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Abstract
The computational cost of constructing 3D magnetohydrodynamic (MHD) equilibria is one of
the limiting factors in stellarator research and design. Although data-driven approaches have
been proposed to provide fast 3D MHD equilibria, the accuracy with which equilibrium
properties are reconstructed is unknown. In this work, we describe an artificial neural network
(NN) that quickly approximates the ideal-MHD solution operator in Wendelstein 7-X (W7-X)
configurations. This model fulfils equilibrium symmetries by construction. The MHD force
residual regularizes the solution of the NN to satisfy the ideal-MHD equations. The model
predicts the equilibrium solution with high accuracy, and it faithfully reconstructs global
equilibrium quantities and proxy functions used in stellarator optimization. We also optimize
W7-X magnetic configurations, where desirable configurations can be found in terms of fast
particle confinement. This work demonstrates with which accuracy NN models can approximate
the 3D ideal-MHD solution operator and reconstruct equilibrium properties of interest, and it
suggests how they might be used to optimize stellarator magnetic configurations.

Keywords: neural networks, surrogate models, ideal-MHD, Wendelstein 7-X

(Some figures may appear in colour only in the online journal)

1. Introduction

The computational cost of constructing 3D magnetohydro-
dynamic (MHD) equilibria is one major limiting factor in stel-
larator theory, experimentation and design. Depending on the
desired resolution and accuracy of the solution, such compu-
tations require up to O(10) CPUh [1, 2].

a See Sunn Pedersen et al 2022 (https://doi.org/10.1088/1741-4326/ac2cf5)
for the W7-X Team.
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Fast and accurate equilibrium reconstructions are crucial
to interpret experimental results in magnetically confined
devices. At Wendelstein 7-X (W7-X), the Bayesian frame-
work MINERVA [3, 4] reconstructs the plasma state (e.g.
ion and electron temperature). For each forward evaluation
of the simulation model, a free-boundary ideal-MHD equi-
librium has to be constructed. For each reconstructed state
(i.e. a single timestamp), between O(103) and O106 forward
evaluations are required [5, 6]. Due to the computational cost
of constructing free-boundary ideal-MHD equilibria, a self-
consistent Bayesian inversion of a single plasma state has been
attempted only once [5] and is not part of the standard data
evaluation procedure.

W7-X is currently the largest stellarator experiment in oper-
ation. Its scientific mission is to assess the stellarator line on
the path towards a fusion reactor [7]. The configuration space
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of W7-X provides a large experimental test bed, however,
only nine reference configurations are mainly investigated [8].
Experimental time is limited, and priorities must be estab-
lished to fit financial and human resources. Flight simulators
provide a parallel and cheaper path to explore and exploit cur-
rent and future experiments [9, 10]. In a stellarator, 3D MHD
equilibria bound the accuracy and cost of simulation.

Differentiable and less expensive MHD equilibrium solu-
tions would allow a more extensive exploration of the stel-
larator optimization space , in which the number of degrees
of freedom is usually large ∼O(102) [11, 12]. The compu-
tational cost of the objective function, which is largely dom-
inated by deriving ideal-MHD equilibria, limits the extent to
which we can explore the optimization space. According to
recent works, each optimization run requires up to O(103)
function evaluations [11, 13, 14].

Data-driven approaches (e.g. artificial neural networks
(NNs)) can provide fast 3D ideal-MHD equilibria [15–20].
When benchmarked against equilibria from non-linear codes
(e.g. the variational moments equilibrium code (VMEC)), the
geometry of the flux surfaces is in excellent agreement. How-
ever, it is unclear how equilibrium properties (e.g. plasma sta-
bility) can be faithfully reproduced by the NNmodel. Further-
more, it is unclear howwell the NN equilibria satisfy theMHD
equations. To make use of such NN models in downstream
tasks (e.g. Bayesian inference, optimization), it is necessary
to investigate how well NNs capture equilibrium properties.

The ideal-MHD equilibrium problem is a system of partial
differential equations (PDEs). In general, initial and boundary
conditions, as well as input parameters define the PDE prob-
lem. The solution operator maps these variable terms to the
corresponding PDE solution.

In this paper, we extend [20] by learning the solution oper-
ator of the ideal-MHD equilibrium problem in the subspace of
W7-X magnetic configurations with a deep operator network
(DeepONet) [21]. A DeepONet is a NN macro-architecture
with two pathways: a branch network to encode the PDE prob-
lem inputs, and a trunk network to represent the domain of
solution function. Here, the NN model maps an externally
applied field (defined by the currents in the coil system) and
a plasma state (defined by the pressure and toroidal current
profiles) to an approximation of the ideal-MHfD equilibrium
solution. Within the boundary of the training data (i.e. W7-
X magnetic configurations), the NN model approximates the
solution of unseen equilibrium problems at a fraction of the
computational cost currently required by a traditional code.
Summarizing the paper’s contributions, we:

• Propose a DeepONet like architecture to represent the
solution operator of the ideal-MHD equilibrium problem
(see section 3);

• Train the model to approximate the solution of ideal-MHD
equilibrium problem obtained from a non-linear code (e.g.
VMEC), while the ideal-MHD force residual regularizes the
model’s solution (see section 4);

• Investigate how well the model’s solution satisfies the ideal-
MHD equations, and propose a strategy to improve the

solution at inference time by approximating an equivalent
fixed-boundary equilibrium solution (see section 5.3);

• Investigate to which degree equilibrium properties of
interest are faithfully reproduced, in the context of ideal-
MHD stability (e.g. magnetic well), neoclassical transport
(e.g. the effective ripple), and fast particle confinement (e.g.
extrema of the magnetic field strength along a field line)
(see sections 5.4–5.6);

• Show the use of the model in the a posteriori optimization
of W7-X magnetic configurations (see section 5.7);

2. Ideal-MHD equilibria

2.1. The ideal-MHD force balance

The equilibrium magnetic field under the ideal-MHD model
is characterized by the force balance equation, Ampere’s and
Gauss’s law:

F⃗=−J⃗× B⃗+ ∇⃗p= 0, (1)

∇⃗× B⃗= µ0⃗J, (2)

∇⃗ · B⃗= 0, (3)

where B⃗ is the magnetic field, J⃗ is the current density, p is the
plasma pressure, and µ0 is the permeability of free space.

In this work, we assume that a set of nested toroidal flux
surfaces exists, and that the pressure is a flux function. Let
x⃗∗ = (R,ϕ,Z) be a cylindrical coordinate system where R is
the major radius, ϕ is the cylindrical toroidal angle, and Z is
the height above mid-plane. α⃗= (s,θ,φ) is a flux coordin-
ate system where s= ψ

ψedge
is a radial-like coordinate, θ is

a poloidal-like angle, and φ is a toroidal-like angle (in this
work, φ = ϕ). 2πψ is the toroidal flux enclosed by a flux sur-
face, and Φedge = 2πψedge is the toroidal flux enclosed by the
plasma boundary (i.e. s= 1). In the inverse equilibrium formu-
lation [22], α⃗ describes the independent variables of the com-
putational grid, and the flux surfaces locations are described
by the coordinate transformation f : α⃗→ x⃗∗.

Because magnetic fields are divergence free (∇⃗ · B⃗= 0)
and flux surfaces are assumed to be nested (B⃗ · ∇⃗s= Bs =
0), the magnetic field can be written in contravariant form
following [23]:

B⃗= ∇⃗φ ×∇⃗χ + ∇⃗ψ ×∇⃗θ∗ = Bθ e⃗θ +Bφe⃗φ, (4)

where 2πχ is the poloidal flux, θ∗ = θ+λ(s,θ,φ) is the pol-
oidal angle for which the magnetic field lines are straight in
(s,θ∗,φ), and λ is a periodic function of θ and φ with zero
average. e⃗i = ∂x⃗∗

∂αi
are the covariant basis vectors, and e⃗i = ∇⃗αi

are the contravariant basis vectors.
The contravariant components of the magnetic field (Bi =

B⃗ · e⃗i) are then:

Bθ =
1
√
g
Φ ′
(
ι-− ∂λ

∂φ

)
, (5)
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Bφ =
1
√
g
Φ ′
(
1+

∂λ

∂θ

)
, (6)

where ι- is the rotational transform, the prime denotes ∂/∂s,
and

√
g= (⃗es · e⃗θ × e⃗φ) = (∇⃗s · ∇⃗θ×∇⃗φ)−1 is the Jacobian

of the coordinate transformation f.
The covariant representation of B⃗ (Bi = B⃗ · e⃗i) can be

obtained from equations (5) and (6) and the metric tensor
gij = e⃗i · e⃗j = ∂x⃗∗

∂αi
· ∂x⃗

∗

∂αj
as follows:

Bs = Bθgθs+Bφgφ s, (7)

Bθ = Bθgθθ +Bφgφθ, (8)

Bφ = Bθgθφ+Bφgφφ. (9)

The contravariant components of the current density (Ji =
J⃗ · e⃗i = 1

µ0
(∇⃗× B⃗) · e⃗i) are:

Js =
1

µ0
√
g

(
∂Bφ
∂θ

− ∂Bθ
∂φ

)
, (10)

Jθ =
1

µ0
√
g

(
∂Bs
∂φ

− ∂Bφ
∂s

)
, (11)

Jφ =
1

µ0
√
g

(
∂Bθ
∂s

− ∂Bs
∂θ

)
. (12)

Finally, inserting equations (5), (6) and (10)–(12)
in equation (1), the covariant form of the MHD force residual
is given by:

F⃗= Fs∇⃗s+Fβ β⃗, (13)

Fs =
1
µ0

(
Bθ
∂Bθ
∂s

−Bθ
∂Bs
∂θ

−Bφ
∂Bs
∂φ

+Bφ
∂Bφ
∂s

)
+ p ′,

(14)

Fβ = Js =
1

µ0
√
g

(
∂Bφ
∂θ

− ∂Bθ
∂φ

)
, (15)

where β⃗ =
√
g(Bφ∇⃗θ−Bθ∇⃗φ).

If we define x⃗= (R,λ,Z), the MHD force residual can be
then computed from the mapping x⃗(s,θ,φ), and the p(s) and
ι-(s) flux functions (see section ‘Derivation of MHD force
residual’).

2.2. Fixed- and free-boundary equilibria

The ideal-MHD problem admits two kinds of boundary
conditions: fixed- and free-boundary conditions. In the
fixed-boundary case, the shape (R and Z) of the outermost flux
surface (i.e. s= 1) is fixed. In the free-boundary case, the shape
of the outermost flux surface is determined by the continuity
of the total pressure B2/2µ0 + p and by the vanishing of the
normal component of the vacuum field at the plasma-vacuum
interface (thus enforcing the s= 1 surface to be a flux surface).

Multiple quantities parameterize the equilibrium problem:
Φedge ∈ R defines the total toroidal flux enclosed by the
plasma, p : [0,1]→ R defines the pressure profile, and ι- :
[0,1]→ R defines the rotational transform profile. The toroidal
current profile Itor : [0,1]→ R can be also specified in place of
the iota profile: since Itor(s) =

´ s
0

´ 2π
0 Jφ

√
gds ′dθ, and Jφ lin-

early depends on ι-, the rotational transform profile consistent
with a given toroidal current profile can be computed by solv-
ing a linear algebraic equation.

In case of free-boundary equilibria, a vacuum field, which
is usually generated by a set of external coils, can be provided.
A reference field generated by each coil is commonly pre-
computed on the cylindrical grid, and the total vacuum field is
given as the superposition of each coil field B⃗v =

∑Nc

i=1 ii B⃗
0
i ,

where B⃗0
i is the reference field generated by each coil given

a reference current I0i , Nc is the number of independent coils,
and ii = Ii /I0i is the current ratio between the actual and refer-
ence coil current. The set of current ratios i⃗ ∈ RNc additionally
parameterizes the equilibrium problem.

In this work, since in equilibrium reconstruction routines
the plasma boundary is not known a priori, we are only inter-
ested in free-boundary equilibria. In addition, no diagnostics to
probe the iota profile are installed at W7-X, whereas continu-
ous Rogowski coils measure the net toroidal current. There-
fore, the toroidal current profile is specified instead of the iota
profile.

