

Overview and Main Results of the IAEA CRP I31033 "Advancing the State-of-Practice in Uncertainty and Sensitivity Methodologies for Severe Accident Analysis in Water Cooled Reactors"

F. Gabrielli, T. Jevremovic, F. Mascari, D. Luxat, J. Ortiz, K. Ahn, N. Ryzhov, J.M. Garcia, S. Petoukhov

Institute for Neutron Physics and Reactor Technology

www.kit.edu

Backgroung

- ➤ CRP rationale ← Observations from 2017 IAEA TM (IAEA TECDOC 1872)
- Severe accident (SA) codes embody complex multi discipline physics spanning wide range of phenomena often outside user range of experience and competency
- Code users are often unsure about correctness or accuracy of their plant accident analyses
- Code users are often not aware of importance or impact of uncertainty and variability in predicted code results.

Uncertainty analyses STATUS: - Some uncertainty analyses are in progress and relevant examples are available in (uncertainty methodology and tools) the public international scientific technical literature; It should be a common practice in research framework. _ NEED: Elaboration of common practices for performing sensitivity and uncertainty analyses: Automatic coupling between uncertainty tools and codes; Which is the recent approach that we should follow when we do severe accident analyses (sensitivity and uncertainty); Express needs for utilities to do uncertainty analysis and do it properly and affordably. **Recommendations to IAEA:** Plan a next meeting about the use of uncertainty in severe accident analysis — not how to do UA, but how uncertainty is handled in severe accident analysis and severe accident response training (this could be coupled with other consistent initiative in other framework) Develop a new CRP and benchmarking of the codes in this area.

IAEA TECDOC 1872, https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1872web.pdf

The CRP I31033 (2019-2024): Objectives

- Bring together the current state-of-knowledge on uncertainty propagation in SA analyses accumulated by experienced analysts
- Achieve significant improvement in sophistication and quality of SA analyses performed by the participants from Member States with well developed knowledge, adequate simulation capabilities, and long years of relevant practice
- Foster national excellence and international cooperation through an exercise to elevate the capability and sophistication of global severe accident code users
- Promote sharing of newly developed knowledge and contribute to capacity building in developing countries

The CRP I31033: Outcomes

- Improving the capabilities and the expertise in Member States to perform SA analysis and related U&SA for Water Cooled Reactors
- Development, testing, and application of U&S methodologies and of Severe Accident/Uncertainty Tools (SA/UT) ↔ Foster a common understanding of U&S methodologies and tools among Member States
- 2. Establish best practise for U&SA in the realm of SA analysis
- 3. Large number of uncertainty parameters (UP) identified and characterized for each technology addressed in the CRP (PWR, iPWR, VVER, CANDU, BWR Mark-I and -II)
- 4. Large database assessed relevant accident sequences
- 5. Dissemination and education initiatives

CRP Participants

22 organization from 18 Member States

Argentina: National Atomic Energy Commission (CNEA)

Canada: Canadian Nuclear Laboratory (CNL)

China: Shangai Jiao Tong University (SJTU)

Egypt: Egyptian Nuclear and Radiological Regulatory Authority (ENRRA)

Germany: Karlsuhe Institute of Technology (KIT)

Ghana: Ghana Atomic Energy Commission (GAEC)

Italy: Agency for New Technology, Energy and Sustainable Economic Development (ENEA)

Lithuania: Lithuanian Energy Institute (LEI)

- Malaysia: Malaysian Nuclear Agency (MNA)
- Mexico: National Institute for Nuclear Studies (ININ)
- Pakistan: Pakistan Atomic Energy Commision (PAEC)
- Republic of Korea: Korea Atomic Energy Research Institute (KAERI)

Romania: Politechnica University of Bucharest

Russian Federation: Nuclear Safety Institute of the Russian Academy of Science (IBRAE), OKB "Gidropress", NRC "Kurchatov Institute"

Spain: Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Energy Software SLP (ENSO) Ukraine: Scientific and technical Center of SE NNEGC Energoatom

United Arab Emirates: University of Sharjah

United States of America: Sandia National Laboratory (SNL), Innovative Systems Software (ISS)

The CRP I31033: Tasks and Sharing

6

Task 1

QUENCH-06 test application uncertainty exercise

Motivation

- Testing relevant calculation platforms of SA/UT in view of their applications to plant analyses supporting other CRP tasks
- The QUENCH-06 test (KIT, December 2000) selected as test case:
 - large amount of available qualified experimental data
 - ➢ special importance for code validation → OECD International Standard Problem (ISP) no. 45

