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1.1  Provisional description
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1.1  Provisional description
 Oscillations are processes that are particularly 

important for the physical description of the world.
The best-known example of an oscillation pro-

cess is the movement of an object that is suspended 
on a thread or on a rope, Fig. 1.1.

Another example can be realized even more eas-
ily. A ruler is clamped on one end while the other 
end is pushed slightly downwards and released, Fig. 
1.2. The non-clamped end is shaking up and down. 
Besides that, there are many other examples.

To see the essential aspects of an oscillation in 
the sense of physics, we will at first examine a sys-
tem that is slightly simpler than the pendulum and 
the ruler but that might appear somehow unnatural 
to you, Fig. 1.3.

Two bodies A and B are connected to each other 
by an elastic spring. They can only move back and 
forth in a single direction. We assume that the 
movement is not slowed down by friction. At first, 
the spring is not tensioned and the bodies are not 
moving yet. Then we displace A slightly to the left 
and B to the right by the same distance, and release 
them. Both bodies perform a back-and-forth move-
ment, i.e. they „oscillate“ against one another. When 
A moves to the right, B moves to the left and vice 
versa.

Studying this arrangement, we would like to un-
derstand how the process becomes an oscillation.

Even superficial examination tells us: once initi-
ated, the process continues by itself. „Initiated“ can 
be formulated more precisely. We have extended the 
spring and therefore charged the system with ener-
gy. As we have excluded friction and as there is no 
other outlet for the energy either, the energy re-
mains trapped in the oscillating system.

Notably, the process is periodic. If we take a clos-
er look at the oscillations, we will find that the dura-
tion of an entire period, the oscillation period T, is 

A B

Fig. 1.1  Oscillation of a suspended body

Fig. 1.2  Oscillation of a ruler

Fig. 1.3  Oscillation of the system „two gliders + one 
spring“
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1.2 � Momentum and energy
Now we would like to apply our mechanical know-

how to the system from Fig. 1.3.
Let’s examine at first how momentum behaves, 

Fig. 1.6. We release the bodies and they will start 
moving.

At the beginning, the momentum of A takes on in-
creasingly larger positive values, the momentum of B 
increasingly larger negative values. The balance is cor-
rect: the momentum of A increases by the same amount 
as that of B decreases. The fact that the spring is under 
tensional stress tells you that a momentum current is 
flowing from B to A. But the momentum current will 
only flow from the right to the left until the spring be-
tween the bodies is unstressed. From that moment, the 
spring will be compressed and the movements of A and 
B will be slowed down by the spring: momentum will 
then flow out of A and back into B. Now, the bodies be-
come increasingly slower, eventually come to a halt and 
will then start moving away from each other again. As 
soon as the spring is unstressed again, the momentum 
current will be reversed anew. It will flow once again in 
the same direction as at the beginning, i.e. from B to A. 
In its reversal point on the left, A has lost its entire mo-
mentum. The system is once again in the same state as at 
the start, and the next round can begin.

Everything that has been said so far can be summa-
rized in a single phrase: the momentum „slops“ back 
and forth between A and B. Or formulated in a more 
intellectual fashion:

always the same, regardless of how far the spring is 
extended at the beginning.

Oscillation:
•• periodic process with a characteristic duration 

of period;
•• will run by itself after an initial energy supply.

Later, we will not be so accurate anymore: we will 
slightly attenuate the restrictions of this definition. 
Even if the process is a bit hampered by friction, we 
will still call it an oscillation; and even if the period is 
slightly dependent on the initial energy supply, it will 
always remain an oscillation.

Eventually, we will even refer to certain processes, 
which are not even approximately periodic, as oscilla-
tions. This matter will be addressed later.

Having formulated the definition in rather general 
terms comes with an advantage: it will still remain valid 
if we are dealing with an electric process, i.e. with a pro-
cess in which not just a body is moving back and forth.

The reciprocal of the oscillation period is called fre-
quency. The symbol is f.

(1.1)1 .f
T

=

The measurement unit 1/second is called Hertz, ab-
breviated Hz. A short oscillation period is a synonym 
for a high frequency.

Exercises
1. A driverless wagon that is not slowed down by any fric-

tion is located between two spring buffers. It is given a 
push so that it moves back and forth between the buffers. 
This process is not called oscillation. Which of the char-
acteristics that an oscillation is supposed to have is miss-
ing in the system?

