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1.1  Physical quantities

A physical quantity is needed to describe a property 
quantitatively, i.e. with a numerical value. We look at 
the statement

m = 5 kg

Here is

m a physical quantity
5 a numerical value 
kg a measuring unit

In mathematical terms, „5 kg“ is to be regarded as 
the product of „5“ and „kg“. Please bear in mind when 
writing your own scientifi c text that the symbol of a 
physical quantity is written in italics while the measur-
ing unit is written in a normal font. Hence, „m“ stands 
for mass and „m“ for meter.

1.2  What the value of a quantity 
refers to

We try to classify physical quantities, and this by 
looking at the geometrical entity they refer to: a point, 
a surface area or a region of space.

Value refers to a point
velocity, temperature, pressure, electric potential, 

density, …

Value refers to a surface area
all currents: force (momentum current), electric 

current, entropy current, energy current, …

Value refers to a region of space:
mass, momentum, electric charge, entropy, energy, …
If a quantity refers to a point, its value can change 

from point to point. Th is is evident for temperature 
and for pressure. Maybe it is not so obvious that also 
the velocity is part of this category. Th is is because all 
points of a moving body have the same velocity, or 
don't they? It is suffi  cient to look at a rotating body to 
convince yourself of the opposite. In such a body, each 
point has a diff erent velocity. Also the velocity of water 
in a river chances from place to place.

Quantities that refer to a region of space are called 
substance-like quantities.

Not all quantities fulfi ll this pattern, e.g. time, but 
also the spring constant, electric resistance and capaci-
tance.

Th e value of a current strength refers to a surface 
area. Th e value of a substance-like quantity refers to 
a region of space.

1.3  Distributions

You are interested in the temperature at the location 
where you are currently at? You measure the tempera-
ture and fi nd it to be 25 °C.

Hence:

ϑ = 25 °C.

Sometimes you are interested in the temperature 
values along a line: how does the temperature above 
the point where you are standing decrease with the al-
titude z? Th en, you ask about a unidimensional tem-
perature distribution, i.e. about the function ϑ(z).
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It happens that the values of a quantity that refers to 
a point are of interest in an entire plane, e.g. for the 
temperature or the air pressure on the surface of the 
Earth. Th e respective distribution will then be a func-
tion of two space coordinates: ϑ(x, y) and p(x, y), i.e. a 
distribution in two dimensions.

To inform someone about the temperatures in a real 
three-dimensional region of space, he will have to be told 
a function ϑ(x, y, z) of the three space coordinates x, y and 
z, i.e. a three-dimensional temperature distribution.

Th e more dimensions are taken into account, the 
more diffi  cult will be the graphical display of the dis-
tribution. Fig. 1.1 shows the temperature as a function 
of the altitude.

A two-dimensional distribution can be displayed 
graphically by means of a 3D plot. Fig. 1.2 shows the 
function z(x, y) = x2 + sin y. Try to understand why the 
diagram looks the way it looks.

Two-dimensional distributions can also be dis-
played by means of gray shadings or colors. Fig. 1.3 
shows the population density as a function of the loca-
tion in the Germany.

To display a three-dimensional distribution in a 
clear way, we will have to use some clever tricks. Fig. 
1.4 shows the density distribution in a hydrogen atom.

We are oft en interested in how the value of a quan-
tity will change over in time t. In this case also t ap-
pears as an independent variable.

Hence, we have to deal with functions such as

ϑ(x, t) or
ϑ(x, y, t) or
ϑ(x ,y , z, t).

Fig. 1.1 Temperature as a function of the altitude
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Fig. 1.2 3D plot of the function z(x, y) = x2 + sin y
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Fig. 1.3 Distribution of the population density in Germany
Fig. 1.4 Distribution of the mass density of the electron 
shell of an excited hydrogen atom
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Th e function ϑ(x,t) can be graphically displayed as 
in Fig. 1.2. Th ere, the time is put in the place of the 
space coordinate y. Such functions become very clear 
by making videos so that the time variable will also be 
perceived as time.

Sometimes, a quantity that refers to a point has the 
same value at every place. For example the temperature 
of a body can be in complete equilibrium: each point of 
the body has the same temperature. In this case, we say 
that the temperature distribution is homogeneous.

1.4  Substance-like quantities

Physical quantities whose values refer to a region of 
space are called substance-like quantities.

Th ey include: 
 • energy
 • momentum 
 • entropy
 • electric charge
 • amount of substance

If an object is doubled imaginarily, i.e. if a copy is 
made of it and placed next to the old one, the structure 
that consists of the two will have twice the amount of 
energy, twice the momentum, etc. (but not twice the 
temperature or twice the velocity).

Each substance-like quantity can be imagined as a 
measure for something that is contained in the respec-
tive object, like water in a recipient. Two recipients 
contain twice as much water as one, and three contain 
three times as much. 

Momentum is a measure for the impetus or the 
verve of a body. Th e original name of the quantity de-
scribes the meaning of the physical quantity better 
than the name „momentum“: it was called quantitas 
motus, or quantity of motion. Two identical cars that 
drive with the same velocity have together twice as 
much momentum (impetus) as a single car. 

Entropy is a measure for the heat contained in a body. 
Two identical bodies with the same temperature have to-
gether twice as much entropy (heat) as a single body. 

Th e electric charge is a measure for something we 
do not have a colloquial name for. But we can still feel 
it. On two identical bodies that have the same electric 
potential, there is twice as much charge as on one. 

Regarding the amount of substance, the corre-
sponding statement is logical: for two identical bodies, 
the amount of substance – and hence the number of 
molecules of which it consists – is twice as large as for 
a single one. 

Yet another particularity of the substance-like phys-
ical quantities: we can tell for each of them whether it 
is conserved or not, i.e. whether it can be produced, 
whether it can be destroyed or whether neither of the 
two is possible. Th erefore, we can say: 

Energy can be neither created nor destroyed.
Momentum can be neither created nor de-

stroyed.
Electric charge can be neither created nor de-

stroyed.

But:

Entropy can be created but not destroyed. 

And fi nally: 

Amount of substance can be created and de-
stroyed. 

For a quantity that refers to a point it does not make 
sense to talk about its being conserved or not. 

We can tell for every substance-like quantity 
whether it is conserved or not.

1.5  Scalars and vectors

Hopefully you do not think that the classifi cation of 
quantities is confusing – because things will become 
even more complicated now. Let us look once again at 
the diff erent physical quantities but this time from an-
other perspective.

We will compare two specifi cations at fi rst: a tem-
perature and a velocity. You can imagine it to be the air 
temperature and the wind velocity at a well-defi ned 
place and at a well-defi ned instant of time.

Th e specifi cations are

ϑ = 19 °C
v = 5 m/s.

Do you notice that one of the two specifi cations is 
incomplete? Although we know how fast the air is 
moving, i.e. 5 m/s, we do not know yet in which direc-
tion it moves. Th ings are clear for the temperature as 
the temperature has no direction. Quantities such as 
the temperature that are defi ned by a single number 
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are called scalars. Quantities for which a direction has 
to be specifi ed in addition are called vectors. Here 
some examples:

scalars
energy, mass, electric charge, electric current 

strength, temperature, entropy

vectors
velocity, momentum, momentum current

Later you will get to know further vector quantities.
So what is the best way of telling someone a velocity 

value? Th ere are several possibilities.
A graph, i.e. by means of a sketch, is the easiest way. 

Th e velocity is indicated by an arrow. Th e length repre-
sents the magnitude of the velocity, in our case 5 m/s, 
and the direction of the arrow corresponds to the di-
rection of movement, Fig. 1.5.

Th is way, the wind velocity can indicated for any 
point on a map. Of course, it is crucial for this method 
to determine the length that corresponds to the veloc-
ity unit in the sketch. In Fig. 1.5, we have indicated the 
velocity unit 1 m/s as a straight segment.

To be able to tell that a physical quantity is a vector, 
a small arrow is drawn on top of the symbol of the 
quantity. Hence, we write

velocity: 
_›v 

momentum: 
_›p 

momentum current: 
_›F.

In many cases, we would like to describe a vector 
quantity, e.g. the wind velocity, only with numerical 
values and not by means of a sketch. Fig. 1.6 shows 
how that can be done.

We choose a coordinate system whose axes are de-
nominated vx and vy. Th en, we draw the vector arrow 
of the velocity at any place of the coordinate system.

From the beginning and from the tip of the arrow, 
we draw straight lines perpendicular to the coordi-
nate axis. Hence, we „project“ the vector arrow on the 
two coordinate axes. Th is way we obtain the x com-
ponent v0x of the velocity and the y component v0y. In 
three-dimensional space, there would also be a z 
component.

Th ese three components characterize the velocity 
vector unambiguously. In the left  part of the image we 
have:

v0x = 3 m/s
v0y = 2 m/s,

Fig. 1.5 A vector is graphically represented by an arrow. 
The length of the arrow corresponds to the magnitude 
of the vector.

Fig. 1.6 A vector is broken down into its components
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and in the right one:

v0x = 3 m/s
v0y = –2 m/s,

Th e components have a simple meaning: we could 
say that the air moves at the same time at 3 m/s in the 
x direction and at 2 m/s (left  picture) or –2 m/s (right 
picture) in the y direction.

We have used two numbers to characterize the ve-
locity vector. Strictly speaking, there have been even 
three, because there is also a z component, but this is 
zero in our case:

v0z = 0 m/s.

What has been said here for the velocity also holds 
true for other vector quantities. Also the momentum 
and the momentum current are defi ned each by an x, y 
and z component. 

Th is was not relevant in our earlier considerations 
as we limited them to movements in one single direc-
tion. Hence, we were only dealing with one of the two 
components.

Th e value of a scalar quantity is defi ned by one 
single number.

Th e value of a vector quantity is defi ned by three 
numbers, i.e. the values of the x, the y and the z 
component.
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1.6  Streamlines

Th e velocity is (1) a quantity that refers to a point 
and (2) a vector.

Th is means:
1. Its value can be diff erent from point to point; it 

forms a distribution. Example: the velocity distribu-
tion of the air motion (of wind).

2. In each point it has a well-defi ned direction.
We would like to graphically illustrate the velocity 

distribution of water in a river (strictly speaking: on 
the surface of the river). One possibility is shown in 
Figure 1.7. Small vector arrows are drawn at as many 
points as possible. Th e vector refers to that place where 
its starting point (not the tip) is located.

Such an illustration is too confusing for certain pur-
poses. Th erefore, usually a streamline picture, Fig. 1.8, 
is drawn. A streamline is a line that has at each point 
the same direction as the velocity vector of the fl ow. 
Hence, the direction of the fl ow can be seen at each 
point. But we also learn something about the fl ow ve-
locity: where the lines are very close to each other, it is 
high; where the lines are very distant, it is low.

Exercises

1. Check with Deutscher Wetterdienst [German Meteoro-
logical Service] how the distributions of the various 
quantities that are used to describe a weather are graphi-
cally illustrated. Explain.

2. Sometimes but not always, we can imagine a streamline 
to be like the trajectory of a small portion of water. Which 
precondition has to be met?

3. Describe methods for the illustration of an air current 
(velocity distributions) that have not been mentioned in 
the text.

1.7  Vector addition

Sometimes the values of physical quantities have to 
be added up.

A battery contains 10 kJ of energy, another one con-
tains 12 kJ. Both batteries together have

10 kJ + 12 kJ = 22 kJ.

Th e temperature in Stuttgart is 22 °C, in Karlsruhe it 
is 26 °C. Th e mean value of the temperatures is

+
=

22°C 26°C
24°C

2

Fig. 1.8 Velocity distribution of the water in a river, 
illustrated with streamlines 

Fig. 1.7 Velocity distribution of the water in a river, 
illustrated with vector arrows

A 4.5-volt battery and a 9-volt battery are connect-
ed in series. Th e newly created energy source has a 
voltage of 

4.5 V + 9 V = 13.5 V. 

Th e examples show that there are diff erent reasons 
for adding up values: calculation of a total amount, 
calculation of a mean value, connecting two devices in 
series.

All quantities of these examples were scalars. But 
sometimes we might also want to perform such opera-
tions with vector quantities, which means that vectors 
need to be added up. How does that work?

We look at an example in which velocities have to 
be added up. You walk in a forward direction on a 
train. Th e velocity of the train is 75 km/h, your velocity 
„relative to the train“ is 4 km/h. Relative to the Earth 
(„in the reference frame of the Earth“), you have a ve-
locity of 75 km/h + 4 km/h = 79 km/h.

Here, the velocities to be added up had the same di-
rection – the longitudinal direction of the train – and 
the addition was not hard to understand. But what will 
happen if the velocities to be added up have diff erent 
directions? We assume that you walk on a ship (where 
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there is more space than on a train) at 4 km/h and trans-
versally to the direction of the ship. We suppose the ship 
has a velocity of 20 km/h. Fig. 1.9 (a) shows the respec-
tive vector arrows 

_›vP and 
_›vS (P for person and S for 

ship).
Seen from the Earth, the „resulting“ movement will 

no longer be in the longitudinal direction and not in 
the direction transversal to it either, but diagonal. Th e 
direction of the resulting velocity vector" is between 
the direction of 

_›vP and of 
_›vS. Fig. 1.9 shows how the 

resulting velocity vector can be obtained. Th e two vec-
tor arrows are simply connected: the start of one is put 
on the end of the other. Th en, an arrow has to be drawn 
from the start of the fi rst to the tip of the second vector. 
Th e order in which the arrows are connected is not rel-
evant, i.e. also the vector addition is commutative.

Vector addition: the arrows of the vectors to be 
added up are connected.

Fig. 1.10 shows the addition of two vectors.
_›v1 + 

_›v2 = 
_›v3

Also the components of the three involved vectors 
are indicated on the axes of the coordinate system.

We can see that the following applies for the com-
ponents:

_›vx1 + 
_›vx2 = 

_›vx3_›vy1 + 
_›vy2 = 

_›vy3

Vector addition: the components are added up 
individually.

v
S

�

v
P

�

10 m/s

v
S

v
P

v
R

Fig. 1.9 (a) Velocity vectors of ship (S) and person (P). (b) 
Graphical addition of the vectors

v
 1

� v
 2

�

v3

�

vy

vx

v1y

v3y

v2y

v2x
v1x

v3x

Fig. 1.10 Addition of vectors. The components are add-
ed up individually.



11

2.1 Momentum

2  M
O

M
EN

TU
M

 A
N

D
 M

O
M

EN
TU

M
 C

U
R

R
EN

TS

2  MOMENTUM AND MOMENTUM CURRENTS

2.1  Momentum

Momentum is something that is contained in a fast, 
heavy body. Colloquially, it can be described with the 
words „impetus“ or „verve“.

Th e relationship between momentum (impetus), 
velocity (how fast does the body move?) and mass m 
(how heavy is the body?) is as follows:

_›p = m 
_›v 

Th is „vector equation“ is an abbreviation for the 
three equations of the components:

px = m · vx
py = m · vy
pz = m · vz

As a measuring unit we use the Huygens (Hy) that 
fi ts in the SI system: if the mass is given in kg and the 
velocity in m/s, the equation will provide the momen-
tum in Hy. Hence, we obtain 

Hy = kg · m/s.

Th e momentum was introduced as a physical quantity 
by the philosopher, mathematician and natural scientist 
René Descartes (1596 – 1650), Fig. 2.1. Descartes called 
the quantity quantitas motus, in English: quantity of mo-
tion. (Back then, intellectuals communicated in Latin just 
as they do in English today.) However, the quantity intro-
duced by Descartes could only take on positive values; 
and it was defi nitely not a vector. Hence, it was what we 
call today the magnitude of the momentum vector. 
Th erefore, it was not yet very helpful back then.

Only Christiaan Huygens (1629 – 1695) introduced 
a plus/minus sign for the momentum. However, he 
was not aware either that the momentum is a quantity 
that is always conserved.

Fig. 2.1 René Descartes (a) and Christiaan Huygens (b)

a)        b)

2.2  Momentum currents

One-dimensional movements
Momentum can pass over or go or fl ow from one 

body to another. At fi rst, we look at phenomena in 
which there is only momentum in one single direction. 
When doing so we can deal with the momentum as if 
it were a scalar. To prevent momentum from fl owing 
into the Earth, we will make the experiments with ve-
hicles that have low friction or with an air track.

A body A moves to the right and collides with B, 
Fig. 2.2. Th rough the spring bumper, momentum fl ows 
from A to B. If A and B have the same mass, all the 
momentum of A will go to B. If A has 2 Hy at the be-
ginning (and B 0 Hy), B will have 2 Hy (and A 0 Hy) 
aft er the collision.

If A is heavier than B, Fig. 2.3, only a part of the 
momentum will be transferred.

Fig. 2.2 In the collision, A transfers all its momentum 
to B.

A B

A B
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And if A is lighter than B, Fig. 2.4, body A will 
transfer more momentum to B than it has. Th erefore, 
A has to „enter in debt“: aft er the collision, its momen-
tum is negative.

In all three cases, the law of momentum conserva-
tion is fulfi lled. Th is can be verifi ed by measuring the 
velocities before and aft er the collision and by calculat-
ing the momentum values.

But we can also infl uence the momentum transfer by 
changing the transfer process: instead of an elastic 
spring, we use a „bumper“ made of an inelastic mate-
rial, e.g. of modeling clay. Th en, the two gliders will 
hang on one another aft er the collision, i.e. they will 
have the same velocity – regardless of the masses of A 
and B, Fig 2.5. 

Finally we replace collision partner B by the Earth, 
Fig. 2.6 and 2.7. If the momentum is transferred by 
means of a spring, body A will move to the left  aft er the 
collision with the same velocity with which it moved to 

A B

A B

Fig. 2.3 If body A is heavier than body B, only part of its 
momentum will be transferred to B during the colli-
sion.

A

A

B

B

A

A

B

B

Fig. 2.4 Body A is lighter than B and releases more 
momentum than it actually has: its momentum be-
comes negative.

Fig. 2.5 If the bumper is inelastic, the vehicles will 
move with the same velocity after the collision.

Fig. 2.7 Inelastic bumper. The Earth is the collision part-
ner. After the collision both bodies (body A and the 
Earth) have the same velocity, i.e. 0 m/s.

A

A

Fig. 2.6 Body A „collides with the Earth“. In this process, 
it releases twice as much momentum as it has. There-
fore, it has negative momentum after the collision.

A

A

A

Fig. 2.8 Before and after cutting the thread the overall 
momentum is 0 Hy. 

A B

A B

the right before. Hence, the Earth will receive twice as 
much momentum as A had at the beginning.

If an inelastic bumper is used once again, body A 
will simply transfer its momentum to the air track 
(from where it will continue fl owing into the Earth) 
and stop.

A further variant of the experiment is shown in Fig. 
2.8. Th e spring between A and B is stretched. A thread 
between the two bodies prevents it from being released. 
Th en, the thread is cut. (To avoid that momentum can 
arrive on the overall arrangement from outside, it is 
burned through with the fl ame of a match.) As soon as 
the thread tears, the two bodies start moving in opposite 
directions: one of them has positive, the other negative 
momentum of the same absolute value. Together, both 
will therefore have 0 Hy before and aft er.
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Two- and three-dimensional movements 
In two- and three-dimensional movements, the vec-

torial nature of momentum becomes noticeable. In the 
following, we will examine movements that are limited 
to two dimensions. Th e results we will obtain, however, 
are also valid for three-dimensional processes.

An air hockey table is suitable for the experiments. 
In case you are not familiar with this device: it is a 
game machine similar to table soccer. An even, hori-
zontal surface has many small holes of which air is 
fl owing out. Th e air forms a cushion on which the 
round „pucks“ can fl oat practically without friction. 
Alternatively, the experiments can also be made with 
coins that are shot against each other on a surface that 
is as smooth as possible. Although the coins will al-
ways stop quickly – they lose their momentum to the 
table – we can see quite well what the movement im-
mediately aft er the collision is like.

Hence, we shoot a body (puck or coin) against an-
other one. We do so in diff erent ways, and observe. Th e 
colliding body A should always move in the y-direc-
tion at the beginning, Fig. 2.9–2.11. Th e straight line 
on which the center of A moves shall be called g.

If you play a bit with the pucks or coins, you will get 
a feeling of how the bodies behave during collision.

If the center of B is located on g, the whole move-
ment will take place in one dimension, Fig. 2.9. Both A 
as well as B will only have y-momentum (or no x-mo-
mentum at all) aft er the collision. We have already an-
alyzed such processes.

But if the center of B is located slightly apart from g, 
the momentum vectors will also have an x-component 
aft er the collision.

You see that the two bodies can now move in any 
direction aft er the collision; and it appears at fi rst im-
possible to fi nd a simple rule for their behavior.

However, if you consider how the bodies will cer-
tainly not move, you will get on the right track towards 
a principle on which the movement is based.

Just try to realize the behavior shown in Figure 2.10. 
More specifi cally, let's assume that body A has 0.1 Hy 
at the beginning. As it moves in the y-direction, this is 
a pure y-momentum. Aft er the collision, it should 
stop, and B should have 0.1 Hy of x-momentum. But 
such a process does not exist.

Or the collision process from Fig. 2.11: again, at the 
start A has 0.1 Hy of pure y-momentum. Aft er the colli-
sion, A and B each have 0.05 Hy y-momentum (hence, 
0.1 Hy together). In addition, B also has a 0.05 Hy x-
momentum. Th is process does not exist either.

Th ere can be various reasons for the fact, that nature 
does not behave as we expect it should behave. In the 

Fig. 2.9 Nothing new: the law of momentum conserva-
tion is respected. (a) prior to the collision, (b) after the 
collision

B

g

ApA

� y

x

B

g

A

pB

�

a)   b)

Fig. 2.10 Prior to the collision (a), A has only y-momen-
tum, B does not have any momentum at all; after the 
collision (b), B would have pure x-momentum and A no 
momentum at all. Such a process does not exist!

Fig. 2.11 Prior to the collision A has 0.1 Hy pure y-mo-
mentum; this momentum should distribute itself 
equally between A and B during the collision. In addi-
tion, B should have a remaining x-momentum of 0.05 
Hy after the collision. Such a process does not exist!
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a)   b)

a)   b)

present cases, there is a particularly simple reason: the law 
of momentum conservation would have been infringed.

Why? Isn't this reason accounted for in the example 
from Fig. 2.10? 0.1 Hy before and 0.1 Hy aft er the colli-
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sion– isn't the law satisfi ed? But no! Th e law of mo-
mentum conservation for vector quantities was ap-
plied incorrectly. It is not suffi  cient that the absolute 
value of the momentum is the same before and aft er 
the collision; the law of momentum conservation has 
to be respected for each component individually. Or in 
other words: also the direction of the overall momen-
tum must not change during a collision.

Th e law of momentum conservation applies for 
each momentum component separately.

Aft er the impossible processes, however, we would 
now like to examine the possible processes, too. Th ere-
fore, we make things a bit more complicated from the 
start. None of the two collision partners A and B is at rest 
at the beginning. Prior to the collision they have the 
momenta 

_›pA,1 and 
_›pB,1, respectively. („1“ means before).

Th e sum of the momentum vectors prior to collision 
is the total momentum vector, Fig. 2.12:

_›pA,1 + 
_›pB,1 = 

_›ptot

Also the sum of the momentum vectors aft er _›pA,2 and 
_›pB,2 („2“ means aft er) has to be equal, Fig. 

2.13a. Or: the momentum sum prior to the collision is 
equal to that aft er the collision, Fig. 2.13b:

pA,1

�

pB,1

�

pA,1

�

pB,1

�

ptot

�

Fig. 2.12 The two momentum vectors prior to the colli-
sion (index 1), are added vectorially to the total mo-
mentum (index tot).

p
A,1

�

p
B,1

�

p
tot

�

p
A,1

�

p
B,1

�

p
B,2

p
A,2

�

p
B,2

p
A,2

�

� �

Fig. 2.13 (a) The vector sum of the momenta after the 
collision (index 2) is equal to the total momentum. (b) 
The momentum vector sum prior to the collision is 
equal to that after the collision.

a)   b)

Fig. 2.14 Momentum balance for diff erent collision 
processes

_›pA,1 + 
_›pB,1 = 

_›pA,2 + 
_›pB,2

Th is also takes us to the following conclusion: the 
sum of the x-components remains as before during the 
collision, just as the one of the y-components.

Fig. 2.14 shows the momentum vectors for colli-
sions that (as regards momentum conservation) are 
allowed.

Exercises

1. Willy (70 kg) and Lilly (52 kg) are rollerblading. Willy is 
standing still, Lilly arrives with 4.5 km/h from behind 
and holds on Willy. What is the velocity the two continue 
rolling at? (Give the result in km/h.)

2. Experiment with several coins of equal weight. Try to fi nd 
a rule to describe the behavior of the coins.

3. Experiment with a light and a heavy coin. Try to fi nd a 
rule to describe the behavior of the coins.

4. Th e momentum of the ice hockey puck is: px = 3 Hy, py = 
0 Hy. Due to a hit, Δpx = –2 Hy, Δpy = 2 Hy is added to the 
puck. What will be its momentum aft erwards? Calculate 
the components and fi nd the result graphically.

5. A car with a weight of 1200 kg rolls with 30 km/h around 
a 90° curve. Friction can be neglected. Choose a coordi-
nate system. What is the momentum of the car before the 
curve, what is it aft er the curve? By which momentum 
diff er the start and the end momentum? Where does this 
momentum come from?

pA,1

�

pB,1

�

pB,2

pA,2

�

�

pA,2

�

pA,2

�

pA,1

�

pA,1

�
pB,1

�

pB,1

�

pB,2

�

pB,2
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2.3  Momentum currents in 
friction processes

A block A slides over a board B, Fig. 2.15. In this 
process, A slows down and B starts moving. Momen-
tum goes over from A to B. But the process quickly 
comes to an end: as soon as the velocities of A and B 
have become equal, no further momentum will fl ow 
from one body to the other. Th e following rule applies:

During a process of friction, momentum fl ows 
from the body with the higher to the body with the 
lower velocity.

Th is rule probably sounds familiar to you. It is of 
the same type as the following statements:
 •  Electric charge fl ows on its own from places of higher 

to places of lower potential.
 • Entropy fl ows on its own from places of higher to 

places of lower temperature.
 • A chemical reaction runs by itself from substances of 

higher to substances of lower chemical potential.
We make a vehicle move to the right (in the positive 

x-direction) and then leave it up to itself. Due to the 
inevitable friction, it will stop very soon, i.e. it rolls un-
til it comes to a halt. Th is behavior corresponds to our 
rule: momentum fl ows from the vehicle (velocity 
greater than zero) into the Earth (the velocity is zero).

Exercises

1. We could think that our rule will be infringed if the block 
in Fig. 2.15 slides left wards over the board. Please show 
that the rule still applies here.

2. Can the rule be applied to the processes from Fig. 2.2 and 
2.3?

2.4  Momentum pumps

We were thinking about the question of where the 
momentum of a body whose velocity decreases is go-
ing. We found out that the momentum fl ows into the 
Earth. Now we ask the reverse question: where does a 
vehicle get is momentum from when it is accelerated?

Willy pulls a trolley by means of a rope, Fig. 2.16. 
While pulling, the trolley accelerates: the momentum 
of the trolley increases. Where does this momentum 
come from? From Willy? Yes and no. Although it 
comes from Willy, his momentum is not reduced but it 
was and remains 0 Hy. Willy must take it himself from 
somewhere else.

A
B

Fig. 2.15 Momentum fl ows from A (higher velocity) to B 
(lower velocity).

We change the experiment slightly, Fig. 2.17. Lilly 
pulls on the rope, the momentum of the trolley on the 
left  increases. Th e trolley on the right, including Lilly, 
also starts moving – but to the left . Hence, the trolley 
on the right (including Lilly) receives negative mo-
mentum, or in other words: it releases positive mo-
mentum. In the process of pulling, momentum fl ows 
from the trolley on the right (including Lilly) through 
the rope into the one on the left . It was Lilly with her 
muscles that made the momentum fl ow from the right 
to the left . She acted as a „momentum pump“.

Now we will also see what must have happened in 
the case of Figure 2.16. Willy has pumped momentum 
from the Earth through the rope into the trolley. We 
cannot see that the momentum of the Earth has be-
come negative, just as we cannot see the increase of the 
momentum of the Earth while a vehicle is rolling to a 
halt (while releasing momentum to the Earth).

We will examine a few more situations where mo-
mentum is being pumped into another body.

In Fig. 2.18, Willy pulls the two trolleys A and B 
towards himself so that the trolleys accelerate. Th e mo-

momentum

momentum

Fig. 2.16 Willy pumps momentum from the Earth into 
the trolley.

Fig. 2.17 Lilly pumps momentum out of herself into the 
trolley.
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mentum of A increases in the process while the mo-
mentum of B takes on increasingly higher negative 
values. Willy's momentum is and remains 0 Hy. Hence, 
he transports momentum from the trolley on the right 
to the one on the left . He is standing on a skateboard to 
make sure that no momentum comes from the Earth 
or escapes into the Earth.

A car drives with an increasing velocity, i.e. its mo-
mentum increases. Here, the engine works as a mo-
mentum pump. It transports momentum from the 
Earth into the car via the drive wheels (in passenger 
cars mostly via the front wheels), Fig. 2.19.

A toy car with remote control is standing on a piece 
of cardboard under which there are rollers such as 
drinking straws or pencils, Fig. 2.20. Th e car is started in 
a way that it moves to the right. Its momentum increas-
es during the startup process. But the cardboard surface 
is rolling away to the left  in the process, i.e. its momen-
tum becomes negative. Hence, the motor of the car has 
pumped momentum from the cardboard into the car.

Go back once again and have a look at Fig. 2.8. Aft er 
cutting the thread, the two trolleys start moving – the 
right one to the right and the left  one to the left . Here, 
the trolley on the right has consequently received 
(positive) momentum, the one on the left  has lost 
(positive) momentum. In this case the spring works as 
a momentum pump. While it loosens, it transports 
momentum from the left  into the right trolley.

Just as any other pump, our momentum pump 
needs energy. Th e car engine that acts as a momentum 
pump gets energy from gas, the muscles from food. We 
will examine later where this energy will eventually go. 
At the moment, we would only like to remember:

A „momentum pump“ (e.g. an engine) trans-
ports momentum from a body with a lower velocity 
to a body with a higher velocity. Th e momentum 
pump requires energy.

2.5  Momentum conductors and 
insulators

A necessary requirement for momentum being able 
to fl ow from A to B is a connection between A and B. 
But not any connection is suffi  cient. Th e connection 
has to be permeable for momentum. It has to be a con-
nection that conducts momentum. How do such mo-
mentum-conducting connections look like? What 
type of objects conduct momentum? Which objects do 
not conduct momentum?

momentum
A B

Fig. 2.18 Willy pumps momentum from the trolley on 
the right into the one on the left.

m
om

en
tu

m

Fig. 2.19 The engine of the car pumps momentum from 
the Earth into the car.

Fig. 2.20 The motor of the toy car „pumps“ momen-
tum from the cardboard surface into the car.

Fig. 2.21 Momentum is pumped from the Earth into 
the trolley. (a) The momentum fl ows in the bar to the 
right. (b) The momentum fl ows in the bar to the left.

a)

b)

In Fig. 2.21a, Willy pushes against a trolley by 
means of a bar. Th e trolley accelerates, its momentum 
increases. Hence, Willy pumps momentum from the 
Earth into the trolley. In the bar, momentum fl ows 
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from the left  to the right. In Fig. 2.21b, also a trolley is 
charged with momentum – this time by Lilly who pulls 
the trolley, i.e. once again by means of the bar. Here, 
momentum fl ows in the bar from the right to the left .

We can see in these two processes that the bar is a 
momentum conductor. It is clear that the exact shape 
of the bar is not relevant. Neither is the material the 
bar is made of, provided that it is a solid material. We 
conclude:

Solid materials are momentum conductors.

Fig. 2.22 shows Lilly trying to make the trolley 
move by pushing against the air to fi nd out whether 
the air conducts the momentum up to the trolley; 
something that she does not seriously believe. She 
fi nds:

Air is not a momentum conductor.

Th is is taken advantage of for the air track: the air 
between the rail and the glider prevents the momen-
tum of the glider from fl owing away into the rail.

However, this principle applies only with restric-
tions. We will see later how we can outsmart it.

In Fig. 2.23, Willy charges the trolley with momen-
tum by shoving a bar over the trolley. Th e bar thereby 
slides over the surface of the trolley; it is not fastened 
on the trolley. Th is way, Willy can actually transfer mo-
mentum into the trolley, albeit not very eff ectively.

We can see that the momentum transfer improves 
with an increasing friction between the bar and the 
trolley. If the bar slides easily over the trolley, the mo-
mentum current from the bar to the trolley will be low. 
If the friction is high, i.e. if for example the bar and the 
trolley have a raw surface, the momentum transfer will 
be good. We conclude:

If two objects rub against one another, momen-
tum will fl ow from one to the other: the greater the 
friction, the more.

Basically, we have always taken the validity of this 
rule for granted: to prevent the momentum of an ob-
ject from fl owing into the Earth, we need to make sure 
that there is no momentum-conducting connection 
between the object and the Earth; we need to make 
sure that the friction is low.

Th e most important device that is used to reduce 
the friction between a body and the Earth is the wheel.

Wheels are used for momentum insulation.

Fig. 2.22 Air is not a conductor for momentum.

Fig. 2.23 Momentum transfer during a friction process

2.6  Flow equilibria

A car is accelerated: the engine pumps momentum 
out of the Earth and into the car. Th e faster the car 
drives, however, the stronger the friction of the air and 
the more momentum is lost. At a certain velocity, just 
as much momentum is pumped into the car as will 
fl ow back out due to friction. Hence, nothing will be 
left  as a net momentum; the momentum of the car will 
no longer increase, Fig. 2.24.

Th is situation always exists when a car drives on an 
even ground and with a constant velocity. Th e infl ow 
of momentum is equal to the outfl ow.

Fig. 2.24 A car that drives with constant velocity. All of 
the momentum that the engine pumps into the car 
fl ows back to the environment due to friction.

m
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entum

momentum
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omentum
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Th e situation can be compared with another one in 
which water takes on the role of momentum, Fig. 2.25: 
the bucket with the hole corresponds to the car. Th e 
bucket has a leak for the water just as the car has a 
momentum leak. New water is constantly fl owing into 
the bucket, but just as much water is fl owing back out 
through the hole so that the quantity of water in the 
bucket will not change.

Such a process, in which the outfl owing current ad-
justs itself in a way as to be equal to the infl owing cur-
rent, is called fl ow equilibrium.

Flow equilibrium: the outfl ow adjusts in such a 
way that it is equal to the infl ow.

If something moves with a constant velocity, there 
will oft en be a fl ow equilibrium.

For example, a cyclist pumps momentum into the 
bicycle (+ person) by pedaling. An equal current fl ows 
out via the air and the wheels due to friction. Th e same 
applies for planes and ships.

Exercises

1. Describe the following driving states of a car by indicat-
ing what is happening to the momentum. (a) Th e car 
starts driving. (b) Th e car rolls slowly at idling speed. (c) 
Th e car is slowed down by the brakes. (d) Th e car drives 
at a high, constant velocity. 

2. Sometimes, a body moves at a constant velocity although 
there is no fl ow equilibrium. But why does the momen-
tum remain constant in such cases?

2.7  Compressional, tensional 
and bending stress

In Fig. 2.26a, Willy makes a trolley move. Th rough 
the bar, x-momentum (the short arrows) fl ows from 
the left  to the right, i.e. in the positive x-direction. In 
Fig. 2.26b, he pulls on the bar and xmomentum fl ows 
from the right to the left , i.e. in the negative x-direc-
tion. In Fig. 2.26c, he fi nally pushes the trolley ahead 
from the side. Th e x-momentum is now fl owing trans-
versally to the x-direction.

Now put yourself in the situation of the bar. Would 
you feel a diff erence in the three cases? Of course. In 
the fi rst case, you would feel a compressional stress, in 
the second case a tensional stress and in the third case 
a bending stress.

We therefore have the following rule:

Fig. 2.25 An equal quantity of water fl ows in from the 
tap and out through the hole. The quantity of water in 
the bucket remains constant.

Fig. 2.26 (a) x-momentum is fl owing in the bar to the 
right (in the positive x-direction). (b) x-momentum is 
fl owing in the bar to the left (in the negative x-direc-
tion). (c) x-momentum is fl owing in the bar to the rear 
(transversally to the x-direction).

a)

b)

c)

x

x

x

x-momentum fl ows in the positive x-direction:
compressional stress
x-momentum fl ows in the negative x-direction:
tensional stress
x-momentum fl ows transversally to the x-direction:
bending stress
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Corresponding rules apply for the y- and the z-mo-
mentum.

Fig. 2.27a shows a truck that has just started mov-
ing. Th e engine pumps momentum from the Earth 
into the truck and through the trailer coupling left -
wards into the trailer. We know that the coupling bar is 
under tensional stress – in accordance with our rule.

We now look at a truck that starts moving in a left -
ward direction, Fig. 2.27b. Here, the engine pumps 
negative momentum into the truck, i.e. positive mo-
mentum out of it. Th erefore, (positive) momentum 
fl ows left wards through the coupling bar. Of course, 
the coupling bar is again exposed to tensional stress. 
You see: our rule also applies in this case.

Th e type of tension a bar is exposed to cannot be 
seen, i.e. we cannot see either if and in which direction 
a momentum current is fl owing in it. But there are ob-
jects for which we can tell what type of stress they are 
exposed to: all elastically deformable objects. Th ey ex-
tend under tensional stress, shorten under compres-
sional stress and bend under bending stress. Hence, we 
can also see whether and in which direction a momen-
tum current is fl owing through them:

Shortening: compressional stress
Extension: tensional stress
Bending: bending stress

Exercises

1. A truck is driving to the right with a constant, high veloc-
ity. What type of tension (compression or tension) is the 
trailer coupling exposed to? Please sketch the path of the 
momentum.

2. Lilly accelerates the trolley in a left ward direction, i.e. by 
pushing it. In this process, there is a compressional stress 
in her arms. In which direction does the momentum cur-
rent fl ow in the arms?

3. Th e high-speed train ICE 1 has respectively one traction 
unit (= locomotive) at the front and at the rear. On of 
them pulls, the other one pushes. Draw the momentum 
currents into a sketch of the train.

2.8  Momentum circuits

It is possible that a momentum current is fl owing 
somewhere although nowhere the amount of momen-
tum is changing. Fig. 2.28 shows an example: Lilly 
pulls a box over the fl oor at a constant velocity.

Again, we ask our old question: what is the path of 
the momentum? Hopefully, you can answer this ques-
tion easily. Lilly pumps momentum out of the Earth 

Fig. 2.27 A truck drives once to the right (a) and once to 
the left (b). Both times, the coupling bar is exposed to 
tensional stress and both times x-momentum is fl ow-
ing in the negative x-direction.

a)

b)

momentum

momentum

via the rope into the box. Due to friction between the 
bottom of the box and the ground, it fl ows out of the 
box back into the Earth. Hence, we can say that the 
momentum fl ows „in a circuit“, even if we do not know 
the exact way back through the Earth.

Fig. 2.29 shows a modifi ed version of the experi-
ment from Fig. 2.28: the box is not pulled over the 
ground but over a board on wheels.

Th e path of the momentum is even simpler in this 
case. As the board is installed on wheels, no momen-
tum can fl ow into the Earth and Willy cannot pump 
any momentum out of the Earth. He therefore pumps 
momentum out of the board, the momentum contin-
ues fl owing through the rope into the box, from the 
box it will fl ow back into the board. Hence, the mo-
mentum fl ows in a closed circuit also in this case. And 
this time, the path can be seen clearly at all points.

Fig. 2.28 Although a momentum current is fl owing, 
there is no accumulation of momentum.

Fig. 2.29 Closed momentum circuit

momentum

momentum
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We can also tell from the tensions that the momen-
tum is really fl owing to the left  in the rope and to the 
right in the board: the rope is under tensional stress; 
therefore, the momentum is fl owing to the left . Th e 
board is under compressional stress; thus the momen-
tum goes to the right.

Momentum can fl ow in a closed circuit. Th en, 
the momentum does neither increase nor decrease 
at any point. A part of each momentum circuit is 
under compressional stress, another one under ten-
sional stress.

Th e situation is even simpler in Fig. 2.30. Here, the 
momentum current is fl owing in a closed circuit al-
though nothing is moving anymore, and although we 
do not even have a „momentum pump“ anymore.

You might be surprised about the fact that now mo-
mentum is fl owing without a drive. Hadn't we found 
out earlier that a drive is required to make a current 
fl ow? We now see that this rule does not always apply. 
Th ere are currents without a drive. Th e fact that no 
drive is needed simply means that the current does not 
have to overcome a resistance.

Th ere are also electric conductors that do not have a 
resistance, i.e. the superconductors. In an electric cir-
cuit that consists of a superconducting material, an 
electric current can fl ow without a drive.

Electric currents without resistance are rare; mo-
mentum circuits, in turn, are frequent. Figure 2.31 
shows a further example.

2.9  The momentum current 
strength

A momentum current can be greater or smaller. A 
measure for such „great“ or „small“ of a current is the 
momentum current strength. It indicates how much 
momentum is fl owing through an area per unit of time 
(how many Huygens are running through the area per 
second). Th e symbol for the momentum current 
strength is F. It is measured in Huygens per second 
(Hy/s).

If 12 Huygens are fl owing per second through a 
rope, we have

F = 12 Hy/s.

Th e unit Huygens per second (Hy/s) is usually ab-
breviated Newton (N):

momentum

Fig. 2.30 Momentum circuit without drive

Fig. 2.31 Closed momentum circuit

HN= .
s

Hence, in our case:

F = 12 N

Th e measuring unit was named aft er Isaac Newton 
1643 – 1727).

Momentum current strengths can be measured eas-
ily with a so-called dynamometer. A particularly sim-
ple model is shown in Fig. 2.32.

However, we can only use it to measure „tensional 
momentum currents“. Fig. 2.33 shows how to use a dy-

Fig. 2.32 Dynamometer

Fig. 2.33 (a) The strength of the momentum current in a 
rope should be measured. (b) The rope is cut and the 
dynamometer is connected with the newly formed ends.

a)

b)
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namometer. Th e strength of the momentum current 
that fl ows through the rope in Fig. 2.33a should be 
measured. Th e rope is cut at any point and the new 
ends are connected to the two hooks of the dynamom-
eter, Fig. 2.33b.

Exercises

1. A momentum current with a constant strength fl ows into 
a trolley. A momentum of 200 Huygens has accumulated 
within 10 seconds. What was the current strength? (Sup-
pose there is no loss due to friction.)

2. When a truck starts driving, a momentum current of 
6000 N is fl owing through the trailer coupling. What will 
be the momentum of the trailer aft er 5 s? (Th e friction 
losses of the trailer can be neglected.)

3. A constant momentum current of 40 N is fl owing into a 
vehicle whose friction can be neglected. Represent the 
momentum graphically as a function of time.

2.10  Newton's law of motion

Let's look once again at Lilly who is charging a trol-
ley with momentum, Fig. 2.34.

In a certain interval of time, a given amount of mo-
mentum is fl owing through the cross-sectional surface 
S of the rope. As the momentum is fl owing into the 
trolley, the trolley's momentum increases. Th e quo-
tient of the momentum increase Δp of the trolley and 
the corresponding time period Δt is called rate of 
change of the momentum.

rate of change of momentump
t

Δ
=

Δ
If a momentum current of F = 5 Hy/s = 5 N is fl ow-

ing through the rope, also the rate of change of the 
trolley's momentum will be 5 Hy/s:

rate of change of momentum = momentum current 
strength

Th us, we have:

p F
t

Δ
=

Δ  
(2.1)

Th e Δ (delta) sign stands for a momentum portion 
and not the total momentum of a body and for a time 
interval and not the time of the day.

Fig. 2.35 Isaac Newton

Fig. 2.34 A momentum current fl ows through the area 
S. Therefore, the momentum of the trolley increases

S

Equation (2.1) is the famous Newton's law of mo-
tion. (Th ere are actually three „Newton's laws of mo-
tion“ but the two others are only special cases of equa-
tion (2.1)).

