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1  �  THE ELECTRIC FIELD

1.1 � Review: the electric circuit
We start by remembering some things. In this part, 

you will only come across a few subjects that you are 
not already familiar with from earlier lessons.

Fig. 1.1a shows a light bulb that is connected to a bat-
tery via a switch. From the battery, the energy is trans-
ported to the lamp by electricity as a carrier. At the lamp, 
it is transferred to the energy carrier light. The energy 
comes from the battery, it reaches the lamp and leaves 
the lamp with the light. The battery slowly runs dry in 
the process, i.e. its energy content decreases.

The energy carrier, i.e. the electricity, takes a differ-
ent way: it flows in a closed loop. It comes out of the 
battery on one of the two contacts, the plus contact, 
then flows through a wire to the lamp, subsequently 
through the filament of the lamp and the second wire 
and finally over the switch to the minus contact of the 
battery and back to the plus contact through the bat-
tery. As the electricity moves on a closed path without 
accumulating anywhere, the entire system is called 
electric circuit. The current of electricity also has a 
shorter synonym: electric current.

An electric circuit is quite similar to a hydraulic cir-
cuit that is, for instance, part of an excavator, Fig. 1.2a. 
Here, the energy carrier, i.e. the hydraulic liquid, also 
flows in a closed circuit. The flow diagrams, Fig. 1.1b 
and 1.2b illustrate the similarity.

Just as the pump makes the liquid flow in the hy-
draulic circuit, the battery in our electric circuit causes 
the electricity flow. We can therefore regard the battery 
as an electricity pump.

There are also other sources that release energy with 
electricity as a carrier, i.e. other electricity pumps. One 
of them is the bicycle dynamo. Very large dynamos 
such as the ones in power plants are called generators. 
Other types of electricity pumps are solar cells and 
thermocouples. While a generator gets its energy with 
the carrier angular momentum, a solar cell receives its 
energy with light and a thermocouple with entropy.

electricity

Energy
lampbattery

hydraulic
pump

hydraulic
motor

hydraulic oil

Fig. 1.1  Electric circuit with flow diagram

Fig. 1.2  Hydraulic circuit and flow diagram

hydraulic oil

Energy

l

hydraulic
motor

pump

a)

b)

a)

b)
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1.2  The electric potential
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Battery, generator, solar cell and thermocouple 
are electricity pumps.

When dealing with electric circuits, a symbolic il-
lustration of the individual components is helpful. Fig. 
1.3 shows a symbolic display of the electric circuit 
from Fig. 1.1.

The electricity or, as we also say, the electric charge is 
a physical quantity. Its symbol is Q, the measurement 
unit Coulomb, abbreviated as C.

The electric current intensity I, or electric current 
for short, at any point of an electric circuit is defined as 
the amount of electricity (amount of charge) ΔQ, that 
flows at that point through a cross-sectional area of the 
conductor in a given interval of time Δt, divided by 
this interval of time:

Q
I

t
∆
∆

=

The measurement unit of the electric current is am-
pere (A). We can write

CA .
s

=

The electric current is measured with an ampere 
meter (or ammeter, for short). An ampere meter is in-
tegrated in an electric circuit in a way that the current 
has to flow through the meter, Fig. 1.4.

A

Fig. 1.4  Measurement of the electric current: the elec-
tric circuit is interrupted and the two newly formed 
ends of the wire are connected to the ampere meter.

Fig. 1.3  Symbolic illustration of the electric circuit from 
Fig. 1.1 with an open and a closed switch.

The electric circuit on Fig. 1.3 is not closed at first. 
We now close the switch. Electric charge flows through 
the lamp. But where does this charge come from? We 
could think that it comes from the battery, just as the 
energy. It is actually different. Just as a water pump can 
only release as much water at its output as it takes up at 
its input, an electricity pump can only release as much 
electricity at its output, i.e. at the plus contact, as it ab-
sorbs at the minus contact. So where does the electric-
ity come from?

It is contained from the start in the components of 
the electric circuit: in the battery, in the lamp and in 
the wires. This electricity, however, is not put into 
these devices by the manufacturer, but it is naturally 
contained in them. Every piece of wire, and every piece 
of metal, contains electricity. The electricity starts to 
flow when the wire or the piece of metal is integrated 
in an electric circuit.

1.2 � The electric potential
A water pump ensures that the water at its output 

has a higher pressure than at the input, Fig. 1.5. It cre-
ates a pressure difference. This pressure difference can 
cause a water current.

Also a battery, i.e. an electricity pump, creates a 
driving force: a driving force for an electric current. 
And here, there is also a physical quantity that has a 
higher value on one terminal, i.e. on the plus terminal, 
than on the other one, the minus terminal, Fig. 1.6. 
This physical quantity is called electric potential. The 
electric potential in an electric circuit corresponds to 
the pressure in a hydraulic circuit.

A battery creates a potential difference, and this po-
tential difference works as a driving force for an elec-
tricity current. A potential difference is also called 
voltage.

high pressure

low pressure

Fig. 1.5  The pressure at the output of the water pump 
is higher than at the input.
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1.3  The zero-point of the electric potential
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An electricity pump (battery, generator) creates 
a potential difference (= voltage). The potential dif-
ference is a driving force for the electric current.

The terminal with the higher potential is marked 
with a plus sign, that with the lower potential with 
a minus sign.

The measuring unit of the potential, and conse-
quently also of the voltage, is the volt. Hence, a mono-
cell creates a potential difference of 1.5 V, a larger bat-
tery makes a potential difference of 4.5 V and a car 
battery of 12 V.

The Greek letter φ (say: phi) is used as a symbol for 
the potential; U is the symbol for the voltage. There-
fore, we obtain for our battery

φ+ – φ– = 4.5 V, or U = 4.5 V.

Voltages are measured with a voltmeter. For this 
purpose, the two terminals of the voltmeter are con-
nected to the two points with a different potential, 
Fig. 1.7. Points that are connected to each other with a 
cable are on the same potential.

1.3 � The zero-point of the electric 
potential

There is a full battery on the table in front of you. 
The potential difference between its terminals is 4.5 V, 
the potential at the plus terminal therefore exceeds the 
potential at the minus contact by 4.5 V. But what is the 
potential at the minus contact itself? And what is the 
potential at the plus contact?

These questions are not easy to answer. However, 
the problem will be easier to solve if we first clarify 
another question. Fig. 1.8 shows a pocket rule which is 
placed vertically on a table; we ask: what is the altitude 
of the upper end of the pocket rule?

For now, we can only say that the upper end is lo-
cated 1 m above the lower one. But what is the altitude 
of the lower end? The answer to this question depends 
on our reference point: the floor of the room, the level 
of the soil outside the house or any other level. As you 
certainly know, the altitude of a piece of land is usually 
indicated with reference to the sea level. The altitude of 
the surface of the ocean is arbitrarily set as 0 m. Now, 
we could theoretically indicate the altitude of the up-
per end of our pocket rule in relation to sea level. The 
distance to the sea level, however, is actually not easy 
to determine.

Fig. 1.7  Measuring the voltage: the terminals of the 
voltmeter are connected to the two points with a dif-
ferent potential

V

high potential

low 
potential

Fig. 1.6  The electric potential at the plus terminal of 
the battery (output) is higher than at the minus termi-
nal (input).

Fig. 1.8  What is the potential of the plus contact of the 
battery? What is the altitude of the upper end of the 
pocket rule?

The potential behaves in a way that is very similar to 
the altitude. At first, we would have choose an electric 
conductor to which we attribute the potential value 0 
V. Starting from there, the potential values of all other 
wires, electric terminals, etc. could then be indicated. 
The conductor whose potential is used as a reference 
potential should of course be accessible to everyone. A 
conductor that fulfills these conditions is the Earth. 
Hence, the following was established:

The potential of the Earth is 0 V.

If any point of an electric circuit is connected to the 
Earth through a wire, this point will be at 0 V. We say 
that this point was grounded.



8

1.3  The zero-point of the electric potential

1  
TH

E 
EL

EC
TR

IC
 F

IE
LD

To ground something, it is not even necessary to lay 
a line to the Earth. The protective contact of the socket 
is connected to the so-called neutral conductor of the 
electric grid, and this neutral conductor is grounded. 
Also the protective contact of the socket is conse-
quently at 0 V, Fig. 1.9.

Let’s get back to the battery on the table in front of 
you. Based on what has been said so far, we do not 
know the individual potential values of the plus and 
minus contact, just as we do not know the altitudes of 
the ends of the pocket rule. For the battery, we can eas-
ily make things clear though: we simply ground one of 
the two terminals. Fig. 1.10a shows a battery whose 
minus contact is grounded, so we can say

φ– = 0 V.

For the plus contact, we therefore obtain

φ+ = 4.5 V.

grounding contact

0 V

0 V

4.5 V

– 4.5 V

Fig. 1.9  The protective contact of the socket is on 
ground potential.

Fig. 1.10  (a) Minus contact of the battery grounded; 
plus contact on + 4.5 V. (b) Plus contact grounded; mi-
nus contact on – 4.5 V.

a)

b)

In Fig. 1.10b, the plus contact is grounded. We thus 
have

φ+ = 0 V

and

φ– = – 4.5 V.

Therefore, the potential of the minus contact is now 
negative. In both cases, i.e. in the Figures 1.10a and 
1.10b, the following applies of course:

φ+ – φ– = 4.5 V.

The words plus contact and minus contact (or plus ter-
minal and minus terminal) are usually used although 
they are somehow confusing. They suggest that the plus 
contact is on a positive and the minus contact on a nega-
tive potential. Fig. 1.10 shows that this does not necessar-
ily have to be the case. In Fig. 1.10a, the minus contact has 
the potential 0 V; its potential is consequently not nega-
tive, and in Fig. 1.10b the plus contact is not positive.

Fig. 1.11 shows it even more clearly.
Here, a 9 V battery and a 1000 V power supply are 

connected with each other. The plus contact of the 
power supply is grounded and its potential is conse-
quently 0 V. Its minus contact is 1000 V lower, i.e. it is 
equal to –1000 V. As the plus contact of the battery is 
connected to the minus contact of the power supply, 
the plus contact of the battery also has the potential 
–1000 V. Hence, the potential of the plus contact of the 
battery is negative.

Fig. 1.12 shows an electric circuit that is grounded 
at one point.

0 V
–1009 V

+ –

–1000 V

Fig. 1.11  The plus contact of the battery has a potential 
of –1000 V.

– 4.5 V

0 V

Fig. 1.12  Electric circuit that is grounded at one point.
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1.4  Electrotechnical problems
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Exercises
1. Each of the batteries in Fig. 1.13a creates a voltage of 

4.5 V. At which potentials are the points 1, 2 and 3?
2. Each of the batteries in Fig. 1.13b creates a potential dif-

ference of 12 V. At which potentials are the points 1, 2 
and 3?

3. Each of the two batteries in Figure 1.14a creates 9 V. 
Which voltage is indicated by the three voltmeters?

4. Draw a voltmeter in Fig. 1.14b that measures the voltage 
between the connections of the lamp. Draw a voltmeter 
that measures the battery voltage.

5. Give examples of electric circuits that cannot be grounded.

1.4 � Electrotechnical problems
We are going to talk about a method that facilitates 

the solution of electrotechnical problems.
Every time a “circuit diagram” is given, the conduc-

tors are at first highlighted in color in a way that all 
conductors that have the same potential are marked 
with the same color. It is clear that a continuous con-
ductor will be marked in one single color. When pass-
ing through an electric device (lamp, electric motor, 
battery, generator, etc.) the color usually changes.

Figures 1.15 to 1.17 show examples.
Fig. 1.15 shows the battery from Fig. 1.10 with its 

connecting wires according to the new method.
Fig. 1.16 once again shows the lamps from Fig. 1.12, 

and Fig. 1.17 shows an electric circuit with four differ-
ent potential values.

We would like to apply the coloring of the wires to 
two problems:

1. The lamps L1 and L2 in Fig. 1.16 are identical. At 
point P, there is a current of 3 A. What is the electric 
current in L1 and in L2?

As the junction rule applies for the branch points, 
we obtain

IL1 + IL2 = 3 A.

2 31

1

2

3

Fig. 1.13  For exercises 1 and 2

a)					     b)

M

A

V

V

V 1

2

3

Fig. 1.14  For exercises 3 and 4

a)				    b)

Fig. 1.15  Different colors of the conductors stand for 
different potentials.

Fig. 1.17  There are four different potentials in this circuit.

Fig. 1.16  As shown in Fig. 1.12. The potentials are marked 
with different colors.

L2

L1

L3

B

0 V
4.5 V

0 V
– 4.5 V

– 4.5 V

0 V

P

L1 L2
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(IL1 and IL2 are the currents in the lamps.) We can 
see from the color marking that there is the same volt-
age at both lamps (i.e. the same as at the battery). The 
electric current therefore has the same driving force in 
both lamps. As the lamps are identical, the currents 
must also be the same in the two lamps, i.e.

IL1 + IL2 = 1.5 A.

2. Section B of the conductor in Fig. 1.17 is at a po-
tential of 6 V. The lamps L1, L2 and L3 are identical. 
Which voltage is created by the battery?

As the electric circuit is not branched, the current is 
the same everywhere. The voltage over lamp 1 is 6 V. It 
is the driving force for the current through L1. As the 
same current flows through lamps L2 and L3 and as 
these lamps are identical with L1, the electricity needs 
the same driving force as in lamp L1, i.e. 6 V to flow 
through these lamps. Hence, if we move from the plus 
contact of the battery via the three lamps to the minus 
contact, the voltage is reduced to 0 V in 3 steps of 6 V. 
The plus contact must consequently be at 18 V.

In the two examples, the potential at the input of a 
lamp was different from that at the output. But this rule 
does not always apply. A lamp, through which no elec-
tric current is flowing, must have the same potential at 
the input and at the output because otherwise there 
would be a current. Fig. 1.18 shows two examples.

Exercises
1. The batteries in Fig. 1.19a are 4.5 V batteries. Mark the 

points of equal potential and indicate the potential values 
for all line sections.

2. The electric current that flows through the battery in Fig. 
1.19b is 1.6 A. Indicate the points of equal potential. 
What is the electric current in the lamps?

3. The electric potential at point C in Fig. 1.20 is 20 V. The three 
lamps are identical. Mark the points of equal potential. Indi-
cate the potential values for sections A, B and D of the con-
ductors. Which voltage is supplied by the battery? What will 
happen to the potentials when the switch is opened?

4. The battery voltage in Fig. 1.21a and 1.21b is 12 V. The 
lamps are identical. Mark the points of equal potential. 
What is the value of the potential at point P? What are the 
potential differences at lamps L1 and L2? Is the current 
that flows through lamp L1 greater when the switch is 
closed (Fig. 1.21a) or when it is open (Fig. 1.21b)? When 
is the current that flows through lamp L2 greater: when 
the switch is open or when it is closed?

5. The voltage at the power supply in Fig. 1.22a and 1.22b is 
150 V, the lamps are identical. Mark the points of equal 
potential. Indicate the potential values of all conductor 
sections. Which lamp will remain lit up if the switch is 
opened?

Fig. 1.19  For exercises 1 and 2

4.5 V 4.5 V

0 V

0 V

0 V

a)				    b)

Fig. 1.18  As no electric current flows through the lamp, 
its terminals must be at the same potential.

M

5 V

+
–

2

3

4

1

+
–

2

3

4

1

Fig. 1.22  For exercise 5

L1

L2

P L1

L2

P

Fig. 1.21  For exercise 4

Fig. 1.20  For exercise 3

A B C D

a)				    b)

a)				    b)
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1.5  Characteristic curves – the electric resistance
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1.5 � Characteristic curves – the 
electric resistance

If we want electricity to flow through an object, we 
apply a voltage: we create a driving force. Each object 
tends to hamper the flow. It counters the flowing elec-
tricity with resistance. We also say: it has a resistance.

Some objects have a high resistance, they conduct 
the electric current only poorly or not at all. Others have 
a low resistance; they are good conductors of electricity.

Electric cables, for instance, have a low resistance. 
This does not mean, however, that they do not have 
any resistance at all.

The way in which the electric current flows through 
an object and how it reacts to the applied voltage can 
be quite a complicated issue. If the voltage is increased, 
the current will usually also increase – but not always.

We would like to analyze the relationship between 
voltage and current for different electric devices. Fig. 
1.23 shows how to do it: we connect the object to be 
analyzed to a power supply with an adjustable voltage. 
The voltage is read from the power supply. The electric 
current that causes the voltage is measured with an 
ammeter. If the values of the current are plotted over 
the voltage, we obtain the characteristic curve of the 
analyzed device.

Fig. 1.24 shows the characteristic curve of an incan-
descent lamp (top) and of a diode (bottom). In case 
you do not know what a diode is used for, you can fig-
ure it out with the characteristic curve: the curve 
shows that the diode lets the electric current flow in 
only one direction. It therefore works for the electric 
current in the same way as a bicycle valve works for the 
air current.

For some objects or devices, the current is propor-
tional to the voltage:

I ~ U.

This simple relationship applies, for example, for a 
common wire, provided that the current is not as high 
as to heat it up. We say that the wire complies with 
Ohm’s law. Fig. 1.25 shows the characteristic curves for 
two wires of different length. In case of an equal driv-
ing force, the current in one wire is greater than in the 
other one. The wire with the greater current has a low-
er resistance.

For a normal electric conductor, the voltage be-
tween its ends is proportional to the current that 
flows through it:

I ~ U		  Ohm’s law

in
ca
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si
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Fig. 1.24  Characteristic curves of an incandescent lamp 
(top) and a diode (bottom)

Fig. 1.23  Plotting characteristic curves: The electric 
current is measured for different given values of the 
voltage.

I

U

1

0

–1

0 2 6

I in A

U in V

2

–2

– 6 – 4

3

– 3 –2 4

Fig. 1.25  Characteristic curves of two long wires. They 
comply with Ohm’s law.
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The resistance can be characterized by means of the 
quotient of voltage and current. The higher the resis-
tance of the wire, the greater this quotient. Therefore, 
the quotient itself is called resistance of the wire and 
denominated with the letter R. Thus, we have

Electric resistance:
			 

.UR
I

=

The resistance R is a physical quantity. As a mea-
surement unit, we find volt/ampere (V/A). The Ohm, 
abbreviated with the Greek letter Ω (say omega), is 
usually used instead of the composed unit volt / am-
pere. Hence, we have

Ω = V/A .

We can now indicate the resistance of our two wires: 
the two values are 10 Ω and 40 Ω.

If the characteristic curve is not a straight line, it 
does not make sense to calculate a quotient U/I since 
this quotient would have a different value for each 
point of the characteristic curve.

In electric technology and electronics, there are 
cases where we would like to “hamper” an electric cur-
rent deliberately, i.e. where a resistance is desired. 
Therefore, devices or “components” are created with 
the only purpose of representing a resistance for a cur-
rent. These components are called resistors. Resistors 

Fig. 1.27  For exercise 6

Fig. 1.26  (a) For exercise 4; (b) For exercise 5

a)				    b)

a)				    b)

V

A

+
–

R1

R2

R1

R2

R3

are built in a way that they have a linear characteristic 
curve. They obey Ohm’s law and can be characterized 
by indicating a resistance value, i.e. a number of Ohms.

The symbol of a resistor is a rectangle as shown in 
Figures 1.23 and 1.26.

Exercises
1. A voltage of 20 V is applied to an unknown resistor. An 

electric current of 4 mA is measured. How many Ω does 
the resistor have?

2. A voltage of 120 V is applied to a 2 kΩ resistor. What is 
the electric current that flows through the resistor?

3. An electric current of 0.1 mA flows through a 1 MΩ re-
sistor. What is the voltage on the resistor?

4. The power supply in Fig. 1.26a creates a voltage of 35 V. 
The ammeter indicates 5 A and the voltmeter 10 V. What 
is the resistance of R1? What is the voltage at resistor R2? 
What is the resistance of R2?

5. The voltage of the battery in Fig. 1.26b is 12 V. Each of the 
resistors has 100 Ω. Give the potential values of all wire 
sections. What are the voltages at the three resistors R1, R2 
and R3? What values have the electric currents that flow 
through the three resistors? What is the electric current 
that flows through the battery?

6. (a) Two 100 Ω resistors are connected in parallel, Fig. 
1.27a. What is the resistance of the whole arrangement? 
Formulate a rule. (b) Two 100 Ω resistors are connected 
in series, Fig. 1.27b. What is the resistance of the whole 
arrangement? Formulate a rule. Do the rules look famil-
iar to you?

1.6 � The resistance of voltmeter 
and ammeter

We need to go back to the question of how to deal 
with the meters for current and voltage, or more pre-
cisely: what is the resistance of an ammeter and what is 
the resistance of a voltmeter?

The ammeter is inserted in a wire through which an 
electric current is flowing. The current should not 
change due to the installation of the ammeter, Fig. 1.28. 
This means: the resistance of the ammeter should be as 
low as possible. In fact, the resistance is so low that it 
can be neglected in most cases, i.e. it can be assumed to 
be equal to zero.

Next the voltmeter: the electric current should flow 
in a circuit, i.e. through the battery and the lamp and 
the respective wires. There should be no “leaks”. In or-
der to avoid a leaking effect caused by the voltmeter, its 
resistance should be as high as possible. Voltmeters 
actually do have a resistance that is so high that the 
leak current can be neglected in relation to the current 
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that flows through the lamp, i.e. we can assume that 
the resistance is infinitely high.

Ammeters have a very low, voltmeters a very 
high resistance.

Exercise
1. Comment on Figure 1.29.

1.7 � The electric conductivity
Which properties of a wire does its resistance de-

pend upon?
We connect a wire with the resistance R to a power 

supply, Fig. 1.30a. There is an electric current I. Next, 
we connect a second wire in parallel to the first one, 
Fig. 1.30b. Now, a current I is flowing in each of the 
two wires. Consequently, the total current is

I ' = 2 I .

This means that the resistance R' of the two parallel 
wires together is half that of a single wire:

R' = R/2.

We can now also look at the two wires together as a 
single one with the double cross-sectional area. In con-
clusion we can say: If the cross-sectional area of a wire 
is doubled, the resistance will decrease to half of its ini-
tial value.

Instead of connecting the second wire in parallel, 
we connect it with the first one “in series”, Fig. 1.30c. 
Both wires now have to share the potential difference 
U, i.e. on each individual wire there is only a voltage U ' 
= U/2. Hence, the current has only half of its initial 
value:

I ' = I /2.

This means that the overall resistance R' of the two 
wires connected in series is twice that of a single wire:

R' = 2 R.

Again, the two wires can be regarded as one, this 
time with the double length, and we can conclude: If 
the length of a wire is doubled, the resistance will double 
as well.

V

A

Fig. 1.28  The resistance of an ammeter is very low, that 
of a voltmeter is very high.

Fig. 1.29  For the exercise

V

A

Fig. 1.30  (a) A current I flows through a wire with the 
resistance R. (b) Two parallel wires are equivalent to a 
wire with the double cross-sectional area. The resis-
tance is half as high, the current twice as high as in (a). 
(c) Two wires in series are equivalent to a wire with the 
double length. The resistance is twice as high, the cur-
rent half as high as in (a).

R  

R  

R  

R

R  

a)

b)

c)

Both results can be summarized:

.dR
A

∼

Here, d is the length and A the cross-sectional area 
of the conductor.

The resistance also depends on the material the 
conductor is made of. This is accounted for by another 
factor, i.e. the electric conductivity σ :
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1

length
cross-sectional area
conductivity

dR
A

d
A

σ

σ

= ⋅

=
=
=

The greater the conductivity of a material, the lower 
its resistance. Hence, the conductivity is in the denom-
inator of the formula.

Table 1.1 shows the conductivity of some substanc-
es. It is remarkable that the best conductors differ from 
the weakest conductors by a very large factor, i.e. by 
approximately 1024.

Exercises
1. Estimate the resistance of the cable of a 50 m cable drum.
2. How long is a copper wire that has the same resistance as 

a 1 m PVC bar with an equal thickness? How far would 
the wire reach out from here?

3. The conductivity of a material is higher the more mobile 
charge carriers it contains. How can the conductivity of a 
salt solution be improved?

1.8 � Electric potential and energy
We track the way of a small portion of electricity 

ΔQ in an electric circuit. We start at the low terminal 
of the electric energy source (the “electricity pump”), 
i.e. at its input. Within the source, the electricity por-
tion ΔQ moves from the low potential φ1 to the high 
potential φ2. To get from φ1 to φ2, it must be supplied 
with energy in the source. (If the source is a generator, 
this energy comes from the drive shaft.) We call this 
amount of energy ΔE. The electricity portion then 
continues to flow through the wire on the high poten-
tial φ2 until it arrives at the energy receiver. In the en-
ergy receiver (an electric motor or a light bulb, for ex-
ample), it moves from the high potential φ2 back to φ1. 
Thereby it releases the energy ΔE. (If the receiver is an 
electric motor, this occurs through the motor shaft; if 
it is a light bulb, the energy goes away with light.) 
Then, ΔQ flows back to the input of the source through 
the return line on the low potential.

Thus, our electricity portion ΔQ absorbs the energy 
portion ΔE in the source and releases it in the receiver.

You might remember the relationship

P = U · I = (φ2 – φ1) · I

Material σ  in 1/(Ω · m)
Copper 5.59 · 107

Aluminum 3.7 · 107

Iron 1.02 · 107

Distilled water 3.33 · 10–5

Plexiglas 10–13

PVC 10–13

Fused silica 2 · 10–17

Table 1.1

It allows us to calculate how much energy is trans-
ported from the source to the receiver per time.

If we insert

∆
=

∆
EP
t

(i.e. the energy current is equal to energy per time) and

∆
=

∆
QI
t

(i.e. the electric current is equal to the amount of elec-
tricity per time) and multiply with Δt, we obtain

ΔΕ = (φ2 – φ1) · ΔQ,

the energy that an electricity portion ΔQ absorbs in 
the source and releases in the receiver.

We will see later where exactly this energy is located 
during the time the electricity portion moves between 
the source and the receiver. The energy appears to be 
located in the same place as the electricity portion, 
since that energy has been supplied to it. For the time 
being, you can imagine it to be like this. However, we 
will see later that the actual energy storage system is 
not the electricity itself. (Maybe you can already guess 
where the energy is located if you think of another en-
ergy storage system: where will the energy be stored 
that is supplied to a body by lifting it up?)

Energy must be supplied to bring electricity 
from low to high potential. Energy is released while 
electricity moves from high to low potential. We 
have:

ΔΕ = (φ2 – φ1) · ΔQ.



15

1.9  Charge and charge carriers

1  TH
E ELECTRIC FIELD

1.9 � Charge and charge carriers
In cases where electricity moves in a wire from one 

side to the other, we talk about an electric current. So 
far, we have analyzed the effects of electric currents 
and the relationship between the value of the electric 
current and other physical quantities. We have never 
asked questions about the effects and characteristics of 
the electricity itself though. The electricity should be 
best analyzed while it is not moving, i.e. while no elec-
tric current is flowing.

We have to admit that the electricity in a copper wire 
that is not integrated in an electric circuit, cannot be no-
ticed. Why? A possible answer would be: electricity at 
rest has no detectable properties. This answer, however, 
is not correct. Electricity can be felt very clearly, even if 
it comes only in very small quantities. Its description is 
dealt with in the field of electrostatics. The fact that we 
do not notice anything of the electricity in a piece of 
copper wire in front of us is due to a property of electric-
ity that makes it different from other physical quantities: 
it can assume positive and negative values.

All material substances contain electricity, but usually 
they contain equal amounts of positive and negative elec-
tricity so that the total amount is zero. For example, 1 g of 
copper contains 44032 C of positive electricity and the 
same amount of negative electricity; hence, the total 
amount is 0 C. (In comparison: the mass, i.e. the quantity 
that is measured in kg, can only have positive values).

Electricity can assume positive and negative val-
ues.

But what is the sense of saying that a body, whose 
electricity amounts to 0 C, actually has a well-defined 
amount of positive electricity and an equal amount of 
negative electricity? Doesn’t 0 C mean that it has no 
electricity at all? We will see that it does indeed make 
sense to say that copper (or any other material) con-
tains both positive as well as negative electricity by 
looking at the microscopic structure of the material.

All substances consist of atoms and groups of at-
oms, the molecules, and each atom consists of the pro-
tons and neutrons (located in the nucleus) and a shell 
of electron. Two of these atomic components carry 
electricity. The proton carries positive electricity, i.e.

QProton = 1.602 · 10–19 C.

The electron carries negative electricity, i.e.

QElectron = – 1.602 · 10–19 C.

Neutrons do not carry any electricity. Hence, we have

QNeutron = 0 C.

