. The hydraulic stage is then

transitioned into a water bath for 30 s, where the adhesive undergoes initial curing. This process serves the purpose to obtain

a uniform, parallel specimen embedding within a homogeneous adhesive film.

Subsequently, grinding with silicon carbide paper with a grit size of 4000 was performed on the first specimen side. Since

the material in advance was confirmed to contain no metastable phases such as retained austenite, medium polishing forces

of 30 N were applicable. Moreover, a continuous stream of water ensured lubrication and cooling throughout the rotational

grinding process. The grinding process was prolonged for those aluminum cylinders which contained the batch with higher

initial thickness. Successively, during the fine grinding and polishing stage, the grain size of the abrasive polycrystalline

diamond particles in suspension is reduced from 9µm to 3µm. For both processes, distinct metallographic cloths, Struers®

MD-Allegro and MD-Dac, were utilized, respectively. Both cloths were moistened slightly in advance and the corresponding

diamond suspensions were supplied repeatedly. The forces were reduced to 20 N. The polishing duration for each process

was adjusted to achieve the target removal which was monitored between each polishing step. When changing to a different

grain size, the polishing machine and specimens were cleaned thoroughly to avoid carrying over abrasives from the former

steps. This concluded the initial polishing of one specimen side.

To remove the specimens from the aluminum holders, the specimen holders were immersed in an acetone bath. Once the

adhesive was completely dissolved, the individual specimens consecutively underwent brief acetone, water, and ethanol im-

mersion baths before being hot air dried. This was performed to remove residuals adhering to the surface. The same process

was performed for the other specimen side.

In the following, electropolishing with an electrolyte composed of perchloric acid, 2-Butoxyethanol, ethanol, and water

(Struers® A2) was performed. The specimen acts as an anode and a curved electrode enclosing both planar specimen sides

as a cathode. A DC voltage is applied to induce the chemical abrasion of the anode due to an oxidation reaction. Aside

from removing the heat-affected zones from laser cutting, electropolishing, due to locally higher current densities [254],

introduces a slight, beneficial specimen edge rounding circumventing crack initiation at otherwise sharp edges. Moreover, the

surface roughness is reduced by removing smoothing asperities through the anodic leveling mechanism. These phenomenons

collectively promote inference of microstructure-related influence factors. Mechanical stirring was performed by using a

magnetic and heating stirrer. This was motivated in electrolyte exchange and to circumventing pitting corrosion [255, 256].

A small parameter study was performed to identify an appropriate potential difference, polishing duration, temperature, and

electrolyte flow rate.

To ensure ideal surface conditions for electron diffraction techniques, a surface finish on both sides of the planar specimen was

performed through 10 min rotational polishing with a colloidal silica polishing (OP-S) using a Struers® MD-Chem polishing

cloth. Empirical studies showed that electropolished surfaces provide sufficient but slightly worse quality compared to OP-S-

polished ones for surface-sensitive electron diffraction techniques. However, in this case, large specimen areas were scanned

where short electron beam dwell times are crucial to achieving time efficiency.

4.3 Material & specimen assessment

In this section, the preliminary material assessment of the characterized steels in their heat treatment condition is described.

In order to assess the microstructural properties of the steels and their differences, characterization techniques such as etching

processes in conjunction with light microscopy and EBSD on specimen surfaces and cross-sections are employed. This has

the purpose of deriving information on texture, phase distribution, grain boundary misorientation, and grain size distribution.
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4.3.1 Scanning electron microscopy

To reduce spatial distortions in the reference SEM image and the one after fatigue image after fatigue, high magnifications,

long dwell times, and low working distances were utilized here as suggested by [257]. Tile images acquired in such a man-

ner were stitched subsequently to account for the whole highly loaded beam section despite the high magnifications. This

procedure described in section 3.2 allows resolving damage features appropriately and specimen-scale imaging without low

magnifications, typically associated with pronounced optical distortions [217]. At the same time, drift distortions or scan line

shifts were not apparent. Sufficient electrical grounding to remove the charge was ensured by mounting the specimens in

the bending resonant clamp with large contact areas. Acquisition of the stitched images was performed on an automatized

Zeiss Supra 40VP SEM. During image acquisition with a surface-sensitive Everhart-Thornley secondary electron (SE2) de-

tector, an acceleration voltage of 20 kV, working distances varying from 10 to 14 mm, magnifications ranging from 1500× to

2200× and an image resolution of 2048 × 1536 were applied. The higher magnifications were applied for the post-mortem

SEM images to resolve the comparatively finer features of slip markings. Brightness and contrast settings were optimized

to cover the whole intensity spectrum while minimizing saturation. A correction of aperture alignment and astigmatism was

performed. Due to the scarcity of surface features automatic focus control was not available. Instead, the specimen center

region was utilized to focus on residual silica particle agglomerates from polishing and the focus was maintained throughout

the stitching image acquisition. These settings enable capturing relevant, distinctive features of the protrusions and microst-

ructurally short cracks, which is a prerequisite for the distinction of damage classes by convolutional neural networks. Such

topography-sensitive SEM stitch images were acquired in the highly-loaded regions of the specimen and on both sides of the

planar specimen since the bending loading was fully reversed. Therefore, the method introduced in section 3.2 was used.

4.3.2 Electron backscatter diffraction

The EBSD measurements utilized the same Zeiss Supra 40VP SEM which is equipped with an EDAX TSL Digiview EBSD

system. For EBSD data, the working distance (WD), scan step size, and aperture were chosen to be 18 mm, 0.6µm and

60 mm, respectively. The EBSD camera image background was collected and subtracted from the Kikuchi patterns to avoid

overexposure allowing the full utilization of crystallographic information. This was done after all parameters were set. Ac-

tivating high current mode enabled high electron collection rates. Dynamic focusing ensured good pattern quality across the

whole region of interest. For indexing individual pixels, conventional Hough-based indexing is performed. After an initial

step, in which residual γ phases were confirmed to be absent, solely the body-centered cubic unit cell was used for indexing.

Similar to SEM imaging, EBSD data was collected for both specimen sides and the highly-loaded region.

At this stage, the elastic transformation introduced in section 3.5 is applied to correct distortions in the raw EBSD map.

Subsequently, as a part of the automated post-processing routine, EBSD pixels that exhibit a confidence index (CI) below 0.05

are discarded, and the grains and grain boundary segments are reconstructed. For different materials, CI=0.1 was reported to

be a suitable CI threshold at which 90% of the indexing solutions are correct [119, 258]. In the present work, the primary

microstructure containing only the α phase results in overall higher CI values as compared to multiphase materials. Since

visual inspections indicated low CI regions to be ascribed to pores and GBs, the threshold of 0.05 was chosen. For grain

segmentation, the Voronoi tessellation-based clustering algorithm following [259] implemented in the MTEX toolbox [260]

is utilized. Therefore, MTEX version 5.1.1 was utilized. Pixel disorientations between adjacent EBSD pixels exceeding 5°

were considered to separate grains. This parameter choice has previously been observed to affect the grain segmentation

significantly [17]. Grains consisting of less than eight indexed pixels are discarded to account for noise and false indexed

pixels at grain boundaries. This threshold of eight was selected due to the small physical step size with respect to typical grain

sizes. A smoothing operation with a half quadratic filter [261] was performed with the objective of reducing noise. During this

step, missing data points were recovered through interpolation. Such a filter was previously shown to preserve intragranular

misorientation well and therefore facilitate investigation of dislocation structures [262].
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4.4 Fatigue crack initiation experiments

4.3.3 Atomic force microscopy

While not part of the proposed workflow, a few atomic force microscopy (AFM) topographic maps were collected to evaluate

the in-situ imaging during fatigue, described in the following section. Specifically, these had the objective of assessing whether

a quantitative damage information can reliably be drawn from the in-situ imaging. Therefore, a Veeco® Dimension V AFM

was utilized to conduct scans after fatigue in regions of protrusions at a specimen’s surface. A scan size of 55×55µm was

appropriate for all target protrusions, and the data samples per scanned line were chosen to be 1024, resulting in a spatial

resolution of rx/y ≈ 53 nm. For scanning a proportional gain of 30, an integral gain of 15, and a scan rate of 0.5 Hz was

employed. The scans were performed in contact mode with a Bruker® RTESPA-300 silicon tip with a nominal spring constant

of 40 N/m, nominal tip radius of 8 nm. A front, back, and side angle of 15 ± 2°, 25 ± 2°, and 17.5 ± 2° at the apex affects

which features are resolvable. For instance, the topography of fine intrusions can not be resolved. This, however, is not of

major concern here since these contribute to the in-situ image formation to a negligible extent. Following this AFM scanning

protocol, eight protrusions were mapped for subsequent correlation with the in-situ light optical images. In terms of post-

processing, the open-source software Gwyddion [263] was used. The acquired maps underwent background subtraction by

subtracting a fitted plane. Subsequently, the removal of line artifacts was performed by first aligning individually scanned rows

by the median difference method. This approach offsets rows such that the median of height differences between adjacent

rows becomes zero and preserves large features such as protrusions better. Then, the post-processing is concluded by detecting

and removing scar artifacts as well as data leveling by offsetting the height values to shift the minimum to zero [264, 265].

4.4 Fatigue crack initiation experiments

4.4.1 Calculation of deflections for target stress levels

Since the specimen geometries do vary, for each specimen, the controlled position sensitive device (PSD) amplitude corre-

sponding to a certain target stress amplitude at peak deflection is computed. For this purpose, the beam angular rotation and

beam deflection at the beam-mass-transition, along with trigonometric considerations outlined in [211] are involved.

An Ansys APDL finite element (FE) code was developed to generate and mesh the specimen geometry, perform a linear

elastic simulation, and derive the controlled PSD amplitude at the target stress amplitude from the angular rotation and beam

deflection. The specimen geometry was parameterized by the actual beam width and thickness in the tapered gauge section

as measured by light optical microscopy. Apart from that, nominal dimensions were taken into account for the total beam

length, exact hourglass shape, and mass dimensions. Specimen edge rounding or other fabrication-induced deviations from

the rectangular cross-section are ignored in the simulation. In terms of meshing, a parameter study was conducted to find the

out-of-plane element size at which the surface bending stress response converged. The element type was selected as higher

order 3D 20-node solid elements Solid186 with midside nodes for parabolic displacements. For the resulting mesh, see figure

4.2a, appropriate element aspect ratios and mesh integrity are obtained.

To replicate the experimentally observed elastic deformation accurately, a modal analysis was performed. All degrees of free-

dom of the clamp portion were constrained assuming the absence of specimen slip and clamp deformation. After obtaining

the modal analysis solution, the modal deformation was iteratively scaled until the maximum von Mises stress matched the

prescribed target stress. Therefore, a binary search algorithm [266] was employed. Once the necessary specimen deformation

was determined, the bending line was post-processed to compute the target PSD amplitude from the aforementioned trigono-

metric considerations. The resulting stress distribution in the highly loaded gauge section is depicted in figure 4.2b. It indicates

a rather uniform overall stress distribution with slightly elevated stresses in the vicinity of the edge at the tapered section.

During the code execution, the specimen geometry is stored as an IGES file, which is then considered during multimodal data

registration (see section 3.5) to spatially relate microstructure and specimen geometry. This represents input information for

follow-up crystal plasticity simulations conducted elsewhere. Additionally, element-wise Cauchy stress tensors are exported

into an ASCII file and later used for the computation of loading-related features.

57



4 Experimental

Figure 4.2: Simulation approach. a) The resulting meshed geometry showing varying element sizes along the beam. b) An oblique view on the highly

loaded, tapered part of the bending beam which illustrates the von Mises stress distribution.

4.4.2 Conducting a bending resonant fatigue test

For all bending resonant tests conducted in this work, a rigorous protocol was pursued consisting of the following main steps.

1. Specimen clamping and alignment. In this step, the unit consisting of laser, beam splitter, and PSD is shifted using a

linear stage equipped with a micrometer screw to appropriately focus the laser centrally at the specimens’ beam-mass

transition. This alignment was carefully performed after switching to the relevant specimen side (see step 2).

2. Reference image acquisition. Acquisition of reference light optical images on both specimen sides before fatigue using

bidirectional oblique illumination and continuous illumination. Such stationary specimen images act as a reference to

investigate the noise and motion blurring introduced through the cyclic deformation and stroboscope illumination.

3. Initial frequency sweep. Performing a frequency sweep to determine the initial amplitude and phase response at low

piezoelectric actuator stroke.

4. Fatigue cycling. Running a fatigue test until at least the run-out cycle number is defined as Nro = 109 whilst acquiring

an in-situ image series indicating local damage information. Aside, from reaching the run-out cycle number, relati-

ve resonant frequency deviations from the initial one were monitored and used as a failure criterion when reaching

∆ fres/ fres,0 = −0.1%. Neither of the failure criteria was used for actively stopping tests since crack growth did sta-

gnate naturally and terminal failure was not observed at applied loads. In terms of load amplitudes, a range of bending

amplitudes was applied on the different specimens which correspond to maximal surface von Mises stresses of 240–

293 MPa. The interval between images (ti) was adjusted in the course of the fatigue process. Initially, an image was

acquired every second (i.e. roughly every 2,000 cycles). After settling of the local image textures (i.e., conclusion of the

presumable static protrusion [221] growth) at approximately 107 cycles, ti was gradually increased to ti = 180 s. Such

intervals are later empirically confirmed to temporally resolve image pattern evolution associated with subsequent HCF

crack growth sufficiently well.

5. Concluding frequency sweep. Performing a frequency sweep after fatigue to determine the amplitude and phase

response under the damaged specimen conditions at low piezoelectric actuator stroke. By comparison with the results

obtained from step 3, the damage-induced total change in resonant frequency fres and quality factor Q can be estimated.

While fres is in principle also traced during cyclic testing, the sweeps are performed at substantially lower loading

amplitudes such that most phenomena contributing to damping [267] are less relevant.

6. Post-mortem image acquisition. Analogous to step 2, post-mortem images of both specimen sides are acquired at the

same illumination conditions.
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4.5 Training of deep learning models for damage segmentation

The fatigue setup is enclosed in an opaque casing which suppresses interfering light sources and to some extent, suspended

particles settling on the specimens’ surface.

4.5 Training of deep learning models for damage segmentation

This section describes the training approach of the DL segmentation models to semantically distinguish slip markings and

cracks from the regular surface area in a pixel-wise fashion. It is largely based on a published research article [37] with

substantial contributions from Akhil Thomas and the author.

4.5.1 Data variance and augmentation

In section 3.2, multiple sources of SEM SE2 image variance were introduced ranging from fabrication and fatigue-induced

variance to measurement-intrinsic variances originating from imaging and operator subjectivity. Extending on this, section

3.3 presented the data sets originating from multiple materials resulting in further material-based variance. These variances

affect the resulting image texture distinctly as can be observed in figure 3.5 and figure 3.6.

Typically, deep learning models are known to exhibit poor out-of-distribution generalization [268]. The pursued approach

to cope with and generalize to the substantial variance was to train the network with an adapted data set. In this regard, the

objective was to render the training data set a more comprehensive representation of the data that is to be evaluated. In this

work, the variance was imitated by applying various intensity-based and spatial transformations which can be summarized

as warping transformations [269] resulting in an artificially augmented data set. This process is typically referred to as data

augmentation. During training, multiple altered image instances are created and supplied to the network. This further benefits

the learning as it reduces the susceptibility to overfitting, similar to network-focused regularization methods such as dropout

and batch normalization. The employed augmentation types comprise different intensity-based transformations, rigid trans-

formations, and image deformations described in table 4.3. Depending on the image augmentation type, the transformations

are applied to either only the input image (intensity-based augmentations) or to both the input image and segmentation mask.