2.3. The ideal-MHD solution operator

In this work, a set of scalar parameters (ii and Φedge) and
plasma profiles (p and Itor), represented by one-dimensional
functions of the radial coordinate s, define a instance of the
ideal-MHD equilibrium problem. The equilibrium solution is
represented by the mapping (s,θ,φ)→ x⃗(s,θ,φ) (where x⃗=
(R,λ,Z)) and by the one-dimensional function s→ ι-(s).

Let us define the solution operator as the operator that maps
the set of scalar parameters and plasma profiles to the MHD
solution:

O(⃗i,Φedge,p(s), Itor(s))(s,θ,φ) = [⃗x(s,θ,φ), ι-(s)]T, (16)

where i⃗ ∈ RNc , Φedge ∈ R, {p, Itor, ι-} : [0,1]→ R are one-
dimensional functions defined on the radial plasma domain,
and x⃗ : [0,1]× [0,2π]× [0,2π]→ R3 is the mapping between
flux coordinates and (R,λ,Z).

3
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3. NNs to approximate non-linear operators

NNs can approximate non-linear continuous functions
[24–28], discontinuous functions [29, 30], and non-linear
continuous operators [31–33]. In this work, we propose a NN
model to learn the non-linear ideal-MHD operator. A set of
free parameters Θ ∈ RN (i.e. trainable weights) parameterizes
the NN model:

NN(⃗i,Φedge,p(s), Itor(s);Θ)(s,θ,φ) = [⃗x̃(s,θ,φ), ι̃-(s)]T,
(17)

where ⃗̃x(s,θ,φ) and ι̃-(s) compose the equilibrium solution
provided by the NN model.

Three sources of error characterize the accuracy of a NN:
approximation, optimization and generalization errors [34].
The approximation error describes how well a NN represents
the target function or operator, the optimization error describes
how well the NN training procedure minimizes the training
loss (i.e. empirical risk), and the generalization error describes
how well the NN generalizes to unseen data.

The approximation theorem in [31] shows how any NN
with a specific structure and enough capacity (i.e. number
of free parameters) guarantees a small approximation error.
However, no guarantees are given on the optimization and gen-
eralization errors. Also, from a practical standpoint, estimating
the required number of free parameters to meet “enough capa-
city” is difficult. Fulfilling known symmetries of the solution
by construction should ease the training process (i.e. it should
reduce the optimization error), and the addition of a physics
constraint loss should improve generalization (i.e. it should
reduce the generalization error). The next section will intro-
duce them separately.

3.1. Imposing symmetries in the NN model

In a learning algorithm, the available computational budget is
divided into three baskets: the capacity (i.e. size) of the model
sets the approximation error, the length of the training affects
the optimization error, and the size of the data set impacts the
generalization error.

The space of possible functions that the model can rep-
resent is large. The training process is essentially a ‘search’
in this space. An inductive bias ‘allows a learning algorithm
to prioritize one solution over another, independent of the
observed data’ [35]. An inductive bias encodes the solution’s
prior knowledge (e.g. a solution’s symmetry); it allows budget
to be relocated from the capacity basket to the other two bas-
kets, thus, reducing the optimization and generalization errors.

The equilibrium solution should satisfy multiple symmet-
ries. Let us define (X1,X2,X3) = (R,λ,Z). Each quantity Xj

(with j ∈ {1,2,3}) should be a periodic function of the pol-
oidal and toroidal angles:

Xj(s,θ,φ) = Xj(s,θ+ 2π,φ), (18)

Xj(s,θ,φ) = Xj(s,θ,φ + 2π/Nfp), (19)

where Nfp is the number of toroidal field period.

Moreover, if stellarator symmetry is assumed (which is
the case for most experimental devices, including W7-X), the
solution should satisfy the following relationships [36]:

R(s,θ,φ) = R(s,−θ,−φ), (20)

λ(s,θ,φ) =−λ(s,−θ,−φ), (21)

Z(s,θ,φ) =−Z(s,−θ,−φ). (22)

For example, the periodicity of Xj and stellarator symmetry
can be imposed if the solution is expanded in Fourier series
along the poloidal and toroidal directions:

R(s,θ,φ) =
∑
mn

Rmn (s)cos(mθ−Nfpnφ) , (23)

λ(s,θ,φ) =
∑
mn

λmn (s)sin(mθ−Nfpnφ) , (24)

Z(s,θ,φ) =
∑
mn

Zmn (s)sin(mθ−Nfpnφ) , (25)

where Xjmn are the associated Fourier coefficients,m is the pol-
oidal mode number, and n is the toroidal mode number. Since
λ is a periodic function with zero average, λ00 = 0.

At themagnetic axis (s= 0), the flux surface geometrymust
be regular (i.e. infinitely differentiable).

If it is expanded in Fourier series, the Fourier coefficients
Xjmn must have the form [37]:

Xjmn =
√
s
m ∑
k∈N∪{0}

Xjkmns
k. (26)

Section 3.2 introduces how the NN model inherently satis-
fies this property.

3.2. DeepONet-like architecture

Figure 1 shows the NN macro architecture. The plasma pro-
files are observed at a set of equally spaced radial locations,
si for i ∈ {1, . . . ,Ns}, also called sensors. In addition to the
independent variables (s, θ, and φ), the model has two sets of
inputs: the set of scalar equilibrium parameters ([i1, . . . , iNc ]

T

and Φedge) and the plasma profiles ([p(s0), . . . ,p(sNs)]
T and

[Itor(s0), . . . , Itor(sNs)]
T). Those inputs are concatenated into

u⃗= [i1, . . . , iNc ,Φedge,p(s1), . . . ,p(sNs), Itor(s1), . . . , Itor(sNs)]
T.

The model represents the MHD equilibrium solution as:

Xj(⃗u)(s,θ,φ) =
∑
mn

Xjmn(⃗u)(s)Fmn(θ,φ), (27)

Xjmn(⃗u)(s) =
√
s
m

L∑
l=1

Xjlmn(⃗u)T
j
lmn(s), (28)

ι-(⃗u)(s) =
L∑
l=1

ι-l(⃗u)Tl(s), (29)

4
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Figure 1. The macro architecture of the NN model to approximate the ideal-MHD solution operator. In case of free-boundary equilibria, a
set of parameters (the normalized coil currents [i1, . . . , iNc ]

T and the toroidal flux enclosed by the plasma Φedge) and two functions (the
pressure p(s) and toroidal current Itor(s) plasma profiles) define the ideal-MHD equilibrium problem. The variable u combines the set of
parameters and the plasma profiles values at selected flux surfaces, [s1, . . . ,sNs ]

T. The solution is represented by the set of flux surface
coordinates (R,Z), the renormalization parameter λ, and the iota profile ι-. The solution domain spans the radial s, poloidal θ, and toroidal φ
directions. The quantities Xj ∈ {R,λ,Z} are expanded in Fourier series along the poloidal and toroidal directions. A trunk network
constructs a set of non-linear ‘basis’ functions of s, which radially expand the Xj Fourier coefficients and iota. A branch network
parameterizes the set of trunk basis coefficients as a function of u.

where Xj ∈ {R,λ,Z},Fmn(θ,φ) = cos(mθ−Nfpnφ) in case of
R and Fmn(θ,φ) = sin(mθ−Nfpnφ) in case of λ or Z. The
Fourier terms Fmn(θ,φ) expand each Xj, where Xjmn represent
the Fourier coefficients.

Up to m= 8 poloidal and |n|= 11 toroidal modes repres-
ent each Xj. For W7-X, previous works showed that up to six
modes are sufficient to represent the geometry of the flux sur-
faces [18–20]. However, using VMEC equilibria with up to
m= 11 and |n|= 12 as a ‘high-fidelity’ reference, a Fourier
resolution scan revealed that up to m= 8 and |n|= 11 modes
are required to represent the equilibrium field with a field error
below 1% (see section ‘Equilibria Fourier scaling’).

For each Fourier coefficients and for iota, a ‘trunk’
network parameterizes a set of non-linear functions of
s, [T j

1mn(s), . . . ,T
j
Lmn(s)]

T ∈ RL and [T1(s), . . . ,TL(s)]T ∈ RL,
respectively. A ‘branch’ network outputs a set of scalar
coefficients as a function of u, [Xj1mn, . . . ,X

j
Lmn]

T ∈ RL and
[ι-1, . . . , ι-L]T ∈ RL. Finally, the iota and the Fourier coefficients
are obtained as a linear combination of trunk network func-
tions, which are weighted by the branch network coefficients.

Iota highly depends on the toroidal current [38]. To let the
model exploit this dependency, the toroidal current profile sub-
stitutes the last trunk network function in the expansion of the
iota profile: TL(s) = Itor(s).

The trunk network expands the radial coordinate s into a
set of ‘basis’ functions, independent for each Fourier coeffi-
cient Xjmn and iota ι-. We inappropriately refer to them as a set
of basis functions on the interval [0,1] since these functions

are not guaranteed to form a basis (a set of orthogonal func-
tions). To obey the required form needed to represent Xj

(see section 3.1), each function1 is multiplied by a
√
s
m factor,

and the two first trunk network functions are the constant
and identity functions, respectively: T j

1mn(s) = T1(s) = 1 and
T j
2mn(s) = T2(s) = s. Imposing the identity function as one of

the trunk network functions effectively bypasses the trunk
network layers, and it preserves the model ability to build
simple functions (e.g. the identity function). This construc-
tion is known as a ‘skip connection’ in machine learning [39].
A multilayer perceptron (MLP) parameterizes the trunk net-
work. Please refer to section ‘Model architecture and hyper-
parameters (HPs)’ for a detailed description of the trunk net-
work architecture.

The branch network maps the scalar parameters and the
plasma profiles of the equilibrium problem to the set of coeffi-
cients associated to the trunk functions. The one-dimensional
plasma profiles are observed at a set of sensors [s1, . . . ,sNs ]

T.
A set of one-dimensional convolutional layers extract high-
level features from the plasma profiles into a compressed latent
representation, which is then concatenated to the set of scalar
parameters. Finally, a MLP outputs the coefficients associated
to the trunk functions. Please refer to section ‘Model architec-
ture and HPs’ for a detailed description of the branch network
architecture.

1 Only the functions that expand the Fourier coefficients Xjmm.
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Themodel can represent a global ideal-MHD solution (i.e. a
solution that is defined everywhere in the plasma volume)
and fulfils the required symmetries and regularity condition
at the magnetic axis by construction. Because of the Fourier
expansion along the poloidal and toroidal directions, the peri-
odic boundary conditions and stellarator symmetry are sat-
isfied. The required radial form of each Fourier coefficients
is satisfied due to the

√
s
m factor and the trunk network skip

connection.

4. Training

The model is trained in a supervised-learning fashion: VMEC
provides the ground-truth ideal-MHD equilibria. To restrict
the space in which to approximate the ideal-MHD solution
operator, only W7-X configurations are considered.

4.1. Data set

The boundaries of the training data limit the application of
any data-driven method. In this work, the training data are
sampled from a multivariate distribution that approximates
the experimental distribution (table 1). The coil current ratios
define the vacuum magnetic configuration, the plasma volume
determines the total toroidal flux at the edge. One-dimensional
Gaussian processes (GPs) on the [0,1] interval represent the
normalized pressure and toroidal current profiles. The volume
averaged plasma beta informs the scale of the pressure pro-
file, and the total integrated toroidal current defines the scale
of the current profile. See [20, section 2.2] for a more in depth
description of the methodology.

• Vacuum configuration. The current ratios between theW7-
X coils define the vacuum magnetic configuration. Two
symmetric sets of coils compose each half toroidal field
period: five non-planar coils, two planar (tilted) coils, and
one control coil constitute each set. Defining I1 as the cur-
rent flowing in the first non-planar coil, ii =

Ii
I1

for i ∈
{1, . . . ,Nc} are the coil current ratios. In the data set, the cur-
rent of the first non-planar coil is held fixed at I1 = 13068A
(current value to obtain Baxis(φ = 0)≃ 2.52T in case of the
standard configuration), and the current in the control coil is
null. The coil current ratios are uniformly sampled to cover
a broad configuration space around the nine referenceW7-X
configurations [8].

• Plasma volume. For a given magnetic field strength, Φedge

sets the plasma volume: Φedge =
´ 1
0

´ 2π
0 B⃗ · ∇⃗φ√gdsdθ ∝

Baπ2 ≃ BVp/R, where a is the effective minor radius, R the
major radius, andVp the plasma volume. The plasma volume
is sampled from a normal distribution with mean 30m3 and
standard variation 3m3 [40]. Once a plasma volume has been
sampled, a linear fit estimates Φedge.