Institution	Severe Accident Code	Uncertainty Code
ENEA (Italy)	ASTEC	RAVEN
IBRAE (Russian Federation)	SOCRAT	ELENA
KIT (Germany)	ASTEC	URANIE and KATUSA
LEI (Lithuania)	RELAP/SCDAPSIM	SUSA

The QUENCH-06 Test

9

Consultancy Mtg. on the use of AI in Assessing the Uncertainties in SA Modelling for AWCRs, IAEA Headquarters, Vienna, 21-23 March 2023 F. Gabrielli | RPD

Quench initiation: TCRC13 >1873 K 3 TCs

~1473 K (TCR13)

>1973 K

~1623 K

Modelling and Validation

10

Water **G**-

6

The U&SA Exercise

> 23 uncertainty input parameters related to:

- Geometry of the Bundle (6)
- Boundary Conditions (8)
- Integrity criteria (2)
- Radiative Heat Transfer modelling (2)
- Convection Heat Transfer modelling (3)
- Material Movement Model (2)

FoMs

- Total mass of accumulated Hydrogen
- Temperature of the central fuel rod simulator at elevation 950 mm
- Hydrogen generation rate
- Axial profile of the oxide scale of the corner rod at 6620 s
- Axial profile of the average oxide scale of the heated rods at the end of the scenario

SA code/U&SA tool Coupling and Methodologies (1/2)

12 Consultancy Mtg. on the use of AI in Assessing the Uncertainties in SA Modelling for AWCRs, IAEA Headquarters, Vienna, 21-23 March 2023 F. Gabrielli | RPD

SA code/U&SA tool Coupling and Methodologies (2/2)

Development and application of a MC method taking into account the model error, the numerical error, and the input data error (IBRAE RAN)

Methodology for U&SA

Institution	Sampling and UQ method	Sensitivity/importance analysis
ENEA (Italy)	SRS N = 200	Pearson and Spearman
IBRAE (Russian Federation)	SRS N = 1000	Sobol
KIT (Germany)	LHS N = 600	Pearson and Spearman
LEI (Lithuania)	SRS GRS Methodology	Pearson and Spearman

U&SA: Results

FOM: total mass of accumulated Hydrogen

1.00 0.75 0.50 0.25 -RodP coeff. FpDe 0.00 CITh ShDi -0.25ShTh InsTh dtQuench -0.50fmAr fmSteam -0.75pres fpow fmOuench -1.002000 1000 3000 4000 5000 6000 7000 8000 9000 0 s

8000

U&SA: Results

SOCRAT/ELENA: 1000 calculation run

FOMParameter1Total mass of accumulated hydrogen2Mass of Hydrogen accumulated by quenching3Mass of Hydrogen accumulated at quenching4Peak Hydrogen production rate

FOM #	\overline{S}	\overline{D}	\overline{E} , %	u _{input+D} , %	u _{num} , %	u _{val} , %
1	37.1 g	35.7 g	4.0	22.3	6.8	23.3
2	34.5 g	31.9 g	8.2	17.6	3.9	18.0
3	2.6 g	3.8 g	-31.2	71.7	52.2	88.7
4	247 mg/s	236 mg/s	4.5	52.8	6.8	53.2

Task 2 - BWRs

Scenarios, Scope, and SA Tools

Plant Type	Institution	Scenario	SA code	Framework of analysis
BWR/3 with	GAEC (Ghana)	Unmitigated SBO (In-vessel)	MELCOR2.2	SAM support
Mark I primary	CIEMAT (Spain)	SBO (In-vessel)	MELCOR	External uncertainties affecting Source Term
containment	SNL (USA)	<mark>SBO</mark> (In-/Ex-vessel)	MELCOR V2.2r15348	Model development
BWR/5 with a	CNSNS (Mexico)	SBO with RCIC injection and ADS actuation (In-vessel)	MELCOR2.1	Support technical basis on regulation issues
Mark II	ININ (Mexico)	Unmitigated high pressure SBO (In-vessel)	MAAP 5.03	Support development and review of technical basis of SAMGs