A comprehensive list of the applied augmentations can be found in table 4.3. The impact of augmentations was investigated in

a systematic ablation study by applying the base augmentations (blue background) with individual other augmentations of this

table. For performing the augmentations the python library Albumentations [270] was utilized. The different data augmenta-

tions were added to an image augmentation pipeline and applied with the specified parameters limits (xlim) and probability

(p) on the fly (i.e., online augmentation) prior to training. Rather than conducting a parameter search using libraries such as

Tune [271], parameter limits for each transformation were selected based on visual inspection of augmented images. During

the inspection, the criterion for appropriate threshold selection was the prevention of substantial visually perceivable infor-

mation loss and of image distortions rendering the resulting image incomparable to the original data set. The probabilities

were chosen based on the frequencies at which these variances are expected to occur in the data.

The objective behind introducing motion blurring was to mimic the directed distortion arising from astigmatism. The elastic

transformation was incorporated to replicate present image distortions and morphological variance introduced by different

materials (out-of-distribution generalization). Each augmentation threshold was chosen such that the characteristic features

of the defects were still recognizable and the labels were preserved. Excluding non-physical augmentations and limiting their

parameter space requires domain knowledge about the damage character in HCF and about SEM imaging.

4.5.2 Network architecture and training

The network architecture employed to solve this task is the U-Net, originally developed for segmentations in biomedical app-

lications [197]. It consists of an encoder and decoder section where each level is linked by a concatenation (skip connection)

as depicted in figure 4.3.
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Table 4.3: Description of augmentation pipeline implemented from the Albumentations framework [270]. Adopted from [37].

Augmentation type Description: aug. type / parameter(s) xlim p

Affine transformation Linear transformation / rotate, shift and scale limit 30, 0.1, 0.1 0.8

Rotation 90 ° - / - - 0.25

Reflection - / - - 0.25

Elastic transformation Local deformations / alpha affine, alpha, sigma, approx. 0, 40, 6, True 0.4

Optical distortion Barrel or pincushion / distort limit, shift limit 0.1, 0.5 0.25

Gaussian blurring Convolution Gaussian kernel / blur kernel size) 7 0.2

Motion blurring Convolution motion-blur kernel / blur kernel size) 3 0.2

Gaussian noise - / var limit 0.015 0.4

Contrast - / limit 0.15 0.4

Brightness - / limit 0.1 0.4
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resize + augment

conv 3 x 3 + ReLU

max pooling 2 x 2

up conv 2 x 2

crop + concat

conv 1 x 1

Figure 4.3: Adapted U-Net architecture utilizing convolutional, max pooling, and transposed convolutions in its encoder and decoder section. The cropped

concatenation is performed at every stage of the architecture. An exemplary input grayscale SE2 image and segmentation mask are shown in the

bottom left and right, respectively. Adopted from [37].
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4.6 Data post-processing

All operations applied in this architecture are introduced in section 2.3.4. The input image is passed into the network from the

top left where the augmentation and an optional resizing step happen. Subsequently, the images undergoes multiple encoding

stages, where each comprises two unpadded 3×3 convolution layers with Rectified Linear Units (ReLU) activation functions

and a 2×2 max pooling layer. The alternating convolution and pooling operations facilitate computing multi-scale features

which take short and long-range aspects into account. In every stage of the network, the number of feature channels is altered

during the convolution steps since different numbers of convolution filters are applied. Each convolution filter (i.e., its weights

and bias) is optimized in the course of the training process such that relevant features are extracted. Thus, as opposed to the

max-pooling layers, the convolutional layers introduce many learnable parameters to the network. The same applies to the up

convolutional layers (’up conv’) in the decoding path, which are responsible to restore the high-resolution segmentation mask.

The skip (concat) connections help achieve a better fidelity at instance borders since the uncompressed feature volumes from

the encoder assist to retrieve the precise localization. Moreover, the skip connections provide a direct path during training

(backpropagation of gradients) to optimize the encoder more efficiently.

In order to keep the training time maintainable, during model optimization, the images with a total pixel count of N in the

training set were downscaled by a factor of four in area. During training, the loss functions weighted cross-entropy loss, dice

loss [272], and focal loss (see equation 2.18) were tried out. Since empirical tests indicated the best segmentation results for

the focal loss function, the presented models were trained accordingly. Batch normalization or other types of normalization

techniques were not applied.

For training, the whole training image set was provided iteratively in batches of eight images for 300 epochs. This means

that the entire training data was provided to the network 300 times in slightly altered versions (data augmentation, see table

4.3). The network was trained from random initialization. The training was conducted on an NVIDIA Turing RTX 2080 Ti

graphics processing unit and monitored using Tensorboard by logging training and validation losses as well as intermediate

network predictions on the test data set.

In terms of deep learning tasks, three distinct experiments were conducted using the data presented in section 3.3.

1. Source domain: In this case, the model trained by supervised learning on images of a specific material is applied to

unseen data of the same material (in distribution/domain). ftr → fte; mtr → mte (see Table 3.1)

2. Material domain generalization analysis: In this setting aforementioned model is applied to alternate materials do-

mains but on the identical task. ftr → cte/mte

3. Multi-domain training: Rather than training with data from an individual materials domain, in this setting, it was

tested whether materials generalization is improved when combining training data from different domains. ftr +mtr →
fte/cte/mte

4.6 Data post-processing

Many methods outlined in chapter 3 are integrated into a graphical user interface (GUI) implemented in Matlab which was

utilized to post-process the multimodal data of each specimen side individually. Instead of using scripts, it was opted for a GUI

since at some stages throughout the post-processing pipeline, human interaction is required. The data post-processing steps

were typically performed after all measurements were completed, as depicted in figure 1.1. In the following, the step-wise

approach to data post-processing is outlined.

1. Initially, the specimen folder structure is searched for the presence of specific files to infer the measurement and post-

processing stage, and an overview is provided. Amongst others, starting the subsequent steps requires that the stitched

SEM images exist.

2. A second tab in the GUI is dedicated to all registration processes. This includes the registration of the in-situ time series

which is performed first. This registration does not require manual interaction and can be reviewed by sweeping through

61



4 Experimental

the registered images. Subsequently, multimodal registration is carried out. This is realized in the sequence depicted

in figure 3.8. For each of the registrations, a few landmark correspondences are selected in Matlab’s control point

selection tool. For all linear transformations, a few far-spaced landmarks were sufficient. All transformation matrices

and selected landmarks are stored. In the case of the in-situ time series, the transformed images are also stored to avoid

running the transformation operations repeatedly on multiple thousand images. The elastic transformation to correct

EBSD data poses an exception. Namely, the transformation is computed from within ImageJ which is called directly

from the GUI. For the elastic transformation many landmark correspondences spread homogeneously across the whole

field of view were selected. During bending resonance testing, images are taken of only one side of the planar specimen.

Therefore, when the other specimen side is concerned, a slightly altered processing route was employed. In this case,

light optical ex-situ images before and after fatigue were registered manually by selecting landmark correspondences.

3. Then inference with the deep learning model for segmentation of damage instances is performed. Afterward, whenever

deemed necessary, manual corrections were conducted where subsets of pixels selected with a polygon selection tool

were assigned a new damage state. The resulting corrected damage mask was transformed according to the stitched

SEM after fatigue.

4. In another tab, the reconstruction, denoising, and smoothing of the microtexture data takes place as described in section

4.3.2. These operations were performed by using the MTEX toolbox. From there, different microstructure descriptors

are calculated at the grain level, see table 5.4. Additionally, visualization for macroscopic and microscopic texture,

grain boundary disorientations, and other distributions are created in an automated manner.

5. Grain-wise features of pores are computed by applying a threshold segmentation approach on the stitched SEM image

before fatigue and aggregating the pore information on a grain level. An initial threshold is provided by Otsu’s method

[243] which can then be adapted manually.

6. The damage evolution analysis utilizes the corrected SEM-inferred damage mask as a presumed ’ground truth’ and

applies adaptive, damage class-dependent thresholds on the light optical images to maximize the accordance with the

damage mask, see section 3.6. This is performed on the whole image series and culminates in segmented damage instan-

ces which are linked between images throughout the whole fatigue process. Subsequently, the curve fitting approach in

section 3.7 is applied to each damage instance to assess the damage evolution.

7. Due to minor errors in registration and due to the fact that slip markings were found to localize to grain boundaries,

obtaining a well-founded grain-wise damage label required manual validation. For this purpose, each damage instance

was depicted in multiple modalities and the preliminary damage-to-grain assignment was corrected whenever necessa-

ry. The SEM after fatigue provides both, a grain contrast from polishing and information on surface damage. Whenever

a protrusion extended into a grain, that grain was considered and labeled damaged.

8. All microstructure, loading, micromechanical, and defect features are exported along with the grain-wise label as a

table which is further processed and utilized in machine learning, see section 5.6.
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5.1 Material & specimen assessment

The applied experimental techniques, see section 4.3, permit a thorough investigation of the primary microstructure and defect

distribution. Structural features at the nanometer scale such as potential grain boundary segregation or precipitate distribution

can not be resolved with the aforementioned workflow and characterization methods. Their comprehensive characterization

typically requires destructive techniques such as atom probe tomography, nanoscale secondary ion mass spectrometry, or

transmission electron microscopy, which can be applied subsequent to the process chain proposed in this work.

The high chromium content of EN 1.4003 amounting to 11.9 wt% renders the presence of precipitates or grain boundary

segregation of chromium carbides very probable. For a large range of technically relevant steels, chromium in iron forms a

substitutional solid solution. In literature, solubility limits of 9 wt% were reported previously [273, 274]. However, the solu-

bility in technical alloys, is known to vary depending on the overall alloying composition. Indeed, the spotted appearance of

light optical micrographs after Nital etching suggested the presence of finely distributed carbides across the whole micrograph

in the longitudinal and cross-section of the rod, see figure 5.1a, b.

However, from such LOM micrographs, it is neither possible to indisputably validate the presence of precipitates nor to

derive preferential precipitation sites or quantify precipitate size distribution to deduce implications for Orowan strengthening.

Therefore, solution hardening, precipitation hardening, or a combination of both could be at play in this material. Moreover,

larger elongated inclusions are annotated with arrows in both subfigures 5.1a, b and reach lengths of up to 50 µm in the

rod extrusion direction. Additional energy-dispersive X-ray spectroscopy in longitudinal sections of the rod revealed these

being manganese sulfide (MnS) inclusion lamellae (type II and type III) [275]. Owing to the mesoscale fatigue specimen

fabrication, inclusions and are oriented along the specimen out-of-plane direction. The inclusions and resulting pores present

at the surface exhibit equivalent diameters of 0.1–6.0µm with a peak in the distribution between 0.1–1µm.

In terms of the primary microstructure, microtexture EBSD images in figure 5.1c, d, representing the longitudinal and cross-

section of the rod, reveal anisotropic grain shapes. A single-phase ferrite microstructure with rather large, irregularly-shaped

grains is present. The irregular grain shape points towards GB pinning during recrystallization, potentially due to Zener-

type pinning at precipitates. This in turn, this hints at larger volume fractions of finely dispersed particles since it favors

Zener pinning [276]. The color code in these images represents the three standardized Bunge notation Euler angles as one

of the red, green, and blue (RGB) color channels each. In the cross-section subfigure 5.1d, the average equivalent diameter

amounts to deq ≈ 25.5µm. The weighted average of intercept length corresponds to 20.3µm and individual grains reach up

to 70 µm in intercept length. The specimen alignment relative to the rod results in slightly elongated grains in the out-of-plane

direction of the specimen (5.1c), where the grain intercept length exhibits a weighted average of 20.7µm and for few instances

reaches up to 113 µm (higher variance). In few grains, the material contains crystallographic deformation twins as annotated

by the arrow in figure 5.1c. In bcc metals, deformation twinning was reported to occur prior to macroscopic yielding [277].

Moreover, deformation twins were found to be preferred sites for crack initiation in ferritic steels [278]. When relating typical

grain intersection length with the specimen dimensions in the tapered section, it can be stated that on average 17 grains are

present along the thickness direction and 23 grains in the width direction.

While aforementioned, microtexture maps were acquired from arbitrary metallographic sections of the rod, also larger scans

were conducted on the whole highly loaded specimen surface. These scans contain approximately 1.2 million ferrite-indexed
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Figure 5.1: Overview of the microstructure. Subfigures a) and b) represent light optical micrographs of the Nital-etched 1.4003 surface as a longitudinal

and cross-section of the rod, respectively. Manganese sulfide inclusions are indicated by the arrow annotations. The spotted appearance indicates

the presence of precipitates at grain boundaries and grains. Figures c) and d) indicate Euler coloring EBSD maps in longitudinal and cross-

section, respectively, adapted from [252]. In this color code, the three normalized Bunge notation Euler angles φ1, Φ, φ2 represent the red, green,

and blue color channels, respectively. The anisotropic grain shape with elongated profiles in c) becomes apparent. Moreover, an instance of a

crystallographic twin is annotated in c).

points on a 0.6µm step size grid and span an area of roughly 520× 980µm2. Pole figures plotted from such large scans for

two arbitrary specimens’ sides reveal a fiber texture in this material, see in figure 5.2.

Specifically, a 〈110〉 fiber texture where 〈110〉 equivalent directions are preferably aligned with the rod extrusion direction

(the center of the pole figures) is observed, see the middle column of figure 5.2. This represents a typical texture for such

extruded rod materials [279]. The multiple of random (MOR), i.e., how much more often an orientation occurs relative to a

uniform orientation distribution is in the order of 2.8–3.6. This indicates a comparatively weak texture. From the comparison

of both rows in figure 5.2, one can observe that while trends in the orientation distribution are very similar between the rows,

the relative scale of specimens and microstructural domain sizes result in a non-representative macroscopic texture. This

general trend was confirmed for both sides of four specimens, i.e. eight such surface EBSD scans.

On the other hand, the grain size distribution and particularly the grain boundary disorientation were found to be largely

representative across specimens, see figure 5.3. Note that for the grain size distribution plots, truncated grains at the edge

of the specimen or scan area were not removed. The actual misorientation distribution function (MDF) represented as a bar

plot is shown to largely coincide with the untextured reference (Mackenzie distribution). Owing to the cubic symmetry, the

highest observable misorientation is limited to 62.8° and in untextured materials, the most frequent observed misorientation

corresponds to 45° [280]. As a consequence of the slight texture inferred from the pole figures (figure 5.2), the actually

observed MDF is slightly shifted towards lower misorientations in comparison to the untextured reference.
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Figure 5.2: Orientation distributions illustrated as pole figures for 〈100〉, 〈110〉, and 〈111〉 crystal reference directions (columns) as well as two arbitrary

specimens’ sides (rows). The center of each pole figure represents the rod extrusion direction and the edge any normal direction. X and Y indicate

the in-plane specimen axis and the specimen width direction.

Lastly, the variation in specimen shape is addressed. Tapered region width and thickness values measured from light micro-

scopy exhibited a Gaussian distribution and corresponded to 468± 5µm and 355± 6µm, respectively. Geometry variations

among specimens, especially in specimen thickness, lead to differing stress gradients since the bending slope is used as

a control parameter during fatigue testing. Such fabrication induced-scatter is inevitable and renders specimen dimension

measurements necessary.