• Plasma beta. For a given magnetic field strength and pres-
sure profile shape, the pressure on axis sets the volume aver-
aged plasma beta: ⟨β⟩= 2µ0⟨p/B2⟩Vol = 2µ0p0⟨p/B2⟩Vol,
where p0 is the pressure on axis and p= p/p0 is the nor-
malized pressure profile. In previous operational campaigns,

Table 1. Distributions from which the training data have been
sampled. U(a,b) represents a uniform distribution on the [a,b]
interval, and N(µ,σ) represents a normal distribution with µ mean
and σ standard variation. One-dimensional GPs with a
non-stationary covariance function model the plasma profiles. The
GP covariance function scale factor σf, core length scale lcore, edge
length scale ledge, core-edge transition location s0, and core-edge
transition width sw parameterize each GP [20, section 2.2]. The
references from which the distribution parameters have been
informed are listed.

Quantity magnetic
configuration Distribution Unit References

Non-planar coil currents
i[2...5]

U(0.6,1.2) — [8, 18–20]

Planar coil currents i[A,B] U(−0.8,0.8) — [8, 18–20]

Plasma parameters

Plasma volume Vp N(30,3.0) m3 [40]
Plasma beta β U(0,5) % [41]
Total toroidal current Itor U(−20,20) kA [40]

Pressure profile GP

Covariance function scale
factor σf

U(0.1,5.0) — [20]

Core length scale lcore U(0.1,1.0) — [20]
Edge length scale ledge U(0.1,2.0) — [20]
Core-edge transition
location s0

U(0.1,1.0) — [20]

Core-edge transition width sw U(0.1,0.3) — [20]

Toroidal current profile GP

Covariance function scale
factor σf

U(1.0,5.0) — [20]

Core length scale lcore U(0.1,1.0) — [20]
Edge length scale ledge U(0.5,1.0) — [20]
Core-edge transition
location s0

U(0.001,0.8) — [20]

Core-edge transition width sw U(0.1,0.5) — [20]

W7-X has reached a maximum ⟨β⟩ of roughly 1%. How-
ever, W7-X has been optimized for higher plasma beta (up
to ⟨β⟩ ≃ 5% [7]). Therefore, the volume averaged plasma
beta is sampled from a uniform distribution between 0%
and 5%. Once a plasma beta has been sampled, a linear fit
estimates p0.

• Net toroidal current. The plasma bootstrap current and
the externally induced current (e.g. via electron cyclotron
current drive (ECCD)) mainly define the net toroidal cur-
rent. The net toroidal current should be minimized for the
robust operation of an island divertor. In W7-X operations,
two current-free scenarios are envisioned [40]: a scenario in
which the bootstrap current is minimized via the magnetic
configuration, and a scenario in which the bootstrap current
is balanced by a strong ECCD current. During the first oper-
ational campaign, the measured bootstrap current ranged
between −7kA and 17kA [42]. Therefore, the total tor-
oidal current is sampled from a uniform distribution between
−20kA and 20kA.
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Figure 2. Histograms of the volume averaged beta (a), the pressure peaking factor (b), and the peak toroidal current density (c) for all
converged equilibria in the data set.

• Pressure profile shape. For electrons and ions, the gradient
of the density and temperature (p∝ nT) profiles can be sub-
stantially different in the core and edge regions. To account
for such difference, a GP with a non-stationary covariance
function models the pressure profile. The GP is parameter-
ized by a set of HPs [20, section 2.2]: the covariance func-
tion scale factor σf, the core length scale lcore, the edge length
scale ledge, the transition location s0, and the transition width
sw. In W7-X, the pressure profile is generally flat, however,
high-performance operations are correlated with a peaked
density profile [43]. To account for both, flat and peaked pro-
files are included in the data set. Profiles with a non-physical
positive pressure gradient (i.e. ∇p> 0) are discarded.

• Toroidal current profile shape. In W7-X, the toroidal cur-
rent has two main contributions: the ECCD induced cur-
rent and the bootstrap current. The bootstrap current dens-
ity is generally flat across the plasma volume, however, the
ECCD current density is peaked at the deposition location.
To capture both shapes, a GP with a non-stationary covari-
ance function is used to model the toroidal current profile.

14 281 equilibria have been sampled in the data set, but
equilibria for which VMEC was not able to minimize the
MHD variational forces up to a tolerance of 1× 10−7NHm−1

were discarded2. The data set thus contains 9857 equilib-
ria. Figures 2(a)–(c) show the histograms of a subset equi-
librium properties for all converged equilibria: the volume
averaged beta ⟨β⟩, the pressure peaking factor p0/⟨p⟩, and
the peak toroidal current density maxs | jtor(s)|. The ⟨β⟩ dis-
tribution is not uniform due to the not converged equilibria at
high beta (figure 2(a)). Nevertheless, the data set holds both
flat (i.e. small peaking factor) and peaked (i.e. large peaking
factor) pressure profiles (figure 2(b)).

The data set has been split into a training set (80%), a val-
idation set (10%), and a test set (10%). The training set has
been used to train the model, the validation set has been used
to assess the best model HPs, and the test set has been used to
assess the model performance on held-out data.

To improve the training procedure, the model inputs have
been normalized with the mean and standard deviation com-
puted on 20% of the training data.

4.2. Loss function

Three terms form the model loss function: a data term, a gradi-
ent term, and a physics-based regularization term. The data

2 ftol = 1× 10−14 in VMEC.
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term biases the model to provide equilibria that are close to the
ground truth (computed by VMEC), the gradient term regular-
izes the model equilibria to exhibit the same radial derivatives
as the ground truth, and the physics-based term regularizes the
model equilibria to satisfy the ideal-MHD equations.

4.2.1. Data loss. The model equilibrium solution is globally
defined in the whole plasma volume. However, to numeric-
ally compute a residual measure against the ground truth, an
equally spaced grid is adopted:Ns = 99 flux surfaces,Nθ = 32
poloidal locations, and Nφ = 36 toroidal locations compose
the loss grid. The iota profile, being a flux surface quantity,
is evaluated only at the radial grid locations. On each equilib-
rium, the data loss term is:

Ld =
3∑
j=1

αXj

Ns∑
i=1

Nθ∑
t=1

Nφ∑
z=1

[X̃j(si,θt,φz)−Xj(si,θt,φz)]
2

+αι-

Ns∑
i=1

[̃ι-(si)− ι-(si)]
2, (30)

where X̃j and ι̃- are the model outputs, and αXj and αι- are the
set of coefficients that weight the data loss terms.

4.2.2. Gradient loss. An equilibrium solution is fully
defined by the mapping Xj(s,θ,φ) for j ∈ {1,2,3} and by ι-(s).
However, many equilibrium properties depend also on equi-
librium first and second radial, poloidal and toroidal deriv-
atives. For example, the flux surface Jacobian

√
g, which is

the local linear approximation of the coordinate transforma-
tion (s,θ,φ)→ (R,ϕ,Z), is:

√
g= R

(
∂R
∂θ

∂Z
∂s

− ∂R
∂s

∂Z
∂θ

)
. (31)

To faithfully reconstruct the equilibrium properties, the
gradients of the equilibrium solution need to match the gradi-
ents of the ground truth. Due to the Fourier expansion of the
solution in the poloidal and toroidal directions, the poloidal
and toroidal derivatives are already constrained by the Four-
ier coefficients: for example, ∂R

∂θ = ∂
∂θ [
∑

mnRmn cos(mθ−
Nfpnφ)] =−

∑
mnmRmn sin(mθ−Nfpnφ). A similar relation-

ship holds for any poloidal and toroidal derivatives of (R,λ,Z).
However, the radial derivatives of the equilibrium solution

are not guaranteed to match those of the ground truth. The
radial derivatives depend on the learnt trunk network func-
tions, which are derived during training tominimize a L2 resid-
ual with the ground truth on a finite-spacing radial grid. Even
if the L2 residual vanishes, numerical artefacts (e.g. numer-
ical oscillations) are known to occur [44]. Therefore, the radial
derivatives of the model solution can substantially differ from
the ground truth.

To ameliorate these phenomena, a gradient term regularizes
the radial derivatives of the model equilibrium:

Lg =
3∑
j=1

αXjs

Ns∑
i=1

Nθ∑
t=1

Nφ∑
z=1

[
∂X̃j

∂s
(si,θt,φz)−

∂Xj

∂s
(si,θt,φz)

]2

+αι- ′
Ns∑
i=1

[
∂ι̃-
∂s

(si)−
∂ι-
∂s

(si)

]2
, (32)

where αXjs and αι- ′ are a set of coefficients that weight the
gradient loss terms. The radial derivatives are approximated
with a central finite difference scheme for both the model and
ground truth solutions.

4.2.3. Physics regularization. The ideal-MHD equilibrium
problem exhibits a high condition number [45]. In the frame-
work of MHD equilibria, the condition number is defined as
ratio between the largest and the smallest eigenvalue of the
MHD force residual linearized around an equilibrium solution.
Due to the presence of second-order radial derivatives in the
residual, the condition number scales with the square of the
number of radial grid locations [45], namely, P ∼ N2

s (O(104)
in this work).

A high condition number means that the MHD force resid-
ual is highly sensitive to the equilibrium solution: small devi-
ations of the solution away from the ground truth may lead to
a large MHD residual. Even if the model equilibria are close
(in the L2 sense) to the ground truth equilibria, they are not
guaranteed to well minimize the residual.

The MHD force residual in the loss function regularizes
the model to provide equilibria that better satisfy the ideal-
MHD equations. For an equilibrium solution, ∥F⃗∥2 = 0 every-
where in the domain. The volume-averaged residual norm can
be computed as:

⟨∥F⃗∥2⟩Vol =
ˆ 1

0

ˆ 2π

0

ˆ 2π

0
∥F⃗∥2

√
gdsdθdφ, (33)

where ⟨A⟩Vol =
´ 1
0

´ 2π
0

´ 2π
0 A

√
gdsdθdφ denotes a volume-

averaged operator.
In this work, a proxy for the MHD force residual is used

instead. VMEC (the code that provides the ground truth equi-
libria) does not directly minimize the force residual, instead,
it minimizes the total energy of the system (i.e. it uses a vari-
ational approach). It has been shown that equilibria computed
by VMEC only poorly minimize the ideal-MHD force resid-
ual [2]. Therefore, adding the full ⟨∥F⃗∥2⟩Vol as regularization
term may cause instabilities in the training procedure. The
volume averaged radial force balance assuming a vanishing
helical component (Fβ = 0) is used instead. This quantity is
also used in VMEC to determine the goodness of a converged
solution. Let us firstly define

f∗ =
µ0

(2π)2
⟨Fs|Fβ=0⟩Fs, (34)

where ⟨A⟩Fs =
´ 2π
0

´ 2π
0 A

√
gdθdφ is a flux surface averaged

operator. Then, the model is regularized with the following
term:

LMHD = αMHD

ˆ 1

smin

f2∗ds, (35)
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where smin = 0.02 to avoid the sensitivity of the MHD force
residual at the magnetic axis. Please refer to section ‘Physics
regularization’ for the derivation of f∗.

4.3. Training stages

Three subsequent training stages compose the training proced-
ure. In every training stage, early stopping is employed during
training [46], and the best model accordingly to the validation
loss is used as a warm start for the next stage.

• Data stage. At the beginning of the training, only the data
loss Ld is used. A set of flux surfaces randomly sampled
across all equilibria in the training set compose each batch
(i.e. individual flux surfaces from different equilibria are
randomly shuffled into the same batch).

• Gradient stage. In this stage, the gradient loss Lg is included
in the overall loss. To compute the radial derivatives of
the solution, the flux surfaces of the same equilibrium are
aggregated together in the same batch. However, multiple
equilibria are still randomly shuffled into each batch.

• Physics regularization stage. Finally, the physics regular-
ization term LMHD is included in the loss function. As in the
gradient stage, and to compute f∗, the flux surfaces of the
same equilibrium are aggregated together in the same batch.
Still, multiple equilibria form each batch.

During the physics regularization stage, a curriculum learn-
ing approach is used [47]. The high condition number lim-
its the convergence rate and imposes a superior bound on the
learning rate (i.e. the step size): even if the model commits a
finite, but small error on the equilibrium solution, the regular-
ization term might lead to a diverging loss.