As an atom has as many protons as electrons, the 
total amount of electricity of the atom is 0 C.

In some cases, an atom can have one or several elec-
trons in excess or fall short of them. Such an entity is 
called a ion. Thus, the amount of electricity of an ion is 
not zero.

In this context, we have also learned another im-
portant characteristic of the electricity: it is always lo-
cated on some particle. Besides protons and electrons, 
there are other electrically charged particles: positrons, 
muons, anti-protons and others. They do not exist un-
der normal conditions but can be created artificially 
and only have a very short lifetime.

Particles on which electricity is located are said to 
be electrically charged. Hence, the electricity is usually 
referred to as electric charge. And electrically charged 
particles, i.e. electrons, protons, ions etc., are called 
charge carriers.

Electric charge (= electricity) is always located 
on particles: the charge carriers.

1.10 � Charge current and charge 
carrier current

We can now understand how electric conductors dif-
fer from nonconductors: conductors are materials that 
contain mobile charge carriers; in non-conductors or 
insulators, all charge carriers are immobile. The nature of 
the mobile charge carriers in an electric conductor can 
be different in each case. In some conductors, only posi-
tive charge carriers move, in some only negative ones 
and in others both positive and negative charge carriers.

In metals, the mobile charge carriers are electrons. 
However, not all electrons of the metal atoms can move 
but usually only one per atom. There are no mobile elec-
trons in acids, bases and salt solutions. The electric con-
ductivity is caused by mobile ions in this case. As there 
are both positive and negative ions, we also have charge 
carriers with both positive and negative charges here.

If an electric current flows in an electric circuit, the 
mobile charge carriers move past the remaining ones 
with an opposite charge so that the electric circuit re-
mains neutral everywhere. The net charge of all wires, 
energy sources and energy receivers remains zero.
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We see that an electric current can be realized in 
different ways. In all three sections of Fig. 1.31, we 
have an electric current of 2 A that flows from the left 
to the right. In part (a) of the figure, it is formed by 
positively charged carriers that move to the right, in 
(b), negative charge carriers flow to the left. In part (c), 
positive charge carriers move to the right and negative 
ones to the left at the same time; both charge carrier 
types contribute to the total current.

You will be surprised how slowly the charge carriers 
move in a conductor: if an electric current of 1 A flows 
in a copper wire with a cross-sectional area of 1 mm2, 
the velocity of the mobile charge carriers (mobile elec-
trons) is only 0.07 mm/s.

Exercises
1. Two electrodes are immersed in a salt solution in which 

positive ions flow from the left to the right. They trans-
port 0.5 Coulomb per second. At the same time, negative 
ions flow from the right to the left. They transport 
0.3 Coulomb per second from the right to the left. In 
which direction does the electric current flow? What is 
the value of the electric current?

2. An electric current of 2 A flows in a copper wire. How 
many electrons move per second through a cross-section 
of the wire?

1.11  Accumulating electric charge
Our initial goal was to learn something about the 

properties of electricity. But then we explained why a 
normal electric circuit is electrically neutral every-
where, i.e. why the electric charge can usually not be 
noticed at all. We would now like to check if the neu-
trality of an electric conductor can be disturbed. We 
will try to accumulate electric charge on a conductor 
so that its total charge is different from zero. We will 
see that this comes with some difficulties.

To get a better understanding of the problem that is 
going to arise, let us have a look at Fig. 1.32.

The recipient on the left is filled with air under 
normal pressure. We would like to increase the 
amount of air in this recipient. Therefore, we simply 
pump air from the outside into the recipient. The 
pressure increases in this process. The recipient on 
the right in the figure is filled with water and we 
would like to increase the amount of water in the re-
cipient. But this is clearly not as easy as for the air. 
Even with a pump that creates a very high pressure, 
the amount of water can only be increased to a very 

Fig. 1.31  An electric current flowing to the right is real-
ized by charge carriers that move (a) to the right, (b) to 
the left and (c) in both directions.

2 A

2 A

2 A

a)

b)

c)

air water
Fig. 1.32  The amount of air in the recipient on the left 
can be changed easily, the amount of water on the 
right only with great difficulty.

small extent. This is due to the fact that water cannot 
be compressed as easily as air.

The behavior of electricity is similar to that of water: 
it is very hard to realize in an object a deviation from 
the normal amount of electricity, i.e. 0 Coulomb.

How could electricity then be accumulated in an 
object? With an “electricity pump”, of course, i.e. with a 
battery or a power supply. Fig. 1.33 shows an experi-
ment that does not work: the plus terminal of a battery 
is connected to a wire, the minus terminal to the Earth. 
The battery should now pull electricity out of the Earth 
and push it into the wire. The wire should take on an 
electric charge and also remain charged when it is dis-
connected from the battery. If it is subsequently 
touched with the terminal of a small lamp whose other 
terminal is grounded, the lamp should light up be-
cause the accumulated electricity is supposed to flow 
back to the Earth through the lamp. But the lamp does 
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not light up. Why not? Because the amount of electric-
ity that we have pumped onto the wire is far too small.

To provide evidence of an accumulated charge on 
the wire, we need to improve the experiment in two 
ways:

(1) we use an electricity pump that "pushes much 
more", i.e. a power supply that creates a much higher 
voltage, possibly a conventional high-voltage power 
supply (with a transformer) or a Van de Graaff genera-
tor, Fig. 1.34. The Van de Graaff generator creates volt-
ages of up to approximately 50 kV.

(2) To detect the charge on the wire, we use a device 
that is more sensitive, i.e. that reacts to smaller amounts 
of charge, than our light bulb: a glow lamp. The glow 
lamp has an additional advantage for our experiment: 
it allows us to see in which direction the current is 
flowing through it because it only glows on the side 
that is on the lower potential.

After taking these measures, our charge accumula-
tion experiment is successful. Depending on which of 
the two terminals of the highvoltage power supply is 
grounded, the amount of electricity of the wire is ei-
ther increased or reduced. If the minus contact of the 

electricaly
charged?

Fig. 1.33  (a) The battery pumps electricity from the 
Earth into the wire. (b) The wire is electrically charged. 
(c) The lamp is not lit because the charge of the wire is 
far too low.

metal sphere

rubber belt

crank

a)			   b)		  c) power supply is grounded, the wire will be positively 
charged. As the mobile charge carriers of the wire are 
electrons, this means that electrons can be removed 
from the wire. Hence, it has fewer electrons than in the 
neutral state. If the plus contact is grounded and the 
minus contact is connected to the wire, the wire be-
comes negative. It has excess electrons.

The amount of charge that we accumulate grows the 
more we increase the potential of the wire. A high pos-
itive potential is related to a (relatively) large amount 
of positive charge; a high negative potential corre-
sponds to a (relatively) large amount of negative 
charge. We can summarize this result:

The higher the electric potential of a body, the 
more electric charge it contains.

The reverse situation is also true:

The greater the electric charge that sits on a 
body, the higher the electric potential of the body.

These simple rules only apply as long as there are no 
other charged bodies around. We will see later that 
electrically charged bodies influence one another.

Please bear in mind that the amount of electricity 
that we finally accumulated in our experiment is still ex-
tremely small. It only amounts to a few μC. Compare 
this with the overall positive charge that is located on 
the respective metal parts but that is compensated by 
almost the same amount of negative charge: there are 
approximately 44000 C in 1 g of copper (see section 1.9).

1.12  The electric field
We have managed to accumulate charge and also to 

provide evidence of this charge. But we have not yet 
noticed any particular properties of the electric charge. 
To analyze the properties of the electricity, we make 
the experiment illustrated in Fig. 1.35.

Two hollow metal spheres A and B are connected to 
a high-voltage power supply. Sphere B is very light. It is 
suspended on a thin wire so that it can move easily. If 
the power supply is switched on so that one sphere is 
charged positively and the other one negatively, B will 
be pulled towards A. If we charge the previously positive 
sphere negatively and the previously negative one posi-
tively, nothing will change: B will be pulled to A again.

Now we connect the spheres to the power supply in a 
way that their charges have the same +/– sign, Fig. 1.36. 

Fig. 1.34  Van de Graaff generator
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B is now pushed away from A, regardless of whether 
both spheres are charged positively or negatively.

We can conclude from the fact that one sphere is 
pulled towards the other or that one is pushed away 
from the other that there is a connection between the 
spheres.

This connection is called electric field. We call the 
invisible “material” the field. It consists of field stuff.

An invisible entity is attached to electrically 
charged objects. This entity is called electric field. If 
the charges of two objects have the same +/– sign, 
the field pushes the objects away from each other; if 
they have different +/– signs, the field pulls them 
towards each other.

The fact that objects can pull and push each other 
by means of the electric field means that momentum 
flows from one to the other body. Hence, the electric 
field transports momentum: momentum currents are 
flowing within the electric field. This is equivalent to 
the statement that the field stuff is exposed to mechan-
ical stress.

In the field between two bodies, momentum can 
flow both to the right as well as to the left. This means 
that there can be both compressive stress as well as ten-
sile stress in the electric field. We will study this ques-
tion in greater detail at a later time.

For now, we make another experiment that is even 
simpler than the previous ones, Fig. 1.37: only the 
fixed sphere A is electrically charged, sphere B is un-
charged and insulated. Surprisingly, B is pulled to-
wards A again, regardless of whether A is charged 
positively or negatively. How can that be explained? As 
sphere B is not connected to the power supply, no field 
should be attached to it.

Fig. 1.35  Sphere B is pulled towards sphere A by means 
of the electric field.

Fig. 1.36  The electric field pushes sphere B away from 
sphere A.

Fig. 1.37  The mobile charge carriers on B are displaced 
by the electric field. Electrically charged areas develop 
on the surface of B.

We can find the explanation if we recall a similar 
phenomenon of magnetism: a piece of soft iron, i.e. an 
object that is not magnetic at first, is pulled towards a 
magnetic pole, and that to both a magnetic north and 

S   permanent magnet     N B

S N

soft iron

Fig. 1.38  B is magnetized by the field of the permanent 
magnet. Magnetic poles develop on the surface of B.
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a magnetic south pole. Here, the explanation is as fol-
lows: as soon as the soft iron comes close to a mag-
netic pole it develops poles itself. Close to a north pole, 
it develops a south pole on the side that faces the north 
pole and a north pole on the opposite side, Fig. 1.38.

It is very similar in or last experiment. The electric 
field pulls on the charge carriers of B and slightly dis-
places them so that B is charged positively on one side 
and negatively on the opposite side. The overall charge 
of B remains zero. If A is positively charged, B will be-
come negative on the side that faces A and positive on 
the side that faces away from A. As the negative side of 
B has a shorter distance from A than the positive side, 
sphere B is pulled towards A.

If A is negative, the charges on B will move in the 
other direction and the charges of A and of the side of 
B that faces A have opposite +/– signs again so that B 
is pulled towards A.

This charge displacement process under the influ-
ence of the electric field of another body is called elec-
trostatic induction.

To prove that an object is electrically charged, we 
used a small light bulb earlier. Another device to pro-
vide evidence of electricity is the electroscope. Now we 
can understand how it works.

Inside the metal ring, Fig. 1.39, there is a vertical 
bar. The bar is electrically insulated from the ring. On 
this bar, there is another bar attached in a rotatable 
way. This rotatable bar is very light. Both bars are con-
nected to the upper terminal of the electroscope in an 
electrically conductive way. The ring is grounded.

We would like to use the electroscope in order to find 
out if charge is sitting on a sphere. Therefore, the upper 
terminal of the electroscope is touched with the sphere. 
Electric charge flows from the sphere to the two bars. 
The latter are now charged equally and the movable bar 
is pushed away from the fixed bar by the electric field. 
The more charge there is on the electroscope, the stron-
ger the movable bar spreads away from the fixed one.

We use the electroscope to show the phenomenon 
of electrostatic induction once again in a simpler ex-
periment, Fig. 1.40.

The big sphere was charged positively. We bring two 
neutral spheres B and C into the field area of the big 
one, Fig. 1.40a. B and C are put together so that they 
can touch each other, but they do not touch A, Fig. 
1.40b. The field of A, causes the charges on B and C to 
separate (electrostatic induction). On the left, i.e. on B, 
negative charge accumulates. On the right, i.e. on 
sphere C, positive charge concentrates. Now, we sepa-
rate B and C from each other while they are still close 
to A, Fig. 1.40c, and then we take them out of the area 

Fig. 1.39  Electroscope. The movable bar carries charge 
of the same +/– sign as the fixed one.

A B C

A B C

A B C

A B

C

Fig. 1.40  (a) The neutral spheres B and C are brought 
close to A. They are put together so that they touch 
each other. (b) The charge on B and C is displaced (in-
duction). (c) The contact between B and C is interrupt-
ed. (d) The charges of B and C are detected with the 
electroscope.

a)

b)

c)

d)

insulator

metal

of the big sphere, Fig. 1.40d. Normally, the charges on 
B and C would compensate each other again. This is 
impossible, though, as the connection is interrupted.

We use the electroscope to show that B and C are 
charged. We touch the electroscope with one of the two 
spheres, for example with B. From B, negative charge 
flows to the electroscope, which sets off a signal. Then, 
we touch the electroscope with sphere C. Electricity is 
flowing onto the electroscope and neutralizes the nega-
tive charge so that the signal disappears.
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Exercises
1. On sphere B in Fig. 1.37, positive and negative charge car-

riers are separated through induction. Sphere B is pulled 
towards A by the field. As soon as it has touched A, how-
ever, it will be pushed away from A. How can this be ex-
plained?

2. How could we show that the field that is located close to 
electrically charged objects is not a magnetic field?

3. A light metal sphere A is suspended between two fixed 
spheres B and C, Fig. 1.41. Sphere A is brought in short 
contact with C and subsequently released. What hap-
pens?

1.13  The electric field strength
Assume that there is an electric field in a given area 

of space (for example because this area is currently 
covered by a thundercloud). Imagine you wish to tell 
someone how much and what type of field stuff is there 
at a given place of the area. To do so you need a mea-
sure, a physical quantity. Such a measure is the electric 
field strength.

At first, one would probably expect that the electric 
field strength simply has a high value in close proximity 
to a charged body and a lower one farther away from the 
body. However, the field cannot be clearly described yet.

We have seen that there could be both compression 
as well as tensile stresses in the electric field. In fact, 
there is compressional and tensile stress at every point 
at the same time in a field. How is this possible?

For each little piece of field stuff, there is a well-de-
fined direction in which the field is under tensile stress. 
It is called tensile direction. In all directions that are per-
pendicular to it, the field stuff is under compressive 
stress. Fig. 1.42 shows a small cylinder that was hypo-
thetically cut out of a field in a way that the cylinder axis 
is oriented in the tensile direction of the field. In the di-
rections that are perpendicular to it, there is a compres-
sive stress. (The fact that a material has a well-defined 
direction at each point is not an uncommon character-
istic. For example, the texture of a piece of wood also has 
a certain direction at each point. Which characteristic of 
the wood depends on the direction of the texture?)

We conclude: if we wish to characterize the field 
stuff at one point of the field, it will not be sufficient to 
say whether there is much or little field stuff. In addi-
tion, we need to indicate the tensile direction at that 
point. (The compressive directions can be derived 
from it unambiguously.) In other words, the electric 
field strength must be a vector.

Fig. 1.42  At each point the field has a well-defined par-
ticular direction: the direction in which there is ten-
sional stress.

Fig. 1.41  For exercise 3
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The electric field strength is a vector.
Magnitude of the vector: measure for the density 

of the field stuff.
Direction of the vector: tensile direction of the 

field stuff.

The magnitude of this vector provides evidence of 
the density of the field; its direction is that of the ten-
sile direction of the field.

Back to our initial problem: we would like to tell 
someone about the electric field strength that a field 
has at a given point. Therefore, we need a measure-
ment technique for the field strength vector. There are 
different methods for this purpose. We would like to 
look at one that, although it is so unhandy that it is 
practically not used, is particularly easy to understand 
– and this is what matters for us at the moment.

A small electrically charged “test body” is brought 
at the point at which the field strength is to be mea-
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sured. Now, a momentum current flows into this test 
body. By means of a momentum current meter (= dy-
namometer), the amount and direction of the momen-
tum current vector are determined. If we divide by the 
charge of the test body, we obtain the electric field 
strength:

=
�

� FE
Q

Then, we transform the equation:

F
r
 = Q · E

r
	 (1.1)

F
r
 = momentum current flowing into the body

Q = electric charge of the body
E
r
 = electric field strength

We thus have: The momentum current is equal to 
the electric charge multiplied by the electric field 
strength. This equation has the same form as one that 
we already know:

F
r
 = m · gr

i.e. the momentum current is equal to mass multiplied 
by the gravitational field strength.

If the charge of the test body is doubled, the mo-
mentum current will also double. The quotient of mo-
mentum current strength and charge therefore re-
mains constant. Its value is independent of the charge 
of the test body, i.e. independent of the meter. And this 
is how it should be. Although the body changes the 
original field considerably, the equation still tells us the 
field strength of the field without the body.

For the measuring unit of the electric field strength, 
we obtain Newton/Coulomb. This can be converted to 
the more common unit Volt/meter.

Later, you will get to know another measurement 
technique for the electric field strength.

Exercises
1. An electron is brought into an electric field to a point 

where the field strength is 80 000 V/m. How does the mo-
mentum of the electron change? (What is the rate of 
change of the momentum?)

2. An electrically charged body is brought to a location P. It 
carries a charge of 10 nC. The momentum current that 
flows into the body is found to be 0.02 N. What was the 
field strength of the field at point P before the charged 
body was brought there?

1.14 � Graphical representation of 
electric fields

In the following, we will often need pictures of elec-
tric fields. Hence, we must examine possibilities to 
graphically display electric fields.

If the tensile and compressional stress in the field, 
i.e. the direction of the field strength vector, is not a 
crucial aspect, a very simple method can be used. The 
density of the field stuff is illustrated by means of gray 
shadings: black or dark gray where the magnitude of 
the field strength vector is great and lighter shades 
where it is small. Fig. 1.43 shows the field of a charged 
sphere. We see that the field has no clear external 
boundary – similar to the atmosphere above the sur-
face of the Earth.

Another illustration method is applied in Fig. 1.44. 
There, the field strength vectors are represented by ar-
rows at regular intervals. This picture does not only tell 
us the density for each point of the field, but also the 
tensional direction.

We will now look at the third and most important 
method. The field is illustrated by means of field lines 
and field surfaces.

Field lines: a line is drawn in a way that each point 
of it has the direction of the field strength vector as-
sociated with this point. This is how we obtain one 
field line. Then, we draw many of these field lines. 
Fig. 1.45 shows what we obtain for the case of a 
charged sphere.

It is a common practice to draw arrows on the field 
lines that point in the same direction as the field 
strength vectors.

+

Fig. 1.43  Field stuff surrounding a charged sphere. High 
density: dark shade; low density: light shade



22

1.15  Rules for drawing electric fields

1  
TH

E 
EL

EC
TR

IC
 F

IE
LD

Field surfaces: we have drawn field lines on our two-
dimensional paper. At first, you need to imagine that the 
field lines are actually located in three-dimensional space. 
Now, we can construct surfaces in such a way, that the 
field lines are crossing them perpendicularly in every 
point, Fig. 1.46. These surfaces are the field surfaces. If we 
make a two-dimensional sectional image, each surface 
will also be visible as a line. These lines are always perpen-
dicular to the field lines. In the following, we will mostly 
look at such two-dimensional sectional images.

Fig. 1.47 shows the field of our charged sphere, rep-
resented by field lines and field surfaces in addition to 
gray shadings.

We have learned how a field can be represented 
graphically. Of course, this is only possible if we know 
the field, i.e. that we know the field strength vectors at 
the different points of space.

1.15 � Rules for drawing electric 
fields

We start from an arrangement of bodies that are elec-
trically charged, i.e. at which an electric field is attached. 
How can we know what this field looks like? In other 
words, what is the shape of the field lines and field sur-
faces? There are different answers to this question.

The first answer: the field strength vectors for the 
different points in space can be calculated based on the 
distribution of the electric charge. The calculation 
method is quite complicated, but there are computer 
programs that can do the work for us.

The second answer: field lines and field surfaces can 
be visualized experimentally. A particularly simple ver-

+

Fig. 1.45  Field of a charged sphere, illustrated with field 
lines

+

Fig. 1.44  Field of a charged sphere, illustrated with field 
strength vector arrows

Fig. 1.46  Perspective view of a field section. The field 
lines cross the field surfaces perpendicularly.

+ field lines

field surfaces

Fig. 1.47  Field of a charged sphere, illustrated with field 
lines, field surfaces and gray shading
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sion of such an experiment almost sounds like a kitchen 
recipe: castor oil is poured between the charged bodies 
whose field is to be analyzed. Then, some semolina is 
spread onto the oil. The semolina grains form small 
chains that are oriented at each point in the tensile di-
rection of the field, Fig. 1.48 (the experiment is similar 
to the one in which the field lines of a magnetic field are 
visualized by means of iron fillings.)

The third answer: if the image does not have to be 
exact, it is sufficient to know a few rules. This method 
is the most important one for us at the moment be-
cause each of these rules tells us an important aspect of 
the nature of the field. We would like to provide an 
overview of these rules here.

You already know the first one: the field lines are 
always perpendicular to the field surfaces.

Another rule can be identified if we take a closer 
look at Figure 1.49: field lines end at electric charges; 
field surfaces, in contrast, are closed. Of the two charg-
es that are connected by a field line, one is always posi-
tive and the other one negative. The arrow that we put 
on the field lines points from the positive to the nega-
tive charge. Hence, the rule can also be formulated like 
this: field lines start at positive and end at negative 
charges. (However, we will later see fields in which the 
field lines have no beginning or end, whereas the field 
surfaces are not closed.)

If possible, the field lines are drawn in a way that 
one field line corresponds to a given amount of charge. 
In Fig. 1.49, for example, the body at the top left carries 
10 positive units of charge, the two others respectively 
5 negative units. If the overall charge of the illustrated 
bodies is not equal to zero, field lines need to leave the 
picture. This is the case for instance in Fig. 1.47. Here, 
only a single positively charged body is shown. Hence, 
all field lines must run out of the picture.

Another rule says that the field lines never intersect. 
To understand this, we do not need to look at the fig-
ures: in one point, the field strength vector must have 
a well-defined direction. It cannot have two directions 
at the same time.

+ –
+ –

–

Fig. 1.48  The field lines are visualized by means of cas-
tor oil and semolina grains.

Fig. 1.49  Field lines start at positive and end at nega-
tive charges. Field surfaces are closed.

Fig. 1.50  Field lines and field surfaces at the edge of a 
charged capacitor from Maxwell’s Treatise on Electricity 
and Magnetism

Another simple rule: except on the surface of bod-
ies, field lines and field areas do not have any kinks.

Finally, another very “powerful” rule: if the arrange-
ment of the charged bodies is somehow symmetric, 
the field line image will display the same symmetry.

We summarize:

In every point, the field lines are perpendicular 
to the field surfaces.

The field lines start on positively charged bodies 
and end on negatively charged ones. The greater the 
charge, the more field lines start or end on the body.

Field lines do not intersect each other. Field sur-
faces do not intersect each other.

Field lines and field surfaces do not have kinks.
A field image has the same symmetry as the elec-

tric charges.
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Fig. 1.50 shows field lines and field surfaces of the 
field at the edge of a capacitor from the original publi-
cation by James Clerk Maxwell from 1873. Maxwell 
formulated the theory of the electric and magnetic 
fields that is still used today.

Exercises
1. Draw the field surfaces in Fig. 1.51. (The figure shows the 

field lines.)
2. Draw the field lines in Fig. 1.52. (The figure shows the 

field surfaces.)
3. Fig. 1.53 shows the field surfaces of a field. Mark the 

points where charges are sitting. Draw the field lines.

1.16 � Four important electric 
fields

We will repeatedly come across some particular 
charge distributions. Hence, it is worth memorizing 
the images of the corresponding fields.

1. A charged sphere
We already know the field. It is shown in Fig. 1.47. 

We would still like to convince ourselves that we would 
have also been able to draw the image by using our 
rules:

The field lines must start at the charged body. As 
there is no other body, they all need to leave the image 
in an outward direction.

+

+

–

–

Fig. 1.51  For exercise 1

+

Fig. 1.52  For exercise 2

Fig. 1.53  For exercise 3

Regarding the symmetry of the charge distribution: 
if the charged body is rotated by a random angle, we 
will not be able to distinguish the rotated sphere from 
the one that has not been rotated. The charge distribu-
tion is rotationally symmetric for any angle. The field 
must have the same symmetry.

Therefore, the field image is already defined unam-
biguously. The field lines run radially in an outward di-
rection, the field surfaces appear as concentric circles.

2. The electric dipole
A dipole is a structure that consist of two adjacent 

bodies that have the same charges with opposite +/– 
signs: one is positively charged, the other one carries a 
negative charge of the same amount. The field image is 
shown in Fig. 1.54.
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As the amount of negative charge is equal that of 
positive charge, all field lines run from one to the other 
body.

Exercise 2 asks for the symmetry of the charge dis-
tribution.

3. Two equally charged bodies
The charge distribution is similar to that of the di-

pole, but the two bodies now have the same charge. 
Let’s assume both charges are positive, Fig. 1.55.

Since there are no negatively charged bodies, all 
field lines must run out of the picture.

Exercise 3 asks for the symmetry of the charge dis-
tribution.

4. Two plates with equal but opposite charges
Also in this case, the charge has the same amount 

but opposite +/– signs, and it is distributed equally on 
each of the two plates. Fig. 1.56 shows the picture for 
the case that the length of the plates is approximately 
three times their distance.

Just as for the dipole, all field lines run from one to 
the other body, i.e. from one to the other plate. It is 
remarkable that the field concentrates on the space be-
tween the plates. We can also see that the field strength 
in the central area is very even: both the direction and 
the magnitude of the field strength vector are almost 
not changing from one point to another. The field is 
nearly homogeneous.

“Homogeneous” means “the same everywhere”. If, 
for example, the temperature has the same value at 
each point of a room, the temperature distribution is 
homogeneous.

A homogeneous field is the simplest field that we 
can imagine. We can easily realize a nearly homoge-
neous electric field with two plates. The greater the ex-

+ – + +

+

–

Fig. 1.54  Electric dipole with its field Fig. 1.55  Two positively charged bodies with their field

Fig. 1.56  Two plates with equal but opposite charges 
with their field

+

–
Fig. 1.57  Sectional view of two infinitely extended 
plates with equal but opposite charges

tension of the plates compared to their distance, the 
more even will be the field, the more similar it is to a 
homogeneous field. We often imagine that the plates 
would have an infinite length and width. In this case, 
the field between the plates would be perfectly homo-
geneous and outside of it, the field strength would be 
exactly zero. Fig. 1.57 shows a section of such a pair of 
plates, together with its field.



26

1.17  Calculation of electric field strengths

1  
TH

E 
EL

EC
TR

IC
 F

IE
LD

Exercises
1. A sphere carries the charge Q0. The charge sits (a) on the 

surface of the sphere, or is (b) spread throughout the inside 
of the sphere. In what way is the field line image outside of 
the sphere different between case (a) and case (b)? Explain.

2. Which are the symmetries of the charge distribution of 
the electric dipole in Fig. 1.54? Check if the field has the 
same symmetry. Consider the +/– signs of the charge. 
Formulate an extension of the rule about the relationship 
of the symmetries of charge and field.

3. Which are the symmetries of the charge distribution 
from Fig. 1.55? Does the field have the same symmetry?

1.17 � Calculation of electric field 
strengths

Calculating the field strength for a given charge dis-
tribution is generally difficult, but not so in a few im-
portant cases – for example if the charge distribution is 
spherically symmetric. We consider an electrically 
charged sphere whose charge is spread throughout the 
entire inside. The charge density is supposed to be the 
same at every point inside the sphere. The magnitude 
of the field strength vector outside of the body is then 
described by the following equation: 

(1.2)= ⋅
π

�
2

0

1( )
4

QE r
rε

electric constant ε0 = 8.854 · 10–12 C/(V · m)

where
Q	 = electric charge
r	 = distance from the center of the charge
	 distribution
ε0	 = electric constant.

The whole factor 1/(4 π ε0) is also a constant.
Does this equation look familiar to you? It has the 

same structure as the equation for the gravitational 
field strength of spherically symmetric bodies:

= ⋅
�

2( ) mg r G
r

We already know the direction of the field strength 
vectors: if the charge is positive, they point radially 
outwards.

The 1/r2 law of equation (1.2) is more commonly 
used than we would think at first.