Aside from such macroscopic deviations, specimen edge rounding is introduced as shown previously, see figure 3.9. When

considering the load distribution shown in figure 4.2, it is easy to assume that such a rounding can cause deviations in testing

from the target stress state. Since different present constituents, α-iron and manganese sulfide inclusions, exhibit distinct

chemical potentials as well as mechanical characteristics, local pore formation occurs. This occurs due to the electrolytic

dissolution of MnS particles at low voltages [281] and load-induced detaching inclusions from the primary microstructure,

respectively. The OP-S polishing causes a weak surface relief, i.e., marginal asperities at grain boundaries.

5.2 Damage topography characterization and assessment of the in-situ

imaging

There are intricacies involved with in-situ imaging, owing to the high-speed specimen movement and the specific illumination

conditions. To characterize the imaging properties, the dependence of its resulting local grayscale image texture on the

slip marking topography (i.e., protrusions) is investigated. Therefore, atomic force microscopy (AFM) maps are acquired.

Through this, the question is addressed, whether these light optical images can provide insight into not only qualitative but

also quantitative damage assessment. Even the character of dislocation slip can be characterized with the AFM technique [69].

Moreover, AFM maps contain information on microscopic topography changes such as polishing-induced surface reliefs at

grain boundaries. In Figure 5.4a and 5.4b, a comparison of both modalities is illustrated for two protrusion instances.
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Figure 5.3: The left and right column of these bar plots represent the relative grain area distributions and the measured misorientation distribution function

(with an untextured reference), respectively. Each row represents one of two arbitrary EBSD scans in the highly loaded specimen region.

For assessing which quantitative surface feature is captured in the local pixel intensities of the light optical images, multi-

ple topographic features of slip markings were computed. Extracted features from the AFM information included various

roughness metrics and geometrical quantities. Namely, the extruded maximum and average elevation, protrusion ground area,

volume, and area originating from projecting the protrusion topography onto the axial LED’s emitting plane AAP (scattering

cross-section) were considered. These features were computed relative to the host grain background elevation. Analogously,

for each investigated protrusion, features were computed for the elevated intensity regions in the light optical images. The

features comprised elevated intensity area and maximum, pixel-averaged, and pixel accumulated intensity. The data set used

in this study comprised eight distinct protrusions. Subsequently, these features were evaluated with regard to their linear

correlation using a feature correlation matrix. This indicated that AAP shows the strongest linear correlation with the accumu-

lated intensity (see figure 5.4c). For this pair of variables, the Pearson correlation coefficient was R = 0.88. It can be observed

that especially for larger protrusions the data points deviate from the fitted line. The average of the maximum heights of all

investigated protrusions amounts to 0.24µm where the highest measures 0.39µm. Moreover, from the AFM measurements

height elevations of 9–45 nm at grain boundaries can be found considering ten distinct grain boundaries.

In the following, these methodological results are discussed. The image formation is assumed to rely on both specular reflec-

tion and diffusive reflection (scattering) at protrusions. This assumption is founded in protrusions superimposed by extrusions

and intrusions typically exhibiting a range of spatial frequencies across the roughness spectrum (power spectral density). The

scattering portion strongly depends on the ratio between RMS surface roughness (or scale of surface features) and the wa-

velength [214]. Some surface features resulting from accumulated slip are often comparable to the wavelength of the blue

light used for illumination [198]. It is plausible that the correlation of AAP to the accumulated intensity is more pronounced

than that of the extruded volume. This can be justified in a first approximation by the accumulated intensity depending on

the protrusion cross-section illuminated under the fairly flat light incidence angle. The observation that for larger projected
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Figure 5.4: a), b) Two exemplary comparisons of protrusions in cleaned AFM topographic maps with corresponding light-optical images after fatigue

(inlays). c) Correlation plot between accumulated intensity from the light-optical images and the projection of protrusion topography onto the

emitting surface of the axial LED. Adopted from [36].

areas deviation from a linear behavior occurs (see figure 5.4c), can potentially be attributed to a more notable dependency of

the accumulated intensity on the not considered protrusion surface orientation as protrusion size increases. Moreover, in this

study, the position of the protrusion across the slightly bent surface is not taken into consideration.

The different image textures in both modalities, cf. figure 5.4a and b with their inlays, imply a distinct protrusion shape.

Arising differences can be primarily ascribed to the bidirectional oblique lighting conditions. The substantial impact of the

azimuthal illumination angle on the imaging of a static object was demonstrated in [213]. It was shown that occlusion prevents

the realistic imaging of three-dimensional objects when few azimuthal illumination directions are applied. When temporal

imaging of dynamically evolving surface topography such as protrusions under motion is concerned, this is further compli-

cated. In large grain size and single-phase materials, these slip markings, as observed here, are often extensive protrusions.

Especially, in this case, pronounced topography changes in the course of cyclic loading occur. Then occlusions can sensitively

impact the imaging and potentially lead to an overestimation of topography change. On the other hand, the distinction between

microstructurally short cracks and slip markings by inspecting local intensity distributions in these light optical images is not

always straightforward. In conjunction with the fact that cracks in many materials originate at surface plasticity traces, this

impairs the crack initiation life determination from these optical image series. Despite these non-ideal imaging characteristics

of the optical setting, microstructural damage emergence can be detected reliably. Many of the aforementioned challenges can

be alleviated through data fusion with highly resolved, feature-rich modalities such as SEM and deduced damage segmenta-

tion maps. Such damage maps reliably localize cracks, and surface slip markings pixel-wise and hence improve damage type

distinction as well as counteract shading for improved damage connectivity inference. The procedure for image data fusion

is outlined in section 3.6. In conclusion, this study indicates that utilizing the light optical time series to derive quantitative

protrusion information is adequate in a first approximation. This is fostered through the data fusion approach and applies in
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particular for smaller protrusions. In the future, improvements of the illumination conditions could facilitate a more reliable

quantitative analysis of larger protrusion instances as well.

5.3 Validation of multimodal registration methodology and deformation

mechanisms

To qualitatively assess the multimodal registration approach, a comparison between two inverse pole figure color-coded EBSD

maps acquired before (figure 5.5a) and after fatigue (5.5b) is performed on the same specimen section. While the former

contains the overlayed damage map (black) deduced from SEM imaging after fatigue and hence represents the proposed

registration approach, the latter is superimposed with the intrinsic confidence index (CI) channel of the EBSD data. For

straightforward comparison and illustration, both damage types, originally differentiated in SEM images by the DL damage

segmentation model, were merged in figure 5.5a.

Figure 5.5: a) Inverse pole figure map before fatigue with the reference direction being the normal direction (ND, 001S), i.e. pointing out of the specimen

plane. Damage locations from DL semantic segmentation in black from the SEM image after fatigue are registered and superimposed onto

the microstructure. The dashed box highlights a crack location investigated subsequently. b) Inverse pole figure map after fatigue in the same

orientation setting. In this case, the intrinsic confidence index channel of the EBSD data is superimposed as a gray value distribution indicating

damage locations and polishing artifacts. c) The same as a) but considering twin boundaries and without superimposed damage. The twin

boundaries are colored in white. Two inlays show a magnified view of a region (ellipse annotation) with micro twins before (1) and after (2)

fatigue. The EBSD maps were post-processed identically but show a distinct distribution of microscale deformation twins. Arrow annotations in

inlay (2) show regions of grain deformation after fatigue. The scale bar, the color code reference triangle, and the specimen coordinate system

apply to all images, except the magnified inlays. Adapted from [36].

The comparison of both images gives also an indication of the EBSD data processing. Figure 5.5a shows the inverse pole

figure color-coded map after the EBSD cleaning and grain reconstruction routine outlined in section 4.3.2. Intragranular mis-

orientations present in few grains are preserved during the cleaning routine. This allows computing meaningful intragranular

misorientation features, such as grain orientation spread, for the grain-wise damage classifier. As mentioned in section 4.3,

there are microtwins present in the material, see figure 5.5c (white borders).

With respect to a grain-wise ML approach, such microtwins would skew the data set towards small grains. Moreover, in fer-

ritic steels, twin boundaries are known to behave differently from random GBs [282]. Therefore, for computing the machine
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learning features, it was opted for an EBSD reconstruction which does not consider twin GB as grain delimiters. Such recon-

struction results in a primary microstructure as depicted in 5.5a, where micro deformation twins are largely absent. Instead

of considering twin boundaries as grain delimiters, the total twin boundary length contributing to a grain was considered

as a numerical feature for each primary grain in the subsequent machine learning modeling. The shown twins are largely

incoherent, i.e. their grain boundary plane does not contain the misorientation axis. As a criterion to detect these boundaries,

the actual misorientation is permitted to deviate less than 5° (rather than complying with the ≈ 8.7° from Brandon’s criterion

[283]) from the orientation relationship 60°〈111〉 (Σ3 boundary). Aside from the microscopic deformation twins present from

processing (see figure 5.1c+d or figure 5.5c inlay 1), deformation twins are present after fatigue as well (figure 5.5c inlay 2).

Specifically, the twins, when exposed to high cycle fatigue loading, seem to change their position. This could be related to

them dissociating into dislocations [284] which then propagate through grain boundaries. This alteration of twinning sites

was found to be accompanied by grain deformation in the immediate neighborhood, cf. inlay and inlay 2 at arrow annotations

at GB triple points. Nonetheless, crystallographic dislocation slip is the primary mode of plastic deformation. Thin residual

scratches or plasticity traces shown in figure 5.5b were mirrored by traces of slight misorientation in the raw EBSD data prior

to cleaning. Neither microtwins nor residual scratches/plasticity traces show spatial correlation with the emerging damage,

on a first glance.

From figure 5.5a+b it is evident that multiple fatigue-induced damage locations (black regions) emerge across the specimen

microstructure. Typical instances of microstructurally short cracks and protrusions developing the highly chromium-alloyed,

ferritic EN 1.4003 steel are depicted in figure 3.5. Apart from some crack sections that propagate in a transcrystalline manner

and few protrusions developing at processing-induced pores, the damage is localized to grain boundaries. This is assessed

quantitatively in appendix figure A.1 by comparing relative Euclidean distances between real or randomly sampled damage

pixels to their closest GB. The reference grain size to compute the relative Euclidean distance was the halved minimal Feret

diameter of the corresponding host grain. Moreover, a comparison of figure 5.5a and 5.5b shows that the positions of damage

locations with respect to the microstructure are in accordance. This applies to the whole highly loaded specimen region

illustrated here, including the vicinity of specimen edges. Differences in shape and extent of individual damage locations

arise between both images.

The discussion on the registration methodology is presented subsequently. Damage instances in both images (figure 5.5a

and 5.5b) being spatially correlated within the microstructure implies that the applied affine and elastic transformations

appropriately correct global alignment and trapezoidal distortion superimposed with further distortion effects. The proposed

registration methodology, in contrast to grid calibration, in theory, provides the possibility to correct the specimen geometry-

dependent part of the distortions as well. Indeed, even at specimen boundaries where such geometry-induced distortions

arise due to edge rounding, the alignment of damage with microstructural features in both images is widely conformal.

The multi-stage registration process was employed to exploit pair-wise similarities between the modalities, rendering the

assignment of point correspondences easier. Similarly, it was observed that for registration of different SEM images from

in-lens, backscatter and Everhart-Thornley type detectors, it is beneficial to use in-lens as an intermediate registration target

as it combines information about atomic number and topography and therefore exhibits similarities with both other SEM

image modalities. Furthermore, the multi-stage registration using a comparatively undistorted intermediate target (stitched

SEM before fatigue) ensured that all modalities are well aligned. In contrast, registering directly to EBSD which contains

notable distortions can cause misalignment between modalities. Depending on the degree of deformation and cracking, it

can be beneficial to apply an elastic transformation to accommodate for the specimen deformation between the different

specimen states captured in both SEM stitch images. The same applies to the registration of the in-situ time series. While

for the in-situ registration outlined in section 3.4, the first image acted as the registration target, it can be beneficial to use

the final in-situ image as the registration target as well. That way the multimodal registration path can be altered and the

post-mortem SEM can be utilized as an additional intermediate target. This is beneficial in the case when there are barely any

static features present on the specimen surface (e.g., pores, particles, residuals) since then damage image features can be used

for the challenging multimodal registration process.

The good spatial correlation of damage instances between figure 5.5a and 5.5b indicates also that the DL damage segmenta-

tion is working well. Nonetheless, there are some discrepancies in the shape of damage locations. These can presumably be
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attributed to the fact that the DL segmentation model was trained to detect specific local and contextual image textures in

topography-sensitive SE2 images rather than small-scale plasticity in the vicinity of slip markings that do not culminate in a

surface change. Moreover, in contrast to the confidence index metric, the deep learning approach can discern surface conta-

mination from damage. Even though protrusions and cracks, as predicted by the DL approach, were merged for visualization,

the possibility to reliably discern damage types distinguishes the proposed multimodal workflow from inferring damage from

EBSD data after fatigue. Furthermore, comprehensive microtexture information is accessible due to the absence of plastic

deformation in the collected EBSD data before fatigue. In the future, automated alternatives for the multimodal registration

process are required to avoid the manual selection of point correspondences between both images. However, the appearance

of the multimodal images strongly depends on the material and its processing route. In the ferritic steel at hand, after OP-S

polishing, mostly pores pose surface features that can be utilized for multimodal registration. However, these features are not

only sparsely distributed but also exhibit high similarity hampering their automatic matching between modalities. Having an

automated registration concept would render the post-processing chain fully automated. Recently, methodologies that employ

CNNs for multimodal image registration were introduced [285, 286] that can potentially alleviate this issue.

5.4 Fatigue crack initiation and propagation experiments

5.4.1 Damage growth kinetics

In the following analysis, the information content of the data sets with respect to cyclic damage evolution is evaluated.

Initially, the overall fatigue life is assessed briefly. This solely serves the purpose of providing intuition for the fatigue loading

regime and the final degradation state. Afterward, an actual objective of this work is tackled by breaking the total cyclic life

down to its mechanistic stages such as protrusion formation, crack initiation, and short crack growth. The S-N plot relating

the fully reversed stress amplitude to the number of cycles until failure for all tests is illustrated in figure 5.6.

Figure 5.6: The cyclically applied von Mises stress amplitude plotted over the number of cycles until failure. Plotted stress amplitudes are extracted from

the aforementioned simulation methodology. All tests were performed under high or very high cycle fatigue loading. Arrows indicate tests that

were run-outs.

Most specimens investigated in the course of this work did not match the failure criteria (i.e., a relative frequency drop of

1E-3) before reaching the stopping criterion of 109 cycles and are therefore considered run-outs. Only cycles at loads above

97% of the target load were considered to contribute to the total cycle count. The applied loads culminated in tests located
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around the fatigue limit where mostly microscopic plasticity in individual grains occurs and the irreversibility threshold is

barely exceeded. As observed here, this fatigue regime is characterized by a substantial life scatter. In the bending resonant

loading, fatigue failure is initiated always at the surface. The initial resonant and testing frequency ranged from 1910–2250 Hz

for all tests owing to the scatter in specimen geometry. Within this frequency span, no frequency effect-induced change of

dislocation glide mechanisms is anticipated. The specimen thickness variance mentioned in section 5.1 led to differences in

bending stress gradients. During the adjustment phase of the experiment, a typical overshoot of less than one percent was

observed.

Figure 5.7: Protrusion formation life N50 as a histogram and plotted together with the local, isotropic-calculated von Mises stress from FE simulation. The

probability distributions on the right compare which stresses arise in arbitrary grains and in the ones containing protrusions.