To mitigate this issue, the model is gradually regularized,
starting with well-predicted equilibria. At every batch, the
physics regularization term is included into the loss function
only for the subset of equilibria where the mean-squared error
(mse) on (R,Z) (the key quantities affecting the MHD resid-
ual) is below a given threshold. When the regularization term
has not decreased in the previous 50 epochs, the threshold is
progressively increased by a factor of 10. More formally, the
physics regularization term for the generic batch B at the kth
step is:

LkMHD,B =
1
|B|

|B|∑
i=1

wkiLMHD,i, (36)

wki = H(Lk−L(R,Z),i), (37)

where LMHD,i is the physics regularization term for the ith
equilibrium in the batch, H(·) is the Heaviside function, Lk

is the loss threshold value at the kth step, L(R,Z),i is the mse
on (R,Z) for the ith equilibrium. The loss threshold is pro-
gressively increased, i.e. Lk = 10kL0. An initial threshold of
L0 = 3× 10−7m2 is used. At the fourth step, the physics reg-
ularization term is computed on all the equilibria in the batch,
namely, L4 =+∞.

4.4. HPs

Due to the computational cost of the whole training proced-
ure (≃8 days on a single NVIDIA Tesla-V100 graphical pro-
cessing unit (GPU)), a simplified scenario is used to identify
the best model HPs. Given a fixed budget of ≃6M free para-
meters, HP grid search is performed for the depth and width of
both trunk and branch networks. In addition, only half of the
training data is used. The optimumHPs combination is chosen
based on the loss on the validation set in the data stage.

The trunk and branch networks are then proportionally
upscaled to reach≃40M free parameters. Tables 7 and 8 sum-
marize the HPs of the final model.

The AdamW [48, 49] optimizer is used to train the model.
In each stage, due to the different loss function, the learning
rate, the learning rate scheduler, and the L2 regularization term
are derived with a limited grid search. The loss on the valid-
ation set is used to inform the search. In addition, early stop-
ping [46] is employed during training. Tables 9–11 report the
HPs used in each training stage.

5. Results

In the following chapter, the model’s accuracy is evaluated
by how well it predicts the equilibrium problem solution and
reconstructs equilibrium properties of interest (which are not
explicitly included in the loss function) across many physics
domains (table 2): flux surface geometry (section 5.1); iota
profile, shear profile and magnetic field structure (section 5.2);
MHD force residual (section 5.3); ideal-MHD stability
(section 5.4); neoclassical transport (section 5.5); fast particle
confinement (section 5.6).

The root-mean-square error (rmse) and mean absolute per-
centage error (mape) summarize the error on the test set. Given
a quantity of interest y ∈ RK (e.g. the magnetic well), the rmse
evaluates the average residual between the ground truth and
predicted values for that quantity. If Y = {y ∈ RK} is the set
of true values, and Ŷ = {ŷ ∈ RK} is the set of related model
predictions, the rmse on y is:

rmsey =

√√√√ 1
K|Y|

|Y|∑
i=1

K∑
k=1

(ŷki − yki )
2. (38)

Given a quantity of interest y ∈ RK, the mape measures the
average relative deviation of ground truth with respect to pre-
dicted values for that quantity. Using the same notation as for
the rmse, the mape on y is:

mapey =
1

K|Y|

|Y|∑
i=1

K∑
k=1

∣∣∣∣ ŷki − yki
yki

∣∣∣∣ . (39)

To further investigate the model accuracy, and to validate
its use in downstream applications, section 5.7 shows the a
posteriori optimization of W7-X coil currents to search for
ideal-MHD unstable and improved fast particle confinement
configurations. In this task, the model replaces a traditional
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Table 2. Model error metrics on the test set across multiple
equilibrium properties (which are not explicitly included in the loss
function). For the description of each quantity, please
see sections 5.1–5.6. Each row represents either an error metric (e.g.
the flux surface error ϵFs) or an equilibrium property (e.g. the proxy
for the radial force balance f∗). In both cases, the table shows the
average over the whole test set. In case of an equilibrium property,
the bracket indicates the ground truth value as computed by VMEC.

Flux surfaces geometry

Flux surface error ϵFs (mm) 6.16× 10−1

Raxis rmse (mm) 5.84× 10−1

λ rmse (mrad) 3.90× 100

Magnetics

Iota mape 9.31× 10−4

Shear mape 8.44× 10−1

Mean shear mape 8.16× 10−2

Magnetic field rmse (mT) 2.36× 101

Volume averaged plasma beta
mape

1.37× 10−3

Ideal-MHD force balance

MHD force residual proxy εf∗
(VMEC) (NHm−1)

1.97× 10−2 (2.43× 10−5)

Normalized MHD force residual
proxy ηf∗ (VMEC)

5.01× 10−1 (5.29× 10−4)

Ideal-MHD stability

Vacuum magnetic well depth
Wvacuum mape

3.43× 10−2

Finite-⟨β⟩ magnetic well depth
W mape

2.61× 10−1

Vacuum magnetic well Wvacuum 5.12× 10−1

Finite-⟨β⟩ magnetic well W
mape

1.93× 100

Mercier well DW mape 1.12× 100

Neoclassical transport

Effective ripple ϵeff (s⩽ 0.33)
mape

5.46× 10−1

Effective ripple proxy ϵ̂eff mape 1.33× 10−1

Fast particle confinement

Standard deviation of the
maxima of BσBmax rmse (mT)

9.43× 100

Standard deviation of the
minima of BσBmin rmse (mT)

6.57× 100

non-linear ideal-MHD code (e.g. VMEC) in constructing free-
boundary equilibria.

The results of the model on the test set are now presen-
ted. Because of the adopted finite differences scheme, numer-
ical noise affects quantities that rely on the radial derivative of
(R,λ,Z) at the magnetic axis and on the nearest flux surface ;
those values are invalid. A note is present in the caption of all
affected figures.

5.1. Flux surface geometry

The geometry of the flux surfaces (R,λ,Z) and ι- repres-
ent the solution of the ideal-MHD equilibrium problem: they
fully describe the equilibrium magnetic field and its proper-
ties. Therefore, the accuracy with which the model predicts
(R,λ,Z) and ι- bounds the accuracy with which it reconstructs
equilibrium properties.

The flux surface geometry is predicted with an exceptional
accuracy (figure 3). The flux surface error between the ground
truth and the model prediction is evaluated as:

εFs = ⟨∥[∆Ri,∆Zi]T∥2⟩i , (40)

where∆Ri and∆Zi are the differences in flux surfaces relative
to the ground truth, and the brackets denote the mean across all
equilibria and grid locations. In other words, εFs represents the
average absolute distance

√
(∆R)2 +(∆Z)2 across all equi-

libria and grid locations. The model achieves εFs = 616µm.
Similarly, the model successfully predicts the angle renormal-
ization parameter λ, achieving rmseλ = 2.41mrad.

Low-beta equilibria are better regressed than high-beta
equilibria (figure 4). As expected from the distribution of the
volume averaged beta in the training data set (see figure 2(a)),
the flux surface error increases towards the boundary of the
training set (i.e. where the plasma beta increases). No clear pat-
terns are visible in terms of the net toroidal current enclosed
by the plasma. The flux surface error does not considerably
changewhen the physics regularization is applied (see table 3).

As the plasma beta increases, the plasma column moves
outwards. This effect is called the Shafranov shift, and it is
usually measured as ∆/a, where ∆= Raxis(β)−Raxis(0) and
a is the effective minor radius. The Shafranov shift defines the
equilibrium beta limit (∆/a≃ 0.5) [50], and it causes an out-
ward movement of the last closed flux surface, which affects
the edge magnetic field topology. In W7-X, the minimization
of the Shafranov shift was an optimization criterion [51]. Nev-
ertheless, a Shafranov shift of ∆≃ 5cm has been observed in
high-β operations [52].

The model faithfully predicts this finite-beta effect
(figure 5): the axis location at φ= 0 is resolved with a relative
error of mapeRaxis

< 0.01%. A two-dimensional histogram
visualizes the distribution of ground truth and predicted
values. The color-bar indicates the counts in each two-
dimensional histogram bins. To guide the eye, a red dashed
line indicates the case of perfect regression: the more the
density of points lies on the line, the more the model provides
accurate equilibrium properties. The coefficient of determina-
tion R2 captures the reconstruction quality.

5.2. Magnetics

ι- sets the location of the resonant surfaces in the plasma
volume. It also defines the island chain and magnetic edge
topology, which affects how the W7-X island divertor oper-
ates. Although equilibria with the assumption of nested flux
surfaces cannot resolve islands, VMEC equilibria are an
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Figure 3. The ground truth (solid) and predicted (dashed) flux surfaces geometry, (R,Z), for the median predicted equilibrium. Four
toroidal locations at φ = 0◦ (pink), φ = 18◦ (orange), φ = 36◦ (green), and φ = 54◦ (red) are shown. For each toroidal location, ten flux
surfaces equally spaced in ρ=

√
s are shown. The model approximates the geometry of the flux surfaces with high accuracy: the average

distance from the ground truth solution is below 1mm. To highlight the model prediction, the region in which the flux surfaces have the
largest curvature is zoomed in. Indeed, the two curves overlap each other.

important requirement in the investigation of plasma phenom-
ena involving resonant surfaces [53–55].

The model effectively predicts the ι- profile (figure 6(a)).
A relative error of mapeι- < 0.1% is achieved. In case of the
median regressed equilibrium, the predicted and ground truth
ι- profiles overlap (figure 6(b)).

The magnetic shear is the radial derivative of ι-:

ι- ′ =
dι-
dψ

=
∂ι-
∂s

∂s
∂ψ

=
1

ψedge

∂ι-
∂s
, (41)

where 2πψ(s) = Φedges is the toroidal flux. It represents the
change of direction of the magnetic field lines from one flux
surface to another. The magnetic shear influences multiple

properties of the equilibrium: it affectsMHD stability [56, 57],
it is inversely proportional to the island width (i.e. large islands
are present at low shear) [56], and a low shear leads to long
connection lengths allowing efficient divertor operation [58].

The model qualitatively reconstructs the shear profile
(figure 7(a)). Figure 7(b) shows that the ground truth and pre-
dicted shear profile only partially overlap. Across all equilibria
in the test set, the relative error on the magnetic shear is high
mapeι- ′ = 84.4%.

However, the model captures the average magnetic shear ι- ′∗
(figure 8): mapeι- ′∗ = 8.16%, where the average magnetic shear
is the shear of the least squares linear fit of the iota profile.

The structure of the magnetic field plays a crucial role in
many physics aspects: neoclassical and turbulence transport,
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Figure 4. Distribution of the flux surface error εFs as a function of
the equilibrium volume averaged beta ⟨β⟩ and the net toroidal
current enclosed by the plasma Itor in the test set.

Figure 5. Reconstruction of the location of the magnetic axis at
Raxis(φ = 0) across all equilibria in the test set. The color-bar
indicates the counts in each histogram bin. To guide the eye, a red
dashed line indicates the case of perfect reconstruction.

confinement of energetic particles, plasma instabilities, and
deposition of electron cyclotron resonance heating power.

The model correctly reconstructs the magnetic field struc-
ture (figure 9). The model achieves a rmseB = 23.6mT on all
equilibria in the test set. When compared with an averageW7-
X field of B0 = 2.5T, this value represents a relative error
below 1%.

However, the magnetic field strength error differs along the
radial profile (figure 9). On average, the field strength error is
below 10mT for a considerable fraction of the plasma volume,
up to s≃ 0.3 (i.e. ρ≃ 0.55). The accuracy of themagnetic field

strength in the core region is sufficient to navigate themagnetic
configuration space of W7-X to obtain fast particle optimized
configurations (see section 5.7.2). Moreover, an accuracy of
10mT is expected to be enough to perform equilibrium recon-
struction routines [60].

The model introduces artificial field ripples in the equilib-
rium solution (figure 10): at the plasma edge, and also to a less
extent close to the magnetic axis, the predicted B field is not as
smooth as the ground truth solution. The flux surface geometry
Jacobian

√
g and the metric tensor elements gij mainly define

the magnetic field B (section 2.1). These quantities are highly
sensitive to the radial derivative of the flux surface coordinates
(R,λ,Z). High frequency components in the learned trunk net-
work basis functions might be the cause of such field ripples.

5.3. Ideal-MHD loss

A high condition number, which has several negative implic-
ations, characterizes the ideal-MHD equilibrium problem
(see section 4.2.3).