Hence, it is not only valid for the field of a homoge-
neously charged sphere, but also for any other spheri-
cally symmetric charge distribution; however, only 

outside of the space in which the charge is located. Fig. 
1.58 shows three spherically symmetric charge distri-
butions. The total charge, i.e. Q is the same for all of 
them. Equation (1.2) applies for all three, but only for 
radii that are larger than R. 

The 1/r2 law, however, can also be used if the charge 
distribution is not spherically symmetric because it 
applies for any charge distributions if we are at a suffi-
cient distance. Figure 1.59 shows a charge distribution 
whose cross-section has the shape of an acute-angled 
triangle. From a certain distance, the field lines are al-
most straight lines and the equipotential areas are al-
most spheres. When this is the case, the 1/r2 law can 
also be applied.

Exercises
1. In Fig. 1.58c, the charge Q/2 on the inner sphere is re-

placed by –Q/2. What does the field for r > R now look 
like?

2. Insert the expression for the field strength of equation 1.2 
in equation 1.1. Be well aware of what you are doing. 
What is the meaning of Q in equation 1.1 and what is the 
meaning of Q in equation 1.2? What is the meaning of r? 
In case you have done everything correctly, you have ob-
tained Coulomb’s Law. Search for an analogous law in 
mechanics.

R R R

Q Q
Q/2

Q/2
+

+
+

+

Fig. 1.58  For each charge distribution, the 1/r
2 law ap-

plies outside of the distance R from the center.

Fig. 1.59  Field lines (blue) and field surfaces (green). At a 
long distance from a charge distribution, the field be-
comes spherically symmetric and the 1/r

2 law applies.

a)		  b)		  c)
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1.18 � Several charged bodies – 
vector addition

We will try to bring two fields to the same point, for 
example the fields of two charged spheres A and B. A 
and B carry the same charge.

But how can a field be brought from one point to 
another? By moving the charged body to which it is 

+

P

A

+
B

+
A

+B

P

Fig. 1.60  (a) Sphere A with its field. (b) Sphere B with its 
field. (c) Spheres A and B with their field. The field 
strength is obtained through vector addition.

a)

b)

c)

++

P P

Q0 2 Q0

E0
2 E0

Fig. 1.61  If the charge is doubled, the electric field 
strength will double at each point of the field.

attached. Hence, let us move one of the charged 
spheres closely towards the other.

What happens? Does the field of A prevent the field 
of B from merging into it? Or can two fields be located 
at one point at the same time? Neither the former nor 
the latter is the case. Something else and something 
surprisingly simple happens. A field results, whose 
field strength is obtained by vector addition of the field 
strengths of the individual fields, Fig. 1.60.

Fig. 1.60a shows sphere A with its field. There are no 
other charged bodies close to it. Fig. 1.60b shows sphere 
B alone with its field. Fig. 1.60c finally shows the case 
that there are both spheres. We are interested in the field 
strength in point P. We assume that we know the field 
strength vectors in the case that there is only one sphere, 
i.e. either only A or only B. These vectors are shown in 
Figures 1.60a and 1.60b. We obtain the field strength in 
P for the case that there are both spheres by adding the 
two field strength vectors, Fig. 1.60c. This is how the 
field strength at each point can be obtained based from 
the field strengths of the individual charges.

We would now like to get a useful, general rule by 
means of our new knowledge. We will derive it on the 
basis of an easy example and subsequently generalize 
it. We look at the field of a sphere that carries the elec-
tric charge Q0. The field strength of the field in a ran-
domly chosen point P shall be E

r
0, Fig. 1.61a.

We now bring another charge Q0 to the point of the 
original charge, Fig. 1.61b. In other words: the sphere 
that had the charge Q0 before now carries the charge 
2 Q0. What is the new field strength? How does the 
electric field strength change at a point when the elec-
tric charge that the field creates is doubled? We know 
how to calculate the new field strength, namely by vec-
tor addition of the contributions of the individual 
charges: field strength created by the first charge Q0 
plus field strength created by the second charge Q0. As 
the two vectors are equal, the result is a vector that has 
the same direction as E

r
0 but twice the length. Hence, 

the new field strength is simply 2 E
r

0.
This result can be generalized:

If all charges of a charge distribution are multi-
plied by a factor k, the magnitudes of all field 
strengths will increase by the factor k. The field 
strength directions will not change.

Vector addition is also used by the computer to cal-
culate field distributions. We imagine the charge dis-
tribution to be composed of many tiny point charges. 
Each individual one creates a field whose field strength 
can be calculated according to equation (1.2). The 
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computer calculates the field strength contribution of 
all point charges for a given point P1 and adds them up 
according to the vector addition rule. The result is the 
field strength in P1. The same is done for all other 
points P2, P3 ... for which we want to have the field 
strength (usually for all pixels of the computer screen).

Exercises
1. A small pair of plates with equal but opposite charges, is 

brought transversally between the plates of a large pair of 
plates, Fig. 1.62. Also the large plates have equal but op-
posite charges. The magnitudes of the field strengths shall 
be equal (before bringing the small pair of plates into the 
large one). What is the field strength in the space between 
the small plates?

2. The field of the infinitely extended pair of plates from Fig. 
1.57 can be regarded as composed of the field of the upper 
plate and the one of the lower plate. How does the field of 
the upper plate alone look like? How does the field of the 
lower plate alone look like? How does the field of both 
plates result?

3. The absolute value of all the charges in Fig. 1.63a and 
1.63b is the same. Determine the direction of the field 
strength vector in points A, B, C and D.

1.19 � Pressure and tension within 
the electric field

We have seen that the electric field is in a state of 
mechanical stress. At each point, it is under tensile 
stress in one direction and under compressive stress in 
the transversal directions. In places where the field 
strength is high, i.e. where the field stuff is dense, the 
stresses are strong. Mechanical stress is a physical 
quantity that can be described with numbers. We will 
see how this is done with an example that is slightly 
easier than the electric field.

A block K1 is clamped between two walls by means 
of a spring, Fig. 1.64a. A momentum current is flowing 
through the arrangement. We now compare it with 
block K2 in Fig. 1.64b. As the springs are identical, the 
momentum currents are the same in both cases. How-
ever, as the block K2 has a greater cross-section than 
K1, the momentum current spreads across a larger 
surface. In K2, the momentum current per unit area is 
smaller than in K1; in other words: the momentum 
current density is lower in K2.

The momentum current density is abbreviated with σ.

               momentum current densityF
A

σ =

Fig. 1.62  For exercise 1

Fig. 1.63  For exercise 3

D

+

+

– –

C

B

+

+

+ +A

a)

b)

Fig. 1.64  The same momentum current flows through 
the blocks K1 and K2. The momentum current density (= 
mechanical stress) in K1 is higher than in K2.

K1

K2

a)

b)

+

–

–+
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“Mechanical stress” is just another name for the 
momentum current density:

σ = mechanical stress = momentum current 
density

We will now expose an object to compressive and 
tensile stress at the same time; for example a blackboard 
sponge, Fig. 1.65. We grab it with both hands and com-
press it from the side; at the same time, we pull in a lon-
gitudinal direction. The inside of the sponge is now ex-
posed simultaneously to compression and tension: 
compression in the direction from right to left, and ten-
sion in the direction from top to bottom. It could of 
course also be exposed to tension or to compression in 
both directions respectively. In any case, the two com-
pressive or tensile stresses can have different values.

Finally, we can also expose the sponge to any com-
pressive or tensile stress in the third spatial direction, 
the direction from the front to the back, by pushing or 
pulling accordingly.

You might now imagine that we could continue like 
this; that further different compression values could be 
produced in other spatial directions. Why not five dif-
ferent compression values (or tensile stress values) in 
five different directions? This is not possible, though. 
As soon as we try to change the stress in a fourth direc-
tion, the stress will change automatically in the first 
three directions.

Hence, we have the following result:

Mechanical stress can have different values in 
three directions that are perpendicular to each other.

In solid bodies, also in bodies such as a sponge, the 
three directions and the pertaining stress values can be 
set arbitrarily (at least as long as they are not as high as 
to break the body).

Fig. 1.65  The inside of 
the sponge is ex-
posed to tensile 
stress in a vertical 
direction and to com-
pressive stress in a 
horizontal direction.

However, there are systems in which the three 
stresses are related to each other in a particular way.

In liquids or gases, for example, the three stresses 
are always equal. They are then just called pressure.

Liquids and gases: σ1 = σ2 = σ3 = p

Coming back to the electric field, we already know: 
there is tensile stress in one direction and compressive 
stress in the respective perpendicular direction. A sim-
ple rule applies for the values of these stresses: the ten-
sile stress has the same magnitude as the compressive 
stress, i.e.:

Electric field: 
		

20
2

Eεσ = −�
�

     

20
2

Eεσ ⊥ =
�

σ|| is the stress in the direction of the field lines; it is 
negative, i.e. it is a tensile stress. σ⊥ is the stress perpen-
dicular to the field lines; it is positive, i.e. a compressive 
stress. |E

r
| is the magnitude of the electric field strength. 

(In order to avoid confusion with the energy E, we 
added a vector arrow and bars to the field strength 
symbol.) ε0 is the electric constant:

Electric constant ε0 = 8.854 · 10–12 C/(V · m)

We can now understand why and how bodies at-
tract and repel each other. We would like to predict, 
only by looking at the field image, in which direction 
the field pushes or pulls a charged body.

All we need to know is that there is tensile stress in 
the direction of the field lines and compressive stress 
in the respective transversal direction, i.e. in the direc-
tion of the field surfaces.

1. A pair of plates
Fig. 1.66 once again shows the field image. We look 

at the field in the area that is contoured by the dotted 
line. The field lines leave the upper plate on the lower 
side. Since there is tensile stress in the direction of the 
field lines and since the field lines begin on the plate, 
the field pulls the plate downwards. Accordingly, the 
lower plate is pulled upwards.

One question remains open: perpendicularly to 
the field lines, i.e. in the direction of the field surfac-
es, there is compressive stress. If the field presses out-
ward in the horizontal plane, it will press against 
what? Where does the field adhere to on the sides? It 
can be seen by considering the model of the field in 
Fig. 1.67. Here the field is replaced with many small 
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springs. Some of them are oriented parallel to the 
field lines. These are under tensile stress. The others 
are parallel to the field surfaces. They are under com-
pressive stress.

What is now the answer to our question? Where 
do the horizontal springs keep hold at the sides? At 
the springs that are at the far left and the far right in 
a skew orientation; those, in turn, adhere to the 
plates so that the plates are exposed to a tensile 
stress in their longitudinal direction. This implies 
for the field that the pressure inside the field works 
in a way that the field pulls the plates in a longitudi-
nal direction.

We summarize:

The field between two plates with opposite 
charges
•• pulls the plates towards each other;
•• pulls each plate in a longitudinal direction.

We thereby have found a new method to measure 
the strength of the field between the plates, Fig. 1.68: 
we measure the momentum current that flows through 
the field from the upper to the lower plate (in the nega-
tive z-direction). This momentum current comes from 
above, flows through the meter and the upper plate 
into the field and leaves the field at the lower plate (and 
then through the table and the rods back to the top so 
that the circuit is closed).

We know that Fel = σ · A .
With

20
2

Eεσ = −�
�

we obtain

20
el 2

F E Aε
= − ⋅

�

and thereof

el

0

2
.

F
E

Aε
−

=
⋅

�

The meter indicates the sum Fel + Fgrav , i.e. the mo-
mentum current that flows into the ground through 
the gravitational field and that corresponds to the 
weight of the upper capacitor plate, in addition to the 
momentum current that flows away through the elec-
tric field. To obtain Fel, Fgrav must be subtracted from 
the measured value.

Since in common electric fields the momentum 
currents are very weak, the momentum current meter 
must be very sensitive.

+

–

Fig. 1.66  The field pulls downwards on the part of the 
upper plate that is framed by a dotted line.

pressure tension

Fig. 1.67  Model of the electric field between two paral-
lel plates. The springs, that are oriented in the direction 
of the electric field lines are under tensile stress. The 
springs that are parallel to the field surfaces, are under 
compressive stress.

F   + Fel gravF   + F FelFF    FF gravFF

Fig. 1.68  The momentum current meter indicates the 
sum Fel + Fgrav of the momentum current, that arrives in 
the upper plate through the electric field, and the one 
that comes through the gravitational field.
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Example
We assume to have measured Fel = –0.05 N .
If the plate area is A = 500 cm2, we get the electric 

field strength:

el

0

12 2

5

2

2 0.05 N
8.85 10  C/(V m) 0.05 m

4.8 10  V/m

F
E

Aε

−

−
=

⋅

⋅
=

⋅ ⋅ ⋅

= ⋅

�

If we know the electric field strength from another 
source (we will soon learn about a more practical 
method to measure it), the experiment can also be 
used to determine the electric constant ε0.

tension

pressure

Fig. 1.69  Model of the electric field of a charged sphere. 
The springs pull at the surface of the sphere outwards. 
There is compressive stress in the ring to which the 
springs are attached.

2. A spherical body
We assume the charge to be sitting on the surface of a 

sphere. You know how the field image looks like. As the 
field lines extend radially outwards, the field pulls out-
wards on the surface of the sphere – with the same 
strength in all directions. It is best to think of the sphere 
as a hollow, elastic globe, as a balloon or a soap bubble for 
example. Such a globe will increase in size when electric 
charge is put on it. Also here, we wonder where the elec-
tric field holds at the outside. This time, the answer is: at 
itself. Fig. 1.69 again shows a material model. It consists of 
radial springs and a ring. This structure also pulls at the 
central body in all directions. The springs hold on the 
ring at the outside. Therefore, compressive stresses de-
velop in the ring in the direction of the circumference, i.e. 
perpendicularly to the direction of the springs. In the 
electric field, the stress is similar indeed, since there is 
compressional stress perpendicular to the field lines.

The field of a charged sphere pulls outward on 
the surface.

3. The electrically charged “test body”
If a body that carries electric charge Q is brought to 

any point of an electric field of field strength E
r
 , a mo-

mentum current will flow into the body whose current 
strength F

r
 is calculated according to:

 F
r
 = Q · E

r
 .

Measuring the momentum current strength and the 
electric charge allows us to determine the electric field 
strength.

Now we can understand the origin of this momen-
tum current. Fig. 1.70 shows on the left a sectional view 
of the original field A without any additional body.

A

B

+

A

+

Fig. 1.70  The field strengths of fields A and B are added. The resulting field C pulls more at the right side than on the 
left. A net momentum current flows into the body.
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The picture in the middle shows the body with its 
field B. If the body is then brought into field A, a new 
field C, on the right, will result. We obtain C by com-
bining the field strength vectors of A and B point by 
point according to the rules of vector addition. (This 
can of course be done by the computer.) You see: on 
the right side of the body, the field strength has in-
creased compared to B; on the left side, it has de-
creased. On the right, the field pulls more than on the 
left, i.e. in total, the field pulls the body to the right. In 
other words: a net momentum current flows into the 
body. This is exactly the momentum current that we 
can calculate according to the above-mentioned equa-
tion.

Exercises
1. As we know, the charged bodies of a dipole are pulled to-

wards each other by the field. How can that be seen from 
the field picture of Fig. 1.54?

2. Two equally charged spheres are pulled apart by the field. 
How is this read from the field picture in Fig. 1.55?

3. There is a homogeneous electric field between two paral-
lel plates with equal but opposite charges (plate surface: 
2400 cm2). The field pulls the plates towards each other. 
The respective momentum current is measured and we 
find 0.0025 N. What is the electric field strength between 
the plates?

4. Fig. 1.71 shows two concentric spheres. The inner one is 
negatively charged. The outer one carries positive charge 
of the same amount as the inner one. The field is only lo-
cated in the space between the two spheres. Sketch the 
field lines and surfaces.

1.20 � Capacitor and capacitance
Capacitors are used to store electric charge and to 

store energy. A capacitor consists of two thin metal 
plates or layers with a very small distance between 
them and that are electrically insulated against each 
other. The stored charge sits on the plates, the energy 
in the field between the plates. The field of a capacitor 
is the same as the one of Fig. 1.57. During the charging 
process of the capacitor, electric charge is “pumped” 
from one plate onto the other. One plate will then car-
ry just as much negative charge as the other one carries 
positive charge. Hence, the capacitor is neutral in total. 
The technical symbol of a capacitor are two short par-
allel thick lines as shown in the following figures.

As long as a capacitor is charged, there is an electric 
potential difference between its plates. The greater the 
charge Q, the higher the potential difference U. We 
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Fig. 1.71  For exercise 4

a)

			   b)

Fig. 1.72  (a) Charging the capacitor: the power supply 
“pumps” electric charge from one plate onto the other. 
(b) The capacitor is discharged through the meter.

C
+ –

V
+ –

charge meter

power supply

would like to analyze the relationship between Q and 
U. We charge a capacitor by means of a power supply, 
Fig. 1.72a. The charging process is very fast. The termi-
nals of the power supply have to be brought in short 
contact with the feed lines of the capacitor. The voltage 
between the plates of the capacitor is now equal to the 
voltage of the power supply. Then, we measure Q by 
discharging the capacitor by means of a charge meter, 
Fig. 1.72b. The charge of the positive plate flows 
through the meter to the negative one until both plates 
are uncharged.

We repeat the process “charging-measuring” with 
other voltages and thereby obtain a respective charge 
value for each voltage. With these values we draw a Q-
U-diagram and notice that the charge is proportional 
to the voltage,
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Q ~ U.

This statement is equivalent to saying that the quo-
tient Q/U is constant. This quotient is called the ca-
pacitance C of the capacitor:

QC
U

=

If the capacitance of a capacitor B is three times as 
high as that of another capacitor A, there will be three 
times as much charge on B than on A in case of a given 
voltage, Fig. 1.73.

Please bear in mind that Q is not the total charge of 
the capacitor; the total charge is always zero. Q is the 
charge of the positively charged plate; U is the differ-
ence “high potential minus low potential”.

The value of the capacitance is printed on technical 
capacitors. From the last equation we can conclude 
that the measurement unit is Coulomb/Volt. This unit 
is abbreviated Farad (F). Hence, we have

1 C/V = 1 F.

One Farad is a very large unit. The capacitance of 
technical capacitors is often in the range of nanofarad 
to millifarad.

The electric charge Q that sits on one of the 
plates of a capacitor is proportional to the voltage U 
between the plates.

Q = C · U

C is the capacitance of the capacitor.

What does the capacitance of the capacitor depend 
upon? How does a capacitor have to be designed to 
have a high capacitance? These questions are not hard 
to answer. We start our reasoning based on a given ca-
pacitor that we try to improve, i.e. whose capacitance 
we try to increase.

How can we change a capacitor so that it carries 
more charge at the same voltage? First, we increase the 
plate surface. To understand that this must lead to an 
increased capacitance, we insert an intermediate step. 
It is logical that two capacitors “connected in parallel”, 
Fig. 1.74a, can store twice as much charge as a single 
one. But we can also consider the two parallel capaci-
tors as a single one with a double-sized plate surface, 
Fig. 1.74b.

With a similar reasoning we obtain the dependency 
of the capacitance on the distance between the plates. 

Fig. 1.73  The voltage between the plates of a capacitor 
is proportional to the charge that sits on the plates. The 
capacitance of capacitor B is three times that of A.

Q in mC

U in V

0 20 40 60

30

60

B

A

Fig. 1.74  (a) Two capacitors connected in parallel store 
twice as much electric charge as a single one (at an 
equal voltage). (b) A capacitor with twice the plate 
surface stores twice as much electric charge as a ca-
pacitor with the original plate surface.

a)				    b)

We can decompose the capacitor of Fig. 1.75 in our 
mind in two capacitors that are “connected in series”. 
The voltage on each of them is only half of the total 
voltage, but each of them stores the same charge as the 
whole capacitor at the left side of the figure. We can 
conclude that the capacitor with half of the distance 
between its plates has a capacitance that is twice that of 
the capacitor at the left side.

We summarize the two results:

5 V

0 V0 V

10 V 10 V

Fig. 1.75  A capacitor is decomposed in two capacitors 
with half the distance between the plates. On each of 
these partial capacitors there is only half of the total 
voltage.
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The capacitance of a capacitor is proportional to the 
plate surface A and inversely proportional to the plate 
distance d:

AC
d

∼

To get an equation, we need to introduce a propor-
tionality factor:

0
AC
d

ε=

A = plate surface
d = plate distance
ε0 = 8.854 · 10–12 C/(V · m) = electric constant

The value of the electric constant is obtained 
through measurement.

Exercises
1. A capacitor is charged ten milliseconds with 20 μA. There-

by it reaches a voltage of 60 volts. What is its capacitance?
2. A capacitor of 16 μF is charged until its voltage amounts 

to 10 volts. Which charge will then sit on its plates?
3. Which plate distance does a capacitor with a plate surface 

of 0.5 m2 need to have so that its capacitance will be 1 μF?
4. Two capacitors of 8 μF each are connected in parallel. 

What is the overall capacitance? Formulate a rule.
5. Two capacitors of 8 μF each are connected in series. What 

is the overall capacitance? Formulate a rule.

1.21 � Surfaces of constant 
potential

Each point of an electric circuit is at a well-defined 
electric potential. If we go from a point that is at the 
potential φ1 to a point whose potential is φ2, we move 
past all intermediate values. We start, for example, at 
point P1 in Fig. 1.76 and move through the two resis-
tors to P2. The potential in P1 shall be 0 V, the one of P2 
10 V. We come past a point where the potential is 5 V, 
i.e. exactly between the two resistors. But there is also 
a place where the potential is 1 V and another one 
where it is 2 V or 2.5 V or 2.6 V or 7.344 V etc., i.e. 
within one of the resistors. Hence the place with the 
potential 2.5 is located somewhere inside the lower re-
sistor.

The fact that we find all intermediate values of the 
potential on the way from P1 to P2 does not only apply 
for a path within the electric circuit. Also, each point 

Fig. 1.76  If we move from P1 (0 volt) to P2 (10 volt), we 
will come past all potential values between 0 and 10 
volt.

P2

P1

100 Ω

φ = 10 V

φ = 5 V

φ = 2.5  V

φ = 0 V

100 Ω

a b c

10 V

5 V

0 V

2

1

Fig. 1.77  Regardless on which way we move from plate 
1 to plate 2: we come past a point where the potential 
is 5 volts.

outside has a well-defined potential and, when moving 
outside of the electric circuit from P1 to P2, we move 
past all potential values between φ1 and φ2.

How this is to be understood is best explained by 
means of a simple example. We look once again at a 
capacitor, Fig. 1.77.

Suppose plate 1 (bottom) is at a potential φ1 = 0 V, 
plate 2 (top) at φ2 = 10 V. If we move from plate 1 to 
plate 2, we necessarily come past all values between φ1 
and φ2. Hence, if we choose path a, we will somewhere 
come to a point with the potential 5 V. But also if we 
chose path b or c, we will pass by a point with 5 V. 
Consequently, there must be a line between the two 
plates of our figure on which all points with φ = 6 volt 
are located and another one with all points of φ = 
2 volt etc.

It is much like when we climb up a mountain that is 
200 m high. Regardless of the path we choose, we will 
reach an altitude of 100 m at some time. On a map, 
there is a line that connects all places of the altitude 
100 m to each other – a contour line.

Fig. 1.77 shows only a two-dimensional cross-sec-
tion through the arrangement of the plates. In three-
dimensional space, the 5-volt points are not located on 
a line but on a surface, just as the 6-volt points, the 



35

1.21  Surfaces of constant potential

1  TH
E ELECTRIC FIELD

2-volt points etc. In other words: there are surfaces be-
tween the plates on which the potential has a uniform 
value. Each point of the field has a well-defined electric 
potential and is located on one of these surfaces.

We know that each point of a field is located on a 
field surface. With the surface of constant potential, we 
have come back to a concept we already know because 
they are identical to the field surfaces.

On a field surface the electric potential has a 
constant value.

Fig. 1.78 shows a capacitor. The potential of the 
lower plate is –200 V, that of the upper plate is +400 V. 
The field surfaces corresponding to integer multiples 
of hundred volts are also shown.

As the field is homogeneous inside the capacitor, 
they all have the same distance from each other. Hence, 
from such a picture the field strength can be read. To 
see how that works, we compare two homogeneous 
fields. Fig. 1.79 shows two capacitors that have the 
same structure: same plate distance, same plate area. 
But they are differently charged: there is twice as much 
electric charge on the plates of the right capacitor than 
on the plates of the left one. Therefore, also the voltage 
between the plates is twice as high for the right capaci-
tor (why?), and as a consequence also the field strength 
(why?).

We now look at a small section of each of the two 
capacitors – indicated with dotted lines in the figure– 
in an enlarged view, Fig. 1.80. The field surfaces are il-
lustrated in 1-volt steps.

Now the problem that we will analyze: how can the 
field strength be read from the field surface images of 
Fig. 1.80?

The question has two parts:
1. How can the direction of E

r
 be seen in the images?

2. How can the magnitude of E
r
 be read from the 

images?
The first question has already been answered: the 

field strength vector is perpendicular to the field sur-
faces.

The question about the magnitude is more interest-
ing. Actually, the magnitude can be read from the im-
ages as well. The shorter the distance between the field 
surfaces, the higher the field strength. We choose any 
two field surfaces. They correspond to a well-defined 
potential difference Δφ and they have a well-defined 
distance d.

The quotient Δφ/d is a measure of the density of the 
field surfaces. Its value is equal to the magnitude of the 
electric field strength:

300 V
100 V

0 V
– 100 V

200 V

– 200 V

400 V+

–
Fig. 1.78  The field surfaces whose potentials differ from 
each other by 100 V are indicated. As the field is homo-
geneous, these surfaces all have the same distance 
from each other.

+ Q 0 + 2 Q0

0– 2 Q0– Q

Fig. 1.79  There is twice as much charge on the capaci-
tor plates on the right as on that on the left. Voltage 
and field strength on the right are also twice as high as 
on the left.

115 V
114 V

113 V

116 V 233V232 V
231 V230 V229 V 228 V227 V226 V

Fig. 1.80  Sections of the capacitor fields from Fig. 1.79. 
The density of the field surfaces in the picture on the 
right is twice as large as in the picture on the left.

E
d
ϕ∆

=
�

How to read the electric field strength from a 
field surface picture:

direction of E
r
:	 perpendicular to the field	 

	 surfaces
magnitude of E

r
:	quotient of potential difference	

	 and distance of two field 
	 surfaces

As a measuring unit for the field strength, we obtain 
V/m from the equation, i.e. the unit that we have al-
ready used earlier.

We have derived our equation by means of the ho-
mogeneous field of a capacitor. The formula is impor-
tant because it is also valid for any other field, i.e. also 
for inhomogeneous fields. In an inhomogeneous field 
as the one shown in Fig. 1.81, the field strength chang-
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es from point to point. To determine the field strength 
at any point P, we look at two field surfaces that are 
close to P. Also here, the magnitude of the field strength 
can be obtained as a quotient of the potential differ-
ence of the two field surfaces and their distance.

In a homogeneous field, the field strength is the 
same everywhere. Hence, the field strength can be de-
termined also by using field surfaces that are far away 
from each other. In the case of a capacitor, we can sim-
ply use the plates themselves. Therefore, the field 
strength of the field in the capacitor is obtained by di-
viding the voltage U between the plates by the plate 
distance d.

Strength of the electric field in a capacitor:

(1.3)UE
d

=
�

Exercises
1. There is a voltage of 2000 volt on a capacitor with a plate 

distance of d = 0.5 cm. What is the electric field strength 
of the field between the plates?

2. What is the value of the field strength in points P and Q 
of the capacitor field from Fig. 1.82? (The scale is 10 : 1, i.e. 
the image is 10 times as large as the actual capacitor.)

1.22 � More about the capacitor
We increase the plate distance of a capacitor from 

its original value d to d ' = 3d and wonder what is going 
to happen to the capacitance, the charge, the voltage 
and the electric field strength, Fig. 1.83.

First, let us look at the capacitance. Because of

0
AC
d

ε=

the capacitance will decrease from the original value C to

C ' = C / 3.

Concerning the charge and the voltage, we need to 
distinguish between two possibilities of realizing the 
process: we either keep the charge constant or the volt-
age while changing d.

1. Constant charge, Q ' = Q, Fig. 1.83a.
We make sure that no charge can flow to or from 

the plates while they are being pulled apart. With Q = 

d = 0.35 m
P

– 
5 V

9 V

Fig. 1.81  Finding the field strength in point P of an in-
homogeneous field: we choose two adjacent field sur-
faces and divide the corresponding potential difference 
(here 14 V) by the distance (here 0.35 m, not d = 0.35 m 
drawn to scale).