Methodology for U&SA

Plant Type	Institution	Sampling and UQ method	UQ tool and calculation scheme	Sensitivity/importanc e analysis
	GAEC (Ghana)	LHS (two-sided Wilks, 95%/95%)	DAKOTA	Pearson and Spearman
BWR/3 with Mark I primary containment	CIEMAT (Spain)	SRS (two-sided Wilks, 95%/95%)	DAKOTA	Pearson and Spearman
Containinent	SNL (USA)	-	In-house	SNL Methodology
	CNSNS (Mexico)	SRS (two-sided Wilks, 95%/95%)	DAKOTA	Pearson and Spearman
Mark II	ININ (Mexico)	SRS (two-sided Wilks, 95%/95%) + Sensitivity Analysis Monte- Carlo Filtering Technique	AZTUSIA + other in-house tools	Pearson, Spearman, Partial, Partial Rank

UP and FOMs

Plant Type	Institution	UP	FOM
BWR/3 with Mark I primary containment	GAEC (Ghana)	11 (MELCOR2.2)	In-vessel H2 generation
	CIEMAT (Spain)	150 (MELCOR)	 Noble gases, I, Cs Total amount of FPs released Onset of fission product release Fission product release rates End time of fission product release
	SNL (USA)	14 (MELCOR2.2)	 Overall accident Progression H2 generation Thermal hydraulic response Reactor core degradation RPV lower head breach
BWR/5 with a Mark II	CNSNS (Mexico)	6 (MELCOR2.1)	Containment failure time
	ININ (Mexico)	28 (MAAP 5.03)	 H2 mass Fission product mass fractions Core damage criterion time Core support plate failure time Debris mass in lower head RPV breach time

BWR/3 Mark-I: Results

Cs Release from Fuel

- ➢ CIEMAT
 - The distribution in MELCOR RN model of key radionuclides.
 - The parametric setting of key phenomena (cladding mechanical temperature).
 - > The Th modelling during the early phase of the accident

GAEC

- uncertainty in hydrogen generated ~22.46%
- COR_SC 1141 (Core Melt Breakthrough Candling Parameters: Maximum melt flow rate per unit width after breakthrough)
- COR_ZP (Porosity of fuel debris beds)
- COR_EDR (Particulate debris equivalent diameter in the lower plenum)

BWR/5 Mark-II: Results

Simulation

Karlsruhe Institute of Technology

➢ CSNS

22 Consultancy Mtg. on the use of AI in Assessing the Uncertainties in SA Modelling for AWCRs, IAEA Headquarters, Vienna, 21-23 March 2023 F.

Hydrogen Mass (kg)

500 55

F. Gabrielli | RPD

Task 2 – PWR and iPWRs

Scenarios, Scope, and SA Tools

Plant Type	Institution	Reference Plant	Scenario	SA code	Framework of analysis
DNPER (Pakistan)	ACP1000 (K-2 NPP)	SBO (In-/Ex-vessel)	MELCOR1.8.6	Regulatory review support	
	ENRRA (Equpt)	KWU-PWR1300	LBLOCA w/o SCRAM (In-vessel)	ATHLET & SCALE6.3	Regulatory review support
	KAERI (Rep. Korea)	OPR1000	STSBO (In-/Ex-vessel)	MELCOR2.2 & MAAP5	SAM & Level 2 PSA support
PWR	KINS (Rep. Korea)	APR1400	SBO (In-vessel & Reactor cavity)	MELCOR2.2 & COOLAP2	Regulatory/safety review support
	SJTU (China)	CPR600	SBO (In-/Ex-vessel)	MELCOR1.8.5	SAM support
UoS (UAE)	APR1400	SBO (In-vessel, early phase fuel temperature response)	RELAP5/NESTLE- based 3Keymaster simulator	Reactor design and simulation	
:0)4/0	CNEA (Argentina)	CAREM-like	SBLOCA (In-vessel)	MELCOR1.8.6	SAM support
EI (S	ENSO (Spain)	Integral Type PWR	SBO (In-vessel)	RELAP/SCDAPSIM/ MOD3.5	SAM support