Today it is hard to understand why it was so compli-
cated to discover this law. Newton, Fig. 2.35, needed 
the law especially to describe the movement of celes-
tial bodies: the planets and the Moon. Th is is because 
the momentum of the Moon is constantly changing at 
the expense of the momentum of the Earth. Today we 
know that momentum is fl owing back and forth be-
tween the Earth and the Moon, i.e. through the gravi-
tational fi eld that surrounds all bodies. At Newton's 
time, however, nothing was known about fi elds yet. 
People imagined momentum to be transferred by a so-
called action at a distance between the Earth and the 
Moon. Hence, there was not yet any idea about mo-
mentum currents. Th e quantity F therefore had a quite 
abstract meaning for Newton; he called it „force“ (in 
the Latin original „vis“).

Equation (2.1) is not yet complete. It does not take 
account the fact the momentum is a vector quantity. We 
can use only it if we are interested in a single momen-
tum type – for example if we only deal with x-momen-
tum.

Th e trolley in Fig. 2.36 is being charged with x-mo-
mentum, the one in Fig. 2.37 with y-momentum. Both 
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times, 10 Hy/s (= 10 N) are fl owing through a cross-
section of the bar towards the trolley, but in the fi rst 
case it is x- and the second it is y-momentum.

We can see that the momentum current is not de-
fi ned unambiguously by saying that 10 Hy/s are fl ow-
ing. In addition, we have to indicate the type of the 
fl owing momentum; the direction of the fl owing mo-
mentum has to be stated. Hence, the momentum cur-
rent strength is, just as the momentum itself, a vector 
quantity. An arrow is therefore written on top of the 
symbol: 

_›F. In the two fi gures 2.36 and 2.37, the vector 
arrow of the momentum current is shown. Th e length 
of the arrow indicates the magnitude of the momen-
tum current – 10 N in this case – and the direction of 
the arrow indicates the direction of the transferred 
momentum. Caution: the direction of the momentum 
current vector arrow does not have anything to do 
with the fl ow direction, which is equal in both cases, 
i.e. through the bar from the bottom to the top. If we 
take into account the vectorial nature of the momen-
tum, equation (1) will be transformed into:

Newton's law of motion: p F
t

Δ
=

Δ

� �

Fig. 2.37 y-momentum fl ows into the trolley through 
the bar.

Fig. 2.36 x-momentum fl ows into the trolley through 
the bar.

y

x

F
�

y

x

F
�

Exercises

1. Someone accelerates a trolley. (Friction can be neglect-
ed.) A dynamometer indicates the momentum current 
that fl ows into the trolley. It is pulled for 5 seconds. What 
will be the fi nal velocity? (Th e mass of the trolley is 
150 kg, the dynamometer indicates 15 N.)

2. A locomotive accelerates a train. Th rough the coupling 
between the locomotive and the wagons, a momentum 
current of 200 kN is fl owing. What will be the momen-
tum of the train (without locomotive) aft er 30 seconds? 
Now, the train has a velocity of 54 km/h. What is the mass 
of the train?

3. Aft er standing still, a trolley with a mass of 42 kg is ac-
celerated whereby a momentum current of 20 N is fl ow-
ing through the pull bar. How much momentum will 
have fl owed into the trolley aft er 3 seconds? At that time, 
its velocity will be 1.2 m/s. What will be its momentum? 
Where has the missing momentum gone?

4. Water with a velocity of 0.5 m/s is fl owing in a straight 
tube with a length of 2 km and a diameter of 10 cm. Th e 
water is locked out by means of a valve at the end of the 
tube. Calculate the momentum that the water releases in 
this process. Where does that momentum go? Th e lock-
ing takes 2 s. What is the force of the water on the locking 
valve (the momentum current strength)? Note: calculate 
the water volume in liters fi rst. 1 l of water has a mass of 
1 kg.
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2.11  Convective momentum 
transports

In the momentum transports that we have analyzed 
so far, the momentum was always fl owing through a 
material. Th e material only moved slightly or not at all 
in the process. But there is yet another way of transfer-
ring momentum: by a body or a substance that moves 
while simply taking along its own momentum. 

We look at a small portion of the water in a water 
jet, Fig. 2.38. Th e water portion has momentum. At 
fi rst, it is further on the left  together with its momen-
tum; later, it is further on the right. Hence, we have a 
momentum transport from the left  to the right. Such a 
momentum transport is called convective momentum 
current (convectio = to carry along). 

(Bear in mind: in the central heating system, the entro-
py is transported in a similar way. Th e water moves through 
the tubes together with the entropy that is contained in it. 
Here, we talk about a convective entropy current.)

When there is wind, the air transports momentum. 
Also in this case, there is a convective momentum cur-
rent. Th e momentum that comes with the wind can be 
felt. It can be used to drive sailboats and we fear the 
damages that a storm can cause.

Also, rockets take advantage of a convective momen-
tum current, Fig. 2.39. Th e rocket expels gases in a down-
ward (or backward) direction with a high negative velocity 
and much negative momentum. Th e rocket itself receives 
the same value of positive momentum in the process.

Planes are driven in a similar way. Let's assume a 
plane fl ies in the positive x-direction. With the propel-
ler or the jet engine, air that the plane „collects“ at the 
front is charged with negative momentum and ex-
pelled on the rear. Th e plane receives the respective 
positive momentum, Fig. 2.40.

Here, we can see once again that the statement „air 
is not momentum-conducting“ does not mean that no 
momentum can be transported by means of air.

Fig. 2.39 The rocket expels combustion gases in a 
downward direction (in the negative z-direction). These 
combustion gases have negative momentum. The rock-
et receives the corresponding positive momentum.

Fig. 2.38 The momentum of a water portion moves 
with the water portion: convective momentum current.

z

negative z-momentum

x

Fig. 2.40 The jet engine charges the air that it sucks in 
from ahead with negative x-momentum. The plane 
receives the corresponding positive momentum.

Convective momentum current: the momentum 
is transported together with a moving substance.

Exercises

1. 0.5 liters of water per second come out of a water sprayer 
with a velocity of 3 m/s. What is the momentum of a 1 m 
section of the water jet? What is the momentum current 
strength of the jet?

2. Th ere is heavy wind with a wind velocity of 5 m/s. How 
much momentum does the air transport per second 
through an area of 10 m2?
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2.12  More about momentum 
conductors

So far, it has been rather easy for us to decide 
whether something conducts momentum or not. 
Th ere have simply been good and bad conductors. As 
the momentum is a vector quantity, however, things 
are more complicated in most cases. We will look at a 
few examples:

Air
Yes, once again air. We have seen that it does not 

conduct momentum in a normal way but that it can be 
used to transport momentum convectively. In fact, 
there are other possibilities, too. If Lilly, Fig. 2.22, 
wanted to transfer momentum to the trolley, she would 
have to ensure that the air pressure increases on one 
side of the trolley. But she will not achieve a pressure 
increase in front of the trolley by simply pushing 
against the air ahead of her. Th e air escapes towards 
the side. But if it is prevented from escaping, a momen-
tum transport will be possible. In Fig. 2.41, ahead of 
the block, i.e. inside cylinder A, the pressure can be 
increased by pushing against the piston of cylinder B. 
Th is eff ect is taken advantage of in pneumatic con-
struction machines, e.g. in pneumatic hammers.

Another possibility to transfer momentum with the 
air is to perform a very fast pressure increase. Th is 
pressure increase will then continue moving as a sound 
wave. Lilly hits the tambourine, Fig. 2.42, and immedi-
ately aft er, the bead will bounce away from Willy's 
tambourine. Th e same principle applies for the trans-
fer of momentum during an explosion that destroys 
the window glasses.

Wheels
Th e most important technical device that is used to 

prevent the momentum current from fl owing from a 
body into the Earth is the wheel. Wheels are used for 
momentum insulation. However, this is only true for 
momentum with the same direction as the vehicle. In 
order to avoid having to stick to a coordinate axis, we 
call it longitudinal momentum. Momentum whose 
vector arrow is perpendicular to the vehicle is called 
transverse momentum.

In Fig. 2.43a, Willy tries to charge the board with 
momentum by means of a toy trolley. But it does not 
work, i.e. at least not with Willy's method. In Fig. 
2.43b, he shows how it is done.

Wheels do not conduct longitudinal momentum 
but they conduct transverse momentum.

B A

tam-ta
m

Fig. 2.42 Lilly hits the tambourine. The bead on Willy's 
tambourine bounces away. Momentum has moved 
through the air.

Fig. 2.43 (a) The wheels are nonconductors for longitu-
dinal momentum. No momentum enters the board. (b) 
The wheels are conductors for transverse momentum. 
The momentum enters the board.

a)

b)

Fig. 2.41 Momentum fl ows through the air in cylinder 
A into the piston and further into the block.

It is important for them to conduct the transverse 
momentum. Otherwise, cars could not go into a turn. 
Sometimes, this is even the case.

In case of black ice, the wheels do not conduct 
any transverse momentum into the Earth.

Railway vehicles are safer in this respect. Here, 
transverse momentum is always transferred very well 
from the wheels to the railway track.
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Ropes
In Fig. 2.44a, Lilly makes the trolley move to the 

right, i.e. in the positive x-direction, by means of the 
rope. She „pumps“ x-momentum into the trolley. In 
the rope, the momentum fl ows from the right to the 
left , i.e. in the negative x-direction. In the fi gure below, 
she tries it from the left  – and of course it does not 
work. We see that x-momentum can only fl ow in the 
negative x-direction through the rope.

In Fig. 2.45, Willy tries in another way: he attempts to 
make momentum, whose direction is transversal to the 
rope, move through the rope – again without success.

We conclude:

A rope is a conductor only for momentum 
whose vector arrow is parallel to the direction of 
the rope. Th e momentum fl ows in the direction op-
posite to that of the vector arrow.

We would like to apply the rule. Fig. 2.46 shows a top 
view of a trolley that is pulled by means of a rope. How-
ever, it is not pulled in a forward direction but a bit to 
the side. A momentum current of 40 N fl ows in the 
rope. How much momentum escapes into the Earth?

Th e momentum that fl ows in the rope must have 
the same direction as the rope. Th e corresponding cur-
rent strength vector is called 

_›F. We decompose this 
current in two parts, Fig. 2.47:
 • one part 

_›Ftrans that is transverse to the trolley direc-
tion and that escapes through the wheels;

 • one part 
_›Flong that fl ows in the direction of the trol-

ley and that causes the momentum increase of the 
trolley.
We have decompose this current in two parts, 

Fig. 2.47:

Ftrans = F · sin 30 ° = 20 N,
Flong = F · cos 30    ° = 35 N.

Hence: a transverse momentum of 20 Hy escapes 
per second into the Earth, and the momentum of the 
trolley increases by 35 Hy.

Fields
A magnet A is fastened on a small vehicle, Fig. 2.48. 

A second magnet B is approached to this magnet in a 
way that like poles are opposite to one another: north 
pole to north pole and south pole to south pole. If 
magnet B comes suffi  ciently close to magnet A, the ve-
hicle will start moving, its momentum will increase.

Th e momentum conductor between A and B is the 
magnetic fi eld that is attached at the poles of the magnets.

Fig. 2.44 (a) x-momentum fl ows leftwards through the 
rope – in the negative x-direction. (b) It cannot fl ow in 
the positive x-direction in a rope.

Fig. 2.45 No momentum whose vector arrow is trans-
verse to the rope can fl ow through the rope.

Fig. 2.46 Someone pulls on the rope. The x-momentum 
of the trolley increases. 

momentum

30°

a)

b)

Ftrans

�

Flong

�
F
�

30°

20 N

Fig. 2.47 Breaking down the momentum current of a 
rope into a longitudinal and a transverse component

Later, you will get to know some other fields, 
too: electric fields and gravitational fields. Just as 
the magnetic field, these fields are invisible, and 
just as the magnetic field, they conduct momen-
tum. An electric field is attached to any body that 
bears an electric charge and a gravitational field is 
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attached to any body that has a mass. As bodies al-
ways have a mass, there is consequently a gravita-
tional field around every body.

Magnetic fi elds are momentum conductors.

Exercises

1. A cylindrical handle Z can slide back and forth on a bar S 
without any friction, Fig. 2.49a. Which momentum can 
permeate the connection between the handle and the bar 
and for which momentum is it nonconducting?

2. Th e cylinder Z1 can slide back and forth on the bar S and 
the cylinders Z2 and Z3 can slide on the frame R, 
Fig.  2.49b. Which momentum can permeate the connec-
tion between Z1 and the frame and for which momentum 
is it nonconducting?

3. A car is towing another one. Th e cars are driving in the 
same direction but are laterally off set against each other 
by 1 m, Fig. 2.50. Th e towing rope has a length of 3 m. A 
momentum current of 500 N is fl owing through the rope. 
Which momentum current contributes to the movement 
of the towed car?

4. Ropes conduct x-momentum only in the negative x-di-
rection. Invent a device that conducts x-momentum only 
in the positive x-direction.

5. Ropes are conductors only for momentum in one direc-
tion. Th ere are devices that let air pass in only one direc-
tion; there are devices that can only be passed by people 
in one direction; there are devices that are conductors for 
electricity in only one direction. What are we talking 
about?

2.13  Hooke's law

We would like to build a momentum current meter 
ourselves. We suppose the device has not been invent-
ed yet and that the measuring unit of the momentum 
current strength has not yet been defi ned.

We need a large number of identical rubber rings. 
First, we defi ne our own measuring unit. We hold a 
rubber ring in front of a ruler in a way as to unwind its 
total length but without stretching it beyond its nor-
mal length, Fig. 2.51, and measure its length. Let's as-
sume we fi nd 10 cm = 0.1 m. As the rubber ring is 
loose, no momentum current is fl owing through it yet. 
Now we stretch it until it is 0.15 m long. Now, a mo-
mentum current is fl owing. We defi ne the strength of 
this momentum current to be our current strength 
unit. (As each ring consists of two rubber threads that 
are located next to each other, half a current strength 
unit is fl owing in each of these threads.)

Fig. 2.48 The momentum goes through the magnetic 
fi eld into the trolley Magnetic fi elds are momentum 
conductors.

Fig. 2.49 For exercises 1 and 2

Fig. 2.50 For exercise 3

B A

Z S

Z2 Z1
R

Z3
S

1 m

a)

b)

Fig. 2.51 Defi nition of a unit for momentum current 
strength. (a) The rubber band is unwound but not 
stretched. (b) The rubber band was extended by 5 cm.

a)

b)
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Now we can create as many current strength units 
as we want with other rubber rings. Hence, we can cre-
ate multiples of our unit. For example, if we hang 3 
rings that are stretched to 15 cm next to each other, 
three current strength units will fl ow through all of 
them together.

By means of our rubber rings, we can also calibrate 
another elastic object, for example the rubber rope of 
an expander, Fig. 2.52. Th erefore, we let one, two, 
three, and so forth ... current strength units fl ow 
through the rope and measure the respective change of 
its length compared to the length in the unstressed 
state.

In Fig. 2.53, the momentum current strength F is 
indicated above the extension s. Th is curve is the cali-
bration curve of the expander. If we wish to measure a 
momentum current strength now, we will no longer 
need to use our somehow complicated method with 
the uniform rubber rings. We can use the expander 
rope.

For example the strength of the current, which 
fl ows into a trolley that we are pulling, should be mea-
sured. Th erefore, we simply pull the trolley by means 
of the expander and measure the extension of this 
rope. If the extension is for example 0.25 m, we can 
read from the calibration curve that the momentum 
current has a strength of 4 units.

We would now like to illustrate the relationship be-
tween the extension and the momentum current for 
yet another object: for a steel spring. Th e result is 
shown in Fig. 2.54.

Th e relationship is simpler than for the expander 
rope: it is linear. Th e extension s and the momentum 
current strength F are proportional to each other. We 
say that the spring complies with Hooke's law. As a 
formula, the law can be formulated as follows:

Hooke's law: D · 
_›s = 

_›F

D is a constant for a given spring – the spring 
constant. Its measuring unit is N/m. In general, for 

Fig. 2.55 The spring constant of spring A is greater than 
that of spring B. Spring A is harder.

F in N

s in m

A

B

Fig. 2.52 An expander rope is calibrated with rubber 
band units.

6

4

2

0 0.1 0.2 0.3

F in N

s in m

Fig. 2.53 Calibration curve of the expander rope: the mo-
mentum current strength F is plotted over the extension s 
of the rope.

F in N

s in m
Fig. 2.54 For a steel spring, the relationship between 
the momentum current strength and the extension is 
linear.
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different springs, the spring constant has different 
values. Fig. 3.55 shows the relationship between F 
and s for two different springs. For spring A, D has 
a higher value than for spring B. If spring A and 
spring B are stretched by the same value, the mo-
mentum current in spring A will be stronger than 
in spring B. But a stronger momentum current 
means a higher tensional stress. Therefore, the 
spring with the greater spring constant is the hard-
er spring.

Many springs can be subjected not only to tension 
but also to compression. For such springs, Hooke's law 
applies both for extension (positive values of s) as well 
as for contraction (negative values of s).

Exercises

1. A spring has a spring constant of D = 150 N/m. What is 
its extension if a momentum current of (a) 12 N, (b) 24 N 
fl ows through it?

2. Th e F-s-relationship illustrated in Figure 2.56 was mea-
sured for a given rope.
(a) What is the extension of the rope if a momentum cur-
rent of 15 N fl ows through it? What is the extension in 
case of a current strength of 30 N?
(b) What is the momentum current strength if the rope is 
extended by 20 cm?
(c) What can we feel when pulling the rope apart with our 
hands? Compare with a steel spring.

3. How could we build an arrangement whose F-s-relation-
ship is that of Fig. 2.57?

4. Two springs are concatenated and built into a rope 
through in which a momentum current is fl owing. One of 
the springs extends four times as much as the other one. 
How is the ratio of the two spring constants?

5. (a) Two identical springs are connected „in parallel“, Fig. 
2.58a. Each one has the spring constant D. What is the 
spring constant of the overall system (gray box)? (b) 
Th e same for two springs „in a series“, Fig. 2.58b.

2.14  Velocity, acceleration, 
angular velocity

Velocity
Let's assume that a car (or another body) moves 

with a constant velocity v. v can be calculated from the 
traveled distance Δs and the time Δt required for it: 

sv
t

Δ
=

Δ

30

20

10

0 0.1 0.2 0.3

F in N

s in m0.4

F

s

Fig. 2.56 For exercise 2

Fig. 2.57 For exercise 3

Fig. 2.58 For exercise 5

a)

b)

We use the deltas once again. While we denominate 
the position with s (in a given coordinate system), Δs 
refers to the distance between two points. Accordingly, 
Δt is not the time of the day but a duration: the time 
interval in which the body travels the distance Δs. If a 
car travels 200 m in 10 seconds, its velocity will be

200 m 20 m/s.
10 s

v = =
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Acceleration
A train starts moving (in the positive x-direction). 

We assume that its velocity increases regularly: by 5 
km/h every 10 seconds. Or by 30 km/h in a minute. Or 
by 150 km/h in 5 minutes. We can also say that the 
train is accelerated uniformly. Th e quotient of the ve-
locity increase Δv and time interval Δt is called accel-
eration a: 

va
t

Δ
=

Δ

In the case of our train, we obtain:

25 km/h 5000 m 0.139 m/s .
10 s        3600 s 10 s

a = = =
⋅

Th e SI measurement unit of the acceleration turns 
out to be m/s2. In general, the acceleration of a vehicle 
is not constant as we have assumed here. If the velocity 
is constant, we have Δv = 0 and therefore also a = 0.

If a vehicle (that moves in the positive x-direction) 
slows down, Δv and also the acceleration will become 
negative. 

Angular velocity
We assume, a wheel (or another body) rotates uni-

formly. One says that it rotates with a constant angu-
lar velocity ω. We mark a radius on the wheel and 
observe its movement, Fig. 2.59. Th e line rotates reg-
ularly around the center, it moves over the same angle 
every second. In the time interval Δt, it moves over 
the angular interval Δα. Th e angular velocity is calcu-
lated from the covered angle Δα and the time Δt re-
quired for it:

Fig. 2.60 The point P of the rotating body moves on a 
circular path.

Fig. 2.59 In the time interval Δt, the radius moves over 
the angular interval Δα.

t
αω Δ

=
Δ

Th e angular velocity is part of several other physi-
cal equations. In order to obtain from these equations 
results in the correct measuring units, i.e. the SI units, 
the angle α needs to be given in the radian measure. 
As no unit symbol is used for the radian, the measur-
ing unit of the angular velocity turns out to be 1/s or 
s–1. 

Th e angular velocity is also referred to as rotational 
speed. If this name is used, we need to express it with 
another measuring unit: revolutions per minute (rpm).

We suppose that the shaft  of an electric motor ro-
tates with 2000 rpm. Th en, the angular velocity will be:

12000 2 212566 209 s .
60 s 60 s

ω −⋅ π
= = =

We look at the point P of a rotating wheel, Fig. 2.60. 
P moves on a circular path. Th ere is a relationship be-
tween the magnitude v of the point's velocity and the 
angular velocity ω of the wheel. 

Calculating this relationship is most convenient 
when we use a full rotation as a reference. We denomi-
nate the orbital period with T. Th e full angle of 360° is 
equal to 2π when expressed in the radian measure-
ment unit. Th erefore, the angular velocity becomes:

2
T

ω π
=

Th e distance traveled in the time T is 2π r. Th ere-
fore, the normal, linear velocity becomes:

2 r
v

T
�

�
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Th e last equation can be written in a slightly diff erent 
way:

2v r
T
π

= ⋅

Th e quotient on the right side of the equation is equal 
to the angular velocity. We insert and obtain:

v = ω r.

Rotating body:
v = ω · r
v = velocity of a point P
ω = angular velocity of the body
r = distance between P and the center of rotation

Exercises

1. Th e fl ywheel of a car engine has a diameter of 30 cm. Th e 
engine runs at 3500 revolutions per minute. What is its 
angular velocity (in 1/s)? What is the value of the velocity 
of its external edge?

2. What is the angular velocity of the Earth's rotation 
around its axis? What is the absolute value of the velocity 
of a point on the equator?

3. What is the angular velocity for the movement of the 
Earth around the Sun? For this movement, the Earth has 
a velocity of 30 km/s. Calculate the distance Earth – Sun.

2.15  Momentum changes for 
circular movements

Willy lets an electric toy car drive around with a re-
mote control, Fig. 2.61. Willy: „Now I'll let it drive in a 
circle with a constant velocity.“ Lilly: „Oops, you can't 
do that. Either in a circle or at a constant velocity!“. 
Willy: „Oh, you are right. What I meant is…“ 

What did Willy mean? Th at the absolute value or 
magnitude of the velocity vector is constant. As the car 
makes a circular movement, the direction of the veloc-
ity vector is constantly changing. Th erefore, also the 
momentum of the car changes. Th e car is constantly 
receiving momentum from the Earth.

Fig. 2.62 illustrates the matter schematically. On the 
left , the momentum vectors are marked on the circular 
path at diff erent instants of time. Th e momentum vec-
tor arrow rotates just like the direction of the car. On 
the right, the same momentum vector arrows are dis-
played once again, but in a way that their starting 
points are the same. Here we see that the momentum 
vector is rotating.

Fig. 2.63 shows two momentum vectors 
_›p0 and 

_›p1 at 
two instants of time that are very close to each other: t0 
and t1. In the time interval

Δt = t1 – t0

the momentum changes by

Δ
_›p = 

_›p1 – 
_›p0.

Fig. 2.61 The car is driving in a circle while the absolute 
value of its velocity is constant.

Fig. 2.62 (a) The momentum vector at diff erent in-
stants of time. (b) While the car is driving in a circle, the 
momentum vector is turning.

a)    b)

p
0

�

p
0

�

Δp
�

Fig. 2.63 The „momentum change“ vector is at a right 
angle to the momentum vector.
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Th e additional momentum is at a right angle to the 
direction of movement ("transverse momentum").

Th e magnitude of the rate of change is calculated 
with the formula:

2p vm
t r

Δ
=

Δ

Here, m is the mass of the body, v its velocity and r 
the radius of the circular trajectory. Th e proof of this 
formula is a bit confusing. We would like to skip it and 
only convince ourselves that the formula is plausible, 
i.e. that it supplies results that are in line with our ex-
pectations.

The dependence on m
Let's assume the car is travelling straight in the x-

direction, i.e. that it has only x-momentum. Aft er 
having traveled a quarter rotation, it must have re-
leased all of its x-momentum. Th e greater its mass, 
the more x-momentum it has at the beginning and 
the more it needs to release or to absorb per time in-
terval.

The dependence on r 
Th e car drives once a narrow and once a wide circle, 

while the absolute value of the velocity is the same 
both times. It is clear that the momentum change per 
second is smaller for the wide circle. Th erefore, the r is 
in the denominator.

The dependence on v
 Th e higher the velocity, the longer the momentum 

vector arrow and the greater the rate of change. In ad-
dition, the momentum vector rotates faster and the 
rate of change is higher for this reason. Hence, the ve-
locity has a double eff ect on the rate of change. Th is is 
the reason for the proportionality to v2.

Rate of change of the momentum for a circular 
movement (with a constant absolute value of the 
velocity):

2p vm
t r

Δ
=

Δ

Th e vector Δ
_›p of the momentum change is at a 

right angle to the momentum 
_›p .

By means of v = ω ·r we can convert the equation 
into

2 .p m r
t

ωΔ
=

Δ

At fi rst it appears that the examined body that we 
consider – for example a car – would have to move on 
a circular path, i.e. to perform an entire circular move-
ment. But this is not necessary, though. Rather, the 
formula applies in every instant of time. It also applies 
when the car only drives a very short bend (with a con-
stant absolute value of the velocity). Th en, r is no lon-
ger the radius of a traveled circular path but the radius 
of an imaginary circle that is associated to the bend at 
that instant of time. r is called the radius of curvature 
of the path at the point that we are considering, Fig. 
2.64. Every time we change the orientation of the steer-
ing wheel of a car, we change the radius of curvature of 
the car's trajectory. As long as the steering wheel is 
held, the car drives on a path with a constant radius of 
curvature.

Any given orientation of the steering wheel cor-
responds to a well-defi ned radius of curvature of 
the car's trajectory.

Exercises

1. Th e road from village A to village B has a 90° curve. Geo-
metrically, the road consists of two straight line pieces 
that are connected by a quarter circle bend. Which steer-
ing wheel movement do the car drivers have to make 
while passing the curve? What is the rate of change of the 
momentum of the car as a function of time? Th e road is 
obviously poorly built. Curves of roads and highways are 
usually not circular bends. How does a well-designed 
curve look like? What is the rate of change of the momen-
tum as a function of time in this case?

2. Willy has suspended a 500 g ball on a string and spins it 
around over his head in a circle. One rotation takes 0.8 s. 
Th e string has a length of 1 m. What is the magnitude of 
the momentum current that fl ows through the string?

Fig. 2.64 Trajectory of a car. The radius of curvature 
changes each time the position of the steering wheel is 
modifi ed.

trajectory

radius of curvature
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2.16  Pulleys

A wheel with a groove that is used to defl ect ropes is 
called pulley. Fig. 2.65 shows an application. Pulleys 
can also be found in cranes or in lift ing tackles.

We would like to examine the behavior of pulleys. A 
momentum current meter is installed in each of the 
three rope sections A, B and C in Fig. 2.66. We pull on 
the loop on the right end of rope A so that the respec-
tive meter displays 12 N. What is indicated by the me-
ters in sections B and C?

We can predict the result. On one hand, we know 
that the momentum current that passes through rope 
A continues to fl ow in the ropes B and C. Th erefore, we 
must have:

FA = FB + FC

As the whole arrangement is symmetric, the follow-
ing has to apply in addition:

FB = FC.

With these two equations we obtain

FB = FA/2 and FC = FA/2.

Or in our case: If FA = 12 N we obtain FB = 6 N and 
FC = 6 N.

Th e dashed lines in Fig. 2.67 show the path of the 
momentum. It is a pure x-momentum (if we assume 
the positive x-direction to the right).

Let's take a look at a more complicated case, 
Fig. 2.68.

We pull on rope A and fi nd: no matter how strongly 
we pull, the meter in A always indicates the same as 
that in B. But this does not mean that the momentum 
current strengths in A and B are equal. Although they 
have the same absolute value, they diff er in their direc-
tion. We remember: the momentum that is fl owing in 
a rope always has the same direction as the rope. In the 
rope section B, only x-momentum fl ows towards the 
pulley while x- and y-momentum fl ow towards the 
pulley in section A.

Th e sum of the two momentum types fl ows into the 
Earth through the support of the pulley. With sum we 
mean the vector sum, of course.

We summarize:

When a rope runs over a freely rotatable wheel 
(a pulley), the momentum currents in both parts of 
the rope have the same absolute value..

Fig. 2.65 The motor pulls up a load. The rope runs over 
two pulleys.

Fig. 2.66 The momentum current that fl ows through 
rope A is divided in the pulley into two equal currents.

Fig. 2.67 Path of the x-momentum

Fig. 2.68 The momentum currents in ropes A and B 
have the same magnitude but diff erent directions.

motor

B

C
A

pulley

30 °

A

B
C
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Exercises

1. Th e absolute value of the momentum current in rope A in 
Fig. 2.68 is 30 N. Draw vector arrows for the momentum 
currents in ropes A and B. Construct the current vector 
in C by means of vector addition.

2. A momentum current of 80 N is fl owing in rope L in Fig. 
2.69, on which a load is suspended. Construct the vector 
arrow for the current in section Z of the rope and the one 
in the suspension of the pulley on the right.

2.17  Relationship between 
pressure and momentum 
current

A block K is clamped between two walls by means 
of a spring, Fig. 2.70. A momentum current fl ows 
through the arrangement. Th e fl owing momentum 
current is always connected to the mechanical stress 
that the conductor of the current is exposed to: com-
pressional or tensional stress. You remember the rule: 
a momentum current to the right means pressure, a 
momentum current to the left  means tension.

We look at the tension of the block. As the momen-
tum current spreads out over the whole block, every 
part of the block is exposed to compressional stress; 
every part „feels“ the pressure, Fig. 2.71.

We compare the two blocks K1 and K2 in Fig. 2.72.
As the two springs are completely identical, mo-

mentum currents with the same strength are fl owing 
in both cases – let's assume 200 Hy/s = 200 N. Block K2 
has a larger cross-sectional area than K1. Th erefore, the 
momentum current spreads out over a larger area. 
Th us, the momentum current per area is lower.

200 Hy/s 8 N.
25

=

are fl owing through each square centimeter of the 
cross-sectional area of block K1.

Fig. 2.69 For exercise 2

L Z

27 °

Fig. 2.70 The block K is exposed to compressional 
stress.

Fig. 2.71 The momentum current spreads out over the 
whole cross-sectional area of the block.

K

F

Fig. 2.72 The momentum currents in K1 and K2 have the 
same strength. The momentum current strength per 
area, i.e. the pressure, in K1 is higher than in K2.

K1

A1 = 25 cm2

A2 = 100 cm2

K2

200 Hy/s 2 N.
100

=

are fl owing through each square centimeter of the 
cross-section area of block K2.

A piece of matter of K1 therefore "feels" a higher 
pressure than a piece of matter of K2 of the same size.

Hence, we can see: we can use the momentum cur-
rent strength per area to characterize the mechanical 



34

2.17 Relationship between pressure and momentum current

2 
 M

O
M

EN
TU

M
 A

N
D

 M
O

M
EN

TU
M

 C
U

R
R

EN
TS

stress at a defi ned point somewhere inside a body. Th is 
quantity, i.e. the quotient of the momentum current 
strength and the area through which the current is 
fl owing, is called pressure. It is the same physical quan-
tity that we have already seen earlier in a diff erent con-
text.

As the pressure is denominated with the letter p, we 
have

.Fp
A

�

If we insert the momentum current strength in 
Newton (N) and the area in m2, we obtain N/m2 as the 
measuring unit for the pressure. Th is unit is called Pas-
cal, abbreviated as Pa. Hence,

2
NPa = .

m
1 Pa is a very low pressure. Th erefore, the larger 

units

1 kPa = 1000 Pa and 1 MPa = 1 000 000 Pa,

are oft en used; or also the bar:

1 bar = 100 000 Pa.

Once again back to our blocks: in block K1, there is 
a pressure or, in other words, a compressional stress of

1 2
1

200 N  = 80 000 Pa = 80 kPa.
0.0025 m

Fp
A

= =

For block K2, we obtain

= =

(Th e areas A1 and A2 have to be expressed in m2 so 
that we obtain Pa as a unit for the pressure.)

A momentum current of 200 N is fl owing in the 
negative direction through the body K in Fig. 2.73.

Th is is taken into account in the calculation of the 
quantity p by adding a minus sign to the current 
strength value. Hence,

2
200 N

 = 20 000 Pa = 20 kPa.
0.01 m

p
	

� 	 	

A negative pressure value consequently stands for a 
tensional stress.

Summary:

Pressure = momentum current strength divided 
by area.

Exercises

1. A car is towed away. Fig. 2.74 shows a detail: the hook on 
the car that is pulled, a piece of wire rope and a plastic 
rope knotted to it. A momentum current of 420 N is fl ow-
ing into the car in the process. Calculate the tension at the 
points 1, 2 and 3. Be aware of the sign: compressional or 
tensional stress?

2. Th e ropes in Fig. 2.75 have a cross-sectional area of 
1.5 cm2. Th e box has a mass of 12 kg. Calculate the ten-
sional stress at the three points 1, 2 and 3.

3. You press a drawing pin into a wooden board. Estimate 
the pressure that exists in the middle, i.e. halfway up the 
pin. What is the pressure on the tip of the drawing pin?

4. Estimate the pressure that will arise on the tip of a hook if 
we hit the nail with a hammer.

Fig. 2.73 The block is exposed to tensional stress, the 
pressure is negative.

A = 100 cm2

Fig. 2.74 For exercise 1

Fig. 2.75 For exercise 2

A1 = 2 cm2 A2 = 3 cm2 A3 = 3 cm2

1 2 3

1 2

3
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2.18  Stress in three directions

We want to expose a body to compressional and 
tensional stress at the same time. One could come up 
with the objection that this is impossible: „A body is 
either under compressional or under tensional stress; 
they exclude each other.“ We shall disregard this ob-
jection and simply try – and we are successful!

We take an object, for example a blackboard eraser, 
grab it with both hands and press the fi ngers together. 
Simultaneously, we pull the hands apart, Fig. 2.76. 

Th e inside of the sponge is now actually exposed to 
both compression and tension. Pressure in the hori-
zontal directions and tension in the vertical direction. 
Fig. 2.77 illustrates a similar situation: the block K is 
exposed to tensional stress in the horizontal direction 
and to compression in the vertical direction. Of course, 
it can also be put under tension or under compression 
in both directions. And the compressional or tensional 
stresses in the horizontal and vertical direction can 
have diff erent magnitudes.

In the case of Fig. 2.78, the horizontal pressure has 
the value

1 2
50 N 5000 Pa 5 kPa

0.01 m
p = = =

and the vertical one

2 2
300 N 20000 Pa 20 kPa.

0.015 m
p = = =

Finally, the block can also be exposed to any com-
pressional or tensional stress in the third direction in 
space, Fig. 2.79. For example, we can have the follow-
ing:

p1 = 5000 Pa
p2 = –2000 Pa
p3 = –40 000 Pa

Fig. 2.76 The inside of a sponge is exposed to tensional 
stress in the vertical direction and to compressional 
stress in a horizontal direction. 

Fig. 2.77 The block is exposed to pressure in the vertical 
direction and to tension in the horizontal direction.

pressure

pressure

tensiontension

Fig. 2.78 The pressures in the horizontal and the verti-
cal direction are diff erent. 

Fig. 2.79 The pressures can be imposed in three direc-
tions that are perpendicular to each other. 

100 cm2

150 cm2

You might think that it would be possible to con-
tinue like this, i.e. that other, diff erent pressure values 
could be created in further directions in space. Why 
not creating fi ve diff erent pressures (or tensional 
stresses) in fi ve diff erent directions, Fig. 2.80? Because 
it is impossible. Proving it is quite complicated. We 
would therefore simply accept the result:
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Compressional or tensional stresses can be im-
posed in three directions that are perpendicular to 
each other.

As soon as we try to change the pressure in a fourth 
direction, the pressures in the fi rst three directions will 
also change.

Th e result applies for every point within a body. But 
the mechanical stress can still change from point to 
point. In the compressed eraser from Fig. 2.76, the 
pressure or tension in the middle is certainly diff erent 
from that on the upper or on the lower end.

If the pressure in three directions, which are per-
pendicular to one another, has the same value, i.e. 
12 kPa, this pressure will also prevail in all other direc-
tions in space.

Every material can only withstand certain compres-
sional or tensional stresses. In many cases, a material is 
much more enduring with regard to pressure than to 
tension.

For example concrete withstands compressional 
stresses of approximately 50 MPa, but tensional stress-
es of only 1/20 of this value. But sometimes a concrete 
support should be subjected to tension at certain 
points. Fig. 2.81 shows a concrete support that is sup-
ported on the outside and that bears a load in the mid-
dle – a typical situation. Th e concrete in the upper part 
of the support is exposed to pressure in a horizontal 
direction. In the lower area, it is exposed to tension in 
a horizontal direction. As the concrete does not with-
stand the tensional stress itself, it is equipped with steel 
tendons in the areas of tension because steel endures 
high tensional stresses.

For the same reason, i.e. to increase the resistance to 
tension of the material, certain plastics are reinforced 
with carbon fi bers. Such materials are used for exam-
ple to make skis, springboards for swimming pools 
and sailplanes.

Fig. 2.80 More than three independent pressures can-
not be applied in three dimensions (in two dimensions 
only two).

Fig. 2.81 There is pressure in the horizontal direction in 
the upper part of the support and tension in the lower 
part.

Fig. 2.82 The water cannot be put under pressure this 
way. It escapes to the sides.

pessure

tension

Many materials are not equally enduring in the dif-
ferent directions. A well-known example is wood. Co-
niferous wood endures a tensional stress of approxi-
mately 10 MPa in the direction of the grain, but only 
1/20 of this value in the direction transversal to it.

Exercises

1. Name materials that endure high tensional stresses but 
only low compressional stresses.

2. Name materials that endure high compressional but only 
low tensional stresses.

3. Name materials that endure diff erent compressional or 
tensional stresses in diff erent directions.

2.19  The pressure in liquids and 
gases

So far, we have looked at the mechanical stress in 
solid objects. (Also a sponge is a „solid“ object as it is 
neither liquid nor gaseous.) We would now like to sub-
ject a liquid, for example water, to pressure. At fi rst, we 
are a bit awkward on purpose and try to act similarly 
as for the block in Fig. 2.70: we press on the water in 
the middle from the top, Fig. 2.82. Th e obvious hap-
pens: the water escapes to the sides.
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Hence, we use a diff erent technique: we lock the wa-
ter so that it cannot escape, Fig. 2.83. If the cross-sec-
tional area of the piston is A = 5 cm2 and the momen-
tum current F = 200 N, there will be pressure of

2
200 N 400000 Pa 0.4 MPa.

0.0005 m
Fp
A

= = = =

As the water tries to escape in the directions trans-
versal to the piston, there will also be a compressional 
stress in these transverse directions that has the same 
value as that in the direction of the piston. In all other 
directions, there is a pressure of the same absolute val-
ue. Th e experiment illustrated in Fig. 2.84 shows this 
clearly.

At a any point within a liquid, there is the same 
pressure in all directions.

Th is also applies for gases because gases will also 
escape laterally if they are not prevented from doing 
so.

2.20  Force

In this section, we simply talk about a diff erent 
name for a term we already know.

As usual back then, Newton wrote his great piece 
„Principia Mathematica“ in Latin language. What we 
call momentum current today was called „vis“.

Th e name „momentum current strength“ for the 
quantity F has only existed since the beginning of the 
past century. But the name „force“ for the quantity F is 
still widely used today; in fact, it is used much more 
frequently than the name „momentum current“ or 
„momentum current strength“. We therefore have to 
become familiar with its use. However, there is a little 
problem: although „force“ denominates the same 
physical quantity as „momentum current strength“, 
the two terms are used in very diff erent ways. We 
would like to call a description with momentum cur-
rents momentum current model and a description with 
forces force model.

We illustrate the application of the force model by 
means of Figures 2.85 and 2.86. In Fig. 2.85, Lilly pulls 
a trolley so that it starts moving to the right (no fric-
tion). Remember the description in the momentum 
current model:
 • Lilly pumps momentum from the Earth into the 

trolley via the rope. Th erefore, the momentum of 
the trolley increases.

Fig. 2.83 The piston is subjected to pressure only in the 
horizontal direction, the water is under pressure in all 
directions. 

Fig. 2.84 As there is pressure in all directions, the water 
sprays in all directions.

Fig. 2.85 Lilly exerts a force on the trolley. Therefore, 
the momentum of the trolley changes.

Fig. 2.86 Spring A exerts a leftward force on the trolley, 
spring B exerts a rightward force. As these forces have 
the same magnitude, the momentum of the trolley 
does not change.

A B
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Th e same process can be described with the force 
model as follows: 
 • A force is exerted on the trolley. Th erefore, the mo-

mentum of the trolley increases.
Now, let's look at the situation from Fig. 2.86 with 

the momentum current model:
 • We have a closed circuit. Th e momentum fl ows 

from the right through the spring into the trolley 
and back out on the left . As the whole momentum 
fl ows back out, the momentum of the trolley does 
not change.
Th e description is a bit more complicated in the 

force model: 
 • Spring A exerts a left ward force on the trolley, 

spring B exerts a rightward force of the same mag-
nitude on the trolley. As the forces have the same 
magnitude but act in opposite directions, the mo-
mentum of the trolley does not change.
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3   ANGULAR MOMENTUM AND 
ANGULAR MOMENTUM CURRENTS

In this chapter, we will look at a special type of 
movements: rotational movements. You are probably 
aware that rotational movements occur in many places 
and that they are particularly important.

We will make an interesting discovery: the descrip-
tion of rotational movements is very similar to the de-
scription of linear movements. We could also say that 
there is an analogy between the corresponding fi elds 
of mechanics. Th anks to this analogy, we can save our-
selves much work.

3.1  Angular momentum

We look at a wheel, that is rotating without (or with 
very little) friction, for example the wheel of a bicycle 
put upside down, Fig. 3.1. It rotates with a certain an-
gular velocity, i.e. it performs a specifi c number of ro-
tations per second. We can determine the value of the 
angular velocity by means of a stopwatch. With this 
method, we have described the rotary movement of 
the wheel.

Th e angular velocity is for the rotary movement, 
while the usual velocity is for the linear movement. To 
describe the linear motion, however, we have also in-
troduced a second quantity: the momentum. It is a 
measure for the „impetus“ of a body.

Likewise, we can say for our rotating wheel that it 
has impetus: something that is put in when making the 
wheel turn, and that comes back out when slowing the 
wheel down. Th is type of impetus is called angular mo-
mentum.

Th e symbol for the angular momentum is L. Th e 
measuring unit is Euler, abbreviated as E and named 
aft er the renowned mathematician and natural scien-
tist Leonhard Euler (1707 − 1783), Fig. 3.2, who for-
mulated the conservation principle of angular mo-
mentum for the fi rst time.

Fig. 3.1 The rotating wheel has a specifi c amount of 
angular momentum.

Angular momentum and linear momentum are not 
the same. If the wheel in Fig. 3.3a had linear momen-
tum, it would have to move in the way that is shown in 
Fig. 3.3b.

a)

b)

Fig. 3.3 (a) The wheel has angular momentum. (b) The 
wheel has linear momentum.

Fig. 3.2 Leonhard Euler
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We make an experiment with two wheels, Fig. 3.4. 
Th e axis of one of them is fastened on the table, the 
other one can be carried around. Th e wheels can be 
connected with some sort of friction clutch. Th en, one 
wheel will entrain the other.

Th e wheels are separated at fi rst. One of them is set 
in motion, the other one is not. Next, the coupling 
discs are brought in contact. What happens?

Th e rotating wheel slows down and the other one, 
which did not rotate in the beginning, starts rotating. 
Aft er the coupling discs have slid along one another 
for a while, they will eventually reach the same angular 
velocity.

So much for the observation. How can it be ex-
plained? What happened to the angular momentum 
during the process?

Th e angular momentum of the wheel that was rotat-
ing in the beginning has decreased. Th e angular mo-
mentum of the wheel that was not rotating has in-
creased. Hence, angular momentum must have passed 
from one to the other.

Angular momentum can pass from one body to 
another.

We consider again a sigle wheel that is connected 
fi rmly to its axis. Th e axis can rotate (almost) without 
friction. Th e wheel is set in motion; it is charged with 
angular momentum. Th en, Willy grabs the rotating 
axis with his hand and slows down the wheel, Fig. 3.5. 
Th e wheel will come to a halt aft er a while. Where has 
the angular momentum gone?