Firstly, a high condition number limits the rate of conver-
gence. During the physics regularization training stage, the
weights of the NN model are adjusted to minimize the MHD
force residual for the equilibria in the training set. The con-
dition number sets the convergence rate of this gradient des-
cent method. To accelerate the descent, non-linearMHD codes
adopt a preconditioning matrix, which decreases the condition
number of the problem [45]. In this work, this technique is
not available: in general, preconditioning algorithms require
an approximation of the Hessian matrix, which is impractical
due to the large number of free parameters of the NN model.

Secondly, a high condition number implies that the MHD
force residual is highly sensitive to the equilibrium solution.
For example, if we define x⃗0 to be that solution that satisfies
the MHD force residual FMHD(⃗x0) = 0 and κ as the condition
number, then FMHD(⃗x0 + ϵ⃗)≃ κ∥ϵ⃗∥2 ≫ 1, where ϵ⃗ is a small
displacement to the equilibrium solution. Even if the model
provides a good approximation of the equilibrium solution, the
MHD force residual is not guaranteed to be null.

To quantify how well the equilibria satisfy the MHD
equations, twomeasures are adopted. The proxy and fullMHD
force residuals:

εf∗ =
µ0

(2π)2
⟨Fs|Fβ=0⟩Vol =

ˆ 1

smin

f∗ds, (42)

εF=
µ0

(2π)2
⟨∥F⃗∥2⟩Vol=

µ0

(2π)2

ˆ 1

smin

ˆ 2π

0

ˆ 2π

0
∥F⃗∥2

√
gdsdθdφ.

(43)

And their normalized versions:

ηf∗ =

´ 1
smin

f∗ds´ 1
smin

´ 2π
0

´ 2π
0 ∥∇⃗p∥2

√
gdsdθdφ

, (44)

ηF =

´ 1
smin

´ ´
∥F⃗∥2

√
gdsdθdφ´ 1

smin

´ 2π
0

´ 2π
0 ∥∇⃗p∥2

√
gdsdθdφ

. (45)
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Figure 6. (a) Reconstruction of the iota profile ι- across all equilibria in the test set. The color-bar indicates the counts in each histogram bin.
To guide the eye, a red dashed line indicates the case of perfect reconstruction. (b) The true (solid pink) and predicted (dashed green) iota
profile for the median regressed equilibrium in the test set.

Figure 7. (a) Reconstruction of the local magnetic shear ι- ′ across all equilibria in the test set. The color-bar indicates the counts in each
histogram bin. To guide the eye, a red dashed line indicates the case of perfect reconstruction. (b) The true (solid pink) and predicted
(dashed green) magnetic shear profile for the median regressed equilibrium in the set.

The model trained with the physics regularization term bet-
ter satisfies the ideal-MHD force residual compared with a
model that has not been regularized (table 3). Both models
show similar flux surface and iota errors, however, the physics
regularized model shows a reduced ideal-MHD force proxy
residual. However, this number is still three orders of mag-
nitude higher than the value of ground truth equilibria from
VMEC.

Even though the model provides the solution of the ideal-
MHD equilibrium problem (the geometry of the flux sur-
faces and the iota profile) with high accuracy, the ideal-MHD
force residual is poorly satisfied. In case of the median pre-
dicted equilibrium (at ⟨β⟩= 1.39%), the normalized MHD
force proxy residual is ηf∗ = 23.3% (figure 11). For compar-
ison, the ground truth equilibrium has a normalized residual
of 3.04× 10−2%.

5.3.1. Fine-tuning at inference time. Let us call a single-pass
equilibrium an equilibrium solution provided by the model
with a single forward pass.
Single-pass equilibria poorly satisfy the ideal-MHD

equations (section 5.3). However, without access to the ground
truth solution, equilibria can be improved at inference time.
The original free-boundary equilibrium problem is cast into
an equivalent fixed-boundary one: the plasma boundary of the
single-pass free-boundary equilibrium defines the boundary
condition on (R,Z) for the equivalent fixed-boundary equi-
librium. The error on (R,Z) of the single-pass equilibrium is
below 1mm (section 5.1), therefore, the plasma boundary can
be safely assumed to be close to the correct.

The solution of the equivalent fixed-boundary equilibrium
problem is approximated by minimizing theMHD force resid-
ual at inference time. The loss function has three terms: the
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Figure 8. Reconstruction of the average magnetic shear across all
equilibria in the test set. The color-bar indicates the counts in each
histogram bin. To guide the eye, a red dashed line indicates the case
of perfect reconstruction. The average magnetic shear is defined as
the shear of the least squares linear fit of the iota profile [59].

full MHD force residual, a distance between the model and
the fixed boundary (Rb,Zb) derived from the single-pass equi-
librium, and the satisfaction of the required toroidal current
profile Itor(s). The loss function is then:

L= αMHDLMHD +αbLb+αILI, (46)

LMHD =
µ2
0

(2π)4

ˆ 1

smin

⟨∥F⃗∥2⟩2Fsds, (47)

Lb = ⟨(∆Rbi )2⟩i + ⟨(∆Zbi )2⟩i , (48)

LI = µ2
0

ˆ 1

smin

(̃Itor − Itor)
2ds, (49)

where αMHD = 1× 10−3, αb = 0.2495, αI = 0.5, and smin =
0.02. The single-pass equilibrium is used as initial guess for
the minimization problem. The AdamW algorithm minimizes
the loss function. The initial learning rate is set to 10−4, and
it is decreased to 10−6 at 104 steps with an exponential decay.
The training is halted after 2× 104 steps. The branch net-
work, apart from the bias of the last layer, is frozen. For a
complete description of the HPs, see section ‘Model architec-
ture and HPs’. We call this optimization at the inference step
fine-tuning.

In terms of the full MHD force residual, the model
can provide better-than-ground-truth equilibria (table 4,
figures 12(a) and (b)). As an example, we consider a W7-X
standard configuration at ⟨β⟩= 2%, which is not included in
the training data. Both the single-pass and fine-tuned equilib-
rium show low flux surface errors, however, the fine-tuned
equilibrium satisfies the ideal-MHD equations much better
than the single-pass equilibrium: the normalized error is only
ηf∗ ≃ 1%. Surprisingly, the fine-tuned equilibrium minimizes

Figure 9. The error on the magnetic field strength as a function of
the radial location, averaged across all grid points on the flux
surface. The solid line represents the mean across all equilibria in
the test set, and the shaded regions represent the 95% and 5%
quantiles. To guide the eye, two reference values are shown: 25mT
(dashed black) represents a 1% error (W7-X has a field of 2.5 T on
average on axis), and 10mT (dashed red) represents the expected
accuracy needed on the magnetic field strength for equilibrium
reconstruction routines [60]. Numerical noise in the finite difference
scheme invalidates the values on the magnetic axis (see section 5).

the full MHD force residual better than the ground truth equi-
librium computed by VMEC.

In addition, the fine-tuning procedure also improves the
reconstruction of the magnetic field strength: the average error
is below 10mT for the entire plasma volume (figure 13).

The fine-tuning procedure is currently computationally
expensive: on a single GPU, the fine-tuning procedure reaches
the MHD force residual of the VMEC ground truth equi-
librium after 4807 iterations (i.e. gradient update step) and
3610 s, whereas VMEC converges after 13 783 iterations and
127 s (on 20 central processing unit cores). Both the fine-
tuning procedure and VMEC use a gradient descent method,
however, even if the model requires fewer iterations to achieve
the same MHD force residual, the model runtime is longer:
the network and loss function are described in python, while
VMEC is written in FORTRAN (thus resulting in compiled
code).

The fine-tuning procedure simply shows how the single-
pass model predictions can be improved in a self-supervised
fashion (i.e. without the use of a ground truth equilibrium). The
reduction of the fine-tuning runtime (e.g. just-in-time compil-
ation of both the network and loss function) and the improve-
ment of the fine-tuning convergence (e.g. higher learning rate)
are left for future investigations.

5.4. Ideal-MHD stability

Themagnetic wellW [61, 62] represents a fast proxy for ideal-
MHD stability [59, 63]. The configuration is taken to be stable
if [64]:

p ′W< 0. (50)
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Figure 10. True (left) and predicted (right) B magnetic field strength structure at two radial locations: s= 0.06 (top, close to the magnetic
axis) and s= 0.75 (bottom, close to the plasma boundary). The median predicted equilibrium in the test set is shown.

Table 3. Comparison between the not-regularized and regularized
model in minimizing the MHD force residual proxy across all
equilibria in the test set. NN denotes a model that has not be
regularized with the MHD force residual (i.e. trained only in the
data and gradient stages), NNregularized denotes the model that has
been regularized (i.e. trained also in the physics regularization
stage), and VMEC denotes the value for the ground truth equilibria.

NN NNregularized VMEC

rmseFs (mm) 6.08× 10−1 6.16× 10−1 —
mapeι- 9.24× 10−4 9.31× 10−4 —
εf∗ (NHm−1) 7.27× 10−2 1.97× 10−2 2.43× 10−5

Therefore, for a standard pressure profile with p ′ < 0, a
positive W is favorable for stability.

In the literature, multiple definitions can be found. When
considering vacuum configurations, the magnetic well can
be expressed as the second radial derivative of the plasma
volume:

Wvacuum(s) =
d2Vp

dψ2
=
d2Vp

ds2
d2s
dψ2

=
1

ψ2
edge

d2Vp

ds2
, (51)

where Vp(s) is the plasma volume within the flux surface
labelled s:

Vp(s) =
ˆ s

0

ˆ 2π

0

ˆ 2π

0
|√g|ds ′dθdφ. (52)

Figure 11. True (solid pink) and predicted (dashed green)
normalized MHD force proxy residual for the median regressed
equilibrium. Numerical noise in the finite difference scheme
invalidates the values at s ∈ [0,0.01] (see section 5).

When a finite plasma pressure is introduced, the expression
is modified into [61]:

W(s) =
Vp

⟨B2⟩
d

dVp
(2µ0p+ ⟨B2⟩). (53)
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Table 4. Comparison between the fine-tuned, not-regularized and regularized (single-pass) model in minimizing the MHD force residual in
case of a W7-X standard configuration at ⟨β⟩= 2%, which is not part of the training data. εf∗ and εF denote the proxy and full MHD force
residuals, ηf∗ and ηF denote the proxy and full normalized MHD force residuals. Please refer to section 5.3 for the definition of these
quantities. NN denotes a model that has not be regularized with the MHD force residual (i.e. trained only in the data and gradient stages),
NNregularized denotes the model that has been regularized with MHD force residual (i.e. the single-pass model), and NNfine-tuned denotes the
fine-tuned model. VMEC denotes the value for the ground truth equilibrium. For each quantity, the best value is highlighted in bold.

NN NNregularized NNfine-tuned VMEC

rmseFs (mm) 3.11× 10−4 3.21× 10−4 3.63× 10−3 —
εf∗ (NHm−1) 4.90× 10−2 1.18× 10−2 8.11× 10−4 9.86× 10−6

εF (NHm−1) 8.83× 10−1 8.28× 10−1 1.24× 10−2 5.43× 10−2

ηf∗ 7.17× 10−1 1.73× 10−1 1.19× 10−2 1.44× 10−4

ηF 3.51× 100 3.29× 100 4.92× 10−2 2.16× 10−1

Figure 12. The comparison between the single-pass and fine-tuned model in minimizing the proxy and full MHD force residuals. (a) The
normalized MHD force residual proxy for the single-pass (dashed green), fine-tuned (solid green), and ground truth equilibrium (solid
pink). A W7-X standard configuration at ⟨β⟩= 2% equilibrium, which was not part of the training data, is shown here. Numerical noise in
the finite difference scheme invalidates the values at s ∈ [0,0.01] (see section 5). (b) The normalized full MHD force residual for the
single-pass (dashed green), fine-tuned (solid green), and ground truth equilibrium (solid pink). A W7-X standard configuration at ⟨β⟩= 2%
equilibrium, which was not part of the training data, is shown here. Numerical noise in the finite difference scheme invalidates the values at
s ∈ [0,0.01] (see section 5).

Moreover, the magnetic well term as defined in the Mercier
stability criterion is [64, 65]:

DW(s) =
dp
ds

(
d2Vp

ds2
− dp

ds

ˆ 2π

0

ˆ 2π

0

|√g|dθdφ
B2

)

×
ˆ 2π

0

ˆ 2π

0
|√g|dθdφ B2

|∇s|2
, (54)

where the s2

ι-2π2 prefactor common to all Mercier terms has been
omitted, as employed in VMEC.