Methodology for U&SA

Plant Type	Institution	Sampling and UQ method	UQ tool and calculation scheme	Sensitivity/importance analysis
	DNPER (Pakistan)	SRS N = 2548	DST (MATLAB –based, In-house)	Pearson, Spearman, and Kendall correlation coefficients
	ENRRA (Egypt)	SVD/UT and LRA approach (SRS: N = 150, multivariate sampling)	PYTHON (In-house)	Generalized perturbation theory-based deterministic method
Large-scale	KAERI (Rep. Korea)	SRS N = 200	DAKOTA (MELCOR) / MOSAIQUE (MAAP5, In-house)	Pearson and Spearman correlation coefficients, and PRCC/SRRC
KINS (Rep. Korea) SJTU (China) UoS (UAE)	KINS (Rep. Korea)	LHS N = 300	DAKOTA + In-house	Parametric sensitivity analysis
	SJTU (China)	LHS N = 120	MATLAB (In-house)	Pearson and Spearman correlation coefficients, and PCC/PRCC
	UoS (UAE)	SRS N = 120 (perturbation of the parameter space)	DAKOTA + ROMUSE (In-house)	PSA/PCA-based sensitivity
iPWR	CNEA (Argentina)	SRS	DAKOTA + In-house	Pearson and Spearman coefficients
	ENSO (Spain)	N = 59 (one-side Wilks tolerance limit, 95%/95%)	IUA Package	Pearson, Spearman, and Kendall correlation coefficients

UP and FOMs (1/2)

Plant Type	Institution	UP	UP's Domain
	DNPER (Pakistan)	26 (MELCOR1.8.6)	In-/ex-vessel and FPs
	ENRRA (Egypt)	14 (ATHLET + SCALE6.3)	Coolant void reactivity at different coolant densities, in-vessel
Large-scale	KAERI 26 (MELCOR2.2) arge-scale (Rep. Korea) 29 (MAAP5.05)	26 (MELCOR2.2) 29 (MAAP5.05)	In-/ex-vessel and FPs
PWR	KINS (Rep. Korea)	5 (MELCOR2.2) 8 (COOLAP2)	In-vessel Ex-vessel reactor cavity
	SJTU (China)	18 (MELCOR1.8.5)	In-vessel
UoS (UAE)		44 (3KEYMASTER simulator, 44 groups the SCALE covariance library)	In-vessel
iPWR	CNEA (Argentina)	10 + 1 (accident management) (MELCOR1.8.6)	In-vessel
	ENSO (Spain)	15 + 3 (safety systems) (RELAP/SCDAPSIM/MOD3.5)	In-vessel

UP and FOMs (2/2)

Plant Type	Institution	FOM
	DNPER (Pakistan)	1) Core uncovery time, 2) RPV failure time, 3) H_2 in the in-vessel, 4) H_2 /CO/CO ₂ in the ex-vessel, 5) Containment breach time, 6) Csl/Cs/Activity release to environment
	ENRRA (Egypt)	1) Peak cladding temperature (PCT)
Large-scale PWR (Rep. KA (Rep. K (Rep. S. (Cl U (U	KAERI (Rep. Korea)	1) Core uncovery time, 2) RPV lower head (LH) failure time, 3) Reactor/ containment building (R/B) failure time, 4) H_2 /CO in the in-/ex-vessel, 5) Cs release to the environment
	KINS (Rep. Korea)	 Containment pressure, 2) Depth of cavity concrete ablation, 3) H₂/CO in the in-/ex-vessel
	SJTU (China)	1) Generation of H ₂ in the in-/ex-vessel
	UoS (UAE)	1) Early phase fuel temperature (in-vessel)
	CNEA (Argentina)	1) Core uncovery time , 2) Onset of core degradation, 3) Core relocation time to the lower plenum
iPWR	ENSO (Spain)	 1) Time to oxidation > 0.1% of the nominal power, 2) Time to T_{cladding}> 1477 K, 3) Fuel rupture/ Debris formation/Core slumping/Creep rupture times, 4) Cumulative H2 generation, 5) T_{cladding} when fuel rupture, 6) Cumulative fission product (FP), NC, and FP soluble

OPR1000 (KAERI): Results

Case ID	RCS Pre-bleed ¹	Feed & Bleed Operation
Base Case	N/A	N/A
Mitigation Case 1	Open of 2 SDS valves	Mobile pump starts at 4 h to inject external water into RCS
Mitigation Case 2	at the SAMG entry condition	Mobile pump starts at 4 h to inject external water into SG

¹RCS pre-bleed via SDS (safety depressurization system) intended to allow utilization of the cooling water inventory of the SITs (safety injection tanks)