Th e situation is very similar to one that you know: a 
vehicle that performs a linear movement slows down. 
Just as the momentum fl ows away into the Earth in 
case of the vehicle, the angular momentum of the ro-
tating wheel fl ows into the Earth. Th e same would 
have happened if the wheel had not been slowed down 
on purpose. In that case, the angular momentum 
would have fl owed away into the Earth through the 
bearings – just more slowly.

You see what wheel bearings are used for: they are 
meant to support a wheel or an axis and prevent rotary 
momentum from fl owing away into the Earth.

If a wheel bearing is not frictionless, i.e. if the 
wheel stops rotating by itself, its angular momen-
tum fl ows away into the Earth.

Let's have another look at the experiment from Fig. 
3.4. We set the wheel, which is fastened on the table, in 
motion. Aft er, we also set the other wheel in motion – 

Fig. 3.4 As soon as the coupling discs are in contact 
with each other, angular momentum starts fl owing 
from the right to the left wheel.

Fig. 3.5 The angular momentum fl ows away into the 
Earth.

but in the opposite direction. We make sure that the 
absolute values of the angular velocity are identical for 
both wheels.

Again, the wheels are connected by means of the 
friction clutch. How does the fi nal state look like this 
time? Both wheels are standing still. How can this be 
explained?

Th ere was angular momentum before. But where 
has it gone?

At the beginning, each wheel taken separately had 
an amount of angular momentum diff erent from zero. 
If, however, opposite signs are attributed to the angular 
momenta of the two wheels, we see that the total angu-
lar momentum has already been zero at the beginning. 
Th e experiment leads us to the following conclusion: 

Angular momentum can assume positive and 
negative values.

We can defi ne arbitrarily which of the two values is 
positive and which one is negative. But how can we 
formulate such a decision? A practical possibility is the 
right-hand rule, Fig. 3.6:
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We grab the axis of rotation with the right hand 
in a way that the bent fi ngers point in the rotary 
direction. When our thumb points in the positive 
x-direction, the angular momentum is positive; 
when it points in the negative x-direction, the an-
gular momentum is negative.

So far, we have carefully prevented the rotary axis 
from changing its orientation. Of course, this axis can 
have any orientation, and you can certainly imagine 
what this means: the angular momentum is a vector. 
We will get back to this matter later. For the time be-
ing, we always assume the direction of the axis to be 
fi xed, i.e. parallel to the x-axis.

You see that dealing with angular momentum is 
very similar to dealing with linear momentum or also 
with the electric charge. Th e angular momentum is a 
substance-like quantity, too. And it has another im-
portant property in common with the momentum and 
the charge:

Angular momentum can neither be created nor 
destroyed.

Exercise

1. Formulate general statements about angular momentum 
and the corresponding statements for linear momentum 
and electric charge.

3.2  Angular momentum pumps

Just as linear momentum fl ows from the body with the 
higher to the body with the lower velocity in a friction pro-
cess, angular momentum passes from the body with the 
higher angular velocity to the one with the lower angular 
velocity. Angular momentum fl ows out of a wheel, which 
contains positive angular momentum, by itself: via the 
bearings (that are never absolutely perfect) into the Earth.

In order to get angular momentum into the wheel, 
an eff ort has to be made. A wheel doesn't starts rotat-
ing by itself.

We can charge a wheel with angular momentum by 
hand, for example by means of a crank. Or we let a mo-
tor do the work, Fig. 3.7.

In both cases, we need something that forces the pro-
cess of charging with angular momentum: an „angular 
momentum pump“. In the fi rst case, Lilly works as an an-
gular momentum pump; in the second case the motor is 
the pump. But where does the angular momentum pump 

Fig. 3.6 The right-hand rule

take the angular momentum from? Similar to the linear 
momentum, angular momentum can be taken out of the 
Earth, too. An experiment shows this very clearly. We de-
fi ne the positive x-axis to be in the upward direction. we 
need a swivel chair and a wheel that can be held on its 
axis. Willy is standing next to the swivel chair, holds the 
wheel in a way that the axis points upwards and starts set-
ting it in rotation. He then sits down on the swivel chair, 
Fig. 3.8, and brakes the wheel until it comes to a halt. 
Th ereby he begins rotating himself. Why? While slowing 
down the wheel, angular momentum was fl owing out of 
the wheel, into Willy and the swivel chair – but not any 
further. It could not fl ow into the Earth because the swiv-
el chair is insulated from the Earth by the bearing.

motor

a)   b)

a)   b)

Fig. 3.7 (a) Lilly works as an angular momentum pump. 
(b) The motor works as an angular momentum pump.

Fig. 3.8 (a) Only the wheel has angular momentum. (b) 
Angular momentum fl ows out of the wheel into Willy 
and the chair.
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If Willy supports himself on the fl oor while slowing 
down the wheel, the angular momentum can fl ow di-
rectly into the Earth.

Here yet another variant of the experiment: Willy 
sits on the swivel chair and holds the wheel, Fig. 3.9. At 
fi rst, the swivel chair and the wheel are at rest. Th en, 
Willy sets the wheel in rotation. What happens? While 
the wheel starts turning, the whole swivel chair also 
begins to rotate, together with Willy – but in the direc-
tion that is opposite to the rotary direction of the 
wheel. Willy has obviously transferred angular mo-
mentum out of the chair and out of himself into the 
wheel. Now, Willy plus the chair have negative angular 
momentum.

If Willy supports himself again on the ground while 
charging the wheel, the chair will not rotate. Th e angu-
lar momentum will be pumped directly out of the 
Earth into the wheel.

Exercise

1. In each of his hands, Will holds a rotating wheel with the 
axis pointing upwards, Fig. 3.10. Th e wheels are identical. 
Th eir angular velocities have the same absolute value but 
the rotary directions are opposite. While Willy is sitting 
on the swivel chair, he slows down both wheels at the 
same time. What happens? What will happen in the pro-
cess of slowing down if the wheels have rotated in the 
same direction before?

3.3  What angular momentum 
depends on – fl ywheels

A rotating wheel contains angular momentum. It is 
an angular momentum storage device. Some wheels 
are used exclusively to store angular momentum. Th ey 
are called fl ywheels.

What are fl ywheels needed for? Steam engines and 
combustion engines (car engines) do not pump the an-
gular momentum evenly but intermittently. A car en-
gine produces approximately 50 angular momentum 
strokes per second. Th ere are short time intervals be-
tween these strokes in which it does not „pump“. To 
bridge these delay times, the engine has a fl ywheel. 
While it is working, a part of the angular momentum 
goes into the fl ywheel; during the delay time, some of 
it comes back out. Th is is how the engine supplies a 
relatively even angular momentum current.

How can we store as much angular momentum as 
possible in a fl ywheel? We would like to examine what the 
angular momentum of a rotating body depends upon.

a)   b)

Fig. 3.9 (a) The wheel, Willy and the chair without an-
gular momentum. (b) Angular momentum is pumped 
out of Willy and the chair into the wheel.

Let's use a very simple but somehow rough method to 
compare amounts of angular momentum. Th e body to be 
examined sits on a shaft  with good bearings, Fig. 3.11.

Th en, we clamp a clothes peg on the shaft , i.e. in a 
way that the peg will not rotate along. Hence, it acts as 
a brake. In other words: angular momentum fl ows out 
of the wheel through the clothes peg. Now we measure 
the time that the wheel takes to come to a hold, i.e. 
until the whole angular momentum has fl owed out. 
Th e angular momentum that was in the wheel at the 
beginning is proportional to the time.

Fig. 3.10 For the exercise

Fig. 3.11 Willy measures the time that the angular mo-
mentum needs to fl ow out of the fl ywheel.
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(For this to be correct, the angular momentum cur-
rent has to be constant during braking. Th is condition 
is met quite well for our clothes peg brake.) Now we 
compare respectively two rotating wheels or other 
bodies.

1. Two identical wheels. One of them is rotating 
fast, the other one slowly. Slowing down takes lon-
ger for the fast than for the slow wheel. Hence, the 
fast wheel contains more angular momentum than 
the slow one, Fig. 3.12. If we measure the angular 
velocity at the start of rotation, we can see that the 
angular momentum is proportional to the angular 
velocity:

L ~ ω.

2. Two wheels have the same shape but are made of 
diff erent materials. One is made for example of iron 
and the other one of aluminum. Hence, they have a 
diff erent mass. Both are set to the same angular veloc-
ity. Slowing down the heavier wheel takes longer than 
slowing down the lighter one. Th is is because the heavy 
wheel has had more angular momentum than the light 
one, Fig. 3.13. We fi nd:

L ~ m.

3. We fi nally compare two bodies that are neither 
diff erent in the mass nor in the angular velocity. Th e 
only diff erence is that the mass in one of them is lo-
cated further outside than in the other one, Fig. 3.14. 
We observe: the angular momentum changes very 
strongly with the distance of the masses from the axis 
of rotation. Th e exact relationship is:

L ~ r2.

Of course, this relationship can only exist if the 
whole mass is located at a single distance r from the 
axis. Th is is approximately the case for the dumbbell-
shaped structure from Fig. 3.14. Also in case of a typi-
cal fl ywheel, Fig. 3.15, the mass sits essentially at a spe-
cifi c distance from the axis of rotation.

If this is no longer the case, for example as in the 
massive wheels of Figure 3.13, the relationship will be 
more complicated. Th en, masses that are located at di-
verse distances from the axis contribute to the total 
angular momentum. We would like to limit our analy-
sis to the case of one single distance. We summarize 
the three proportionalities and obtain:

L ~ m · r2 · ω.

aluminium iron

Fig. 3.12 The wheel that rotates fast has more angular 
momentum than the wheel that rotates slowly.

Fig. 3.13 The heavy wheel has more angular momen-
tum than the light one.

Fig. 3.15 Flywheel: the mass sits far outwards.

Th e measuring unit Euler is now defi ned in such a 
way that the proportionality symbol can be replaced 
by the equal sign:

L = m · r2 · ω. (3.1)

We compare this equation with the corresponding 
equation for the linear momentum:

p = m · v.

Fig. 3.14 Both dumbbells have the same mass, but the 
moment of inertia of the dumbbell on the left is great-
er than the one of the dumbbell on the right.
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Here, the mass m characterizes the body and v tells 
us how fast it is moving.

In equation (3.1), the term m · r2 characterizes the 
body and ω tells us how fast it is rotating. It is logical to 
assign the term m · r2 its own name: it is called moment 
of inertia of the body or of the wheel, abbreviated as J. 
Th e moment of inertia tells us how inert a body is with 
regard to rotational movements; how diffi  cult it is to 
set it in motion or to slow it down. Th erefore, instead 
of equation (3.1) we can write:

L = J · ω.

Th e higher its angular velocity, the more angular 
momentum is contained in a body. Th e greater its 
moment of inertia (i.e. the larger its mass and the 
further outside the mass is located), the more angu-
lar momentum is contained in a body.

We now know how a fl ywheel has to look like: a 
large, heavy ring that is fastened on the wheel hub with 
thin spokes, Fig. 3.15.

Exercises

1. Wheels have diff erent functions. Storing angular momen-
tum is only one of them. What else are wheels used for? 
Name several diff erent usages.

2. We cannot store any quantity of angular momentum in a 
fl ywheel simply by making it rotate increasingly faster. 
Why not?

3. Th e fl ywheel of a car has a mass of 8.5 kg. Although the 
mass is distributed over diff erent distances, we can set r = 
20 cm as a typical distance. Calculate the moment of iner-
tia of the fl ywheel. How much angular momentum does it 
contain at 3 000 revolutions per minute?

4. Estimate the value to which the angular momentum of a 
fi gure skater will increase if she performs a spin. At fi rst, 
she turns with 1 revolution per second while keeping one 
leg and both arms stretched out.

5. A star collapses and a neutron star is formed in a super-
nova explosion. Th e neutron star is much smaller than 
the original star, but its mass density is extremely high 
(approximately 1012 kg/cm3) and it rotates extremely fast. 
We assume for the original star that its mass is located at 
a distance of 50 000 km from the center; for the neutron 
star, the distance should be 10 km. (In reality, its mass is 
of course distributed over a large distance range but we 
can calculate with a mean radius for a rough estimate.) 
Th e original star turns around its axis once per 120 days. 
How fast will the newly formed neutron star rotate?

6. Sit down on a swivel chair in a way that your legs neither 
touch the Earth nor the chair legs. Th en, try to rotate with 
the chair. It will even be easier if you hold a heavy object 
in each hand. Cats do exactly the same to land on their 
four legs aft er falling. Explain.

3.4  Angular momentum 
conductors

In Fig. 3.16, a fl ywheel is charged with angular mo-
mentum. On the left , there is the angular momentum 
pump (an electric motor), on the right the fl ywheel 
and in between there is a long connection through 
which the angular momentum can move from the left  
to the right.

Such angular momentum conductors are called 
shaft s. For example, cars have a motor shaft , a cardan 
shaft , drive shaft s and other shaft s.

Which quality of the shaft s is responsible for the 
conductivity of angular momentum? Which material 
do they have to be made of? Th e only condition for the 
material is to be solid. Any solid bar can be used as an 
angular momentum conductor.

Solid objects are conductors for angular mo-
mentum.

We would like to look at some other devices that 
have to do with the transport of angular momentum.

A bearing is used to hold a shaft  while preventing 
angular momentum from fl owing into the Earth. 
Fig. 3.17 shows a ball bearing.

Bearings prevent angular momentum from 
fl owing away.

shaftmotor

flywheel

Fig. 3.16 Angular momentum fl ows through the shaft 
from the motor to the fl ywheel.

Fig. 3.17 Ball bearing (simplifi ed illustration)

stationary ring

shaft

balls
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Fig. 3.18 shows a clutch. Th e connection between 
the motor and the fl ywheel can be interrupted and re-
stored by means of a lever.

With a clutch, two angular momentum conduc-
tors can be connected and separated again.

Every car has a clutch. It is located between the en-
gine and the gearbox, Fig. 3.19. By stepping on the 
clutch pedal (the one on the left  in the car) the con-
nection between the engine and the gearbox is inter-
rupted.

We have to release the clutch before we shift  gears. 
If the clutch is not released during shift ing the strong 
angular momentum current fl ows from the engine to 
the wheels, whereby the gearbox will be damaged.

Once again we let angular momentum fl ow through 
a shaft  into a fl ywheel. Does it make a diff erence for the 
shaft  whether an angular momentum current is fl ow-
ing or not? And does it make a diff erence whether it 
fl ows from left  to right or from right to left ?

We cannot tell it by looking at the shaft , at least as 
long as the shaft  is thick. Th erefore, we use a fl exible, 
elastic object, e.g. a plastic ruler, as a shaft , Fig. 3.20a. 
How will the ruler react if an angular momentum cur-
rent fl ows through it? It will be twisted. We say that it 
is subjected to torsional stress. A solid object through 
which an angular momentum current is fl owing is ex-
posed to torsional stress – even if there is no visible 
twisting eff ect.

Th e direction of twisting depends on the fl ow direc-
tion of the angular momentum. In Fig. 3.20a, the wheel 
is charged with positive angular momentum, i.e. the 
angular momentum in the ruler is fl owing from the 
left  to the right.

Positive angular momentum is also fl owing into the 
wheel in Fig. 3.20b. Here, it comes from the right; 
hence, it fl ows from the right to the left . What is the 
diff erence between the two rulers?

Th e edges of both rulers form a helical line. As you 
might know, there are two types of helices: right-hand 
and left -hand helices, Fig. 3.21. A right-hand helix is 
the one that looks like a corkscrew or like the thread of 
an ordinary screw. A left -hand helix forms the so-
called left -hand threads or corkscrews viewed in a 
mirror.

Back to our angular momentum currents. In 
Fig. 3.20a, angular momentum flows from the left 
to the right. The ruler is twisted like a left-hand he-
lix. In Fig. 3.20b, angular momentum flows from the 
right to the left. The ruler is twisted like a right-
hand helix.

Fig. 3.18 The connection between the motor and the 
fl ywheel can be interrupted by means of the clutch.

motor
gear box

clutch
cardan shaft

black wheels

Fig. 3.20 (a) Angular momentum fl ows from the left to 
the right. (b) Angular momentum fl ows from the right 
to the left.

Fig. 3.19 The car clutch is used to interrupt the connec-
tion between the engine and the gearbox.

a)

b)

angular momentum

angular momentum

a) b) c)

Fig. 3.21 (a) Right-hand helix (b) Left-hand helix (c) 
Corkscrew and mirror image
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Angular momentum current to the right:
twisting forms a left -hand helix;

Angular momentum current to the left :
twisting forms a right-hand helix.

Exercises

1. Design an experiment that can be used to examine if wa-
ter conducts angular momentum.

2. Design an experiment that can be used to prove that mag-
netic fi elds conduct angular momentum.

3. Air conducts almost no angular momentum. Just as there 
are convective transports of linear momentum in the air, 
there are also convective angular momentum transports. 
Give an example.

4. Shaft s are angular momentum conductors. Cars contain a 
larger number of diff erent shaft s. Th ey have diff erent 
names according to their function. What are they used 
for?

3.5  Current strength and rate 
of change of the angular 
momentum

Th e angular momentum current through a shaft  
can be stronger or weaker. A measure of it is the angu-
lar momentum current strength. It indicates how 
much angular momentum is fl owing through a cross-
sectional area of the shaft  per unit of time (how many 
Euler pass the area per second). Th e symbol for the 
angular momentum current strength is M, the mea-
suring unit is Euler per second, abbreviated as E/s.

If 12 Euler are fl owing through a shaft  per second, 
we will have

M = 12 E/s.

Aft er some calculation we fi nd that 1 E/s = 1 N · m. 
In engineering, angular momentum currents are 
mostly indicated in Nm, and the angular momentum 
current strength is called torque. Th e situation from 
Fig. 3.16 is then described as follows: „the engine ex-
erts a torque to the fl ywheel.“

Fig. 3.22 shows a section of the specifi cation sheet 
of a car. In case of an angular velocity of 4000 U/min, 
the engine supplies its maximum angular momentum 
current, i.e. 145 E/s.

When a screw is tightened, an angular momentum cur-
rent fl ows through the screwdriver. Th ere are screwdrivers 
that allow us to set the maximum angular momentum cur-
rent that they let pass (i.e. the maximum torque).

Fig. 3.22 From the specifi cation sheet of a car

Just as Δp/Δt is the rate of change of the linear mo-
mentum, we have:

Δ
Δ

= rate of change of the angular momentum.
L
t

If an angular momentum current of

M = 5 E/s

fl ows through a shaft  into a fl ywheel, the rate of change 
of the angular momentum of the fl ywheel will also be 
5 E/s: Rate of change = angular momentum current 
strength.

Hence, we have:

Δ
Δ

=
L

M
t

Exercises

1. A fl ywheel's mass of 1200 kg sits in a ring at a distance of 1 
m from the axis. Th e fl ywheel turns with 3 rotations per 
second. (a) How much angular momentum has the fl y-
wheel? Th e wheel is slowed down. Th e angular momentum 
is fl owing into the Earth with a current strength of 120 E/s. 
(b) How long does it take until the wheel comes to a halt?

2. A single-cylinder four-cycle engine creates a reasonably 
even angular momentum current of 40 E/s on the average. It 
actually works only 1/4 of the time as only one of the four 
strokes is a working stroke (a stroke is half a spin, from one 
dead center of the piston to the next). Th e average angular 
velocity is 8 rotations per second. Th e engine has a fl ywheel 
with a moment of inertia of 2 kg · m2. (a) How many working 
strokes does the engine perform per second? (b) How much 
angular momentum does the engine supply per working 
stroke? (c) What is the average angular momentum of the 
fl ywheel? (d) Estimate how much angular momentum the 
fl ywheel stores during the working stroke. Compare with the 
total angular momentum that it contains.
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3.6  Angular momentum and 
angular velocity as vectors

Two fl ywheels rotate equally fast, Fig. 3.23. Howev-
er, the axes of rotation have diff erent directions. To de-
fi ne an angular velocity unambiguously, the direction 
of the axis has to be indicated in addition to the abso-
lute value the angular velocity. When a direction has to 
be indicated besides the absolute value to defi ne a 
physical quantity, this quantity is a vector quantity.

Th e angular velocity is a vector quantity.

Th e same statements also apply for the angular mo-
mentum.

Th e angular momentum is a vector quantity.

We can therefore represent both angular velocity as 
well as angular momentum graphically by means of an 
arrow. Th e arrow direction, however, cannot be the di-
rection of movement in this case as the individual 
parts of the rotating body are moving in a variety of 
directions. Th e arrow is therefore drawn in parallel to 
the axis of rotation. And what is the orientation of the 
arrow? On which side is the tip of the arrow?

Now, we can shorten the somehow complicated 
rule about the sign of the angular momentum (section 
3.1):

We grab the axis of rotation with our right hand 
in a way that the bent fi ngers point in the rotational 
direction. Th en, the thumb points in the direction 
of the angular velocity vector and of the angular 
momentum vector.

If we wish to take into account the vector character 
of the angular velocity and of the angular momentum, 

Fig. 3.23 Although the two identical fl ywheels rotate 
with the same numbers of revolutions per minute, they 
have diff erent angular velocities and a diff erent angu-
lar momentum.

we will have to modify some of our formulas. Th e rela-
tionship between the angular velocity and the angular 
momentum is now:

ω= ⋅ ⋅
� 2L m r

and that between the rate of change of the angular mo-
mentum and the angular momentum current:

Δ
Δ

=

�
�L

M
t

3.7  More about angular 
momentum conductors

We have found that bearings are used to prevent an-
gular momentum from fl owing away into the Earth.

Th is statement can now be formulated a bit more 
specifi cally. Fig. 3.24 shows a wheel. Th e bearing is lo-

z

y
x

a)

b)

c)

Fig. 3.24 The bearing prevents the transition of only 
one angular momentum component (in this case the 
x-component).
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cated between the wheel and the axis. Hence, the axis 
can rotate freely in the wheel.

If the axis is turned as in image a, the wheel will not 
rotate along. We cannot supply any x-angular momen-
tum to the wheel because the bearing will not let it 
pass. But the wheel can be turned or tilted in the y- or 
the z-direction by means of the axis; see images b and 
c. Hence, the bearing allows y- and z-angular momen-
tum to pass. Or more generally speaking:

A bearing is used to hold an axis in such a way 
that the angular momentum that has the direction 
of the axis will not fl ow away.

An object, a wheel for example, can also be posi-
tioned in a way that no angular momentum can fl ow 
away at all – no x-, no y- and no z-angular momentum, 
Fig. 3.25. Such a positioning is called cardanic suspen-
sion. Th e outer U-shapes support can be rotated or 
tilted as we like – the direction of the axis of the wheel 
in the middle will always remain the same. Th e angular 
momentum will always remain the same as angular 
momentum can neither be absorbed nor released 
through the suspension.

We have seen earlier that each component of the 
linear momentum vector is conserved. Th is applies ac-
cordingly for the angular momentum:

Th e law of angular momentum conservation ap-
plies for each component separately.

Willy tries to convince us, Fig. 3.26.
He holds a fast-rotating fl ywheel. Th e angular mo-

mentum vector points in the x-direction at fi rst. 
Hence, the fl ywheel contains x-angular momentum. 
Now he sits down on the swivel chair and tilts the ro-
tary axis in an upward direction, i.e. in the z-direction. 
We can make two observations in the process: 

1. Willy and the swivel chair start to rotate in the 
opposite direction of the wheel.

2. Willy feels a somehow unexpected reaction of the 
wheel.

What does this mean? At the beginning, the 
wheel had no z-angular momentum. After having 
tilted the wheel axis into the vertical direction, the 
wheel has had z-angular momentum. This angular 
momentum must have come from somewhere. It 
could not come from the Earth because Willy is, as 
far as the z-angular momentum is concerned, insu-
lated from the Earth. Hence, the angular momen-
tum is taken from Willy + the chair. In the end, 
Willy and the chair have as much negative z-angular 

z

y

x

Fig. 3.25 Cardanic suspension. The wheel is completely 
insulated with regard to the support: neither x-, nor y-, 
nor z-angular momentum can fl ow away.

z

x

Fig. 3.26 While Willy turns the wheel axis in a vertical 
position, x-angular momentum is fl owing from the 
wheel into the Earth and z-angular momentum is fl ow-
ing from Willy + chair into the wheel.

momentum as there is positive z-angular momen-
tum in the wheel.

And where has the x-angular momentum gone that 
the wheel had in the beginning? It could fl ow away 
into the Earth as the bearing of the chair is open for 
x- and for y-angular momentum. Th e peculiar reac-
tion of the wheel axis is due to the angular momentum 
fl ow into the wheel and out of the wheel.
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Exercises

1. Sketch the chassis and the transmission system of a car 
with its essential parts: wheels, springs, shock absorbers 
and the drive shaft s with the corresponding joints.

2. Lilly sits on the swivel chair and holds two rotating fl y-
wheels with the axes in the horizontal x-direction, 
Fig. 3.27. Th e swivel chair does not rotate at fi rst. Lilly 
tilts the axes of the two wheels in the vertical z-direction. 
What happens? Discuss the case in which the x-angular 
momentum of the two wheels is equal at the beginning 
and the case that it is equal but opposite.

3.8  Angular momentum circuits

Fig. 3.28 shows a coff ee grinder. Although a real 
coff ee grinder is slightly more compact, it is essentially 
built as shown by the illustration. In the following, we 
will discuss the coff ee grinder not because of its being 
particularly important but as an example for other ma-
chines in which something is driven by means of a ro-
tating shaft : household machines such as washing ma-
chines, vacuum cleaners and electric mixers, diff erent 
gardening tools such as lawn mowers, brush cutters 
and motor-driven hedge trimmers, all vehicles, nu-
merous machines in factories and power plants.

In the coff ee grinder, the grinder is driven by an 
electric motor. Th e motor pumps angular momentum 
to the grinder via a shaft . Does the angular momentum 
of the grinder increase in this process? No, because the 
shaft  would have to rotate increasingly faster, but it 
does not do so.

So where has the angular momentum gone? It has 
to fl ow away from the grinder. Th is is not surprising as 
there is very strong friction between the rotating inner 
part of the grinder and the fi xed outer part. Friction is 
like a bad bearing, i.e. a bearing through which the an-
gular momentum fl ows away.

Hence, we have a closed angular momentum cir-
cuit: the motor pumps angular momentum out of its 
support to the grinder via the shaft . From there, it 
fl ows back to the motor through the housing or the 
support.

In all devices where something is driven by a rotat-
ing shaft , angular momentum fl ows in a closed circuit. 
Fig. 3.29 shows the turbine and the generator in a pow-
er plant.

Transmissions based on rotating shaft s are oft en 
more complicated than in Figures 3.28 and 3.29.

Fig. 3.30 shows a transmission in which the shaft s 
of the motor and the grinder form an angle of 90°.

angular momentum

electric motor

grinder

z

x

Fig. 3.27 For exercise 2

Fig. 3.28 Coff ee grinder. The angular momentum grind-
er fl ows in a closed circuit.

steam, high temperatur,
            high pressure

angular
momentum

generator
electricity

steam, 
low temperatur, 
low pressure

grinder

bevel gears

y-a
n

g
u

la
r m

o
m

en
tu

m

x-angular momentum

motor

Fig. 3.29 Turbine and generator in a power plant. The 
angular momentum fl ows in a closed circuit. 

Fig. 3.30 Drive by means of bevel gears
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Th e two shaft s are connected to each other with 
bevel gears. Two angular momentum types are in-
volved in this drive. x-angular momentum fl ows in a 
circuit between the motor and the bevel gear, and y-
angular momentum between the bevel gear and the 
grinder.

Fig. 3.31 Bevel gearbox
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4   THE GRAVITATIONAL FIELD

4.1  Gravitational attraction

Th e Earth attracts all objects. Th is can be noticed in 
two phenomena:
 • We take an object in our hand and release it. It will 

fall down.
 • Every object has weight.

Both phenomena show that the object receives mo-
mentum from the Earth. A falling body becomes in-
creasingly fast while falling: its momentum increases. 
Th e fact that a body that does not fall also receives mo-
mentum can be seen if we suspend it on a dynamom-
eter, Fig. 4.1. Th e dynamometer indicates that a mo-
mentum current is constantly fl owing away from the 
body into the Earth via the suspension. Th is momen-
tum has to be replaced continuously. Hence, momen-
tum is fl owing continuously into the body, albeit via a 
connection between the body and the Earth that is ab-
solutely invisible.

Fig. 4.1 The dynamometer indicates that a momentum 
current is fl owing upwards and away from the hanging 
body. This momentum has fl owed into the body 
through the gravitational fi eld.

We have already learned about a similar momen-
tum-conducting connection earlier, i.e. about an invis-
ible connection: the magnetic fi eld. In the case that 
interests us at the moment, however, there cannot be a 
magnetic fi eld because this would mean that only 
magnets or iron bodies would be attracted by the 
Earth. Th e connection therefore consists of an entity 
or object that, although it is not a magnetic fi eld, is 
similar to the magnetic fi eld. It is called gravitational 
fi eld. Just as a magnetic pole is surrounded by a mag-
netic fi eld, every object that has a mass, i.e. every body, 
is surrounded by a gravitational fi eld. Th e larger the 
mass of the body, the higher the density of this fi eld.

Every body is surrounded by a gravitational 
fi eld. Th e larger the mass of the body, the higher the 
density of the fi eld. Momentum fl ows through the 
fi eld from one body to another. Gravity means that 
there is a momentum current from the Earth to the 
respective body.

4.2  What gravity depends upon

We try. At fi rst, we suspend a body A made of iron 
with a mass of 1 kg on a dynamometer and then a 
wooden body B that also has a mass of 1 kg. Hence, the 
following applies:

mA = mB .

Th e dynamometer indicates the same both times:

FA = FB .

Th e bodies have the same weight. Th is does proba-
bly not sound surprising to you; but still, it cannot be 
taken for granted.
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We would like to understand it. What does it mean 
that the piece of wood and the piece of iron have the 
same mass? To answer this question, we have to re-
member the equation

p = m · v

Th e mass is the proportionality factor in the rela-
tionship between momentum and velocity. It tells us 
how much momentum is needed to accelerate a body 
to a given velocity. It tells us how inert the body is. But 
from the fact that two bodies have the same inertia we 
can still not conclude at this point that they have the 
same weight. From

mA = mB

we cannot simply conclude that

FA = FB .

We can only try it out. Th e experiment shows that it 
is actually the case:

Bodies of equal inertia also have the same weight.

We have gotten used to this fact and can hardly imag-
ine that it could be otherwise. Still, this observation has 
been discussed by physicists for a long time. At fi rst, it 
seemed to be a mere coincidence. It was considered to be 
possible that, simply by performing an exact measure-
ment, a diff erence between inertia and weight might be 
detected. Only the theory of relativity has demonstrated 
that inertia and weight actually have to match.

Now we take two bodies, each with a mass of 1 kg. 
We can consider both of them together to be a single 
body with a mass of 2 kg. A momentum current twice 
as high as for a single body fl ows into the arrangement 
of the two. You might also take this for granted. But we 
could defi nitely imagine that adding a second body 
would infl uence the momentum current that fl ows 
into the fi rst one. Th is is not the case, though. Hence, 
the following applies for the momentum current that 
fl ows from the Earth into another body:

F ~ m,

or written as an equation:

F = m · g . (4.1)

For the factor of proportionality we fi nd:

g = 9.8 N/kg,

or approximately

g = 10 N/kg.

Our result is not yet complete.
At fi rst, we notice that g must be the absolute value 

of a vector. Th is can already be concluded for mathe-
matical reasons. As the quantity on the left  of equation 
(4.1) is a vector quantity, there must also be a vector on 
the right. Expressed in vectorial terms, equation (4.1) 
becomes

F
�
 = m · g� . (4.2)

We now make the following thought experiment: 
we think of an object in a variety of places: here in Eu-
rope, in Japan, at an altitude of 1000 km above the sur-
face of the Earth, on the Moon, on Mars or far away 
from all celestial bodies. Th e momentum current is 
diff erent each time. Although the proportionality

F ~ m,

still applies for each of these places, the factor of pro-
portionality is diff erent in each case.

Th e momentum that fl ows in a body in Japan is 
tilted by approximately 90° with regard to the one that 
fl ows into a body with the same mass in Europe. Con-
sequently, the direction of F

�
 depends on the place on 

Earth and therefore also that of g�. But also the absolute 
value of g� is location-specifi c. If we move away from 
the Earth, it will become increasingly smaller. At a 
great distance from any celestial body, it is practically 
zero. Th e absolute values for some prominent places 
are listed in Table 4.1.

Th e vector quantity g� tells us about the gravitational 
fi eld at the respective point. Its absolute value tells us 
about the density of the fi eld. From the fact that g� is a 

Table 4.1 Absolute value of the gravitational fi eld 
strength at diff erent locations

Location g in N/kg

surface of the Earth 9.8

1000 km above surface of the 
Earth

7.3

surface of the Moon 1.62

surface of Mars 3.8

surface of the Sun 274

surface of a neutron star 1000000000000
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vector, we conclude that the gravitational fi eld has a 
particular direction in each point of space. In this re-
spect, it is similar to wood. Also in wood, a singular 
direction can be indicated at each point: that of the 
texture. g� is called the gravitational fi eld strength.

We can measure the gravitational fi eld by means of 
equation (4.2). Before we look at very extended gravi-
tational fi elds, we would like to examine the conse-
quences of the fi eld at a place that is close to the surface 
of the Earth.

By the way, what do we mean by saying that an ob-
ject is heavy? Probably that it is hard to lift  it off  the 
ground. Does this mean that it has a large mass? Strict-
ly speaking no; on the Moon, it would obviously not be 
hard at all to lift  this „heavy“ object off  the Moon sur-
face. Th erefore, „heavy“ rather means that a strong 
momentum current fl ows into the body. Th e same ob-
ject can be heavy or light, depending on where it is 
located.

Let's also describe gravity in the force model: if a 
force is calculated according to equation (4.2), it will 
be called gravitational force, and we say that the gravi-
tational force acts on the body.

Relationship between the gravitational fi eld 
strength g� and the momentum current F

�
 fl owing 

into a body with mass m: 

F
�
 = m · g�

Exercises

1. Which momentum current fl ows out of the Earth into 
your own body? (Which force of weight acts on your 
body?) What would be the strength of this momentum 
current on the Moon, what would it be on a neutron star?

2. During an expedition on the Moon, astronauts determine 
the force of weight force on a body by means of a dynamom-
eter. Th ey fi nd F = 300 N. What is the mass of the body?

4.3 Free fall

If we deal only with movements in the vertical di-
rection, we will only need to look at the vertical com-
ponent of momentum and velocity. We denominate 
them with the letters p and v and choose the down-
ward direction to be the positive direction. Th us, a 
body that moves downwards has positive momentum 
and a positive velocity.

Th e phenomena that we will now examine all take 
place near to the surface of the Earth. We will neither 

go to an altitude of 1000 km nor 1000 km east-, west-, 
south- or northwards. Under these conditions, we can 
consider the gravitational fi eld strength as constant, 
i.e. independent of the position. We say the gravita-
tional fi eld is homogeneous.

We take an object in our hand and release it. It will 
fall to the ground. Now we are able to explain this phe-
nomenon: a momentum current of the strength m · g 
fl ows into the object, i.e. its momentum increases con-
tinuously. Th e longer it falls, the faster it moves.

However, there is something peculiar about this 
process. If we release two objects – a heavier and a 
lighter one – at the same time from the same altitude, 
we will fi nd that they arrive at the ground simultane-
ously. Isn't the heavier one supposed to fall faster as it 
receives more momentum from the Earth?

We calculate the law according to which the mo-
mentum of the two bodies increases. We assume that 
the mass of the heavier body to be 4 kg, that of the 
lighter body 1 kg.

We insert F = m · g into p = F · t and obtain

p = m · g · t . (4.3)

Here we insert the mass and the gravitational fi eld 
strength and obtain for the heavy body

p = 4 kg · 9.8 N/kg · t = 39.2 N · t

and for the light one

p = 1 kg · 9.8 N/kg · t = 9.8 N · t .

Th ese two p-t relationships are illustrated in Fig. 4.2. 
We can see that the momentum increases regularly for 

15
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0 0.1 0.2 0.3
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    t in s

20

0.4 0.5

Fig. 4.2 Momentum as a function of time for two fall-
ing bodies with diff erent masses
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the two objects. But the momentum of the heavy body 
increases faster than that of the light one. Th e heavy 
body has four times as much momentum as the light 
one at all times.

So why do the two bodies fall equally fast? To fi nd 
the answer to this question, we need the formula

p = m · v . (4.4)

It allows us the following conclusion: to bring the 
heavy body to a given velocity, we need four times as 
much momentum as required to bring the light one to 
the same velocity. Th e body with the larger mass has a 
greater inertia than that with the small mass.

We can also obtain this result by means of a simple 
calculation. We equate the right sides of equations 
(4.3) and (4.4) and obtain

m · g · t = m · v .

Division of both sides of the equation by m leads us to

v = g · t . (4.5)

As the mass has disappeared from the equation, it 
tells us that the velocity of a falling body does not de-
pend on its mass. In Fig. 4.3, the velocity of an arbi-
trary freel-falling body is graphed as a function of 
time.

Equation (4.5) also tells us that the velocity of a fall-
ing body increases at a constant rate. Th is means that 
its acceleration is constant.

Th e acceleration can be calculated easily. We look at 
the time interval from t = 0 to t = t0. In this time peri-
od, the velocity increases from v = 0 to v = v0 = g · t0. 
We therefore obtain:

0

0
.

v va g
t t

Δ
Δ

= = =

Consequently, the acceleration of a falling body is 
equal to the gravitational fi eld strength.

Th e fact that the gravitational fi eld strength appears 
in equation (4.5) means that the falling velocity de-
pends on the location of the falling body. For example, 
on the Moon all bodies fall approximately six times as 
slowly as on Earth.

Our discussion was based on the assumption that 
the body is not losing any momentum while falling. 
We have therefore simplifi ed the actual situation: in 
reality, it loses momentum through friction with the 
air. If a body is not too light and if it only falls over a 
short distance, our simplifi cation is justifi ed, though. 

Such a movement is referred to as a free fall.

Free-falling bodies:
 • Th e velocity increases at a constant rate.
 • All bodies fall with the same velocity.
 • Th e acceleration is equal to the gravitational 

fi eld strength.

We look at another variant of the free fall: the object 
is not simply let fall from a state of rest but it is thrown 
vertically upwards. It has negative momentum at the 
start in this case. Still, it is provided continuously with 
fresh momentum by the Earth which leads to a gradu-
al reduction of its negative momentum: the object fl ies 
increasingly slowly, comes to a halt and fi nally starts 
moving in the positive (downward) direction.

Th e upward movement is the mirror image of the 
downward movement in this case. While falling down, 
the momentum of the body increases regularly; while 

3

2

1

0 0.1 0.2 0.3

v in m/s
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Fig. 4.3 The velocity of a free-falling body increases 
linearly over time.

Fig. 4.4 The velocity of a body, which has been thrown 
upwards, as a function of time. While fl ying upwards, 
the velocity is negative; while falling down, it is posi-
tive.
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fl ying upwards, its negative momentum decreases reg-
ularly. Th is applies accordingly for the velocity: while 
fl ying upwards, the negative velocity decreases linearly 
with time; while falling down, the (positive) velocity 
increases linearly with time.

Fig. 4.4 shows the velocity as a function of time. 
Here, we have chosen the time of reversal as a zero po-
sition of the time axis. For this method of counting, 
the object is thrown at the time „minus 0.4 seconds“. 
We can see in this diagram that the object needs the 
same time for the upward movement as for the down-
ward movement.

Exercises

1. You jump in the water from a 3-meter diving board. Th e 
free fall takes 0.77s. What is your momentum when you 
hit the water surface? What is your velocity?

2. What is the velocity of a free-falling body aft er a falling 
time of 1/2 s on Earth and on the Moon? What would it 
be on the Sun if a body existed there?

3. A stone is thrown upwards. Its initial velocity is 15 m/s. 
Aft er what time will it hit the surface of the Earth?

4. A stone is shot upwards by means of a slingshot. Aft er 5 
seconds, it hits the ground. What was its initial velocity?

4.4 Falling with friction

Th e air friction can oft en be neglected. How strong 
it is depends on
 • the shape of the body
 • its velocity.

You certainly know how this works when you think 
of a car:
 • Th e shape of the car body is designed in a way as to 

minimize air friction.
 • If we drive fast, the friction and hence the fuel con-

sumption (per kilometer) will be higher than if we 
drive slowly.
Figures 4.5 and 4.6 show that the friction, i.e. the 

momentum current that fl ows away into the air, in-
creases strongly with a growing velocity.

In both pictures, the momentum loss due to friction 
is illustrated as a function of the velocity, in Fig. 4.5 for 
a typical passenger car and in Fig. 4.6 for a much 
smaller object: a ball with a diameter of 30 cm.

We have seen: if there are no friction losses or as 
long as they can be neglected, all bodies will fall equal-
ly fast. But what will the falling velocity be like if fric-
tion can no longer be neglected?

We drop a large, light ball, Fig. 4.7, left  side. Its mass 
shall be

Fig. 4.5 Momentum current that fl ows away into the 
air as a function of the velocity for a typical passenger 
car

Fig. 4.6 Strength of the momentum current that fl ows 
away into the air as a function of the velocity for a 
globe with a diameter of 30 cm
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m = 100 g = 0.1 kg,

and its diameter

30 cm = 0.3 m.

A momentum current of

F = m · g = 0.1 kg · 10 N/kg = 1 N

fl ows continuously from the Earth into the ball. At the 
beginning of the fall, its velocity is still slow, and con-
sequently the loss of momentum to the air is small. At 
a velocity of 2 m/s, the momentum current that fl ows 
into the air still has a strength of less than 0.1 N, see 
Fig. 4.6. Th e loss is still small compared to the momen-
tum current of 1 N that comes from the Earth. How-
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ever, the loss will increase and the ball will eventually 
lose as much momentum to the air as it receives from 
the Earth per second. From that moment, its momen-
tum will no longer increase. From Fig. 4.6 we can read 
that the ball will now have a velocity of approximately 
7 m/s.

Fig. 4.8 shows the velocity of our ball over time: at 
the very beginning, its velocity increases linearly over 
time; it behaves like a freely falling ball. But the loss 
will gradually increase. Finally, i.e. when the amounts 
of momentum that fl ow towards and away from the 
ball are equal, its momentum and consequently also its 
velocity will no longer increase. It has reached its ter-
minal velocity. Th e ball is in the state of fl ow equilibri-
um.

We now drop another ball. It has the same diameter 
(30 cm) but four times the weight of the fi rst one, 
Fig. 4.7, right side:

m = 0.4 kg.

A momentum current of

F = m · g = 0.4 kg · 10 N/kg = 4 N.

fl ows into the ball from the Earth via the gravitational 
fi eld. At which velocity will this ball stop becoming 
faster? We look once again at the diagram from 
Fig. 4.6. At a velocity of 14 m/s, the lost momentum is 
equal to the momentum that comes from the Earth. 
Th erefore, the heavy ball reaches the fl ow equilibrium 
at a higher velocity than the light ball.

At high velocities, the friction of the air can no 
longer be neglected.

Th e velocity of a falling body increases up to a 
terminal velocity.

Th e terminal velocity depends on the shape of 
the body. It is higher for heavier bodies than for 
light ones.

Parachuting is an interesting way of applying our 
refl ections. Lilly jumps out of the plane and reaches 
her terminal velocity of approximately 50 m/s aft er a 
few seconds. Th en, she will „fall“ at this velocity for a 
longer time. Th e momentum current that fl ows into 
Lilly via the gravitational fi eld has the same strength as 
the one that fl ows away due to the air friction.

Th e parachute opens around 400 m above the 
ground. But opening the parachute means that the air 
friction suddenly increases strongly. Th e momentum 
current that is fl owing away becomes suddenly much 

Start

1 N

4 N
4 N

4 
N

1 N

1 N

1 N

1 N

1 N

0.5 N
0.5 N

1 N

7 m/s

14 m/s4 
N
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Fig. 4.8 If there is air friction, the velocity of a falling 
body will increase up to a terminal velocity.
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Fig. 4.7 A light (left) and a heavy 
(right) globe fall to the ground. 
The light one reaches its termi-
nal velocity earlier than the 
heavy one.
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stronger than the current fl owing into Lilly. Hence, 
Lilly's momentum decreases, and so does her velocity 
and consequently also the friction loss. Eventually, the 
friction momentum current again reaches the same 
value as the gravitational momentum current, but at a 
relatively low velocity of approximately 4 m/s. Th e 
parachute is now fl oating with Lilly towards the Earth 
at a constant, low velocity. In Fig. 4.9, Lilly's velocity is 
graphed as a function of time.