In figure 5.7, a damage initiation plot for individual protrusions is provided. These lifetimes originate from four specimen

sides for which image series are acquired entailing 193 protrusions. They are inferred from the computer vision-based ap-

proach outlined in section 3.7 and confirmed by manual inspection. Specifically, the function in equation 3.1 is fitted to the

accumulated intensity evolution of each protrusion instance. It can be seen that most primary protrusions growth occurs in

the range 1·106 – 2.5·106 cycles. The stationary protrusion growth was found to be abrupt and stagnated shortly after the

given cycles. Growth rates κ in the range of 1·10−6 – 1·10−4 were found to be typical. This is in line with observations

made elsewhere [198, 222]. At later cycles, a few secondary protrusions form. Moreover, fluctuations in the final intensity

are observed. These fluctuations are attributed to noise in the area as can be observed in figure 3.12 and shadowing due to

topography alterations. Aside from cyclic damage formation, the figure also contains an assessment in terms of local stress

amplitudes taken from the superimposed FE von Mises stress map. The right image shows probability distributions for the

stress in arbitrary grains (turquoise) and damaged grains (blue). From this comparison, it is evident that the occurrence of

damage instances is to some degree spatially correlated with grain von Mises stress. Note that this study does not capture the

influence of elastic or plastic incompatibility on stress modulation.

Another analysis performed was evaluating the influence of Schmid factors on the emergence of protrusions. This analysis,

rather than stress magnitude, captures the influence of crystallographic orientation with respect to the specimen axis. Multiple

inverse pole figures (IPF) of specimen axis orientation distributions were computed, see figure 5.8, following [17]. The black

dots in subfigures 5.8a and 5.8b describe the specimen axis orientation in the crystal coordinate systems of EBSD pixels for

which damage was observed. Maximum Schmid factors for a range of grain orientations can be computed and illustrated as an

isoline contour plot within the IPF (dashed lines), see figures 5.8a and 5.8b. During maximum Schmid factor computation in

figure 5.8a, only {110}〈111〉 slip systems were accounted for, while isolines in Figure 5.8b included {112} and {123} bcc
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slip systems as well. In this case, neither a distinction between slip systems of different slip plane families nor asymmetries

within specific slip planes is made. In figure 5.8b, additionally, an orientation distribution function (ODF) was estimated from

the loading axis distribution at damage containing pixels applying a de la Vallée Poussin kernel [287] with a halfwidth of 2.9°.

In contrast, figure 5.8c shows the ODF (halfwidth = 2.0°) for all pixels contained in the EBSD scan as a reference. Different

kernel halfwidths were chosen to account for the distinct amount of data points in both scenarios. The ODFs are measured in

multiples of random.

a)

1

32

b)

5

4

c)

Figure 5.8: Inverse pole figures showing specimen axis [100] distributions. a) loading axis orientations at EBSD pixels which contain damage and isolines

indicating the maximum Schmid factor considering bcc {110}〈111〉 slip systems. b) shows the same as a) except that max. Schmid factor

isolines were computed considering all three slip plane families. Additionally, an ODF is superimposed on b) for easier comparison with c),

which illustrates the ODF of the specimen axis for all EBSD pixels. Some considerable resulting peaks in the ODFs are annotated with star

symbols. Values on the colorbar indicate multiples of random. Adapted from [36].

From figure 5.8a, it becomes apparent that indeed a large part of damage containing EBSD pixels exhibited orientations

resulting in Schmid factors exceeding 0.48. This applies even more, when all three potential slip plane families in bcc are

considered (figure 5.8b). The loading axis ODF considering only crystal orientations at damage locations in figure 5.8b shows

three peaks, one pronounced peak (1) with MOR of approximately 6 and two minor peaks (2, 3) with MOR in the range 3–4.

These peaks are situated in close proximity to the centers of the isolines of either slip system family associated with the

highest Schmid factors. Similar to the correlation with FE stress, the Schmid factor can be considered a contributing factor

but not a sufficient condition for protrusion emergence. Furthermore, protrusions were found to be clustered at high-angle
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5.4 Fatigue crack initiation and propagation experiments

GBs. In a few cases, such slip markings were found to traverse through grain boundaries. Due to the apparent variety of

independent variables and anticipated interactions between them, machine learning was applied to attempt to explore the

different driving forces and their relative importance on protrusion formation which will be presented later.

In this material, protrusions are not the only precursors for high-cycle fatigue crack initiation. While some cracks originate

at such slip markings, also preferentially-oriented grain boundaries and to a lesser extent pores and MnS inclusions act as

sites for crack initiation. Due to the scarcity of crack instances across the observed specimens, a quantitative assessment and

statistical analysis of the dominating crack initiation mechanism proves difficult. Hence, rather than aiming for a data-driven

approach to infer driving forces for short crack growth, in the following, individual crack instances are considered analytically.

Therefore, the region annotated with a dashed box in figure 5.5, which contains a microstructurally short crack, is superimpo-

sed with the in-situ image series, see figure 5.9a–l. Moreover, the states before and after fatigue acquired with SEM in figure

5.9n and 5.9o, respectively, pose references. Figure 5.9m shows the DL-derived damage map downsampled to the resolution

of EBSD and therefore appears coarser than figure 5.9o.
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Figure 5.9: Subfigures 5.9a–l represent an image series of intensity evolution ascribed to topography changes from slip marking and crack formation and

growth superimposed onto an inverse pole figure map. The numerical value at the top of each image represents the corresponding cycle number

at which the image was captured in [·106]. In figure 5.9m, a multi-class segmentation map with cracks (green) and extrusions (blue) is shown,

which was downsampled to the resolution of the EBSD. These are complemented with two SEM images captured prior to (figure 5.9n) and after

fatigue (figure 5.9o). The SEM image prior to fatigue (subfigure 5.9n) contains grain numbers and the image after an illustration of the crack

growth stages, where blue arrows indicate crack initiation locations and black arrows indicate crack growth. Moreover, green arrows point out a

loop-shaped slip marking (better visible in the digital version due to faint contrast) The turquoise arrow in figure 5.9o annotates a surrounding

protrusion. Adapted from [36].

From the post-mortem SEM in figure 5.9o, it is observable that two separate crack branches are present. This can not be

resolved in the later stages of the in-situ image series (figures 5.9e–l). However, the two distinct elevated intensity regions

emerging in figure 5.9b indicate that two distinct intergranular cracks originated in close vicinity (approximately 5-10µm

gap). From the image series, it can be deduced that upon crack formation, both crack instances exhibit bidirectional crack

growth. Subsequently, the cracks converge and, based on the in-situ image series, seemingly merge. However, from figure

5.9o, it is uncertain whether the cracks merged or growth concludes with a stress-relaxed state that prevents the two cracks

from fully merging. In contrast to this, the other ends of the cracks proceed to grow and exhibit arrest at microstructural

defects. The upper crack part transitions from an intergranular crack to a transgranular crack and subsequently undergoes

growth direction changes (see figure 5.9o). In subfigure 5.9o, damage which occured early during fatigue (see subfigure 5.9a)

is annotated with an turquoise arrow.
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In order to analyze the crack growth rates and barrier mechanisms, the crack branches were considered individually, as

illustrated in figure 5.9m. The assumption is made that the elevated intensity solely originates from the crack growth, even

though there are intensity contributions from the crack and the surrounding crack-induced surface plasticity. The crack growth

of the upper and lower crack branch is illustrated in figure 5.10a and 5.10b, respectively.
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Figure 5.10: Cyclic crack length evolution demonstrating five instances of crack growth retardation. The insets 1–5 show the states at which the growth

was retarded due to different phenomena. A pair of dotted vertical lines indicate the run-up of the fatigue amplitude. The vertically aligned ∆N

values next to the insets quantify by how many cycles the crack growth was obstructed. Adopted from [36].

In the following, we describe the results by referring to specific grains and grain boundaries by means of the designations

introduced in figure 5.9n. Crack initiation and growth occurred shortly after reaching the target amplitude (vertical dotted line

in figures 5.10a and 5.10b). Both figures show distinct plateaus in the course of microstructural crack growth. At every plateau,

the growth is obstructed for a few 105 cycles. While the plateau #1 in figure 5.10a occurs at a surface residing grain boundary

when transitioning from intercrystalline to transcrystalline crack growth, the crack resting at the other plateaus does not show

any indication of superficial defect interaction. However, in the plateau #2 in figure 5.10a, reorientation of the crack occurs,

resulting in subsequent crack growth nearly orthogonal to the horizontally oriented specimen axis. In this section the growth

rate reaches its upper limit of da/dN = 1.5 ·10−4µm/cycle. A comparison of the upper crack path in the transgranular section

(in G1) with potential slip planes indicated that some of the collinear crack segments with distinct directions approximately

coincide with the potential {110}[111] trace orientations. The slip plane traces of the {110}, {112}, and {123} slip plane

families are provided in the appendix. The crack observed in the lower crack part is retarded when the intercrystalline crack

at the G1-G2 boundary meets the G1-G2-G3 triple point and transitions into a transcrystalline crack in G3 (figure 5.10b #4)

and when the crack transitions trough the G3-G4 border (figure 5.10b #5). At triple points, typically a pronounced mismatch

of mechanical properties is present which can, depending on the detailed configuration and presence of special GBs, promote

or inhibit crack growth [288].

In another case, which posed the exception, crack initiation occurred at a pore situated at a low disorientation GB (25°). This

damage location is depicted in figure 5.11. Upon early crack nucleation after 1.3 · 106 cycles. Crack growth occurs on slip

planes in both adjacent grains consecutively, as indicated by the arrows in figure 5.11b. Initially, the upper grain boundary with

high disorientation (54°) poses a barrier to crack propagation. This induces crack growth in the bottom grain where the crack

exhibits a variable path alternating between crystallographic planes such that it overall grows approximately perpendicular

to the specimen axis. Ultimately, the crack is stopped at another high disorientation grain boundary (46°). Whenever damage

arose due to pore-induced stress concentration, it happened at very early stages of fatigue, sometimes even before reaching

the macroscopic target stress, i.e. during the experimental run-in.
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5.5 Segmentation of fatigue damage locations
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Figure 5.11: a) Light optical grayscale image series to track crack formation and evolution. The black lines indicate grain boundaries and the numbers

the corresponding load cycle numbers. b) Secondary electron SEM image of the final crack state. The numbering and arrow annotations

illustrate the crack initiation (blue) and growth process (black). Grain boundaries analogous to a) are faintly visible through discontinuities in

the grayscale contrast (better visible in the digital version) and therefore highlighted with dashed lines. Adapted from [37].

5.5 Segmentation of fatigue damage locations

In this section, the results of the three experiments (1–3) outlined in the experimental section 4.5 are presented covering the

semantic segmentation of fatigue-induced extrusions and cracks. Initially, U-Net models trained only with augmented ferrite

data sets were evaluated on ferrite (source) to demonstrate the feasibility of DL-based damage detection (1) in section 5.5.1.

Subsequently, the material domain generalization of the same models with respect to the target domains martensitic steel and

copper was investigated (2) in section 5.5.2. The objective was to research whether the models learn a general representation of

surface slip markings, or if more elaborate measures are required to ensure applicability to a multitude of materials. Extending

on this, models were trained in a multi-domain setting on both steel data sets and tested on all data sets (3) in section 5.5.3.

The large variance of the three data sets and their different sources are described in section 3.3. To account for the variance, all

sections comprise the investigation of data augmentation’s influence on segmentation performance. Thereby the importance

of data augmentation for data sets that contain significant variance is assessed. Moreover, the question of whether standard

image transformations can improve out-of-domain generalization to alternate materials by rendering the model invariant with

respect to specific changes in input image texture is addressed by this. In order to account for the imbalance between the

data sets, imbalance correction strategies were applied. The data augmentation hyperparameter studies were performed for

downscaled images to keep the training time maintainable. The results presented here are to a large extent adopted from [37].

5.5.1 Source domain model evaluation

The source domain model serves the purpose of investigating the feasibility of DL-based semantic damage segmentation.

Furthermore, the impact of individual augmentations on the segmentation performance can be considered a reference for
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5 Results

the following study of out-of-domain generalization. In accordance with the approach described in section 4.5, multiple U-

Net models were trained from random initialization using the ferritic steel training set. Different individual augmentations

and augmentation configurations described in table 5.1 were tested. The thresholds and probabilities characteristic for the

individual augmentations can be found in table 4.3.

Table 5.1: Influence of augmentation pipeline on source domain performance. Note that in all tests, even in test #8, standard augmentations marked with

blue background color in table 4.3 are applied. The subscripts ’c’, ’e’, and ’o’, refer to crack, extrusion, and overall, respectively. Adopted from

[37].
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3 ✗ ✗ ✓ ✗ ✗ ✗ ✗ 0.74 0.52 0.75

4 ✗ ✗ ✗ ✓ ✗ ✗ ✗ 0.76 0.51 0.75

5 ✗ ✗ ✗ ✗ ✓ ✗ ✗ 0.70 0.51 0.73

6 ✗ ✗ ✗ ✗ ✗ ✓ ✗ 0.76 0.52 0.76

7 ✗ ✗ ✗ ✗ ✗ ✗ ✓ 0.76 0.50 0.75

8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0.75 0.52 0.75

9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.82 0.60 0.80

10 ✗ ✓ ✓ ✓ ✗ ✓ ✓ 0.81 0.66 0.82

11 N ✗ ✓ ✓ ✓ ✗ ✓ ✓ 0.84 0.71 0.85

Results are evaluated utilizing the intersection over union metric, see equation 2.24, of the classes extrusion (IoUe) and crack

(IoUc) in ferritic steel and later of extrusions in martensite and copper. Note that the background IoU is neglected as it is

approximately unity in every case due to class imbalance. Nevertheless, the overall IoU (IoUo) for ferritic steel is given.

IoU proves to be a suitable metric since, under the loading conditions delineated in section 4.4, damage arises only at a few

locations of the microstructure, which leads to a class distribution skewed towards the undamaged matrix (background).

Since the augmentation probabilities according to table 4.3 differ, it is difficult to draw conclusions between individual

augmentation types. However, comparisons against test #8 (baseline) are feasible which is a baseline augmentation case con-

taining only linear (affine) transformations such as shift, scale, rotations, and mirroring. The segmentation performance of

cracks is higher than that of extrusions by 0.10–0.26 points depending on the model. The extrusion class profits more from

maintaining the original resolution (cf. tests #10 and #11). It can be observed that brightness (#1) and Gaussian noise (#5)

augmentations cause detrimental effects on the IoUe and IoUc, respectively when compared to the baseline experiment with

minimal augmentations (#8). Taking into account only the models trained with down-sampled data sets, an increase of ∆IoUc

of 0.06 and ∆IoUe of 0.14 for the evaluation on ferritic steel was achieved employing a custom set of augmentations (com-

paring #10 with #8). This custom set included only augmentations that optimized performance on the ferritic and martensitic

steel domains.

In the following, the results of the ferritic steel trained model performing best on the ferritic steel test data set (table 5.1 #11)

are examined in greater detail. Figure 5.12 illustrates a case study of good and poor segmentation instances in a–f and g–l,

respectively.

Cases a–e in figure 5.12 show different types of protrusions that are segmented correctly by the network. Considerable changes

in texture, brightness, and contrast can be observed in these protrusion images. Cases 5.12a,b show shallow extrusions while
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Figure 5.12: Examples for common cases of extrusion and crack segmentations. Subfigures a–e and f–l represent extrusion and crack segmentation cases,

respectively. Note that the image border regions do neither show annotations nor predictions since the latter is not provided by the network in

these regions. Images j–l) are an exception to this as they show a subset of pixels. Adopted from [37].
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cases c–e show extensive ones. Example 5.12c shows that the presence of multiple slip trace orientations does not impede

the segmentation of extrusions. In cases 5.12d and e, the network distinguishes the extrusion area from the cracks and crack

debris very well.