120 V

0 V Q

P

Fig. 1.82  For exercise 2

Fig. 1.83  The plates of a capacitor are pulled apart, (a) 
at constant charge, (b) at constant voltage.

+ + + + + +

– – – – – –

+ + + + + +

– – – – – –

+ + + + + +

– – – – – –

+ +

– –

a)

b)
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C · U we obtain U ' = 3 U. With equation (1.3), we have

|E
r
'| = |E

r
|

If the plates of a charged capacitor are pulled apart, 
the voltage increases and the field strength remains 
constant.

2. Constant voltage, U ' = U, Fig. 1.83b.
The capacitor remains connected to the power sup-

ply as the plates are pulled apart. With Q = C · U we get 
Q' = Q/3 and with equation (1.3) we obtain

|E
r
'| = |E

r
|/3 .

If the plates are pulled apart at a constant voltage, 
the charge and the field strength will decrease.

One of our findings is particularly interesting:

In the case of constant charge, the field strength 
in the capacitor is independent of the plate dis-
tance.

This result can also be expressed this way: if the 
plate distance is increased while Q remains constant, 
the quantity of field stuff will increase while its density 
remains equal.

Exercises
1. Examine how capacitance, charge, voltage and field 

strength change if the plate area of the capacitor is in-
creased three-fold (while the plate distance is left con-
stant). Distinguish between the cases Q = const and U = 
const.

1.23 � The energy of the electric 
field

We charge the capacitor in Fig. 1.84 by connecting it 
briefly to a 6-V power supply. Then, it is connected to a 
small electric motor. The motor runs for a few seconds.

We see from this experiment how a capacitor can be 
used: as an energy storage device. While the plates are 
charged with electricity, an electric field is building up 
between the plates which contains energy just as a 
magnetic field. During the charging process, energy 
flows from the power supply into the capacitor. When 
discharging, the capacitor releases the energy to the 
motor.

Therefore, the capacitor can have a similar function 
as a storage battery (accumulator), because the battery 
is an energy storage device as well. Just as the battery, 
the capacitor receives energy during charging with 
electricity as an energy carrier and releases it in the 
process of discharging with the same energy carrier. 
However, it is different from the battery with regard to 
two characteristics: first, the energy can be brought 
into the capacitor and removed from it much faster 
compared to the battery. On the other hand, the stor-
age capacity of a capacitor (for the energy) is much 
lower than that of a battery with the same size. Some 
watches that are supplied with energy by means of so-
lar cells have a capacitor as an energy storage device 
for the time during which the watch is not exposed to 
light.

In the following, we will calculate the energy that an 
electric field contains.

We charge a capacitor of capacitance C by letting a 
constant electric current I flow for a well-defined pe-
riod of time: from the time t = 0 until t = t0. Thereby 
the charge on the plates of the capacitor increases lin-
early with time:

Q = I · t .

At the end, i.e. at time t0, the electric charge is

Q0 = I · t0

on each of the two plates.
In addition, an energy current

P = U · I

M

Fig. 1.84  Capacitor as an energy storage device



38

1.23  The energy of the electric field

1  
TH

E 
EL

EC
TR

IC
 F

IE
LD

flows into the capacitor during the charging process. 
While the electric current I remains constant, the volt-
age U increases during the charging process

Q I tU
C C

⋅
= =

Hence, we obtain for the energy current

21 .P I t
C

= ⋅ ⋅

Also the energy current P increases linearly with 
time, Fig. 1.85.

However, what we look for is not the energy current 
P, but the energy E0 at the end of the charging process, 
i.e. at time t0. If the energy current was constant in 
terms of time, we would have the relation

E = P · t

between the energy current P and the energy E. Thus 
we would also have

E0 = P · t0.

Since in reality P is not constant in time, we have to 
use the time average P

_
 of P to calculate E0.

E0 = P
_

 · t0.

As we can read from Fig. 1.85, the average value of 
P is

2
0

1 1 .
2

P I t
C

= ⋅ ⋅ ⋅

We thus obtain the energy at the end of the charging 
process

2 2
0 0 0

1 1 .
2

E P t I t
C

= ⋅ = ⋅ ⋅ ⋅

We insert Q0 = I · t0
2
0

0 .
2
QE

C
=

We had needed the index 0 only to distinguish be-
tween the variable and the final value. We now can 
drop it since the equation is valid for any Q. We thus 
have the important equation

2
.

2
QE

C
=

Notice that this equation has a similar structure as

Fig. 1.85  During the charging process of the capacitor 
with a constant electric current, the energy current 
increases linearly with time.

P

t 

0

P

_

P0

2
.

2
pE
m

=

By using of Q = C · U we can also write:

(1.4)2.
2
CE U=

This is the total energy contained in the field. We 
can also calculate the energy density ρE of the field, i.e. 
energy divided by volume:

.E
E
V

ρ =

In (1.4) we insert

U = |E
r
| ∙ d

and

0
AC
d

ε=

and obtain

( )2 20 0 .
2 2

AE E d E V
d

ε ε
= ⋅ ⋅ ⋅ = ⋅ ⋅

� �

In the last step, we have replaced the volume V by 
A · d. The energy density now becomes

20 .
2E Eερ = ⋅

�

This equation is not only valid for the field of a ca-
pacitor but for any other electric field.
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The energy in the field of a capacitor can be cal-
culated from the capacitance and the voltage:

2.
2
CE U=

The energy density of an electric field can be cal-
culated from the field strength:

20 .
2E Eερ = ⋅

�

Exercises
1. A capacitor with capacitance 16 μF is charged for 8 sec-

onds with an electric current of 10 mA. (a) Which charge 
will sit on its plates at the end of the charging process? (b) 
How much energy is contained in the field?

2. An 80-μF capacitor is connected to a 300-volt power sup-
ply. How much energy will go into the field of the capaci-
tor in the process? The plate distance is 8 μm. What is the 
energy density in the field of the capacitor?

3. An energy of 1.6 joule is needed to charge a capacitor to a 
voltage of 10 000 volt. (a) What is the capacitor’s capaci-
tance? (b) What charge sits on the capacitor’s plates?

4. The cylindrical plates of a “cylinder capacitor” have the 
radii 24 mm and 25 mm. The cylinder length is 120 mm. 
The capacitor was charged to 2000 volt. (a) Calculate the 
capacitor’s capacitance. (b) What is the charge on the ca-
pacitor? (c) How much energy is in the capacitor’s field? 
(d) What is the energy density?

5. How will the energy in the field of the capacitor from 
Fig. 1.83a and b change if the plate distance is increased 
three-fold? Distinguish between the cases Q = const and 
U = const. Examine how the energy will change if the area 
of the capacitor is increased three-fold (while leaving the 
plate distance constant). Also distinguish between the 
cases Q = const and U = const.

6. The terminals of a charged capacitor A are connected to 
those of an uncharged capacitor B. A and B have the same 
capacitance. What happens? What are the individual val-
ues of electric charge, electric voltage, field strength and 
energy for A and B? Do you notice anything? Try to ex-
plain. We came across a similar phenomenon in mechan-
ics (MECHANICS, Ch. 5.4, Exercises 3 and 8).

1.24 � Discharge curve of the 
capacitor

We imagine the capacitor in Figure 1.86 to be 
charged. (The charging circuit is not shown.) If the 
switch is closed, it will discharge through the resistor.

We are interested in the discharge process: How fast 
does the capacitor discharge? What is the temporal 
variation Q(t) of the capacitor’s charge?

Fig. 1.86  When the switch is closed, the capacitor will 
discharge through the resistor. What does the function 
Q(t) look like?

To answer these questions, we need a mathematical 
method that we have not yet seen. We need to solve a 
differential equation.

It is always a good idea to think about what the so-
lution could look like before starting to calculate. In 
our case, this means: What do we expect with regard to 
Q(t)?

After we have closed the switch, an electric current 
flows through the resistor. At the beginning, the volt-
age is still high, and so is the current because of

UI
R

=     .     

The charge of the capacitor decreases because the 
electric current is flowing. Due to

QU
C

=

the voltage decreases as well. Hence, this also leads to a 
decreasing current. When the current is reduced, the 
charge decreases more slowly than before etc. etc. We 
can see: The less charge there is still sitting on the ca-
pacitor, the slower the discharge process.

Before we continue our analysis and calculation, we 
would like to make a more general observation. There 
are many processes like the one just mentioned. For 
the moment, we would like to highlight the particular-
ity of these processes: The more of "something" there 
is, the faster the amount of this “something” changes.

Here are two examples:

Example: rabbits
We assume that some rabbits are abandoned in an 

area where there is abundant food and where they are 
not threatened by enemies. The abandoned rabbits will 
reproduce, Fig. 1.87. They will have baby rabbits so 
that there will be more rabbits in the next generation. 
The children will reproduce themselves and, again, 
there will be more rabbits. The increase in the second 
generation is higher than in the first because there are 
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more parents. Hence: the higher the number of rabbits, 
the higher the growth rate.

Example: light in the sea
Sunlight hits the surface of the sea, Fig. 1.88. The 

water is not completely pure but partially absorbs the 
light. We assume that half of the light arrives in a depth 
of 10 m, i.e. half of it was absorbed. In the course of the 
next 10 m, again half of the remaining light is ab-
sorbed, etc., hence: the lower the quantity of light, the 
lower the absorbed quantity.

We use the same method to calculate how the 
charge on the capacitor decreases, how the population 
of rabbits increases or how the intensity of the light in 
the water decreases. We will get to know this method 
by means of a discharging capacitor.

In the resistor, the electric current I flows from the 
high to the low potential, in Fig. 1.89 from the top to 
the bottom. This current causes the positive charge Q 
of the capacitor (= charge on the upper, positively 
charged plate) to decrease. Hence:

dQI
dt

= −

We now replace

UI
R

=     .     

and

Q = C · U

and obtain

.U dUC
R dt

= −

We slightly reformulate the equation and obtain the 
differential equation for the discharge of the capacitor 
through a resistor:

0.dUU RC
dt

+ =

What can we do with such an equation? Apart 
from the resistance R and the capacitance C, whose 
values we assume to be known, the equation contains 
the voltage U and its time derivative dU/dt. U is a 
function of time. What we look for is the function 
U(t). We would have to solve the differential equation 
somehow for U. This, however, is not possible with 
the old methods that you know because the equation 

light

water

positive charge decrease

C R

direction of electric current

j  (high)2 

j  (low)1

I

Fig. 1.87  Four generations of rabbits: the higher their 
number, the faster their population grows.

Fig. 1.88  The weaker the intensity of the light, the low-
er its decrease as a function of the water depth.

Fig. 1.89  A positive current causes a reduction of the 
capacitor’s charge. 

not only contains U directly but also its time deriva-
tive.

Such an equation can be solved in different ways. 
We would like to address two methods here:
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1. Numerical solution
There are computer programs to perform this 

task. They calculate the function U(t) point by point 
on the time axis. As a result, we will not obtain a 
functional expression but a table of values or a dia-
gram.

2. Guessing of a solution and inserting
In many cases, we already have a rough idea of how 

the solution could look like. This is also the case here. 
We know: the lower the charge, the more slowly it de-
creases. Such a behavior is described by an exponential 
function

( ) .xy x e−=

The greater x, the smaller the change dy/dx. Hence, 
we try the following solution:

(1.5)/
0( ) .tU t U e τ−= ⋅

The factor U0 is needed to ensure equal measuring 
units on the right and on the left. This applies accord-
ingly for the exponent: it must be "dimensionless", i.e. 
without a measuring unit. We therefore divide the 
time t by the physical quantity τ that is also measured 
in seconds.

To be able to check whether our trial function solves 
the differential equation, we also need the derivative of 
U(t):

(1.6)/
0

1 .tdU U e
dt

τ

τ
−= − ⋅ ⋅

We insert (1.5) and (1.6) in the differential equa-
tion:

/ /
0 0 0.t tRCU e U eτ τ

τ
− −⋅ − ⋅ ⋅ =

We divide by

/
0 ,tU e τ−⋅

reformulate and obtain:

τ = R · C .

What does this mean? Is our trial solution correct? 
Yes, it is. This becomes evident by the fact that the time 
dependency has vanished. The differential equation is 
solved by the function that we had guessed:

/
0( ) tU t U e      .τ−= ⋅

In addition, the calculation has shown that U0 can 
have any value and that τ is equal to R · C. The meaning 
of τ is illustrated in Fig. 1.90: the greater τ, the more 
slowly the function levels off, the more slowly the ca-
pacitor discharges.

This is also in line with our expectation: the capaci-
tor discharges slowly when its capacitance is high and 
when the resistance is high. τ is called time constant.

Discharge of a capacitor through a resistor
Voltage decreases exponentially:

/
0( ) tU t U e      .τ−= ⋅

τ = R · C = time constant

Exercises
1. Use a quadratic function as a trial solution for our differ-

ential equation. Is the differential equation satisfied? 
Comment.

2. So-called conductor spheres are often used for electro-
static experiments. A conductor sphere consists of a me-
tallic conductor and a Perspex shaft – you will remember. 
If the sphere is electrically charged, the charge will re-
main on it for a while. Estimate how fast it will flow away, 
i.e. what the time constant will be. (Help: estimate the 
capacitance of the sphere against the Earth, as well as the 
resistance of the Perspex shaft, by means of the respective 
formulas.) The result has to be exact only to within a fac-
tor 1000; in other words: is the time constant approxi-
mately:
10–9 s, 10–6 s, 10–3 s, 1 s, 103 s, 106 s or 109 s?

Fig. 1.90  A great time constant t means: the charge on 
the plates of the capacitor decreases slowly.

P

t 
0

Q0

t great

t small
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1.25 � Fields and electric 
conductors

A long wire is connected to a power supply so that 
an electric current is flowing through it. If we move 
alongside the wire, starting from the high potential 
terminal, the potential will decrease with the distance 
traveled, Fig. 1.91. The potential changes linearly with 
the position on the wire.

Fig. 1.92 shows an enlarged section of the wire. The 
field surfaces, i. e. the surfaces of constant potential, inter-
sect the wire perpendicularly to its longitudinal direction. 
This implies that the field lines inside the wire run parallel 
to the direction of the wire. At places where the wire is 
straight, the field is exactly homogeneous. In places where 
the wire is bent, the field lines follow the curvature.

Hence, the electric charge that flows through the 
wire follows the potential slope, always in the direction 
of the field lines.

We can also reverse the conclusion: when an elec-
tric current flows in a conductor, there must be a po-
tential slope and consequently an electric field. When 
there is no electric current in a conductor, the field 
strength in the conductor must be zero and there is no 
potential slope – the potential is the same everywhere.

In a conductor in which no electric current is 
flowing, the potential is the same everywhere.

Now we bring a conductor, a metal sphere for in-
stance, to a place where there used to be an electric 
field, Fig. 1.93a. While being put at that place, electric 
charge will be displaced in the sphere. We referred to 
this process as induction. The movement of the charge, 
however, comes to an end after a very short time. There 
will be no electric current anymore. This means that 
the inside of the ball is now field-free. The whole 
sphere is at the exact same potential.

Especially the surface of the sphere is a surface of 
constant potential, i.e. a field surface. This implies in 
turn that the field lines on the outer surface of the 
sphere are perpendicular to the surface.

Nothing of these statements will change in cases where 
the electric conductor is hollow, Fig. 1.93b. This has an 
interesting consequence: electric fields can be shielded by 
means of metal walls. Therefore, the walls even need not 
to be tightly sealed. A wire netting is often sufficient.

Fig. 1.94 shows a cylinder made of wire netting that 
is connected to a Van de Graaff generator. Its potential is 
therefore several 10 000 V above the potential of the 
Earth, and there is a strong electric field between the 
wire netting and the Earth. It can be detected thanks to 

V

200 V

80 V

260 V

280 V
240 V

220 V

180 V160 V
140 V120 V100 V

60 V

40 V 20 V

0 V
100 V

100 V

field lines field surfaces

105 V 110 V
115 V

Fig. 1.91  The potential in the wire decreases linearly on 
the way from one to the other terminal of the power 
supply.

Fig. 1.92  The field surfaces are perpendicular to the 
direction of the wire, the field lines follow the wire.

field lines field surfaces

Fig. 1.93  (a) The electric potential is the same at all 
points inside the metal sphere. (b) Also a hollow sphere 
is field-free inside.

a)

b)
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the paper bundle whose ends are drawn outwards. A pa-
per bundle inside the wire netting, in contrast, does not 
move. Although this space is on a very high potential, it 
is field-free. There, the potential is the same everywhere.

Exercises
1. A conductor, through which an electric current is flow-

ing, becomes thicker at one place, Fig. 1.95. Sketch field 
surfaces and field lines inside the conductor. Pay atten-
tion to the distances between the field surfaces.

2. A metal plate is brought between the plates of a charged 
capacitor in parallel to the capacitor plates, Fig. 1.96. 
Draw field surfaces and field lines. What is the mechani-
cal stress in the metal plate: tension or compression? 
Which direction does it have?

3. A metal sphere with a diameter of about 1 cm is brought 
to the point P of the field from Fig. 1.97. How will the 
field surfaces and field lines change?

4. A thin metal plate is put to the place that is marked with 
a dotted line between the two charge carriers in Fig. 1.98. 
Sketch field surfaces and field lines before and after.

1.26 � The electric current density 
– Ohm’s law locally

Fig. 1.99 is an enlarged view of a wire through 
which an electric current is flowing. We assume the 
current to be 6 A. At point P, the cross-sectional area of 
the wire increases from 2 mm2 to 8 mm2. We look at a 
small area within the wire, located perpendicularly to 
the direction of the wire, at position A where the wire 
is thin, as well as at position B where it is thick. How 
does the electric current differ between the two areas? 
The current flowing through the area at A is four times 
the current flowing through the area at B. Only in this 

paper bundle is
hanging loosely

paper bundle 
spreads outward

Fig. 1.94  The inside of the wire cage is field-free.

I

+ + + + + + + + + +

– – – – – – – – – –

+–

Fig. 1.95  For exercise 1

Fig. 1.96  For exercise 2

Fig. 1.97  For exercise 3

Fig. 1.98  For exercise 4

field lines
P
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way the same current can flow through the total cross-
sectional area at A and at B.

What we have just compared is the electric current 
density j. The electric current density is the electric 
current in a conductor divided by the cross-sectional 
area of the conductor:

Ij
A

=

(The momentum current density was defined in an analo-
gous way: momentum current divided by the cross sec-
tional area of the momentum conductor; see section 1.19.)

Hence, the electric current density in the thin area 
of our wire is

2
thin 2

6 A 3 A/mm
2 mm

j = =

and in the thick part

2
thick 2

6 A 0.75 A/mm  .
8 mm

j = =

While the current tells us the total electric charge 
that is flowing through a wire cross-section per time, 
the current density tells us how much is flowing “at 
one point”.

We would now like to change the form of Ohm’s law

.UR
I

=

First, we bring the current to the left side of the 
equation:

UI
R

=

Next, we insert the expression for the resistance

1 dR
Aσ

= ⋅    .

and obtain:

AI U .
d

σ
= ⋅

A simple rearrangement leads to

.I U
A d

σ
= ⋅

This equation can be simplified though: on the left 
side, there is the electric current density I/A, and on 
the right there is the electric field strength U/d besides 
the conductivity σ. Thus, we can write: j

r
 = σ ∙ |E

r
|.

Now, not only the electric field strength, but also the 
current density is a vector. Its direction is equal to the 

direction of the electric current. Our final equation is 
therefore:

j Eσ= ⋅
� �

	 Ohm’s law locally

What we have derived with some effort is basically 
nothing new. We can say that it is the “local” form of 
Ohm’s law. Ohm’s law in its usual form tells us: the elec-
tric current is proportional to the voltage, or in short: 
the current is proportional to the driving force. Exactly 
the same is expressed by our new equation, too. Only 
that here, we use the voltage per length, i.e. the electric 
field strength, as a measure for the driving force, and the 
current per area, i.e. the current density, as a measure 
for the current. While Ohm’s law in its old form pro-
vides a statement about the whole wire, our new, local 
law gives evidence about a given place within the wire.

Exercises
1. A copper wire with a length of 100 m and a cross-section 

of 1 mm2 is connected to a 1.5 V battery with both of its 
ends. What is the field strength in the wire? What is the 
current density? What is the current in the wire?

2. An electric current of 5 Ampere flows through a copper 
wire of 3 mm2. What is the field strength in the wire? 
Compare with the field strength in a capacitor with the 
plate distance of 5 mm that was charged with 1 kV.

3. A copper wire with a length of 2 m is connected to an iron 
wire with a length of 1 m (the cross-section of both wire 
pieces is 1 mm2). An electric current of 0.5 A flows 
through the entire wire of 3 m length. What is the field 
strength in the copper wire and in the iron wire? What is 
the potential difference between the ends of the copper 
wire and between the ends of the iron wire?

4. The filament of a light bulb is a bit thicker than normal at 
a place A and a bit thinner than normal at a place B. What 
can you say about the current densities at places A and B 
while the lamp is lit up? At which point will the filament 
burn through at a given time?

P

A

B

Fig. 1.99  Wire in which an electric current is flowing. The 
cross-sectional area increases four-fold at P. The electric 
current density is thereby four times as high at A as at B.
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1.27 � How to load electrically 
charged particles with 
energy – electron beams

We remember an earlier result: To bring a portion 
of electric charge ΔQ in a conductor from a place of 
low potential φ1 to a place of high potential φ2, we 
need energy. If the charge portion moves from the 
high to the low potential, it receives energy. The 
amount of this energy is:

ΔΕ = (φ2 – φ1) · ΔQ

We can now omit the restriction of the charge hav-
ing to move in an electric conductor. The equation is 
also valid if a charged body or particle moves outside 
of electric conductors. The charged particle in 
Fig. 1.100 can be a paper snippet that was charged 
through the contact with plate 2.

Where does the energy that is supplied to the paper 
snippet on the way from plate 2 to plate 1 come from? 
Plate 2 has lost a charge portion and plate 1 has re-
ceived this charge. Due to the movement of the charge 
portion, the capacitor would lose a part of its charge. 
The missing charge, however, is supplied in compensa-
tion by the battery. Hence, the energy that the charge 
portion receives comes from the battery.

To bring a positively charged body from the low 
to the high potential, it must be provided with en-
ergy. When it moves from the high to the low po-
tential, it will recover the energy.

(In case of a negative charge, the statement of the sen-
tence will be reversed: to bring a negatively charged 
body from the high to the low potential, it has to be 
provided with energy. When it moves from the low to 
the high potential, it will recover the energy.)

Fig. 1.101 shows nearly the same experiment as 
Fig. 1.100. The only difference: the charged plates are 
not connected to the battery. However, the experiment 
still works the same way. The charged paper snippet 
moves from the plate with the high potential to the one 
with the low potential. Where does the energy now 
come from? The moving particle transports electric 
charge from one to the other plate. The capacitor is 
thereby discharged to a certain extent. However, this 
means that the field between the plates becomes a little 
weaker. Hence, the energy comes from the electric 
field.

When a charged body moves from the high to the 
low potential and when it cannot give away the energy 

that it receives, it needs to keep the energy. It will be-
come faster, its kinetic energy increases.

Therefore, we have found a possibility to load a 
body with kinetic energy. Although this method is not 
suitable for macroscopic, i.e. very large, bodies, it is ex-
tremely effective for microscopic bodies, i.e. the so-
called particles. This is shown by the following exam-
ple: How much energy does an electron gain when it 
moves from an “electrode” on Earth potential (0 V) to 
an electrode on +20 000 V? (As the electron is nega-
tively charged, it will gain energy when it moves from 
the low to the high potential.)

With Q = –1.6 · 10–19 C we obtain

E = (0 V – 20 000 V) · (–1.6 · 10–19 C) = 3.2 · 10–15 J

This value does not appear to be very high at first. 
When calculating the associated speed, however, we 
can see that it is indeed very high for the small elec-
tron. From

2

2
mE v=

we obtain
−

−
⋅ ⋅

= = ≈ ⋅
⋅

15
7

30
2 2 3.2 10  J 8.4 10 m/s.

0.91 10  kg
E

v
m

This is approximately a quarter of the speed of light, 
i.e. the highest existing transportation speed.

Fig. 1.100  The charged particle absorbs energy on its 
way from the high to the low potential. This energy is 
supplied by the battery.

Fig. 1.101  The charged particle absorbs energy on its 
way from the high to the low potential. This energy is 
taken from the electric field between the plates.

high potential

1

2
+

low potential

high potential

+

low potential
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When charging particles with energy in this way, 
their energy is usually not indicated in the measure-
ment unit joule but in electron volt, abbreviated eV.

Here, the “e” simply stands for the elementary 
charge, i.e.

1 eV = –1.6 · 10–19 C · V = –1.6 · 10–19 J.

1 eV = energy that a particle with the charge 
1.6 · 10–19 C absorbs while going through a poten-
tial difference of 1 V.

1 eV = 1.6 · 10–19 J

What is the reason for this deviation from the SI 
system? When dealing with particles that all carry the 
positive or negative elementary charge such as elec-
trons or protons or positrons, the eV is simply more 
convenient. If, for example, electrons are accelerated 
over a potential difference of 8 kV, their kinetic energy 
at the end will be 8 keV. Hence, no calculation is need-
ed to obtain the energy.

Exercises
1. A water drop charged with 50 negative elementary charg-

es (mass: 10 mg) falls through a potential difference of 20 
million volt in a thundercloud that is 1000 meters thick. 
(The potential decreases towards the bottom.) How much 
energy does it take from the gravitational field? How 
much energy does it release to the electric field? Its ki-
netic energy has not changed while falling. Why? Where 
did the excess energy go?

2. In a Van de Graaff generator, electric charge is continu-
ously “pumped” from Earth potential up to 50 000 volt. 
We suppose that the electric current that is generated by 
the generator is 50 μA. What is the resulting energy con-
sumption of the Van da Graaff generator? (In fact, it 
needs much more. Most of the energy is lost through fric-
tion.)

3. The electrons in an electron microscope are accelerated 
with a voltage of 1.2 MV. (a) What is the energy of the 
electrons? (b) Calculate the speed of the electrons with 
the formula for the kinetic energy. How can we see that 
the result must be wrong? Which step of the calculation 
was wrong?
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2 � THE MAGNETIC FIELD

2.1 � Magnetic charge and 
magnetic field

Magnets can attract or repel each other. The attrac-
tion and/or repulsion is due to the magnetic charge 
Qm. The places of the magnet where the magnetic 
charge is sitting are called poles of the magnet. The 
measurement unit of the magnetic charge is the Weber 
(Wb).

Just as the electric charge, the magnetic charge can 
take on both positive and negative values. Areas with a 
positive magnetic charge are called north poles, areas 
with a negative magnetic charge south poles.

A small magnet as the one we use to pin something 
on an iron wall has a charge of approximately 10–4 Wb 
at its positive pole.

If a bar-shaped magnet, whose poles are located on 
its ends, is suspended horizontally on a thin thread so 
that the magnet can rotate easily, it will align itself in a 
north-south direction. The positive pole points to the 
North, the negative one to the South.

The overall magnetic charge of a magnet is always 
zero, i.e. the positive charge has the same absolute val-
ue as the negative one.

The total magnetic charge of a magnet is zero.

This is different from in case of the electric charge. 
A body can be given an electric net charge (albeit only 
a very small one). This difference between electric and 
magnetic charge is very important. It means that there 
are electric currents (flowing electric charge) but no 
magnetic currents (flowing magnetic charge).

An invisible entity is attached to the magnetic 
charges: the magnetic field (just as the electric field is 
attached to electric charges). We call the “substance” 
that the magnetic field consists of magnetic field stuff. 
If there is no risk of confusion with the electric field 
stuff, we can also call it just field stuff.

Magnetic poles are surrounded by magnetic 
fields. If the charge of two poles has the same plus/
minus sign, the field will pull the poles apart; if it 
has different plus/minus signs, the field draws them 
towards each other.

In conventional magnets, the magnetic charge usu-
ally sits on the surface. This can be shown in the fol-
lowing way, Fig. 2.1.

Fig. 2.1  If the two identical magnets A and B are 
brought together in a way that the north pole of A joins 
the south pole of B, and the south pole of A joins the 
north pole of B, the magnetic charge at the two contact 
areas will add up to zero.

+
mQ   (A)

–
mQ   (A)

+
mQ   (B)

–
mQ   (B)

–
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We take two identical horseshoe magnets A and B. 
For each magnet individually, the charge Qm

– of the 
south pole is equal to the negative value of the charge 
Qm

+ of the north pole:

Qm
– = –Qm

+	 (2.1)

As the two magnets are identical, the positive charge 
at the north pole of one is equal to the positive charge 
at the north pole of the other:

Qm
+(A) = Qm

+(B) 	 (2.2)

In addition, we have Qm
–(A) = Qm

–(B). If the two 
magnets are held together in a way that the north pole 
of A joins the south pole of B and that the south pole of 
A joins the north pole of B, the charges at the contact 
areas will add up to zero.