If there is no air or another medium that causes 
friction, there will not be any terminal velocity either. 
Th e Moon has no atmosphere. Th erefore, absolutely 
all bodies fall with the same velocity there: a sheet of 
paper falls to the ground as fast as a large stone. But 
we can also make the same observation on Earth. 
Th erefore, the experiments have to be made in a re-
cipient of which the air has been pumped out. We let 
some small objects with diff erent masses fall in an 
evacuated glass tube. As expected, all of them fall 
equally fast.

Exercise

1. What is the terminal velocity of a falling globe with a di-
ameter of 30 cm and a mass of 0.8 kg?

4.5 Weightlessness

Willy, Fig. 4.10a, feels his heaviness; his body has to 
bear the weight of his heavy head and his feet have the 
hardest part: they have to carry the whole body. Willy 
has an idea: see Fig. 4.10b. Th e legs are disburdened. 
But now the arms have to bear the whole weight. In 
Fig. 4.10c, we see his third attempt to get rid of his 
weight – once again without any success.

Fig. 4.9 Lilly's velocity as a function of time t in s

0

20

40

0 50 100 150
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Fig. 4.10 No matter how hard he tries – Willy won't get 
rid of his feeling of heaviness.

Fig. 4.11 The momentum currents that fl ow into the 
person via the gravitational fi eld have to fl ow back out.

a)  b)   c)

Willy is bothered by the feeling of weight or heavi-
ness. We will try to defi ne this feeling in physical 
terms. In each of the three cases, Willy feels momen-
tum currents that fl ow within his body. Momentum 
fl ows into every part of his body via the gravitational 
fi eld, and this momentum has to be conducted back 
into the Earth. Th ese currents are sketched for a stand-
ing person in Fig. 4.11: momentum fl ows into the 
head, the arms, the upper part of the body, etc. All this 
momentum has to fl ow downwards through the legs 
and the feet into the Earth. Hence, the momentum 
current is strongest in the feet.
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In the following, we examine a model of a person: it 
consists of two blocks lying on top of each other (to 
symbolize the upper and the lower part of the body), 
Fig. 4.12. We can see that the momentum current at 
the bottom of the lower block is twice as strong as at 
the bottom of the upper block.

We would now like to put this „person“ into a state 
of weightlessness: a state in which no momentum cur-
rents are fl owing through it. Or in other words: a state 
in which none of its parts is subjected to compression-
al or tensional stress.

You will probably think that this person would have 
to be sent far away from the Earth, to a place where the 
gravitational fi eld of the Earth cannot be felt anymore. 
Th ere, no momentum would fl ow into our person and 
no momentum could therefore fl ow through it either. 
Th is would actually be an option. But there is another 
much simpler method: we let the momentum fl ow into 
the person but not back out of it. Also in this case, no 
momentum will fl ow through the person and it will 
feel weightless.

But how can that be achieved? Very simply. To pre-
vent the momentum from fl owing back out of the per-
son, i.e. from fl owing away into the Earth, it is suffi  -
cient to interrupt the connection to the Earth. We can 
do that by letting our person fall freely, Fig. 4.13. Al-
though momentum is now fl owing via the gravitation-
al fi eld into every block (in every part of the person) 
and into each point of the blocks, it does not fl ow 
around in the blocks anymore. Also, no momentum is 
fl owing from one block into the other anymore. Th e 
consequence: there are no longer compressional or 
tensional stresses. Th e lower block does not feel the 
weight of the upper one anymore.

Of course, the same applies for yourself, i.e. for a 
real person: if you jump down from some place, you 
will be weightless during your fall. Even if you jump 
upwards, you will be weightless as soon as you lose 
contact to the Earth, and you will remain weightless 
until you touch the Earth again.

However, the time that we spend in the air while 
falling is so short that we hardly notice the feeling of 
weightlessness. Th erefore, we make an experiment 
with our model person, Fig. 4.14. Th e two blocks are 
standing on a plate that is suspended with threads, 
similar to a weighing pan. Th ere is a thin board, which 
is connected to the wall by means of a thin stretched 
rubber strap, between the lower and the upper block. 
Th e rubber strap would pull out the board if it were 
not trapped by the weight of the upper block.

Here is the experiment: we cut the thread on which 
the whole arrangement is suspended. In the same mo-

rubber band

Fig. 4.13 A freely falling body is weightless. No momen-
tum currents are fl owing in it.

Fig. 4.14 The blocks are weightless during the free fall. 
The trapped board is released.

Fig. 4.12 The „body“ of our model person consists of an 
upper and a lower part.

ment, the board pops out while being pulled by the 
rubber strap. Why? Th e tower of blocks was falling 
freely for a short time. It was weightless during this 
short time. Th e upper block did no longer press on the 
lower one; it released the board. We summarize:

Freely falling bodies are weightless.

4.6 Circular orbits in the 
gravitational fi eld

Satellites and space platforms move drivelessly on a 
circular (or nearly circular) orbit around the Earth. 
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But why don't they fall down towards the Earth? Th is 
is exactly what they do. Without the continuous mo-
mentum current from the Earth, a satellite would fl y 
straight ahead. However, as it receives momentum 
from the Earth, its path is bent towards the Earth. If 
the Earth was fl at, it would fall down onto the Earth. 
But the Earth is round and the satellite always falls in a 
way as to follow the curvature of the surface of the 
Earth. In order to fl y on a circular orbit around the 
Earth, the satellite has to have a specifi c velocity. Th e 
direction of the velocity vector has to be parallel to the 
surface of the Earth, i.e. perpendicular to the connec-
tion line between the satellite and the center of the 
Earth and its absolute value has to have a very specifi c 
value.

If these conditions are not met, the satellite will 
move on a diff erent orbit: an ellipse, a parabola, a hy-
perbola or a straight line.

We would like to calculate the velocity that a satel-
lite must have so as to have a circular orbit.

We remember: the momentum change per time in-
terval for a body that moves on a circular orbit with a 
radius r and the velocity v is:

2
.p vm

t r
Δ
Δ

=

Th e momentum change of a satellite is caused by 
the momentum current from the Earth. Th erefore, the 
following has to apply:

2
.vm m g

r
= ⋅

Dividing both sides of the equation by m, we obtain:
2

.v g
r

�

Th is results in:

(4.6).v r g= ⋅

Th e equation also applies approximately to the 
Moon that orbits around the Earth and to the planets 
that move around the Sun because the respective or-
bits are almost circular.

If a satellite or a celestial body moves on a circu-
lar orbit around another one whose mass is much 
larger, its velocity is (r = radius of the orbit, g = 
gravitational fi eld strength)

.v r g= ⋅

We can also „reverse“ the statement: if the velocity 
of a satellite is given by equation (4.6), its orbit is circu-
lar. At the start, however, a satellite can be given any 
velocity: any arbitrary absolute value and any direc-
tion. So what will the satellite do if the velocity at the 
start is not that given by equation (4.6) or if it does not 
have the right direction? Th e satellite will not move on 
a circular orbit. So can we let it fl y around on any arbi-
trary orbit? Defi nitely not. Th e possible orbits belong 
to a very specifi c class of curves, the so-called conic 
sections. Th ey include:
 • circle
 • ellipse
 • parabola
 • hyperbola
 • straight line

You certainly understand that both the circle as well 
as the straight line are nothing else than special cases 
of the ellipse.

We would like to ask two questions but answer only 
one of them:

Question 1: why does a satellite fl y on a circular or-
bit?

Answer: it was a stupid question. It fl ies on a circular 
orbit because it has been set on a circular orbit.

Question 2: why do the Moon and the planets fl y on 
circular orbits?

Answer: good question. It is hard to answer in this 
context. Apart from this, these orbits are not exactly 
circular in a strict sense. Th e deviation from the circle 
is relatively large in case of the planet Mercury.

We also calculate the velocity of the International 
Space Station (ISS). It is located at an altitude of 
400 km. Th ere, the absolute value of the gravitational 
fi eld strength is g = 8.7 N/kg. r is equal to the radius of 
the Earth plus 400 km, hence r = 6770 km. Th is leads 
us to

6

3

6.770 10  m 8.7 N/kg

7.675 10  m/s 27630 km/h.

v = ⋅ ⋅

= ⋅ =

You know that astronauts have a feeling of weight-
lessness in their spaceship. How can this be explained? 
Is it because they are so far away from the Earth? Defi -
nitely not. We have seen that the ISS is located at an 
altitude of approximately 400 km. Compared to the 
radius of the Earth, this is a very short distance. Th e 
ISS practically fl ies closely above the surface of the 
Earth, Fig. 4.15.

Th ere, the absolute value of the gravitational fi eld 
strength is only around 10 % lower than on the surface 
of the Earth. Th e explanation of weightlessness is ex-
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actly the one that we have found for falling bodies: a 
spaceship with its crew and all its accessories is a freely 
falling body. And freely falling bodies are weightless. 
Bear in mind that weightlessness does not mean that 
the gravitational fi eld strength is zero.

Exercises

1. An astronaut has two objects in his spaceship that look 
equal but that have diff erent masses. Can he fi nd out 
which of the bodies has the larger mass and if so, how?

2. A spaceship is located so far away from the Earth that the 
gravitational fi eld strength is practically equal to zero. 
Now the astronauts would like to feel their weight again. 
What can they do without fl ying to the Earth or to an-
other celestial body?

3. Derive a formula that can be used to calculate the angular 
velocity of the circular movement of a satellite from the 
orbital radius and the gravitational fi eld strength.

4. Also the Moon is a satellite of the Earth. It moves around 
the Earth on a circular orbit with a radius r = 384,000 km. 
Calculate the fi eld strength of the gravitational fi eld of the 
Earth at that distance. Hints: (a) Calculate the circumfer-
ence of the circular trajectory of the Moon. (b) Calculate 
the time needed by the Moon for one revolution in sec-
onds. (c) Calculate the velocity of the Moon. (d) Calcu-
late the gravitational fi eld strength.

5. A satellite moves at fi rst on a circular orbit. How will the 
orbit change if the absolute value of the velocity is sud-
denly reduced? How will the orbit change if it is suddenly 
increased? What needs to be done to get a hyperbolic or-
bit?

4.7 The fi eld of spherically 
symmetric bodies

Th e gravitational fi eld strength decreases in the out-
ward directions from the Earth. Th is decrease is de-
scribed by

(4.7)A
2( ) .mg r G

r
=

Th e equation does not only apply for the Earth but 
for any spherically symmetric body, i.e. in particular 
also for other celestial bodies: stars, planets and Moons 
because they are nearly spherically symmetric.

Let us have a closer look at the equation:
 • In the way it is written here, it applies for the abso-

lute value of the fi eld strength. Th e direction of the 
fi eld strength vector is the direction towards the 
center of the spherically symmetric body, i.e. to-
wards the center of the Earth in case of the Earth.

 • G is the gravitational constant. It is:  

Fig. 4.15 The ISS fl ies at an altitude of only 400 km, i.e. 
closely above the surface of the Earth. The absolute 
value of the gravitational fi eld strength is only 10 % 
lower than at the surface of the Earth.

3
11

2
m6.67 10 .

kg s
G −= ⋅

⋅

G has the same value for the Earth, the Moon, the 
Sun, any other celestial body and also any small ter-
restrial body.

 • It is not surprising that g is proportional to the mass 
of the body: a body with a small mass has a weak 
gravitational fi eld; a body with a large mass has a 
strong gravitational fi eld.

 • r is the distance to the center of the body. Th e fi eld 
strength decreases with the square of the distance, 
i.e. quite fast.
Figure 4.16 shows the fi eld strength – illustrated by 

vector arrows – around a spherical body. Th e point an 
arrow relates to is the respective starting point.

If the distance r is great compared to the size of the 
body, we will no longer have to require the shape to be 
spherical. Th e fi eld at a great distance is the same, re-
gardless of whether the body is spherical or not.

Fig. 4.16 Gravitational fi eld strength vectors in the 
vicinity of a spherical body
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We will look once again at a result of the previous 
section:

(4.8).v r g= ⋅

To calculate the velocity that a satellite or another 
celestial body must have in order to move on a circular 
orbit with the radius r, we need to know the fi eld 
strength g of the gravitational fi eld. With equation 
(4.7) we are now able to calculate it. If we also insert 
the g from equation (4.7) in equation (4.8) we obtain:

2 ,m G mv r g r G
r r

⋅
= ⋅ = ⋅ ⋅ =

and thus:

(4.9).G mv
r
⋅

=

Please bear in mind that m is the mass of the central 
body and not the mass of the body that circulates 
around it. Th erefore, we can have:

m = mass of r = orbital radius of v = velocity of

Earth satellite satellite

Earth Moon Moon

Sun Earth Earth

We assume our central body to be the Earth. To cal-
culate the velocity of a satellite or of the Moon, we only 
need the respective orbit radius r in addition to the 
mass of the Earth. Th e mass of the Sun, the planets and 
the Moon of the Earth are listed in Table 4.2.

Th e orbits on which the planets move around the 
Sun are all situated approximately in one plane, i.e. the 
ecliptic plane. Also the orbit of the Moon is situated in 
this plane.

We keep in mind:

When a satellite or a Moon or a planet circulates 
around a central body, the following applies:
 • the larger the mass of the central body and 
 • the smaller the orbit radius, the higher the veloc-

ity.

Example
A satellite should describe a circular orbit around 

the Earth at an altitude of 10,000 km above the surface 
of the Earth. What has to be its velocity?

r = 10 000 km + 6 370 km = 16.37 · 106 m
m = 5.97 · 1024 kg
G = 6.67 · 10–11 m3/(kg · s2)

m in masses of
the Earth

m in kg

Sun 3.33 · 105  2.0 · 1030

Mercury 0.053  0.317 · 1024

Venus 0.82  4.9 · 1024

Earth 1  5.97 · 1024

Mars 0.107  0.64 · 1024

Jupiter 318  1900 · 1024

Saturn 95.2  569 · 1024

Uranus 14.6  87 · 1024

Neptune 17.2  103 · 1024

Moon of Earth 0.0123  7.35 · 1022

Table 4.2 Mass of Sun, planets and Moon

With equation (9) we obtain:
11 3 2 24

6
6.67 10  m /(kg s ) 5.97 10  kg

16.37 10  m
4930 m/s.

v
	
 
 
 


�



�

Exercises

1. Continuation of exercise 4 from the previous section: cal-
culate the mass of the Earth.

2. Th e distance between the Sun and the Earth is almost ex-
actly 150 million kilometers. (a) Calculate the velocity of 
the Earth on its orbit around the Sun. (b) Calculate the 
fi eld strength of the gravitational fi eld of the Sun at the 
place of the Earth's orbit. (c) Calculate the mass of the 
Sun.

3. Every Moon circulates around a planet and the planets 
circulate around the Sun. We can observe these move-
ments very well by means of telescopes, i.e. we can mea-
sure the orbital radii and the times of orbital revolution. 
Th e masses of celestial bodies can be determined on this 
basis. Which data is needed to determine the mass of a 
planet? (You only have to look at the two previous exer-
cises.)

4. Television satellites circulate around the Earth in a way 
that they have the same angular velocity as the Earth it-
self. Why? At which altitude does a television satellite fl y? 
Which orbital velocity does it need to have?

4.8 Galilei, Kepler and Newton

Th e physical explanation and the mathematical de-
scription of the gravitational phenomena – the free fall 
and the movement of celestial bodies – has been one of 
the great achievements of physics. Th is development 
took place in the 16th and 17th century. Many scien-
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tists were involved, but the most important contribu-
tions were made by only three of them: Galilei, Kepler 
and Newton.

Galileo Galilei (1564-1642), Fig. 4.17, made numer-
ous discoveries and inventions. He found, inter alia, 
that the velocity of falling bodies increases at a con-
stant rate when the friction of the air can be neglected 
and that all bodies fall with the same velocity.

Johannes Kepler (1571-1630) succeeded to describe 
the planetary orbits in a mathematically exact way. 
Among other things, he found:

Th e quotient
2

3
T
r

has the same value for all planets of the solar system (T 
= time of revolution, r = orbit radius).

Isaac Newton (1643-1727), Fig. 2.35, discovered 
that the fall of an object onto the Earth is basically the 
same phenomenon as the movement of the Moon 
around the Earth and of the planets around the Sun.

In addition, he found the relationship that we de-
scribed with equation (4.7). However, he had to for-
mulate this relationship slightly diff erently as no fi elds 
– and consequently no fi eld strength – were known 
back then. But we can easily derive Newton's equation 
from our equations.

We apply equation (4.7) to a body A with the mass 
mA (e.g. the Earth):

(4.10)A
2( ) .mg r G

r
=

Th e momentum current from body A into another 
body B (with the mass mB) is

Fig. 4.17 Galileo Galilei (left) and Johannes Kepler 
(right)

B ( ).F m g r= ⋅

We replace g(r) by means of equation (4.10):

A A B
B 2 2 .m m mF m G G

r r
⋅

= ⋅ =

Th us, we get:

A B
2 .m mF G

r
⋅

=

Th is is Newton's law of gravitation.

Th e centers of two bodies (masses mA and mB) 
have the distance r from each other. Th e momen-
tum current that fl ows through the gravitational 
fi eld from one body to the other is
 • proportional to mA and to mB;
 • inversely proportional to r2.

Once again the conditions under which the law of 
gravitation applies: each of the bodies either has to 
have a spherical mass distribution or be small in rela-
tion to the distance r.

Exercises

1. Derive Kepler's law that was quoted in the text, starting 
from equation (4.9). Convert the velocity into the time of 
revolution.

2. Th e gravitational constant should be determined experi-
mentally by measuring the momentum current between 
two bodies that have a mass of 1 kg and whose centers 
have a distance of 10 cm. What is the problem in this 
measurement?

4.9 The tides

Th e velocity of a falling apple in the gravitational 
fi eld of the Earth increases at a constant rate:

v = g · t ,

the acceleration a is:

a = g.

g is the fi eld strength of the gravitational fi eld of the 
Earth. Th e acceleration of the apple does not depend 
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on its own mass, but it depends on the fi eld strength g 
and g depends on the mass of the Earth and on the lo-
cation:

2( ) .mg r G
r

= ⋅

Th is leads us to an interesting problem: what will 
happen if the falling body is so large that g has diff erent 
values at diff erent points of the body, Fig. 4.18?

A slightly clearer situation is shown in Fig. 4.19. In-
stead of an extended body, we look at a sort of dumb-
bell. Two bodies K1 and K2 with the same mass

m = 4 kg

are connected by a bar.
Th e mass of the bar is so small that we can neglect it 

in relation to the one of the two bodies. Th e fi eld 
strength has the diff erent values g1 and g2 at the two 
bodies. We assume the following:

g1 = 11 N/kg and g2 = 12 N/kg .

Diff erent momentum currents are consequently 
fl owing into the two bodies:

K1: F1 = m · g1 = 4 kg · 11 N/kg = 44 N
K2: F2 = m · g2 = 4 kg · 12 N/kg = 48 N

Hence, K2 receives more momentum per second 
from the Earth than K1. If there were no bar, the mo-
mentum increase (i.e. the rate of change) of K2 would 
be 48 N and that of K1 would be 44 N. K2 would fall 
faster than K1 at all times.

But the bodies are connected by the bar and cannot 
fall with diff erent velocities. Th erefore, a momentum 
current FG, which ensures that the momentum in-
crease of the two bodies will become equal, has to fl ow 
from K2 to K1. In our example,

FG = 2 N.

Th us, the momentum increase is:

1
1body K : 44 N 2 N 46 Hy/sp

t
Δ
Δ

= + =

2
2body K : 48 N 2 N 46 Hy/sp

t
Δ
Δ

= − =

Th e bar is subjected to tensional stress. Th is can also 
be expressed as follows: K2 pulls on K1 so that K1 be-
comes faster, or K1 pulls on K2 so that K2 becomes 
slower.

Fig. 4.18 The strength of the fi eld of the Earth has dif-
ferent values in the area of the body K.

Fig. 4.19 In K1, less momentum fl ows in via the gravita-
tional fi eld than in K2. Momentum therefore has to 
fl ow from K2 to K1.

F1

F2

K1

K2

FG

Here once more the reason behind the fl owing of 
the momentum current FG: the fi eld strength in the 
area of the body has diff erent values. Th e fi eld is not 
homogeneous.

Th e result that we have obtained by means of the 
dumbbell body is also valid for any other body:

If the gravitational fi eld in the area of a falling 
body is not homogeneous, momentum currents 
will fl ow within the body. Th e body is subjected to 
tensional stress in the falling direction.

It is as if someone tried to stretch the body.
We compare this statement to the result that we 

found earlier: free-falling bodies are weightless. Th is 
means that no momentum currents are fl owing within 
such a body. Now we can see that this rule only applies 
for a fi eld that is homogeneous in the area of the exam-
ined falling body. But where do such tensional stresses 
actually play a role, and what do these considerations 
have to do with our headline?

Every body that is exposed to the gravitational fi eld 
of another one will be subjected to tensional stress if 
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the fi eld of that other body is not homogeneous. Th e 
Earth is located in the gravitational fi eld of the Sun and 
the Moon. Th e fi elds of these two celestial bodies are 
almost homogeneous in the area of the Earth, but only 
almost. And as they are not perfectly homogeneous, 
the Earth as a whole is exposed to tensional stress. Th e 
infl uence of the Moon is thereby greater than that of 
the Sun. Th e inhomogeneity of the Moon's fi eld as 
greater at the location of the Earth than that of the 
Sun's fi eld.

In the following, we will only focus on the infl uence 
of the Moon. Th e Moon tries to stretch the Earth in the 
direction of the connection line Earth − Moon. Th is 
does not have much eff ect on the solid Earth, but the 
water of the oceans can react to this tensional stress. 
Water accumulates respectively on the two opposite 
sides of the Earth, Fig. 4.20, which leads to a high tide. 
On the sides of the Earth, the tide is low. While the 
Earth rotates around its own axis, those accumulations 
of water move around the Earth, or rather: the Earth 
rotates away under the accumulated water. If we re-
main at a fi xed place of the Earth, the tide will rise and 
fall over a period of 12 hours. Th e falling and rising 
tides are also referred to as ebb and fl ow.

Th ese tensional stresses of the tides are a minor ef-
fect on Earth. But there are also areas in the world 
where they become very strong, i.e. on the surface of a 
neutron star. A neutron star is not a convenient place 
for several reasons. Th e gravitational fi eld strength is 
approximately 1012 N/kg so that humans would be 
crushed immediately by their own weight. But also 
during a free fall, i.e. while being in a state of weight-

lessness under terrestrial conditions, we would be torn 
apart by the tensional stress of the tides on a neutron 
star.

Exercises

1. Calculate the gravitational fi eld strength of the fi eld of the 
Moon at the location of the Earth. How big is the diff er-
ence between the side that faces the Moon and the one 
that faces away from it?

2. A freely falling body in a non-homogeneous fi eld is ex-
posed to tensional stress in the direction of fall. But this is 
not the full truth. It is also subjected to mechanical stress 
in the direction transversal to it. Why? Explain once 
again by using a dumbbell-shaped body but align it trans-
versally to the fall direction. What type of stress exists: 
tensional or compressional?

Fig. 4.20 The gravitational fi eld of the Moon tries to 
stretch the Earth. Two „water hills“ arise on opposite 
sides of the Earth. (The image is not drawn to scale.)

Earth

Moon
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5   MOMENTUM, ANGULAR MOMENTUM  AND 
ENERGY

5.1  What is energy?

Let's repeat: what is momentum? Th e answer is 
easy: it is essentially a measure for what we colloqui-
ally call impetus or verve. Impetus is contained in a 
body, i.e. a body is „fi lled with impetus“. Th us, mo-
mentum is a substance-like quantity.

And energy? We can also think of it as „stuff “ that is 
contained in things – in solid bodies, in liquids, in gases 
and in fi elds. It is a substance-like quantity as well. How-
ever, we cannot say that it corresponds to anything we 
have a name for – like saying „impetus“ if we mean mo-
mentum or „heat“ to refer to entropy. Th e reason: ener-
gy has no property by which it can always be recognized 
easily. A body has much energy when it is hot, when it 
moves fast, when it rotates fast or when it is under high 
pressure. And its energy depends on the chemical com-
position. Unfortunately, the energy content is not sim-
ply proportional to the velocity, to the temperature, to 
the pressure, etc..Th e relationship is more complicated.

Th erefore, some skill is needed to tell whether a sys-
tem contains much or little energy and it is oft en com-
plicated to calculate the energy. We would like to ana-
lyze this problem in the following.

Energy also has simple characteristics aft er all:

Energy is a substance-like quantity. Energy can 
neither be created nor destroyed.

For general orientation we would also keep in mind:

A body has much energy when it is moving or 
rotating fast, when it is hot or when it has a high 
pressure.

energy

momentum

Fig. 5.1 With momentum from Willy's muscles as an 
energy carrier, the energy fl ows to the bottom of the 
box. From there, it will move into diverse directions 
with entropy as an energy carrier.

Th ere are restrictions for each of these criteria, but 
you will only get to know them little by little.

We will only get a fi nal answer to the question „what 
is energy?“ in chapter 7. At the moment, we could do 
much with this answer yet.

Please remember: the symbol of the energy is E, the 
measuring unit is Joule, abbreviated J.

5.2  Momentum as an energy 
carrier

Willy, Fig. 5.1, once again pulls a box over the fl oor. 
He makes an eff ort, hence releases energy. Th e energy 
comes from his muscles. Where does this energy go? It 
goes to the bottom of the box, creates entropy there 
and spreads out in the environment together with the 
entropy.
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We would like to examine the energy transport be-
tween Willy and the box. Th e fi rst point to clarify: 
what is the energy carrier? A momentum current is 
fl owing in the rope between Willy and the box at the 
same time as the energy current. We conclude that the 
momentum is the energy carrier we are looking for.

Momentum is an energy carrier.

Energy and momentum current are illustrated 
schematically in the fl ow chart of Fig. 5.2.

Not every momentum current comes with an ener-
gy current: the momentum current in Fig. 5.1 fl ows, as 
we know, from the box through the Earth and back to 
Willy. But the energy goes its own way from the bot-
tom side of the box. Th e momentum current that fl ows 
back does not carry any energy.

So, what does the strength of the energy current de-
pend upon? Or in more general terms: what do we 
have to do to transfer as much energy as possible with 
a rope or a bar?

If we attach a tight rope with hooks on a wall, Fig. 
5.3, a momentum current but no energy current will 
fl ow. What is the diff erence between the ropes in Fig. 
5.1 and Fig. 5.3? Th e fi rst rope moves, the second one 
doesn't. Hence, we can see that the movement is im-
portant for the energy transport; or more precisely: the 
velocity at which the momentum conductor moves.

Of course, the strength of the energy current also 
depends on the strength of the momentum current be-
cause if the rope is not subjected to mechanical stress, 
it cannot be used to transfer energy.

We therefore have an important result:

Th e energy current P through the rope depends 
on
 • the momentum current F in the rope,
 • the velocity v of the rope.

We want to fi nd out the quantitative relationship. 
By which equation are the three quantities P, F and v 
linked to each other?

At fi rst we look at the relationship between the en-
ergy current P and the momentum current F. Fig. 5.4 
shows a top view of two boxes being pulled over the 
fl oor.

We compare the two rope sections A and B. Both 
are moving with the same velocity. Th e momentum 
current as well as the energy current split up evenly at 
the intersection point P: the momentum current in 
rope B is half as strong as in A, and so is the energy 
current. Hence, the energy current strength is propor-

momentum

Fig. 5.3 A momentum current but no energy current is 
fl owing.

Fig. 5.2 Flow chart for the energy and momentum 
currents in Fig. 5.1

Willy

momentum

Energy

box

B

P A

Fig. 5.4 Two boxes are pulled over the fl oor. Top view

tional to the momentum current strength in case of 
equal velocity:

P ~ F.

To fi nd the relationship between P and v we make 
an experiment. A box is pulled by means of a pulley, 
Fig. 5.5.

We compare the rope sections A and B. Let's fi rst 
consider the energy current: all the energy that fl ows 
into the rope from the right continues from the pulley 
through rope A. No energy can fl ow in rope C because 
C is not moving. We consequently have:

A
B

C

Fig. 5.5 The momentum current strength in rope A is 
twice that in rope B. The velocity of rope A is half the 
velocity of rope B.
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PA = PB.

Next, we compare the velocities of A and B. If the 
box, and therefore rope A, moves over a certain dis-
tance to the right, the right end of B will move to the 
right by twice this distance. Th is means that the veloc-
ity of B is twice that of A. Th erefore we have:

vB = 2 vA.

Finally, we compare the momentum currents in A 
and B. Th is can only be done by means of a measure-
ment. It turns out that the momentum current in B is 
just half that in A. (By the way: in C it is the same as in 
B so that the junction rule is fulfi lled.) We can there-
fore write:

FA = 2 FB.

All these results together will be described correctly 
if we set:

P ~ v · F.

Th is proportionality tells us on one hand that P is 
proportional to F if the velocity is kept constant. On 
the other hand it states: if v is doubled and F is halved, 
P will remain constant. Th is is exactly what we found 
in our experiment with the pulley.

If energy is transferred with momentum as an 
energy carrier, the energy current is proportional 
to the momentum current and to the velocity at 
which the conductor is moving.

To get an equation from this proportionality, a con-
stant of proportionality would normally have to be in-
troduced. But the SI measurement units of the three 
quantities have been chosen in a way that simply the 
following applies:

P = v · F.

Th is is the result we were looking for. We can use it 
to calculate the energy current in our rope if we know 
the momentum current in the rope and the velocity of 
the rope.

Example
We pull on a rope in which a dynamometer is in-

stalled. Th e dynamometer indicates 120 N, the rope 
moves at 0.5 m/s. For the energy current we get:

P = v · F = 0.5 m/s · 120 N = 60 W.

Notice that the velocity has to be inserted in m/s 
and the momentum current in N in order to obtain the 
energy current in the SI unit watt.

Similar formulas apply when the energy fl ows with 
other carriers. If the electric charge is the energy car-
rier, we have the following relation:

P = U · I ,

i.e. the energy current is proportional to the electric 
current I. If the entropy is the energy carrier, we will 
have:

P = T · IS,

i.e. the energy current is proportional to the entropy 
current IS. From the formula

P = v · F

we can derive an equation that is more practical in cer-
tain cases.

We replace

EP
t

Δ
Δ

=

on the left  and

sv
t

Δ
Δ

=

on the right, hence:

.E s F
t t

Δ Δ
Δ Δ

= ⋅

Th erefore, we obtain:

ΔE = F · Δs.

Th e equation tells us for example: if we push against 
a bar and move the bar by the distance Δs, the energy 
F · Δs will fl ow through the bar. F is the strength of the 
momentum current that fl ows through the bar while 
pushing. Of course, F must be constant during the pro-
cess.

Example
We pull on a rope in a way that a momentum cur-

rent of 120 N is fl owing and that the rope moves by 
2 m. How much energy is transferred through the rope 
in the process? With
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F = 120 N and Δs = 2 m

we obtain

ΔE = F · Δs = 120 N · 2 m = 240 Nm = 240 J.

Exercises

1. A tractor pulls a trailer on an even road at a velocity of 20 
km/h. A momentum current of 900 N is fl owing through 
the trailer hitch. What is the energy consumption of the 
trailer? (What is the strength of the energy current from 
the tractor to the trailer?) Where will the momentum that 
fl ows to the trailer go? Where will the energy go?

2. Th e drive belt of a machine runs at a velocity of 10 m/s. 
Th e current strength of the energy transferred with the 
belt is 800 W. Which is the force applied by the belt to pull 
on the belt disc? (What is the strength of the momentum 
current in the belt?)

3. A crane lift s a load of 50 kg with a velocity of 0.8 m/s. 
What is the strength of the energy current through the 
crane rope? Th e load is lift ed by 5 m. How long does this 
process take? How much energy is fl owing through the 
rope during this time?

4. A truck pulls a trailer on an even road from one town to 
another. Th e distance between the towns is 35 km. A mo-
mentum current of 900 N fl ows through the trailer hitch. 
How much energy will have fl owed from the truck to the 
trailer in total?

5.3  Angular momentum as an 
energy carrier

Figure 5.6 shows once again the coff ee grinder that 
we have already analyzed in chapter 3. Also here, en-
ergy is transferred: from the motor to the grinder by 
means of the shaft . Only the angular momentum can 
be an energy carrier in this case.

Angular momentum is an energy carrier.

Th e corresponding fl ow chart is shown in Fig. 5.7.
Fig. 5.8 shows the fl ow chart of a hydroelectric pow-

er plant. Th e generator is driven by a water turbine.
In both cases, the angular momentum fl ows in a 

closed circuit.
Th e relationship between the energy current P and 

the angular momentum current M is of the same type 
as that between the energy current and the momen-
tum current (or energy current and electric current):

P = ω · M.
If energy is transferred by means of a rotating 

shaft  (with angular momentum as an energy carri-
er), the energy current strength will be proportion-
al to the angular momentum current strength and 
to the angular velocity at which the shaft  is moving.

angular momentum

electric motor

grinder

Fig. 5.6 Coff ee grinder. The angular momentum fl ows in a circuit.

Energy
water

turbine

electricity

Energy
generatorr

Energy

angular
momentum

waterFig. 5.8 Flow chart of a 
hydroelectric power plant

Fig. 5.7 Flow chart of the coff ee grinder from 
Fig. 5.6

Energy
electric
motor

Energy
grinder

angular
momentum

electric charge
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Exercises

1. Th e Iff ezheim power plant on the Rhine in the Baden-
Baden area has four water turbines with one generator 
each. We look at such a power unit. A turbine provides its 
generator with an energy current of 27 MW. Th e shaft  
that connects the turbine to the generator turns with 100 
rotations per minute. What is the angular momentum 
current of the shaft ?

2. Fig. 5.9 shows the specifi cation sheet of a car. Which en-
ergy current (= power) is supplied by one of the engines 
with a maximum angular momentum current (maximum 
torque)? Compare with the maximum energy current in-
dicated on the specifi cation sheet. Where could the diff er-
ence come from?

5.4  Mechanical energy storage

a) Elastically deformed bodies as energy storage 
devices

We stretch a long, strong spring, Fig. 5.10. Th is is 
exhausting because much energy is needed.

We look at the right end of the spring (point A in Fig. 
5.10). Th is end of the spring is exposed to mechanical 
stress, i.e. a momentum current F is fl owing in it, and it 
moves at a velocity v. According to the formula

P = v · F

also an energy current is fl owing in it. Now we look at 
the left  end of the spring (point C). Here, the momen-
tum current is the same as at A. But as C does not 
move, no energy current is fl owing here. Th e energy 
that fl ows into the spring at A does not come out at C. 
It is stored in the spring.

We can also check the currents at other points of the 
spring, e.g. in the middle of the spring. Th ere, the mo-

energy

momentum

C B A

C B A

Fig. 5.9 For exercise 2

Fig. 5.10 When the spring is stretched, energy fl ows 
into the spring via the right end.

mentum current is the same as at A and at C again. Th e 
velocity, however, is only half that of A. Th erefore, also 
the energy current is only half as strong as the one that 
enters into the spring at A. Th is is logical: half of the 
energy is stored in the right half of the spring and the 
rest continues fl owing into the left  spring half. We can 
also take this refl ection further: only a third of the en-
ergy is stored in each third of the spring, a fourth of the 
energy is stored in each fourth of the spring, etc.. Or in 
short: the energy spreads evenly over the total length 
of the spring.

If a spring can be compressed without buckling to 
the side, it can also be used as an energy storage device 
in this way.

Th ese observations are not only valid for springs, 
but also for any other elastically deformable objects: a 
stretched expander contains energy, just as a taut sling-
shot, a bent springboard or a compressed soccer ball.

Of course, we would like to know how much energy 
is contained in a specifi c energy storage device. We 
would like to calculate how the stored amount of en-



70

 

5 
M

O
M

EN
TU

M
, A

N
G

U
LA

R
 M

O
M

EN
TU

M
 A

N
D

 E
N

ER
G

Y
 

ergy depends on the prolongation (or shortening) of 
the spring. Th e problem is more complicated than it 
might seem at fi rst.

We stretch a spring by moving one end with a con-
stant velocity v.

We know the relationship:

P = v · F . (5.1)

We could think that it can be used to calculate the 
stored energy E of the spring in the following way: 
multiplication of the energy current (the joules per 
second) by the time t0 during which it was fl owing, i.e. 

Espring = P · t0 . (5.2)

But this would give us the correct result only if the 
energy fl ows evenly, i.e. if the energy current does not 
change over time. Unfortunately, this is not the case 
here; the momentum current F in equation (5.1) is not 
constant. However, we can still apply equation (5.2) if 
we insert the time average value of P:

Espring = P
_

 · t0 . (5.3)

Hence, we need to fi nd the average value of the en-
ergy current.

We start from equation (5.1). We replace F by means 
of

F = D · s

(see section 2.13) and obtain:

P = v · D · s .

Th is equation tells us that the energy current is 
stronger the more the spring has been stretched. As we 
pull on the spring with a constant velocity, we can re-
place s by v · t:

P = v · D · v · t = D · v2 · t .

Hence, the energy current increases linearly over 
time, Fig. 5.11.

We can read the mean energy current from this graph: 
it is equal to the energy current at the time t0 /2, i.e.

2
0.

2
DP v t=

By inserting in equation (5.3) we obtain:

P

t 0

P
_

P0

t
0
 t

0
/2

Fig. 5.11 The energy current increases from zero to P0 in 
the period from t = 0 to t0. The average energy current 
in this time interval is equal to the energy current at 
the time t0/2. The downward deviation before will be 
compensated by the upward deviation after.

(5.4)2 2
spring 0 .

2
DE v t=

Now, v · t0 = s0, i.e. equal to the extension of the 
spring. If we insert this in equation (5.4), we obtain 
our fi nal result:

2
spring 0 .

2
DE s=

Th e index „0“ is no longer needed as there is no risk 
of confusion:

If we stretch a spring, its energy will increase by 

2
spring .

2
DE s=

If the spring is released, the energy will fl ow 
back out.

We assumed that the spring had been extended in 
order to store energy. If a spring can be compressed, 
however, the same equation will apply for it. Th en, s 
will be the distance by which the spring is shortened.

Although the derivation was cumbersome, the re-
sult is simple and also logical. If you have forgotten the 
equation, you can recover its essential aspects through 
skilled guessing.

To begin with: what does the energy stored in a 
spring depend on aft er all? First, on the spring itself, i.e. 
on the spring constant D. And second, on how strongly 
it has been extended or shortened, i.e. on s. For a given 
extension s, a hard spring contains more energy than a 
soft  one. Th is is ensured by the D in the formula.

It is also clear that the more the spring has been ex-
tended, the more energy it contains – therefore the s. 
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But why is the s squared? Th ere is a good reason: the 
spring stores positive energy (negative energy does not 
exist), regardless of whether it is extended or short-
ened, i.e. regardless of whether s is positive or negative. 
As s is squared, the result is always a positive energy, 
both for a compressed as well as for a stretched spring.

Th e only part of the formula that cannot be guessed as 
easily is the factor 1/2. You therefore have to memorize it.

Later you will learn about several other equations 
that have this structure.

To conclude, please bear in mind: the energy that is 
calculated according to our equation is not the entire 
energy of the spring. It is only a tiny part of it; i.e. that 
part that is put in during stretching and that comes 
back out during release.

b) Moving bodies as energy storage devices
We charge a trolley or a car with momentum, just as 

we have already done many times before, Fig. 5.12. 
However, we have learned in the meantime that not 
only momentum but also energy is fl owing in the rope. 
Neither the energy nor the momentum can leave the 
car. If we pull, both momentum as well as energy will 
consequently be accumulated in the car.

Th e amount of energy that a body contains due to 
its movement is called kinetic energy.

If we let a moving trolley roll until it stops, its mo-
mentum will fl ow away into the Earth. Th e energy will 
take a diff erent path. It will be used (or rather: wasted) 
for entropy production. Entropy is produced wherever 
friction takes place. Th e energy thereby spreads out in 
the environment: partially in the ground and partially 
also in the trolley and in the air.

Again, there is a simple equation that can be used to 
calculate the stored (kinetic) energy. Th e derivation is 
similar to what we have seen for the stretched spring. 
We skip it because the result can almost be guessed.

If a body is charged with momentum, its energy 
will increase by

2
kin .

2
mE v=

If the body releases the momentum, also the en-
ergy will fl ow back out.

Th e fact that the velocity is squared ensures that the 
energy will always be positive. By means of p = m · v we 
can express the velocity by the momentum and obtain:

2

kin .
2
pE
m

=

c) Rotating bodies as energy storage devices
A fl ywheel is charged with angular momentum, 

Fig. 5.13. However, not only angular momentum but 
also energy fl ows through the shaft . Both the angular 
momentum as well as the energy are stored in the fl y-
wheel.

Th e energy Erot stored in the fl ywheel can be calcu-
lated from the moment of inertia and the angular ve-
locity. Th e formula can be obtained very easily by re-
placing in

2
kin 2

mE v=

the mass by the moment of inertia and the velocity by 
the angular velocity.

If a body is charged with angular momentum, its 
energy will increase by

2
rot 2

JE ω=

If the body releases the angular momentum, also 
the energy will fl ow back out.

By means of L = J · ω we can express the angular ve-
locity by the angular momentum and obtain:

2

rot .
2
LE

J
=

momentum

     energy

Fig. 5.12 The car is charged with momentum and en-
ergy.

motor

flywheel

angular momentumenergy

Fig. 5.13 In the fl ywheel angular momentum and en-
ergy is stored.
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Exercises

1. A trolley with a weight of 30 kg is charged with momen-
tum. A momentum current of 20 N is fl owing for 6 s. 
Th ere are no losses due to friction. What will be the ki-
netic energy of the trolley in the end?

2. A trolley with a weight of 200 g is accelerated through a 
spring that is being released. It reaches a velocity of 0.8 m/s. 
Th e spring has extended from 10 cm to its normal length of 
15 cm. What is the value of the spring constant?

3. A glider on the air track collides with a glider that is twice 
as heavy and that does not move at the beginning. Th e 
collision is completely inelastic, i.e. the gliders are at-
tached to each other aft er the collision. Compare the ki-
netic energies before and aft er the collision. Explain.

4. A trolley (m = 20 kg) moves with v = 0.5 m/s in the x-di-
rection, hits a spring bumper and bounces back. (a) What 
is its momentum before and aft er the collision? (b) What 
is its kinetic energy before and aft er the collision? (c) By 
how much is the spring compressed (spring constant D = 
60 N/m)? (d) What will be the velocity of the trolley if the 
spring is compressed halfway?

5. A glider on the air track (mass 300 g) is attached to a 
spring (D = 7.5 N/m), Fig. 5.14. If the glider is moved out 
of the equilibrium position and subsequently released, it 
will perform an oscillation. Describe the path of the en-
ergy and the momentum during the oscillation process. 
While passing through the „equilibrium position“ (the 
spring is released), the glider has a velocity of 0.5 m/s. 
How far does the glider oscillate to the right and the left ?

6. A vehicle with a mass m and a velocity v moves (without 
friction) around a 90° curve. Establish an energy and mo-
mentum balance. (How much goes in, how much comes 
out?)

7. A steam engine has a fl ywheel with a diameter of 2.2 m 
and a mass of 1.8 tons. Assume that the entire mass is lo-
cated in the outer ring. Th e engine runs at 2 rotations per 
second. How much angular momentum and how much 
energy are stored in the fl ywheel?

8. Two fl ywheels A and B each have a moment of inertia of 
2 kg · m2. Wheel A turns at 2 rotations per second, wheel 
B does not turn at fi rst. (a) How much angular momen-
tum does wheel A have? (b) How much energy does A 
have due to the rotary movement? Th e wheels are con-
nected to each other by means of a clutch. (c) What is the 
angular momentum of each of the two wheels? (d) How 
much energy is contained in each of the two wheels? 
What is the energy of the two wheels together? (e) Com-
ment on the result.