Similarly, the images of cracks seen in figure 5.12f–i show that the network also learned to segment different types of cracks

under various imaging conditions. Case 5.12f shows a large crack while case 5.12g on the other hand shows a microstruc-

turally short crack that has been segmented accurately. In case 5.12h, a crack is detected correctly despite regions occluded

by crack debris. A crack that is differentiated from the accompanying protrusion can be seen in case figure 5.12i. Cases j–l

represent instances where crack segmentation was not accurate. In figure 5.12j, a fissured protruded area is depicted. Image

5.12j contains instances of arguably tiny microstructurally short cracks, which are on the verge of still being considered

intrusions (and hence associated with the extrusion class). Fatigue crack tip friction-induced debris covering large parts of

the crack is shown in figure 5.12k. Figure 5.12l shows a potential inclusion with a darker background concealing cracks and

hence impeding its detection.

5.5.2 Domain generalization

This section addresses the capability of ferritic steel damage-trained models to generalize to other damage domains. From

comparison of tables 5.1 and 5.2 it becomes apparent that the augmentations delineated in table 4.3 impact the performance

of the network in distinct ways for the three test data sets. A substantially larger IoU scatter is observed in the target domains,

where some augmentations prove particularly detrimental.

Table 5.2: Influence of augmentation pipeline on domain generalization performance. Note that in all tests, even in test #8, standard augmentations marked

with blue background color in table 4.3 are applied. The subscript ’e’ refers to extrusion. Adopted from [37].
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3 ✗ ✗ ✓ ✗ ✗ ✗ ✗ 0.68 0.07

4 ✗ ✗ ✗ ✓ ✗ ✗ ✗ 0.66 0.05
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6 ✗ ✗ ✗ ✗ ✗ ✓ ✗ 0.67 0.17

7 ✗ ✗ ✗ ✗ ✗ ✗ ✓ 0.67 0.09

8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0.51 0.06

9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.33 0.14

10 ✗ ✓ ✓ ✓ ✗ ✓ ✓ 0.26 0.14

11 N ✗ ✓ ✓ ✓ ✗ ✓ ✓ 0.61 0.15

Domain generalization to copper: At first glance, it can be inferred that the models trained on ferritic steel can generalize

seamlessly to the copper domain as IoUe values for copper exceeds the source domain IoUe for some models. However, upon

detailed analysis, it becomes apparent that the tongue-like extrusions, which constitute a small damage area proportion in

copper, are segmented erroneously (see figure 5.13a). The connectivity of multiple individual tongue-like extrusions in close

vicinity is predicted as merged connected ones as highlighted by the arrows. Moreover, it is noteworthy that every model

involving contrast augmentation showed comparatively poor performance for copper among the individual augmentations.
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Figure 5.13: Tongue-like extrusions in fatigued copper segmented by a U-Net model trained with a) the ferritic steel data set and b) a conjunct data set of

ferritic and martensitic steel.

Domain generalization to martensite: In contrast, domain generalization to martensite was unsatisfactory. Despite certain

augmentations leading to an increase of 0.08 on martensite, the final absolute IoUe of 0.14 is quite poor. Also, in contrast to

the observations in the ferritic steel, the martensitic steel IoUe increases when Gaussian noise is applied. In particular, the

elastic transformation seems to improve segmentation performance.

General remarks: Apart from a few exceptions, augmentations improve the average performance across all considered

domains relative to the minimal augmented experiments (#8). Most notably elastic distortion (#6) and to some extent optical

distortion (#7) boost the overall IoU in every domain. On the contrary, brightness and contrast augmentation should be treated

with care as these seem to potentially cause severe performance drops.

5.5.3 Multi-domain training

The results from the prior section indicated the demand for additional training in order to be able to generalize over multiple

materials domains and microstructures with substantial domain gaps. At the same time, results showcased potential domain

generalization of models for smaller domain gaps. Hence, training a model with few diverse materials (i.e. damage types)

representative for damage types in various materials was pursued over alternative generalization techniques. In our specific

case, indications were found suggesting that domain generalization of solely ferritic steel-trained models to martensite and

copper is limited due to the ferritic steel material at hand exclusively containing protrusions with superimposed extrusions

and intrusions. Therefore, further training with conjunct data sets adding martensite with tongue-like extrusion morphology,

and evaluation on all test data sets were performed.

In table 5.3, the training settings and corresponding results are described employing the optimized augmentation setting from

model #10 in table 5.1. Due to the imbalances between ferritic steel and martensitic steel data sets, see table 3.1, a few data

set imbalance correction (DSIC) strategies were attempted in tests #3 to #5. Since many scientific problems and thus data

sets are either intrinsically or extrinsically imbalanced, there is extensive literature on the imbalance correction, e.g. [163].

In this work initially, a sample weight correction (SWC) was tested in which correction factors dependent on the imbalance

between training data sets are incorporated into loss calculation. These factors (weights) for ferritic and martensitic steel

were computed based on the extrusion pixel ratio between the ferrite and martensite training data set. An alternate route was

tested with the sampling correction (SC), where the number of images sampled from both training data sets was matched

by over- and undersampling the martensite and ferrite data sets, respectively. These imbalance correction techniques were
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complemented with a third hybrid approach which combined SWC with over-sampling of the martensite data set and in the

context of this work is referred to as sample weight and sampling correction (SWSC).

Table 5.3: Results of different training and testing data sets including data set imbalance correction schemes. The letters ’m’ and ’f’ in the training set

column denote martensitic and ferritic steel. The subscripts ’c’, ’e’, and ’o’, refer to crack, extrusion, and overall, respectively. Adopted from

[37].
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6 N m+f SWSC 0.83 0.67 0.83 0.47 0.58

Performance on martensite: Initially, a target domain (martensite) trained experiment (#1) was evaluated on the martensite

test data and achieved an IoUe of 0.43. Typically, target domain-trained performances are considered to pose an upper bound

in performance [29]. Indeed, this reference value exceeds the value observed from the domain generalization of the ferritic

steel trained model (table 5.1 experiment #10) by a large margin. While the combined training (#2) is improving IoUe on

martensite compared to values achieved by domain generalization, it does not quite reach the reference value. Imbalance

correction alleviates this discrepancy. Significant improvements of 0.12, 0.08 and 0.12 on the martensite IoUe are observed

when SWC (#3), SC (#4) and SWSC (#5) is applied, respectively. When trained on the original resolution, the SWSC yielded

a martensite IoUe of 0.47. Overall the martensite damage segmentation performance is worse compared to that of other

materials.

Performance on ferritic steel: From the experiments, it can also be seen that including the martensitic data set for training

does not cause significant performance reductions on the ferritic steel data set. In experiment #2, the slight decline in IoUc

when compared to table 5.1 experiment #10, is compensated by a small improvement in IoUe. When additionally imbalance

corrections in favor of martensite are applied marginal reductions in ferritic steel performance are noticeable.

Performance on copper: The model trained conjunctly on ferritic and martensite steel without data imbalance correction

(#2), when tested on copper, showed an improvement over model #10 from table 5.1. It can be observed that this conjunct

model is capable of assessing the connectivity of close proximity tongue-like extrusions significantly better than solely ferritic

steel-trained models (see figure 5.13b). The issue of merging tongue-like extrusions is alleviated by adding strongly localized

martensite extrusions to the training. However, the balancing methods decreased the copper performance slightly.

With respect to #11 in table 5.1, an overall IoU reduction of 0.02 can be observed for the ferritic steel data set, while the

martensitic steel IoUe boosts by 0.32. In general, it can be inferred that when additionally martensite images were provided

to the network during training, a better generalization across extrusion types was achieved. After imbalance correction, the

network was able to attain segmentation performances for extrusions in ferritic and martensite steel, which matched the

performances of either network dedicated to the respective materials domain.

5.6 Random forest-based grain-wise binary damage classification

After successfully segmenting damage instances in an automated fashion, the damage information was mapped onto the

microstructures. This facilitated training a machine learning classifier to predict whether grains will contain slip markings or
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not from the initial state. Owing to minor residual misalignment after registration and the tendency of damage instances to

be situated immediately at grain boundaries, the damage instances’ assignment to individual grains was corrected by visually

inspecting the SEM image after fatigue. Whenever a part of a slip marking extended into a grain, it was considered damaged.

Following this approach, the degree of surface deformation differed significantly between damaged grains, as can be seen in

figure 5.12a–e.

5.6.1 Feature engineering

In order to predict the emergence of protrusions within grains by a machine learning classifier, a set of descriptive features

needs to be computed. Since environmental and surface topography influence factors were largely suppressed in this study,

and only one material was investigated in the context of fatigue, the focus was placed on capturing microstructural descriptors

and mechanical loading comprehensively. This entails microstructure morphology, crystallography (microtexture), and pore

defect attributes as well as hybrid features that couple mechanical loading with the former. A list of features is provided in

table 5.4. Justification for this choice of features was provided in section 2.1.3. For instance, the grain size is presumed an

important feature as, in absence of precipitates, it affects the mean free path of dislocations and the intensity of dislocation

pile-ups, and therefore the local strengthening behavior. Beyond table 5.4, further features are considered which are slightly

altered permutations and variants of the ones in the table. In total, 120 grain-level descriptors were considered to capture

various aspects of the microstructure, pore defect distribution, and loading. However, some of these engineered features are

highly correlated. In particular, this applies to the features addressing grain morphology. By considering not only individual

grains but also differences with respect to adjacent grains some contextual information is fed in during model construction.

The features which supposedly infuse information of neighbor grains into the classifier are marked with a green check mark

in table 5.4.

The set of features is extracted using an automated Matlab routine including different functionalities of the image proces-

sing and computer vision toolbox in combination with MTEX, a third-party toolbox providing a variety of crystallographic

routines.

5.6.2 Evaluation of slip marking prediction classifier

This section presents the training and evaluation of a classifier trained to discern grains that will contain fatigue slip markings

from grains resilient to surface damage accumulation. For this purpose, the initial state of the tested ferritic steel specimens

and the applied loading captured in the registered data is transcribed into the aforementioned feature set. All features were

imputed, i.e. missing values were filled by applying the mean value. Subsequently, all features were standardized to remove

the mean and scale to a variance of unity.

The complete data set derived from the multimodal data contains a total number of 7633 grains when discarding individual

microtwins as indicated in figure 5.5. This data set is generated from both sides of four specimens. The four specimens were

exposed to a distinct cyclic load corresponding to von Mises stress amplitudes ranging from 240 to 262 MPa. Owing to this

HCF loading, only 311 grains among these contained surface slip markings. All kinds of protrusions are taken into account,

irrespective of their time of emergence. This includes also protrusions that emerged at pores. Microstructurally short cracks

and surrounding crack-induced plasticity are not considered in this task. Hence, the data set comprises a rather pronounced

inherent imbalance where only 4.25% of the grains exhibit fatigue slip markings. An underlying assumption is that in the HCF

regime and the grain sizes of the material at hand, the localized damage instances, and both specimen sides are mechanically

decoupled from each other. Furthermore, modeling grains as individual instances without detailed contextual information

results in some degree of information loss. The data is split into train and test sets using stratified five-fold sampling to ensure

the same distribution of damage instances in each fold despite their scarcity.

As the model of choice, a balanced random forest implementation from the imbalanced learn python library was selected

[166]. A random search allowed identifying a presumably near-optimal set of hyperparameters. The number of individual
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Table 5.4: Engineered features containing information on morphology, crystallography, and loading extracted from the multi-modal data. The adjacent grain

(AG) column, and specifically the green check marks, indicate the features which contain information about neighbor grains.

Feature symbol Description AG

Morphological and topological features describing the shape and arrangement of grains and pores

Ap Grain area in pixel ✗

AmaxNeigh, Aneigh Max. and mean pixel area of adjoining grains ✓

Nneigh Number of neighbor grains ✓

LP Perimeter of grain boundary (inner boundaries are neglected) ✗

AR Equivalent area ellipse aspect ratio fitted to the grain ✗

Lma jAx Equivalent area ellipse major axis length ✗

LminAx Equivalent area ellipse minor axis length ✗

γ Ellipse orientation angle ✗

LmaxSPtrace Max. line intersection grain size in direction of maximally-loaded slip plane trace ✗

Bsb Boolean indicating specimen boundary grains ✗

Npore Number of surface pores in grain ✗

LporeSum/poreMax Accumulated pore diameter and maximum pore diameter ✗

Crystallographic orientation, misorientation and quality-related features

φ1, Φ, φ2 Mean Bunge Euler angles as crystal orientation representation ✗

ωmin/max,ω Min, max, and mean intergranular disorientation angle to any neighbor grain ✓

GOS Intragranular angular disorientation spread from average orientation, see equation 2.10 ✗

KAM Grain-averaged kernel average misorientation, see equation 2.9 ✗

Rtilt Proportion of tilt boundary candidates (< 15° angular deviation between GB segment trace and

2D GB crystallographic misorientation axis) with respect to overall grain boundary length

✓

Rtwin Proportion of Σ3 twin GB trace segments with respect to overall grain boundary length ✓

CI Grain-averaged EBSD confidence index, see [120] ✗

IQ Grain-averaged EBSD image quality, see [119] ✗

Loading-related and hybrid features

C Stiffness of a grain in the specimen axis direction ✗

∆Cmin/max, ∆C Min, max, and mean of specimen axis direction stiffness difference between adjacent grains ✓

σvMmax, σvM Grain mean and max continuum von Mises stress (FEM) ✗

mmax Grain max. of pixel-wise computed Schmid factors assuming axial tensile load ✗

m′ Slip transmission factor considering alignment of slip plane normal and slip direction [289] ✓

M Intergranular misorientation crack factor [290] ✓

fres Sample initial loading resonant frequency ✗

trees contributing to the model was set to 100, their maximum depth was restricted to 30. Each decision tree was trained

with a bootstrap sample of seven randomly selected features. Leaf nodes with a minimum sample of one were permitted.

Post-pruning (see section 2.3) was omitted.

Table 5.5: The confusion matrix for binary classification.

Prediction

Negative Positive

Actual
Negative 5326 1996

Positive 67 244

Table 5.6: Performance of a balanced random forest classifier predic-

ting the formation of protrusions.

Metric Train Test

Balanced accuracy 87.4 ± 0.3 75.3 ± 2.6

F1 score 25.2 ± 0.4 19.3 ± 1.2

ROC-AUC 98.4 ± 0.2 81.9 ± 2.2
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The confusion matrix in table 5.5 shows that the model learns a decision boundary that culminates in a high number of

false positives. This can be traced back to the application of class weights which weighs seldom damaged instances higher

during training resulting in an over-prediction. In contrast, a classifier supplied with an unmodified data set and without class

weights as a validation experiment was observed to put more emphasis on the negative class predictions resulting in many

false negatives. Table 5.6 lists several performance metrics which are commonly used for imbalanced data. Note that while

these metrics are commonly employed, the ROC-AUC can produce deceptive results when comparing different models on

imbalanced data [210]. The individual performance metrics are provided as mean and standard deviations obtained from the

five-fold cross-validation. The balanced accuracy metric poses the mean of the true positive rate (TPR) and the true negative

rate (TNR). All other performance metrics are introduced in section 2.3. While all performance metrics listed in table 5.6

are defined in a range from 0 to 100%, the distinct values which they adopt for this specific task and data set can be traced

back to the different confusion matrix elements which they take in consideration. It can be observed that there is a notable

performance gap between the training and testing metrics.