The charge at one contact area is Qm
+(A) + Qm

–(B). 
By means of equation (2.1), we can replace Qm

–(B)
by –Qm

+ (B):

Qm
+(A) – Qm

+(B)	

This expression, however, is zero according to equation 
(2.2). Thus, the new, ring-shaped magnet that we created 
by combining the two horseshoe magnets has no mag-
netic field. Can the ring be even be regarded as a magnet? 
We will answer this question in the following section.

2.2 � Magnetization
There are many different magnetic materials: chem-

ical elements, compounds, alloys and ceramic materi-
als. The most well-known and most frequently used 
material, albeit not the best, is iron.

There is a simple explanation for the fact that a 
magnet always carries equal amounts of positive and 
negative magnetic charge: some atoms are magnetic, 
i.e. each atom behaves like a small permanent magnet 
with two poles. If an object consists of such atoms and 
if, in addition, the atomic magnets do not have a com-
pletely irregular orientation, Fig. 2.2a, but if they are 
regularly aligned, a large magnetic pole will emerge at 
each of the two ends of the magnet.

Of course, the small atomic magnets do not have to 
be all parallel to each other. They could, for instance, 
have an orientation as illustrated in Fig. 2.3.

When the atomic magnets are aligned, we refer to 
the material as being magnetized.

Fig. 2.2  (a) In a non-magnetized piece of iron, the direc-
tions of the small atomic magnets are not aligned. (b) 
In a magnetized piece of iron, the atomic magnets are 
aligned. There is a negative charge at the left end of the 
magnet and a positive charge at the right end.

Fig. 2.3  Orientation of the small atomic magnets in a 
horseshoe magnet.

Fig. 2.4  (a) Graphical display of the state of magnetiza-
tion by means of magnetization lines. (b) New poles 
are formed when the magnet is broken.
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In Figures 2.2 and 2.3, we have illustrated the state 
of magnetization by means of many small arrows. A 
somewhat clearer graphical illustration method is 
shown in Fig. 2.4a. Here, continuous lines, the magne-
tization lines, were drawn instead of the arrows. The 
figure shows the relationship between magnetization 
and magnetic charge: the magnetic charge sits where 
the magnetization lines end at the surface.

The magnetization lines, however, can also be lo-
cated inside the magnet without start and end points. 
The respective magnet has no poles in that case. The 
ring, that we had created out of two horseshoe mag-
nets, Fig. 2.1., exemplifies this case.
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Magnetization lines start on negative and end on 
positive magnetic charge, or they run within a 
magnet without start and end points.

The magnetization lines are usually marked with a 
directional arrow. By convention, they are oriented 
from the negative to the positive charge.

Now we can also understand another interesting 
phenomenon. When breaking a bar-shaped magnet, 
two new poles emerge at the fracture surfaces, Fig. 2.4. 
This is the only way to ensure that the overall magnetic 
charge of each of the two pieces will be zero again.

If the magnetization is known, we can tell unam-
biguously where the magnetic charge sits: at the point 
where the magnetization lines start and end.

If, by contrast, only the poles of a magnet are 
known, i.e. the distribution of the magnetic charge on 
its surface, no clear conclusion can be drawn about 
magnetization yet. The charge distribution from Fig. 
2.5a is compatible with both the magnetization distri-
bution from Fig. 2.5b as well as with that of Fig. 2.5c. 
The actual magnetization status cannot be seen from 
the outside of the magnet. A method to differentiate 
between the two possibilities consists in breaking the 
magnet. Breaking of the magnet from Fig. 2.5b does 
not lead to the formation of new poles, Fig. 2.5d. If, 
however, the magnet from Fig. 2.5c is broken, new 
north and a south poles will emerge, Fig. 2.5e.

Exercises
1. How could be the course of the magnetization lines in the 

magnet from Fig. 2.6a?
2. How could be the magnetization lines in the magnet from 

Fig. 2.6b? Indicate two solutions.
3. A magnet has the shape of a cylindrical slice. On its cylin-

drical surface, the magnet has 3 north and 3 south poles. 
North and south poles are alternating and are distributed 
regularly over the circumference of the cylinder. What 
could the magnetization of the cylinder be like? Indicate 
two solutions.

4. Someone gives you a steel ring and tells you that the ring 
is magnetized in a way that the magnetization lines follow 
the ring shape. Hence, the magnet has no poles. How can 
you find out whether the statement is true?

2.3 � The magnetic field strength
We will now introduce a measure for the magnetic 

field stuff: the magnetic field strength. We use a method 
which is analogous to that for the introduction of the 
electric field strength. Also in a magnetic field, there is 

Fig. 2.5  (a) A magnet with 4 poles on one side. (b) and 
(c) There are several possibilities for the magnetization. 
(d) and (e) The difference between b and c can be seen 
if the magnet is broken in the middle.

a)

b)

c)

d)

e)

Fig. 2.6  For the exercises 1 and 2. What is the course of 
the magnetization lines?
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tensile stress at each point in a given direction, and 
compressive stress in all directions that are perpen-
dicular to it. Thus, the magnetic field strength is a vec-
tor that is oriented in the direction of the field’s tensile 
stress. Its magnitude tells us how dense the field is at 
the respective point.

The magnetic field strength is a vector.
Magnitude of the vector:	measure for the
	 density of the field stuff.
Direction of the vector:	 tensile direction of the 
	 field stuff.
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Also the measurement process is analogous to that 
of the electric field strength. A magnetic “test charge”, 
i.e. one pole of a very thin and long bar magnet, is 
brought to the point P at which the field strength is to 
be measured. (The other pole of the magnet is so far 
away that it does not feel the field anymore.) Then, a 
momentum current flows into this magnetic pole. By 
means of a momentum current meter, we determine 
magnitude and direction of the momentum current 
vector. Then, we divide by the magnetic charge of the 
pole and obtain the magnetic field strength:

m
.FH

Q
=

�
�

We transform and obtain:

F
r
 = Qm · H

r

F
r
 = momentum current into the pole

Qm = magnetic charge of the body
H
r
 = magnetic field strength

The equation has the same structure as two other 
equations we are already familiar with:

F
r
 = Q · E

r 
and F

r
 = m · gr.

If the magnetic charge of the pole is doubled, the 
momentum current will also double. The quotient of 
the momentum current and the charge is independent 
of the charge of the pole. And this is how it should be. 
Although the pole changes the originally existing field 
considerably, the equation still tells us the field strength 
of the field without it.

As a measurement unit of the magnetic field 
strength we obtain Newton/Weber. The unit can be 
transformed into the more common unit ampere/me-
ter.

The measurement process for the magnetic field 
strength that we have just described is practically used 
as rarely as the corresponding method to measure the 
electric field strength.

Magnetic field strengths can be measured in a par-
ticularly convenient way by using a device whose func-
tionality we can not yet understand right now but 
whose way of use can be easily described. The flat sen-
sor equipped with a handle is connected to the display 
unit through a cable. To measure the magnetic field 
strength at a given point of a field, the sensor is held at 
that point. The instrument displays a certain value. 
This value, however, still depends on the orientation of 
the sensor surface. Hence, the sensor is turned in the 
different directions until the display has reached its 

Fig. 2.7  The sensor is turned until the value displayed 
by the meter is highest. This is how the direction of the 
magnetic field strength can be determined in addition 
to its magnitude. 

sensor

highest value, Fig. 2.7. This is how we do not only 
know the magnitude of the field strength, but also the 
direction: the field strength vector is perpendicular to 
the sensor surface.

For the graphical display of a magnetic field we can 
use the same methods as for the illustration of electric 
fields: with different gray shadings, with vector arrows 
or with field lines and field surfaces. For the drawing of 
field lines and field areas of magnetic fields, the same 
rules apply as for the drawing of field lines and field 
surfaces of electric fields:

The field lines are perpendicular to the field sur-
faces at each point.

The field lines start at positive and end at nega-
tive poles.

The greater the magnetic charge, the more field 
lines start or end at a pole.

Field lines do not intersect.
Field surfaces do not intersect.
Field lines and field surfaces do not form any 

kinks.
A field image has the same symmetry as the 

magnetic charges.

Also the vector addition of magnetic field strengths 
has the same meaning as that of electric field strengths. 
Consider two magnets A and B. We suppose that the 
field strength of the field of A alone is known for each 
point, just as that of the field of B alone. If we place the 
two magnets next to each other, there will be a field 
that is different from the field of A alone and different 
from the field of B alone. The field strength of the re-
sulting is obtained by means of vector addition of the 
field strengths of the individual magnets.
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Exercises
1. A compass needle with a length of 5 cm is hold perpen-

dicularly to the magnetic field of the Earth. The positive 
pole of the needle carries a magnetic charge of 10–5 Wb, 
the negative one carries –10–5 Wb. (a) Which momentum 
current flows over the magnetic field to the positive pole; 
which momentum current flows to the negative pole? 
(The magnetic field strength of the Earth field is 6.4 A/m.) 
(b) How does the compass needle react?

2. Draw the field lines in the Figures 2.8a and 2.8b. (The Fig-
ures show the field surfaces.)

2.4 � Magnetization lines and 
field lines

We have seen that both the state of magnetization of 
a material as well as the magnetic field can be graphi-
cally displayed with lines: the material by means of 
magnetization lines, the field through field lines. We 
would now like to display both methods in one single 
figure. We therefore recall the rules: magnetization 
lines start at the negative pole and end at the positive 
one, magnetic field lines start at the positive pole and 
end at the negative one. We can summarize these rules:

Magnetic field lines start where magnetization 
lines end, and vice versa.

As an example, we look at an individual positive 
magnetic pole, Fig. 2.9, which can be the end of a long 
bar magnet. The negative pole of the magnet shall be 
located so far away that its field cannot be felt at the 
place of the positive pole anymore.

Please bear in mind that the field lines run through 
the hard magnetic material as they run through an 
empty space.

2.5 � Four important magnetic 
fields

Each figure consists of two parts. The first part shows 
(besides the magnet) the magnetization lines, the sec-
ond one shows field lines and field surfaces. It would be 
nicer to illustrate magnetization lines, field lines and 
field surfaces in one single image. As, however, there are 
generally both magnetization lines as well as field lines 
and field surfaces at the same point inside magnetized 
bodies, such a display would be confusing.

N

Fig. 2.9  The positive end of a long bar magnet with 
magnetization lines and field lines

Fig. 2.8  For exercise 2

N   
N   

S   

S   

S   
N   

S 

N   

S N

S N

Fig. 2.10  Bar magnet. The magnetic charge sits on the 
end surfaces. (a) Magnetization lines; (b) Field lines and 
field surfaces

a)

b)
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1. Bar magnet
The magnetic charge sits on the end surfaces. The 

magnetization, Fig. 2.10a, is homogenous; the field, 
Fig. 2.10b, is not. Such a magnet is also called a mag-
netic dipole.

2. Horseshoe magnet
The magnetization lines follow the shape of the 

magnet; the magnetic charge sits on the end surfaces 
again, Fig. 2.11.

3. Magnetic ring with gap
The magnetic charge sits on the plane surfaces on both 

sides of the gap, Fig. 2.12a. In figure 2.12b, the gap area is 
displayed with field lines and field surfaces in an enlarged 
view. The field is essentially limited to the gap area and it 
is almost homogeneous. Field lines and field surfaces of 
this magnetic field have the same shape as the field lines 
and field surfaces of the electric field of a capacitor.

4. Disc-shaped magnet
It has precisely the shape of the missing ring piece 

of the ring magnet from Fig. 2.12, Fig. 2.13. The mag-

S

N

N

S

N

S

N

S

Fig. 2.12  Ring magnet. (a) Magnetization lines; (b) Field 
lines and field surfaces

Fig. 2.13  Disc-shaped magnet. The magnetic charge sits 
on the top and the bottom side of the disc. (a) Magne-
tization lines; (b) Field lines and field surfaces

a)

b)

a)

b)

S

N

S

N

Fig. 2.11  Horseshoe magnet. The magnetic charge sits 
on the end areas. (a) Magnetization lines; (b) Field lines 
and field surfaces

a)

b)
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netic charge sits on the top and the bottom side of the 
disc. Hence, the charge distribution is the same as that 
of the ring magnet with a gap. This implies that also 
the fields of the two magnets look equal.

Exercises
1. Fig. 2.14a shows the ends of two bar magnets. The two 

other ends are located beyond the drawing at a long dis-
tance. (a) Sketch (with different colors) magnetization 
lines, field lines and field surfaces. (b) How can we read 
from the field image that the two magnets attract each 
other?

2. Fig. 2.14b shows the ends of two bar magnets. The two 
other ends are located beyond the drawing at a long dis-
tance. (a) Sketch (with different colors) magnetization 
lines, field lines and field surfaces. (b) How can we read 
from the field image that the two magnets repel each oth-
er?

3. Fig. 2.15 shows a somehow strange magnet. It has the 
shape of a hollow sphere. The outer surface carries posi-
tive magnetic charge, the inner surface carries the same 
amount of negative charge. Draw magnetization lines, 
field lines and field surfaces in different colors. What is 
the magnetic field like beyond the sphere and how is it in 
the hollow internal space?

4. A magnet shall be ring-shaped as the one from Fig. 2.12, 
but this time without a gap. The magnetization lines fol-
low that shape of the ring. What can be said about the 
magnetic poles and what about the magnetic field lines 
and field surfaces?

2.6 � Soft magnetic materials
A magnet does not only attract another magnet, but 

also bodies made of certain other materials, the magneti-
cally soft materials or soft magnetic materials. The materi-
als of which the permanent magnets, that we have ana-
lyzed in the previous sections, are made, are called hard 
magnetic materials. Just as hard magnetic materials, soft 
magnetic materials consist of magnetic atoms. While the 
alignment of the atomic magnets of the hard magnetic 
materials does not change under normal circumstances, 
the atomic magnets of the soft magnetic materials can be 
easily rotated. A typical soft magnetic material is "soft 
iron". (There are different types of iron, depending on 
which other substances were added to the alloy.)

In soft magnetic materials, the atomic magnets are 
oriented without any regularity at first so that there is no 
net charge on the surface. If, however, a soft magnetic 
body is brought into a magnetic field, the atomic mag-
nets will align. This means that the inside of the body is 
magnetized and that the surface is magnetically charged. 

SN

N N

Fig. 2.14  For exercises 1 and 2

Fig. 2.15  For exercise 3

If the soft magnetic body is removed from the field, the 
atomic magnets will scramble again. It loses its magne-
tization and the magnetic charge disappears.

This behavior is similar to that of metals that are 
brought into an electric field. Here, electrically charged 
areas develop on the surface, whereby the overall 
charge of the body remains zero. We have referred to 
this phenomenon as electrostatic induction. The cor-
responding magnetic phenomenon is called magneto-
static induction.

Just as no electric field can be maintained inside a 
metal, no magnetic field can exist in a soft magnetic 
material. And just as the electric field lines merge per-
pendicularly into metal surfaces, magnetic field lines 
merge perpendicularly into soft magnetic bodies. Fig. 
2.16 shows a piece of soft iron that is located in close 
proximity to a horseshoe magnet. What is the course 
of the magnetization lines in the horseshoe magnet 
and in the soft iron body?

S

N

Fig. 2.16  What is the course of the magnetization lines 
in the horseshoe magnet and in the soft iron body?
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they are brought into a magnetic field. Magnetically 
charged areas develop on their surface. The mag-
netic field is displaced from their inside.

The magnetic field lines merge perpendicularly 
into the surface and they end at the surface.

Exercises
1. A plate made of a soft magnetic material is brought be-

tween the poles of a magnet, Fig. 2.17. Draw the field sur-
faces and field lines. Which mechanical stresses exist in 
the metal plate: compression or tension? What are their 
direction?

2. You probably have a magnet that looks like the one shown 
in Fig. 2.18 in your school equipment. It consists of a bar 
magnet and two soft iron parts. Where are magnetic poles 
formed in the soft iron? What is the course of the magne-
tization lines? What is the course of the field lines? What 
is the advantage of the magnet? What is its disadvantage?

2.7 � Electric current and magnetic 
field

A long wire is suspended as shown in Figure 2.19. 
The wire can be connected with a car battery so that 
an electric current can flow in it: in the right section 
downwards and in the left section upwards. The 
electric circuit may only be closed for a short time 
as the resistance of the wire is very low and a cur-
rent of over 50 A is flowing. While closing the 
switch, we look at the dangling sections of the wire. 
The wire sections bounce apart. Something has 
pushed them apart.

Fig. 2.17  For exercise 1

Fig. 2.18  For exercise 2

S

N

S

N

Fig. 2.19  When the electric circuit is closed, the wires 
bounce apart.

Fig. 2.20  When the electric circuit is closed, the wires 
bounce towards each other.

We repeat the experiment but we lay the wire in a way 
that the electricity in the wire sections, that are suspended 
vertically and next to each other, flows in the same direc-
tion, Fig. 2.20. This time, the wire sections bounce to-
wards each other when the electric circuit is closed.

What is the connection through which one wire 
pulls or pushes the other? The answer is easy to find. 
We bring a compass needle in close proximity to an 
individual wire through which a strong electric cur-
rent can flow. As soon as the electric current is switched 
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on, the compass needle orientates itself in a certain di-
rection, Fig. 2.21. When the electric circuit is inter-
rupted again, the needle oscillates back into its original 
direction. The wire is obviously surrounded by a mag-
netic field as long as an electric current is flowing in it.

The compass needle, or iron filings, can be used to 
determine the direction of the field lines and hence 
also of the field surfaces: for a single wire the field lines 
are circular. They surround the wire in a way that the 
center of the circle is located in the wire. Therefore, 
they neither have a start nor an end point – in contrast 
to the field lines of the field of a permanent magnet.

The field surfaces are planes that end in the wire, 
Fig. 2.22.

Fig. 2.23 shows a section through the field that is 
perpendicular to the direction of the wire. (An electric 
current that flows into the image plane is marked by a 
cross; a current that flows out of the image plane is 
marked by a dot.)

Each electric current is surrounded by a mag-
netic field. The field lines enclose the current. The 
field surfaces end on the current.

From the fact that the field surfaces merge perpen-
dicularly into the wire we can conclude that the field 
pushes onto the wire.

A simple rule can be formulated for the direction of 
the field line arrows, Fig. 2.24. Curl the fingers of your 
right hand around the conductor in a way that the 
thumb points in the direction of the electric current. 
Then, the fingers point in the direction of the magnetic 
field strength vector.

Fig. 2.25a shows the field of two wires in which the 
electric current is flowing in opposite directions. In 
Fig. 2.25b, the electric current flows in the same direc-
tion.

The magnetic field caused by electric currents can 
be made much denser by means of a simple trick: the 
same wire is led many times past the same place, or 

wire with a 
strong electric 
current

compass needle

field surface

field surface

field surfa
ce

field lineselectric current

field surface

field surface

field surfa
ce

field lineselectric current

×

field lines

field surfaces

Fig. 2.21  When the electric current is switched on, the 
compass needle changes its direction.

Fig. 2.22  Perspective view of field surfaces and field 
lines of the magnetic field of a wire in which an electric 
current is flowing.

Fig. 2.23  Cross-section through the wire and the field 
of Fig. 2.22. The cross in the wire means that the cur-
rent flows into the drawing plane.

electric current
magnetic
field lines

Fig. 2.24  When the thumb of the right hand has the 
direction of the electric current, the other fingers point 
in the direction of the magnetic field strength.
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Fig. 2.25  Field surfaces and lines of the field of two 
parallel wires. (a) The currents flow in opposite direc-
tions. (b) The currents flow in the same direction.

a)

b)

100 turns

100 Amperes flow
through this area

1 A

Fig. 2.26  The field of a bundle of wires is as dense as 
the one of a wire in which a current of 100 A is flowing.

Fig. 2.27  Cylindrical coil

Fig. 2.28  Field surfaces and field lines of the field of a 
cylindrical coil

better, it is rolled up to form a coil. In Fig. 2.26, the 
wire runs 100 times in a circle. When a current of 1 A 
is flowing in the wire, an overall current of 100 A flows 
through the indicated cross-section. Therefore, there is 
a magnetic field around this bundle of wires which is 
as dense as that of a single wire in which an electric 
current of 100 A is flowing.

A cylindrical coil provides a very useful arrange-
ment. Here, the wire is rolled up in many layers, 
Fig. 2.27. (Of course, the wire must be insulated be-
cause the current could take a shorter way otherwise.)

Fig. 2.28 shows a cross-section of the field of a coil. 
It is mainly located inside the coil and is almost homo-
geneous (just as the field of the capacitor is located 
mainly between the plates where it is homogeneous). 
The field lines are parallel to the axis of the coil.

Exercises
1. A copper pipe is used as an electric conductor whereby 

the electric current is flowing in a longitudinal direction. 
Draw a cross-sectional image of the pipe and sketch field 
lines and field surfaces of the magnetic field outside of the 
pipe. Try to draw field lines and field surfaces inside the 
pipe. What can you say in conclusion? What are the com-
pressive and tensile stresses “felt by the pipe“?

2. Electric currents of the same magnitude but not the same 
directions flow through four parallel wires, Fig. 2.29a. 
Sketch field surfaces and field lines.

3. Electric currents of the same magnitude but not the same 
directions flow through four parallel wires, Fig. 2.29b. 
Sketch field surfaces and field lines.

Fig. 2.29  (a) For exercise 2; (b) For exercise 3

·×

×··

× ×

·

a)				        b)
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2.8 � Calculation of magnetic field 
strengths

The magnetic field strength is a vector. It follows the 
same rules as the electric field strength. If an electric 
current I1 taken alone creates a magnetic field with 
field strength H1 a point P, and if another current I2, 
also taken alone, creates a field of field strength H2 in 
the same point P, both currents together will create a 
field with the field strength

H
r
 = H

r
1 + H

r
2 .

In analogy to the electric field, the following ap-
plies:

If all electric currents are multiplied by a factor 
k, the values of all magnetic field strengths will in-
crease by the same factor k. The field strength di-
rections will remain equal.

We need these rules to calculate the magnetic field 
strength in a coil. We know that the field is homoge-
neous and that the field strength vector has the same 
direction as the axis of the coil. The mnemonic tells us 
that the field strength is proportional to the electric 
current. Hence, we can say

|H
r 

| ~ I .

But there must be more than that. Not the current in 
a wire is solely responsible for the field, but rather the 
overall current that flows around the inside of the coil. 
In terms of the respective total current It, we obtain

It = n · I

(n = number of turns of the coil). If the number of 
turns is doubled while the rest of the coil is left as it 
was, the field strength inside the coil must also double, 
Fig. 2.30.

It looks as if two coils were slid on top of each other. 
Hence, we complete our proportionality to obtain

|H
r 

| ~ It = n · I .

Also this relationship is not yet complete. Fig. 2.31 
shows two coils that differ from each other with regard 
to their length l: the second one is twice as long as the 
first one.

A current of 1 A shall flow through the wire of each 
coil. The overall current strength in the first coil is 

1 A 1 A 1 A

A A A

Fig. 2.30  (a) Coil with 200 turns through which a cur-
rent of 1 A is flowing. (b) A coil with 400 turns through 
which a current of 1 A is flowing is equivalent to two 
coils rolled on top of each other whereby each one has 
200 turns. The magnetic field strength is twice as high.

a)				    b)

1 A 1 A

A A

Fig. 2.31  (a) Coil with 200 turns, the current is 1 A. (b) 
Coil is twice as long with 400 turns, current is 1 A. The 
coil is equivalent to two adjacent coils with 200 turns 
each. The field strength is the same as in the coil from 
(a).

a)				    b)

therefore

It = 1 A · 200 = 200 A

and

It = 1 A · 400 = 400 A.

in the second one.
The second coil, however, can be regarded as equiv-

alent to two adjacent coils through which overall cur-
rents of respectively 200 ampere are flowing. In each of 
the individual coils, we have the same field strength as 
in the single coil on the left of the picture.
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A comparison of the short coil on the left with the 
long one on the right shows that the quotient of the 
overall current strength and the coil length l

It / l = n · I /l,

on the left and on the right is equal. Hence, what mat-
ters for the field strength is the quotient of the total 
current and the length l, or the number of turns multi-
plied by the current divided by the coil length:

t .I n IH
l l

⋅
=

�
∼

The measurement unit of the magnetic field strength 
has been chosen in a way that the equation contains an 
equal sign instead of a proportionality sign.

Magnetic field strength of the coil:

(2.3)t .I n IH
l l

⋅
= =

�

Compare this formula with equation (1.3) for the 
electric field strength in the capacitor.

Example
An electric current of 4 ampere flows through a coil 

with 1500 turns and a length of 30 cm. What is the 
magnetic field strength inside the coil?

1500 4 A 20000 A/m.
0.3 m

n IH
l
⋅ ⋅

= = =
�

Fig. 2.32  To calculate the magnetic field strengths H1 
and H2 in the points P1 and P2 around a straight wire

= =H
I I

r22
2 2�

= =H
I I

r21
1 1�

×
r2

r1

P2
P1

�2
�1

π

π

The calculation of the field strength for other elec-
tric conductors is generally more complicated than for 
a coil. But there is yet another case in which the field 
strength can be calculated easily: the field of a straight 
long wire.

Magnetic field strength around a straight wire

IH
l

=
�

l = circumference of the circle

Here, I is the current in the wire and l is the circum-
ference of the circle on which the point for which the 
field strength should be calculated is located, Fig. 2.32. 
You see that the formula is very similar to that for the 
coil. But bear in mind the different meanings of l in the 
two cases.

Exercises
1. Compare equation (2.3) with equation (1.3). Why does 

equation (1.3) not contain the area of the capacitor plates? 
Why does equation (2.3) not contain the cross-sectional 
area of the coil?

2. A coil with a length of 60 cm has 3000 turns. An electric 
current of 0.8 A is flowing through the coil. What is the 
magnetic field strength inside the coil?

3. You find a coil and would like to know the number of its 
turns. The coil has a length of 15 cm. You send an electric 
current of 500 mA through it and you measure a field 
strength of 3000 A/m inside with the magnetic field me-
ter.

4. A torus-shaped coil (a cylinder that was bent to form a 
tire-shaped ring) has 1000 turns. The ring diameter is 0.5 
m. An electric current of 2.5 A is flowing through the coil. 
(a) Sketch field lines and field surfaces. (b) What is the 
field strength inside the coil?

5. An electric current of 16 A is flowing in a wire with a 
thickness of 2 mm. (a) What is the magnetic field strength 
on its surface? (b) What is the magnetic field strength at a 
distance of 1 cm from the center of the wire?

6. A coaxial cable consists of a flexible hollow metallic cylin-
der and a wire that is located in the cylinder axis. The 
cylinder and the wire are electrically insulated from each 
other. They form the forward and return line of the cable. 
A current of 0.5 A shall flow in such a cable (i.e. in the 
wire in one direction, in the cylinder in the other direc-
tion). The outer diameter of the cable is 10 mm, the diam-
eter of the wire 1 mm. (a) What is the magnetic field 
strength outside of the cable? (b) What is the magnetic 
field strength on the surface of the wire?
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2.9 � Measuring the magnetic 
charge

We would like to measure the magnetic charge of a 
magnetic pole of a bar magnet.

We transform our well-known equation

m

FH
Q

=
�

�

and obtain

(2.4)m
FQ
H

=

To determine F, we suspend the magnet on a mo-
mentum current meter so that one of the poles is located 
completely inside a coil while the other one is as far out-
side that its contribution to the field within the coil can 
be neglected, Fig. 2.33. Now we let an electric current 
flow through the coil and check by which amount the 
momentum current increases. The increase corresponds 
to the momentum current that flows from the coil 
through the field into the magnetic pole.

Now we only need to calculate the magnetic field 
strength H in the coil and will then obtain the mag-
netic charge with equation (2.4).

Example
Length of the coil: l = 8 cm
Number of turns: n = 500
Electric current (measured): 1.2 A
Momentum current: 0.15 N
Magnetic field strength of the field in the coil:

500 1.2 A 7500 A/m
0.08 m

n IH
l
⋅ ⋅

= = =

Charge of the magnetic pole:

5
m

0.15 N 2 10  Wb
7500 A/m

FQ
H

−= = = ⋅

This experiment can also be used to confirm that the 
overall magnetic charge of a magnet is equal to zero: a 
magnet is suspended in a way that the other pole is lo-
cated inside the coil and we let flow the electric current in 
the opposite direction. We find the same increased value 
for the momentum current as in the first experiment.