9. For fusion experiments at the Max Planck Institute for 
Plasma Physics in Garching (Munich area), a very strong 
current of electric energy is needed for short time inter-
vals. Th e required energy current is so strong that the 
normal electricity grid is not suffi  cient. Th erefore, large 
fl ywheels that are charged slowly (with a weak energy 
current) by means of an electric motor are used. Th e 
whole accumulated energy can then be released within a 
few seconds through a generator. Such a fl ywheel supplies 
an energy current of 150 MW during 10 seconds. If it is 
charged, it will turn at 1600 rotations per minute. What is 
its moment of inertia?

Fig. 5.14 For exercise 5

5.5  Energy storage in the 
gravitational fi eld – the 
gravitational potential

A heavy object is pulled upwards, Fig. 5.15. Besides 
momentum, energy is fl owing in the rope. As we know, 
the momentum comes into the body from the Earth 
via the gravitational fi eld. We can also think of the fi eld 
as an invisible spring that pulls on the body. Just as en-
ergy is stored in the spring while stretching it, energy 
is stored in the gravitational fi eld when an object is 
lift ed. If the object is lowered again, the energy can be 
recovered from the fi eld.

We need more energy to lift  a heavy object than to 
lift  a light one. Hence, the larger the mass of the object, 
the more energy is stored in the fi eld. And the greater 
the diff erence of altitude h = h2 − h1 by which the ob-
ject is lift ed, the more energy is needed.

We calculate the energy Egrav that is stored in the 
gravitational fi eld as a function of m and h. Again, we 
start from the equation

P = v · F

for the energy current. As we move the body upwards 
with a constant velocity, we can write:

0
.hv

t
=

Fig. 5.15 Energy is stored in the gravitational fi eld while 
the bucket is pulled upwards.
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t0 is the time that the process takes. For the momen-
tum current we have:

F = m · g.

Th e momentum current is constant in time. Th ere-
fore, we do not need to calculate the average value as in 
the case of the spring. Th e energy current during the 
pulling process will therefore be:

0
.hP v F m g

t
= ⋅ = ⋅ ⋅

We obtain the stored energy as energy current 
strength multiplied by time:

Egrav = P · t0,

i.e.

Egrav = m · g · h = m · g · (h2 – h1).

When the altitude of a body on Earth increases, 
energy is stored in the gravitational fi eld:

Egrav = m · g · (h2 – h1).

When the altitude of the body decreases again, 
the energy is recovered.

We introduce a new physical quantity that simpli-
fi es the description: the gravitational potential ψ (psi):

ψ = g · h.

Further up, the gravitational potential on Earth has 
a higher value than further down. Th e potential diff er-
ence between two places that diff er by 2 m of altitude 
is greater on Earth than on the Moon.

We can think of a diff erence of the gravitational po-
tential as a drive for a mass fl ow. All bodies fall from 
the top to the bottom, from the high to the low gravi-
tational potential. On a bicycle, we roll down the hill 
without pedaling. Water fl ows (because it has a mass) 
from places of high to places of low gravitational po-
tential. All these movements or currents exist because 
the respective body or the liquid has a mass.

A diff erence of the gravitational potential is a 
drive for a mass fl ow.

Now we can write the energy that is stored in the 
gravitational fi eld in a shorter form:

If a body is brought from the gravitational po-
tential ψ1 to the higher potential ψ2, the energy

Egrav = (ψ2 – ψ1) · m

will be stored in the gravitational fi eld.

Th e energy of the gravitational fi eld is made avail-
able in hydroelectric power plants, Fig. 5.16.

At high altitudes in the mountains, water is collect-
ed from streams and rivers and led downwards through 
pipes. While fl owing downwards, the water receives 
energy from the gravitational fi eld. Th en, it fl ows 
through the turbine of the power plant and releases its 
energy there. Th e turbine drives a generator by means 
of a shaft , i.e. the energy goes with the angular mo-
mentum from the turbine to the generator.

Pump storage plants are a special type of hydroelec-
tric power plants. A pump storage plant is used as an 
energy storage device for the electric grid. It can ab-
sorb energy from the grid and release it again to the 
grid. Such plants are needed because most other power 
plants are unable to react quickly to the varying de-
mand. Coal-fi red power plants, nuclear power plants 
and run-of-river power plants (hydroelectric power 
plants that take advantage of the slope of a river) can 
only change their energy output slowly or not at all. 
Wind turbines supply energy when there is wind, and 
their energy output does not correspond to the de-
mand. Th erefore, a storage medium, which can absorb 
and release energy quickly, is needed – similar to a car 
battery but much larger.

Two large water reservoirs at diff erent altitudes are 
part of a pump storage plant. When electric energy 
(energy carried by electric charge) is needed (when 
energy is expensive), water is let fl ow from the high 

Fig. 5.16 Hydroelectric power plant. The water fl ows 
down in the pipes and thereby gets energy from the 
gravitational fi eld.
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reservoir into the low one through a turbine. Th e tur-
bine drives a generator. When there is energy left  in 
the grid (when power is cheap), the generator is made 
work as an electric motor and the turbine as a pump, 
and the water is pumped back up.

Exercises

1. Draw the fl ow chart of a pump storage plant for its two 
types of function. Th e pump storage plant Goldisthal 
(Th uringian Slate Mountains) has an upper basin at an 
altitude of 880 m above sea level and a lower basin at 
550 m. What is the gravitational potential at the top and 
at the bottom (in relation to sea level)? Th e exploitable 
water quantity is 12 million m3. How much energy can 
be stored? Th e generators can supply a maximum ener-
gy current of 1060 MW. How long will the energy stock 
last?

2. Th e Itaipú hydroelectric power plant on the Paraná river 
is located on the border between Brazil and Paraguay. It is 
the largest hydroelectric power plant of the world. It has 
20 turbines and 20 generators. Th e diff erence in altitude 
between the input and the output of the water is 120 m, 
the water fl ow is 12 000 m3/s on average. How much en-
ergy current is supplied by the power plant?

3. Th e water leaves the nozzle of a fountain with a velocity of 
5 m/s. How high does it spray?

4. A stone is thrown vertically upwards. Sketch the path of 
the energy and the momentum (a) while the stone is be-
ing thrown off ; (b) while it is fl ying upwards; (c) while it 
is coming back down.

5. A hollow cylinder (r = 10 cm, m = 2 kg) is nudged so that 
it rolls at a velocity of 0.8 m/s on a surface that is even at 
the start, Fig. 5.17. Th en, the surface becomes an ascend-
ing slope. Up to which altitude will the cylinder roll?

5.6  Tackle, gear drive, chain and 
belt drive

The tackle
A tackle is oft en used to lift  a load: an arrangement 

of ropes and pulleys. Fig. 5.18 shows a particularly 
simple tackle. What are the benefi ts of it?

We remember: the pulley divides the momentum 
current, which fl ows through the rope A from the bot-
tom, into two partial current of equal magnitude in the 
rope sections B and C. Th e momentum current in B is 
therefore only half as strong as that in A.

We assume the mass of the load to be 200 kg. Th en, 
the momentum current in A is

FA = m · g = 200 kg · 10 N/kg = 2000 N.

For the momentum current in B we obtain

Fig. 5.17 For exercise 5

FB = FA/2 = 1000 N.

Consequently, the motor (the „momentum pump“) 
only needs to create a momentum current of 1000 N 
and not of 2000 N that would be the case without the 
pulley. We almost have the impression of getting some-
thing for free here. We will see that this is not the case 
if we compare the energy currents

P = v · F

in the rope sections A and B. While the momentum 
current in B is half of that in A, the velocity of B is 
twice as high as the one of A:

FB = FA/2 ,
vB = 2 vA .

Th erefore:

vA · FA = vB · FB .

Hence, the energy currents in A and B are equal. We 
could also have explained it this way: no energy is 
fl owing through rope C because vC = 0. Th e whole en-
ergy that comes from the motor via rope B therefore 
has to continue fl owing to the load through rope A. 
We can conclude:

Motor

BA

C

50 kg

Fig. 5.18 Simple tackle
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Tackle: One factor in the equation P = v · F 
changes at the expense of the other one.

Maybe this result looks familiar to you. We have al-
ready come across a similar situation in connection 
with the electric transformer. Th e equation

P = U · I

applies for an electric energy transport (energy current 
equal to voltage multiplied by electric current.) Th e 
energy current that fl ows into the transformer with the 
electric charge as an energy carrier (index A) is equal 
to the outfl owing one (index B):

UA · IA = UB · IB .

Hence, a tackle can also be considered a „momen-
tum current transformer“.

Gear drive
Fig. 5.19 shows a photo of a simple gear drive.
Such a drive is illustrated schematically in Fig. 5.20. 

Th e energy comes through the shaft  on the left  (A) and 
leaves the drive through the one on the right (B). Th e 
energy carrier of the arriving and the outfl owing en-
ergy is angular momentum. Th e relationship between 
the energy current and the angular momentum cur-
rent is P = ω · M .

As all the energy that arrives via A fl ows away via B, 
the following has to apply:

ωA · MA = ωB · MB .

We divide both sides of the equation by ωA and MB:

(5.5)A B

B A
.M

M
�
�

�

Th e ratio ωA/ωB of the angular velocities, i.e. the 
gear ratio, can be determined easily: if gear wheel A 
has twice as many teeth as gear wheel B, gear wheel B 
will turn twice as fast as A. Th erefore we have:

A A

B B
.M z

M z
=

Here, zA and zB are the number of teeth of the two 
gear wheels.

We summarize:

Gear box
One factor in the equation P = ω · M changes at 

the expense of the other one.

A

B

A

B

Fig. 5.19 Gear drive

Fig. 5.20 Simple gear drive

Fig. 5.21 The angular momentum in the shafts A and B 
fl ows in opposite directions.

A gear drive can be considered an „angular mo-
mentum current transformer“.

Th e gear ratio can be changed for the shift ing gear 
box of the car.

We would like to take a closer look at the path of the 
angular momentum currents in case of the gear box, 
Fig. 5.21.

At fi rst, we have to notice that in our simple gear 
box, the direction of the currents in the two shaft s A 
and B is opposite. Again, the support, the foundation 
or the chassis ensures that the angular momentum will 
fl ow back. Th e path of the angular momentum current 
within the gear box is only displayed schematically 
here. Th e current fl ows both over the gear wheels as 
well as over the vertical supports.
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Chain drive and belt drive
You know the chain drive from the bicycle. A belt 

drive, Fig. 5.22, is essentially the same, only that a fl ex-
ible belt, oft en equipped with teeth, is used instead of 
the chain made of steel links.

Such drives are installed in many machines. You 
can fi nd them, inter alia, under the engine hood of ev-
ery car. Such drives have two functions:
 • they transport energy (with angular momentum as 

an energy carrier) from one place A to another 
place B;

 • if the two chain wheels (or belt discs) have diff erent 
diameters, they will act as angular momentum cur-
rent transformers.
Th e energy fl ows to wheel A with angular momen-

tum as an energy carrier, and it fl ows away from wheel 
B with angular momentum.

Th e equation

ωA · MA = ωB · MB .

applies once again for the respective current strengths. 
In case of a bicycle with derailleur gears, the gear ratio 
can be changed, Fig. 5.23.

Exercises

1. Draw the path of the momentum for the tackle into Fig. 
5.24. By which factor is the momentum current at point A 
smaller than at point B?

2. Draw the path of the momentum current for the tackle in 
Fig. 5.25. By which factor is the momentum current at 
point A smaller than at point B?

3. What is the gear ratio for the chain drive of your bicycle? 
In case the bicycle has a derailleur gear: what is the gear 
ratio for the diff erent gears? In case it has a hub gear: 
please try to determine the gear ratios of the hub gear as 
accurately as possible.

A B

Fig. 5.22 Belt drive. Wheel B turns faster than wheel A.

Fig. 5.23 Derailleur gears of a bicycle

Fig. 5.25 For exercise 2

B

A

Fig. 5.24 For exercise 1

BA
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5.7  Friction

In a friction process, momentum fl ows from a place 
of higher velocity to a place of lower velocity. Th e two 
„places“ can also be two points within a liquid or a gas. 
We are interested in the case where they are located in 
two bodies. Let's call them A and B, Fig. 5.26.

Th e contact between the two bodies can diff er 
strongly:
 • they can be in direct contact. Example: you push a 

book over the table or a chair over the fl oor.
 • Th ere is a lubricant between A and B. Example: a 

rotating axis in a bearing. Without lubrication, we 
would have case 1. Th e lubricant is used to reduce 
friction.

 • Th ere is a gas, air in most cases, between A and B.  
Example: the friction of the air for the driving car or 
bicycle.
Th e energy balance seems to be incorrect in a fric-

tion process. Energy is lost. We call the velocity of one 
body vA, the velocity of the other one vB and the mo-
mentum current strength, as always, F.

Momentum is an energy carrier. In body A, on its path 
towards the area of friction, it carries the energy current

PA = vA · F.

In body B, where it fl ows away from the area of fric-
tion, it carries the energy current

PB = vB · F.

As vA > vB, more energy fl ows to the place of fric-
tion than away from it. What happens to the diff erence

P = PA – PB = (vA – vB) · F ?

Entropy (that we perceive as heat) is created during 
each friction process. Also the entropy is an energy 
carrier. Th e entropy created during friction necessarily 
carries energy away. Th e respective energy current can 
be written as:

P = T · IS.

Here, T is the absolute temperature (measured in 
Kelvin) and IS the entropy current strength.

We can therefore write for the friction process:

T · IS = (vA – vB) · F = Δv · F .

We have abbreviated (vA – vB) as Δv.

Fig. 5.27 There is an oil fi lm between plate A and the 
support surface B. A is moved to the right. A current of 
x-momentum fl ows through the oil fi lm from the top 
to the bottom. 

surface area
lubrication oil

momentum
flow lines

direction of movement

A

B

Entropy is created in a friction process. Together 
with this entropy energy disappears to the environ-
ment.

Friction is oft en an undesired phenomenon – be-
cause of the energy loss associated with it. It would be 
great to get rid of the atmospheric friction of cars or 
the friction in the bearings of a rotating shaft .

Certain technological devices, however, are based 
precisely on friction. Th ere, it is indispensable. Exam-
ples are brakes, clutches and shock absorbers of cars.

Let's repeat: in a friction process, momentum fl ows 
from a body A to a body B. A and B have diff erent ve-
locities. Not the absolute values of the two velocities 
are important for the friction process, but only the ve-
locity diff erence Δv. Th e strength F of the momentum 
current between A and B therefore depends on Δv.

Depending on how the bodies rub on each other, 
this relationship is varies. We have to look at these dif-
ferent Δv-F relationships to understand the diff erent 
friction processes. We will plot F over Δv in a diagram. 
Th e respective graph is called characteristic curve of 
the friction process.

Characteristic curves can have a variety of forms. 
But we can identify three fundamental patterns.

Viscous friction
When there is a viscous medium, i.e. lubricating oil, 

between the bodies A and B, Fig. 5.27, the characteris-
tic curve is particularly simple.

Fig. 5.26 During the friction process, x-momentum 
fl ows from body A to body B. (Positive x-direction to the 
right)

direct contact, lubricant or air

A

B

v
�

A

v
�

B



78

 

5 
M

O
M

EN
TU

M
, A

N
G

U
LA

R
 M

O
M

EN
TU

M
 A

N
D

 E
N

ER
G

Y
 

Th e momentum current is proportional to the ve-
locity diff erence:

F ~ Δv , or
F = k · Δv .

Fig. 5.28 shows the corresponding graph.
k depends on:

 • the viscosity of the liquid. Th e more viscous it is, the 
greater is k and the greater the momentum current 
strength.

 • Th e geometry of the arrangement. When A and B 
slide past each other as illustrated in Fig. 5.27, k is 
proportional to the area of the oil fi lm and inversely 
proportional to the distance between A and B.

Viscous friction:
F = k · Δv .

Maybe this appears familiar to you. Th ere is a strong 
similarity to the electric current that fl ows through a 
resistor. Here, the electric current strength is propor-
tional to the electric potential diff erence:

I ~ Δφ, or
I = G · Δφ.

Th e proportionality factor is the electric conduc-
tance (the inverse of resistance) and depends 1. on the 
material (on the electric conductivity) and 2. on the 
geometric dimensions of the electric resistance, i.e. on 
the cross-sectional area and on the length.

Back to viscous friction: where does it occur?

Lubrication of machine parts
Machines have parts that touch and that rub against 

one another. To reduce the eff ect of momentum or an-
gular momentum fl owing away and to avoid energy 
losses, such parts are lubricated: a thin layer of lubrica-
tion oil is applied in between as illustrated in Fig. 5.27. 
Lubrication is required also for other reasons: material 
wear is reduced and there will be less noise. You have 
certainly heard the squeaking noise of door hinges at 
some point.

Shock absorbers
A car has a spring on each wheel so that the pas-

sengers are not jolted by every pothole, Fig. 5.29. Th ere 
is a shock absorber next to (or in) the spring. Without 
a shock absorber, the car would perform long-lasting 
vibrations. In addition, the wheels would bounce on 
the road, making the car lose contact with the ground. 

Fig. 5.28 Characteristic curve for viscous friction: the 
momentum current is proportional to the diff erence of 
the velocities of the involved bodies.

0,1

0

–0,1

0 2 4

F in N
0,2

–0,2
– 4 –2

∆v  in m/s

shock absorber

spring

Fig. 5.29 Simplifi ed wheel suspension with a spring 
and a shock absorber. 

cylinder
piston with a hole

liquid

Fig. 5.30 Shock absorber. If the two connections are 
moved opposite to each other, the liquid will be 
pressed through the hole in the piston.

It could no longer be steered and slowed down prop-
erly. Hence, the „loss“ of energy is desired in case of 
the shock absorber.

Th e structure of a shock absorber is shown in Fig. 
5.30. When the two „connections“ on the right and the 
left  are moved against each other, the liquid has to fl ow 
through a small hole in the piston. Friction takes place 
at that point. Th e eff ect of a shock absorber can be un-
derstood best if we take it in our hand and pull or push 
on the connections. Th e faster they are moved, the 
harder it will be to move one end against the other.
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Th e following also applies for shock absorbers:

F = k · Δv .

Δv is the diff erence between the velocities of the two 
connections of the shock absorber.

Friction between two solid bodies
A wooden block slides over an even horizontal 

wood plate. Th is can be achieved particularly conve-
niently in the way done by Willy in Fig. 5.31: the block 
is held and it is ensured that the support surface moves 
away underneath. A momentum current fl ows from 
the rotating tabletop into the block in the process.

Willy modifi es the velocity of the rotation. But the 
momentum current meter indicates always the same 
momentum current. Th is observation also holds true 
for other solid bodies that rub on each other:

When two solid bodies rub against each other, 
the momentum current, which fl ows from one 
body to the other, is independent of the velocity 
diff erence.

Th e Δv-F characteristic curve is shown in Fig. 5.32. 
Here, the velocity diff erence was assumed to be posi-
tive.

But what happens in case of negative Δv values? 
Willy has to turn the table in the other direction. Be-
fore, however, the block needs to be suspended on the 
other side, i.e. on the right wall (because our momen-
tum current meter is installed in a cord, which only 
lets the momentum current pass in one direction). Th e 
result of the experiment is not surprising: what hap-
pens is the same as before: the momentum current is 
independent of the velocity diff erence, but now it fl ows 
in the direction that is opposite to the previous direc-
tion. Th e Δv-F characteristic curve for positive and 
negative Δv values is shown in Fig. 5.33.

Th ere is still something missing on the characteristic 
curve. What will be the value of F if the velocity diff er-
ence is equal to zero? We pull on a block, which lies on 
a (solid) table, by means of a momentum current meter 
and observe that the momentum current can be in-
creased from zero to a well-defi ned value without the 
block starting to move. Hence, it behaves as if it were 
glued to the tabletop. Only if the momentum current 
exceeds this limit value, the block will be detached and 
start moving. Th is limit momentum current is greater 
than the one that fl ows when the body is moving.

We can take this fact into account in our character-
istic curve, Fig. 5.34. You certainly know the following 

Fig. 5.31 Willy makes the table rotate. The momentum 
current between the block and the table is indepen-
dent of the velocity diff erence.

2
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Fig. 5.33 Positive and negative part of the Δv-F charac-
teristic curve for the friction between two solid bodies

Fig. 5.32 Positive part of the Δv-F characteristic curve 
for the friction between two solid bodies
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phenomenon: if you wish to move a heavy piece of fur-
niture, i.e. a closet, you will have to pull or push very 
strongly at fi rst, i.e. until you reach the limit value of 
the momentum current. As soon as the closet moves, it 
will be easier.

Aft er having obtained an overview of the entire 
characteristic curve, we would like to look once again 
at Willy and his rotating table and the positive part of 
the characteristic curve from Fig. 5.32. We call the mo-
mentum current, which fl ows from the table into the 
block and from the block through the cord to the left , 
FF (F for friction), Fig. 5.35. It is a pure x-momentum. 
We saw earlier that this x-momentum current is inde-
pendent of the velocity diff erence.

But it depends on the weight of the block, and this 
means: on another momentum current FT (T for trans-
verse), which comes from the Earth, fl ows through the 
gravitational fi eld into the block, subsequently into the 
table and from there back into the Earth.

Th e transverse momentum current FT is a pure z-
momentum current.

Th e relationship between FF and FT is simple:

FF = μ · FT .

Th e stronger the transverse momentum current, 
the stronger the friction.

Th e factor of proportionality μ depends on the na-
ture of the two surfaces. Fig. 5.36 shows the character-
istic curve for a friction process for 3 diff erent values of 
the transverse momentum current.

Th e last equation tells us that a momentum current 
can be controlled by means of another one: if we 
change FT, FF will also change. Th is property is used in 
technical applications.

Brakes
Fig. 5.37 shows a schematic top view of the disc 

brake of a car. (It could also be the rim brake of a bi-
cycle.) Th e disc rotates between two blocks. If some-
one steps on the brake pedal, the blocks will be pressed 
more or less strongly against the brake disc, i.e. a z-
momentum current is created through the brake disk. 
Th is momentum current leads to a more or less strong 
x-momentum current out of the brake disc.

Now we can understand something for which car 
drivers have a feel: the momentum decrease of the car 
during braking does not depend on how fast the car is 
driving but only on how strongly we step on the brake 
pedal. In other words: the brake works just as well (or 
poorly) at a high velocity as at a low velocity. Th is 

Fig. 5.34 For Δv = 0, the characteristic curve has a dis-
continuity.

Fig. 5.36 Δv-F characteristic curves for three diff erent 
values of the transverse momentum current

0

0 5 10

F in N

∆v 

in m/s

5

–5

–10 –5

10

–10

F in N

∆v in m/s0 4 8

4

2

6

Fig. 5.35 The x-momentum current through the cord is 
proportional to the z-momentum current that arrives 
via the gravitational fi eld. 
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should not be taken for granted. Th ere are brakes 
whose eff ect depends on the velocity. For example the 
eff ect of eddy current brakes increases with a higher 
value of Δv. Such brakes can be found in cablecars, in 
the ICE3 (high speed train), in rollercoasters or in the 
free fall tower.

The clutch
We have already seen it before. It is used to inter-

rupt and to restore a connection for an angular mo-
mentum current; see Fig. 3.18 and Fig. 3.19. When we 
hold down the clutch pedal (the left  pedal) in the car 
with our foot, the connection between the engine and 
the gear box is interrupted. To engage the clutch, we 
slowly release the pedal. In this process, the two clutch 
discs are increasingly pressed together and an angular 
momentum current is fl owing. Th is current does not 
depend on the diff erence of the discs' angular veloci-
ties but only on how far the clutch pedal has been re-
leased. In case of a half-engaged clutch, the angular 
momentum current is therefore independent of how 
fast the engine runs. Th is can be detected easily: to 
start driving, it is not important how strongly we step 
on the accelerator pedal. Only if the clutch is fully en-
gaged, i.e. if the clutch discs do no longer rub against 
each other, the position of the accelerator pedal will 
have an eff ect on the car's momentum change.

Turbulent friction
Turbulent friction is a third type of friction. When a 

body moves through a medium with a very low viscos-
ity, e.g. through the air, this medium is set in turbulent 
motion. It receives momentum, which it carries away 
convectively.

Viscosity is no longer important for this momen-
tum current. But the momentum current depends on 
the inertia, i.e. the mass density, of the medium.

In addition, it does not grow proportionally to the 
velocity diff erence but it is proportional to the square 
of Δv, Fig. 5.38.

Hence:

F ~ Δv2 .

Th e momentum loss of a car at higher velocities is 
of this type. We can learn from this example how to 
drive if we would like to save fuel and therefore en-
ergy. We could think at fi rst: I rather drive at 120 
km/h instead of 60 km/h. Although the engine needs 
more gas per second, we can make the trip in half the 
time. If the momentum loss were proportional to Δv, 
the two eff ects would just off set each other. But this is 

Fig. 5.38 Δv-F characteristic curve for turbulent friction

Fig. 5.37 Disc brake or rim brake. For braking, a z-mo-
mentum current is sent through the brake disc from 
the top to the bottom. This causes an x-momentum 
current fl owing out of the disc.
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not the case. As the momentum loss increases with 
the square of the velocity, the gas consumption per 
second at 120 km/h is more than twice as high as at 
60 km/h.

Th is argumentation is not valid for low velocities as, 
in that case, the turbulent friction is not as signifi cant 
in relation to the other friction types anymore. Th e car 
requires an unnecessarily high amount of energy at ve-
locities of around 80 km/h and more.

Exercises

1. With a brake pedal held constantly, a car is slowed down 
from 80 km/h until it stops. Indicate in one single graph 
as a function of time: the momentum of the car, the mo-
mentum current out of the car, the kinetic energy of the 
car, the energy current out of the car. Th e mass of the car 
is 1.2 t, the braking momentum current is 3600 N.

2. Th ere are brakes for which the momentum current is not 
constant but proportional to the velocity of the vehicle to 
be slowed down. Which problem will arise? How can it be 
solved?
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6   REFERENCE FRAMES

6.1  Reference frame and zero of 
a physical quantity

Th e man who fl oats down the Rhine in a boat says 
that the landscape is passing by, Fig. 6.1, while we on 
the shore say that the boat with the man is passing by.

Th is is an example of the world being described or 
contemplated in diff erent reference frames.

We would like to describe the movement of a body 
K: how fast does it move? In which direction does it 
move? We cannot answer these questions without hav-
ing clarifi ed what the movement refers to.

You walk forward through the corridor on a mov-
ing train. In relation to the carriage, you move at 
3 km/h; in relation to the Earth, you move perhaps at 
203 km/h.

Hence, when talking about a movement, it always 
needs to be clear which other body the movement re-
fers to. Th is other body is called reference body. But 
most characteristics and particularities of the refer-
ence body are not relevant. We can therefore think of it 
as replaced by a coordinate system that we attach to it. 
Th is coordinate system is called reference frame.

Th e reference body is at rest in its own reference 
frame. When using the Earth as a reference body, we 
call the corresponding reference frame „reference 
frame of the Earth“; when using a train as a reference 
body, we talk about the „reference frame of the train“.

Th e man in the boat from Fig. 6.1 has chosen the 
boat as a reference body or a coordinate system, which 
is attached to the boat, as a reference frame. Th e boat 
itself is at rest in this reference frame, its velocity is 
0 km/h while the shore (and consequently the Earth) 

Fig. 6.1 The man in the boat chooses the boat as a ref-
erence body. In his reference frame, the shore is mov-
ing. In the reference frame of the man on the shore, the 
boat is moving.

moves at –20 km/h. We can also say that the shore 
moves with respect to the boat at –20 km/h. Someone 
standing on the shore would choose the Earth as a ref-
erence body. For him, the Earth has the velocity 0 
km/h while the boat moves with 20 km/h.

Later, we will be interested in reference frames in 
which there is weightlessness. We have seen that this 
holds true for freely falling bodies. We look at an apple 
that is falling from the tree, Fig. 6.2.

At fi rst, we use the reference frame of the Earth. Th e 
Earth itself is not accelerated in this case. Hence, 

aEarth = 0 m/s2 , aapple = 9.81 m/s2.

If the apple is the reference frame, we will obtain

aEarth = –9.81 m/s2 , aapple = 0 m/s2.
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Th e specifi cation of the reference frame can also be 
more complicated, e.g.: the reference frame is „at-
tached“ to the center of mass of the solar system, the 
x-axis points towards the polar star, the y-axis towards 
... etc.

In order to describe a movement, a reference 
frame has to be chosen, i.e. a coordinate system that 
we imagine to be attached to a reference body.

Th e fact that a reference frame has to be chosen can 
also be seen as follows: we need to defi ne or to choose 
the zeros of position, velocity and acceleration.

Maybe you recall that the zero also has to be speci-
fi ed for other physical quantities. Hence, indicating an 
electric potential value or also a temperature does not 
make sense unless we know where the zero is on the 
respective scale.

Changing the reference frame means that the zero 
of position, velocity and acceleration is chosen anew.

Change of the reference frame:
shift  of the zero of position, velocity or accelera-

tion

Th e following part deals with the question of how 
the description of the world will be modifi ed if the ref-
erence frame is changed, i.e. if it is described in an-
other reference frame S' instead of the original refer-
ence frame S.

A change of the zeros of velocity and acceleration is 
particularly interesting. We will not be interested to 
the zero of position.

6.2  Phenomena in diff erent 
reference frames

When we change the reference frame, the values of 
velocity or acceleration will change. But not exclusive-
ly. Many other quantities also change their values, and 
there are phenomena that have to be interpreted in a 
completely diff erent way aft er the reference frame has 
been changed. Aft er a change of the reference frame, 
the world looks quite diff erent.

In the following, we will at fi rst assume one of the 
reference frames, i.e. S, to be the Earth while another 
reference frame S' moves against S at a constant veloc-
ity v0.

In section 6.3, S' will move against to S with a con-
stant acceleration.

Fig. 6.2 (a) From the perspective of the Earth, the accel-
erated apple moves downwards. (b) In the reference 
frame of the apple, the accelerated Earth and the tree 
move upwards.

a)

b)

0–1 1 2 3 v in m/s

0–1 1 v' in m/s–2

v' = v – v0 = v – 1.3 m/s

Fig. 6.3 In the reference frame S, the car has the veloc-
ity v, in S', it has the velocity v – v0.

Velocity, momentum and kinetic energy
We look at linear, horizontal movements. Th e x-di-

rection is the direction of movement. Hence, we only 
need to consider the x-component of the velocity vec-
tor, which we denominate with v.

Let's assume a car moves at a velocity v with respect 
to the Earth (reference frame S). In a reference frame 
S', which moves against the Earth at the velocity v0, the 
velocity of the car is

v' = v – v0 .
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We can also say that the zero of the velocity has 
been shift ed by v0, Fig. 6.3.

We now ask for the values of other quantities; at fi rst 
of momentum. In S, we have:

p = m · v,

and in S':

p' = m · v' = m · (v – v0).

And the kinetic energy. In S, it is:

2
kin ,

2
mE v=

and in S':

( )22
kin 0' .

2 2
m mE v v v= = −

We see:

Th e values of momentum and kinetic energy de-
pend on the reference frame.

On might worry that the laws of nature known to us 
would no longer be valid in S'. We examine the conse-
quences of a change of the reference frame for the law 
of momentum conservation principle and the law of 
energy conservation.

Two bodies A and B (each with a mass of 2 kg) move 
towards each other without friction and collide, Fig. 6.4. 
A is equipped with a spring bumper. Th e velocities at 
the beginning are 3 m/s and –3 m/s, respectively.

Table 6.1 lists velocity, momentum and kinetic en-
ergy for both bodies before and aft er the collision. 
Please check!

Th e total momentum prior to the collision is 0 Hy 
– just as aft er the collision. For the total kinetic energy 
before and aft er the collision we obtain 18 J.

We now describe the same process in a reference 
frame that moves to the right at v0 = 3 m/s, Fig. 6.5.

In this reference frame, body A has the velocity zero be-
fore the collision and body B aft er the collision, Table 6.2.

Th e values of all quantities are now diff erent from 
those in our original reference frame; but also in the 
new one, the total energy and the total momentum do 
not change during the collision process. Th e result 
confi rms a generally rule:

S' moves against S with v0:
Th e change of the reference frame does not aff ect 

the laws of energy and momentum conservation.

Fig. 6.4 Momentum and kinetic energy are not 
changed during collision.

A

A

A

A

A B

B

B

B

B

A

A

A

A

B

B

B

B

A B

Fig. 6.5 The same process as in Fig. 6.3 but in another 
reference frame. Momentum and energy conservation 
laws still apply

A B total

before

v 3 m/s ‒3 m/s

p 6 Hy ‒6 Hy 0 Hy

Ekin 9 J 9 J 18 J

after

v ‒3 m/s 3 m/s

p ‒6 Hy 6 Hy 0 Hy

Ekin 9 J 9 J 18 J

Table 6.1 The values of velocity, momentum and kinetic 
energy in the reference frame S (Earth)
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Water current strength
A water current of 5 liters per minute is fl owing in a 

pipe. We assume the water to have the same velocity 
everywhere in the pipe.

Now we use the water as a reference body. While the 
water does not move in the corresponding reference 
frame, the pipe does. Th e water current strength is 
now zero liters per minute.

Hence, the value of the water current strength de-
pends on the reference frame.

Electric current strength
We begin with a somewhat peculiar electric cur-

rent, i.e. we look at the electron beam in an old televi-
sion tube. Th e electrons of the electron beam move at 
a velocity of approximately 108 m/s – relative to the 
Earth. As the electrons are charged, an electric current 
belongs to the electron beam, and this electric current 
creates a magnetic fi eld around itself, Fig. 6.6.

Now we change the reference frame. We describe 
the situation in a reference frame that moves along 
with the electrons. In other words: in our new refer-
ence frame S', the electrons do not move. Hence, there 
is no electric current and no magnetic fi eld either. We 
conclude that the electric current strength in a current 
of charged particles depends on the reference frame. 
In addition, we learn something much more interest-
ing: magnetic fi elds depend on reference frames.

Later you will learn that magnetic fi elds are de-
scribed quantitatively by the magnetic fi eld strength.

S' moves against S at v0:
Th e magnetic fi eld strength depends on the ref-

erence frame.

Now we take another look at a normal electric cur-
rent in a copper wire. Here, the charge carriers move 
much, much more slowly. We could think that it is 
much easier in here to eliminate the magnetic fi eld by 
changing the reference frame. But this is not the case.

Each atom of the copper wire has an electron that is 
not fi rmly bound to the atomic nucleus. If an electric 
current fl ows through the wire, these mobile electrons 
will slide past the positive remainder.

In a reference frame in which the wire is at rest, the 
mobile electrons cause an electric current. If we now 
switch to the reference frame in which the mobile elec-
trons are at rest, the corresponding electric current 
will become zero. But in this reference frame, the posi-
tive remainder moves. And it causes an electric cur-
rent. For the current strength it is not relevant whether 
positive charge carriers move in one direction or nega-

magnetic field
moving electrons
(reference body Earth)

electrons at rest
(reference body electrons)

no magnetic field

Fig. 6.6 The magnetic fi eld strength is zero in the refer-
ence frame in which the electrons are at rest.

A B total

before

v' 0 m/s ‒6 m/s

p' 0 Hy ‒12 Hy ‒12 Hy

E'kin 0 J 36 J 36 J

after

v' ‒6 m/s 0 m/s

p' ‒12 Hy 0 Hy ‒12 Hy

E'kin 36 J 0 J 36 J

Table 6.2 The values of velocity, momentum and ki-
netic energy in the reference frame S'

tive ones in the opposite direction. Hence, no matter 
how the reference frame is chosen: the electric current 
strength and the magnetic fi eld will remain unchanged.

S' moves against S at v0:
Upon the change of the reference frame, the 

electric current strength in a beam of charged par-
ticles changes. It does not change in a neutral con-
ductor.

The bicycle chain
We describe the energy transport through the bi-

cycle chain from the front chain wheel (next to the 
pedals) to the one at the rear (on the rear wheel). As a 
momentum current only fl ows in the upper part of the 
chain, this current is the only one we need to look at. 
More precisely, we assume:

Velocity of the bicycle against the Earth:

vbicycle = 18 km/h = 5 m/s



86

6.2 Phenomena in diff erent reference frames

6
 R

EF
ER

EN
C

E 
FR

A
M

ES

Velocity of the upper part of the chain against the 
bicycle:

vchain = 0.8 m/s

Momentum current in the upper part of the chain:

F = 80 N.

We start with the description in the reference sys-
tem S of the bicycle, Fig. 6.7. Th is means that the bi-
cycle is at rest, the Earth moves at 5 m/s to the left  and 
the chain at 0.8 m/to the right.

Th erefore, we obtain for the energy current through 
the chain:

P = vchain · F = 0.8 m/s · 80 N = 64 W

Now we switch to the reference frame S' of the 
Earth, Fig. 6.8. With respect to the bicycle, the Earth 
moves at

v0 = –vbicycle = –5 m/s .

We therefore obtain for the energy current in the 
chain:

P = (vchain – v0) · F = (vchain + vbicycle) · F
= (0.8 m/s + 5 m/s) · 80 N = 464 W

But now we have a problem: the energy current is 
too great. A pedaling person cannot create such an en-
ergy current with his or her muscles. Something must 
be incorrect. In fact, we have forgotten something. Th e 
momentum current that fl ows through the upper part 
of the bicycle chain (tensional stress, i.e. from the right 
to the left ) obviously has to fl ow back. And this is what 
it does – i.e. through the bicycle frame (essentially 
through the horizontal link between the rear and the 
front chain wheel). As the bicycle moves in the refer-
ence frame S', an energy current is connected to this 
momentum current, i.e. from the rear to the front. It is 
not diffi  cult to calculate this energy current:

P = v0 · (–F) = –5 m/s · 80 N = –400 W.

(We have counted the momentum current from the 
left  to the right as negative.) Th e energy current fl ows in 
the bicycle frame from the rear to the front. Th e total 
energy current of the chain and the frame is therefore

P = 464 W – 400 W = 64 W.

464 W

400 W

vchain + vbicycle

vbicycle

64 W
vchain

Fig. 6.7 The bicycle as a reference body: an energy cur-
rent of 64 W (red arrow) fl ows through the chain from 
the right to the left.

Fig. 6.8 The Earth as a reference body: an energy cur-
rent of 464 W fl ows through the chain to the left. 400 
W fl ow through the bicycle frame back to the right.

In any case, the pedaling person releases 64 W from 
his or her muscles, and this amount arrives at the rear. 
Th e path the energy current takes, however, depends 
on the chosen reference frame.

S' moves against S at v0:
Mechanical energy currents depend on the ref-

erence frame.

We could also examine other physical quantities: 
will their values change if we change the reference 
frames? In doing so, we would fi nd at fi rst: while some 
quantities depend on the reference frame, others seem 
to be independent of it. Th erefore, we would at fi rst 
fi nd that the values of the following quantities will not 
change if we change the reference frames:

length, duration, mass, pressure, electric charge, 
temperature, entropy…
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However, this list actually contains a few quantities 
that should not be included. If we choose a reference 
frames with a very high v0, we will fi nd that most 
quantities are no longer included in the list.

Hence, the values of lengths, time intervals and 
masses change in case of a change of the reference 
frame. Only very few will be left , for example electric 
charge and entropy.

In the next chapter, we will examine phenomena 
that occur in case of high velocities. Th ey are the ob-
jects of the theory of relativity.

We summarize:
It looks as if a change of the reference frame would 

change the world. But this is not true. Th e world re-
mains the way it is. Only our description, our point of 
view, changes and makes the world look diff erent to us.

Th e world is not changed by a change of the ref-
erence frame. Only our description of the world 
changes.

Exercises

1. Two bodies A and B (each with a mass of 2 kg) collide in 
a similar way as illustrated in Fig. 6.4 – however, they do 
not have a spring bumper but a plastic bumper so that 
they are attached to one another aft er the collision. Th e 
initial velocities are as in Fig. 6.4, i.e. vA = 3 m/s and vB = 
–3 m/s. What is the momentum of body A, the momen-
tum of body B and the overall momentum before the col-
lision and aft er the collision? What is the kinetic energy 
of body A, the kinetic energy of body B and the overall 
kinetic energy before the collision and aft er the collision? 
Describe the process in a reference frame that moves 
against the one previously used at v0 = 3 m/s.

2. A locomotive pulls 4 wagons at a constant velocity on a 
level path. Sketch the path of momentum and energy (a) 
in the reference frame of the Earth and (b) in the refer-
ence frame of the train.

6.3  Free fl oat frames

Willy is in an elevator that is not suspended on a 
rope but that falls freely downwards, Fig. 6.9. (Th e el-
evator will land smoothly at the end.) It moves in an 
accelerated way: its velocity increases linearly over 
time.

Willy fi nds that he is weightless. He also experi-
ments with diff erent objects. Everything he releases 
simply keeps fl oating in front of him and does not fall 
to the ground (of the elevator). He concludes: the grav-
itational fi eld strength is zero.

Lilly observes from outside and comes to a diff erent 
conclusion. Th e gravitational fi eld strength is not zero 
at all. Th e objects that Willy releases fall to the ground 
in an accelerated motion. Willy does not perceive any-
thing of it because he is also falling himself. Aft er-
wards, Willy and Lilly discuss their observations and 
fi nally agree on the following:

S' moves against S with a constant acceleration:
Th e gravitational fi eld strength depends on the 

reference frame.

Willy takes another ride or fl ight in his falling eleva-
tor. In the meantime, Lilly holds a spring dynamome-

Fig. 6.9 Willy: „The ball fl oats in front of me. The gravi-
tational fi eld strength must be zero.“ Lilly: „The gravita-
tional fi eld strength is not zero; Willy and the ball fall 
equally fast.“

Fig. 6.10 Willy: „The fi eld strength is zero. The spring is 
stretched because momentum is fl owing into the block 
so that it becomes faster.“ Lilly: „The block does not 
become faster. A momentum current is fl owing into 
the block via the gravitational fi eld, and this momen-
tum fl ows back out through the spring.“ 



88

6.3 Free fl oat frames

6
 R

EF
ER

EN
C

E 
FR

A
M

ES

ter on which a heavy block is suspended, Fig. 6.10. Th e 
spring is stretched, it is subjected to tensional stress. 
For Lilly it is clear that a momentum current fl ows into 
the block via the gravitational fi eld, and this momen-
tum current has to fl ow away through the spring. Th is 
is usually expressed as follows: the block is heavy. Its 
mass is a measure for „heaviness“.

Th ings are diff erent from Willy's perspective: the 
fi eld strength of the gravitational fi eld is zero. He ex-
plains the fact that Lilly's spring is stretched as follows: 
the block becomes increasingly faster, its momentum 
increases continuously. It receives momentum through 
Lilly's spring (and Lilly gets it from the ground). Th is 
can also be expressed as follows: the block opposes to 
the acceleration because it is inert. Its mass is a mea-
sure for this inertia.

We found earlier (section 4.2) that a body has two 
characteristics due to its mass: it is heavy and it is inert. 
Also, we have already seen that the two characteristics 
are linked to each other. If body A is twice as heavy as 
body B, A will also be twice as inert as body B. Now we 
see that this is no coincidence.

Depending on the reference frame, mass mani-
fests itself diff erently: once as heaviness and once as 
inertia.

Th e physical laws apply in both reference frames. 
But the numerical values of the physical quantities are 
diff erent, for example the fi eld strength is zero in one 
frame and diff erent from zero in the other one. Also, 
the physical interpretation of the experiments is diff er-
ent: once, the spring is stretched due to the weight of 
the body that is suspended on it, and another time due 
to its inertia.

When describing a phenomenon in physical terms, 
we are always free to choose a reference frame. Ac-
cording to our refl ections up to now, it looks as if our 
choice was completely irrelevant as physical principles 
apply in any coordinate system. But there is another 
argument: possibly, the description in one reference 
frame is simpler than in another one – this is precisely 
the case.

In our example, we might believe that Lilly's refer-
ence frame is the simplest one. She stands on the 
ground just as we do, and we know how the world 
looks like when described from this perspective. But if 
we look more closely on the matter we may come to a 
diff erent conclusion: Willy's reference frame is the 
more convenient one, because the world could not be 
simpler than what is described by Willy: if a body is 
put somewhere, it will remain there; it will not start 

moving and become increasingly faster in the way in 
which we terrestrial human beings constantly perceive 
it. For Willy, things either remain where they are or, 
when set in motion – i.e. when given momentum – 
move straight ahead at a constant velocity. It could not 
be simpler.