For an individual specimen, the grain-wise classification performance is illustrated by plotting the confusion matrix element

encoded as a symbol onto the corresponding grain centroid in figure 5.14.

Figure 5.14: An inverse pole figure color-coded specimen microstructure map with the reference direction being the specimen normal (ND, 001S). At the

each grains’ centroid a symbol is plotted that classifies its prediction in terms of confusion matrix elements (see table 5.5). A green circle and

a square indicate true positive and negative predictions, respectively. The red circles and squares correspond to false positives and negatives.

It can be observed that many small grains are correctly classified as undamaged. Exclusively small grains were falsely pre-

dicted undamaged. This indicates that the feature or classifier does not capture the cause for some small grains developing

protrusions. It can be observed that erroneous predictions are concentrated around the tapered region exposed to homoge-

neous and high load (cf. figure 4.2). Within this highly-loaded region, it appears that the classifier predicts all larger grains

indiscriminately to contain damage. These observations hold true for the other seven specimen sides as well.
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Nuanced microstructural differences can alter the local materials response in the HCF or VHCF regime strongly. Here, in

contrast to low cycle fatigue, local damage formation and evolution determines the fatigue life and its scatter. To transcribe

the realistic local material behavior into a model with high fidelity, a comprehensive microstructure and defect representation

as well as a solid mechanistic description at the microscopic scale is indispensable. Related modeling choices dictate whether

the model represents the onset of plasticity, dislocation glide irreversibility, and crack nucleation realistically. This renders

the task of predicting damage localization in these regimes very challenging. Aspects such as measurements and data post-

processing need to be performed meticulously to capture the influence factors across the different scales and to preserve all

relevant information. For instance, the disorientation threshold applied during grain reconstruction is known to affect the

resulting microstructure substantially [17]. This in turn dictates the modulation of the applied stress as well as the effective

impediments or nucleation sites for dislocations and cracks. The feature space is high dimensional. Even when considering

solely microstructure, its comprehensive description requires a multitude of characterization methods and derived descriptors.

However, non-destructive characterization methods which retrieve information on all microstructural flaws and other influence

factors whilst encompassing all necessary scales are unavailable.

Therefore, for the HCF/VHCF regime, a probabilistic framework might be necessary, which considers and propagates aleato-

ric and epistemic uncertainties of measurements, data processing, and modeling. A similar framework was recently proposed

to predict single crystal elastic stiffness parameters from spherical indentation of individual crystallographically-characterized

grains in a polycrystal [291]. Nowadays, most predictive efforts revolve around computational models which attempt to de-

scribe the elasto-plastic polycrystalline response either phenomenologically or mechanistically in finite element frameworks.

Moreover, machine learning approaches were proposed motivated by incomplete mechanistic knowledge [105, 106]. Proba-

bilistic data-centered approaches to deduce relations in the data such as Bayesian neural networks or deep ensembles exist

[292]. However, in presence of incomplete feature representations afflicted by uncertainty, even more grains are required to

infer statistical correlations, causal relationships, and an understanding of variable interactions. This applies not only to the

training of feature-based or representation learning approaches but also to physical, rule-based models during their appro-

priate model parameterization and validation. For both objectives, a well-curated, consistent, high-fidelity data set is highly

beneficial. For data-driven approaches, such data can render model training more efficient, reduce data demand, and avoid

model bias. An aggravating attendant circumstance that increases the data demand further is that HCF fatigue damage loca-

lization is limited to critical grain ensembles and therefore poses rare events. This also leads to an inherent imbalance of the

data where only a small surface area proportion of the specimen contains damage. A large area needs to be sampled to obtain

a reasonable representation of the extreme value distribution and to capture a sufficient amount of damage instances.

The necessary data quantity not only depends on the microstructural variance and exact loading conditions (i.e. the extent

of the domain to be modeled) but also on the uncertainties introduced due to partial characterization and its non-ideal post-

processing. Without rigorously assessing the uncertainties and the microstructural variance, the question of “How many

grains suffice?” is very difficult to answer. Since a quantitative understanding of driving forces for early damage formation

is unavailable, it is largely unexplored which combination of microstructural descriptors is essential to claim microstructural

representativeness in terms of fatigue. While the grain boundary disorientation distribution was found to be largely consistent

across multiple fatigue specimens (see figure 5.2), many more microstructure descriptors and their interplay affect fatigue

damage initiation. Available data quantity also imposes constraints in terms of modeling choices. For instance, in the low

data quantity regime, feature-based machine learning methods often outperform (pre-trained) deep learning variants for other

tasks. However, it is arguable whether classical, feature-based machine learning methods have the necessary representation
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power to model multidimensional, multi-scale problems such as fatigue, where variable interactions and spatial correlati-

on patterns are crucial. Different approaches to encode contextual information about the spatial arrangement of phases or

grain orientations have been proposed. These entail n-point statistics [293], pre-trained CNN encoders [294], graph-based

approaches [295] or gray-level co-occurrence matrices [296]. These approaches are often applied in conjunction with linear

or nonlinear dimensionality reduction techniques such as principal component analyses or t-distributed stochastic neighbor

embedding (t-SNE) to extend engineered feature vectors. All aforementioned modeling techniques require large quantities of

microstructure-informed damage evolution data.

The developed workflow enables the efficient creation of multimodal fatigue damage initiation and growth data sets. Resulting

data sets combine microstructural information with surface morphology, and spatially resolved damage evolution informati-

on. The in-situ imaging captures the damage formation with unprecedented temporal resolution despite the high-frequency

cycling necessary to conduct large-volume HCF testing. This facilitates the detailed investigation of individual crack instan-

ces and their growth retardation at specific crystallographic defects, see figure 5.10. The data provides the necessary spatial

and temporal resolution to derive mechanistic knowledge through the analysis of individual damage instances. This way, the

work at hand sheds some light on how grain boundaries quantitatively alter microstructurally short crack growth. Specifically,

the transition from intergranular to transgranular crack growth and the deflection of the crack was found to inhibit the crack

growth.

Aside from enabling such detailed analyzes, large data sets can be generated comparatively efficiently through the high de-

gree of automation of the post-processing routine. These data sets can then enable data-driven investigations as demonstrated

here. The data sets are attained by linking custom fatigue characterization with data post-processing methods, including deep

learning semantic segmentation of damage locations, registration of heterogeneous image data, and data fusion. Provided

thorough investigation of imaging properties, utilizing the presented in-situ light optical imaging can severely accelerate

the acquisition of quantitative damage information. This is essential to establish an appropriate data foundation that permits

deducing a mechanistic understanding in presence of pronounced uncertainties. Significant shortcomings in the imaging cha-

racteristics can be compensated for by combination and data fusion with the damage segmentation mask derived from the

relatively high-resolution SEM damage images. Specifically, transcribing this high-fidelity information facilitates suppres-

sing damage-unrelated light spots (false positives), accounting for shadowing, correcting the damage instance’s shape, and

discerning between semantic damage categories (cracks and protrusions) in the in-situ light optical images more effectively.

Prospectively, the imaging can be further improved by circular oblique illumination [241], i.e., illuminating the specimen from

multiple azimuthal directions. This concept is employed in rotating coherent scattering (ROCS) microscopy [213], which was

demonstrated to improve imaging of slip markings profoundly in a master thesis scientifically supervised by the author [297].

The imaging demonstrated there can provide deeper mechanistic insights into damage formation while the larger field of

view optics employed here is suitable to capture a variety of damage instances and hence statistical representations. Therefo-

re, while the cycle-resolved light optical data in this work was solely used for analyzing individual damage instances, in the

future it can also fuel the prediction of damage evolution by data-driven means.

Alongside the modalities that were utilized for correlative microscopy, further information on roughness, 3D microtexture,

dislocation densities, residual stresses, chemical segregation, and internal inclusion defect distribution can be collected to

round out the fatigue feature space. This would increase the data quality and reduce uncertainties. Complementary modalities

can then be treated in a similar fashion by extending the multistage registration pipeline. In the following, a few potential

future extensions to the outlined workflow are discussed. High-resolution EBSD can provide an estimate of the microscopic

residual stresses and the geometrically-necessary dislocation density required to accommodate measured crystal rotations

[298, 299]. The mean GND density estimate can also be obtained by conventional EBSD [300] and was found to depend on

the step size applied during EBSD measurement [301, 302]. Appropriate step sizes are prescribed by the dislocation character

and distribution within the material and for interstitial free steels were proposed to be around 0.5µm [299, 303]. Therefore,

the current EBSD data with an applied step size of 0.6µm would facilitate a decent estimation presumably. Ideally, HR-

EBSD is complemented with controlled electron channeling contrast imaging (ECCI) to additionally obtain detailed local

information on statistically-stored, immobile dislocations and dislocation debris posing obstacles to crystallographic slip.

This technique, as opposed to transmission electron microscopy, is non-destructive but restricted to surface-near interactions
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and relies on backscattered electrons at lattice defects such as stacking faults or dislocations. When the Bragg condition for

a specific reflector (i.e. lattice plane family) is approximately fulfilled, incident electrons tend to channel, unless crystallo-

graphic defects are present. In the case of grain boundary segregation, destructive techniques such as nanoscale secondary

ion mass spectrometry (NanoSIMS) or atom probe tomography (APT) need to be consulted to retrieve information on their

chemical nature and morphology. Such data can currently not be acquired in a large volume for many grain boundaries but

could potentially be supplemented in a multi-fidelity approach where some portion of the data is enriched with such informa-

tion. Especially when inner defects at the low nanometer scale are concerned, non-destructive measurement techniques are

not available. While conventional X-ray computer tomography can achieve resolutions of approximately 50 nm in absorp-

tion or phase contrast for small specimens, corresponding lab-scale diffraction contrast tomography (DCT) can reconstruct

reasonable 3D microtexture information only for grains larger than 20µm providing a sufficient diffraction signal. For the

ferritic steel material at hand, the smaller grain portion presumably can not be resolved with this technique and irregular grain

shapes might pose a problem that would culminate in an unsatisfactory grain reconstruction. In this case, in spite of its sub-

optimal availability [304], synchrotron radiation facilities, owing to their beneficial beam characteristics, can to some degree

provide a remedy where DCT with resolutions of approximately 1µm is feasible whilst covering multiple 100×100µm2 in

a manageable measurement time. Another influencing factor not captured in the data is the variable magnitude of surface

asperities at grain boundaries caused by the OP-S polishing relief. Their range was observed in a small sample size AFM

experiment and outlined in section 5.2. Such asperities can act as dislocation sources or sinks and facilitate damage formation

at grain boundaries. Extensive information on this can be gathered by using for instance a white-light interferometer. Further-

more, when multi-phase materials are concerned, the workflow can be extended to incorporate the phase segmentation efforts

presented in [305] with contributions by the author.

In the following, the results of damage evolution, and deep learning models are discussed in detail.

6.1 Damage growth kinetics

The outlined approach facilitates the characterization of protrusion formation and microstructurally short crack growth. For-

mation of surface plasticity and crack growth are fundamentally different at the mechanistic level, and hence their correspon-

ding elevated intensities regions in the in-situ images evolve differently. While surface plasticity such as extrusions and, to

some extent, protrusions are comparatively localized and can be characterized through their topographic evolution, cracks

exhibit directional growth. This has the consequence that different metrics are required to measure both phenomena. In the

case of surface plasticity, the pixel accumulated intensity metric (see section 5.2) is appropriate in most cases. In contrast,

cracks show pronounced variance in their growth behavior and directional propagation. Therefore, the accumulated intensity

metric is inadequate in crack propagation analysis since growth direction information is omitted and temporary crack arrests

are concealed. For the purpose of a crack analysis, morphological image operations such as skeletonization are required after

segmentation to estimate the crack length. The deep learning predicted segmentation mask derived from SEM after fatigue

(e.g., figure 5.9m) assists not only in the distinction of damage types and hence the decision of which damage metric to apply

but also improves segmentation quality and connectivity assessment automatically.

As an example, the cyclic emergence of slip markings can be investigated, as was shown in figure 5.7. From evaluating the

cyclic increase of accumulated intensity (see equation 3.1), it can be inferred that comparatively localized protrusions exhibit

an abrupt growth, which terminates within ∆N ≈ 2.5 · 106 cycles after reaching the target angular rotation amplitude under

these loading conditions. This is in line with observations in literature where static extrusions were found to form quickly

after reaching a steady state in the slip band [221, 222]. The height of such a static protrusion in a polycrystal according

to the EGM [60] or Polák [59] model is then proportional to the wall volume proportion in the slip band, the wall vacancy

density and the host grain size. Whether the latter proportionality holds true for the irregular grain shapes here or an effective

local grain size needs to be taken into account is currently unknown. Since no TEM analyzes were performed information on

dislocation distribution in slip bands is unavailable. Rarely, slip markings were found to traverse through grain boundaries.

This was found in cases where grain boundary disorientation was small which is in accordance with previous observations
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[306]. Similar cases of slip markings traversing through GBs were observed in literature for similar alloys [64]. In the course

of further cycling, roughening of the initial static extrusion/protrusion occurs, including the formation of intrusions. This

process was proposed to be related to random irreversible glide processes [307]. Therefore, there are at least two distinct

physical mechanisms involved in the formation of static protrusions and their subsequent roughening. While the proposed

growth model in equation 3.1 could fit the experimental intensity evolution data well, intuitively multiple mechanisms being

involved would necessitate a more complicated formulation with multiple growth rates. The majority of the local intensity

increase is associated with the growth of static protrusions. Afterward further roughening modulates the intensity profile to a

smaller degree, cf. figure 3.12, where initially the intensity rises rapidly, and then fluctuations in the accumulated intensity are

observed. Intrusions formed after roughening sometimes posed stage I shear crack initiation sites. Predominantly, however,

cracks are initiated as intercrystalline cracks in regions close to evident micro plasticity. Intercrystalline crack initiation was

reported to be the dominant mechanism in large grain bcc materials [70] since the slip plane asymmetry results in shape

changes of the individual crystals and therefore decohesion at grain boundaries [68]. This represents a plausible line of

reasoning for the material at hand as well.

The growth of microstructurally short fatigue cracks has been studied in the literature extensively. Typically, microstructurally

short crack growth is described as a slip-assisted process occurring in specific crystallographic directions (slip systems) [308–

310]. This could be confirmed for the considered crack through a slip plane trace study, see figure A.2. In this study, ripples

in the transgranular crack path indicate that it alternates between the traces of two crystallographic slip planes. There are

multiple reported crack retardation mechanisms, including crack branching [311] and impingement of the crack tip at grain

or phase boundaries. Latter is sometimes associated with crack redirection or crack tip blunting through the dissemination of

dislocations [312]. This blunting can be hampered by back stresses originating from dislocation pile-ups ahead of the crack

tip [312]. The transition from the intergranular to the transgranular crack in the upper section (figure 5.10a #1) is potentially

ascribed to the sharp GB trace direction change from approximately orthogonal to approximately parallel to the specimen

axis. This transition is linked with a crack arrest which might occur due to crack reorientation to a specific slip plane when

entering the transgranular mode. While propagating through G1, intermittent crack propagation (figure 5.10a #2, #3) occurs

despite the absence of surface defects. However, retardation instance #2 is accompanied by a crack direction change towards

the normal of the specimen axis. Such a behavior is often linked with the transition to macroscopic crack growth (stage II)

[313]. Indeed, this transition occurs at shorter absolute crack length in miniaturized specimen [314]. Another, and in this

case arguably more credible explanation could be the interaction of the crack with interfaces or redirection towards stress

concentrations that reside subsurface. Similarly, surrounding damage fields such as the protrusions which formed above G1

(see figure 5.9) could act as stress concentrations and promote the crack growth towards them to release the associated strain

energy. Further, it is noteworthy that presumably during crack growth, a plasticity trace loop develops annotated by the green

arrows in figure 5.9o. Since there was no in-situ intensity elevation observed corresponding to this shallow surface plasticity,

its cyclic emergence can not be traced back. However, it can be tentatively assumed that dislocations emitted from the crack’s

plastic zone interacted with and piled up at the G1-G6 grain boundary amongst others, and thereby affected the crack growth.