We could also suspend a smaller magnet from the 
momentum current meter in a way that the magnet is 
located entirely within the coil. Now the increase of 
the momentum current is zero.

Just for fun, we would like to look at another variant 
of the experiment: we put the coil on a balance (if pos-
sible, on a balance whose weighing pan does not move 

Fig. 2.33  Measuring the magnetic charge of a magnetic 
pole momentum current meter

during weighing, e.g. the analytical balance from the 
chemistry laboratory) and switch on the electric cur-
rent in the coil once again, Fig. 2.34.

An increased momentum current is now flowing from 
the table over the balance, the coil, the magnetic field, the 
magnet, the upper momentum current meter and its sus-
pension back into the table. As the balance is nothing else 
than a momentum current meter, the same increase of 
momentum current flows successively through two me-
ters. Of course, both indicate the same increased value. 
(To read the momentum current from the balance, the 
indicated value must be multiplied by the gravitational 
field strength as the scale is calibrated in units of mass.)

momentum current meter

m
om

en
tu

m
 c

ur
re

nt

Fig. 2.34  The momentum current is measured at two 
places: at one with a momentum current meter and at 
the other with an analytical balance.
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2.10 � Pressure and tension within 
the magnetic field

Just as in the electric field, there are mechanical 
stresses in the magnetic field. In the direction of the 
field strength vector, the field is under tensile stress, 
and in the perpendicular direction it is under com-
pressive stress. These stresses are used for many tech-
nical applications and have an impact on nature.

The values of the stresses (= momentum current 
densities) are calculated with formulas that have the 
same structure as those for the electric field.

Magnetic field:
		       

2 20 0
2 2

H Hµ µσ σ ⊥= − =�
� �

σ|| is again the stress in the direction of the field 
lines; it is negative (tensile stress). σ⊥ is the stress per-
pendicular to the field lines; it is positive (compressive 
stress). |H

r
| is the magnitude of the magnetic field 

strength. μ0 is the magnetic constant:

Magnetic constant μ0 = 1.257 ·10–6 Wb/(A·m)

We can now understand why and how magnetized 
bodies attract or repel each other. Again, we would like 
to predict by simply looking at the field image in which 
direction the field pushes or pulls the bodies.

1. The ring magnet
Fig. 2.12 shows an image of the field. The field lines 

merge from below into the upper pole in a practically 
vertical direction. As there is a tensile stress in the di-
rection of the field lines and as the field lines end on 
the pole surface, the field pulls the upper pole down-
wards. On the lower pole, it draws upwards accord-
ingly. A ring with a pivot, Fig. 2.35a, would not be sta-
ble; it would collapse, Fig. 2.35b.

2. The single wire
Fig. 2.23 shows field lines and field surfaces for a 

wire in which an electric current is flowing. The field 
surfaces merge from all sides into the wire where they 
end. Hence, the field compresses the wire from the 
outside. This is similar to the electric field of a charged 
sphere, Fig. 1.47. When the field pushes inwards, it 
must also push outwards. Where does it adhere to on 
the outside? Again, the answer can be found by look-
ing at a material model of the field, Fig. 2.36.

Just as the field, the radial springs are under com-
pressive stress. They adhere to the ring on the outside. 

Fig. 2.35  Ring magnet with a pivot. (a) In this position , 
the magnet is not stable; (b) it collapses in a new posi-
tion.

a)

b)

Fig. 2.36  Model of the magnetic field of the wire in 
which an electric current is flowing. The springs push 
on the wire in an inward direction and on the ring in an 
outward direction. Therefore, the ring is exposed to 
tensile stress.

pressure

N

S

N

S
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Therefore, the ring is under tensile stress. The same ap-
plies to our field: also the field is exposed to tensile 
stress in the direction of the circular circumferences, 
i.e. in the direction of the field lines.

For a typical electric conductor made of a solid ma-
terial such as copper with a typical electric current, e.g. 
of 20 A, the pressure of the magnetic field is hardly 
noticeable (see also Exercise 1).

If, however, a very strong electric current flows in a 
liquid conductor or in a gaseous conductor (a plasma), 
the pressure can have strong effects.

In a nuclear fusion reactor, a so-called Tokamak, a 
plasma must be maintained in a torus-shaped recipient 
at a temperature of approximately 100 million Kelvin. 
The plasma must not come in contact with the walls of 
the recipient. Therefore, one ensures that a strong elec-
tric current flows in the gas. Its magnetic field pushes 
from the outside onto the plasma and holds it together. 
Thus, the gas is locked in the magnetic field.

3. The coil
Its field is shown in Figure 2.28. What are the effects 

of the compressive and tensile stress on the coil? What 
does the coil feel? Again, we look at a material model, 
Fig. 2.37.

The springs that are perpendicular to the axis of the 
coil (vertical in the figure), are compressed. They push 
on the coil wires from the inside. If the coil was made 
of a very soft material, the individual turns would ex-
pand.

The horizontal springs, that are under tensile stress, 
adhere each to the ends of two inclined springs which 
push from the outside on the coil ends. Hence, the coil 
is exposed to compressive stress in the longitudinal di-
rection. In fact, a loosely twisted coil is compressed by 
the field when a strong current is switched on, Fig. 
2.38.

The x momentum current flows inside the coil from 
the right to the left (tensile stress). It branches off at the 
left end of the coil and flows through the coil material 
back to the right (compressive stress) and then back to 
the field, Fig. 2.39.

We can calculate the respective momentum cur-
rent. Suppose, the following values are known:

Length of the coil: l = 40 cm
Cross-sectional area of the coil: A = 100 cm2

Number of turns: n = 50
Electric current: I = 120 A
At first, we look at the magnetic field strength:

50 120 A 15000 A/m
0.4 m

n IH
l
⋅ ⋅

= = =
�

pressure tension

Fig. 2.37  Model of the magnetic field of a coil. The 
springs push from the inside on the individual wires 
and from the sides in a longitudinal direction on the 
coil.

y

x

Fig. 2.38  (a) Loosely winded, elastic coil. (b) The coil is 
connected briefly to a car battery. It is immediately 
compressed by the field.

Fig. 2.39  The x momentum current flows in the field 
inside the coil from the right to the left and through 
the coil material back to the right.

Therewith we obtain the tensile stress inside the coil
20

6
2

2
1.257 10  Wb/(A m) (15000 A/m)

2
141 Pa

Hµσ

−

= −

⋅ ⋅
= − ⋅

= −

�
�

and finally the momentum current:

F = σ|| ·A = –141 Pa · 0.01 m2 = –1.41 N



62

2.11  Electromagnets

2 
 T

H
E 

M
AG

N
ET

IC
 F

IE
LD

Exercises
1. A copper wire shall have a cross-sectional area of 

1.5 mm². An electric current of 16 A is flowing in the 
wire. What is the pressure of the magnetic field on the 
surface of the wire?

2. A flash of lightning consists of ionized air (i.e. a plasma) 
through which a strong electric current is flowing from 
the Earth into the thundercloud. A typical lightning has a 
diameter of 1 cm, the electric current is 10 000 A. (a) 
What is the pressure of the magnetic field at the surface of 
the plasma? (b) The plasma has a temperature of 10 000 K. 
It is heated up so fast that it does not have time to expand 
at first. What is the pressure of the gas generated in the 
process? Compare with the result from part (a).

3. As we know, two parallel wires, in which electric currents 
flow in opposite directions, are moved away from each 
other by the magnetic field, Fig. 2.19. How can this be 
seen in the field image from Fig. 2.25a?

4. Two parallel wires, in which electric currents flow in the 
same direction, are moved towards each other by the 
magnetic field, Fig. 2.20. How can this be seen in the field 
image from Fig. 2.25b?

2.11 � Electromagnets
We remember that soft magnetic materials, for ex-

ample soft iron, displace the magnetic field from their 
inside. The soft iron is magnetized in the process and 
magnetic poles develop on its surface. If the inside of a 
coil, i.e. the area where the largest part of the field of 
the coil is located, is filled with soft iron, the field will 
be displaced from there. It is now located outside of 
the coil, at the ends, Fig. 2.40. Such a coil with a soft 
iron core is called electromagnet.

The poles are located at the ends of the soft iron core. 
In relation to the coil, the electromagnet has the advan-
tage that the magnetic field is no longer hidden inside, 
but located at an easily accessible place. In contrast to the 
permanent magnet, it can be switched on and off, be set 
to a high and low strength and its polarity can be reversed. 
On Fig. 2.41, we can see on which end the positive and on 
which end the negative magnetic pole form.

Fig. 2.42 shows a particularly interesting variant of 
an electromagnet: the iron core is ring-shaped and has a 
gap. If the gap width d is small, compared to the lateral 
extension of the gap area, the field is essentially restrict-
ed to the gap space and it is nearly homogeneous. The 
poles are located on the surface of the gap. Hence, the 
field is similar to the electric field of a capacitor.

The figure shows both the magnetization lines as well 
as the field lines. We remember the rule according to 
which the field lines start where the magnetization lines 

field

field

field

Fig. 2.40  The magnetic field is displaced from the coil 
by the soft iron core.

N

N

N

S

S

+
+
–

–

Fig. 2.41  If the direction of the electric current in the 
coil is reversed, the magnetic poles will swap positions.

N

S
d

Fig. 2.42  Ring-shaped electromagnet

end, and magnetization lines start where field lines end.
Surprisingly, we can use our old formula once again 

to calculate the field strength:

n IH
d
⋅

=
�

Instead of the coil length l, however, the gap width d 
is in the denominator. We can see that this electromag-
net has an interesting property: the field strength is 
increased by reducing the gap.

Electromagnets are used in many different ways. 
The most important one is probably the electric motor.
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Exercises
1. Name devices that contain electromagnets. How do these 

devices work?
2. Invent an electric motor.
3. An electromagnet with a gap (as in Fig. 2.42) shall have 

the following dimensions: gap width 1 cm, cross-section-
al area of the iron core 100 cm2. The coil of the magnet 
shall have 1000 turns and the electric current shall be 2 A. 
(a) Calculate the magnetic field strength in the gap. (b) 
How much energy is contained in the field? (c) By which 
factor will the field strength change if the gap width is 
reduced to 1 mm? By which factor will the energy change?

4. Sometimes an electromagnet has a peculiar behavior. 
Fig. 2.43 shows an electromagnet and a permanent mag-
net that are located at a long distance from each other. 
The two are brought together, Fig. 2.43b (without flipping 
them in the process). Will they attract or repel each oth-
er? The denomination of the pole of the electromagnet 
was omitted deliberately. Why?

2.12 � Magnetic field strength, 
magnetization and 
magnetic flux density

We have not yet learned to describe the magnetiza-
tion of a material quantitatively, i.e. by means of num-
bers. This shall be done now.

Just as the magnetic field strength, the magnetiza-
tion can be represented by lines. This means that mag-
netization as a physical quantity –just as the field 
strength– is a vector quantity. The symbol for this vec-
tor is |M

r
|.

If the electric current in the coil from Fig. 2.42 is 
increased, both the magnetization in the iron core as 
well as the field strength of the field will increase. 
Therefore, we can use for the magnetization in the iron 
core the same measurement unit as the field strength 
in the gap. We define: at the pole areas of the iron core 
from Fig. 2.42, the magnetization on the inside is equal 
to the field strength outside:

M
r

inside = H
r

outside

At first, it looks as if this definition was only appli-
cable to a very specific magnet. The magnetization, 
however, can actually be defined this way any time the 
magnetization lines continue as field lines at a limit 
area without kinks.

Let’s get back to the ring magnet once again:
Here, a single closed line can be followed in a closed 

path. In one part of the path, the line is a magnetiza-

Fig. 2.43  For exercise 4

S N

N S

N S

tion line, in another one it is a field line. Later, we will 
learn about phenomena that do not require a distinc-
tion between magnetization and magnetic field 
strength. In this case it is useful to summarize magne-
tization and magnetic field strength as one single phys-
ical quantity. We define:

B
r

 = μ0 (M
r

 + H
r

)	 (2.5)

The new quantity is called magnetic flux density. 
Due to the factor μ0, B

r
 does not have the same mea-

surement unit as H
r

 and M
r

. We obtain

2
Wb A Wb Tesla
A ·m m m

⋅ = =

We can already see an advantage that comes with 
the application of the flux density. The theorem that 
says that field lines start where magnetization lines 
end, and vice versa, can now be formulated in a sim-
pler way:

Flux density lines have no beginning and no 
end.

Let’s compare this to an analogue situation. Look at 
a closed loop that is made of a pieces of wire. Some 
pieces are made of copper and some of aluminum. The 
following rule applies for the circuit:

An aluminum wire starts where a copper wire ends, 
and a copper wire starts where an aluminum wire ends.

The rule can be formulated more briefly if the mate-
rial does not matter: the metal wire has no beginning 
and no end.

From equation (2.5) we can conclude that outside 
of magnetizable substances (where the magnetization 
is zero) we have:

a)

b)
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B
r

 = μ0 H
r

and within soft magnetic materials (where the mag-
netic field strength is zero) we obtain:

B
r

 = μ0 M
r

.

2.13 � The coil – the inductance
We have already compared the coil with the capaci-

tor several times. Both devices are important electric 
components. In electronic devices, there are both coils 
and capacitors. Now, we would like to take the com-
parison even further.

A capacitor is characterized by its capacitance. The 
capacitance depends on the geometrical dimensions of 
the capacitor, but not on the applied voltage or the 
charge on the plates. If we want to install a capacitor 
somewhere, we must know the capacitor’s capacitance. 
If we were to buy a capacitor, we would have to indi-
cate the capacitance.

There is a physical quantity that is characteristic for 
a coil in a similar way: the inductance L. The induc-
tance also depends on the geometrical dimensions of 
the coil (the number of turns, inter alia) and not, for 
example, the current in the coil. The measurement unit 
of the inductance is the Henry (H). It is

Wb V sH .
A A

⋅
= =

To define the inductance, we first need to introduce 
another physical quantity: the magnetic flux:

Φ = μ0 · H · A = B · A

Hence, the magnetic flux in a coil is the product of 
the magnetic flux density B and the cross-sectional 
area A of the coil. The flux is needed to define the in-
ductance L:

n
L

I
Φ⋅

=

The magnetic flux Φ in a coil is proportional to 
the electric current that flows through the coil.

1 L I
n

Φ = ⋅ ⋅

L is the inductance of the coil.

Hence, the inductance of the coil tells us how a 
strong magnetic flux can be created with a given elec-
tric current. To calculate how L is related to the geo-
metrical data of the coil, we replace in the penultimate 
equation in the numerator

Φ = B · A

and in the denominator

l HI
n
⋅

=

and obtain

2
0( )/

n n B A AL n
l l H n l
Φ

µ
⋅ ⋅ ⋅

= = = ⋅ ⋅
⋅

2
0

AL n
l

µ= ⋅ ⋅

A = cross-sectional area of the coil
l = length of the coil
μ0 = 1.257 · 10–6 Wb/(A·m) = magnetic constant

Compare the result with the formula for the capaci-
tance of the capacitor. The technical symbol of the coil 
are four semicircles in a row, see also Fig. 2.44.

Exercises
1. A coil with 500 turns has a cross-sectional area of 10 cm2 

and a length of 8 cm. Calculate its inductance.
2. A loosely winded coil is extended to twice its length. How 

does its inductance change?

2.14 � The energy of the magnetic 
field

In a coil, through which an electric current is flow-
ing, there is magnetic field stuff which contains energy 
just as the electric field stuff. We had developed a for-
mula that can be used to calculate the energy content 
of the electric field in the capacitor:

2.
2
CE U=

The corresponding formula for the coil and its mag-
netic field shall not be developed but just indicated. As 
you might have expected, it is very similar to the ca-
pacitor formula. We simply replace the capacity by the 
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inductance and the voltage by the electric current:

2

2
LE I  .=

Also the formula for the energy density in the mag-
netic field shall be indicated without any calculation. It 
also has the same structure as the one for the electric 
field:

20
2E H    .µρ =

�

The energy in the magnetic field of a coil can be 
calculated from the inductance and the electric 
current:

2

2
LE I  .=

The energy density of any magnetic field can be 
calculated from the magnetic field strength:

20
2E H    .µρ =

�

Exercises
1. The field strength of the magnetic field of the Earth is ap-

proximately 20 A/m. How much energy is contained in 
1 m3 of this field?

2. We assume in an approximative way that the field be-
tween the poles of the two bar-shaped magnets in Fig. 
2.14a is homogeneous and restricted to the space between 
the two pole areas. The surface area of the pole shall be 
4 cm2, the distance between the magnets 0.5 cm and the 
magnetic field strength 120000 A/m. How much energy 
is contained in the field?

3. An electric current of 2.5 A flows through a coil with an 
inductance of 0.01 mH. The coil is 10 cm long and has a 
cross-sectional area of 4 cm2. (a) How much energy is 
contained in the field of the coil? (b) What is the energy 
density inside the coil?

4. The wire of a coil normally has an electric resistance. A 
coil with an inductance of 0.2 mH and a resistance of 
500 Ω is connected to a voltage source of 200 V. How 
much energy will be stored in the magnetic field of the 
coil in the process?

5. (a) You connect a capacitor to a power supply. Thereby, a 
field is created in the capacitor. The energy of the field is 
provided by the power supply. Now you disconnect the 
capacitor from the power supply. The field will be main-
tained, at least for a while. Hence, the energy remains 
stored in the capacitor. Now you connect a coil to a power 
supply whereby a field is created in the coil. The energy of 
the field is provided by the power supply. You would now 
like to disconnect the coil from the power supply unit in 
a way that the field in it does not disappear. How can you 
do that? (b) The capacitor detached from the power sup-
ply slowly loses its energy. What is the defect of the ca-
pacitor that causes this loss? The coil disconnected from 
the power supply unit loses its energy very quickly. Which 
defect of the coil causes this loss? There are coils that do 
not have this defect. What type of coils are they?

2.15 � “Discharge” of the coil
An electric current flows through the coil from Fig. 

2.44a; we assume the current to be 2 A. Therefore, the 
coil contains a certain amount of magnetic field stuff 
and hence a certain amount of energy.

We now open the switch, Fig. 2.44b. Right after the 
opening, the field is as it was shortly before because its 
energy cannot just disappear from one moment to the 
other. However, the fact that the field is still there also 
means that the electric current still has to flow as no 
field is possible without a current, and no current can 
exist without a field. The current must be the same as 
before opening the switch, i.e. 2 A. As the battery cir-
cuit is interrupted, these 2 A are now flowing through 
the resistor.

12 V
500 Ω

P

I = 2 A

Q

V

I = 2 A
12 V

500 Ω

P

Q

V

a)

b)

Fig. 2.44  (a) An electric current of 2 A flows through the 
coil. (The current through the resistor is very weak.) (b) 
Immediately after opening the switch, the electric cur-
rent of 2 A has to flow through the resistor. This creates 
a high voltage, but the electric current decays very fast.
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We can further conclude: if an electric current is 
flowing through the resistor, the voltage at the resistor 
must have the respective value; in our case

U = R · I = 500 Ω · 2 A = 1000 V.

We consequently see: a voltage emerges between 
the ends of the resistor and hence between the upper 
conductor P and the lower conductor Q when the 
switch is opened. This voltage is much higher than the 
voltage between P and Q before opening the switch.

We can also say: the current that needs to continue 
flowing after opening the switch, and that can only 
flow through the resistor, creates this voltage.

What we have just said is only valid for the first mo-
ment though, i.e. for the “time zero”. What happens 
after? As an electric current flows through the resistor, 
entropy is generated there. This requires energy which 
comes from the coil. The respective energy current is 
related to the electric current via

P = R · I2 .

(The equation results from P = U · I and U = R · I.)
Hence, the energy in the coil decreases. This means, 

however, that also the electric current decreases due to

2

2
LE I  .=

When the electric current decreases, the energy 
outflow of the coil decreases as well since

P = R · I2 .

As a consequence, the electric current decreases 
more slowly than before etc. etc.

You see the logic: The lower the electric current, the 
more slowly it decreases.

This phrase might sound familiar to you. We exam-
ined similar phenomena earlier. In the case of a capac-
itor discharge we had:

The lower the voltage, the more slowly it decreases.
Also here, we could develop a differential equation 

and look for a solution. We save the time as this calcu-
lation would be the same as for the capacitor. Only a 
few physical quantities would have to be replaced by 
others. For the coil “being discharged” we obtain:

I(t) = I0 · e–t/τ

i.e. the electric current “decays” exponentially, Fig. 2.45. 
I0 is the current immediately after opening the switch.

The decay time τ is:

R
L

τ =

We see that in order to get a slow decay, the induc-
tance of the coil must be high and the resistance of the 
resistor low.

“Discharge” of a coil through a resistor
The electric current decreases exponentially:

I(t) = I0 · e–t/τ

decay timeR
L

τ = =

The fact that the electric current, that flows in the 
battery circuit, evades into the resistor when the switch 
is opened can be seen by using a light bulb instead of 
the resistor, Fig. 2.46. After the switch is opened, it will 
light up for a short time. (A light bulb that does not yet 
light up at a battery voltage of 12 V shall be chosen.)

We would now like to derive an equation that looks a 
little boring at first, but that we will see again in the next 
chapter. Only then we will understand its importance.

Fig. 2.45  A long decay time t means: the current in the 
coil decreases slowly.

I

t 
0

I0

t great

t small

Fig. 2.46  The battery voltage is not sufficient to light up 
the light bulb. The bulb only lights up for a short time 
when the switch is opened. The required energy comes 
from the magnetic field of the coil.
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We establish the energy balance for the electric cir-
cuit from Fig. 2.44. The switch has just been opened. 
We have:

dEP
dt

=

In words: the energy current P flowing into the re-
sistor is equal to the rate of change of the energy con-
tent of the coil.

Now we replace on the left side:

P = U · I .

On the right, we replace by means of

2

2
LE I  .=

For this purpose, we first need to differentiate E 
with respect to the time. To do so, we apply the chain 
rule:

2 .
2

dE L dI dII L I
dt dt dt

= ⋅ = ⋅ ⋅

We insert and obtain:

,dIU I L I
dt

⋅ = ⋅

and thereof:

dIU L
dt

=

The right side can then be transformed by means of

n · Φ = L · I

and we finally obtain

dU n
dt
Φ

=

Hence: the voltage at the resistor is equal to n times 
the rate of change of the magnetic flux in the coil. We 
will see later that this is a famous law: Faraday’s law of 
induction.

Exercises
1. Measurement of the inductance of a coil: The coil is built 

into a circuit as shown in Fig. 2.44. The resistance of the 
resistor is to 500 Ω. We find that the voltage decreases to 
one tenth of its initial value in 4 ms. What is the value of L?

2. According to which time function does the energy in the 
coil decay?

2.16 � How the magnetic field 
presses on an electric 
current

We know already: if a magnetic pole is brought to a 
point P where there is a field (field strength H), it will 
be drawn in the direction of the vector H by the field.

Something similar happens if an electric current, 
that flows in a right angle in relation to the field lines, 
is brought to the point P instead of the magnet. We 
place an electric conductor within the nearly homoge-
neous field between the poles of a magnet, Fig. 2.47, 
and find: the conductor is pushed to the side by the 
field.

An image of the field, Fig. 2.48, shows us the reason. 
Fig. 2.48a illustrates the field of the magnet alone. The 
image b shows the field of the electric current alone. c 
shows the resulting field. Finally, d shows, besides the 
field lines, the field surfaces. The resulting field is more 
dense on the right side of the wire than on the left. The 
pressure (in the direction of the field surfaces) is there-
fore higher on the right side than on the left so that the 
wire is pushed to the left.

Deriving the formula for the respective momentum 
current is a bit difficult and shall be skipped here. The 
result itself, however, is simple. The following applies 
for an electric current that flows in a right angle to the 
field vector of the field without a current:

F = I · Δs · B

Here, I is the electric current, B is the magnetic flux 
density of the field without the conductor and Δs is the 
length of that part of the conductor that is located in 

N

S
I

I

Fig. 2.47  The mobile conductor with the electric cur-
rent is pushed to the left by the magnetic field.
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the area of the magnetic field. F is the magnitude of the 
momentum current vector. This vector is perpendicu-
lar to the magnetic flux density (and field strength) 
and perpendicular to the electric conductor.

Bear in mind that the initial field is strongly changed 
by the conductor. Still, the flux density of the initial 
field needs to be inserted in the formula.

A conductor with an electric current is pushed 
perpendicularly to the direction of the field without 
the conductor.

The respective momentum current is
F = I · Δs · B .	 (2.6)

There are three relevant directions in this law:
1. Direction of the electric current
(= direction of the current density vector j

r
)

2. Direction of the flux density vector B
r

(= direction of the field strength vector H
r

)
3. Direction of the momentum current vector F

r

The relationship between these directions can be 
memorized by means of the three-finger-rule of the 
right hand, Fig. 2.49: when the thumb points in the 
direction of the electric current and the index finger in 

××

×

Fig. 2.48  (a) homogeneous 
field; (b) electric current 
with its field; (c) resulting 
field; (d) resulting field 
with field surfaces

a)						      b)

c)						      d)

�
j

�
H

�
F

Fig. 2.49  Three-finger-rule of the right hand 

�
v

sΔ

Fig. 2.50  Section of a beam of charged particles
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the field strength direction, the flexed middle finger 
indicates the direction of the momentum current vec-
tor.

Orbits of charged particles
We apply equation (2.6) to a beam of charged par-

ticles, such as electrons, that fly through a magnetic 
field in a direction perpendicular to the field direction. 
We look at a section of length Δs of the beam, Fig. 2.50.

We calculate the momentum current that flows into 
this bundle of particles, as a function of its charge and 
its speed. Therefore, we express the electric current in 
equation (2.6) by means of

.
Q

I
t

∆
∆

=

Here, ΔQ is the charge of the bundle of particles and 
Δt is the time that the charge needs to pass through Δs. 
In addition, we replace

Δs = v · Δt ,

where v is the velocity of the particles. We obtain:

Q
F I s B v t B Q v B

t
∆

∆ ∆ ∆
∆

= ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅

Usually, the particles carry the elementary charge e. 
In this case, we can replace ΔQ by e.

Charged particles that move in a magnetic field 
receive a transversal momentum through the field:

F = e · v · B
e = electric charge of the particles
v = velocity of the particles

Again, the three-finger-rule applies for the direc-
tions, whereby the velocity vector has to be used in-
stead of the current density vector.

In vector form, the relationship can be expressed as

( )F e v B= ⋅ ×
� ��

This rule is interesting. We imagine a particle that 
moves in a homogeneous magnetic field at a right an-
gle to the field lines. Hence, its orbit is located on a 
field surface. The particle is constantly provided with a 
transversal momentum through the field: the direction 
of the momentum that it receives is always transversal 
to the one of the momentum that it currently has. 
Hence, it is deviated.

We have already seen that such a process leads to a 
circular movement, Fig. 2.51. Hence, the particles de-

scribe a circular orbit in a homogeneous magnetic 
field.

We have expressed the rate of change of the mo-
mentum of a body, that makes a circular movement, by 
its speed v, its mass m and the radius r of its orbit:

2dp vm
dt r

=

Since the rate of change of its momentum is equal to 
the momentum current, i.e.

,dp F
dt

=

we obtain
2

.vm e v B
r

= ⋅ ⋅

We divide both sides of the equation by v and bring 
r on one side.

Particles within magnetic field

(2.7)
m v

r
e B

⋅
=

⋅

The radius of the orbit is large when the particle 
is heavy and fast; it is small when the field strength 
is high.

If the magnetic field is not homogeneous, r is the 
radius of curvature of the orbit in every moment.

�
p

2

�
p

1

�
p

3

�
p

4

�
p

5

�
p

6

Fig. 2.51  The particle receives new momentum, whose 
direction is perpendicular to the direction of the mo-
mentum that it currently has, in every moment. The 
image shows the momentum vectors at six different 
times.
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The equation tells us that particle beams can be 
“manipulated” by means of magnetic fields. In particu-
lar electron beams can be focussed and deviated just as 
light beams can be focussed by means of lenses and 
deviated in prisms.

This process is applied in electron microscopes and 
in particle accelerators.

Measuring e/m
Equation (2.7) contains two quantities that charac-

terize the particle: its mass m and its electric charge e. 
Both values are very small, and hence difficult to mea-
sure. However, the equation allows us to measure the 
ratio of the two.