Reference frames in which bodies, which are left  up 
to themselves, move at a constant velocity or do not 
move at all, are called free fl oat frames.

Free fl oat frame: 
A body that is left  up to itself does not move or 

moves at a constant velocity. 
Physics is particularly simple in a free fl oat 

frame.

Earlier, we referred to a movement as performed by 
Willy with his elevator cabin as a „free fall“. Such a 
movement normally ends aft er a short time.

But in section 4.6 we learned that the state of the 
free fall can also be maintained permanently. Any sat-
ellite that circulates around the Earth or also the space 
station ISS is constantly in a state of freely falling.

Now we will look at a spaceship that is fl oating in 
space, far away from all planets and stars. Willy and 
Lilly feel weightless. Hence, also this spaceship corre-
sponds to a free fl oat frame, Fig. 6.11.

Willy and Lilly are now longing for the Earth – es-
pecially because this is where they have the wonderful 
feeling of heaviness. As the Earth is too far away to just 
stop by for a short while, they create this feeling in a 
diff erent way: they turn on the jet engines, Fig. 6.12.

From an outside perspective (i.e. from a free fl oat 
frame) we would say: the momentum of the spaceship 
increases, and so does the momentum of Willy and 
Lilly. Hence, a momentum current is fl owing into both 

Fig. 6.11 The spaceship fl oats without drive in space. 
Willy, Lilly and everything else in the spaceship are 
fl oating. The reference frame of the spaceship is a free 
fl oat frame.
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because they describe the process in the reference 
frame of the spaceship that is not a free fl oat frame any 
longer. Th ey notice that they have become heavy. Th ey 
„stand“ on the „ground“, and every object they drop 
will „fall“ „downwards“.

Once again back to the driveless spaceship. Willy and 
Lilly look through the window and see that another 
spaceship is moving nearby, notably also without any 
drive. However, it fl ies in another direction, Fig. 6.13.

Th e passengers of the other spaceship are weightless 
as well, meaning that the other spaceship also defi nes a 
free fl oat frame. Hence, there is not only one free fl oat 
frame at a specifi c location. How many are there? Two? 
No. Every spaceship that moves against that of Willy 
and Lilly at a constant velocity defi nes a free fl oat 
frame. Th us, there is an infi nite number of free fl oat 
frames.

Every reference frame that moves against a free 
fl oat frame at a constant velocity is a free fl oat 
frame, too.

Fig. 6.13 The spaceship of Willy and Lilly is driveless, its 
reference frame is a free fl oat frame. But also the refer-
ence frame of the other spaceship, which is also drive-
less and which moves at another velocity, is fl oating.

Fig. 6.12 The drive is switched on. Willy, Lilly and the 
bottle „are standing on the fl oor“. The reference frame 
of the spaceship is not a free fl oat frame.

Exercises

1. A „drop tower“ was built at the University of Bremen for 
physical experiments, Fig. 6.14. Inside of it, there is a tube 
with a length of more than 100 m. Th is tube can be evacu-
ated for the experiments. Willy climbs in an experiment-
ing capsule and is dropped at the top of the drop tower*. 
A thick layer of Styrofoam balls at the bottom of the tow-
er ensures a smooth landing. Th e falling process takes al-
most 5 seconds. Lilly observes the experiment. Which 
maximum velocity did she measure for Willy? How does 
Willy describe his movement? How can the duration of 
the „falling process“ be doubled?
* Th e drop tower actually exists. Th e story of Willy and 
Lilly, however, is entirely fi ctitious.

2. Lilly now enters a capsule herself and lets herself be cata-
pulted upwards in the drop tower with a velocity of v = 
50 m/s. At the same time, Willy is released with his cap-
sule in the tip of the tower. Willy and Lilly observe each 
other during the experiment that takes 5 s. How does 
each of them describe the movement of the other one? 
You can make all statements without calculating.

3. A skydiver fl oats towards his landing site. His velocity is 
constant. Why does this fl oating have nothing to do with 
the fl oating of Willy and Lilly in the drop tower?

Fig. 6.14 Drop tower of the University of Bremen
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7   LIMITING VELOCITY

7.1  Mass is identical with energy

In physics, sometimes it was discovered that two 
apparently diff erent things actually are not diff erent. 
Th e most spectacular case of this type was the discov-
ery by Albert Einstein (1879-1955), Fig. 7.1, that the 
two well-known quantities mass and energy are actu-
ally the same physical quantity. Mass or weight had 
already been known in ancient times, just as precur-
sors of the energy can be traced back to the time of 
Aristotle. Th e fact that we are talking about the same 
quantity is stated in Einstein's famous publication 
from 1905: „Th e mass of a body is a measure of the 
body's energy content.“ 

As the mass is measured in kilogram and the energy 
in Joule, we cannot simply write: mass = energy. We 
also need a conversion factor k:

E = k · m ,

where k = 8.987 · 1016 J/kg.
Hence, this equation can be used to convert a speci-

fi cation in kg to a specifi cation in Joule, just as a speci-
fi cation of length can be converted from kilometers to 
miles. Just as an indication in meters and an indication 
in miles relate to the same physical quantity, also an 
indication in Joule and another one in kilogram refer 
to the same physical quantity.

Actually, we would only need a single symbol and a 
single name for the quantity mass/energy. According 
to the old habit, however, it is called mass when stated 
in kilogram and energy when the measurement unit 
Joule is used.

Fig. 7.1 Albert Einstein

If we use the conversion factor k in the following, it 
will mostly be suffi  cient to use the approximate value

k = 9 · 1016 J/kg.

Mass and energy are the same physical quantity. 
It is called mass (m) when measured in kg and en-
ergy (E) when measured in J.

E = k · m k = 8.987 · 1016 J/kg

If this statement is true – and it is indeed true –, we 
can draw two conclusions:

1. Energy has to describe the properties that we 
have only known in relation to mass up to present: in-
ertia and gravity. We look at a battery: it would have to 



91

7.2 Energy has the properties of mass

7 LIM
IT

IN
G

 V
ELO

C
IT

Y

be heavier in the charged state (i.e. when containing 
more energy) than in the uncharged state. Or any oth-
er body that we heat up would have to be heavier in the 
warm than in the cold state.

2. Mass has to describe the properties that we have 
only known in relation to energy up to present: It must be 
possible to drive something with it, for example an elec-
tric generator. Hence, we could take any sort of material 
without any value such as sand. Just because it has a mass, 
the sand would have to be suitable to drive something.

Both statements seem not to make sense at fi rst. We 
normally do not notice that they are true. Now we will 
see why.

7.2  Energy has the properties of 
mass

According to Einstein's discovery, energy has 
weight. Th e equation E = k · m tells us how many joules 
are equivalent to one kilogram.

According to this statement, for example the fol-
lowing would have to be true (Fig. 7.2):
 • A full battery is heavier than an empty one.
 • Warm water is heavier than cold water.
 • Two separated magnets are heavier than two con-

nected ones.
 • A car becomes heavier with an increasing velocity.

You will understand the reason why we normally do 
not notice these phenomena if you check by how many 
kilograms the mass of the mentioned objects will 
change.

We look at a mono-cell as an example. In the pro-
cess of discharging, it releases an amount of energy of 
approximately 10 kJ. What is the weight it loses in this 
process?

We calculate

13
16

10 kJ 1.1 10 kg.
9 10  J/kg

Em
k

−= = = ⋅
⋅

Th e mass of the battery decreases by an amount that 
is smaller than the mass of a small dust particle. (A 
typical dust particle has a mass of approximately 
10–12 kg.) Th is mass cannot be determined with a 
common scale.

Similarly small values are found for the mass diff er-
ence between a slow and a fast car or between cold and 
warm water.

Th e discovery of energy having the properties of 
mass therefore seems to have no practical implica-

Fig. 7.2 A full battery is heavier than an empty one; 
warm water is heavier than cold water; separate mag-
nets are heavier than connected ones.

battery

water

magnets

empty  full

cold  hot

combined seperated

tions. But is there any situation in which the mass 
change can be noticed? Otherwise, the statement 
could not be proven. In fact, such situations exist, for 
example:
 • when charging particles such as electrons or pro-

tons in a „particle accelerator“ with a very great 
amount of momentum;

 • when separating the protons of an atomic core, 
which are held together by very strong fi elds.
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Exercises

1. Th e annual consumption of electric power by the city of 
Hamburg is approximately 5 · 1016 J. What is the amount 
of this energy in mass units?

2. Th e Sun releases energy with the light. By how many kg 
will the mass of the Sun decrease per second? (Here is 
what you need for the calculation: approximately 1400 W 
arrive at the Earth per square meter with the light. Th e 
distance Earth-Sun is 150 million kilometers.

3. Th e sunlight that hits a square meter (perpendicular to 
the Sun rays) per second carries an energy of approxi-
mately 1400 Joule. What is the mass of the corresponding 
amount of light? How long would we have to wait until 1 
gram of light has fallen onto the square meter?

4. Approximately 500 kJ of energy is needed to accelerate a 
car to 100 km/h. What is the mass increase of the car in 
the process? During acceleration, the car also loses mass 
because of its fuel consumption. Estimate whether the car 
becomes heavier or lighter.

7.3  Mass has the properties of 
energy

Provided that mass and energy are identical, it 
would be possible to use any substance – just because 
it has mass – for any useful things for which energy is 
needed, for example to drive vehicles and machines 
or to heat buildings. Th e substance would not have to 
be a specifi c fuel or propellant. Th e fact that it has a 
mass should be suffi  cient – and all substances have a 
mass.

Hence, we should be able to use for instance sand as 
a fuel. We would like to check how much sand is need-
ed to drive a car.

Th e equation

E = k ∙ m

tells us that 1 kg of sand (or 1 kg of any other sub-
stance) contains an amount energy of

E = 9 ∙ 1016 J/kg ∙ 1 kg = 9 ∙ 1016 J .

During the combustion in a common combustion 
engine, 4.3 ∙ 107 J can be obtained out of 1 kg of gas. 
Since we have 

2000000000 ∙ 4.3 ∙ 107 J ≈ 9 ∙ 1016 J ,

an amount of energy that is two billion times higher 
corresponds to the kilogram of sand. But is that possi-
ble? Isn't it a fallacy?

In fact, the calculation is correct. Only the conclu-
sion that sand can be used to drive a car is wrong. Th e 
fact that energy is not always useful to drive something 
is perfectly known.

Here is an example that will certainly seem logical 
to you: To heat a building, it is not suffi  cient to have 
enough fuel oil. In addition, oxygen is required for 
combustion of the fuel oil. If there was no oxygen, the 
fuel oil would be worthless. We would not be able to 
transfer the energy to another carrier – and this is 
what matters. Hence, we need a suitable reactant in ad-
dition to the fuel oil.

Something very similar holds true for the enor-
mous amounts of energy that every substance contains 
due to its mass. To make use of this energy, i.e. to 
transfer it to another energy carrier, a suitable reactant 
is required.

Th e reactant that is needed here is the so-called an-
timatter. Antimatter is a form of matter that does al-
most not exist in nature.

Antimatter can be produced artifi cially but this 
process requires a high amount of energy: just as much 
energy as corresponds to the mass of the produced an-
timatter. Hence, nothing is gained.

In addition, it is practically impossible to store anti-
matter for longer than fractions of a second. It reacts 
very fast with common matter.

Th ere have been speculations about whether parts 
of space that are very distant from us consist of anti-
matter. However, this has not been confi rmed.

7.4  Rest mass and rest energy

Th e identity of mass and energy has implications 
for physics as a whole. It turns out that many well-
known equations have to be replaced by new ones.

But can this be possible? Have the old equations 
not been tried and tested? Haven't they described 
the world correctly? If they were wrong, wouldn't 
we have had to become aware from the start? The 
same is true as for the phenomena that we discussed 
in the previous section. We can only see under ex-
treme conditions that the equations are incorrect: if 
we measure very accurately or if the velocity of the 
bodies is extremely high. Hence, the old „classical“ 
equations are good approximations of the more cor-
rect „relativistic“ equations under normal circum-
stances.

Especially peculiar consequences arise for mechan-
ics. Th ey will be discussed in the following.
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From „non-relativistic“ or „classical“ mechanics, 
we know the relationship between kinetic energy and 
velocity:

2
kin( ) .

2
mE v v=

But you know that the kinetic energy is only a part 
of a body's total energy. Th e total energy would have to 
be written as follows:

(7.1)2
0( ) .

2
mE v v E= +

Here, E0 is the energy that the body has when its 
velocity and its momentum are zero, i.e. its rest energy. 
But classical physics does not tell us the amount of E0. 
Th erefore, it will not tell us the total energy E of a sys-
tem either. So far, you have certainly not been aware of 
this defect, though.

If we now take into account

E = k · m

this defect will disappear. Th e energy for v = 0 is equal 
to the mass for v = 0, (multiplied by k) and we know 
this mass of course. Th e mass for v = 0 is called rest 
mass m0 of the body.

Rest energy E0:  energy at v = 0
Rest mass m0:   mass at v = 0
  E0 = k · m0

Do not get confused by the word "rest energy". v = 0 
means that the velocity of the center of mass is zero. 
However, a system whose center of mass is at rest can 
consist of moving particles. Th is is for example the 
case in the solar system. Th e Sun, planets and Moons 
rotate around their own axis and around each other. 
Th is means that the rest energy of the entire solar sys-
tem is higher than the sum of the rest energies of its 
parts. For the solar system, however, this diff erence is 
so tiny that it is practically irrelevant. But still, the rest 
energy is sometimes also called internal energy for the 
sake of clarity.

7.5  How the velocity depends on 
the momentum

We would now like to examine the eff ects of the 
identity of mass and energy on the relationship be-
tween momentum and velocity:

p = m · v.

What will happen can be seen better if we write the 
equation as:

(7.2).pv
m

=

According to our old classical concepts, the equa-
tion says: if a body is provided with momentum, its 
velocity will increase. If m is small, the velocity will 
increase strongly; if m is large, it will only increase 
slightly.

Now we charge a body with momentum, at best in 
portions: a momentum portion at a time. Also the en-
ergy of the body will increase with each momentum 
portion. But this leads to an increase of the mass in the 
denominator of equation (7.2). Hence, the body be-
comes increasingly inert. But the larger m becomes, 
the smaller will be the velocity increase with each mo-
mentum portion. Aft er having supplied a very large 
quantity of momentum, the velocity will no longer in-
crease. In other words: if momentum is supplied, the 
velocity approaches a limiting velocity „asymptotical-
ly“. Th is limit value is the same for all bodies, particles 
or other objects, i.e.

vlimiting = √
_
k

Like k, the limit value is an universal natural con-
stant. It is denominated with the symbol c. It is:

vterm = c = 3 ∙ 108 m/s.

Th e mathematical relationship between v and p is:

(7.3)
2

2
0

( ) .pv p
pm
c

=
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

In Fig. 7.3, it is displayed for 3 bodies that diff er 
from each other in their rest mass.

You can see that the velocity for very high values of 
the momentum approaches c in each of the three cases. 
Th is is also seen from equation (7.3). For very great 
values of p, the fi rst addend under the root can be ne-
glected with respect to the second one. We therefore 
obtain:

2
( ) .pv p c

p
c

≈              =
⎛ ⎞⎜ ⎟
⎝ ⎠
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For movements that we know from our everyday 
experience, the velocities are much lower than c, i.e. 
v � c. Even velocities that appear high to us, for exam-
ple the velocity of a high-speed train or the velocity of 
the Earth on is orbit around the Sun, are still tiny com-
pared to c. Th e Earth orbits the Sun at 110 000 km/h ≈ 
30 000 m/s. Th is is only a ten thousandth part of the 
terminal value. In Fig. 7.3, the respective point cannot 
even be distinguished from the zero of the graph. If we 
apply equation (7.3) to such movements, we can ne-
glect the second addend under the root with respect to 
the fi rst one, and the v-p relationship becomes:

0
( ) .pv p

m
≈

Hence, for velocities v � c the relativistic relation-
ship turns into the classical relationship.

We can also see this in the graph of Figure 7.3: in 
the vicinity of the zero, the curves look like straight 
lines with diff erent slopes. Fig. 7.4 shows a section that 
is enlarged 100 000 times. (Bear in mind that the axes 
are calibrated diff erently.)

2
2
0

( ) .pv p
pm
c

=
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

great values of momentum:
velocity is independent of momentum
v ≈ c ;
small values of momentum:
velocity is proportional to momentum

0
( ) .pv p

m
≈

7.6  What happens to the 
velocity when the reference 
frame is changed

Let's have another look at the equation

E = k · m .

We had concluded from it that there is an upper 
limit for the velocity

vlimiting = √
_
k = c .

Now we come across a problem with this limiting 
velocity.

Let's imagine the following: a car drives on a long 
and wide conveyor belt, Fig. 7.5. Relative to the con-
veyor belt, it drives at 15 m/s, and the conveyor belt 
moves in the same direction at 8 m/s.

We are standing next to it, watch and see that the 
car moves relative to us at 23 m/s. Th is could also be 
expressed as follows: in the reference frame of the con-
veyor belt, the car moves at the velocity

v' = 15 m/s.

Fig. 7.3 Dependence of the velocity on the momentum 
for bodies with a rest mass of 0.5 kg, 1 kg and 2 kg. For 
high momentum values, the velocity of all bodies ap-
proaches the limiting velocity c.
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Fig. 7.4 Dependence of the velocity on the momentum. 
The section shows an enlarged view of the beginning 
of the curves. Here, the velocity is proportional to the 
momentum.
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In the reference frame of the Earth, the conveyor 
belt moves at

v0 = 8 m/s

and the car at

v = v' + v0 = 15 m/s + 8 m/s = 23 m/s.

Fair enough up to this point. But now we let our 
(imaginary) car drive at a velocity of 0.6 c relative to 
the conveyor belt. Th ere are no objections to this as 
the velocity is lower than the limiting velocity. But we 
now also let the conveyor belt move faster, e.g. at 0.8 
c. Th is cannot be forbidden either as it is less than c. 
But there will be a problem if we want to know the 
velocity of the car relative to the Earth. According to 
our old equation

v = v' + v0 (7.4)

we obtain 1.4 c, which cannot be not a valid result. If 
we do not want to be in doubt about c being the lim-
iting velocity, we can only conclude that equation 
(7.4) must be incorrect. And it is actually incorrect. 
The correct equation can be derived from the re-
quirement of c being the limiting velocity. As the 
derivation is somewhat tedious, we look immedi-
ately at the result and check whether it supplies the 
expected velocity values. Instead of (4) the correct 
relation is

0

0
2

' .'1

v vv v v
c

+
=

+

We look at diff erent special cases for which we al-
ready know the result in advance.

v' << c and v0 << c
If both v' as well as v0 are very small compared to c, 

the term

0
2

'v v
c

in the denominator will become much smaller than 
1 and can be neglected against 1. Therefore, we ob-
tain

v = v' + v0 ,

i.e. our old formula for „non-relativistic“ velocities.

Fig. 7.5 The velocity of the car relative to the Earth is 
equal to the velocity of the car relative to the conveyor 
belt v' plus the velocity of the conveyor belt v0, – but 
only approximately.

v'

v0

v' ≈ c and v0 < c
Now we let the car drive relative to the conveyor 

belt at almost the terminal velocity: v' ≈ c, assuming 
that the conveyor belt moves at a velocity v0 < c. We 
obtain

0 0 0 0
0 00 0

2 2

' ( ) .' 11 1

v v c v c v c c vv ccv vv v c v
cc c

+ + + ⋅ +
= = = = =

+++ +

i.e. seen from the Earth, the car also moves at the limit-
ing velocity. Th e limiting velocity is not exceeded.

v' ≈ c and v0 ≈ c
Finally, we also let the conveyor belt move at almost 

the terminal velocity.
We obtain

0

0
2 2

' .' 21 1

v v c c c cv cccv v
c c

+ + +
= = = =

+ +

Again, the car only moves at the velocity c in the 
reference frame of the Earth.

We can also describe our thought experiment as 
follows: For the movement of the car relative to the 
Earth we combine the movement of the car relative to 
the conveyor belt and the movement of the conveyor 
belt relative to the Earth.

When combining movements, the velocities v' 
and v0 must not be added, but the following applies:

0

0
2

' .'1

v vv v v
c

+
=

+
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Exercises

1. Th e spaceship Uranus fl ies at 0.9 c relative to the Earth. 
Wostok moves towards it in the opposite direction. Wos-
tok has a velocity of 0.5 c relative to the Earth. How fast 
does Wostok appear to the Uranus crew? Uranus over-
takes Shenzhou that fl ies at 0.5 c in the same direction as 
Uranus. How fast is Shenzhou relative to Uranus?

2. A car drives at v' = 140 km/h, coincidentally in the same 
direction in which the Earth orbits the Sun (at v0 = 
30 km/s). By how much is the car faster than the Earth 
from the perspective outside of the Earth? Th e solution 
will become easier if you calculate at fi rst v – v0 without 
inserting numbers. Neglect summands whose values are 
nearly zero.

7.7  How energy depends on 
momentum

For the relationship between energy and velocity, 
we have found (equation (7.1)):

2
0( ) .

2
mE v v E= +

We transform the equation by means of p = m · v 
and obtain:

(7.5)
2

0( ) .
2
pE p E
m

= +

Also this equation is valid only as a classical approx-
imation, i.e. for momentum values that are not too 
large. Th e relativistic relation is:

(7.6)2 2 2
0( ) .E p c p E= ⋅ +

Again, we would like to examine the compatibility 
of the relativistic equation with the classical one.

Fig. 7.6 shows the function graph of equation (7.6) 
for three diff erent rest masses: 1 kg, 2 kg and 3 kg.

Th e vertical axis is the mass/energy, on the left  in 
the unit kilogram and on the right in Joule. Th e hori-
zontal axis reaches up to very large momentum values.

We look once again at the two limit cases: very large 
momentum and small momentum. For large momen-
tum values, we can neglect E0 against c · p in equation 
(7.5) and obtain

E(p) ≈ c · p .

Th e equation of the asymptote is

E(p) = c · p .

Hence, the curve approaches the asymptote for 
large p values. In other words: for large p values, the 
energy is proportional to the momentum.

Let's now have a look at small momentum values. 
Fig. 7.7 shows the classical and the relativistic energy-

Fig. 7.6 Relationship between energy and momentum 
for bodies with the rest masses 1 kg, 2 kg and 3 kg. All 
three curves approach the asymptote E = c · p.
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Fig. 7.7 For small momentum values, the relativistic 
curve is well approximated by the classical one.
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momentum relationship, i.e. the graphs of the func-
tions (7.5) and (7.6).

We can see that the functions for small momentum 
values are nearly congruent. Th e classical formula 
(7.4) is a good approximation for small velocities, i.e. 
for v � c.

2 2 2
0( )E p c p E= ⋅ +

great values of momentum:
energy is proportional to momentum
E(p) ≈ c · p
small values of momentum:
energy changes with the square of momentum

2

0( )
2
pE p E
m

= +

Exercises

1. Calculate E(v) starting with the expressions v(p) and 
E(p). Illustrate the relationship graphically. Interpret 
graph. At which velocity will a body be twice as heavy as 
in the state of rest?

2. A particle (e.g. an electron) is charged at a constant rate 
with momentum by means of an electric fi eld. (A con-
stant momentum current fl ows into the particle.) Illus-
trate graphically: p(t), E(t) and v(t).

7.8  Particle accelerators

What are particle accelerators for?
Matter consists of molecules, molecules consist of 

atoms, atoms consist of protons, neutrons and elec-
trons, protons and neutrons are made up of quarks. 
Hence, there is a hierarchy of components or particles. 
Apart from the particles listed here, there are many 
others that are normally hardly noticed though.

Some particles are not noticed because they are very 
rare in nature: for example muons, antielectrons, anti-
protons or antineutrons. Th ese particles, however, can 
be produced artifi cially in larger quantities. Other par-
ticles are not perceived as they do almost not „interact“ 
with the normal matter. Th ey fl y through the matter in 
an almost unencumbered way. Th is is true, inter alia, to 
the neutrinos that come from the Sun and to the parti-
cles of the dark matter of which not much is known yet.

Particle accelerators are important devices to explore 
the components of matter. Particles – mostly electrons 
or protons – are charged with very much momentum 
and energy and shot onto a target, i.e. any matter at rest 

or, even better, particles with opposite momenta are 
shot onto one another. New particles, i.e. a very large 
quantity of them, are formed in the process. Some of 
these new particles only have an extremely short lifes-
pan and decay into other particles. Hence, a sequence of 
particle transformations takes place. Th e newly formed 
particles are examined: its energy, its momentum and its 
electric charge are measured and the frequency at which 
they arise in a reaction is checked.

About the structure of an accelerator system
Th e particles (protons or electrons) move in an evac-

uated tube. As they are electrically charged, they can 
absorb momentum – and consequently also energy – in 
an electric fi eld (just as a body absorbs momentum and 
energy in the gravitational fi eld due to its mass).

In large accelerators, the particles do not form a 
continuous beam but they move in bunches through 
the machine. During each circulation, a bunch moves 
through several „accelerating cavities“, i.e. areas with 
an electric fi eld. In each accelerating cavities, the 
bunch receives a „kick“, i.e. a portion of momentum 
and a portion of energy.

(Th e electric fi eld has to be switched on and off  re-
peatedly in this process. Th e particles cannot be accel-
erated on an orbit with a constant electric fi eld. Th is is 
because in that case they would be accelerated by the 
fi eld during one part of the round trip and slowed 
down again during another part.)

Magnetic fi elds are needed for the particles to move 
on a bent orbit and not straight ahead. Th erefore, elec-
tromagnets are located all over the ring.

The LHC
A large proton accelerator system is located at the 

CERN in Geneva. Th e main ring is the LHC ring 
(Large Hadron Collider). Four smaller accelerators are 
placed ahead of it. Th e fi rst of them is a linear accelera-
tor („Linac“).

Fig. 7.8 shows a view from above of the system. It is 
located at a depth of approximately 100 m under the 
surface of the Earth. Th e way that the protons take 
through the 5 accelerators is shown. Th e main ring has 
a circumference of 27 km. From the penultimate accel-
erator ring, the protons are fed into the LHC in opposite 
directions. Th e fi gure also indicates the energy that the 
particles have aft er running through each of the four 
rings. Th e „proton-synchrotron booster“ brings them to 
the 1.5-fold value of their rest mass m0, when leaving the 
„proton-synchrotron“ they have an energy of 20 m0, the 
„super-proton-synchrotron“ brings the mass/energy to 
400 m0 and the LHC eventually to 7000 m0. 
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In the LHC, the proton bunches are brought to their 
fi nal energy of 7000 · E0 in approximately 20 minutes. 
Th en, they circulate in the ring for several hours. Th ere 
are always 2808 bunches in the LHC ring at the same 
time. At the beginning, each bunch contains approxi-
mately 1011 protons.

At some points, bunches moving opposite to one 
another cross their way. Here, new particles can be 
formed out of the protons, that move in opposite di-
rections, and huge detectors are therefore located here 
in order to detect these new particles and to measure 
their properties.

Particle accelerator system
Particles are charged with energy and momen-

tum and brought to collision. New particles are 
formed, inter alia particles with a rest energy that is 
much higher than that of the initial particles.

Fig. 7.8 LHC accelerator system at CERN. The large ring 
has a circumference of 27 km. The system is located in 
a tunnel under the surface of the Earth. 
Not shown are:
• the magnets that force the beam onto the nearly 
circular orbit
•  the „accelerating cavities“ that are distributed over 
the rings
•  the detectors

LHC
7000 m0

Super Proton
Synchrotron

400 m0

Proton
Synchrotron

20 m0

Proton Synchrotron Booster 1.5 m0

Linac

Possible reactions
Without knowing the details of the particle reac-

tions, we can make some statements about such pro-
cesses: the general conservation laws have to be ful-
fi lled. Energy, momentum and electric charge of initial 
particles and product particles have to be equal. But 
there are yet other conservation laws that have to be 
obeyed.

As each of two colliding protons brings an energy of 
7000 · E0, 14 000 · E0 is available for the reaction. Hence, 
particles with a much higher rest mass than that of the 
proton can be created.

A note regarding the name „accelerator“: it is not 
quite suitable but we have used it because it is a his-
toric custom. When coming out of the third accelera-
tor stage, the protons have a mass of 20 m0. Th eir ve-
locity is therefore almost equal to the limiting velocity. 
Consequently, they hardly become any faster in the 
two subsequent „accelerator stages“. Th ey only become 
heavier.

In addition, the protons are charged with energy for 
20 minutes and will then only circulate at a constant 
energy in case of the LHC. Th erefore, a ring as the 
LHC is also called storage ring. Highly energetic parti-
cles are stored in it.

Exercise

1. What is the velocity of the protons aft er the 2nd, 3rd, 4th 
and 5th acceleration stage of the LHC system? Th e result 
from Exercise 1, Section 7.7 is needed. Give the result in 
units c, i.e. how many times c is the respective velocity?

7.9  Light

Th ere are particles whose rest mass is zero: the pho-
tons, i.e. the particles light consists of. If we set m0 = 0 
in equation (7.3), we will obtain:

v = c.

Hence, photons always move at the limiting ve-
locity.

But rest mass or rest energy zero does not mean that 
the photons have no energy. Rather, the appearance of 
light clearly tells us the energy of its photons: the high-
er the frequency f of the light, the higher the energy of 
the respective photons:

E = h · f .
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h is a fundamental physical constant, the Planck 
constant:

h = 6.626 · 10–34 Js.

Th e photons of violet light (high frequency) have 
more energy than those of red light.

Th e energy-momentum relationship of the photons 
is very simple. With E0 = 0, equation (7.6) becomes

E(p) = c · p .

Written with m instead of E, we have:

m · c2 = c · p ,

or

.pm
c

=

Th e phenomenon that we will discuss now looks 
quite innocuous at fi rst. But we will see that it has pe-
culiar consequences.

When a body is moved upwards in the gravitational 
fi eld of the Earth, i.e. if it is brought to a higher gravi-
tational potential, the body has to be provided with 
energy. Th e body will not retain this energy but release 
it immediately to the gravitational fi eld.

You got to know the formula

ΔE = m · (ψ2 – ψ1) .

m is the mass of the body and

ψ = g · h

the gravitational potential (g = fi eld strength, h = 
height).

However, by means of our new equation E = k · m 
we now can replace the mass and obtain:

.EE
k

ψΔ = ⋅Δ

Transforming the equation, we obtain the „relative 
energy change“, i.e. the energy change divided by the 
total energy:

(7.7).E
E k

ψΔ Δ
=

We apply this equation to light. We know that the 
energy of the photons is related to the frequency of the 
light:

E = h · f .

Th erefore, we can write

ΔE = h · Δf ,

and we can transform equation (7.7):

(7.8).f
f         k

�� �
�

At fi rst, the result is not very thrilling. We look at an 
example: the light of a street lantern. Th e lantern is lo-
cated at an altitude of 4 m. On its way downwards, the 
frequency increases according to our formula. We cal-
culate by how much. With Δh = 4 m and g = 10 N/kg, 
the diff erence of the gravitational potential becomes:

Δψ = 40 Nm/kg = 40 J/kg.

With k = 9 · 1016 J/kg we obtain:

164.4 10 .f
f

−Δ
= ⋅

Δf = 4.4 · 10–16 f.

Th e frequency increases by a tiny fraction of the ini-
tial frequency f. Aft er all, this eff ect could be deter-
mined experimentally, albeit not with the light of a 
street lantern.

7.10  Clocks in the gravitational 
fi eld

To better understand the peculiar consequences of 
this eff ect, we imagine the frequency change to be 
greater than it actually is. Willy lives on the top fl oor of 
a skyscraper, Lilly on the ground fl oor, Fig. 7.9.

Willy and Lilly want to fi nd out in an experiment 
whether the formula for the frequency change of the 
light is correct.

Willy points downwards with a green laser. On its 
way, the energy of the light and consequently the fre-
quency increases, and blue light (higher frequency) ar-
rives down at Lilly's place. Lilly also has a green laser 
that she points upwards. Th is light loses energy while 
rising; its frequency decreases. It is red when it arrives 
at Willy's place.

Willy now has a clock whose rate is controlled by 
the frequency of the light. Lilly has such a clock, too. 
Willy (top) therefore concludes that Lilly's clock runs 
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more slowly than his own. And Lilly (bottom) comes 
to the same conclusion: Willy's clock runs faster. 
Th ey want to check whether this conclusion is cor-
rect. Willy and Lilly meet halfway and compare their 
clocks, i.e. they set them in a way that they indicate 
the same time. Th en, Willy goes back upwards and 
Lilly back downwards. Aft er a while, they meet half-
way once again and compare their clocks. As expect-
ed from our formula, the clocks do no longer indicate 
the same time. Willy's clock is fast compared to Lilly's 
clock. Th e reason is not a defect of the clocks. At Wil-
ly's place, more time has passed than at Lilly's place. 
Let's assume that Willy and Lilly are twins, i.e. born 
at the same time. Willy who lives at the top of the 
skyscraper would, seen from Lilly's perspective, age 
faster than Lilly, or Lilly would age more slowly com-
pared to Willy.

Th is phenomenon is known by the name twin para-
dox (in most cases, a slightly diff erent story is told to 
illustrate the context). A paradox is an assertion that 
seems to be contradictory but that is actually not.

Back to reality: the only incorrect piece of our story 
is the eff ect being so strong.

Hence, another one of those relativistic eff ects that 
are funny but completely irrelevant? Not exactly. On 
Earth, it is relevant in cases where accurate frequency 
measurements are important. Th is is the case for GPS. 

Willy

 blue

green

red

Lilly

green

Fig. 7.9 The energy (and the frequency) of upward-
moving light decreases. The energy of the downward-
moving light increases. Lilly has the impression that 
Willy's time passes faster, and Willy feels that Lilly's 
time runs more slowly.

In GPS-based position calculations, this eff ect has to 
be taken into account.

But there are also places in the world where the 
rates of clocks in the gravitational fi eld are very diff er-
ent: in the vicinity of black holes. Black holes are celes-
tial bodies with very uncommon properties. Prior to 
looking at time eff ects in the vicinity of black holes, we 
will get an overview of the most important celestial 
bodies.

Two people separate, move to places of diff erent 
gravitational potential and meet again. More time 
has passed for the person who was on the high 
gravitational potential.

Exercises

1. Th e skyscraper has a height of 400 m. Willy and Lilly live 
there for two years. How much more than Lilly has Willy 
aged during this time?

2. Assume that the eff ect of faster aging is much stronger: 
Willy ages twice as fast as Lilly. What are the consequenc-
es of this aging process for Willy's and Lilly's everyday 
life?

7.11  Celestial bodies

Single objects
Th ere are celestial bodies of very diff erent sizes, 

masses, composition and temperature. Starting from a 
certain mass, every celestial body is nearly spherical. 
Any large deviation from the spherical shape would 
smooth out just as a "mountain" of water would do: the 
water fl ows to places where the gravitational potential 
is lower, Fig. 7.10. Also the mountains that continu-
ously form on Earth only reach a height of less than 10 
km. Th ey fl ow (very slowly) towards the lower gravita-
tional potential, too.

Most celestial bodies that can be seen at night with 
the naked eye are stars. Only the Moon and the planets 
are no stars.

Fig. 7.10 The water fl ows to places of lower gravita-
tional potential.
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Planets
Th e eight planets Mercury, Venus, Earth, Mars, Ju-

piter, Saturn, Uranus and Neptune (enumeration from 
the inside to the outside) move around the Sun on 
nearly circular orbits. Almost no heat is produced in-
side a planet. It is relatively cold on its surface. Th e sur-
face of Venus has a mean temperature of approximate-
ly 500 °C, Neptune's surface temperature is –200 °C. 
500 °C is a low value compared to the temperature at 
the surface of the Sun.

Th e masses of the planets are very small compared 
to the mass of a typical star (see Table in Section 4.7). 
Other stars also have planets, but observing them is 
diffi  cult because they are so small and because they do 
not glow themselves.

Moons are celestial bodies similar to the planets. A 
Moon always orbits around a planet.

Planet
 • orbits around the Sun
 • is small compared to the Sun
 • is relatively cold

Sun-like stars
A typical example for a star is the Sun. Th e fact that 

we perceive it as much larger and brighter than other 
stars is simply due to it being much closer to us. Th e 
masses of the stars are in the range between 1/100 of 
and 100 times the mass of the Sun.

By far the biggest part of a star's mass is located in a 
small internal area. In case of the Sun, 90 % of the mass 
are within half of the Sun's radius. Hence, we could 
almost say that „the Sun looks bigger than it actually 
is“.

In a much smaller inner core of the Sun, a nuclear 
reaction occurs at a temperature of 10 million Kelvin: 
hydrogen is transformed very slowly into helium. Lat-
er, also higher elements are formed. Th e entropy that is 
created during the reaction fl ows outwards together 
with the associated energy: from the high temperature 
of the reaction zone to the „low“ temperature at the 
surface (approximately 5800 K). Further entropy is 
produced on the way to the outside. From the surface, 
entropy and energy leave the Sun with the light. Due to 
its high temperature, the material of the Sun is gas-
eous.

Sun-like star
 • is gaseous
 • a nuclear reaction takes place inside

White dwarves
A white dwarf is formed from a Sun-like star, which 

is not too heavy, when its „core fuel“ is no longer suf-
fi cient to maintain the nuclear reaction, i.e. when it is 
„burnt out“. Th e white dwarf is not gaseous but in a 
state that is rather similar to that of the Earth; only is 
the matter compressed very strongly due to its own 
weight, i.e. the gravitational fi eld. Its density is approx-
imately 103 kg/cm3.

Th e masses of the white dwarves are in the range 
between 0.5 and 0.7 sun masses, their diameters 
amount to several thousand kilometers. Th ey still 
glow, but only due the fact that they are cooling down. 
Because of their small size, white dwarves cannot be 
seen on the night sky with the naked eye. A white 
dwarf consists of carbon and oxygen, the reaction 
products of the reaction in the star out of which it was 
formed. An unusual relationship applies for white 
dwarves: the larger the mass of a white dwarf, the 
smaller its diameter.

White dwarf
 • is a burnt out star
 • matter is strongly compressed by the gravita-

tional fi eld
 • glows in the process of cooling down
 • the larger the mass, the smaller the diameter

Red giants
Th ey represent an intermediate stage in the devel-

opment from a Sun-like star to a white dwarf. Th e di-
ameter of a red giant is approximately a hundred times 
as large as that of the star of which it was formed. How-
ever, its size only arises due to the fact that the already 
light shell of the initial star is strongly enlarged. Th is 
expansion is caused by the strong light fl ow that comes 
from the small core. Th is radiation literally infl ates the 
shell and eventually blows it completely away so that 
only the core, which has been transformed into a white 
dwarf, is left . Hence, it is even more true for a red giant 
that it „looks much bigger than it actually is“.

Red giant
 • shell is strongly infl ated due to radiation
 • intermediate stage on the way to the white dwarf

Neutron stars
A Sun-like star that runs out of nuclear fuel will 

shrink. We have seen that a white dwarf can be formed 
in this process. However, if the initial star is very heavy, 
the pressure will become so high that no stable white 
dwarf will result. In case of suffi  ciently high pressures, 
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the electrons react with the protons of the atomic nu-
cleus to form neutrons and neutrinos:

proton + electron → neutron + neutrino .

Normally, i.e. in case of lower pressures, no neu-
trons are formed out of protons and electrons. On the 
contrary: neutrons disintegrate spontaneously into 
protons and electrons and antineutrinos (neutrinos 
and antineutrinos are very light and fugitive particles.)

Th e neutrons formed out of the protons and elec-
trons take up much less space than the electrons and 
protons. Hence, much space is created and the star im-
plodes until the neutrons are packed together very 
closely. It becomes a neutron star. Th e neutron star has 
a diameter of only approximately 20 km at a mass be-
tween 1.3 and 2 sun masses. For this reason, it has a 
very high density: approximately 1012 kg/cm3.

During the implosion of the star, the gravitational 
fi eld releases a huge amount of energy – more than the 
rest energy of the Sun – and a gigantic explosion takes 
place: a supernova. A part of the matter of the initial 
star is thereby catapulted away to the outside. A super-
nova is a process that does not take long and that can 
therefore be observed on rare occasions only. In our 
galaxy, the Milky Way, approximately 20 supernovas 
take place per 1000 years.

A supernova can also occur in another way. A white 
dwarf forms a binary star with a red giant. Th en, mat-
ter fl ows continuously from the red giant to the white 
dwarf. Th e mass of the white dwarf increases in the 
process and so does the pressure inside. Finally, the 
pressure becomes so high that the reaction

proton + electron → neutron + neutrino

starts and the white dwarf „implodes“, similar to a 
house that is built higher and higher until it can no 
longer bear its own weight and collapses.

Neutron star
 • is a burnt out star with a large mass
 • neutrons were formed out of protons and elec-

trons
 • a supernova explosion takes place during its for-

mation

Black holes
If the mass of the star that is running out of nuclear 

fuel is even larger, also the neutrons will no longer 
withstand the high pressure. Th en, nothing will be left  
to keep the matter from collapsing further. Th e fi nal 

stage of the star is a black hole. Its mass is approximate-
ly 5 to 15 sun masses.

Seen from the outside from a long distance, a black 
hole appears as a sphere with a diameter of approxi-
mately 10 to 20 km that does not emit any radiation. 
How is that possible? If the black hole is approached 
from the outside, the gravitational potential will de-
crease. Seen from the outside, a clock runs more slow-
ly the closer it comes to the center of the black hole. At 
a defi ned distance from the center, it fi nally stops com-
pletely. Th e corresponding spherical surface is called 
event horizon. It appears to us as outsiders as if the 
time at the event horizon is standing still. If we were to 
let an object fall into the black hole, we would fi nd the 
object to move increasingly slowly and to never reach 
the event horizon.

As a consequence, nothing – no light and not mat-
ter – can reach us from the event horizon, and espe-
cially not from further inside either.

Black hole
 • mass is so large that even the neutrons cannot 

bear the pressure
 • an object that falls into a black hole never reach-

es the event horizon from an outside perspec-
tive.

What we have described here is called stellar black 
hole. Th ere is yet another class of black holes. At the 
center of every galaxy, there is a black hole that is much 
bigger and heavier than a stellar black hole. Th e mass 
is 106 to 1010 sun masses.

Systems of stars
Binary star
Two stars move around one another on closed or-

bits. Approximately half of the stars are partners in a 
binary star. Th e Sun is not. Th e two partners of a bi-
nary star can be of a diff erent nature, i.e. for example: 
one of them is a normal star and the other one a white 
dwarf; or one is a red giant and the other one a neutron 
star.

Binary star
• two stars orbit around one another

Galaxies and galaxy clusters
Th e stars are not distributed evenly in space but 

pooled in galaxies.
Galaxies have very diff erent sizes. Th e galaxy our 

solar system belongs to is the Milky Way system. At 
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night, it appears to us as a bright band that extends 
over the sky: the Milky Way. From the outside, we 
would see that it is approximately disc-shaped. It con-
sists of around 3 · 1011 stars and has a diameter of ap-
proximately 100 000 light years.

Our next neighbor at a distance of approximately 
2.5 million light years is the Andromeda galaxy. It is 
hardly visible with the naked eye.

Th ere are galaxies that emit much more electro-
magnetic radiation than other, normal galaxies: the 
quasars. Th e radiation mostly comes from a heavy 
black hole that is located at the center of the quasar 
and where matter is constantly falling in. We will dis-
cuss later what a black hole is.

Also the galaxies are not spread evenly over the uni-
verse. Th ey also exist in bundles, i.e. in so-called galaxy 
clusters.

Galaxy
 • cluster of many stars

Quasar
 • galaxy that contains a black hole where matter 

falls in
 • emits very much radiation

Further components of the universe
Two important components of the universe that do 

not fi t in our current classifi cation still have to be men-
tioned.

Cosmic background radiation
When looking at the particle number of the diff er-

ent components of the universe, we fi nd that by far the 
greatest contribution is made by the photons, i.e. the 
particles of light. Th e entire space is fi lled with electro-
magnetic radiation in the microwave range, i.e. with 
wavelengths of several millimeters to centimeters (i.e. 
the same radiation that is used for mobile phones). Th e 
number of photons is approximately 1010 times larger 
than the one of the matter particles, i.e. of protons and 
neutrons in the universe. Th is radiation is called cos-
mic background radiation.

However, their contribution to the mass of the cos-
mos is very small compared to that of matter.