From this study, it can be deduced that these data sets facilitate the investigation of how specific microstructural features

affect stage I crack growth.

6.2 Assessment of fatigue damage segmentation

6.2.1 Source domain model evaluation

For the ferritic steel (source domain), the trained U-Nets in most cases achieved performances that resemble manual expert

annotation. Especially cracks were annotated by the model reliably unless attended by artifacts. In the case of protrusions, the

segmentation was satisfying but contained some inconsistencies with human annotation at the protrusion borders, see figure

5.12d. The borders are challenging to segment since they rather fade out than exhibiting a clear delimitation. As a matter of

fact, human labels are afflicted with uncertainty in these border regions as well.
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The scatter plots in figure 6.1, show the tile image-wise IoU plotted over the corresponding contained amount of crack/extrusion

pixel for the ferrite trained model performing best on the ferritic steel test set (table 5.1 #11).

Figure 6.1: Tile image-wise intersection over union metric shown as a function of contained crack and extrusion pixels. Adopted from [37].

The characteristic shape of the distribution in figure 6.1 can be explained by the fact that extrusions composed of few pixels

are usually rather shallow. Therefore, by virtue of the SEM image formation, low local contrasts arise and the detection is

hampered. While these shallow regions can cause problems for the network, they are typically not critical defects determining

fatigue life. In a notable amount of cases, image edge effects and in particular faded-out boundary sections of extrusions barely

extending into a tile causes poor detectability. When the model is deployed it would rather operate on complete (i.e., untiled)

images. Then incomplete information at tile borders is not of concern. Note that all DL model evaluations in this work were

performed on tiles and therefore presumably underestimate the performance on complete images by a few percent. Another

contribution to the trends in figure 6.1 is that the IoU metric inherently penalizes pixel discrepancies in smaller foreground

instances more.

Generally, damage pixels for which foreground class affiliation was not obvious were manually labeled as extrusions. Howe-

ver, as the transition of intrusions to micro cracks is gradual, the discriminability is poor causing potential labeling inconsis-

tencies. The same applies to cases of occlusion caused by debris where connectivity assessment of cracks is impeded. While

in some instances only visible parts of the crack were labeled as such, in others, annotations were based on the assumption

that the crack is continuous beneath the debris. There are different techniques reported in the literature to deal with occlusi-

on. For instance, random erasing of pixel regions within the image was suggested in [315] to force the network to take into

account the context in the entire image rather than only a small portion. In addition, specimen boundaries which suffer from

over- or underexposure are often detrimental to extrusions and cracks segmentation.

This is presumably also linked to the fact that brightness augmentation was adverse for the extrusion class. Extrusi-

ons/intrusions or cracks often exhibit extreme intensity values. Their sharp edges cause substantially higher or lower se-

condary electron emission rates. Additionally, increasing or decreasing the brightness through augmentation results in an

information loss in the high or low-intensity regions, concealing the features of the damage locations. This applies also to the

specimen border where the specimen surface orientation relative to the SE2 detector causes over- or underexposure and con-

cealing of damage. Due to the continuum strain distribution shown in figure 4.2, a slightly elevated portion of damage spots

is located near specimen boundaries. The Gaussian noise especially reducing the ferrite IoUc can potentially be attributed to

features of narrow cracks not being preserved when the noise is applied. This can be worsened by downsampling. Downsam-

pling turned out to be detrimental at all times due to information loss but did affect the extrusion class more (∆IoUc=0.03 and

∆IoUe=0.05 between Test #10 and #11 in table 5.1) since it generally contained finer features which are more likely to get

lost.
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Moreover, the features in this damage segmentation task are comparatively localized (i.e., the spacing between intrusions and

extrusions is small). In contrast, the lath-shaped bainite segmentation task addressed by the author in [305] relies on long-

range image features. In such cases where downsampling does not cause notable information loss but compresses the relevant

image features into a smaller pixel region, i.e. the model’s receptive field, CNN models can benefit. Another aspect, which

can be learned from comparison with the bainite segmentation task is the response of CNN models to image augmentation

in presence of distinct input image variance. In the work at hand, pronounced variance in the data ascribed to specimen

fabrication and imaging in particular made data augmentation indispensable. For microscopy data sets acquired in a very

repeatable manner, image augmentation leads only to minimal improvements [305].

6.2.2 Domain generalization

In general, the domain generalization of a model depends largely on the domain gap, i.e. how similar the discriminative

features are in images of both domains. Ferrite damage utilized for training consisted solely of extensive protrusions superim-

posed with extrusions and intrusions. This facilitated the domain transfer to copper in which most of the damage had a similar

(but wavier) morphology. In contrast, the domain transfer to martensite solely consisting of localized tongue-like extrusions

is impeded. Since no cracks were observed in the martensite and copper data set, this study is confined to extrusions.

Gaussian noise improves the performance of the ferrite-trained model on the martensite data as the latter exhibits an inferior

signal-to-noise ratio. One aspect that is detrimental to the martensite IoUs is residual OP-S particle agglomerates at the spe-

cimen surface. These are surface polishing-induced artifacts at the same scale as martensite extrusions and can have a similar

shape, as shown by the annotation in figure 3.5j. Apart from this, the overall poor model performances on the martensite

domain are probably owed to a more pronounced domain gap between ferrite and martensite extrusions. In particular, this

is attributed to martensite containing almost exclusively tongue-like extrusions. Furthermore, the damage sites in martensitic

steel are much smaller in physical and pixel size relative to those in ferritic steel.

The performance observed in copper for some models exceeding that of the ferrite source domain can be explained by copper

extrusions exhibiting more distinct boundaries to undamaged areas. In contrast to ferrite, plasticity in copper was macroscopic

i.e. not confined to individual grains and substantially easier to detect by eye. Meanwhile, the pronounced performance drop

in contrast augmented models implies that these models become invariant to contrast changes thus failing to make use of the

distinct boundaries in copper extrusions. This feature is particularly important due to the absence of directional features in

the copper extrusions i.e., no clear slip trace orientations are present as opposed to ferrite extrusions. Further, there are some

limiting factors for the domain generalization of ferrite-trained models to copper. Since in contrast to the copper data set,

there were virtually no tongue-like extrusions present in the ferrite data set, the accuracy for such extrusions was moderate.

The merging of close extrusions and in particular tongue-like extrusions in copper (see figure 5.13a) can be ascribed to two

characteristics of the damage instances in the ferritic steel training data. Namely, the absence of distinct extrusion boundaries

(see figure 5.12d) and the predominance of extensive protrusions. These characteristics of ferritic steel are learned during

training and hamper the detection of small-sized tongue-like extrusions in copper represented by fewer pixels.

The elastic distortions represent an essential addition to the augmentation pipeline, irrespective of the material domain. It can

possibly be justified by attained (extrusion) shape invariance. For instance, warping the images of ferritic material with its

straight slip traces can produce similar image textures resembling those of the wavy slip structures observed in copper. Ac-

cording to [197], in case of small training sets, a central role can be ascribed to elastic transformations. Microscope operators

tend to have different preferred brightness and contrast settings. Hence, in terms of image intensity-affecting augmentations,

it is essential to tune the augmentation hyperparameters for a large range of realistic image gray value distributions whilst

minimizing information loss. Furthermore, the performance decrease (cf. #10 and #11 of table 5.1) related to downsampling-

induced information loss in images is prevalent throughout every material domain and affirms similar observations in literature

[316].

The less pronounced IoU variance in the source domain indicates that extrusions and cracks in its training data set are

representative of the ones in its test data set. On the other hand, extrusions from the source domain are not really representative
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of the ones in the target domains. Hence, the models trained on the source domain data set rely more on the careful selection

of augmentation types so that they could be generalized well to the extrusions in the target domain. On the one hand, this can

be achieved if the augmentations on the source domain extrusions render them representative of the ones in the target domain.

On the other hand, augmentations can force the network to not learn features that are too specific to the source domain, thus

learning features that apply to both domains.

Additional experimentation might be required to find clues on which network layer benefits in terms of generalization from

the augmentations specifically. In [317], it has been demonstrated that out-of-distribution generalization is layer dependent.

Typically, initial layers of any two trained networks share common characteristics and extract low-level features such as

edges, corners, and blobs. In contrast, the following layers become increasingly specific and difficult to transfer to alternate

domains, unless fine tuning (transfer learning) is applied.

The adaptation of the augmentation pipeline holds pronounced potential to improve the foreground class IoUs of each domain.

It can be inferred from the source domain performance that the trained networks, with the right set of augmentations, can cope

rather well with loading amplitude and subjective SEM setting-induced variance (different working distances, magnifications,

and brightness/contrast settings). In this work, exclusively SE2 SEM images with a stable perspective were utilized, which

posed a simplification to some extent. Therefore, conclusions on the domain generalization to alternate common SEM detector

types and different imaging modalities are difficult to draw. Evidently, however, generalizability across material domains can

potentially pose a difficult task. A difficulty lies in finding a mutually beneficial augmentation setting for every material

domain. Further, even obtaining such an augmentation setting cannot ensure satisfactory domain generalization. In particular,

from the model evaluations on different material data sets it can be deduced, that for materials with a more pronounced

domain gap to the source domain, i.e. martensite, a different and more elaborate route is required.

6.2.3 Multi-domain training

In this section, the combined ferritic and martensitic steel training is assessed. The combined training (test #2 in table 5.3)

improved the IoUe on martensite over the domain generalization values (table 5.2) by a large margin. However, the combined

training did not reach the performance achieved by sole martensitic steel training (test #1 in table 5.3). This suggests that

the prevalence of ferritic steel damage in the combined data set adversely affects performance on the martensite testing set.

Note that a pronounced imbalance arises since martensite is not only underrepresented in terms of training tile amount but

also the damage area (individual damage instances are significantly smaller), see table 3.1. The hypothesis was substantiated

since imbalance correction alleviated this issue and led to significant improvements, cf. table 5.3 tests #3–5. Therefore, the

imbalance correction represented an essential step to eliminate the network’s inclination to learn only extensive protrusions

that covered a larger pixel fraction in the data set. Additional martensite data rendered the training set more representative

of the variety of damage locations that exist. Hence, a more general representation of extrusions could be learned which

manifests in a more balanced multi-domain segmentation performance. This especially held true after imbalance correction.

Then the combined model’s performance on individual domains approximately matched the performances of either network

dedicated to the respective domains.

It can be observed that this conjunct model is capable of assessing the connectivity of close proximity tongue-like extrusions

significantly better than solely ferrite-trained models. In particular, adding martensite extrusions to the training suppresses the

merging of tongue-like extrusions. The balancing methods slightly decreasing the copper performance could be attributed to

strongly weighted tongue-like extrusions shifting the focus away from protrusions which make up the largest portion of the

damaged area in copper. To conclude, these observations suggest that there is an optimal balance of ferrite (protrusions) and

martensite (tongue-like extrusions) data at which the segmentation performance is maximized for copper.

The accurate segmentation of damage instances is important when the damage instances are linked to specific microstructural

entities such as grains, their boundaries, or other defects. Especially since slip markings are often localized at grain bounda-

ries, sometimes impinging on them, sometimes transitioning through them, and image registration is non-ideal, there are high

requirements on damage segmentation accuracy. An improved segmentation model which performs reliable segmentation of
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tongue-like extrusions can be utilized if the overall workflow (see figure 1.1) is supposed to be applied to hierarchically-

structured materials with very localized damage instances.

There is still potential for improvement of model #6 in table 5.3, e.g. by optimizing the augmentation pipeline for this multi-

domain setting and including the copper data in training. Nonetheless, this model presents a promising starting point, as it

achieves satisfactory performance on multiple domains and can be expected to transfer well to a multitude of other metallic

materials and imaging conditions. Larger and more expressive segmentation models potentially could optimize for multiple

domains simultaneously with fewer compromises between the material domains. The evaluation of the conjunct model’s

transferability to further material domains will be the subject of future works.

6.3 Damage modeling use cases

6.3.1 Validation of microstructure-sensitive simulations

Data generated by the workflow presented here was utilized to assess the spatial correlation between actual damage locations

and ones predicted by a phenomenological crystal plasticity fatigue model. Detailed results of this collaborative study are

published elsewhere [38]. Crystal plasticity simulations take the crystallographic orientation and slip systems in polycrystals

into account to compute load path-dependent strengthening and thereby provide a prediction on how the microstructure

modulates mechanical fields. Stress and strain fields from the simulation are then translated into a damage accommodation

tendency through so-called fatigue indicator parameters (FIP).

The constitutive model assumed plasticity through dislocation slip on {110}〈111〉 as the sole mechanism of plastic defor-

mation, Schmid behavior (only shear components on permitted slip systems contribute to plastic deformation), a local model,

and small strains. In this context ’local model’ refers to the assumption that the critical resolved shear stress (CRSS) which

needs to be exceeded to trigger dislocation movement exclusively depends on the deformation state of the individual element

[318]. In the simulation, a sub-modeling approach was followed where first the macroscopic boundary conditions were im-

posed at the specimen level to compute a continuum response. Subsequently, this continuum response was transferred onto

the actual specimen microstructure. This facilitated a direct comparison of FIP fields with actual microstructural damage

locations, see figure 6.2a. As reference damage locations were semantically segmented by deep learning (see section 6.2), the

data sets complement existing HR-DIC-based validation approaches. While HR-DIC can measure plastic strains originating

from slip bands quantitatively and represents a crucial form of validation [319], segmentation methods consider image texture

to detect actual damage locations. Therefore, comparison to damage segmentation maps provides a form of validation that

complements existing approaches well.

Moreover, four instances of microstructurally short crack growth observed in the data were utilized to validate a phenomeno-

logical CPFEM-based crack growth model [39], see figure 6.2b. In this effort, the crack initiation location was provided as an

individual element boundary condition. The predicted 2D crack paths resembled those observed in our tests [39]. However,

when observing figure 6.2b, which represents the crack instance extensively discussed in section 6.1, it is apparent that the

intragranular alteration of the crack path is not captured by the CPFEM model. This arises since the formulation assumes that

cracks traverse through the whole grain without changing the slip plane. However, even when intragranular redirection would

be permitted, this local model presumably could not capture comparatively long-range effects such as strain fields originating

from micro plasticity in the vicinity or dislocation emission from the crack tip into grain boundaries. While crack paths could

be predicted decently well, hot spots in computed fatigue indicator parameters did not show a satisfying spatial correlation

with actual protrusion locations [38]. Among the applied Fatemi-Socie (see figure 6.2), accumulated plastic slip, and dis-

sipated energy FIPs, none seemed to coincide with the protrusion locations particularly well. There are numerous potential

deviations between the phenomenological model and known physical driving forces for protrusion formation. For instance,

aspects such as the development of dislocation structures and diffusion of point defects are disregarded but are known to play

a central role in protrusion formation. However, also the assumption of sole {110}〈111〉 slip [69], prismatic grain shapes
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[320], Schmid behaviour [62] likely introduce deviations. The exact causes for the mediocre agreement were difficult to pin-

point since the data processing, constitutive modeling, and FIP formulations are all potentially contributing to the deviations.