We create a beam of electrons in a homogeneous 
magnetic field. The orbit of the electrons can be visual-
ized easily. From equation (2.7) we can conclude

e v
m r B

=
⋅

All quantities on the right side of the equation can 
be easily measured. If the elementary charge is also 
measured by means of another method, the mass of 
the electron can be calculated. Remember:

e = 1.602 · 10–19 C
m = 0.911 · 10–30 kg

Charged particles follow magnetic field lines
We have assumed so far that the electrons fly trans-

versally to the field lines in a homogeneous magnetic 
field. But what will they do if they start in another direc-
tion? Let’s imagine a homogeneous field once again. It 
should fill out a large space; in the space, there should be 
a vacuum so that the electrons can fly freely. If an elec-
tron starts in any direction now, we can break down its 
velocity in two components: one that is transversal to 
the field strength and another one that is parallel to it. In 
other words: a component parallel to a field surfaces and 
one parallel to a field line. To see how the electron 
moves, we look at each of the two components sepa-
rately. A circular movement is associated to a velocity 
perpendicular to the field lines, and a normal linear 
movement to the velocity parallel to the field lines. 
Hence, we have a circular movement and at the same 
time a normal movement in a transversal direction to 
the circle. The result is a helical movement, Fig. 2.52.

There are situations in which the movement can be 
described as follows: the electrons follow the magnetic 
field lines, which is particularly appropriate when the 
field strengths are very high.

This is the case, for example, in a fusion reactor 
where we have magnetic field strengths of approxi-

mately 5 · 106 A/m. The particles are electrons, deuter-
ons and tritons. (A deuteron is composed of a proton 
and a neutron, a triton of a proton and two neutrons.) 
There is a temperature of approximately 100 million 
Kelvin in the reactor. This means that the electrons 
move with a speed of around 4 · 107 m/s. We calculate 
the radius of their helical path:

30 7

19

−5

10 kg 4 10 m/s
1.6 10  C 5 T

5 10  m
50 m

m v
r

e B

−

−
⋅ ⋅ ⋅

= =
⋅ ⋅ ⋅

= ⋅
= µ

Hence, the helix is very thin compared to the over-
all size of the reactor (several meters) and we can rea-
sonably say that the electrons follow the field lines.

The Hall effect
A flat electric conductor, through which an electric 

current is flowing, is brought in a magnetic field; the 
field strength vectors are perpendicular to the conduc-
tor surface and perpendicular to the current direction, 
Fig. 2.53.

In the figure, the current direction (direction of the 
current density vector) is from the bottom to the top. 
We first assume to deal with positive mobile charge 

particle trajectory

field line

Fig. 2.52  The particle moves on a helical path around a 
field line.
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carriers, Fig. 2.53a. Their direction of movement is the 
same as the direction of the electric current. The mag-
netic field now pushes the charge carriers to the left 
(three-finger-rule of the right hand). They accumulate 
on the left side so that some of them are missing on the 
right whereby the right side takes on a negative charge. 
Thereby, an electric field develops which pulls the 
charge carriers to the right. Shortly after the current is 
switched on, the push of the magnetic field to the left 
becomes equal to the pull of the electric field to the 
right. That means that the charge carriers can now 
move in a straight direction.

The momentum current, that comes over the elec-
tric field, i.e.

Fel = e · E ,

is now equal to the momentum current

Fmag = e · v · B

that comes over the magnetic field. Hence, we have:

E = v · B

This creation of an electric charge at the surface of 
the conductor is called Hall effect.

The relation between the electric field strength E in 
the conductor and the voltage UH between the two 
faces is

UH = E · d .

Hence, 

Hall effect
UH = v · B · d	 (2.8)

UH can be easily measured.
There is a variety of applications for the Hall effect. 

We would like to introduce two of them.

Plus/minus sign of the charge carriers
We have seen: if the mobile charge carriers are pos-

itively charged, the left side in Fig. 2.53a will become 
positively charged. Now we assume that the same elec-
trical current is created by negative charge carriers, 
Fig. 2.53b. The charge carriers in the figure must flow 
from the top to the bottom so that the current direc-
tion remains the same as before. In relation to their 
direction of movement, they are now deviated to the 
right, i.e. to the left from our perspective. (When ap-

plying the three-finger-rule we need to reverse the di-
rection of deviation of the particles because they carry 
negative charge.) The left side (from our perspective) 
will therefore take on a negative charge, the right side 
a positive charge. We can therefore tell from the charge 
which plus/minus sign the charge carriers have. For 
most metals, the mobile charge carriers are electrons, 
i.e. negative particles. For some metals and for many 
semiconductors, the mobile charge carriers are posi-
tive particles, the so-called holes. A hole can be imag-
ined as a missing electron in a large “lake of electrons”, 
similar to the bubbles in mineral water that can be re-
garded as missing water. The bubble behaves like a 
body with a negative mass (as it raises to the top in-
stead of falling down). A hole in the lake of electrons of 
an electric conductor behaves accordingly like a parti-
cle with a positive electric charge.

The Hall sensor
The arrangement of Fig. 2.53 can be used to mea-

sure the magnetic flux density or field strength. Then, 
it is called a Hall sensor. When a constant electric cur-
rent is sent through a sensor, the voltage UH is propor-
tional to the magnetic flux density and field strength.

Measuring UH therefore means measuring the mag-
netic field strength at the same time. Most magnetic 
field meters take advantage of this effect. As a Hall sen-
sor is very cheap and robust, it is also used as a sensor 
for the position of anything in the car: are the doors 
closed? Is the seatbelt worn? How fast does the crank-
shaft turn? A small magnet is always fastened some-
where, and the Hall sensor detects whether the magnet 
is positioned in the desired place.
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Fig. 2.53  Hall effect. Direction of the magnetic field 
strength: into the image plane.

a)				              b)



72

2.16  How the magnetic field presses on an electric current

2 
 T

H
E 

M
AG

N
ET

IC
 F

IE
LD

Exercises
1. A straight wire, in which an electric current of 200 A is 

flowing, is placed perpendicularly to the field lines of the 
magnetic field of the Earth (field strength 40 A/m). 
Which momentum current flows into a piece of the wire 
with a length of 1 m?

2. A beam of electrons enters a homogeneous magnetic field 
with H = 2400 A/m from a field-free space, Fig. 2.54. 
Which kinetic energy (in eV) must the electrons have in 
order to leave the field area at a right angle to the input 
direction (to the bottom in the figure)?

3. An electric current of 2.5 A flows through a coil with an 
inductance of 0.01 mH. The coil is 10 cm long and has a 
cross-sectional area of 4 cm2. (a) How much energy is 
contained in the field of the coil? (b) What is the energy 
density inside the coil?

4.  Two small material samples are equipped with contacts 
in a way that an electric current can be sent through them 
in a longitudinal direction and that the Hall voltage UH 
can be measured in the respective transversal direction. 
Both samples have a width of 5 mm (distance of the con-
tacts between which the Hall voltage is measured). They 
are brought in a magnetic field with the flux density 0.2 T 
and a current of 200 mA is let flow. On one, a Hall voltage 
of 0.12 mV is measured, on the other 0.36 μV. What is the 
speed of the charge carriers in the two cases? What could 
be the cause of the great difference?

Fig. 2.54  For exercise 2

magnetic field

electron beam

10 cm
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3  �  THE INTERPLAY BETWEEN ELECTRIC AND 
MAGNETIC FIELDS

3.1 � Analogy in electrodynamics
We have learned a lot about two categories of natu-

ral phenomena: first about electricity, then about mag-
netism. You have certainly seen that there are similari-
ties between the two. We say that there is an analogy. 

Electric field Magnetic field

electric charge Q magnetic charge Qm

electric potential φ magnetic potential φm

electrically charged particle (electron, proton,.. ) Magnetically charged particles do not exist.
electric current I Magnetic currents do not exist.
polarization P

r
magnetization M

r

electric field strength E
r
 magnetic field strength H

r

F
r
 = Q · E

r
F
r
 = Qm · H

r

spherically symmetric charge distribution

ε
=

π 2
0

1
4

Q
E

r

spherically symmetric charge distribution

µ
=

π
m
2

0

1
4

Q
H

r

inside an electric conductor: E
r
 = 0 inside a soft-magnetic material: H

r
 = 0

mechanical stress

			 
ε εσ σ ⊥= − =�

� �2 20 0

2 2
E E

mechanical stress

		       
µ µσ σ ⊥= − =�

� �2 20 0

2 2
H H

energy density

			 
ερ =

� 20

2E
E

energy density

		       
µρ =

� 20

2E
H

Capacitor Coil

Q = C · U
capacitance C
		   

0
A

C
d

ε=
Φ = (1/n) · L · I
inductance L
		

2
0

A
L n

l
µ=

energy

		
2

2
C

E U=
energy
	
		

2

2
L

E I=

decay of the voltage:
			 

/
0

t
U U e RC

τ τ−= =
decay of the electric current:

			          

/
0

t L
I I e

R

τ τ−= =

Table 3.1  Analogy between electric and magnetic phenomena 

The two categories have the same conceptual and 
mathematical structure.

The two columns of Table 3.1 contain elements that 
are corresponding: names of concepts, physical quan-
tities and formulas. The table also contains some as-
pects that have no corresponding term in the other 
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column. Finally, there are also concepts – with a blue 
background – that have not been relevant in our con-
text and have therefore not been addressed yet.

Although it is not our topic at the moment, we 
would also like to recall another analogy at this point. 
A third area can be added to these two: gravitation, 
Table 3.2. Here, the analogy does not have the same 
extent – for a simple reason: while both the electric 
and the magnetic charge can be positive and negative, 
there are only positive masses. Therefore, there is no 
gravitational analogue for some effects of electricity 
and of magnetism. We will only be able to understand 
the fact that gravitation is the more extensive field of 
physics if we know the complex General Theory of Rel-
ativity.

One important phenomenon is not listed in the ta-
ble: an electric current is the cause of a magnetic field. 
This phenomenon shows that electricity and magne-
tism are not only structured analogously, but that they 
are also closely interrelated. By applying our analogy, 
we could formulate the following expectation:

Just as an electric current creates a magnetic field, a 
magnetic current could possibly create an electric 
field.

But we know that magnetic currents do not exist. So 
is there no inversion of this phrase either? We will see 
in this chapter that this inversion does indeed exist.

3.2 � Electromagnetic induction
A voltmeter is connected to a coil. If one pole of a 

permanent magnet is moved into the coil, Fig. 3.1, the 
pointer of the voltmeter deflects, but only as long as 
the magnetic pole is moving. When the magnetic pole 
is removed from the coil, the meter deflects again, this 
time in the opposite direction.

Table 3.2  Analogy between electricity, magnetism and gravitation

Electricity Magnetism Gravitation

electric charge Q magnetic charge Qm mass m
electric potential φ magnetic potential φm gravitational potential ψm

electric field strength E
r

magnetic field strength H
r

gravitational field strength g
r

F
r
 = Q · E F

r
 = Qm · H

r
F
r
 = m · g

r

spherically symmetric charge 
distribution

ε
=

π 2
0

1
4

Q
E

r

spherically symmetric charge 
distribution

µ
=

π
m
2

0

1
4

Q
H

r

spherically symmetric mass distribu-
tion

2
m

g G
r

=

0
10

Fig. 3.1  The pointer of the voltmeter deflects as long as 
the permanent magnet is moving.

The direction of the voltmeter deflection also de-
pends on whether the north or the south pole are 
moved into the coil.

We examine what will happen if the coil is short-
circuited in the experiment and we build an ammeter 
into the circuit. Also the ampere meter deflects when 
the magnetic pole is moved into the coil and again 
when it is removed (you might have expected that).

These phenomena are called electromagnetic induc-
tion. We say that an electric voltage or an electric cur-
rent is induced while the magnet is being moved.

A voltage (or a current) can also be induced in an-
other way and without moving anything: by placing an 
electromagnet next to the coil so that its field reaches 
into the coil, Fig. 3.2. If the electromagnet is switched 
on or off, a voltage will be induced in the coil again.

When the magnetic field strength changes with-
in the coil, a voltage is created between the connec-
tions of the coil. In case of a closed circuit, an elec-
tric current is flowing. This process is called 
electromagnetic induction.
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Finally, we realize another variant of the induction 
experiment. We put a soft iron core into the coil and 
extend the ends of the core in a way that the entire core 
forms a “U”. Then, no magnetic field can enter the coil 
anymore. Will the induction stop as well? We move a 
permanent magnet closely to the ends of the soft iron 
core, Fig. 3.3, until the poles of the magnet touch these 
ends and we will observe a deflection of the voltmeter. 
How is this possible? The iron in the coil has been 
magnetized, its magnetization has changed.

If the magnetization of the material in the coil 
changes, a voltage is also induced.

We had seen that with the magnetic field strength  
_›
H  

and the magnetization  
_›

M we can form one single phys-
ical quantity, i.e. the magnetic flux density 

_›
B : 

_›
B = μ0 ( 

_›
M + 

_›
H )

Hence, we can summarize our observations as fol-
lows:

If the magnetic flux density in a coil changes, a 
voltage is created between the connections of the coil.

We will now examine what the value of the induced 
voltage depends upon. Therefore, we choose a particu-
larly simple arrangement: a small, flat coil is brought 
into the homogeneous field of a large, long coil. A volt-
meter is connected to the small coil. If the electric cur-
rent in the large coil is changed, the magnetic field 
strength will change and a voltage is induced between 
the connections of the small coil.

We now connect the large coil to a power supply 
that supplies a current which grows linearly with the 
time. Therefore, we obtain a magnetic field whose flux 
density grows linearly with the time, Fig. 3.4.

Of course, this is only possible for a limited time, 
but still long enough for our observation. We can see 
that the voltage induced at the small coil is constant 
over time. Hence,

= ⇒ =const  const.dB U
dt
If the flux density is changed faster, i.e. if dB/dt is 

greater, the induced voltage will also be greater. More 
precisely: if dB/dt doubles, the induced voltage will 
also double. Thus, U is proportional to dB/dt:

	 (3.1)∼     .
dBU
dt

N

S

0
10

Fig. 3.2  If the electromagnet is switched on or off, the 
magnetic field strength in the coil will change and a 
voltage will be induced.

Fig. 3.3  Also the change of the magnetization inside 
the coil causes an induced voltage.

Fig. 3.4  If the flux density changes linearly with the 
time, the induced voltage is constant over time.

B

t

U

t
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We will now examine another way in which the in-
duced voltage can be influenced.

If the small coil is replaced by another one whose 
only difference is the cross-sectional area A (the num-
ber of turns shall remain the same), we find that the 
induced voltage is proportional to this area:

U ~ A	 (3.2)

This result could have been predicted. A coil with 
the double surface is equal to two coils that are placed 
next to each other and that are connected in series, 
Fig. 3.5.

If finally the coil is replaced by another one whose 
only difference is the number of turns, we will find that 
the induced voltage is proportional to the number of 
turns n:

U ~ n	 (3.3)

Also this result is not surprising: a coil with the 
number of turns 2 n is equivalent to two coils connect-
ed in series that have a number n turns each.

The results (3.1), (3.2) and (3.3) can be summarized 
to one single relationship:

	 (3.4)∼
dBU n A       .
dt

Now, the proportionality sign may be replaced by 
an equal sign because the flux density has been defined 
in such a way that there is no other factor in equation 
(3.4). Hence:

(3.5)�
dBU n A       .
dt

Equation (3.5) is almost our final result. Earlier, we 
had abbreviated the product A · B:

A · B = Φ

Φ is the magnetic flux. Therefore, from equation 
(3.5) we obtain Faraday’s law of induction:

		  Faraday’s law of induction	 (3.6)Φ
=

dU n
dt

However, it contains more in this formulation than 
we have originally put in. To induce a voltage, we have 
changed the magnetic flux Φ, and in order to change 
the flux, we have changed the flux density B. If equa-
tion (3.6) is correct, there should also be an induced 

V

V

V

V

2 V 2 V

2 V 4 V

magnetic field line
Fig. 3.5  The flux density grows over time. If the coil 
area is doubled, the induced voltage will also double.

V 0 VV 3 V

Fig. 3.6  The flux density is constant over time. The coil 
is deformed in a way that the area, that is crossed by 
the field lines, is reduced. Also in this process, a voltage 
is induced.

V

Fig. 3.7  If the small, quadratic coil is moved out of the 
large one, the area that is crossed by the field lines will 
decrease.
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voltage in the case that B is left constant while the area 
A is changed. Fig. 3.6 shows a method to achieve it.

But there is an even simpler way: the coil is moved 
out of the constant magnetic field, Fig. 3.7. The area 
that is crossed by the field lines decreases, and there-
fore also the magnetic flux. Again, a voltage is induced, 
which is also the case, of course, when the coil is 
moved back into the field.

A particularly practical way to change the magnetic 
flux is shown in Fig. 3.8: the coil is rotated. This also 
leads to a change of the flux and to the creation of an 
induced voltage. The induction in an electric generator 
is realized in this way.

An interesting variant of an induction experiment 
is shown in Fig. 3.9.

We change the electric current and consequently 
also the flux density in coil C. Coil D, between whose 
connections a voltage is induced, is completely outside 
of C. The cross-sectional area in the experiment on the 
left is smaller than on the right. However, the value of 
the induced voltage does no longer depend on the 
crosssectional area of D as the magnetic flux is limited 
to that of C.

VV

Fig. 3.8  Rotating the coil also leads to a change of the 
magnetic flux through it.

V

V

C
C

D

D

Fig. 3.9  The induced voltage is equal on the left and on 
the right because the changing flux through D is equal 
both times.

Fig. 3.10  For exercise 2

Fig. 3.11  For exercise 4

Exercises
1. The flux density of a homogeneous magnetic field in-

creases linearly within 2 seconds from 0 T to 0.3 T. There 
is a flat coil with 200 turns in the field. The coil area is 
parallel to the field surfaces of the magnetic field, the sur-
face area is 8 cm2. What is the voltage that is created be-
tween the connections of the coil?

2. The flux density of a homogeneous magnetic field chang-
es over time in a way shown in Fig. 3.10. There is a closed 
metal ring in the field. The ring area is perpendicular to 
the field lines. Qualitatively sketch the temporal course of 
the electric current in the ring in an I-t-diagram.

3. Inside a large coil with a length of 0.5 m and 2000 turns, 
there is a small, flat coil with n = 500 and A = 15 cm2. 
Both coils have the same orientation.
(a) Calculate the magnetic field strength in the large coil 
while an electric current of 10 A is flowing.
(b) Calculate the magnetic flux density.
(c) In which time does the electric current in the large 
coil have to increase from 0 A to 10 A so that a voltage of 
100 V is induced in the small coil?

4. In a long, thin coil with a cross-sectional area of 2 cm2 the 
flux density increases with 0.2 T/s, Fig. 3.11. The coil is 
enclosed by a ring that is not a good conductor. The resis-
tance of the ring is 200 Ω. What is the current of the cur-
rent induced in the ring?

B

I

t

t
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3.3 � The generator
The generator is a machine that is part of all power 

plants. It does the opposite of an electric motor. While 
an electric motor is supplied with energy with the en-
ergy carrier electricity (electric charge) and releases 
this energy with angular momentum as a carrier, Fig. 
3.12a, the generator is provided with energy carried by 
angular momentum and releases it with electricity, Fig. 
3.12b.

Small generators often have a different name: in bi-
cycles, they are called dynamo; in cars alternator.

The structure of a generator is generally not differ-
ent from that of an electric motor. Some electric mo-
tors can even be operated directly as generators. This 
only requires the replacement of the electric energy 
source by an electric energy receiver, e.g. a light bulb. If 
the shaft is turned, the lamp will light up.

To understand the functioning, we look at a partic-
ularly simple version of a generator: a rectangular, flat 
coil is rotated in the homogeneous field of a perma-
nent magnet, Fig. 3.13. The magnetic flux through the 
coil is changing continuously in the process. We would 
like to calculate how it changes, i.e. how the function 
Φ(t) looks like. Then, we can determine the induced 
voltage as a function of the time by means of Faraday’s 
law of induction.

Fig. 3.14 shows the arrangement in the cross-sec-
tion. One side length of the coil is l, the other one b. 
Hence, the coil area A0 is

A0 = l · b

Energy
electric
motor

Energy

angular momentumelectricity

Energy
generator

Energy

electricityangular momentum

Fig. 3.12  Flow charts of electric motor and generator
V

Fig. 3.13  Simple generator: a rectangular, flat coil is 
rotated in a homogeneous magnetic field. The mag-
netic flux through the coil thereby changes periodically.

b

b'

a
a

Fig. 3.14  Cross-section through the arrangement from 
Fig. 3.13. The magnetic flux through the coil is calcu-
lated by projecting the coil area on a plane perpendicu-
lar to the field lines.
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In Fig. 3.14 only b can be seen.
The coil is turned with the angular velocity

.
t
αω =

The angle α must be measured in radian, i.e. the 
value for a complete circle is 2 π. The angular velocity 
is constant over time. Consequently, α increases lin-
early with time:

α = ω · t	 (3.7)

To calculate the magnetic flux

Φ = B ·   A

we may not insert the area A0 of the coil here. The area 
that is traversed  by the magnetic flux is only the pro-
jection of that area on a plane perpendicular to the 
field lines of the magnetic field. This projection chang-
es over time. It reaches its maximum when the coil is 
perpendicular to the field lines. It is zero when the coil 
is parallel to the field lines.

From Fig. 3.14, we can see how to calculate this 
area. With

'sin b
b

α =

we obtain

A = l · b' = l · b · sin α = A0 · sin α .

With equation (3.7), we get

A(t) = A0 · sin(ωt)

Hence, we obtain the magnetic flux as a function of 
time:

Φ(t) = B · A0 · sin(ωt)	 (3.8)

The magnetic flux through the coil therefore chang-
es with time in accordance with a sine function. To 
calculate the induced voltage, we insert equation (3.8) 
in Faraday’s law of induction:

ωΦ
= ⋅ = ⋅ ⋅ ⋅0

(sin( ))
( ) .

d tdU t n n B A
dt dt

With

ω
ω ω= ⋅

(sin( ))
cos( )

d t
t

dt

U

t

T

Fig. 3.15  Voltage as a function of time for the generator 
from Fig. 3.13.

we obtain

U(t) = n · B · A0 · ω · cos(ωt)

We summarize the constant factors ahead of the co-
sine function:

U0 = n · B · A0 · ω 

and obtain for the induced voltage:

U(t) = U0 · cos(ωt)

In our calculation, we have obtained a cosine func-
tion. However, it can be transformed into a sine func-
tion by displacing the zero point of the time. We would 
then obtain

U(t) = U0 · sin(ωt)

The voltage as a function of time is shown in Figure 
3.15.

Real technical generators have a more complicated 
structure than the one we have just seen. The underly-
ing physical principle, however, is the same as in our 
rectangular coil generator. And the reason for them 
generating a sine voltage is also the same.

Exercises
1. Invent a generator that creates a voltage whose plus/mi-

nus sign does not change.
2. Will the sine voltage remain a sine voltage if the rotating 

coil is not rectangular but circular?
3. Will the sine voltage remain a sine voltage if the magnetic 

field is not homogeneous?
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3.4 � Alternating voltage and 
alternating current

A voltage that has a sine-shaped time-dependence is 
called alternating voltage. If an alternating voltage is ap-
plied to a resistor, there will be an alternating current.

With

U = R · I

we obtain

ω
ω

⋅
= = ⋅0

0
sin( )

( ) sin( ).
U t

I t I t
R

Here, we abbreviated U0/R with I0. The pre-factor 
ahead of the sine (or cosine) function is called ampli-
tude. Hence, U0 is the amplitude of the voltage, I0 is the 
amplitude of the current.

Fig. 3.15 also shows the period T. It is the time in-
terval in which a full sine oscillation is passed. For t = 
0, the sine function has a zero crossing, for t = T it has 
another one, after having passed a full oscillation. 
Hence, the period is the time interval between two ad-
jacent points in time that are equivalent to each other. 
For t = T, the argument of the sine function is equal to 
2π. Therefore, we obtain

ω T = 2 π

or

	 (3.9)
2

.
T

ω
π

=

The frequency f, that is a measure for the number of 
oscillations per time interval, is related to the period 
according to

	 (3.10)1 .f
T

=

Equations (3.9) and (3.10) can be combined to

ω = 2 π f .

Hence, the factor ω in the argument of the sine 
function is equal to the frequency except for a factor 
2 π. As it is used in physics very often, it has a proper 
name: angular frequency.

Here some more data about the alternating voltage 
of the socket.

You know that the frequency is 50 Hertz (in the US 
60 Hz):

f = 50 Hz

Consequently, the alternating voltage passes 
through 50 full oscillations every second.

One of the two contacts of the socket is grounded, 
its potential φ1 is 0 V. The respective wire is called neu-
tral conductor.

We therefore obtain

U = φ2 – φ1 = φ2 – 0 V = φ2 .

Thus, the value of the voltage is equal to the poten-
tial value of the socket contact that is not grounded.

The voltage of the socket is, as we know, 230 volt (in 
the US 120 V). Or at least this is what it is said to be. But 
what do these 230 volt mean when the voltage is con-
stantly changing? To understand the meaning of this 
information, we look at an electric resistor, i.e. an energy 
consumer that is connected to an alternating voltage 
source. The energy current that flows to the resistor is

P = U(t) · I(t) = U0 · sin(ω t) · I0 · sin(ω t)
= U0 · I0 · sin2(ω t)

The energy current changes over time as well. The 
function graph of P(t) is shown in Fig. 3.16. Fig. 3.16a 
shows the voltage once again. The function P(t) essen-
tially has the same shape as the sine function of the 
voltage, but it oscillates
•• between 0 and +1, instead of between –1 and +1
•• twice as fast.

In maths class, you get to know the relationship

2 1 cos(2 )sin
2

αα −
=                   .

The fact that the energy current P(t) always remains 
positive can be easily understood in physical terms: it 
always flows to the resistor, regardless of whether the 
electric current flows in one or in the other direction.

We are now interested in the time average P for the 
energy current. From Fig. 3.16 we see:

⋅
= 0 0 .

2
U I

P

Now we define the effective voltage (or root mean 
square voltage):

0
e� 2

UU = ;

and in addition the effective current (or root mean 
square current):



81

3.5  The transformer

3 TH
E IN

TERPLAY BETW
EEN

 ELECTRIC AN
D

 M
AG

N
ETIC FIELD

S

= = =
⋅

e� 0 0
e� .

2 2
U U II

R R
and express the average energy current through Ueff 
and Ieff:

⋅
= = ⋅ = ⋅0 0 0 0

e� e� .2 2 2
U I U IP U I

When Ueff and Ieff are multiplied, we obtain the av-
erage energy current. This means that Ueff and Ieff can 
be used in the same way as a direct voltage and a direct 
current since the following applies for them:

P
_

 = P =U · I

Back to the socket: the 230 V of the socket are the 
effective voltage. Also, the value displayed by the volt-
meter when measuring an alternating voltage is the ef-
fective voltage, and an ammeter indicates the effective 
current.

You have seen how the alternating voltage is cre-
ated. We could think that such a voltage is not very 
practical and that it would be better to rectify it right 
after the generator or to use a direct current genera-
tor from the beginning. In fact, there are somehow 
more complicated generators that supply a direct 
voltage.

The fact that it is not done is due to a significant 
advantage of alternating voltages compared to direct 
voltages: they can be increased and reduced in a con-
venient way by means of a transformer.

Fig. 3.16  (a) Alternating voltage, applied to a resistor; 
(b) Energy current flowing to the resistor; both as a 
function of time 

U

t

T

P

t

U0· I0

U0

a)

b)

Exercises
1. What is the value of the amplitude of the alternating volt-

age of the socket?
2. Explain on the basis of Fig. 3.16 why the average value of 

P is equal to U0 · I0 /2.
3. Someone thinks that the average value of the energy cur-

rent strength P is equal to the product of the average value 
of the voltage U and the average value of the electric cur-
rent I. Is this correct?

3.5 � The transformer
The TV, the computer and any other electronic de-

vices require a much lower voltage than the 230 V of 
the socket. If these devices are to be connected, the 
voltage must be transformed from 230 volt down to a 
lower value. For this purpose, a transformer is installed 
between the device and the socket.

To transport energy electrically over long distances, 
it is reasonable to use a high voltage. The energy losses 
during transportation are lower than in case of a low 
voltage. Hence, a transformer, that changes the voltage 
to a higher value, is installed directly behind the gen-
erator. The energy is subsequently transported over a 
long distance with a high voltage power line. At the 
destination, the voltage is transformed back down by 
another transformer.

Of course, no energy should be lost in the trans-
former, which is almost achieved.

Hence, we have

P1 = P2 .

The index 1 refers to the input, the index 2 to the 
output of the transformer.

With

P = U · I

we have

U1 · I1 = U2 · I2 .	 (3.11)

When the transformer raises the voltage by a given 
factor, the current will be smaller by the same factor. If 
the voltage is increased ten-fold, the electric current will 
be one tenth so that the energy current remains equal.