Cosmic background radiation
 • microwave radiation
 • 1010 times as many photons as matter particles

Dark matter
But also the matter the visible and invisible stars 

consist of does not make to biggest contribution to the 
overall mass of the universe. A contribution that is ap-

proximately six times bigger comes from dark matter. 
It consists of particles that do almost not interact with 
the „normal“ particles, i.e. protons, neutrons, electrons 
and photons. It can only be felt signifi cantly through 
its gravitational fi eld.

Dark matter
 • total mass is around six times that of normal 

matter
 • manifests itself through its gravitational fi eld
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8   SPACETIME

Space can be defi ned as „room for something“. It 
can be fi lled or empty. We can indicate its quantity that 
we call volume and that we measure in m3. We can de-
scribe a point in space by means of three coordinates; 
then, we talk about the position.

Also for the time we can indicate a „point“ on a 
time scale and a sort of amount of time by an interval 
on the time scale. Th is is usually called duration. Points 
in time and intervals are measured in seconds.

Th is is how the terms space and time are used in 
everyday life. In the following, we will see that mod-
ern, i.e. relativistic physics, teaches us that space and 
time are more than just the stage where the physical 
processes take place.

We will see that
 • space and time are coupled and form a unit: the 

spacetime. Th e physics of spacetime is the subject of 
the so-called special relativity theory.

 • Spacetime has properties that diff er from point to 
point. Th is is the subject of the general relativity 
theory.
Both theories or descriptions of nature were formu-

lated by Einstein.

8.1  Problems of presentation 
and designation

We would like to graphically illustrate the move-
ment of a body in space, for example a helicopter, a 
bird or a portion of water in the swirling fl ow of a river. 
Th is can be done in several ways.

Fig. 8.1 shows the trajectory of the body. Here, we 
learn something about the movement: the position 

Fig. 8.1 Trajectory of a body

x
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z
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z

1 s

2 s
3 s

4 s
5 s

6 s
7 s

8 s

9 s
14 s

10 s
12 s

11 s 13 s

15 s

Fig. 8.2 Trajectory of a body with time specifi cations

where the body was located and the order in which it 
has passed these points.

But this does not yet tell us everything about the 
movement. We do not know at what times the body 
was at the diff erent locations. Th ere is a way to close 
this information gap, Fig 8.2.

Th e picture tells us at what instant of time the body is 
located at which position. Now, 4 numerical values are 



105

8.1 Problems of presentation and designation

8
 SPA

C
ET

IM
E

associated with each point on the red curve: three space 
coordinates and one time indication. We have used a 
trick to display the three space coordinates: perspective 
display. You can imagine the curve to be displayed in a 
real three-dimensional coordinate system, too.

It would actually be nice if we were able to also in-
dicate the time on a coordinate axis. For this purpose, 
we would need a fourth dimension – which we do not 
have. But we oft en have to work with movements in a 
plane. Th is means that we only need two dimensions 
for the trajectory. In this case, we can use the third axis 
for the time.

Th ings will become even simpler if the movement 
takes place in only one direction, for example like in 
case of a car that drives on a long straight road – while 
its velocity may change arbitrarily. In such cases, we 
can graph the movement in a two-dimensional coordi-
nate system.

Fig. 8.3 shows the movement (and also the stand-
still) of a car. Can you describe the movement in 
words?

You might wonder why the time axis was set as a 
vertical axis and the position axis as a horizontal axis. 
Up to present, you have certainly seen it inversely. It 
does not have any deeper reason; it is simply a usual 
practice in spacetime physics, which will be addressed 
in the following.

Th e gray line that describes the movement of a car 
is not the trajectory of the car; compare with the above 
statement. We need a new name for it. It is called the 
world line of the car.

A point on the world line, for example the point P, is 
called spacetime point. It is characterized by two nu-
merical values: the specifi cations for the position and 
for the time.

Four numerical values are generally needed to de-
scribe three-dimensional movements: three space co-
ordinates and one time coordinate. A world line would 
be a line in a four-dimensional coordinate system.

A world line describes the movement of a body. 
It tells us at which position a body is located at dif-
ferent instants of time.

By indicating the coordinates of space and time, i.e. 
by indicating the spacetime point, we can describe 
when and where an „event“ takes place.

Willy and Lilly make an appointment: they would 
like to meet at 11.00 h in front of the canteen. Th e event 
is: „Willy and Lilly meet up“. Th e spacetime point is:

t = 11 h
x = in front of the canteen.

x

t

P

Fig. 8.3 World line of a moving body

Exercises

1. A model railway moves on a circular track. Th e radius is 
1 m. Th e locomotive needs 10 seconds for a round. A fur-
ther locomotive drives twice as fast. Draw the two corre-
sponding world lines in a common coordinate system.

2. A construction vehicle drives on a straight path. Th e tra-
jectory with the time specifi cations, Fig. 8.4, tells you how 
it drives. Draw the world line of the vehicle into an ap-
propriate spacetime diagram. Include some spacetime 
points.

t1 = 0 min

t2 = 4 min

t3 = 8 min

t4 = 12 min

t5 = 16 min

t6 = 20 min

10 km x

Fig. 8.4 For exercise 2
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Exercises

3. Four world lines are drawn into the t-x diagram from 
Fig. 8.5. Th ey show the history of 4 bodies. Two of the 
bodies move at a constant velocity. Which one is faster? 
One of the two becomes faster, the other one slower. 
Which ones?

4. Lilly experiences weightlessness during a parabolic fl ight. 
She fl oats. As she has not held her mobile phone properly, 
it receives a little shove and moves upwards (seen from 
Lilly's perspective) at a constant velocity. Draw the world 
lines of Lilly and her mobile phone into a common space-
time diagram. Lilly should stay at rest in this diagram.

5. Lilly wants to do early morning exercise and starts riding 
her bike at 8.00 h. She drives on a straight route at a veloc-
ity of 15 km/h. She starts her return trip in a way as to 
meet Willy, who has stayed at home, at 9.00 h. (a) Draw 
the world lines of Lilly and Willy in an appropriately cho-
sen coordinate system. (b) Indicate the coordinates of the 
spacetime points of the following events: Lilly starts her 
return trip; Willy and Lilly meet again.

6. Figure 8.6 shows two world lines. Make up a correspond-
ing story.

8.2  The time interval between 
two spacetime points

For ordinary people, space and time are indepen-
dent of each other. Th is can be seen as follows:

Willy and Lilly each have a stopwatch. Th ey start 
their watches at the same time, separate for a longer 
time and meet up again in order to compare the dis-
plays of their watches. Th ey indicate the same – of 
course, you will say. Th is is how time works; it runs 
equally fast for all of us.

Strangely, this trivial statement is not correct. Here 
is what Willy and Lilly would fi nd if they were to do a 
much more accurate measurement: Th ey start their 
watches at the same time, separate for a longer time 
and meet up again in order to compare the displays of 
their watches. Th e watches indicate something diff er-
ent. Depending on how the two have moved in the 
meantime, Willy's watch indicates a bit more or a bit 
less than Lilly's.

We would like to analyze this phenomenon.
We describe the process by means of world lines.
To keep things simple, we imagine Willy and Lil-

ly to move in an area of the universe in which no 
celestial bodies exist, i.e. far away from stars and 
planets. The coordinate system we use is a free-
floating one.

Once again: Willy and Lilly rest in their free-fl oat-
ing coordinate system and start their stopwatches.

t

x

(1)

(2)

(3)

(4)

Fig. 8.5 For exercise 3

Fig. 8.6 For exercise 6
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Fig. 8.7 Lilly's stopwatch indicates less than Willy's.
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Now we assume Lilly to move away in a spaceship; 
she fl ies around while Willy is a bit lazy; he remains 
where he is.

Th e world lines of Willy and Lilly are shown in Fig-
ure 8.7. As Willy does not move, his space coordinate 
remains constant all the time: x = x0. It turns out that 
Lilly's stopwatch indicates less than Willy's.

Th ey repeat the experiment once, and many times, 
in order to fi nd out what to do to make the stopwatch 
indicate as much as possible and as little as possible. 
Th e result is surprising for both of them. Th e longest 
time is displayed when no movement is made at all as 
in case of Willy, Fig. 8.8.
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Fig. 8.8 The stopwatch indicates the greatest value on 
the straight world line.

t

x
0

12

0

W
il

ly

A

B

Lilly

0

0

Fig. 8.9 If Lilly moves (almost) at the limit velocity, she will (almost) not age at all.

Lilly's watch always displays a lower value than Wil-
ly's, and the faster she moves while increasing her dis-
tance to Willy and returning, the lower the indication 
of the watch. Eventually, she manages to move away 
and back at almost the limit value and it becomes evi-
dent that her watch displays almost zero in this case, 
Fig. 8.9. As she was so fast, she also moved far away 
from Willy.

Do not let yourself be fooled by the Figure: the ver-
tical time axis corresponds to Willy's time because he 
is located in a fl oating reference frame the whole time.

Here, we have always talked about the values that a 
stopwatch displays. Lilly's watch indicates less than 
Willy's. However, there is more than just the pointer 
position of two watches. Less time passes for Lilly's 
watch because the watch is moving. Th ough, not only 
the watch is moving but also Lilly herself and her 
spaceship. Less time consequently passes for Lilly and 
her spaceship, too. And this also means that Lilly ages 
less than Willy between the spacetime points A and B.

We can summarize the observations:

If two people separate with their watches (event 
A) and meet again later (event B), their watches will 
indicate diff erent times.

For the person (watch) who does not move at all, 
the longest time passes. For a person (watch) who 
gets from A to B at (almost) the limit velocity, (al-
most) no time passes.

Yet another generalization: Willy's watch displays 
the longest time not only when he does not move at all, 
but also when he moves free-fl oating. Th en, spacetime 
B in the world line diagram is no longer situated 
straight above A, Fig. 8.10.
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Willy's world line is still a straight line, but this 
straight line is now inclined against the t-axis. Hence, 
we have the following general rule:

For the person (watch) who moves free-fl oating, 
the longest time passes. For a person (watch) who 
gets from A to B at (almost) the limit velocity, (al-
most) no time passes.

Or formulated a bit more succinctly:

Th e longest time passes on the straight world 
line.

In this simple form, however, the rules only apply as 
long as there are no gravitational fi elds caused by 
heavy bodies, i.e. stars or planets.

Th e fact that the watches indicate diff erent values 
aft er having moved for a while on diff erent paths at 
diff erent velocities is not in line with our normal expe-
rience. And you might fi nd this diffi  cult to understand. 
However, you are very familiar with a analogical phe-
nomenon. Th is might make the watch story appear a 
bit more plausible.

So far, we have talked about two people with respec-
tively one watch who separate from each other at a 
spacetime point A and who meet again at another 
spacetime point B.

Our other story goes as follows: Willy and Lilly sep-
arate at a place A and meet again at a place B, Fig. 8.11. 
Attention: now, A and B do not stand for spacetime 
points but for positions in the usual space – for exam-
ple two cities. Willy and Lilly are both driving each 
with one car from A to B, but on diff erent routes.

Th is time, they do not look at the watch but at the 
mileage counter. Of course, the mileage counters indi-
cate diff erent distances when Willy and Lilly have ar-
rived at B. Th ey can also try a variety of paths and fi nd: 
the mileage counter shows a diff erent value each time. 
But there is also a distinguished connection in this 
case: the road that is completely straight between A 
and B. Th e distance is smallest for it. All other paths 
are longer. Th e longest way that we could think of 
would be infi nitely long. Hence, we could formulate 
the following rule:

If two people separate with their mileage coun-
ters (place A) and meet again later (place B), their 
mileage counters will indicate diff erent path 
lengths.

For the person (mileage counter) who moves 
straight ahead, the distance is shortest.

t

x

0

W
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y

Lilly

0

16

A

20
B

Fig. 8.10 The stopwatch indicates the greatest value on 
the straight world line.
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W
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A

B

20 km

30 km
Lilly

Fig. 8.11 The mileage counter displays the smallest 
value on the straight line.

normal space spacetime

position spacetime point

milage counter watch

movement on a straight 
line: smallest distance

free-fl oating movement:
greatest time interval

Table 8.1 Analogy between the trajectory in space and 
the world line in spacetime
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We are consequently dealing with an „analogy“, 
Table 8.1.

Exercises

1. Five diff erent world lines describe 5 „trips“, Fig. 8.12. All 
of them start at time t1 from a common position and meet 
again at the same position at the time t2. Th e dashed line 
is the world line of a body that moves at nearly the limit 
velocity. (a) Which world lines are physically permitted 
and which are not? (b) Sort the permitted world lines ac-
cording to the time that passes for the traveler.

2. To measure the trajectory of the Moon exactly, laser puls-
es are sent from the Earth to the Moon, refl ected there by 
a mirror that was set up during a Moon landing in 1969 
and received back on the Earth. Th is way, Willy measures 
the runtime of the laser pulse. It is 2.55 seconds. Imagine 
Lilly could travel together with such a light pulse. (a) 
What are the important events A and B for the measure-
ment? (b) Draw the world lines for Willy and Lilly be-
tween the two events. Choose the reference frame in 
which Willy is at rest. (c) Which travel duration (between 
the events A and B) is indicated by Lilly's watch? (d) Both 
Willy as well as Lilly know the limit velocity. What did 
Lilly fi nd out regarding the distance between the Moon 
and the Earth? Formulate hypotheses.

3. Willy and Lilly have the same birthday. Willy is 15 years 
old today, Lilly 16 years. On this birthday, Lilly goes on a 
trip together with a light pulse. One year later – Willy is 
celebrating his 16th birthday – Lilly comes back. (a) Willy 
has calculated the route traveled by Lilly. What is the re-
sult of his calculation? (b) Lilly also arrives on her birth-
day. But how old is she?

8.3  Time travels – the twin 
paradox

Th e stories of Willy and Lilly in the previous section 
were purely fi ctitious and we have not paid attention 
about the numerical values on the curves in Fig. 8.7 
and 8.8 being realistic. Th ey were only meant to ex-
plain the principle.

Now we would like to examine the magnitude of 
these eff ects in greater detail, i.e. to see which circum-
stances are required to observe them at all. In general, 
this is a complicated task, but if we assume Lilly to 
move at a constant velocity v during her trip, things 
will become simple again. Let's call the time that pass-
es for Willy Ts (s for straight world line) and the time 
that passes for Lilly Tb (b for bent).

Tb is calculated from Ts according to:

(8.1)= −
2

b s 21 .vT T
c

Fig. 8.12 For exercise 1

t

xA

B

(1)

(4)

(2)

(5)
(3)

t2

t1

Th e factor

−
2

21 ,v
c

which appears in many formulas in relativistic physics, 
tells us that the eff ect is small under normal condi-
tions. If the velocity v is low compared to the limit ve-
locity c, this factor will be nearly equal to 1, and this 
means in our case that we have

Tb ≈ Ts .

We would like to test this statement for a particular 
case. Once again back to Willy and Lilly: Th ey start 
their stopwatches. Willy does not move, whereas Lilly 
drives away by car for an hour at 90 km/h, turns 
around and drives back for an hour at 90 km/h. (At-
tention: the hour is read from Willy's stopwatch.) 
What will the stopwatches display when the two meet 
again? Of course, Willy's watch will indicate 2 hours 
(as this was the duration of the trip). We obtain the 
indication of Lilly's watch by means of equation (8.1). 

Now directly calculate the diff erence between the 
two time indications, i.e. Willy's minus Lilly's time:

(8.2)

− = − −

⎛ ⎞
= ⎜ − − ⎟

⎜ ⎟
⎝ ⎠

2

s b s s 2

2

s 2

difference = 1

1 1

vT T T T
c

vT
c

With

Ts = 2 · 1 h = 7200 s
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v = 90 km/h = 25 m/s
c = 3 · 108 m/s

we obtain

−

−

⎛ ⎞
= ⎜ − − ⎟

⎜ ⎟⋅⎝ ⎠
= ⋅

s b

2

8 2

12

difference = 

257200 s 1 1
(3 10 )

25 10  s.

T T

Th e diff erence is 25 picoseconds. Th is is much less 
than the measuring accuracy of the stopwatches. 
Hence, it is not surprising that such eff ects cannot be 
felt in normal life.

We have assumed Willy and Lilly to be on Earth, i.e. 
not in a freefl oat frame. Th is is allowed in our case as 
the movement only takes place in the horizontal plane 
while the gravitational fi eld strength vector is perpen-
dicular to the surface of the Earth.

In order to make the eff ect stronger, we now let Lil-
ly travel faster: She is not driving leisurely at 90 km/h 
but accelerates by means of a rocket in space to 90 % of 
the limit velocity, i.e. 0.9 c, and she is not fl ying for two 
hours but for 20 days (seen from the perspective of 
Willy's free-fl oat-frame): 10 days in one direction, and 
10 days back. Th ereby, she moves away over 
2.3 · 1011 km (please check). How many days are pass-
ing for Lilly during this trip? We insert in equation 
(8.1):

2

b s 2

2

1

0.9
20 days 1 9 days

vT T
c

c
c

= ⋅ −

⎛ ⎞= ⋅ − ≈⎜ ⎟
⎝ ⎠

While Willy has aged by 20 days, Lilly has only be-
come 9 days older.

Th e trip that Lilly makes in our fi ctitious and slight-
ly unrealistic story is also called time travel.

Let's assume that Lilly starts her trip on July 1. She 
will then be traveling for 9 days and arrive in a world 
in which the calendar already indicates July 21. Some 
people would say that she has made a trip to the future. 
But this is actually not a smart expression as Willy has 
arrived on July 21, too. Hence, everybody „travels“ to 
the future in any case.

Th e fact that one person ages less then someone else 
is also known as the twin paradox. At fi rst, we cannot 

see anything paradoxical about this statement. Th e ar-
gumentation goes as follows: seen from Willy's per-
spective, Lilly moves. We can also say that Lilly moves 
in Willy's reference frame. But shouldn't we obtain the 
opposite result, i.e. that Willy ages less, if we go to Lil-
ly's reference frame?

We must not draw this conclusion because Lilly's 
reference frame is not a free-fl oat frame due to the ac-
celerations during her trip. And in this case, equation 
(8.1) is no longer valid.

Two people W and L separate (event A) and 
meet again (event B). W moves freely fl oating, L 
moves at a constant velocity v (same amount of v on 
the outward and return path). If the time Ts passes 
for W, the time 

= −
2

b s 21 .vT T
c

will pass for L.

Our new formula also provides another result that 
might look surprising at fi rst but that was actually to 
be expected. Lilly wants to age as little as possible dur-
ing her trip. What does she have to do? Fly away and 
return as fast as possible. But now we know: she can-
not move faster than at the limit velocity c. Hence, she 
travels at (almost) the limit velocity. Inserting c in our 
equation shows that the best we could wish for is 
achieved: the term under the root and consequently 
Lilly's aging process is zero.

Exercises

1. Th is time, Lilly stays at home and Willy moves away and 
returns back. When the two of them meet again, they 
compare the indications of their watches. Th e travel time 
measured by Willy is half of that measured by Lilly. What 
was Willy's velocity of travel?

2. Lilly travels to a star that is 99 light years away from 
the Earth according to the star atlas. She reaches a ve-
locity of 0.98 c with her spaceship. Willy, who does not 
want to join her trip, calculates how long it will take to 
see Lilly again (Lilly does not plan to stay at destina-
tion) and is very concerned. (a) Why is Willy con-
cerned? (b) Which travel time is indicated by Lilly's 
board clock when she reaches her destination? Based 
on the distance of the star from the starting point, i.e. 
99 light years, and the travel time indicated by her 
watch, Lilly calculates the travel speed and is surprised 
for a moment. (c) What is the travel velocity resulting 
from her calculation? She is surprised at first, thinks 
for a while and finds a peculiar explanation for her re-
sult. (d) Which explanation?
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8.4  Movement on a circular 
orbit, GPS

We would like to apply equation (8.1) to a special 
situation: a circular movement. We imagine Lilly to sit 
on a carousel and move in a circle while Willy stands 
next to it and sees Lilly pass time and again, Fig. 8.13.

Lilly's movement is not a simple back-and-forth 
movement anymore. Her movement does not take 
place in one dimension of space but in two dimen-
sions. We therefore need two space coordinates in ad-
dition to the time. Th erefore, the spacetime diagram 
becomes three-dimensional and we display it in per-
spective, Fig. 8.14.

Lilly's trip starts in the spacetime point A. Willy and 
Lilly start their stopwatches. Aft er four turns of the 
carousel, both will be located in the spacetime point B 
and compare their watches.

We would like to calculate the „aging diff erence“, 
i.e. for one rotation at fi rst.

Given is the „turn around time“ T of the carousel 
(measured with Willy's watch!) and the radius r of 
Lilly's orbit.

Hence, we have:

Ts = T

and Lilly's velocity is
2

.
r

v
T
π

=

Inserted in equation (8.1), we obtain what is indi-
cated by Lilly's stopwatch:

2 2

b 2 2
4

1
r

T T
c T
π

= ⋅ −

Th e diff erence between the watch displays, i.e. the 
aging diff erence Willy-Lilly, will then become (see 
equation (8.2)):

(8.3)
2 2

s b 2 2
4

difference 1 1
r

T T T
c T

⎛ ⎞π
⎜ ⎟= − = ⋅ − −
⎜ ⎟
⎝ ⎠

We assume:

T = 5 s

and

r = 3 m

Th en, we will obtain

Fig. 8.13 Lilly moves, Willy does not (in the reference 
frame of the Earth).

Fig. 8.14 World lines of Willy (red) and Lilly (blue) that 
connect the spacetime points A and B. Willy ages more 
than Lilly.

t

x
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B

y

r

2 2

16 2

16

4 3
difference 5 s 1 1

9 10 5

4 10  s.−

⎛ ⎞π ⋅
⎜ ⎟= ⋅ − −
⎜ ⎟⋅ ⋅⎝ ⎠

≈ ⋅

Hence, the diff erence is tiny again as expected.
We could conclude the aging diff erence to be im-

measurably small and without any signifi cance.
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But the eff ect can be perceived
 • if the measurement accuracy is very high;
 • if the velocity is very high.

We have already come across these conditions: they 
also need to be fulfi lled in order to fi nd that energy and 
mass are the same physical quantity.

So is all this lacking practical signifi cance? Not at 
all!

In some technical applications, extreme time mea-
suring accuracy is important, for example in deter-
mining a position with the GPS system. And in some 
physical experiments with particle accelerators, the 
particles move at a velocity that is no longer low in re-
lation to the limiting velocity. We will examine both 
cases in greater detail.

Example: muon accelerator
Muons are „elementary particles“ that are very 

similar to electrons. Th ey have the same charge and 
the same angular momentum as electrons; their mass, 
however, is approximately 200 times larger than that 
of the electrons. In contrast to the electrons, muons 
are not stable. Th ey decay into electrons and neutri-
nos. Such a decay is a statistical process. We cannot 
tell in advance from an individual muon when it will 
disintegrate; but the mean lifetime τ of a large num-
ber of muons has a very specifi c well-known value. 
We know:

τ = 2.2 μs (microseconds)

Muons can be brought to a high velocity by means 
of a particle accelerator. In an experiment at the CERN 
laboratories, muons that formed a beam were brought 
to a velocity of

v = 0.9995 c

i.e. very close to the limiting velocity. Then, they 
circulated – guided by a magnetic field – in a so-
called storage ring, similar to Lilly on the carousel 
but much faster. The mean lifetime of these muons 
can be measured easily by detecting the electrons 
that are formed in the decay process. This lifetime 
can be imagined as a kind of clock that moves along 
with the muons. This moving clock has to indicate 
less than a clock that is at rest in the laboratory, or in 
other words: the laboratory clock has to indicate 
more than the muon clock. While 2.2 μs pass be-
tween the formation of the muons and their decay, 
the time between these events must be greater in the 

laboratory. We calculate it by means of equation 
(8.1). Given are

Tb = 2,2 μs

and

v = 0.9995 c .

As we would like to calculate Ts, we transform 
equation (8.1):

b
s 2

2

,
1

TT
v
c

=

−

insert and obtain:
6

s 2

2

2.2 10 69.6 s.
0.9995

1

T
c

c

−⋅
= = μ

−

32 times as much time as for the „clock of the muon“ 
has passed for the laboratory clock.

Example: GPS
To determine a position, the GPS device (GPS = 

Global Positioning System) calculates to distance to 
several satellites from on the runtime of electromag-
netic signals emitted by the satellites. To enable this, 
very accurate clocks are located both on Earth as well 
as in each satellite. However, as another world line is 
associated with the satellites than with any clock on 
Earth, the „satellite time“ would deviate more and 
more from the „Earth time“. Th erefore, it is corrected 
continuously.

Th e runtime diff erence has two causes. We have al-
ready addressed one of these eff ects earlier (Section 
7.10 Clocks in the gravitational fi eld). We will get back 
to it once again at a later time. At the moment we are 
interested in the second eff ect. It is connected to the 
fact that the satellite clock moves against the Earth.

We calculate the runtime diff erence that would ac-
cumulate on one day. In this case, the clock in the GPS 
device on the Earth corresponds to Willys watch in the 
previous example, the clock in the satellite corresponds 
to Lilly's watch. We need the following data:

radius of the satellite orbit: r = 26,600 km
turn around time 12 h = 43,200 s

Inserted in (8.3), we obtain:
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Ts – Tb = 12 h · 0.83 · 10–10 = 3.6 · 10–6 s.

As the satellite performs two circular trips per day, 
the satellite clock would measure a value that falls 
short of 7.2 microseconds per day.

You might have questions about our method of cal-
culating this time diff erence: Don't we have to consid-
er that the clocks are also moving on Earth? Basically 
yes. Th e velocity of the Earth clocks, however, is much 
lower than that of the satellite. Its contribution to the 
overall eff ect is therefore very small and can be ne-
glected.

In addition, we have pretended the clock to be free-
fl oating on Earth in contrast to the satellite. But isn't it 
actually just the opposite? Shouldn't the satellite clock 
measure the higher value in that case? No. Here, we 
cannot apply our rule that the fl oating clock indicates 
the highest value; it only applies if there are no celestial 
bodies with their gravitational fi elds nearby.

Once again back to the other eff ect that distorts the 
rhythm of clocks. Th is „eff ect of altitude“ causes the 
satellite clock to measure 45.6 μs in excess per day. Its 
eff ect is therefore opposite to the „velocity eff ect“.

Hence, both eff ects in combination cause the satel-
lite clock to indicate

45.6 μs – 7.2 μs = 38.4 μs

in excess per day.
As the „error“ is known, it can be corrected easily 

by simply making the satellite clock run at an appro-
priate slower rate: if it were standing next to an Earth 
clock, it would indicate 38.4 μs less per day. Converse-
ly, if it is located on board of the satellite, it will run 
synchronously to the Earth clocks.

Exercises

1. Neptune and Mercury have orbited the Sun for several 
billion years. Find the radii and turn around times of the 
two planets on the Internet. We imagine that clocks, 
which have the same structure and which run eternally, 
were installed 100 million years ago on both planets. 
Which time diff erence has accumulated during these last 
100 million years? (Gravitational eff ects shall be disre-
garded.)

2. Two equal amounts of the same radioactive material are 
deposited at the same time on the Moon and on Earth. 
Aft er a certain time, only half of the radioactive material 
still exists on Earth. What can you say about the amount 
of material on the Moon? Would a scientist on the Moon 
say that his material has a diff erent half-life in spite of be-
ing chemically identical to the one on Earth?

8.5  Clocks at diff erent altitudes 
– from another perspective

We have seen that the „incorrect pace“ of the clocks 
in the GPS satellite has two causes. It looks as if these 
causes were two fundamentally diff erent phenomena.

We will now like examine one of these eff ects from 
a new perspective using our new knowledge about 
spacetime.

Once again back to the old story: a skyscraper; 
Willy and Lilly are located at half its altitude and 
compare their watches. Th en, Willy goes upwards 
and Lilly goes downwards. Aft er a certain time, they 
meet again halfway and compare what the watches 
indicate. It turns out that Willy's watch indicates 
more than Lilly's.

Th e deviation apparently had something to do with 
the gravitational fi eld. But now we know a trick to get 
rid of the gravitational fi eld; or better, to make its fi eld 
strength become zero: describing the process in a free-
fl oat frame. How could that work in case of our sky-
scraper?

We need a third person, Lilly's sister Milly, and the 
whole process is described in Milly's reference frame. 
What does Milly have to do? As soon as Willy and 
Lilly have compared the indication of their watches, 
she vigorously jumps upwards; she fl ies very high and 

Fig. 8.15 World lines of Milly, Lilly and Willy. The longest 
time passes for Milly, the shortest one for Lilly.
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will of course come back down at some time. She 
jumps as high as to land precisely at the moment in 
which Willy and Lilly compare their watches for the 
second time. Like any thrown stone or „jumping per-
son“, Milly is weightless; she fl ies or fl oats freely. Her 
reference frame is therefore ideal to describe the world 
because everything looks much simpler in this refer-
ence frame. In particular, the gravitational fi eld 
strength is zero.

How does the world look like from Milly's perspec-
tive? Milly does not say that she fl ies upwards fi rst and 
then comes back down, but the skyscraper with Willy 
and Lilly moves downwards and then comes back up, 
Fig. 8.15. (In the Figure „downwards“ is left wards.) In 
Milly's reference frame, Willy and Lilly each go on a 
trip, but on diff erent world lines. On the largest part of 
her trip, Lilly is further away from Milly than Willy. 
We know what that means: When meeting the second 
time, Willy's watch displays more than Lilly's watch. 
And the highest value is indicated by Milly's watch be-
cause Milly does not move at all (in her free-fl oat 
frame).

8.6  Simultaneity is no longer 
what it used to be

Everyone knows the meaning of „simultaneous“. A 
bicycle fell over in Berlin and simultaneously a dog es-
caped in Stuttgart. Th e phrase seems to be clear. But we 
are by now used to surprises; and indeed, we will have 
another problem if we take spacetime seriously.

We make a short detour and try to turn things 
around, i.e. to interchange time and space. „Simulta-
neous“ means „at the same time“. Let us fi rst ask for 
events occurring „at the same place“. Hence, we re-
place

two events that occur at the same instant of time (si-
multaneously) at diff erent places
by

two events that occur at the same place at diff erent 
times

Example
Lilly travels on a high-speed train (ICE), wagon 8, 

seat 28. She plays a computer game. Event A shall be 
the start of the game, event B the end. Do the events 
occur at the same place?
 • Yes, because they take place in wagon 8, seat 28.
 • No, because Lilly was in Karlsruhe at the start of the 

game and in Mannheim at the end.

Th ere is no contradiction. Th e question has a diff er-
ent answer depending on the reference frame. In the 
reference frame of the highspeed train, the events oc-
cur at the same place while they occur at diff erent 
places in the reference frame of the stationary Earth. 
Th is will certainly not be questioned by anyone.

Now, we simply have to get used to the idea that si-
multaneity also depends on the reference frame. How 
can that look like? Here is another example:

Th e minute hands of the train station clocks in 
Karlsruhe and Mannheim advance simultaneously by 
one bar – in the reference frame of the Earth. In the 
reference frame of the train that drives northwards, the 
hand in Mannheim advances a bit earlier than that in 
Karlsruhe and vice versa for trains driving southwards.

Of course, the eff ect in our example is tiny again.

Two events that occur simultaneously in one ref-
erence frame are not simultaneous in another refer-
ence frame.

Fig. 8.16 shows an analogous situation that will cer-
tainly not appear problematic to you either.

What can we learn from these examples? It is very 
simple: choose the most suitable reference frame for 
any situation that you wish to describe or any problem 
you wish to solve, i.e.:

Th e events „Lilly starts the computer game“ and 
„Lilly ends the game“ in the reference frame of the 
train (and not in the reference frame of the Earth).

Th e events „a bicycle falls over in Berlin“ and „a dog 
escapes in Stuttgart“ in the reference frame of the 
Earth (and not in a rocket that fl ies past at almost the 
limit velocity).

Th e arrangement of the fl oors in a skyscraper in 
Frankfurt with an altitude axis that points upwards in 
Frankfurt (and not with an axis that points upwards in 
Shanghai or Sydney).

Of course, each of these situations can also be de-
scribed in an inappropriately chosen reference frame 
or coordinate system, but then things will become 
complicated.
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In Europe the 20th floor 
is above the 40th floor…

I guess they
cannot count …

Fig. 8.16 The meaning of „top“ and „bottom“ depends on the perspective.
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9   CURVED SPACE

9.1  Space – more than an empty 
recipient

We have dealt with the term "space" and discovered 
peculiar things: space is connected with time, and this 
is a way that we have not come across in our daily ex-
perience.

But we still had the impression of space and time 
only being needed to determine the coordinates of 
events. Space would be a sort of empty recipient in 
which the world's events take place.

In the following, we would like to understand that 
there is more to say about space and time. We will see 
in particular that the space has characteristics that 
change from one point to another, also in places where 
no matter exists. Th is means that it is not only similar 
to an empty recipient but also to an object.

But what exactly is space? Th e object or the recipi-
ent in which the object is located? Both terms are not 
suitable because space is both in one: an entity with 
properties (like an object) and the place where the ob-
ject is located (like the inside of an empty recipient).

Th e theory we use to describe this entity is called 
Einstein's theory of gravitation, usually referred to as 
general theory of relativity.

9.2  Mass curves space – 
geodesics

Th e space around us has a characteristic we take for 
granted up to the point that we do not even imagine 
that it could also be diff erent: it is „fl at“. Actually, it is 
not fl at everywhere. In the environment of heavy ce-
lestial bodies it is „curved“.

a)

b)

c)

d)

Fig. 9.1 Diff erent, „two-dimensional“ worlds: (a) plane, 
(b) surface of a sphere, (c) cylinder surface, (d) hills and 
valleys
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a)

b)

c)

Fig. 9.2 Geodesics in a „two-dimensional world“. (a) fl at world; (b) and (c) curved worlds
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What do we mean by „fl at space“ or „curved space“? 
It can be understood better if we imagine a two-di-
mensional world instead of the three-dimensional 
world we are living in: everything that exists is two-
dimensional, including the beings that live in this 
world. We call them 2D people.

We could now imagine various diff erent 2D worlds: 
even ones but also diverse types of arched or bent ones, 
Fig. 9.1.

As three-dimensional beings, we can tell from each 
of these surfaces if and at where and how strongly the 
surface is curved. We can see it because we have em-
bedded the two-dimensional world in our three-di-
mensional world.

To familiarize ourselves with curved worlds, we 
need an important concept: the straight line.

But what is a straight line in a curved space? We ask 
our 2D people and they explain: you will get a straight 
line if you always drive straight ahead in a car, i.e. if the 
steering wheel is set to a straight direction and held. By 
the way, we can safely make real, three-dimensional 
people drive around in a car on the two-dimensional 
surface of the Earth for this purpose. Hence, we imag-
ine a hilly landscape and always drive straight ahead 
with an off -road vehicle.

Th e line or route on which the car drives is the 
straightest line we can achieve on a two-dimensional 
surface. Th is is because we neither deviate to the right 
nor to the left . Hence, we drive on a „straightforward 
line“. Th e technical term for such a line is geodesic.

Fig. 9.2 shows geodesics in three different "land-
scapes", on the left side a perspective view and on 
the right side a view from above. These geodesics 
could possibly be trajectories of cars driving straight 
ahead and starting parallel to each other on the left 
edge.

Fig. 9.3 The two-dimensional world is fl at although its embedding is curved.

Th e 2D people can now fi nd out how the surface is 
curved without leaving their fl at world, and would 
come to the same result if the third dimension were 
not to exist. How can they tell that their "space" is 
curved? By means of the geodesics: if two adjacent 
geodesics that start in parallel to one another do not 
remain parallel.

Th e world of Fig 9.2a is fl at. We can see that the geo-
desics remain parallel to each other.

Th e pictures in the second row (Fig. 9.2b) show a 
landscape with a hill. Although the cars start in paral-
lel to each other and always drive straight ahead, their 
routes do not remain parallel.

Th e landscape of Fig. 9.2c has high hills and valleys 
leading to a quite chaotic course of the straightforward 
lines (geodesics).*

However, the 2D people do not have the same no-
tion of curvature as ourselves (i.e. three-dimensional 
people).

Fig. 9.3 shows a fl at world that we (as 3D people) 
would describe as curved. Th e 2D people, in turn, do 
not classify it as curved because the geodesics that start 
in paralle on the left  will remain parallel.

Finally, we look at a particularly simple two-dimen-
sional world: the surface of a sphere (Fig. 9.1b). It es-
sentially corresponds to the world we are living in, i.e. 
the surface of the Earth. Imagine that we start with two 
cars that are parallel to one another and drive always 
straight ahead. (Th ere are no mountains, valleys and 
oceans and we can drive everywhere, i.e. we do not need 
any roads). More specifi cally: we start at the equator, 
each car drives northwards on a meridian. Of course, 
the car routes will not remain parallel; they will fi nally 
intersect at the North Pole. Th ey intersect because the 
two-dimensional space in which they are situated, i.e. 
the surface of the sphere, is curved, Fig. 9.4a.
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Also in Fig. 9.4b two lines that are initially paral-
lel intersect at some point. They are situated in a 
flat space. They intersect because they are curved 
themselves. (Hence, they are no geodesics.) We find 
that the fact that two lines which are parallel at 
first, but do not remain parallel can have two 
causes: first, the space is curved and second, the 
lines are curved.

It is of course also possible that both the space as 
well as the lines are curved.

Everything we have found in this context applies for 
the three-dimensional space as well. Also here, there 
are „straightforward lines“ or geodesics. And if the 
space is „curved“, parallel geodesics will not remain 

Fig. 9.4 (a) The initially parallel lines intersect because the „two-dimensional space“ is curved. (b) The initially par-
allel lines intersect because these lines are curved.

a)      b)

Fig. 9.5 For exercise 1

a)      b)

parallel. If we were able to embed the three-dimen-
sional space in a four-dimensional one, it would pos-
sibly be easier for us to get a clear idea of its curvature 
– but there is no fourth dimension of space, i.e. no em-
bedding either. In any case, the following also applies 
for our three-dimensional space:

Two initially parallel lines can intersect because: 
 • the lines are curved; 
 • space is curved.

* Here you can have geodesics drawn in a landscape 
defi ned by yourself: http://www.physikdidaktik.uni-
karlsruhe.de/soft ware/geodesiclab/a3.html
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Exercises

1. Each of the black segments in Fig. 9.5 is limited by two 
lines. Do those lines intersect? If yes, why? If no, why not? 
Please answer the questions for both image sections.

2. Try to imagine a one-dimensional world. Can the inhab-
itants fi nd a curvature of this world? How would the 2D 
people from the two-dimensional world comment the 
opinion of the 1D people?

3. One- and two-dimensional worlds are not very suitable 
living spaces. Try to imagine what the structure of living 
beings, their roads, houses, vehicles etc. would have to be 
like. What are the problems?

4. 2D people know the formula for the circumference of a 
circle: U = 2πr. Th ey would like to know whether the for-
mula also applies for very large circles, Fig. 9.6. Th ey 
move away from M on a line that is straight for them. 
Upon arrival in point A, they turn at a right angle and 
continue to move on a curve whose points are located at 
a constant distance from M, i.e. they move on a curve 
with a constant curvature. Aft er having traveled long 
enough, they return to A and fi nd that measurement and 
calculation for the circumference of the circle have diff er-
ent values. (a) Explain how the discrepancy arises. (b) 
How will the discrepancy between the measured and the 
calculated value change if the 2D people choose increas-
ingly large radii?

9.3  Space curvature in the 
environment of celestial 
bodies

In the previous section, we did not talk about phys-
ics but about geometry. So let's get back to physics.

Now, the question is whether the three-dimensional 
space we are living in is curved. Th e answer: it is 
curved; however, the curvature is very slight almost 
everywhere. It is only strong in conglomerations of en-
ergy/mass and in its environment. Th e curvature close 
to the Earth is still so weak that it cannot be detected. 
Th ings are diff erent in close proximity to the Sun. 
Th ere, the curvature – although still being very slight 
– can be measured. However, it is much stronger in the 
environment of neutron stars; and the space is down-
right crumpled in the close neighborhood of a black 
hole.

Space is curved by energy/mass.

But how can the curvature of our three-dimension-
al space be detected aft er all? In principle, it is simple: 
just the way we did in the previous section in the two-
dimensional space: we choose two neighboring paral-
lel geodesics and move forward on them. When their 

Fig. 9.6 For exercise 4

distance changes, the space is curved. But this is easier 
said than done.

And how can the geodesics be found in three-di-
mensional space? How does the „car“, which drives 
always straight ahead, has to be in this case?

Every body K fl ies straight ahead as long as no mo-
mentum fl ows into it or comes out of it. And this is 
where the problem arises. We would like to determine 
the geodesics for the example close to the Sun, but pre-
cisely there, momentum fl ows out of the Sun into K. 
Th is is commonly called gravitational attraction. But 
we can get rid of it using a trick: by charging the Sun 
and the body K electrically, i.e. in a way that the result 
is repulsion. If attraction and repulsion just neutralize 
one another, K will receive just as much momentum 
through the gravitational fi eld as it releases via the 
electric fi eld. Of course, this can only be done in our 
mind, it is a thought experiment.

Consequently, K would now fl y on a geodesic in 
three-dimensional space. Due to the space curvature, 
its orbit would be deviated in compared with a straight 
line in the case that space would be fl at.

Once again: this method does not work in practice, 
but it is conceivable in principle.

Space curvature also manifests itself in another way. 
At fi rst, we look at a large, cube-shaped region of space 
in which there is no celestial body; hence, the space in 
the cube is not curved, top of Fig. 9.7.
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If the edge length of the cube is a, the cube will have 
a volume of:

V = a3 .

Now we assume that there is a celestial body at the 
center of the cube, bottom of Fig. 9.7. Th e cube should 
be so large, i.e. the cube surface should be so far away 
from the celestial body, that the space is fl at on the out-
side there; four of the cube edges are parallel sections 
of straight lines. Now the peculiarity: the volume of 
the space region within the cube is no longer equal to 
a3 but larger. More can be packed into the cube than 
into the cube without the celestial body. We can there-
fore say:

Th e volume of a region of space is enlarged by 
energy/mass.

Once again something that cannot be imagined? 
Not necessarily. We would fi nd the same matter com-
pletely normal in a two-dimensional world. Here is a 
story that might be somehow unrealistic but that will 
help you understand our new theorem.

A farmer bought one hectare of land to create a 
meadow for his sheep. He would like to have more 
land but he cannot fi nd anyone who would sell him 
some. But he has an idea: he enlarges the area of the 
meadow by piling up a hill on the purchased hectare, 
Fig. 9.8.

Th is is easy to imagine for us because we see the 
two-dimensional cultivation area „embedded“ in the 
three-dimensional space. Such an embedding, howev-
er, is not necessary in principle.

Exercises

1. Th e text of this section mentions a cube with a well-de-
fi ned edge length. Depending on whether there is a heavy 
star within the cube or not, it has a diff erent volume. Also 
a sphere could be examined instead of a cube. To calcu-
late its volume we need to start from its surface. More can 
be packed into a sphere with a specifi c surface if there is a 
heavy body, i.e. for example a stone, inside it. Establish a 
formula that can be used to calculate the volume of an 
empty sphere if its surface area is given.

2. Th e square-shaped meadow in Figure 9.8 illustrates in a 
two-dimensional world the diff erence of the surface areas 
of a two squares with the same edge length. We can also 
choose a circle instead of the square-shaped edging. We 
then fi nd that, in case of an identical circumference, the 
surface area depends on whether or not there is a hill in 
the circle. Illustrate this phenomenon in a sketch.

a

V = a3

a

V > a3

Fig. 9.7 The volume of the cube that contains a heavy 
celestial body is larger than a3.

Fig. 9.8 The square-shaped meadow with the hill has a 
larger surface area than the one without a hill.
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9.4  Trajectories in the 
gravitational fi eld

We are interested in the trajectory of a light „object“ 
in the vicinity of a heavy one, i.e.:
 • of a planet that orbits the Sun;
 • of a satellite in an orbit around the Earth;
 • of light that comes from a remote star and that pass-

es the Sun at a short distance.
We call the light body L and the heavy one H.
If the heavy body did not exist, L would move on a 

straight line. If we sent out two light bodies L1 and L2 
instead of L, i.e. in a way that both of them start in 
parallel to each other with the same velocity, their tra-
jectories would remain parallel to one another.

Now we include our heavy body H. Two things will 
happen:
 • due to gravitation, the light body is deviated be-

cause momentum fl ows through the gravitational 
fi eld from H to L. Its trajectory will be curved.