The model only qualitatively reconstructs the local mag-
netic well (figures 14(a)–(c)); it correctly provides the trend of
the profile, however, it introduces artificial wiggles: because
the magnetic well depends on the solution’s second radial
derivatives, the magnetic well is particularly sensitive to the
solution’s radial dependency. The relative error for all three
expression of the magnetic well is high (see table 2).

The MHD force residual regularization aids the model to
faithfully reconstruct equilibrium properties. As an example,

figure 15 shows the reconstructed local magnetic well by
the not-regularized, the regularized (i.e. single-pass), and the
fine-tuned models. We again consider the W7-X standard
configuration equilibrium at ⟨β⟩= 2% previously examined
(see section 5.3.1). The amplitude of the radial wiggle
decreases from the not-regularized to the regularized mod-
els, and it almost vanishes in the fine-tuned model. Since the
MHD force residual depends on the equilibrium solution’s
second radial derivatives, the MHD force residual regular-
ization also implicitly regularizes the equilibrium solution’s
radial derivatives.

To assess the MHD stability of an equilibrium, a globally
definedmagnetic well is usually considered. For example, stel-
larator optimization frameworks often use the magnetic well
depth as a fast proxy for plasma stability [8, 12]:

Wvacuum =
V ′
p(s)|s=0 −V ′

p(s)|s=1

V ′
p(s)|s=0

, (55)
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Figure 13. The magnetic field strength error as a function of the
radial profile, averaged across a flux surface, in case of a W7-X
standard configuration at ⟨β⟩= 2% equilibrium, which was not part
of the training data. The single-pass (dashed green), and fine-tuned
(solid green) equilibria are shown. Numerical noise in the finite
difference scheme invalidates the values on the magnetic axis
(see section 5).

whereWvacuum does not consider finite-⟨β⟩ effects. Amagnetic
well depth that considers also a finite pressure can be defined
as:

W=−p∗(s)|s=0 − p∗(s)|s=1

p∗(s)|s=0
, (56)

where p∗ = 2µ0p+ ⟨B2⟩ is the sum of the fluid and the mag-
netic pressure.

Despite only a qualitative agreement of the local mag-
netic well, the model faithfully reconstructs the magnetic
well depth (figures 16(a) and (b)). In case of the vacuum
magnetic well depth, the relative error is remarkably low:
mapeWvacuum

= 3.43%. The accuracy on the magnetic well
depth is sufficient to effectively navigate the magnetic config-
uration space of W7-X in finding precise, negative-well con-
figurations (see section 5.7.1).

5.5. Neoclassical transport

In a stellarator, one critical transport regime is the so called
1/ν regime, where the neoclassical transport increases with
decreasing collision frequency. A measure of such transport
is the effective ripple coefficient, ϵeff [66]. In this work, the
drift-kinetic code NEO [67, 68] evaluates the ϵeff.

No acceptable agreement is present between the predicted
and ground truth ϵeff values (figure 17(a)). The effective ripple
is greatly affected by the local structure of the magnetic field,
which the model struggles to smoothly reconstruct (figure 10).
It seems coherent that the artificial field ripples in the model
equilibrium solution affect the accuracy on the effective ripple.

A poor, qualitative agreement between the ground truth and
predicted ϵeff is present only in the core region (figure 17(b)).
In such region, namely for s⩽ 0.33 (ρ⩽ 0.57), the magnetic

field strength is reconstructed with an accuracy below 10mT.
However, the ϵeff relative error is still high, mapeϵeff = 54.6%.

The fine-tuned model can faithfully resolve ϵeff. As an
example, figure 18 shows the reconstructed ϵeff by the not-
regularized, the regularized, and the fine-tuned models in
case of the W7-X standard configuration equilibrium at ⟨β⟩=
2% previously examined (see section 5.3.1). Both the not-
regularized and regularized model fail to smoothly reconstruct
ϵeff.

Simplified proxies of the neoclassical transport do exist. For
example, in case of W7-X magnetic configurations with a low
mirror term (b01 ≃ 0), the effective ripple can be approximated
as [40]:

ϵeff ≃ ϵ̂eff =−b11κ4/3, (57)

where bmn = Bmn/B0, Bmn are the Fourier coefficients of the
magnetic field strength B in Boozer coordinates, B0 is a refer-
ence magnetic field value (e.g. B00(s= 1)), κ=−b10 R

reff
is the

toroidal curvature term, R is the major radius, and reff = ρa is
the effective radius.

The model well reconstructs the epsilon effective proxy ϵ̂eff
(figure 19). ϵ̂eff relies on few geometrical quantities and on
the leading Fourier components of the magnetic field strength
B, which the model faithfully reconstructs (see sections 5.1
and 5.2). In case of the epsilon effective proxy ϵ̂eff, the model
shows a relative error of mapeϵ̂eff = 13.3%, lower than com-
pared with ϵeff.

5.6. Fast particle confinement

Another critical measure of transport is the confinement of fast
α-particles (energetic ions), which are the products of fusion
reactions. Any fusion facility should confine fast particles so
that they can heat the bulk plasma during the plasma burn, and
to avoid damage to the first wall as a result of their losses.

Codes like the symplectic integration methods for particle
loss estimation (SIMPLE) compute the loss fraction of test
particles, for both trapped and passing particles, when injected
with an initial velocity in the plasma volume. The collisionless
guiding centers of particle motion are followed in time, till
a stopping condition is met or the particle leaves the plasma
volume.

However, such computations are expensive. Stellarator
optimization frameworks instead use explicit symmetries (e.g.
quasi-symmetry), equilibrium properties (e.g. omnigeneity) or
simpler proxies that correlate with the confinement of fast
particles (e.g. Γc) [63, 69–73].

For example, W7-X is a quasi-isodynamic (QI) stellar-
ator: a quasi-omnigeneous (QO) stellarator with magnetic
field strength contours that close poloidally. Omnigeneity
means that the bounce-averaged radial drift of locally trapped
particles vanishes [74]. For a confining field B, the conditions
of omnigeneity are [75]:

1. The contours of Bmax are straight lines in Boozer
coordinates;

2. The magnetic field strength maxima and minima are the
same across all field lines;
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Figure 14. True (solid pink) and predicted (dashed green) values of the vacuum magnetic well (a), the finite pressure magnetic well (b), and
the magnetic well term in the Mercier criterion (c), in case of the median regressed equilibrium. Numerical noise in the finite difference
scheme invalidates the values at s ∈ [0,0.01] (see section 5).

Figure 15. Comparison on how the not-regularized, the regularized
(i.e. single-pass), and the fine-tuned model reconstructs the local
magnetic well W. Numerical noise in the finite difference scheme
invalidates the values at s ∈ [0,0.01] (see section 5).

3. Equal Boozer angular separation δ along a field line
between contours of constant magnetic field strength B
(i.e. bounce points) across all field lines;

Does the model reconstruct these equilibrium properties?
To assess property (1), the standard deviation of the toroidal

location of the contours of Bmax, σφBmax
, is considered. In a QO

configuration, the Bmax contours are straight lines in Boozer
coordinates. Namely, σφBmax

= 0.
The model only qualitatively reconstructs the toroidal vari-

ance of the contours of Bmax (figure 20). The contours of Bmax

is a local equilibrium property that is affected by how well the
model reconstructs the local magnetic field strength.

To assess property (2), the standard deviation of the extrema
of B on a flux surface across all field lines are assessed,
σBmax and σBmin . In a QO configuration, σBmax(s) = σBmin(s) = 0
across the whole plasma volume.

Themodel equilibria correctly reproduce the standard devi-
ation of the extrema of B (figures 21(a) and (b)): rmseσBmax

=
9.43mT, and rmseσBmin

= 6.57mT.
The Boozer angular separation δ(s,B,α) is the angu-

lar distance along the field line α between the B contours
(see figure 28). In a QO configuration, the angular separa-
tion δ(s,B,α) should be independent of the field line label α,
namely, ∂δ(s,B,α)∂α |s,B = 0. Numerically, such condition can be
verified by observing σδ(s,B) = 0.

The Boozer angular separation δ relates to the bounce-
averaged radial drift that trapped particles experience.
Therefore, it makes sense to assess it only if a clear B field
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Figure 16. Reconstruction of the vacuum (a) and finite pressure (b) magnetic well depth across all equilibria in the test set. The color-bar
indicates the counts in each histogram bin. To guide the eye, a red dashed line indicates the case of perfect reconstruction. The magnetic
well depth is a measure of an average magnetic well value [8].

Figure 17. (a) True (solid pink) and predicted (dashed green) values of the effective ripple ϵeff for the median regressed equilibrium. (b)
Reconstruction of the effective ripple ϵeff across all equilibria in the test set. The ϵeff is computed on five equally spaced flux surfaces in the
plasma region for s⩽ 0.33 (ρ⩽ 0.57). The color-bar indicates the counts in each histogram bin. To guide the eye, a red dashed line
indicates the case of perfect reconstruction.

well, in which particles can be trapped, exists. Not all W7-X
magnetic configurations exhibit such aB field well: themedian
regressed equilibrium in the test set is not guaranteed to pos-
sess it. Therefore, only to assess property (3), the model is
evaluated on a small (58 equilibria) out-of-sample set of high-
mirror W7-X configurations. The high-mirror W7-X config-
uration has been constructed to feature a magnetic-mirror like
B field structure, and it is the closest configuration to QI out
of the nine W7-X reference configurations. This test set has
been constructed as the main data set (see section 4), how-
ever, the coil current ratios have been fixed to generate only
high-mirror W7-X configurations. Still, finite-β and toroidal
current effects are present in the data set. For completeness,
section ‘Boozer angular separation δ on test set’ presents the
δ reconstruction in case of the median regressed equilibrium
in the larger test set.

Even if the predicted magnetic field structure does not per-
fectly overlap with the ground truth field (figure 10), the model
preserves the Boozer angular separation (figure 22). How-
ever, the reconstruction accuracy is better in the core region
(figure 23).

5.7. Optimization in the configuration space of W7-X

The exploration and optimization of the W7-X magnetic con-
figuration space serve to further investigate how faithfully the
NN model reproduces equilibrium properties, and to validate
its use in downstream tasks. For example, [70, 76, 77] pro-
posed the a posteriori optimization of coil currents to further
improve the equilibrium properties, and to recover inevitable
errors that occur during the coils manufacturing and place-
ment. Moreover, especially in case of an island divertor that
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Figure 18. Comparison on how the not-regularized, the regularized
(i.e. single-pass), and the fine-tuned model reconstructs ϵeff.
Numerical noise in the finite difference scheme invalidates the
values at s ∈ [0,0.01] (see section 5).

Figure 19. Reconstruction of the effective ripple proxy ϵ̂eff across
all equilibria in the test set. The color-bar indicates the counts in
each histogram bin. To guide the eye, a red dashed line indicates the
case of perfect reconstruction.

relies on a robust edge magnetic topology, it is desirable to
include finite-β effects in the optimization.

A fast, free-boundary ideal-MHD equilibrium model bene-
fits such optimization. In this work, W7-X configurations are
targeted due to the limitations of the training data. However,
the proposed technique can be applied to any present or future
device once a training data set is generated. The optimizations
carried out in this work represent toy examples of real-world
applications. Indeed, the proposal of new, optimized W7-X
configurations is beyond the scope of this paper.

The equilibrium solution provided by the NN is differen-
tiable. The analytic gradient of equilibrium properties (e.g.
the magnetic well) with respect to the magnetic configuration

Figure 20. Reconstruction of the standard deviation of the toroidal
location of the contours of Bmax, σφBmax

. The color-bar indicates the
counts in each histogram bin. To guide the eye, a red dashed line
indicates the case of perfect reconstruction.

and plasma profiles is available at no additional cost via auto-
matic differentiation (AD). In a gradient-based optimization,
a single equilibrium evaluation is sufficient in each optimiza-
tion step (regardless of the number of free parameters). In con-
trast, when finite-differences approximate the objective func-
tion gradient, the number of equilibrium evaluations each step
scales linearly with the number of free parameters.