In this case, complementary HR-DIC measurements can provide intermediate validation of plastic strain fields and slip bands

to exclude error sources systematically. Comparisons as illustrated here between computational approaches and experimental

data can help validate models, improve their parameterization efforts, and give insights into missing modeling aspects. The

unsatisfactory protrusion prediction performance of this phenomenological CPFE model and the incomplete knowledge of

protrusion formation motivate the use of data-driven approaches which can learn correlations in the data.

Figure 6.2: a) Normalized FIPFS distribution superimposed with damage locations colored in black. The red arrows indicate FIP values that are greater than

80% of the maximum FIP value found with a search radius of 10 element edge lengths. b) The actual (black) and predicted crack path (white) are

superimposed onto a unique grain color image. This crack instance corresponds to the one previously analyzed in figure 5.9 and 5.10. Subfigures

a) and b) are adopted from [38] and [39], respectively.

6.3.2 Damage classification

In this work, for the cause of protrusion prediction, the microstructure is represented by clustering pixel regions corresponding

to the physical concept of grains. Then each grain poses an individual data instance and is assigned multidimensional features

describing the grain and its local environment, see table 5.4. This approach exhibits similarities to and was inspired by

efforts by Orme et al. [137], and Mangal [139] who used tree-based classifiers with instances representing grains to predict

deformation twinning in magnesium alloys and load hot spots in crystal plasticity simulation, respectively. In the work of

Sharma et al. [321] which represented an extension of [137] focusing on GB regions as instances, the performance saturated

reaching approximately 85% accuracy at 15.700 considered GB training instances corresponding to 770 twinning events. In

contrast to their work on twinning where large strains of 7.5% in an AZ31 magnesium alloy were considered, the data set at

hand is substantially more imbalanced and the underlying statistics are more prone to microstructural details. This indicates

that more data would be beneficial for the problem at hand. Additionally, while the coupling between damage instances is

deemed mostly negligible due to the HCF loading and the relevant specimen and microstructure scales, it can not be excluded

entirely. In the work of Mangal [322], an autocorrelation analysis was applied using two-point statistics in order to explore

and rule out mutual interference between hot spot instances. A similar approach can be applied here using the high-fidelity

damage maps when carefully taking the non-uniform stress state into consideration. As opposed to the work of Mangal, the

work addressed here represents an effort based on experimental data, where the underlying mechanisms are comparatively
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more diverse resulting in higher variance and the presence of confounding variables. When it comes to the coupling between

grains, the approach in this work was to enrich the feature vector with some information about neighbor grains, see the AG

column in table 5.4 rather than modeling grain adjacency explicitly. Intuitively, the modeling of fatigue damage initiation

should rely on nuanced interactions between adjacent grains and their descriptors. This can not be captured with the current

approach as grains are assumed to be independent of each other and the grain instances are not informed by the neighbor

grain’s properties. In very few instances, slip traces propagated through a grain boundary. This puts the separate treatment of

grain instances and such a tabular approach into question.

Considering the complexity of the prediction task, incomplete feature space, and inherent data scarcity, the binary balanced

random forest classifier achieved a decent performance in identifying grains that would develop damage. While the perfor-

mance is substantially better than a naïve random classifier, an appropriate baseline performance is currently missing, e.g.,

from crystal plasticity. A high number of false positives remains and needs to be mitigated going onward. Nonetheless, in

a reliability setting, false positive predictions are generally preferable over false negatives. Visualizing the prediction per-

formance on a map containing microstructural information can provide insights into the characteristics of the classifier. For

instance, the observations made based on figure 5.14 indicate that the classifier devotes its attention mainly to grain size and

local continuum FE von Mises stress. The preliminary observations on feature importance are largely in line with insights

granted by the mean decrease in impurity metric (see section 2.3). It pointed to grain size-related metrics being the most im-

portant. Aside from that, the Young’s modulus of each grain in the specimen axis direction ranked among the most important

features. Moreover, the mean grain-wise von Mises stress from continuum FE simulation contributes to a major extent. More

nuanced relations in the data on the other hand such as the interaction between microtextural and grain boundary descriptors

are apparently not inferred during training. This could be either ascribed to their inappropriate parameterization or the mo-

del’s inability to find such correlations despite permitting a high depth of individual decision trees. Indeed, decision tree and

random forest models require discriminative features and do not combine individual features. Another potentially important

aspect is that during the construction of the individual trees of the bagging classifier, the feature grouping (i.e. three Euler

angles) was not respected.

Prospectively, separating the instances with differing damage types further before training classifiers could be interesting. Pro-

trusions that emerge at different time points or at defects can be distinguished efficiently by the outlined workflow through

the post-processing of the in-situ image series data and the spatially-correlated high-resolution pore information, respectively.

These different types of damage instances, such as protrusions at grain boundaries or at pores, have distinct underlying da-

maging mechanisms and statistics. Training multiple classifiers for the different damage types therefore can prove beneficial.

The current approach did consider only limited contextual information. While for instance the maximum disorientation or

the maximum Young’s modulus difference across grain boundaries to any neighbor grain are considered, their spatial loca-

lization is discarded. However, most protrusions were observed to not cover the whole grain but rather to be localized at

specific grain boundaries. This indicates that spatial information and a comprehensive description of individual grain bounda-

ries are required. Thus, in the future, different methods to incorporate contextual information as described in the first part

of the discussion should be tested. Enriching the feature space, aside from incorporating contextual information, is one of

the aspects which should be attributed the highest significance going onward. This could range from the incorporation of

easily accessible features such as grain boundary triple points known as regions of high incompatibility up to consideration of

features from additional modalities as elaborated at the beginning of the discussion section. On this end, diffraction contrast

tomography data for 3D microtexture and phase-contrast CT data for internal MnS-inclusion information was collected and

will be utilized in future works.

While the produced data set does not exhaustively capture all fatigue influence factors, it represents a relatively large quantity

damage data set with unprecedented information on the local damage evolution. It stores the reality for future validations

and allows for sensitivity studies to purposefully incorporate relevant features into the model. An exemplary data set for one

specimen was published [323]. The underlying methods of the workflow including deep learning damage segmentation and

multimodal data registration are assumed to be applicable to a wide range of materials. Arguably, deep learning networks

trained in a supervised fashion pose the limiting factor in this regard since their generalization capability across data sets was

demonstrated to be compromised. However, novel machine learning concepts such as unsupervised domain adaptation [324]
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can render such damage segmentation models transferable to a wider range of materials and damage characteristics without

requiring annotated data for new target materials.

6.4 Prospects of machine learning in mechanics of materials

The ongoing digital transformation of materials, which focuses on storing, semantically describing, and connecting materials

data along with its meta data, and background knowledge, will undoubtedly fuel future machine learning efforts. It is safe to

state, that increased availability of structured data will facilitate the usage of models with comparatively higher representation

power such as vision transformers which rely on less inductive bias [207]. While nowadays, owing to limited data connectivity,

mostly short-range tasks, e.g., detecting phases in images, are tackled, linking data throughout process chains will presumably

enable addressing more challenging tasks, such as predicting properties directly from process parameters. Aside from that,

also unstructured data can be utilized in the context of deep learning, such as for the training of self-supervised models [147].

In materials science and mechanics of materials, there is a wealth of computational simulation techniques with a range

of underlying assumptions, characteristic scales, and simplifications. These comprise density functional theory, molecular

dynamics, particle methods, phase field approaches, discrete dislocation dynamics, crystal plasticity, and multi-physics FE to

name a few. Increasing the interoperability between the corresponding synthetic data promotes enriching the data space with

complementing implicit knowledge on specific mechanisms and scales. The same applies to experimental data. For a few

smartly sampled grains, experimental information such as GB segregation, full GB character, or precipitation character can

be supplemented by applying the aforementioned characterization techniques. Such grains can act as high-fidelity data in a

multi-fidelity setting to simultaneously achieve improved generalizability and prediction accuracy. In literature, such a multi-

fidelity approach has been proposed using different ab initio simulation data to jointly train a graph-based neural network

regression model for band gap prediction [136]. Accordingly, such experimental multimodal and multi-fidelity data can

reduce epistemic uncertainty in fatigue damage prediction in the future. In contrast to rule-based simulations, experimental

data tends to capture a more comprehensive mechanistic description. While experimental limitations consist of comparatively

poorly defined boundary conditions, restricted resolutions, and disturbing physical phenomenons through the measurement

itself, simulations are limited by computational constraints and incomplete knowledge. This dichotomy potentially can be

exploited to effectively augment the data space with complementary features and alleviate shortcomings of the other data

type, respectively.

Another promising candidate to exploit the existing knowledge and reduce annotated data requirements are physics-informed

or physics-constrained DL models [325]. Rather than supplying a multitude of input-output pairs, conditions that represent

domain knowledge are imposed on the output space. In such cases, explicit domain knowledge is typically encoded into the

loss function by softly constraining it. For microstructure inference, laws from thermodynamics including different crystal

growth or segregation/precipitate formation models potentially can condition DL models. A yield strength prediction model

could utilize the well-known Hall-Petch relation.

Knowledge graphs currently focus on capturing factual knowledge in triples (e.g., “twin boundary–is a–grain boundary”),

transcribed in the resource description framework (RDF) or extensions such as RDF*. Recent research attempts to also inclu-

de common sense knowledge as well as cause-effect relationships. For the description of processes, the notion of events or

temporal information, in general, is important. Concise modeling of these concepts facilitates deductive and inductive reaso-

ning to continuously extend the graph representations [326]. Computer vision enhanced with knowledge graphs can extract

contextual knowledge better [327] and enable complete scene comprehension, e.g., “A crack initiates at a grain boundary due

to impinging slip markings”. In principle, various types of literals can be used along with knowledge contained in graphs in

so-called knowledge graph embedding (KGE) approaches [328].

Given the large number of different materials and processes combined with the typically time-intensive generation of data

sets for many tasks, data scarcity in materials science is likely to subsist. As a consequence of emerging high-speed image

acquisition technologies, raw data can in principle available in abundance. However, manual annotation processes often pose
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the bottleneck in the creation of representative experimental data sets. This hampers the paradigm of supervised learning in

the materials science domain. Advances in correlative microscopy with EBSD measurements, as presented in [305], promote

routines for automatically generating annotations which renders it less labor-intensive and improves the quality of the pre-

sumed ground truth. Nonetheless, strategies for data frugal training as well as model generalization to alternate materials

or processing conditions are indispensable to cope with materials diversity. Fortunately, machine learning underwent rapid

advances in the past two decades and now provides a vast number of corresponding approaches which can be adopted in

materials research.

One example of data frugal techniques includes semi-supervised learning. It tackles the task of additionally learning from

unlabeled data. This is often achieved by so-called pseudo labeling, consistency regularization, as well as model distillation

[329] and reaches performances approaching full supervision with mere fractions of the annotated data for many tasks.

Rather than providing pixel-wise annotations for training a segmentation network, in a weakly-supervised learning setting,

e.g., image-wise annotations are used. There are different annotation abstraction levels ranging from bounding boxes [330]

to naming the classes present in an image [331]. Typical methodologies rely on classification networks which provide seeds

for the segmentation network, and constrained seed region growing to respect object boundaries [331, 332]. In recent years a

leap in weakly-supervised segmentation performance was achieved [333], rendering it a promising method for phase fractions.

This is affirmed since well-contrasted grain boundaries presumably can pose distinct and suitable borders for region growing.

In particular, for metallographic segmentation tasks in which target phases are often dispersed across the whole image,

pixel-wise annotation is cumbersome. Here it can be particularly worthwhile to replace manual pixel-wise annotations with

appropriate weak labels.

Alternate techniques called semi- or unsupervised domain adaption evolve around the idea that for a specific task (e.g.,

segmentation) annotated data of one source domain (e.g., material A) can be used together with non-annotated or minimally

annotated data of a target domain (e.g., material B) to produce meaningful predictions in latter. The methods achieving

this rely on feature matching between both domains, and self-training to provide pseudo labels or generative networks to

produce target data [334]. The range of materials and processes that can be covered with such techniques in material scientific

challenges is yet to be unveiled. In this regard, the usage of unsupervised domain adaptation to transfer between distinct

materials processing routes and image modalities was explored recently [324]. This represents an extension of the phase

segmentation work presented here and was part of a master thesis supervised by the author. Moreover, also in this context of

domain transfers, the materials science domain can profit from its longstanding experience in rule-based, realistic simulation

techniques. The resulting synthetic data can be exploited in domain adaptation to obtain annotated data in a source domain

[32, 335] or for pre-training. In [336], the error rate of a domain discriminator network was utilized to quantify the domain

gap relying only on unlabeled input images of both domains. Further, it was illustrated that the domain gap in conjunction

with the error rate of the source task can provide an estimate of how well a network trained in one domain transfers to another

domain. This estimate in the future could provide an indication of, whether re-purposing a trained network for another target

material is feasible or domain adaptation is necessary.

Undoubtedly, there are large gaps in our knowledge when it comes to how the microstructural features quantitatively interact

to affect the material’s local response to cyclic loading. However, recent developments in the field of machine learning can

provide us with statistical tools to accelerate research and unravel this high-dimensional problem.
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A Appendix

A.1 Assessment of variance in damage segmentation data sets

In all three materials considered for damage segmentation, the fact that the surface of the mesoscale specimens is slightly

curved leads to a brightness gradient resulting in shading, i.e. an additional brightness variance among tiles. This is attributed

to the specimen surface orientation dependence of the SE2 detector and leads to concealed extrusions or cracks in over- or

underexposed regions at the specimen edges. Since the ferritic steel tiles originate from a comparatively large number of

specimens, they contain a substantial brightness variance owed to the brightness and contrast settings during acquisition, see

figure 3.5. Moreover, in the course of crack growth within the ferritic steel, debris caused by friction of the crack surfaces is

driven out of the crack obscuring some relevant areas.

At the specimen surface of the ferritic and martensitic steels, shallow scratches and residual particle agglomerates from

colloidal silica polishing clients (OP-S) exist. Another feature, apparent for instance in figure 3.5e, are the sudden gray value

jumps that can be ascribed to grain boundaries. These pose a frequent location for damage to emerge [337]. In contrast to

the remaining data sets, the surface finish of the copper material was carried out with an electropolishing step. Here, the

characteristic grain structure-induced image background texture, such as discontinuity in gray values, is absent and a wavy

topography is noticeable in some regions of the surface, see figure 3.6d.

In figure 3.5b, an instance of poor stitching correction is shown. The adjacent tiles are shifted against each other which results

in unrealistic outliers in the data set.

A.2 Quantitative assessment of damage to grain boundary distance

Figure A.1: Probability histogram distribution of the Euclidean distance between damaged/statistical reference pixels and its nearest grain boundary seg-

ments. While the actual reference was computed by assigning damage to EBSD pixels randomly, the circular reference considered a single unit

circle grain. Adopted from [36].
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A.3 Slip trace investigation

Figure A.2: Slip trace investigation. Comparison of actual and CPFEM-predicted crack paths (left) in black and white, respectively, with the slip traces of

all potential slip systems (right). Adopted from [36].
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