 • Th e space will be curved.
Both eff ects contribute to the deviation of the tra-

jectories. Th ey will not remain parallel.
Th e fi rst eff ect, i.e. deviation of the trajectory due to 

momentum transfer, depends on the velocity of L, the 
second eff ect does not.

Objects that fl y by fast
We start with an „object“ that fl ies closely past the Sun 

at a maximum velocity, i.e. at (almost) the limiting veloc-
ity. Th is object can also be light that comes from another 
star and that moves precisely at limiting velocity.

At fi rst, we disregard space curvature. It is clear that 
the trajectory is curved because the Sun attracts the 
body or the light, Fig. 9.9.

In other words: the body or the light receives mo-
mentum from the Sun via the gravitational fi eld. Th e 
deviation angle (in the radian measure) is

(9.1)22 .G m
c r

= ⋅α

Here, G and c are universal constants (the gravita-
tional constant and the limiting velocity).

We do not derive the formula because the calcula-
tion is a bit tricky. But the equation is plausible: the 
deviation is higher
 • the greater the mass m of the central body;
 • the shorter the distance r from the center of the cen-

tral body.
Th is result is not yet complete because we pretend-

ed that the space was fl at (not curved), i.e. that the geo-
desics were straight lines.

S

Fig. 9.9 This is how the light would be deviated if the 
space were fl at.

S

α

Fig. 9.10 Two eff ects contribute to the deviation of 
light from the straight trajectory: 
• deviation due to momentum transfer from the Sun 
(bright lines); 
• space curvature.

But the curvature of the space in the near surround-
ings of S alone already ensures that the geodesics are 
no straight lines. Th is entails a further contribution to 
the deviation, Fig. 9.10. Th e calculation (which is com-
plicated again) shows that this second contribution is 
equal to the fi rst one. Th us, the total deviation is twice 
that of equation (9.1):

(9.2)24 .G m
c r

= ⋅α

We calculate this deviation angle for light that 
comes from a star and that moves closely past the sur-
face of the Sun, Fig. 9.11.
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We need the following data:
gravitational constant G = 6.67 · 10–11 m3/(kg  · s2)
limiting velocity c = 3.00 · 108 m/s
mass of the Sun m = 1.99 · 1030 kg
radius of the Sun r = 696000 km
Inserted in equation (2), we will obtain in the radi-

an measure

5
24 0.85 10 .G m

c r
−= ⋅ = ⋅α

Multiplied by (180°/π) we will obtain the angle in 
degrees:

α = 4.87 · 10–4 degrees = 1.75'' (angular seconds)

Hence, the eff ect is very weak.
You will wonder how the deviation of the light from 

the star that is located directly next to the edge of the Sun 
in the sky can be measured aft er all. Th is might sound 
confusing because the light of the stars is completely 
overshone by the Sun during the day. One therefore had 
to use a trick: measuring during a solar eclipse, i.e. when 
the bright light of the Sun is shielded by the Moon.

Such a measurement was performed for the fi rst 
time in 1919, i.e. shortly aft er Einstein's publication of 
his theory of gravitation. Th at the light should be devi-
ated had already been predicted before Einstein's pub-
lication, but at that time a deviation according to equa-
tion (1) had been expected. However, the measurement 
has resulted in twice that value, i.e. the one corre-
sponding to equation (2). It thus confi rmed that space 
is curved. At the same time the general theory of rela-
tivity was confi rmed.

Trajectories of satellites, planets and Moons
We examined the trajectories of satellites, planets 

and Moons earlier. Such trajectories are ellipses or – as 
a special case – circles.

However, the trajectories are ellipses only if the 
space is not curved. Space curvature in the surround-
ings of the Sun and the stars is so weak that the trajec-
tories of planets and Moons are actually a very close 
approximation of elliptical trajectories.

But the space is not exactly fl at, and therefore there 
is a slight deviation from the elliptical form of the tra-
jectories. Just as the trajectory of the light, which pass-
es by the Sun, is additionally bent towards the Sun due 
to space curvature, the trajectories of the planets are 
also bent further towards the Sun. Where the planet is 
closer to the Sun this bending eff ect is stronger than 
where the planet is farther away. Th e result can be de-
scribed as follows: an ellipse that rotates very slowly. It 

A AB' B

Earth

Su
n

Fig. 9.11 The light of star B that passes closely by the 
Sun is deviated and hits the Earth. Therefore, star B 
seems to be located further on the left than what cor-
responds to its actual position. (The sketch is not drawn 
to scale.)

rotates in the same direction as the planet's direction 
of movement, Figure 9.12. Such a rotation of the ellip-
tical trajectory is called periphelion precession. (Th e 
periphelion is the point of the elliptical trajectory that 
is closest to the Sun; the point at the largest distance to 
the Sun is called aphelion.)

In case of the planets of the Sun, the periphelion 
precession caused by space curvature is very weak and 
can only be observed for the planets that are closest to 
the Sun: Mercury, Venus, Earth and Mars. It is stron-
gest (but still very weak) for Mercury. Th e large axis of 
the Mercury ellipse rotates by 43 angular seconds per 
century. (In fact, ellipses also rotate for another reason: 
because the trajectory of every planet is disturbed by 
the other planets. Hence, the 43” are only the contribu-
tion caused by space curvature.)
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Th e eff ect of periphelion precession is much larger 
for celestial bodies that curve the space more strongly: 
in the environment of neutron stars and black holes.

Exercises

1. Calculate the deviation of light, (a) that passes by the edge 
of a neutron star with the mass m = 3 · 1030 kg and a ra-
dius of r = 10 km. (b) Th at passes by the edge of the Earth.

2. We look at a close celestial body. It appears to us as a disc. 
(a) When the celestial body is the Sun or the Moon, we 
see less than half of the surface. Explain. (Help: the eff ect 
becomes stronger the closer we are to the celestial body.) 
(b) When the star is a neutron star, we see more than half 
of its surface. Explain.

9.5  The Schwarzschild radius

Th ere is not much to understand in this section as it 
is only about simplifying an expression.

Once again back to equation (9.2) that tells us how 
a light beam is deviated by a celestial body with the 
mass m:

24 .G m
c r

= ⋅α

Now we introduce an abbreviation:

(9.3)S 22 .Gr m
c

= ⋅

Hereby, the equation for the deviation angle is sim-
plifi ed:

S2 .r
r

=α

We can see that the new quantity rS is measured in 
meters.

Th is quantity is called Schwarzschild radius. As G 
and c are natural constants, rS is nothing else than a 
measure for the mass – just expressed in meters.

We insert the values of G and c in equation (9.3) and 
obtain:

rS = m · 1.48 · 10–27 m/kg.

But why is rS introduced in the fi rst place? Because 
the term on the right side of equation (9.3) is part of 
many other formulas and those formulas become 
clearer when the term is abbreviated as rS. In addition, 
rS has another special meaning in connection with 
black holes – but this will be addressed later.

Fig. 9.12 Trajectory of a light celestial body in the sur-
rounding of a heavy one. If space were fl at, the trajec-
tory would have an elliptical shape. Due to space curva-
ture, it becomes similar to a rotating ellipse. The eff ect 
is very weak for the planets of the Sun.

Schwarzschild radius = mass · 1.48 · 10–27 m/kg

To get an idea of typical values of the Schwarzschild 
radius, Table 9.1 shows a few examples.

9.6  Temporal and spatial 
intervals

We know that clocks in the gravitational fi eld have a 
diff erent pace depending on where they are located. 
We have seen that, in close proximity to the surface of 
the Earth, the higher clock runs faster than the lower 
one.

Table 9.1 Examples for Schwarzschild radii

body mass Schwarzschild radius

book 0.5 kg 0.74 · 10–27 m

Moon 7.35 · 1022 kg 0.11 mm

Earth 5.97 · 1024 kg 9 mm

Sun 1.99 · 1030 kg 3 km
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Th e simple formula

(9.4)S
 01 rt  t

r
Δ = −  Δ

applies for a spherical celestial body.
It is valid everywhere outside of the celestial body. 

Δt0 is the time interval between two events measured 
at a long distance from the celestial body. Δt is the time 
interval of the same events that we measure when we 
are located at the distance r from the center of the ce-
lestial body. In other words: time passes more slowly at 
a close distance to the celestial body. rS is the Schwarz-
schild radius. Normally, i.e. at the surface of the Earth 
or the Moon or also of the Sun, rS is much smaller than 
r, see Table 9.1. Th is means that the root in equation 
(9.4) is almost equal to 1, and this means in turn that 
the two time intervals are practically equal – just ac-
cording to what we know from everyday life.

We have already addressed the slight deviation that 
will arise earlier in connection with the GPS.

But the diff erence can also become large. Radius 
and mass of a typical neutron star are

r = 10 km
m = 3 · 1030 kg .

Th erefore, we obtain the Schwarzschild radius

rS = 4.5 km .

Inserted in equation (9.4) we obtain:

Δt ≈ 0.75 Δt0 .

Willy, who lives on the surface of the neutron star, 
does of course not notice anything about the time run-
ning more slowly at his location; rather, he fi nds that the 
clocks far away, i.e. where Lilly lives, run much faster. 
When Lilly sends him two short light signals with her 
laser at an interval of 1 minute, only 45 seconds pass at 
Willy's place between the arrival times. And Lilly sees 
that Willy's watch runs more slowly than her own one. 
By the way, Willy uses a second watch besides his nor-
mal one, which runs faster so that it displays Lilly's time, 
i.e. Lilly's local time. And Lilly also has a second watch 
besides her own, normal watch, which runs more slowly 
so as to display Willy's local time.

You have certainly noticed that, once again, this 
story is completely unrealistic. Willy can under no cir-
cumstances stay on the surface of a neutron star, no 
matter how well he protects himself against radiations 
and high temperatures. He would be crushed by the 

strong gravitational fi eld because of the fi eld strength, 
see equation (4.7) in chapter 4:

23
2 2 10  N/kg.mg G

r
= ⋅ ≈ ⋅

Seen from outside, the time close to a heavy 
body passes more slowly than at a long distance 
from the center:

S
 01 rt  t

r
Δ = −  Δ

Equations (9.4) is tricky for another reason.
We look at a circle whose center matches the center 

of the central body.
In our non curved world, the relationship between 

the circumference U and the distance r to the center 
(which is called radius) is

.
2
Ur =
π

In the vicinity of a heavy celestial body, this does 
not apply anymore. Here, the distance to the center is 
larger. We will call it ρ. Hence, we have:

ρ > r .

Attention: ρ is not the radius of the circle.
To read the equations (9.4) and (9.5) correctly, you 

have to know that they contain r and not ρ. Th e equa-
tion does not contain the distance to the center but the 
circumference of a circle divided by 2π.

Exercises

1. Willy is on a neutron star, fi lms a video and sends it to 
Lilly who is far out. What does Lilly see in the video? (We 
assume that Willy is not harmed by the strong gravita-
tional fi eld.)

9.7  Black holes

As the infl uence of the mass/energy on space and 
time is particularly dramatic in the vicinity of black 
holes, we will to address these objects in greater detail.

The event horizon
So far, we have considered rS to be not more than a 

measure for the mass of a body or a quantity that helps 
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us simplify some equations. Now we will see that the 
Schwarzschild radius gets a very specifi c meaning. A 
black hole is formed when a star, whose core fuel has 
been consumed, shrinks and its radius approaches the 
Schwarzschild radius rS.

Let's start with a side note on this matter: earlier 
(chapter 4, equation (4.7)) we saw that the gravitation-
al fi eld strength for a spherically symmetric celestial 
body can be calculated with the equation

(9.6)2( ) .mg r G
r

= ⋅

Here, G is the gravitational constant, m the mass of 
the body and r the distance from the center.

Th e formula only applies for the area outside of the 
body. If we imagine that the entire mass is concentrat-
ed in one point, the equation – with the exception of 
the point – would apply everywhere. But if we ap-
proach this point, i.e. if r approaches zero, the fi eld 
strength will approach infi nity.

Back to the black hole. Also here, the fi eld strength 
increases when we approach the center; however, it al-
ready approaches infi nity further outside, namely at 
the event horizon. Th e event horizon is the spherical 
surface for which

r = rS.

We can already tell from equations (9.4) and (9.5) in 
the previous section that something must happen at 
this distance from the center. When r becomes equal 
to the Schwarzschild radius, we get Δt = 0 and Δs = 0. 
For outsiders, time stands still at the event horizon and 
the vertical length of all objects becomes zero.

In addition, also the gravitational fi eld strength ap-
proaches infi nity. Th is means that every object that has 
come close to the event horizon is attracted by the 
black hole and cannot come back outwards anymore: 
no body, no particle and no light either.

No body, no particle, no light can leave the event 
horizon or cross the event horizon from inside.

The black hole seen from outside
As time at the event horizon comes to a halt com-

pared to the time far outside, a body that is captured by 
the black hole or that falls towards the black hole be-
comes increasingly slow until it stops completely at the 
event horizon. For this reason, a black hole is also re-
ferred to as a frozen star. We as outsiders never experi-
ence that something that falls towards the center of the 
black hole actually falls into the black hole. Already 
during formation of the black hole, when the matter of 

a burnt-out star moves in an inward direction, we can 
only see the state of this matter shortly before reaching 
the event horizon. Hence, we can see the past – up to 
the time when the black hole was formed.

However, „seeing“ bears yet a problem because in or-
der to see something, light has to come to the outside. 
Th e wavelength of light that moves „upwards“ in the 
gravitational fi eld becomes longer while the frequency 
becomes lower. Light that comes from the event horizon 
has an infi nitely long wavelength or the frequency zero, 
which means that no light comes to the outside from the 
event horizon anymore. For this reason, a black hole ap-
pears as black. For us, the event horizon is to a certain 
extent a border of the world. Th e area „behind“ the 
event horizon is cut off  from the rest of the world.

The outside world seen from the black hole
We imagine to be in close proximity but outside of 

the event horizon. Here, exactly the opposite of what 
we have just found for the observation from outside 
applies. From this perspective, the time outside will 
run faster, i.e. infi nitely fast, if we approach the event 
suffi  ciently. Th erefore, we would see infi nitely far into 
the future of the outside world. But also here, we have 
a problem with seeing because the „light“ that comes 
from the outside has an infi nitely short wavelength. 
Instead of visible light, there is UV light, X-rays or 
even gamma radiation depending on our distance 
from the event horizon – but we have already been 
aware that the close environment of the event horizon 
is not a very comfortable place.

9.8 Gravitational waves

Th at space is more than only room for something 
can be seen particularly clearly by the fact that gravita-
tional waves exist: distortions of space that move 
through the space similar to a change of the density 
that runs through the air in case of a sound wave.

Gravitational waves move at the same velocity as 
electromagnetic waves, i.e. at the limiting velocity c.

Just as electromagnetic waves are created by oscil-
lating electric charge or sound waves by a vibrating 
speaker membrane, gravitational waves are formed by 
the oscillation of mass, i.e. of bodies.

In case of movements of bodies under terrestrial 
conditions, the created waves are extremely weak. To 
create waves that can be detected, huge masses have to 
oscillate very fast. Actually, such processes occur in the 
universe.
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Two stars that orbit around each other form a binary 
star system. Due to their movement, they radiate gravi-
tational waves. However, in „normal“ binary star sys-
tems, this radiation is still so weak that we are unable to 
detect it. Th ings are diff erent for stars that are heavy and 
small so that they can move around each other at a very 
short distance and therefore at a high velocity. Th is is 
the case for binary star systems whose partners are 
white dwarfs, neutron stars or black holes. We can ob-
serve that the rotational period gradually becomes 
slightly shorter and that the distance of the two stars be-
comes smaller. Th is shows that the system loses energy. 
Th is energy moves away with gravitational waves.

Here is an example that shows how small such ef-
fects are:

Th e two white dwarfs J065133.338 and 284423.37 
circulate around each other. Th eir masses are 0.26 and 
0.5 Sun masses, respectively. Th e rotation period is 
12.75 minutes. It can measured from the Earth that the 
rotation period decreases by 310 microseconds per 
year. Th e waves themselves, however, are still so weak 
that they cannot be detected.

But there are events in the universe in which waves 
are created that are strong enough as to be directly de-
tectable on Earth. Two black holes that move around 
each other gradually lose energy, their distance be-
comes smaller and smaller and their rotational period 
becomes shorter and shorter. Th ereby, the radiation 
becomes stronger. But there is an end at some point: 
the black holes merge. During the last rotations that 
take place at a very high velocity, a strong gravitational 
wave is emitted. It is strong enough as to be measur-
able on Earth, even though the event took place at a 
distance of 109 light years, i.e. in a remote galaxy. (Have 
you noticed that we said „took place“ and not „takes 
place“? A distance of 109 light years means that the 
event happened far in the past.)

How does a gravitational wave look like when it 
reaches us? It is a distortion of space: distances be-
tween two bodies are being changed: increased or re-
duced. How this happens is shown in detail by the ani-
mation of Fig. 9.13. (You need an Internet connection 
to view the animation.)

Reading the fi gure correctly is quite a challenging 
task. Th e wave moves perpendicularly to the drawing 
plane. We are at the center and examine the distances 
to bodies that are arranged in a circle around us. Th e 
wave causes the distances to increase and decrease pe-
riodically. If they increase in one direction, they will 
decrease in the respective orthogonal direction. We 
can also say that the volume of a space remains con-
stant while the wave passes. Fig. 9.14 shows the pro-

cess in three dimensions. Here, also the progression of 
the wave can be seen.

What is shown in Fig. 9.13 does of course not only 
apply for the points on the central line. We can move 
the axis in parallel to any other place and draw a „par-
ty balloon“ precisely this way.

It is clear that the image is a drastic exaggeration of 
the proportions. Th e elongation or compression of the 
space is much smaller in reality: the distance of two 
bodies at a spacing of 1 m typically changes by 10–22 

meters. For the waves that can nowadays be detected 
directly, the wavelength amounts to more than 
1000 km.

Fig. 9.13 Seen from the center, the distances of the blue 
bodies increase and decrease. (The wave moves per-
pendicularly to the drawing plane.) See the video on 
the website: http://www.physikdidaktik.uni-karlsruhe.
de/kpk/Videos_linked_from_KPK_books.html

Fig. 9.14 Deformation of the space seen from the cen-
tral axis. See the video on the website: http://www.
physikdidaktik.uni-karlsruhe.de/kpk/Videos_linked_
from_KPK_books.html



128

9.8 Gravitational waves

9
 C

U
R

V
ED

 S
PA

C
E

Gravitational wave: space is stretched and com-
pressed periodically in the direction perpendicular 
to the direction of the propagation of the wave. Th e 
distance between two bodies changes accordingly.

Exercises

1. Compare the wavelength of red light with that of a gravi-
tational wave mentioned in the text above. (Calculate the 
ratio of them.)

2. A gravitational wave (perpendicular to the drawing plane 
of Fig. 9.15) is passing by Lilly and Willy. Th e fi gure shows 
a snapshot of an instant of time when horizontal distanc-
es are just increasing. Willy says, that points A and B are 
receding from him. Lilly asserts that B and C recede from 
her. How does that go together?

Fig. 9.15 For exercise 2
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10  COSMOLOGY

10.1  The stars in motion

Cosmology addresses the structure and the devel-
opment of the universe.

Th e night sky creates an ambience of peace and sta-
bility. Th e stars always seem to be at the same place and 
to shine with constant intensity.

In fact, however, the universe undergoes a constant 
evolution: the stars move against each other. New stars 
are formed and others disappear, explode or fall into 
black holes. Also the galaxies move, rotate and collide 
with other galaxies.

For example, the Sun moves at 220 km/s on an orbit 
around the center of the Milky Way. (For reference: the 
Earth orbits the Sun at 30 km/s.)

If we observe the sky on several days and compare 
the position of the celestial bodies, we will fi nd that 
the Moon and the planets move against the back-
ground of the stars. Th e stars apparently do not move 
on the other hand. Why can't we see anything of the 
movement of the stars? Because they are too far away. 
An airplane in the sky seems to move very slowly al-
though its actual velocity is approximately 800 km/h. 
We perceive a movement as more slowly the longer 
the distance between us and the moving object. What 
we perceive is the change of the direction in which we 
see the object. We can also say that we perceive the 
angular velocity

vω
r

�

and, at a given velocity v, this angular velocity decreas-
es with a growing distance r to us.

We cannot see any other drastic cosmic events on 
the night sky because they do not happen oft en enough 

in our closer neighborhood. Th e next quasar is (or 
was?) several billion light years away from us and 
could therefore not be seen with the naked eye.

Even more interesting but certainly not visible with 
the naked eye is another process: the universe expands. 
It seems as though the galaxies moved away from us. 
We will examine especially this phenomenon in the 
following.

But for now, something else about the method.
We will be dealing with very long distances in the 

following. Th ereby it is useful to not indicate distances 
in meters but in a much larger measurement unit, the 
light year (ly). A light year is the distance that light 
travels in one year. In meters we have:

1 ly = 9.461 · 1015 m.

Besides the light year, also the units light hour, light 
minute or light second are sometimes used. Here a few 
examples for cosmic distances:
 • Earth — Moon 1.3 light seconds
 • Sun — Earth 8.3 light minutes
 • diameter of the solar system 150 light hours
 • distance of the star that is  

closest to the Sun 
(Proxima Centauri) 4.2 ly

 • diameter of the Milky Way 100 000 ly

We would even like to continue: distance of the next 
quasar, etc. But in doing so, we would already come 
across the fi rst diffi  culty: what exactly do we want to 
understand by distance: the distance at the instant of 
time at which it emitted the light that is now reaching 
us; or the distance from us that it has today in case it 
still exists?
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10.2  The cosmological principle

A fundamental rule that has proved correct is the 
cosmological principle. It states that we are not located 
at any special place of the universe. Th is includes:
 • Th e Earth is not the center of the world as was as-

sumed at earlier times. Rather, the world neither 
has an edge nor a center.

 • Th e Earth is not a unique planet but rather one of 
many similar planets that orbit other stars.

 • Th e Sun is not a unique star, but one of countless 
other similar stars.

 • Our Milky Way in not a special galaxy but one of 
countless other similar galaxies.

 • Our galaxy cluster is not a special cluster but one of 
countless other similar galaxy clusters.

Th e galaxy clusters are the largest structures that ex-
ist in the universe. Now we would like to imagine a 
(huge) area, which contains a very large number of 
galaxy clusters, to be cut out of the universe – and then 
also a second one at a diff erent place of the universe. 
We can now say that these two areas look alike on av-
erage.

In other words, we can say that the universe is ho-
mogeneous „on a large length scales“.

Th is characteristic of the universe is comparable to 
that of a gas – for example of air. A portion of air in a 
cube with an edge length of 1 cm can at fi rst not be 
distinguished from the air in an adjacent cube: in both 
cubes, the air has the same density, the same tempera-
ture and the same pressure. Only if we examine the air 
in a strongly enlarged view, we can see that the nitro-
gen and oxygen molecules fl y around completely ir-
regularly and that „the world“ looks diff erent in each 
place. Th us, the air is already homogeneous in a cube 
with a volume of 

1 cm3; 

in case of the universe, we need to examine a cube with 
an edge length of at least 

108 light years.

Th e universe is homogeneous on large length 
scales.

We could assume that we are not located at a par-
ticular place on the time scale either, i.e. that, on aver-
age, the universe has been at all times what it is today. 
But this is not true as we will see in the following. 

10.3  Curved or not curved?

We have seen that the space in the neighborhood of 
heavy celestial bodies is „curved“. Beyond this neigh-
borhood, it is „fl at“. Our daily experience confi rms 
that it is also fl at at a larger distance of heavy celestial 
bodies. But we have to expect space to be only approx-
imately fl at. We know: curvature is caused by energy 
(= mass). Th e universe contains energy, i.e. we could 
expect it to be curved, albeit only to a very limited ex-
tent. So is it curved or not?

Before answering this question, we would like to 
upgrade our previous observations. In section 9.3 we 
found that the volume of an area of space with a given 
surface will increase if a celestial body with a large 
mass is put inside. We had chosen a cube-shaped area 
of space. Instead of the cube, we will now choose a 
spherical region in order to simplify the arguments. In 
addition, we imagine the sphere to be very large so that 
many galaxies can fi nd space in it.

Of course, we also expect the volume of the sphere 
to be slightly „too large“ in this case. In the normal, 
fl at space, the volume of a sphere is calculated ac-
cording to 

34 .
3

V r= π

In our case, where the spherical region contains 
matter, the volume should be slightly larger:

34 .
3

V r> π

Attention! We have already seen earlier that r does 
not stand for the distance from the center, but for the 
circumference of a large circle divided by 2π, see sec-
tion 9.6.

We would now also like to imagine the possibility 
that the mass of what is located in the spherical region 
of space is negative. Th e assumption might seem ab-
surd at fi rst, but who knows? Th ere is nothing wrong 
about a thought experiment. In this case, we would 
expect the volume of our sphere to be smaller than the 
volume of a sphere in fl at space:

34 .
3

V r< π

In any case, we would like to address the question 
without prejudice: how is the curvature of space? 
Does it cause the volume to be too big? Or rather too 
small?

As a matter of principle, there are two ways of an-
swering this question:
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1. If we know exactly what exists in the sphere, we 
can calculate (using Einstein's theory) how space is 
curved;

2. by simply looking it up.

For the time being, the calculation does not quite 
work because there is still some confusion about the 
content of the sphere. Th e problem arises due to the 
fact that there are not just the visible celestial bodies 
besides the so-called dark matter that can also be 
seen indirectly. What is sometimes referred to as an 
empty space is not as empty as it seems. Th is means 
that the idea of the negative mass cannot simply be 
discarded.

Hence, we use the other method and look things up. 
But there is a problem, too: we need to calculate dis-
tances of galaxies very accurately to be able to detect 
even small deviations from the fl atness. Th e present 
result of such measurements is astonishing: the uni-
verse is fl at.

On large length scales, the universe is fl at.

You might say that you have always imagined it to 
be this way. Correct. But aft er having learned that 
space can be curved not only in principle but that it is 
actually curved, namely in the vicinity of every heavy 
celestial body, the observation of the entire universe 
being fl at is rather unexpected and requires an expla-
nation. In fact, it is currently one of the major open 
questions of physics.

10.4  The expansion of the 
universe

We have seen that the spatial structure of the uni-
verse is very simple:
 • the universe is the same everywhere (on large 

scales)
 • the universe is fl at (as far as we are now able to say 

with our current measurement accuracy).

In another respect, however, it is not simple at all, 
namely with regard to its evolution in time: the uni-
verse expands.

Does this mean that it grows bigger and bigger? 
Saying this would be thoughtless. We do not know 
how large it is, and in case it were infi nitely big, we 
could not just say that it would grow even more. So 
what does it mean to say that the universe expands?

We look at an elastic rope that expands or that is 
stretched, Fig. 10.1. We are not interested in knowing 
who is pulling on it, whether anyone is pulling on it at 
all or wherever and why it expands.

Th e rope has knots A, B, C... at equal spacings so 
that we can see how it stretches.

Willy, Fig. 10.1a, is at knot D. What does he see? He 
sees that the neighboring knots C and E move away 
from him, and he sees that the knots B and F move away 
twice as fast as C and E, the knots A and G three times 
as fast, and so forth. Figure 10.1b shows the same rope 
once again: from the perspective of Lilly who is at knot 
E. How does she perceive the environment? For her, 
knot E is at rest, the knots D and F move outwards, C 
and G move twice as fast and so forth.

We can see: each of the two thinks of his/her place 
as the center of the world and believes that the rope 
expands from this place to the left  and the right. Any-
one else who is standing at any other place of the rope 
has the same perception, too.

Now you can understand what we mean by saying 
that the universe expands. Seen from any position, the 
stars and galaxies appear to move outwards, and the 
further they are away, the faster they seem to move.

However, „movement“ is not quite the right expres-
sion in this context. Th e reason for the increasing dis-

t = 0 s

t = 4 s

t = 8 s

1 m

A B C 

D

 E F G H

B C  E F G

C  E F

A B C D 

E

 F G H
t = 0 s

t = 4 s

t = 8 s

C D  F G

C D  F

a)

b)

Fig. 10.1 The rope stretches. For Willy, the knots A, B 
and C move to one side while the knots E, F, G and H 
move to the other side (a). For Lilly, the knots A, B, C and 
D move to one side while the knots F, G and H move to 
the other side (b).
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tance is simply the fact that new space is being formed 
between the galaxies.

Th e universe expands: new space is formed ev-
erywhere.

Th is sounds interesting. Does this mean that some-
one's piece of land would have grown aft er a year? 
Could we possibly make a new business model out of 
that? No. Although space expands, everything that is 
located inside that space and that is connected in some 
way – i.e. that is tied together by some fi elds – keeps its 
size: all objects on Earth, the Earth itself, the solar sys-
tem, our galaxy, our galaxy cluster. Only the distances 
between the galaxy clusters grow.

We can imagine it to be as follows: Willy and Lilly 
sit at a short distance from one another on the expand-
ing rope, Fig. 10.2a. Seen from Willy's position, Lilly is 
moving; from Lilly's perspective, Willy is moving. Th e 
velocity at which Willy moves away from Lilly, or also 
Lilly from Willy, shall be called expansion velocity. In 
Fig. 10.2b, the two are holding hands. Now they are no 
longer moving away from each other. Th e rope slides 
away under them. We could also put it this way: in or-
der not to move away, they have to move relative to the 
rope, i.e. in a way that the expansion velocity is just 
being compensated.

In case of the universe, the distances within all 
structures up to the galaxy cluster do not increase due 
to the expansion of the space. But how can the expan-
sion still be seen then? By observing the distances be-
tween the largest structures of the universe, i.e. the 
galaxy clusters.

We look at a point at the distance d (from us). Th e 
velocity at which the point seems to move was called 
expansion velocity before. If the distance changes by 
Δd in the time interval Δt, the expansion velocity will 
be

.e
dv
t

Δ
=

Δ

For Willy in Fig. 10.1, the expansion velocity of the 
knots E and F is:

0.5 mpoint E: 0.125 m/s,
4 s

1 mpoint F: 0.25 m/s.
4 s

e

e

dv
t
dv
t

Δ
= = =

Δ
Δ

= = =
Δ

We can see that ve is proportional to the distance of 
the knots:

ve ~ d .

A B C D E

B C D

A B C D E

t = 0 s

t = 5 s

t = 10 s

A B C D E

B C D

A B C D E

t = 0 s

t = 5 s

t = 10 s

a)

b)

Fig. 10.2 (a) Willy and Lilly move away from each other 
at the expansion velocity. (b) The rope moves away 
under Willy and Lilly. Willy and Lilly move relative to the 
rope.

In this case, the proportionality factor is 0.25 s–1. 
We therefore obtain

ve = 0.25 s–1 · d .

We apply the equation to the universe.
Also here, ve is proportional to d. Th e proportional-

ity factor in this case is denominated with H and re-
ferred to as rate of expansion of the universe:

ve(d) = H · d . (10.1)

We have

2.1 m/s .
100 ly

H =

In words: each time we move forward by 100 light 
years, the expansion velocity increases by 2.1 m/s.

Rate of expansion:
  

2.1 m/s .
100 ly

H =

We have to distinguish the real movement of the 
individual stars and galaxies in diverse directions 
from the expansion movement. But the farther a 
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galaxy is away from us, the lower the relevance of 
this real movement in relation to the expansion 
movement.

Th e expansion of the universe has interesting con-
sequences. We would like to address two of them.

Expansion velocity higher than limiting velocity
Fig. 10.3 shows the linear relationship between the 

expansion velocity and the distance. (See also equation 
(10.1).)

You might make a disturbing observation: for dis-
tances that are longer than 14 · 109 light years, the ex-
pansion velocity becomes higher than c, i.e. higher 
than the limiting velocity. Can that be correct? Yes, 
don't worry. c is only the limiting velocity for real 
movements, not for expansion movements during 
which new space is formed.

The Big Bang
From today's expansion we can „calculate back“ 

and it becomes evident that there must have been 
some sort of start. 13.8 · 109 years ago, all matter and all 
radiation was very concentrated. Mass (energy) den-
sity, pressure and temperature had gigantic values. Th e 
universe was formed out of that state.

Th e moment in which this occurred can be regard-
ed as the beginning of time. Th is beginning of the ex-
pansion is referred to as Big Bang.

Th e expansion of the universe began 13.8 billion 
years ago with the Big Bang.

Earlier we found that the universe is homogeneous. 
Everywhere it is just like where we are. Th is statement 
also holds true for the expansion: the rate of expansion 
is the same everywhere. Th is was also the case for our 
model universe in Fig. 10.1: all spacings between two 
neighboring knots increase equally fast.

But this does not yet tell us anything about the be-
havior of the rate of expansion as a function of time. 
For example, the spacings on our elastic rope could 
increase faster now and more slowly at a later time. In-
deed, this is exactly the case for the real universe. Until 
approximately 5 billion years aft er the Big Bang, the 
expansion became increasingly slow over time and 
subsequently faster again.

Today, the question why the expansion becomes 
faster again has not yet been answered.

Until 5 billion years aft er the Big Bang, the ex-
pansion was decelerating; then, it was accelerating 
again.

Fig. 10.3 Expansion velocity as a function of the dis-
tance: for d > 14 · 109 light years, the rate of change 
becomes greater than the limiting velocity c.

distance in billions of light years

expansion velocity

0

2  c

10 20 30

1  c

Exercise

1. By how much will a distance of 1km in the universe in-
crease in one year?

10.5  Looking back to the past

Almost everything we learn about the universe and 
almost everything we „see“ of the universe reaches us 
with electromagnetic radiation: especially with the 
normal „visible“ light, but also with a diversity of other 
electromagnetic radiations such as gamma radiation, 
Xrays, UV, infrared and microwave radiation.

So what can be „seen“ of the universe in this way? 
We could believe to see the universe as it is. Although 
this sounds natural, it is incorrect. We see the universe 
the way it was!

Th e light that reaches us on Earth and that creates 
the images of stars and galaxies had to travel a long 
way and therefore it needed time. Th e longer the way, 
the more time has passed between the emission (the 
creation) of the light by a star and its arrival at our 
place on Earth. Hence, what we see is not the star to-
day, but the star at the time when its light was emitted; 
and this time can be in the remote past. Th e farther the 
object is away from us, the farther we look into the 
past.

Th e farther we look into the distance, the farther 
we look into the past.

If we are now looking into the Sun, we can see the 
Sun the way it was approximately 8 minutes ago. Not 
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much has certainly changed on the Sun during such a 
short time. Th ings are very diff erent for a quasar that is 
located at a distance of 1010 light years and that we can 
see through a telescope. We can be sure that the quasar 
does not exist anymore. Th e supernova explosion that 
could be observed in 1987 had occurred 179 000 light 
years away from us. Th is means that it did not take 
place in 1987 but 179 000 years ago. Th e gravitational 
waves that reached us in 2016 had been created 1.3 · 109 
years ago while two black holes were falling into one 
another at a distance of 1.3 · 109 light years.

If we assume the universe to be homogeneous, i.e. 
the same everywhere, and to have developed equally 
everywhere, we can conclude from what we see when 
looking at the distance (and into the past) how our 
closer environment looked like in the past. Hence, we 
see the universe in the diff erent stages of its evolution.

As the universe is homogeneous, we can also see 
our own past in the distance.

We will examine later what has happened to these 
objects, i.e. the remote quasar and the remote black 
hole, in the meantime.

10.6  What we see of the 
universe

Th e answer to the question of what can be seen on 
Earth from our current location is easy (provided that 
the view is good): We can see the landscape up to the 
horizon.

Asking the corresponding question for the uni-
verse, the answer will be slightly more diffi  cult.

1. The way we see a chronological sequence
We can look into the past with our telescopes. But 

we still do not see the world as it used to be back then; 
we see it as temporally distorted in a peculiar way. And 
this is due to the expansion of the universe.

What happens to the light that started traveling to 
us fi ve or ten billion years ago (i.e. that fl ew in our di-
rection by chance)? Light is an electromagnetic wave; 
the carrier of this wave is the space, just as water is the 
carrier of a water wave. Now the space expands, and 
this causes the wave to expand along with it. Th erefore, 
its wavelength becomes longer and its frequency is re-
duced. Th is means that the wavelength of the radiation 
increases with a longer distance of travel. Blue light 
turns green, green light becomes yellowish, yellow 

light becomes increasingly red and red light turns into 
infrared. Th is change of the spectrum of light is called 
redshift  (not the most suitable term, though).

However, not only the oscillations of light become 
slower on the way but also any other chronological se-
quence appears to us as temporally stretched. Does 
this remind you of anything?

In a supernova explosion, as much light as comes 
otherwise from an entire galaxy is formed. Th erefore, 
supernovas can be seen from very long distances, i.e. 
of up to several billion light years. Due to the expan-
sion of the universe, the light of a supernova is not 
only „redshift ed“ (i.e. the light waves are stretched), 
but also the chronological sequence of the overall phe-
nomenon of light, which takes several weeks, appears 
to us as temporally stretched. Th e longer the distance 
at which the supernova takes place, the longer its glow-
ing eff ect.

Light that comes from a remote distance is „red-
shift ed“.

Processes that we observe at a long distance ap-
pear to us as temporally stretched.

2. What we see
We only see the objects whose light reaches us, i.e. 

stars, galaxies, quasars,... (By light we mean electro-
magnetic radiation in this context, even if it is invisible 
for us.)

Th is sounds very natural at fi rst. However, the state-
ment is somewhat trappy. As the universe expands, the 
expansion velocity at a certain distance from us, i.e. at 
approximately 14.2 billion light years, is equal to the 
limiting velocity c. Everything that is located beyond 
this distance moves away at a velocity faster than c. We 
call this limit „c limit“.

But here is the diffi  culty. You will certainly assume 
that light emitted beyond the c limit has no chance to 
reach us. Th ings are just as in case of Willy when he 
walks on a moving walkway (the type we know from 
airports) against the direction of movement of the 

Fig. 10.4 Willy will only reach Lilly if he moves to the 
left faster than the moving walkway moves to the 
right.
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walkway, Fig. 10.4. When the moving walkway is faster 
than Willy, he moves backward instead of forward and 
will never reach Lilly. Fair enough ...

However, we have to consider that the expansion 
rate has decreased over time during the fi rst 5 billion 
years. Th is means that light emitted behind the c limit 
has moved away from us at fi rst. As the expansion ve-
locity has decreased over time, however, the c limit 
moved outwards and our light was suddenly back 
ahead of the c limit so that it could eventually reach us.

In case this was too complicated, here is the corre-
sponding situation with the moving walkway again, 
Fig. 10.4.

Willy walks on the moving walkway at his maxi-
mum velocity towards Lilly, i.e. against the movement 
direction of the walkway. Th e walkway moves faster 
than him; in spite of all his eff orts, Willy moves away 
from Lilly. But now the walkway becomes increasingly 
slower. At some point, it is just as fast as Willy; now, 
Willy remains where he is. Th en, the walkway becomes 
even slower and Willy moves forward towards Lilly 
and fi nally reaches her. Once again back to Willy's dis-
tance to Lilly: Willy always moves equally fast (as fast 
as he can); at the beginning, he moves away from Lilly, 
then the direction of his movement changes, he ap-
proaches Lilly again and fi nally reaches her.

Th e same applies for the light that was emitted in 
the young universe of galaxies and that we are receiv-
ing today, Fig. 10.5.

Th e blue line is the world line of a galaxy. Th e red 
one is the world line of the light that we are receiving 
today from this galaxy. It was emitted by the galaxy at 
a time when the universe was still very young, i.e. less 
than a billion years old. It was located at a place not 
very far away from „here“. However, the expansion ve-
locity at this place was higher than c. Th e light conse-
quently moved away from „here“ at fi rst. But the rate 
of expansion has decreased over time, and so has the 
expansion velocity of our light. It fi nally became lower 
than c and the light could approach the „here“ again.

And how has the galaxy in Fig. 10.5 evolved in the 
meantime? Provided that nothing has happened to it, 
it is now located at a distance of approximately 30 bil-
lion light years.

Th e fact that light was fi nally able to reach us aft er 
having moved away at fi rst only applies for a small area 
behind the c limit, though. Th ere is eventually a dis-
tance beyond the c limit from which the light is no lon-
ger able and has not been able to move towards us. We 
cannot see (not even in the future) what happens be-
hind this limit. Like in the black hole, an event horizon 
exists here. It is located at 16.2 billion light years.

Fig. 10.5 World line of a galaxy and world line of the 
light from said galaxy that reaches us today distance 
(in billions of lightyears)
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On the c limit (14.2 billion light years), the ex-
pansion velocity is equal to the limiting velocity c.

Neither in the future, we will be able to see what 
happens beyond the event horizon.

Exercises

1. Imagine the following universe: it was formed 14 billion 
years ago (we do not ask how), it is infi nitely large and it 
does not expand. What would we see of this universe to-
day?

10.7  The evolution of the 
universe – cosmic 
background radiation

When looking into space with telescopes, we see the 
evolution of the universe. As the universe looks the 
same everywhere, we do not only see the evolution of 
remote stars and galaxies but also how it used to be 
here, i.e. at the place where we are located today.

We could expect to see the evolution of the universe 
since the Big Bang. Th is is not quite correct, though. 
Th ere is a time limit: until 400 000 years aft er the Big 
Bang, the universe was intransparent for all electro-
magnetic radiation so that we cannot see anything that 
dates back to this starting time with our telescopes.

But still, what happened in the fi rst 400 000 years is 
not completely unknown because there are reliable 
theories (the theories of particle physics) that allow us 
to calculate what happened earlier.

Table 10.1 lists some stages of the evolution of the 
universe. It shows a progression in large powers of ten 
from one line to the next. Th e closer we come to the 
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beginning of time, the smaller will be the time inter-
vals in which the characteristics of the universe change 
dramatically. At the beginning, the temperature had 
huge values. However, it has decreased steadily due to 
expansion. 

Th e table contains diff erent names of particles that 
we will only address later.

Prior to the formation of the large-scale structures, 
i.e. galaxies and stars, the universe had also been ho-
mogeneous on small length scales. Th e entire evolu-
tion was similar to a chemical reaction in a constantly 
increasing reaction space that is always in a chemical 
equilibrium.

Up to the time t ≈ 400 000 years, 75 % of the (mass 
of the) universe consisted of ionized hydrogen (i.e. 
protons) and 25 % of ionized helium as well as the cor-
responding electrons. (We have not included the so-
called dark matter in our calculation.) At the begin-
ning, it was still intransparent for all types of 
electromagnetic radiation.

Aft er the temperature had dropped to approximately 
3000 K due to the expansion, hydrogen and helium at-

time after the big bang temperature

10‒35 s — 10‒33 s 1027 K expansion by a factor of 1050 (infl ationary universe)

10‒33 s 1025 K beginning of the creation of quarks and gluons

10‒6 s 1013 K
beginning of the creation of hadrons: protons, antiprotons, neu-
trons, antineutrons and others

Hadrons are the dominant particles of matter.

10‒4 s 1012 K
Protons react with antiprotons, neutrons with antineutrons. Only a 
small number protons and neutrons are left. The excess of matter 
over antimatter amounts to one billionth.

Leptons (electrons, antielectrons and others) are the dominant particles of matter

1 s 1010 K
Electrons react with antielectrons. Only a small number of electrons 
are left over.

10 s 109 K creation of helium nuclei

400 000 years 3000 K
Electromagnetic raditation ceases to react with matter. The universe 
becomes transparent.

109 years creation of stars and galaxies

13.7 · 109 years today

Table 10.1 The universe since the big bang

oms were formed out of the atomic nuclei and the elec-
trons, and the universe became transparent. Hence, it 
then consisted of hydrogen, helium and radiation.

Th e radiation was the one of a body with a tempera-
ture of 3000 K, i.e. approximately the same as that of 
an incandescent lamp's glowing wire. Due to the fast 
expansion, the temperature of the radiation decreased 
further while its wavelength grew. And this is how it 
has survived up to present. Its temperature is 2.7 K to-
day, its wavelength amounts to several millimeters up 
to several centimeters. Hence, the radiation is ex-
tremely „redshift ed“. It is called cosmic background ra-
diation.

It fi lls the entire universe and reaches us from all 
directions. It bears important information about the 
universe at the time of its formation. Th e atoms that 
emitted the radiation (or new atoms that were formed 
of them in the meantime) are located at a distance of 
44 billion light years today.

Th e cosmic background radiation was emitted 
400 000 years aft er the Big Bang.
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