How does a transformer work? The phenomenon, 
which is taken advantage of also in this case, is induc-
tion.
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A transformer consists of an iron core with two 
coils, Fig. 3.17. The terminals of the primary coil form 
the input for the energy, the terminals in the second-
ary coil form the output.

First, we look at a “transformer” that does not have 
a secondary coil, Fig. 3.18. This structure can also be 
regarded as an electromagnet in which no gap has 
been built in the iron core by accident; compare with 
Fig. 2.42.

If the (primary) coil is connected to an alternating 
voltage source, an alternating current will flow in the 
coil. This leads to a magnetization of the iron core. The 
magnetization follows the electric current in the pro-

primary coil secondary coil

iron core

Fig. 3.17  A transformer consists of a soft iron core iron 
core and two coils.

Fig. 3.18  “Transformer” without secondary coil. If an 
alternating current flows in the (primary) coil, the mag-
netization in the iron core will change in a sine func-
tion shaped way.

cess: it changes its direction periodically. We add the 
secondary coil once again. As long as an alternating 
current is flowing in the primary coil, the magnetiza-
tion inside the secondary coil is constantly changing, 
and so is the magnetic flux density, which leads to the 
creation of a voltage between the terminals of the sec-
ondary coils. When there is a sine voltage on the pri-
mary coil, the induced voltage at the secondary coil 
also has a sine-shaped time dependence.

How can we then raise or reduce a voltage by means 
of a transformer? The value of the induced voltage de-
pends on the number of turns of the two coils. We 
would like to examine in what way.

Therefore, we build transformers with coils with 
different numbers of turns. We find at first that, when 
the number of turns of the primary and the secondary 
coil are equal, the primary and the secondary voltage 
are also equal. If the secondary coil has twice as many 
turns as the primary coil, the secondary voltage is also 
twice as high as the primary voltage. In general, we 
have:

1 2

2 1

U n
U n

=      .

With equation (3.11) we obtain

n · I1 = n2 · I2 .

Exercises
1. The two coils of a transformer have 1000 and 5000 turns, 

respectively. There is an alternating voltage of 230 V. 
Which voltages can be created with the transformer?

2. The primary coil of a transformer is connected to the 
socket. A voltage of 11.5 V is measured at the secondary 
coil. What can be said about the number of turns of the 
transformer coils? There is an electric current of 2 A in 
the secondary circuit. What is the current in the primary 
circuit?

3. A transformer has a primary coil with 1000 turns and a 
secondary coil with 10 000 turns. The primary coil is con-
nected to the socket. There is a primary current of 100 
mA. What are the values of the secondary voltage and the 
secondary current?

4. An energy current of 100 kW is flowing through the 
transformer in Fig. 3.19. What are the requirements with 
regard to the inputs and to the outputs?

5. A power plant supplies an energy current of 60 MW for 
an industrial area. The transmission line has an overall 
resistance (feed and return line) of 0.1 Ω. Look at two 
cases: the voltage that is used for the transmission is (1) 
3000 V or (2) 300 000 V. (a) What is the electric current 
in the two cases? (b) Which voltage is created between the 
start and the end of the wires? (c) Which voltage is left for 
the consumer? (d) How much energy is lost?

1 V
100,000 A

100,000 V
1 A

100,000 W 100,000 W

Fig. 3.19  For exercise 4
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3.6 � A somehow peculiar 
generator – “magnetic 
currents”

We need a copper pipe and a strong bar-shaped 
magnet whose outer diameter is a bit smaller than the 
inner diameter of the pipe.

We hold the pipe in a vertical position and let small 
objects fall through it. This way, we can see that the 
pipe is not obstructed. We then insert the magnet in 
the upper pipe aperture, Fig. 3.20. Surprisingly, it does 
not simply fall through the pipe. Although it finally ap-
pears at the lower pipe end, it has taken much time for 
the movement.

While the non-magnetic objects come out with a 
high speed, i.e. have much energy (from the gravita-
tional field), the magnet has almost no kinetic energy. 
Why does it fall so slowly? Where has the energy gone 
that it should normally have?

While moving to the bottom, there is a changing 
magnetic field in the material of the pipe. Hence, an 
electric current is induced in the copper. The respec-
tive current lines are circles around the pipe axis. The 
current only flows where the magnetic field changes, 
i.e. in close proximity to the poles. There is conse-
quently an electric current close to one pole and an-
other one close to the other pole.

The current close to the positive magnetic pole (the 
north pole) flows in one direction, the current close to 
the negative pole in the other direction. There is a sim-
ple rule for the direction of this current, Fig. 3.21: 
when the thumb of the left hand points in the direction 
of movement of the positive pole, the flexed fingers in-
dicate the direction of the induced electric current. 
Caution! You really have to use your left hand (it is not 
a misprint).

We can reformulate this rule to make it easier to 
memorize.

When a current is flowing in the copper pipe, there 
must be an electric field in the pipe. We remember the 
following relation:

j
_›

 = σ  
_›
E.

An electric current will only flow if the electric field 
strength is different from zero. The electric field is a 
driving force for the electric current.

We could also say:

A changing magnetic field creates an electric 
field.

Fig. 3.20  Left side: Willy lets a magnet fall into an open 
copper pipe; right: it takes some time until the magnet 
comes out again at the bottom.

Fig. 3.21  The thumb of the left hand points in the direc-
tion of movement of the positive magnetic pole (the 
direction of the “magnetic current”), the flexed fingers 
indicate the direction of the induced current.

electric current
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This phrase is nothing but a new formulation of 
Faraday’s law of induction.

Finally, there is a third way to describe the matter: a 
magnetic charge moves from the top to the bottom. 
Just as we describe a moving electric charge as an elec-
tric current, we could interpret the moving magnetic 
charge as a magnetic current. Therefore, we could also 
formulate the rule as follows:

Each magnetic current is surrounded by an elec-
tric field. The field lines embrace the current. When 
the thumb of the left hand points in the direction of 
the magnetic current, the flexed fingers point in the 
direction of the electric field strength.

Normally, we do not talk about magnetic currents; 
we even say that there are no magnetic currents at all 
due to the fact that magnetically charged particles do 
not exist. However, this statement could be mitigated 
as we can see from our example: there is a magnetic 
current for a short time. Shortly after, however, there is 
a magnetic current of the opposite direction: the nega-
tive magnetic pole, that moves downwards, is equiva-
lent to a positive current that moves upward. Hence, 
we could also say: after every magnetic current, there 
is a current flowing in the opposite direction. This 
means that, although there are no direct magnetic cur-
rents, there are alternating magnetic currents.

3.7 � Superconductors
There are materials that lose their electric resistance 

when they are cooled down below a certain tempera-
ture, Table 3.3. While in their resistance-less state, 
these materials are called superconductors. The transi-
tion temperature from the normal to the supercon-
ducting state is relatively high for some of these sub-
stances: approximately –180 °C. Such substances can 
be brought to the superconducting state relatively eas-
ily by cooling them with liquid nitrogen.

But superconductors are not only interesting be-
cause they do not have an electric resistance. They also 
have surprising magnetic properties.

We build an arrangement of permanent magnets as 
shown in Fig. 3.22.

We approach the magnet from above with a small 
piece of superconducting material that we let off. The 
superconductor does not fall down but it floats above 
the magnets, Fig. 3.23. It can be turned or pushed 
slightly aside: it remains in a floating state (of course 

material transition temperature

Zn 	 0.875 K
Al 1.2 K
Pb 7.2 K
Nb3Sn 18 K
Nb3Ge 22.3 K
Bi2Sr2Ca2Cu3O10 110 K
YBa2Cu3O7 92 K

Table 3.3

magnetic field

iron plate

superconductor

magnets

Fig. 3.22  Several magnets on a soft iron plate

Fig. 3.23  The superconductor is kept in a floating state 
by the magnetic field.

soft magnetic material superconducting 
material

displaces the magnetic 
field from its inside

displaces the magnetic 
field from its inside

forms magnetic poles on 
its surface (magnetic 
induction)

forms electric currents 
on its surface

magnetic field lines end 
on the poles

magnetic field surfaces 
end on the currents

magnetic field lines 
merge perpendicularly 
into the surface

magnetic field surfaces 
merge perpendicularly 
into the surface

The magnetic field pulls 
on the surface

The magnetic field 
presses onto the surface

Table 3.4  Analogy between soft magnetic and super-
conducting materials
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only until it warms up and returns to the normal 
state).

Obviously, the superconductor is repelled by the 
magnets. It therefore behaves just the opposite way as 
a piece of soft iron which is always attracted. How can 
this be explained? When the superconductor ap-
proaches a magnet, currents start to flow in it, which 
are oriented in a way as to cause repelling effects. In a 
normally conducting (i.e. not superconducting) body, 
these induced currents would immediately stop to 
flow, they would be slowed down by the resistance of 
the material. In the superconductor, the currents once 
induced continue to flow because there is no resistance 
that could slow down these currents.

A more precise examination, that we will not do at 
this point, further shows
•• that the currents only flow very closely under the 

surface of the superconductor;
•• that the magnetic field does not penetrate the su-

perconductor;
•• that the field surfaces merge perpendicularly into 

the superconductor from the outside.

If a superconductor is brought in a magnetic 
field, electric currents will start to flow at its sur-
face. The field is displaced from its inside.

The field surfaces merge perpendicularly into 
the surface and they end at the surface.

Do these statements sound familiar to you? Go back 
to section 2.6. Superconductors have properties that are 
very similar to the characteristics of magnetically soft 
materials. Just as the magnetically soft materials, super-
conductors are not permeable for the magnetic field. 
But they achieve the same effect through another “trick” 
than the magnetically soft materials: not by forming 
magnetic poles, but by inducing electric currents.

Fig. 3.24 shows the fields of two related arrange-
ments:
•• in the upper image a magnetic pole that is located 

closely above the plane surface of a magnetically soft 
body; (the second magnetic pole is so far away that it 
does not disturb us);
•• in the lower image a magnetic pole above a super-

conducting body.

A magnetic charge has accumulated on the surface 
of the soft iron. The charge distribution has a rotation-
al symmetry. The center of symmetry and the maxi-
mum of the charge distribution are located vertically 
under the magnetic pole. The field lines end at the 
magnetic charges in a way that they are perpendicular 

N

soft iron

superconductor

NN

a)

b)

Fig. 3.24  (a) Single magnetic pole above a soft iron 
body. Another magnetic pole has been formed on the 
surface of the soft iron. (b) Single magnetic pole above 
a superconductor. Ring-shaped electric currents have 
developed on the surface of the superconductor.

to the surface. Hence, the magnetic pole draws on the 
piece of soft iron.

Ring-shaped currents have emerged on the surface 
of the superconductor. The center of the rings is locat-
ed under the magnetic pole. The field surfaces of the 
field end on these currents in a way that they are per-
pendicular to the surface. Hence, the magnetic field 
presses onto the superconductor.

The magnetic field presses onto the surface of 
the superconductor.

Table 3.4 provides a comparative overview of the 
two materials.
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Exercises
1. A cylindrical bar-shaped magnet is located in a long, su-

perconducting pipe, Fig. 3.25a. Draw the magnetic field 
lines. In Fig. 3.25b, the ring fits exactly in the pipe. How 
are the magnetic field lines? Which electric currents are 
flowing in the pipe?

2. Willy, Fig. 3.20, wants to let the bar-shaped magnet fall 
through a superconducting pipe. What happens?

3.8 � Induced electric fields – the 
interplay between electric 
and magnetic fields

We look again at the basics of electromagnetic in-
duction and consider the induction process displayed 
in Fig. 3.26. The changing magnetic field causes an 
electric current in the ring-shaped, closed conductor.

An electric current is always caused by an electric 
field that drags the mobile charge carriers in the di-
rection of the conductor. If this is also the case for an 
induced current, an electric field must have been cre-
ated in the conductor. We draw the following conclu-
sion:

The change of the field strength of a magnetic 
field leads to the creation of an electric field in its 
surroundings.

This statement does not only apply for the case in 
which an electric conductor is brought into the mag-
netic field. It is also true when the conductor is not 
present. Every time a magnetic field changes, an elec-
tric field is created.

In general, calculating the distribution of the elec-
tric field strength of such a field is a complicated task. 
But in the case of certain simple magnetic field chang-
es, there will also be a simple electric field. Fig. 3.27 
shows an electromagnet whose current increases so 
that the flux density will also increase and an electric 
field will be induced. The figure shows the flux density 
lines and the field lines of the induced electric field.

The field lines of the electric field loop around the 
flux density lines.

You have by now gotten used to the analogy be-
tween the electric and the magnetic field. Hence, you 
will not be surprised that the phrase we are currently 
dealing with also has an analogue:

By changing the field strength of an electric field, 
a magnetic field is created in its surroundings.

Fig. 3.26  The changing magnetic field causes an elec-
tric current in the ring-shaped electric conductor. 

magnetic flux
density lines

electric field
lines

magnetic flux
density increases

Fig. 3.27  The electric field lines loop around the chang-
ing magnetic field lines and the changing magnetiza-
tion lines.

S N

S N

Fig. 3.25  For exercise 1

a)

b)

The direct experimental proof of this statement is 
not as simple as in the case of the preceding statement 
about the change of the magnetic field. However, there 
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is a lot of indirect evidence that we will address in the 
following. Fig. 3.28 shows how the magnetic field 
looks like in a simple case.

An electric current is flowing in the conductor. As 
long as the current is flowing, the electric charge on 
the plates of the capacitor increases and leads to an in-
crease of the electric field strength between the capaci-
tor plates. Here, the field lines of the magnetic field 
wind around the field lines of the electric field. We had 
seen before that also the feed lines to the capacitor are 
surrounded by a magnetic field whose field lines loop 
around the conductor. You see that the magnetic field 
behaves as if we had a closed electric circuit in front of 
us. The interruption by the capacitor has no influence 
on the magnetic field.

A simple rule can be read from Fig. 3.28. It is a vari-
ant of a well-known rule: “Align the thumb of your 
right hand with the direction of the electric current. 
The flexed fingers will then point in the direction of 
the field lines of the magnetic field.”

Fig. 3.28 shows how the new rule can be formulated:

Align the thumb of the right hand with the di-
rection of the increasing electric field strength. The 
flexed fingers will then point in the direction of the 
field lines of the magnetic field.

Fig. 3.27 shows that an analogous rule holds for the 
induction, i.e. the creation of electric fields:

Align the thumb of the left hand with the direc-
tion of the increasing magnetic flux density. The 
flexed fingers will then point in the direction of the 
field lines of the electric field.

Bear in mind that you need to use the right hand in 
one case and the left hand in the other, and that the 
field strength has to increase. If it decreases, the direc-
tion of the thumb must be inverted so that the fingers 
indicate the correct field line directions.

The calculation of the spatial distribution and the 
temporal change of the electric and the magnetic field 
strength is an subject of Maxwell’s theory of electromag-
netism.

James Clerk Maxwell published his theory in 1873. 
It is one of the most important physical theories. It 
does not only allow for a calculation of the electric and 
magnetic field strength distributions, but it also tells us 
how the energy and the mechanical stresses of the 
fields can be obtained based on the field strengths.

Maxwell’s theory is mostly derived from ideas by 
Michael Faraday. Faraday discovered, among other 

Fig. 3.28  The magnetic field lines loop around the chang-
ing electric field lines and the electric current lines.

electric
current

magnetic field
lines

electric field strength
increases

battery

things, the electromagnetic induction. His greatest 
achievement, however, was the discovery of the elec-
tric and the magnetic field. Before Faraday, the electric 
and magnetic force effects had been explained as “ac-
tions at a distance”: an electrically charged body exerts 
a force on another body although there is no physical 
connection between the two bodies. Although this 
concept had been considered as unsatisfactory from 
the beginning, no evidence had been provided about 
the existence of what Faraday later called “field”.

3.9 � Electromagnetic waves
We would now have sufficient knowledge to make a 

discovery if Maxwell had not already made it more 
than a hundred years ago.

We look once again at the two rules that we formu-
lated in the previous section:
•• By changing the field strength of a magnetic field, an 

electric field is created in its surroundings.
•• By changing the field strength of an electric field, a 

magnetic field is created in its surroundings.

We look at a magnetic field whose field strength 
changes. According to statement 1, an electric field is 
created around it. When the magnetic field strength 
changes linearly with time, the field strength of the 
emerging electric field is constant in time. But if the 
change of the magnetic field strength is not linear with 
time, an electric field results whose field strength is 
also changing.
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According to statement 2, however, a changing elec-
tric field strength leads to a magnetic field. The change 
of the magnetic field strength can now cause another 
electric field, the change of its field strength another 
magnetic field, and so on.

What we have just described is the formation of an 
electromagnetic wave.

Electric and magnetic fields move through the space 
in a way that one creates the other while it vanishes.

The appearance of the fields, that are mutually cre-
ating themselves, can be very complicated. But there 
are cases in which the spatial distribution of the field 
strengths and their temporal changes are very simple. 
We will examine such special cases.

Therefore, we only look at what the wave is like and 
do not ask how it is created. The explanation of the 
creation is more difficult than the explanation of the 
wave itself. (It is similar to looking at water waves on 
the sea and to examining only how the waves come 
from one place to the other and how they change their 
shape in the process without asking how the waves 
have been created.)

3.10 � The square wave
Our first example is a square wave. It is neither tech-

nically interesting, nor significant in nature, but it has 
the advantage of illustrating a few general characteris-
tics of electromagnetic waves in a particularly clear way. 
Fig. 3.29 shows the wave at two different times, i.e. two 
“snapshots”. The electric and magnetic field stuff is lo-
cated in a plate-shaped area with the thickness Δx that 
extends infinitely in the y- and z-direction. The direc-
tion of movement is the x-direction. The electric field 
lines are perpendicular to the direction of movement of 
the wave, in Fig. 3.29 in the y-direction. The magnetic 
field lines are also perpendicular to the direction of 
movement but, and in addition, perpendicular to the 
electric field lines, in Fig. 3.29 in the z-direction.

We look at any straight line that is parallel to the x-
axis. When we move on this straight line from the left 
to the right, we first reach an area in which the electric 
and the magnetic field strength are zero. At a defined 
point x’, we enter the interior of the wave where the 
field strengths have constant values. At the position 
case of x’ + Δx, the field strengths go back to zero. Fig. 
3.30a. shows the field strengths as a function of x. 
More exactly: the y-component of the electric field 
strength (the only component that is different from 
zero) and the z-component of the magnetic field 

Fig. 3.29  “Snapshots” of a simple electromagnetic 
wave. The images correspond to two moments in quick 
succession.
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Fig. 3.30  Electric and magnetic field strength of the 
wave from Fig. 3.29 as a function of the spatial coordi-
nate x at two different times t1 and t2.
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strength. Now you understand why we have chosen 
the name “square wave”. Notice that the image is the 
same for each straight line that is parallel to the x-axis. 
Fig. 3.30b shows the respective image for a later instant 
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of time. We see in these illustrations that the fields 
moves from the left to the right.

Other electromagnetic waves can be different from 
this particular example in many ways, but they have 
some characteristics in common with the wave exam-
ined here, for example the following one:

At any point of an electromagnetic wave, the di-
rection of movement, the electric field strength and 
the magnetic field strength are perpendicular to 
each other.

There is yet another characteristic property of elec-
tromagnetic waves: the energy density of the electric 
field is equal to that of the magnetic field

(3.12)
2 20 0 .

2 2
E Hε µ

=
� �

This means that the values of electric and magnetic 
field strength are standing in a particular relationship 
to each other. From equation (3.12) we conclude:

In an electromagnetic wave, we have

0 0 .E Hε µ=
� �

The velocity of electromagnetic waves in the vacu-
um is designated with c. It is equal to

(3.14)
0 0

1 .c
ε µ

=

By inserting the values of the electric and the mag-
netic constant, we obtain approximately 300 000 km/s.

The velocity of an electromagnetic waves is  
300 000 km/s.

The velocity can be measured quite easily. Hence, 
the validity of the relationship (3.14) can be verified 
with such a measurement.

H

�

E

�

energy current

Fig. 3.31  Three-finger-rule for the energy current in the 
electromagnetic field

3.11 � Energy transmission with 
electromagnetic waves

Studying the square wave, we can find yet another 
general property of electromagnetic waves. How is 
the direction of movement of the wave related to the 
direction of the electric and magnetic field strength? 
We have already seen that it is transverse to the two 
- in Fig. 3.29 in the direction of the x-axis. But we do 
not yet know a rule that allows us to decide whether 
the wave moves in the positive or in the negative x-
direction. We would like to read this rule from 
Fig. 3.29.

We spread the first three fingers (thumb, index fin-
ger and middle finger) of the right hand in a way that 
they form a rectangular tripod, Fig. 3.31. We align the 
thumb with the direction of the electric field strength 
and the index finger with the direction of the magnetic 
field strength. The middle finger then points in the di-
rection in which the wave propagates. This is also the 
direction in which the energy of the wave flows. Hence, 
the middle finger indicates the direction of the energy 
current density vector.

Three-finger-rule of the right hand:
Thumb – electric field strength
Index finger – magnetic field strength
Middle finger – direction of the energy current
	 of the wave

The magnitude of the energy current density is ob-
tained by multiplying both field strengths:

(3.15)Ej E H= ⋅
� � �

The equation can be generalized so that it does not 
only apply for the case in which the electric and the 
magnetic field strength vectors are perpendicular to 
each other.

To understand this more general equation, we need 
to know another mathematical definition: the defini-
tion of the vector product, Fig. 3.32.

_›c = 
_›a × 

_›b

The product vector 
_›c is defined by the following 

rules:
Direction of 

_›c :	 perpendicular to the plane in which
		  lie the vectors 

_›a and 
_›b ;

Magnitude of 
_›c : |

_›a| · |
_›b | · sin γ

		  Here, γ is the angle between 
_›a and 

_›b .
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For the energy current density in the electromag-
netic field, we have:

(3.16)Ej E H= ×
� � �

This equation does not only provide a statement 
about the magnitude of 

_›jE; it also tells us the direction 
of the “product vector”.

inner conductor

insulation

outer conductor

Fig. 3.34  Cross-sectional view of a coaxial cable. The 
outer conductor is at ground potential.

energy

magneticfield lines

electricfield lines
low potentia

l

high potential

Fig. 3.33  Only outside of the conductors, the electric 
and the magnetic field strength are different from zero; 
only there, energy is flowing.

a
�

b

�

c
�

γ

Fig. 3.32  The product vector c
r

 is perpendicular to the 
plane in which lie the vectors a

r
 and b

r
.

The formula does not only apply for such electro-
magnetic fields that we call “wave” or “radiation”; it ap-
plies for any field.

Now we can also answer a question that we have 
avoided so far. Where exactly does the energy flow when 
we use a normal, bifilar cable? A logical answer would be: 
“in the cable, where else?” But this answer is not correct. 
The electric charge is flowing in the cable, and the elec-
trons are moving in the cable. Only the energy does not 
flow there. We see in Fig. 3.33 where it flows.

As an electric current is flowing, we have a mag-
netic field whose field lines loop around the conduc-
tor; and as there is an electric voltage between the con-
ductors, we have an electric field whose field lines 
reach from one to the other conductor. Outside of the 
conductors, we thus have an electric and a magnetic 
field. The field lines of both fields are lying in planes 
that are perpendicular to the conductors. According to 
equation (3.15) or (3.16) we therefore have an energy 
current parallel to the conductors.

Exercises
1. A radio station emits an electromagnetic wave with 

10 kW. The antenna is built in a way that the radiation 
only goes in a certain angular range. At a distance of 
10 km, the beam has a width of 2.5 km and an altitude of 
1 km. (These figures are only rough indications. In a real 
antenna, the intensity decreases towards the sides.) Cal-
culate the energy current density at this point, i.e. at a 
distance of 10 km from the antenna. Calculate the electric 
and the magnetic field strength. Compare with the energy 
current of the sunlight.

2. Fig. 3.34 shows a cross-sectional view of a coaxial cable: 
one of the conductors is a conventional wire; the other 
conductor encloses the wire cylindrically at a certain dis-
tance. Coaxial cables are suitable for the transmission of 
high frequency alternating electric current signals. The 
outside conductor is at ground potential. Draw magnetic 
and electric field lines. Where and in which direction 
does the energy flow?

3.12 � Sine waves
We look at a more realistic example for an electro-

magnetic wave: the plane sine wave. Fig. 3.35 shows a 
simplified “snapshot” of a sine wave that moves in the 
x-direction. Also here, the field strengths only depend 
on x, but not on y and z.

The x-dependence is shown in Fig. 3.36a. It is a sine 
function. A short time later, the sine wave line will 
have moved forward, Fig. 3.36b. The distance between 
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two successive maximum or minimum values is called 
wave length λ of the wave.

Also for this wave, the following rules apply:
•• electric field strength, magnetic field strength and di-

rection of movement are perpendicular to each other;
•• the magnitudes of the electric and magnetic field vec-

tors are related at all points according to equation (3.13);
•• the wave moves with the speed c = 300 000 km/s.

The wave also consists of flat areas with high field 
strengths that move to the right and that are separated 
from each other by areas with low field strengths. As 
the areas with a high field strength also contain a high 
amount of energy, also the energy is transported in 
these “packages” that move to the right.

x

x

Ey , Hz
t1

t2

λ

Ey , Hz

Fig. 3.36  Electric and magnetic field strength of the 
wave from Fig. 3.35 as a function of the spatial coordi-
nate x at two different instants of time t1 and t2.

a)

b)

movement
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field lines

electric 
field lines

y

x
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Fig. 3.35  “Snapshot” of an electromagnetic sine wave

Electromagnetic waves are omnipresent in our 
lives, both as a natural phenomenon and as waves that 
are created with technical devices. It is interesting that 
there are electromagnetic waves with very different 
wave lengths. The shortest waves that have been ob-
served, the so-called hard gamma radiation, have a 
wave length of 10–22 m. On the other hand, waves of up 
to a wave length of 104 m are used for radio transmis-
sion. Between these extremes (that are actually no ex-
tremes as there is no reason that keeps us from pro-
ducing even shorter or even longer waves), there are 
the X-rays, the ultraviolet, the normal, “visible” light, 
the infrared radiation, the microwaves and the waves 
that are used for VHF transmission and television, 
Fig. 3.37.
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radio and 
television waves

radar

infrared light
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X-rays

gamma and 
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Fig. 3.37  The various wave length ranges of electro-
magnetic waves
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Physical constants and formulas

Physical constants

μ0 = 1.257 ⋅ 10–6 (V s)/(A m) magnetic constant

e0 = 8.854 · 10–12 (A s)/(V m) electric constant

mel = 9.11 ⋅ 10–31 kg mass of the electron

e = 1.60 · 10–19 C elementary charge

Energy and energy currents

P = U ⋅ I energy current for an electric energy transport

= =2 2,
2 2
C L

E U E I energy in the electric field of a capacitor/in the magnetic field of a coil

ε µρ ρ= =
� �2 20 0,

2 2E E
E H energy density in the electric/magnetic field

ΔE = (j2 – j1) ⋅ ΔQ
energy change of a charged body while passing through a potential 
difference

Momentum currents

F = Q ∙ |E
r
| momentum current entering a charged particle in an electric field

F = Qm ∙ |H
r
| momentum current entering a magnetic pole in a magnetic field

F = I ∙ s ∙ B momentum current entering a conductor with an electric current in a 
magnetic field

ε εσ σ⊥ = = −�

� �2 20 0,
2 2

E E mechanical stress in the electric field

µ µσ σ⊥ = = −�

� �2 20 0,
2 2

H H mechanical stress in the magnetic field

Calculation of field strengths

=
� U
E

d
electric field strength of the field of a capacitor

= ⋅
�
n

H I magnetic field strength of the field of a coil (l = length of the coil)

=
�
I

H
magnetic field strength of the field of a straight wire (l = circumference of 
circle around the wire)



93

Appendix

Physical constants and formulas (cont.)

Rates of change

∆
=

∆
Q

I
t

rate of change of the electric charge is equal to electric current (conservation of 
electric charge)

∆Φ
∆

⋅ =n U
t

rate of change of the magnetic flux is equal to induced voltage (Faraday's law of 
induction)

Equations that characterize a component

σ
= ⋅ = ⋅

�1,U R I R
A

characterizes resistor

ε= ⋅ = ⋅0, A
Q C U C

d
characterizes capacitor

Φ µ⋅ = ⋅ = ⋅
�

2
0, A

n L I L n characterizes coil

σ= ⋅
� �
j E local version of Ohm's law

Period

= π ⋅2T L C Period of an oscillating circuit
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