Base Case: MELCOR

Os release fraction (%)

FOM [RN1-TYCLT-x-2.ty]: Cs release to the environment

CAREM-Like: Results

CNEA: LOCA (failure of all heat removal and injection systems, except for the reactor pressure vessel external cooling system)

	Core uncovery time	Onset of core degradation	Core relocation time to the lower plenum
Max	3.97 h	6.78 h	16.87 h
Min	2.44 h	4.83 h	10.93 h

ENSO: SBO

	Figure of Merit		Mean	Standard deviation	Base Case	Toleran Lower (5/95)	celimit Upper (95/95)
0-1	Oxidation > 0.1 MW	(h)	75.4	10.8	77.8	38.0	102.4
O-2	$T_{dadding} > 1477 \text{ K}$	(h)	75.4	10.8	77.8	37.9	102.4
0-3	Fuel rupture (relative O-2)	(s)	178	32	173	142	314
0-4	Debris formation (relative O-2)	(h)	6.9	1.0	6.9	5.5	9.3
0-5	Core slumping (relative O-2)	(h)	13.4	2.7	13.7	7.2	19.1
O-6	Creep rupture (relative O-2)*	(h)	14.2	2.8	15.1	7.6*	20.4*
O-7	Cumulative H ₂	(kg)	27.4	2.5	26.2	22.7	32.3
O-8	T _{daddin} , at fuel rupture	(K)	2196.0	5.0	2194.8	2180.2	2205.4
0-9	Cumulative FP NC release	(kg)	0.12	0.02	0.12	0.09	0.25
O-10	Cumulative FP-solubre release	(kg)	0.07	0.01	0.06	0.05	0.14

Spearman	HT-l	HT-3	HT-5	IPH-1	IPH-2	OXI	SA-1	SA-3	BC-3	DSG	DP
0-1	0.44	0.40	0.27	0.65	0.39	0.91	0.10	0.48	0.15	0.04	0.00
0-2	0.44	0.40	0.27	0.65	0.39	0.91	0.10	0.48	0.15	0.04	0.00
0-3	0.86	0.90	0.20	0.82	0.18	0.34	0.94	0.00	0.03	0.17	0.00
0-4	0.48	0.12	0.43	0.98	0.05	0.35	0.98	0.66	0.25	0.04	0.00
0-5	0.16	0.02	0.17	0.05	0.02	0.82	0.49	0.30	0.16	0.21	0.00
0-6	0.01	0.01	0.19	0.63	0.12	0.50	0.39	0.58	0.98	0.78	0.08
0-7	0.16	0.01	0.12	0.15	0.14	0.06	0.29	0.55	0.07	0.33	0.00
0-8	0.05	0.18	0.38	0.84	0.06	0.00	0.01	0.01	0.31	0.27	0.85
0-9	0.34	0.08	0.04	0.58	0.69	0.05	0.53	0.00	0.23	0.52	0.03
O-10	0.34	0.08	0.04	0.58	0.69	0.05	0.53	0.00	0.23	0.52	0.03

(*) qualitative -only cases with creep rupture

Task 2 – VVER-1000

Scenarios, Scope, SA Tools, Methodologies

Institution	Scenario		SA code	Framework of analysis
IBRAE (Russian Federatio	LBLOCA with HPI and LPI n) with unmitigated SBO (In-	vith HPI and LPI failure tigated SBO (In-vessel)		Regulation (NP-001-15)
ENERGOATOM (Ukraine)	SBO (In-vessel)	SBO (In-vessel)		Requirements from IAEA and European manufactures
KURCHATOV (Russian Federatio	n) LB LOCA + SBO includir vessel)	LB LOCA + SBO including (In- vessel)		Regulation (NP-001-15)
GIDROPRESS (Russian Federatio	n) Unmitigated SBO (In-ve	Unmitigated SBO (In-vessel)		Regulation (NP-001-15)
Institution	Sampling and UQ method	UQ tool and calculation scheme		Sensitivity/importance analysis
IBRAE	SRS (ASME V&V 20) N = 200	In-house		Pearson, Spearman
ENERGOATOM	LHS N = 400	In-house		Pearson, Spearman
KURCHATOV	SRS N = 275	In	-house	Spearman, Kendall
GIDROPRESS	SRS (two-sided Wilks, 95%/95%)	In	-house	Pearson, Spearman, Kendall

