

FAIR DO Applications: Achievements and Challenges

Nicolas Blumenröhr

Karlsruhe Institute of Technology, Steinbuch Centre for Computing RDA 20th Plenary Session, IG FAIR Digital Object Fabric Meeting

Implementations of the FAIR DO Concept

Two application cases in the field of Machine Learning (ML):

FAIR DOs for relabeling ML training data https://riojournal.com/article/94113/download/pdf/

FAIR DOs for linking several ML data assets

https://zenodo.org/record/7022736#.ZBXkdOzMJGw

Visualized with the FAIRDOscope: <u>https://kit-data-manager.github.io/fairdoscope/</u>

Implementation of a FAIR DO Client

For the application case of relabeling ML training data

Enables machine-actionable decisions
Use of the attribute values in the information record of FAIR DOs

Future Challenges

- Granularity of data representation by FAIR DOs
 - Data elements and data sets, where to draw the line, and what is most feasible?
 - Restricted by storage system?
- Granularity of attributes in the FAIR DO information record
 - Kernel information is general, but machine-actionable decisions often require more specific information
 - Making use of linked data?
 - Extending the information record content?
- Specifications for operations
 - How and where to define them?
 - How to implement them?