Both magnetic configuration and finite-β effects are
included in the optimization. The search space is a subset of
the NN model input parameters: the W7-X non-planar i[2,...,5]
and planar i[A,B] coil current ratios, the toroidal magnetic flux
at the edge Φedge, and the pressure on axis p0. The pressure
profile shape is fixed, and it is assumed to be of the form
p(s) = p0(1− s)2. Moreover, we assume the toroidal plasma
current to vanish (i.e. Itor(s) = 0).

To avoid extrapolation, the search space is bounded by the
distribution of the input parameters as seen during training.
Denoting p⃗= [p1, . . . ,pd] ∈ Rd the optimization vector, each
input parameter pi is bounded by [µi − cσi,µi + cσi ], where
µi and σi are the mean and the standard variation of the distri-
bution of pi, respectively. c=

√
3 for the parameters that have

been uniformly sampled in the training data, and c= 2 for all
the others. The configuration with pi = µi ∀i serves as initial
guess (i.e. the average configuration seen during training).

The objective function is the weighted sum of the
squared residual between the proposed and target equilibrium
properties:

f(⃗p) =
∑
i

wi ( fi(⃗p)− f∗i )
2, (58)

where f∗i is a target equilibrium property, fi(⃗p) is the proposed
equilibrium property, and wi is the weight of each residual
term. Such form of the objective function is usually employed
in stellarator optimization frameworks [63, 78, 79].
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Figure 21. Reconstruction of the standard deviation of the (a) maxima σBmax and (b) minima σBmin of the magnetic field strength across all
field lines on a flux surface. The standard deviation evaluated on ten equally spaced flux surfaces is considered in these figures. The
color-bar indicates the counts in each histogram bin. To guide the eye, a red dashed line indicates the case of perfect reconstruction.

Figure 22. True (left) and predicted (right) values for the magnetic field strength B in Boozer coordinates along a field line in case of the
median predicted equilibrium in the high-mirror out-of-sample test set. The α= 0 field line at the s= 0.06 (top) and at the s= 0.75 flux
surface (bottom) are depicted. The dashed black horizontal line indicates the average magnetic field strength on the flux surface B0. The red
crosses highlight the intersections of the field line with the B0 contours, and the Boozer angular separation δ(s,B0,α) between them is
shown just beneath.
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Figure 23. True (solid pink) and predicted (dashed green) values of
the standard deviation of Boozer separation angle
σδ(s,B0) =

√
⟨δ(s,B0,α)2⟩α for the median regressed equilibrium

in the high-mirror out-of-sample test set. Without loss of generality,
the contour of the average magnetic field strength B0 on each flux
surface is considered.

A combination of the global tree-structured Parzen estim-
ator (TPE) algorithm from hyperopt [80] and the local limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [81]
algorithm from scipy [82] drives the optimization. Whenever
possible, AD computes the analytical Jacobian of the object-
ive function. On the other hand, if the analytical Jacobian is not
available, (e.g. an objective function term requires an external
software package that breaks the model computational graph),
finite differences approximate the Jacobian.

5.7.1. Negative well. Almost all W7-X configurations in the
training set feature a positive magnetic well (figure 24). W7-X
was optimized with respect to good MHD stability [7], there-
fore, in general, a positive magnetic well is to be expected.

Can the model generalize to negative well configurations?
To search for a negative well configuration, a small, but
negative magnetic well depth is targeted: W

∗
vacuum =−0.01

and wWvacuum
= 104. Finite-β effects deepen the magnetic well,

therefore, the search is performed in the limit of vacuum con-
figurations. After 500 iterations of TPE, L-BFGS refines the
best configuration.

Although the NN model has rarely seen a negative well
configuration during training, it can reliably predict equilib-
ria with a negative well (table 5). The optimization converged
to a configuration for which the model predicts a magnetic
well depth of−0.01. The configuration has been evaluated also
with VMEC, which reports a magnetic well depth of −0.009.

Indeed, the vacuum magnetic well (W(ψ) =
d2Vp(ψ)

dψ2 ) is negat-
ive (figure 25).

5.7.2. Improved fast particle confinement. A classical stel-
larator does not confine fast particles as good as a tokamak,

Figure 24. The distribution of the vacuum magnetic well depth
Wvacuum for all equilibria in the training set.

Table 5. Relative magnitude of the non-planar and planar W7-X
coil currents for the negative well configuration.W

∗
vacuum =−0.01 is

the small, negative magnetic well depth targeted in the optimization.
In case of the obtained configuration, the NN model predicts
Wvacuum =−0.010, and VMEC computes Wvacuum =−0.009.

Quantity Value

i1 1.000
i2 1.027
i3 0.689
i4 0.614
i5 0.614
iA 0.205
iB 0.263
W

∗
vacuum −0.010

Wvacuum NN −0.010
Wvacuum VMEC −0.009

therefore, the magnetic geometry has to be optimized to do
so. W7-X standard and high-mirror configurations have been
optimized to improve fast particle confinement at high-β.
Moreover, [70, 76] have also found improved configurations.

Can we use the model to search for a W7-X fast particle
optimized configuration? To address this question, we employ
a similar objective function to the function used for the min-
max configuration in [70], and we investigate whether the
optimized configuration shows the same performance in terms
of fast particle confinement.

In a perfect QI configuration, the variance of the extrema
of the magnetic field strength across all field lines van-
ishes. As in the case of the min–max configuration, the vari-
ance of B at the bean-shaped cross-section (i.e. φ= 0 or the
Bmax-contour) and at the triangular cross-section (i.e. φ =
π/Nfp or the Bmin-contour) is minimized. The flux surface at
s= 0.015 is targeted (roughly 6 cm from the magnetic axis).
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Figure 25. The magnetic well of the obtained W7-X negative well
configuration (green) as evaluated by VMEC. For comparison, the
magnetic well of the W7-X standard reference configuration (blue)
is also shown (the W7-X standard configuration has a positive
magnetic well). Numerical noise in the finite difference scheme
invalidates the values at s ∈ [0,0.01] (see section 5).

The optimization is performed at a fixed Φedge value. No tor-
oidal current is assumed in the plasma.

The objective function is:

f= wB(VarBmax +VarBmin)+wβ(⟨β⟩− ⟨β⟩∗)2

+wmr(mr−mr∗)2, (59)

where VarBmax and VarBmin are the variances of the magnetic
field strength at the bean-shaped and triangular cross-section,
respectively, and

mr=

〈
B(θ,φ= 0)−B(θ,φ= π/Nfp)

B(θ,φ= 0)+B(θ,φ= π/Nfp)

〉
θ

, (60)

is a mirror factor to ensure that the extrema of the mag-
netic field strength are located at the correct angular posi-
tion (maxima at φ= 0 and minima at φ = π/Nfp). ⟨β⟩∗ = 2%
and mr∗ = 10% (like in the W7-X high-mirror configuration).
Finally, wB = 102, w⟨β⟩ = 103, and wmr = 102. The optimiza-
tion is carried out for 500 iterations of the TPE algorithm.

SIMPLE [83, 84] assess the fraction of lost particles from
the plasma volume. 104 particles at 60 keV are launched from
s= 0.06, and their trajectories are followed for 0.1 s, or till
they are lost from the computational domain. The optimized
configuration is compared against the W7-X standard, high-
mirror and min–max configurations. All configurations have
been scaled to have the same magnetic field strength on axis
B(φ = 0)≃ 2.52T, the same plasma beta ⟨β⟩ ≃ 2%, and the
same plasma volume Vp ≃ 30m3.

Figure 26. The fraction of lost particles for the W7-X standard,
high-mirror, min-max, and optimized configuration at ⟨β⟩ = 2%.

Table 6. Relative magnitude of the non-planar and planar W7-X
coil currents for the ⟨β⟩= 2% fast particle confinement optimized
configuration. The total fraction of lost 60 keV fast ions initialized at
s= 0.06 is reported.

Quantity Value

i1 1.000
i2 0.737
i3 0.889
i4 0.776
i5 0.899
iA 0.011
iB −0.149
Lost fraction 8.86%

The optimized configuration confines fast particles better
than the standard and high-mirror configurations, and as well
as the min–max configuration (figure 26): the total fraction of
lost particles after 0.1 s is only 8.86% (table 6).

6. Discussion and conclusion

We propose a NN model that quickly approximates the ideal-
MHD solution operator in a stellarator geometry. The model
correctly predicts the equilibrium solution, and it faithfully
reconstructs global equilibrium properties and proxy functions
that are commonly used in stellarator optimization frame-
works. Compared with previous data-driven approaches, the
model fulfils equilibrium symmetries by construction. In addi-
tion, the MHD force residual regularizes the model to better
satisfy the ideal-MHD equations.

The error between the model and the ground truth equi-
librium solution is less than 1mm in case of the flux surface
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locations. However, mainly due to the high condition number
of the equilibrium problem, the model equilibria only poorly
minimize the MHD force residual. Yet, the model predictions
can be improved at inference time to yield better than ground
truth equilibria (i.e. equilibria that minimize the MHD force
residual better than the ground truths).

Equilibrium properties that are highly sensitive to the mag-
netic field structure cannot be precisely reconstructed. The
magnetic field depends on first-order derivatives of the equi-
librium solution, therefore, even small errors in the equilib-
rium geometry might lead to large discrepancies in the com-
puted magnetic field. Nevertheless, the magnetic field strength
is smoothly reconstructed in the core region, but the model
introduces artificial field ripples at the edge. As a consequence,
the model fails to meet the required magnetic field accuracy to
faithfully compute some quantities of interest (e.g. the effect-
ive ripple, which is a measure of neoclassical transport). Still,
the accuracy of the model is sufficient to explore and optimize
W7-X magnetic configurations, in terms of ideal-MHD sta-
bility and fast particle confinement. This result suggests that
NN-based surrogate models can be used to find optimized con-
figurations for current and future stellarator devices.

The model has still many limitations. The NN is trained in
a supervised learning fashion, therefore, the training data limit
the applicability of the model (the model can only approxim-
ateW7-X equilibria). Moreover, noise-free plasma profiles are
assumed. Finally, the model accuracy on the magnetic field
limits its use in tasks that are highly sensitive to it.

This work can be improved alongmultiple dimensions. The
robustness of the model with respect to experimental noise can
be investigated and enhanced with established robustness and
regularization techniques: injecting noise to the input plasma
profiles and training the convolutional layers with dropout.
The artificial field ripples introduced by the model can be
ameliorated by adding a regularization term on the second-
order radial derivative (e.g. ∂

2R
∂s2 ), or, by replacing the learned

trunk network functions with an orthonormal set of basis
functions (e.g. Legendre polynomials). In addition, the model
can be trained on an extended space of stellarator equilib-
ria, relaxing the constraint of W7-X configurations. Finally,
equilibrium reconstructions in a stellarator geometry must be
demonstrated.

Contrary to a tokamak, the computation of MHD equilibria
is a limiting factor in stellarator research and design. Fast, dif-
ferentiable and accurate three-dimensional MHD equilibrium
solutions would reduce the gap between tokamaks and stellar-
ators. In particular, they would enable: real-time equilibrium
reconstructions [85, 86], first-principles flight simulators [9],
data-driven plasma control [87], and extensive understanding
and exploration of the stellarator optimization space.
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Appendix

Equilibria Fourier scaling

A trade-off must be struck between model capacity and com-
putational complexity. Given the poloidal and toroidal expan-
sions of the equilibrium solution in Fourier series, the num-
ber of Fourier modes utilized to represent the solution limits
its accuracy: a large number of Fourier modes enhances the
model accuracy. On the other hand, it increases the compu-
tational complexity of the model, as well as the training and
inference times. How many Fourier modes are adequate?

To examine such trade-off, the approximation error on
magnetic field strength is investigated. One of the objectives
of this study is to investigate the precision with which the
model reconstructs equilibrium properties. The magnetic field
strength is one of the critical equilibrium properties. There-
fore, the Fourier resolution of the equilibrium solution should
not be the largest source of error in representing the field
strength.

To represent themagnetic field strength with an error of less
than 1%, up to m= 8 poloidal and |n|= 11 toroidal models
are required. Figure 27 shows the magnetic field approxima-
tion error when the Fourier resolution is varied, using VMEC
equilibria with up to m= 11 and |n|= 12 Fourier modes as
‘high-fidelity’ references.
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Figure 27. The approximation error on the magnetic field strength
when representing the equilibrium solution {R,λ,Z} with a reduced
number of Fourier modes. The equilibrium with up to m= 11
poloidal and |n|= 12 toroidal mode is taken as a reference. The
solid line represents the average error across 128 randomly sampled
equilibria in the data set, and the shaded region represents the 95%
and 5% quantiles. W7-X has a mean field ≃2.5T, therefore, a field
error of 25mT represents a 1% error.