UP and FOMs

KURCHATOV

GIDROPRESS

(Russian Federation)

Institution	UP	UP's Domain	
IBRAE (Russian Federation)	23	boundary conditions, geometric parameters and modelling parameters that affect corium behavior at reactor bottom	
ENERGOATOM (Ukraine)	19	models of fuel and melts behavior	
KURCHATOV (Russian Federation	134	core discretization	
GIDROPRESS (Russian Federation	42	geometrical parameters, initial and boundary conditions, thermophysical properties of materials and setpoints of equipment	
Institution		FOM	
IBRAE (Russian Federation)	Total H2 production in the core during the accident		
ENERGOATOM (Ukraine) Total H2 production in the core during the accident			

(Russian Federation) Timings of core degradation events, mass of H2 and containment atmosphere parameters

- 1) Timings of core degradation events
- 2) parameters of the **melt released** from the reactor vessel
- 3) maximal values of pressure in the primary, secondary, and containment
 - 4) mass of H2 and containment atmosphere parameters

32 Consultancy Mtg. on the use of AI in Assessing the Uncertainties in SA Modelling for AWCRs, IAEA Headquarters, Vienna, 21-23 March 2023 F. Gabrie

F. Gabrielli | RPD

Results (1/2)

> ENERGOATOM

- > Vessel remain intact in 208 calcs.
- > Failure of the reactor vessel in 126 calcs.
- > 66 calcs. excluded (lack of convergence)

> GIDROPRESS

Results (2/2)

IBRAE RAN \triangleright

Uncertainty analysis results of SA should \geq be corrected taking into account code validation results

FOM = H2 production

Consultancy Mtg. on the use of AI in Assessing the Uncertainties in SA Modelling for AWCRs, IAEA Headquarters, Vienna, 21-23 March 2023 34

FOM = H2 production

F. Gabrielli | RPD

Task 2 – CANDU 6

Scenarios, Scope, and SA/U&SA Tools

Institution	Scenario	SA code	Framework of analysis	
KAERI (Rep. Of Korea)		CAISER		
UPB (Romania)	SBO (In-vessel)	RELAP/SCDAPSIM/MOD3.6	Support to SAMG development	
CNL (Canada)		MAAP-CANDU v5.00A		

Institution	Sampling and UQ method	UQ tool and calculation scheme	Sensitivity/importance analysis
KAERI (Rep. Of Korea)	Monte-Carlo method Response Correlation/Regression Analysis Methodology	MOSAIQUE	Pearson, Spearman
UPB (Romania)	GRS method (Wilks approach)	Integrated Uncertainty Analysis package in RELAP/SCDAP-SIM	Pearson, Spearman
CNL (Canada)	GRS method (Wilks approach)	SUSA	Pearson, Spearman

UP and FOMs

Institution	UP	UP's Domain
KAERI (Rep. Of Korea)	13	Core heat-up
UPB (Romania)	26	Debris formation Core collapse
CNL (Canada)	26	Fission Product releases

Institution	FOM				
KAERI					
(Rep. Of Korea)	In low vessel bydrogen generation				
UPB	Final and ust many released to the environment				
(Romania)	Fission product mass released to the environment				
CNL	Event timings such as calandria vessel failure time				
(Canada)					

Results (1/2)

H2 In-vessel Production

Institution	Lower tolerance limit, kg	Upper tolerance limit, kg	Comments
	15.0 (7.5 per PHTS loop)	269.4 (134.7 per PHTS loop)	Two-sided, 95%/95%
KAERI	N/A	258.0	One-sided, 95%/95%
UPB	273.3	370.6	Two-sided, 95%/95%
CNL	Lower tolerance limit, kg	Upper tolerance limit, kg	Comments

Results (2/2)

Institution The most significant parameter		The 2nd most significant parameter	
CNL	MLOAD(1): the maximum allowable amount of suspended core debris in a loop	VFSEP: the maximum PHTS void fraction where the primary coolant is modelled as a homogeneous two-phase mixture	
UPB contact angle for calandria tube		the fuel channel rupture area	
KAERI	Vfactor_PT: the view factor between a fuel rods and a pressure tube	pt_local a fuel channel failure temperature caused by a local melting of a pressure tube	

Dissemitation and Education

Source: https://allchildrenlearning.org/assessment-topics/using/reporting-and-dissemination/

- Five IAEA TECDOCs (thanks Tatjana☺!) on uncertainty methods and tools for SA codes with relevant benchmark results → on-going
- > IAEA NES on state of practice with lessons learned on best practices in U&S methodologies for the severe accidents analyses in WCRs \rightarrow 2024
- ➢ Publications in conference proceedings and peer reviewed journals, i.e. 2022 IAEA TIC, ERMSAR2022 → done/on-going
- Graduate Students Programme to strengthen promotion of research on SA simulation and modelling in developing Member States through pair building between agreement holders and contract holders institutes done/on-going

Graduate Students Programme

VIRTUAL GRADUATE STUDENTS' EXPERIENCE BETWEEN CRP INSTITUTES

Virtual Meetings Conducted: October 2020 - March 2021

Name 1	Name 2
Mr Lucas ALBRIGHT	Ms Melisa REYES
Sandia National Laboratory, USA	National Institute of Nuclear Research, Mexico
Leading SNL's technical contribution for the CRP; scheduled to complete PhD in Spring 2021 Mr Ahmet Merkan KAGAN Karlsruhe Institute of Technology (KIT) Institute for Neutron Physics and Dependent Technology	Developing a computational tool for S&U analysis and it will be used in CRP; scheduled to complete PhD in 2021 Mr Andrii KSONDZYK Scientific and Technical Center of NNEGC «Energoatom»
Evaluation of the radiological source term following Severe Accident scenarios in VVER-1000 by means of the ASTEC code	Uncertainty analysis of input data for criticality determination during the severe accident propagation in VVER with mixed fuel cycles of TVSA and TVS-WR and it will be used in CRP; expected to graduate in 2022
Ms Anastasia STAKHANOVA Karlsruhe Institute of Technology (KIT) Institute for Neutron Physics and Reactor Technology	Mr Pietro MACCARI University of Bologna, Italy
Development of a novel real-time program system to improve decision making in severe accident events in nuclear power plants extensively employing the U&S tools to severe accident codes to assess a database of source term results	Safety analyses and uncertainty quantification for current and advanced nuclear reactor designs; expected date of graduation beginning of 2022
	Name 1 Mr Lucas ALBRIGHT Sandia National Laboratory, USA Leading SNL's technical contribution for the CRP; scheduled to complete PhD in Spring 2021 Mr Ahmet Merkan KAGAN Karlsruhe Institute of Technology (KIT) Institute for Neutron Physics and Reactor Technology Evaluation of the radiological source term following Severe Accident scenarios in VVER-1000 by means of the ASTEC code Ms Anastasia STAKHANOVA Karlsruhe Institute of Technology (KIT) Institute for Neutron Physics and Reactor Technology Development of a novel real-time program system to improve decision making in severe accident events in nuclear power plants extensively employing the U&S tools to severe accident codes to assess a database of source term results

Based on the graduate students' pair building between CRP institutes

Graduate students are asked to select one day in a semester to spend time together virtually, and to prepare a brief report to IAEA

Their virtual experience should include the following:

- Virtual breakfast to get to know each other
- Present with well-developed slides the graduate (PhD or MS) research and how it relates to the CRP objectives and scopes
- Spend virtual afternoon working on a common topic
- Write jointly the report and submit to IAEA Chairs

Conclusions

- Several and extensive SA/UT successfully applied to different nuclear technologies
- > Large amount of UPs identified and characterized in terms of PDFs
- Additional efforts needed on:
 - > The proper selection of the UP and the assessment of the corresponding PDFs
 - ➤ The definition of the number of code calculations → much larger than the number of UPs to limit the impact of random code failures and then to guarantee reliable sensitivity measures
 - The use of different correlations and/or multiple linear regression-based sensitivity/importance measures

> 5 TECDOCS and a NES in preparation

Topical meetings and Graduate Students Programme assessed to further sharing the knowledge gained among the Member States

Conclusions and Outlook

- Solid basis of understanding on the capabilities of the SA/UT platforms assessed
- Huge experience on the performance of SA and SA/UT gained on the application to different technologies on
 - Scenarios
 - Accident phases
- Database of SA analyses assessed by the different Member States joining the CRP as training data for the development of surrogate models

Thanks a lot to all the members of the CRP for having provided a summary of the work performed in each task. A special thank to T. Jevremovic, IAEA chair of the CRP.