Table 7. HPs of the trunk network. See section 3.2 for details on the
model macro-architecture.

HP Value

Depth 4
Width 2048
Trunk basis 8
Activation function SiLU

Model architecture and HPs

The trunk network maps the radial dimension s into a set of
non-linear basis functions, in which the Xjmn Fourier coeffi-
cients and ι- profile are radially expanded (see section 3.2).
Each Fourier coefficient and ι- has its own set of basis func-
tions. The input dimension is Nti = 1, and the output dimen-
sion is Nto = (NXjmn +Nι-)Ntb = 4696, where NXjmn = 3[(mpol +
1)(2ntor + 1)− ntor]− 2= 586 is the number of Fourier modes
used to represent (R,λ,Z), mpol = 8 is the highest Fourier pol-
oidal mode, ntor = 11 is the highest Fourier toroidal mode,
Nι- = 1 is the single output needed to represent the iota profile,
and Ntb = 8 is the number of trunk basis functions per output.

The trunk network is a MLP network with sigmoid linear
unit (SiLU) as non-linear activation functions (table 7). Each
layer is initialized accordingly to [94].

The branch network maps the MHD parameters and input
plasma profiles into the weighting coefficients of the trunk
basis functions (see section 3.2). A profile head extracts high-
level features from the input profiles into a latent representa-
tion. A set of blocks made of one 1D convolutional and pool-
ing layers composes the profile head. The branch body then
processes the concatenation of the profile latent representation

Table 8. HPs of the branch network. See section 3.2 for details on
the model macro-architecture.

HP Value

Profile head

Depth 2
Convolution kernel size 5
Convolution stride 2
Convolution padding 0
Filters 16
Pooling kernel size 3
Pooling stride 2
Pooling padding 0

Body

Depth 5
Width 2048
Activation function SiLU

Table 9. HPs for the data training stage.

HP value

Batch size 128
Initial learning rate 8.0× 10−4

γ 9.9× 10−1

L2 regularization 6.0× 10−2

αR 2.5× 10−1

αZ 2.5× 10−1

αλ 2.5× 10−1

αι- 2.5× 10−1

Patience epochs 150
Gradient clip 1.0× 10−2

with the input scalar parameters. The output dimension is
Nbo = (NXjmn +Nι-)(Ntb + 2) = 5870, where the ‘+2’ is for the
constant and identity functions.

The branch body is aMLP networkwith SiLU as non-linear
activation functions (table 7). Each layer is initialized accord-
ingly to [94]. The last layer is initialized at the median value
of the model outputs evaluated on 20% of the training data set.

The overall training process is divided in three different
stages (see section 4.3): data, gradient, and physics regu-
larization stages. During the data stage, the learning rate is
decreased accordingly to an exponential decay schedule with
γ as decay constant. During the gradient and physics regular-
ization stages, the learning is kept constant. Only after the first
step of the curriculum learning procedure in the physics reg-
ularization stage, the learning rate is decreased by a factor of
10. In addition, in every training stage, the norm of the model
gradients is clipped. Tables 9–11 list the HPs in each training
stage. Table 12 lists the HPs for the fine-tuning procedure.

Derivation of MHD force residual

This section shows how theMHD force residual can be derived
once the mapping x⃗= (R,λ,Z), as well as the p(s) and ι-(s)
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Table 10. HPs for the gradient training stage.

HP Value

Batch size 32
Initial learning rate 1.0× 10−5

γ 1
L2 regularization 6.0× 10−2

αR 2.4× 10−1

αZ 2.4× 10−1

αλ 2.4× 10−1

αι- 2.4× 10−1

αRs 1.0× 10−2

αZs 1.0× 10−2

αλs 1.0× 10−2

αι- ′ 1.0× 10−2

Patience epochs 150
Gradient clip 1.0× 10−2

Table 11. HPs for the physics regularization training stage.

HP Value

Batch size 32
Initial learning rate 1.0× 10−6

γ 1
L2 regularization 6.0× 10−2

αR 2.4× 10−1

αZ 2.4× 10−1

αλ 2.4× 10−1

αι- 2.399× 10−1

αRs 1.0× 10−2

αZs 1.0× 10−2

αλs 1.0× 10−2

αι- ′ 1.0× 10−2

αMHD 1.0× 10−4

Patience epochs 50
Gradient clip 1.0× 10−2

Table 12. HPs for the fine-tuning procedure.

HP Value

Initial learning rate 1.0× 10−4

γ 9.996× 10−1

L2 regularization 1.0× 10−1

αb 2.495× 10−1

αI 5.0× 10−1

αMHD 1.0× 10−3

Gradient clip 1.0× 10−2

profiles, are known. As an example, Fβ is derived; Fs can be
derived in a similar manner.

Let us recall that:

Fβ = Js =
1

µ0
√
g

(
∂Bφ
∂θ

− ∂Bθ
∂φ

)
, (61)

where
√
g is the Jacobian of the 3D coordinate trans-

formation f : (s,θ,φ)→ (R,ϕ,Z), and it is expressed as

√
g= (⃗es · e⃗θ × e⃗φ). Recalling the definition of the covariant

basis vectors (see section 2.1), the choice of φ = ϕ effectively
yields a 2D Jacobian:

√
g= R

(
∂R
∂θ

∂Z
∂s

− ∂R
∂s

∂Z
∂θ

)
. (62)

The covariant magnetic field components (see equations (8)
and (9)) are connected to the contravariant magnetic field com-
ponents (see equations (5) and (6)) through the covariant met-
ric tensor elements:

gij = e⃗i · e⃗j =
∂R
∂αi

∂R
∂αj

+R2 ∂ϕ

∂αi

∂ϕ

∂αj
+
∂Z
∂αi

∂R
∂αj

. (63)

Finally, the expression for Fβ reads:

Fβ =
Φ ′

µ0
√
g

{
∂

∂θ

[
1
√
g

[(
ι-− ∂λ

∂φ

)(
∂R
∂θ

∂R
∂φ

+
∂Z
∂θ

∂R
∂φ

)
+

(
1+

∂λ

∂θ

)(
∂R
∂φ

∂R
∂φ

+R2 +
∂Z
∂φ

∂R
∂φ

)]]
(64)

− ∂

∂φ

[
1
√
g

[(
ι-− ∂λ

∂φ

)(
∂R
∂θ

∂R
∂θ

+
∂Z
∂θ

∂R
∂θ

)
+

(
1+

∂λ

∂θ

)(
∂R
∂φ

∂R
∂θ

+
∂Z
∂φ

∂R
∂θ

)]]}
. (65)

Fβ depends only on x⃗, its first and second derivatives, and ι-.

Physics regularization

The proxy of the MHD force residual f∗ is derived as follows.

F⃗=−J⃗× B⃗+ ∇⃗p, (66)

∇⃗× B⃗= µ0⃗J, (67)

∇⃗ · B⃗= 0. (68)

The magnetic field can be written in contravariant form as:

B⃗= Bθ e⃗θ +Bφe⃗φ, (69)

Bθ =
1
√
g

(
χ ′ −Φ ′ ∂λ

∂φ

)
, (70)

Bφ =
Φ ′
√
g

(
1+

∂λ

∂θ

)
. (71)

By substituting the expression of B⃗ into F⃗, the covariant
form of the MHD force is:

F⃗= Fs∇⃗s+Fβ β⃗, (72)

Fs =
√
g(JφBθ − JθBφ)+ p ′, (73)
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Fβ = Js, (74)

where β⃗ =
√
g(Bφ∇⃗θ−Bθ∇⃗φ).

The contravariant components of the current density, Ji =
J⃗ · ∇⃗αi = 1

µ0
(∇⃗× B⃗) · ∇⃗αi, are:

Js =
1

µ0
√
g

(
∂Bφ
∂θ

− ∂Bθ
∂φ

)
(75)

Jθ =
1

µ0
√
g

(
∂Bs
∂φ

− ∂Bφ
∂s

)
(76)

Jφ =
1

µ0
√
g

(
∂Bθ
∂s

− ∂Bs
∂θ

)
. (77)

By substitute the contravariant current density components
in the radial force component, it follows that:

Fs =
1
µ0

(
Bθ
∂Bθ
∂s

−Bθ
∂Bs
∂θ

−Bφ
∂Bs
∂φ

+Bφ
∂Bφ
∂s

)
+ p ′.

(78)

Let us define the proxy of the MHD residual as the flux
surface averaged force residual norm when Fβ = 0:

f∗ =
1

(2π)2
⟨µ0

√
g∥F∥2|Fβ=0⟩=

1
(2π)2

⟨µ0
√
gFs⟩ (79)

where ⟨A⟩=
´ 2π
0

´ 2π
0 Adθdφ denotes a flux surface average

operator (note that the
√
g factor is not included in the average

operator here).
Substituting the contravariant magnetic field components

(see equations (5) and (6)) in equation (79), the following
terms result:〈

√
gBθ

∂Bθ
∂s

〉
=

〈(
χ ′ −Φ ′ ∂λ

∂φ

)
∂Bθ
∂s

〉
= χ ′ ∂ ⟨Bθ⟩

∂s
+Φ ′

〈
λ
∂Bθ
∂s∂φ

〉
, (80)

⟨
√
gBθ

∂Bs
∂θ

⟩
=

⟨(
χ ′ −Φ ′ ∂λ

∂φ

)
∂Bs
∂θ

⟩
= χ ′

⟨
∂Bs
∂θ

⟩
+Φ ′

⟨
λ

∂Bs
∂θ∂φ

⟩
=Φ ′

⟨
λ

∂Bs
∂θ∂φ

⟩
,

(81)

〈
√
gBφ

∂Bφ
∂s

〉
=

〈
Φ ′
(
1+

∂λ

∂θ

)
∂Bφ
∂s

〉

=Φ ′ ∂ ⟨Bφ⟩
∂s

−Φ ′
〈
λ
∂Bφ
∂s∂θ

〉
, (82)

〈
√
gBφ

∂Bs
∂φ

〉
=

〈
Φ ′
(
1+

∂λ

∂θ

)
∂Bs
∂φ

〉

=Φ ′
〈
∂Bs
∂φ

〉
−Φ ′

〈
λ
∂Bs
∂φ∂θ

〉

=−Φ ′
〈
λ
∂Bs
∂φ∂θ

〉
. (83)

The ∂λ
∂φ and ∂λ

∂θ terms have been integrated by parts exploit-
ing the fact that λ and the covariant component of the B field
are periodic functions in the poloidal and toroidal directions.
The second and fourth terms cancel each other.

In addition, when Fβ = 0 and
√
g ̸= 0, it follows that:

Fβ = Js =
1

µ0
√
g

(
∂Bφ
∂θ

− ∂Bθ
∂φ

)
= 0→ ∂Bφ

∂θ
=
∂Bθ
∂φ

.

(84)

Therefore, also the second addenda of the first and third
terms cancel each other. Then, the MHD force residual proxy
is:

(2π)2f∗ = ⟨µ0
√
gFs⟩= χ ′ ∂⟨Bθ⟩

∂s
+Φ ′ ∂⟨Bφ⟩

∂s
+µ0p

′⟨√g⟩= 0. (85)

Boozer angular separation δ on test set

The evaluation of the reconstruction of the Boozer angu-
lar separation δ on the test set is shown here. The median
regressed equilibrium in the test set does not have a min-
imum of the magnetic well strength for φ = π

Nfp
, therefore,

the Boozer angular separation δ depicted in figure 28 does
not represent the angular separation between bounce points.
Nevertheless, figure 28 shows how the model smoothly recon-
structs the local magnetic field strength close to the mag-
netic axis, and it introduces artificial field ripples in the edge
region.
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Figure 28. True (left) and predicted (right) values for the magnetic field strength B in Boozer coordinates along a field line in case of the
median predicted equilibrium in the test set. The α= 0 field line at s= 0.06 (top) and s= 0.75 flux surface (bottom) are depicted. The
dashed black horizontal line indicates the average magnetic field strength on the flux surface B0. The red crosses highlight the B0 contours,
and the Boozer angular separation δ(s,B0,α) between them is shown just beneath.
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