2. Fig. 1.4 shows a surprising experiment that can be per-
formed by means of an construction kit. Two cylindrical 
shafts are turning opposite to each other at a relatively 
high angular velocity. A longish bar is laid on the two 
shafts, i.e. not symmetrically but in a way that its weight 
puts a higher load on one of the shafts. Then, the bar 
starts moving back and forth on the two shafts. The pro-
cess looks like an oscillation. Explain why the bar moves 
this way. Why isn’t the movement an oscillation in the 
sense of our definition?

3. Fig. 1.5 shows an arrangement that is pretty similar to a 
steam engine or a combustion engine: a flywheel, a piston 
rod and a sort of piston that can move back and forth. If 
the flywheel is given some impetus (i.e. angular momen-
tum), the piston will move regularly back and forth. We 
disregard losses due to friction. Is the movement of the 
piston an oscillation according to our definition? Explain.

Fig. 1.4  The bar moves back and forth. Is this move-
ment an oscillation? (Exercise 2)

Fig. 1.5  Once boosted, the piston moves back and forth. 
Is this movement an oscillation? (Exercise 3)
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During a mechanical oscillation, momentum 
flows back and forth between two sub-systems.

Besides, the complicated Figure 1.6 can be sim-
plified, Fig. 1.7. The bent arrow should illustrate the 
back-and-forth movement of the momentum.

Just as characteristic as the behavior of the mo-
mentum is the behavior of the energy for an oscilla-
tion.

In the initial state – stretched spring, A and B are 
at rest – energy is stored in the spring. Its value is 
calculated according to

2 .
2s
DE s�

(s is the „deviation“ of the spring, D the spring 
constant.)

If the bodies are released, both of them will start 
moving. The energy of the spring will decrease, the 
energy of the two bodies will increase. As we know, 
the „kinetic“ energy of a moving body is calculated 
according to

2
kin .

2
mE v�

(v is the velocity of the body, m its mass.)
In the moment in which the spring is unstressed, 

no energy is stored in the spring anymore. The 
whole energy is now in the two bodies. As these 
bodies are approaching each other further, the 
spring is again charged with energy – at the expense 
of the two bodies. You can see how things continue.

Also the behavior of the energy can be summa-
rized briefly: it „slops“ from the spring outwards into 
the two bodies, back into the spring etc., Fig. 1.8.

Notice that the slopping back-and-forth of the 
energy occurs twice as fast as that of the momen-
tum. While the momentum flows back and forth 
between A and B once, the energy moves back and 
forth between the bodies and the spring twice.

During a mechanical oscillation, energy flows 
back and forth among sub-systems.

The back-and-forth flow of the energy is twice as 
fast as the back-and-forth flow of the momentum.

Exercise
1. Discussing the oscillation of the system from Fig. 1.3. We 

have assumed the two bodies to have equal masses. How 
will the movement change if the masses are different?

Fig. 1.6  The oscillator from Fig. 1.3 at nine different 
times in the course of one period. The arrows under the 
springs illustrate the momentum current.
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Fig. 1.7  Momentum flows back and forth between the 
two bodies.

 Fig. 1.8  Energy flows back and forth between the bod-
ies and the spring.
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1.3 � The Earth as a partner
In many cases, the Earth is an essential part of an 

oscillation system. We can imagine the spring oscilla-
tor from Fig. 1.9 to be a result of a modification of the 
oscillator from Fig. 1.3.

The body is changed with continuously increased 
mass. In case of Fig. 1.9, A is finally the whole Earth. 
Now the momentum flows back and forth between 
body B and the Earth in the course of the oscillation, 
Fig. 1.10a.

Here, the energy balance is particularly interesting. 
We might believe that nothing substantial has changed 
with the energy flow either, i.e. that it would still flow 
like in Fig. 1.8 with the only difference that A is now 
the Earth. To understand that this is not correct, we 
need the equation:

2
.

2
pE
m

=

We ask for the ratio EEarth/EB between the energy 
contents of the Earth and body B:

2
Earth

2
Earth BEarth Earth

22
B B EarthB

B

2 2
.

2
2

p
m mE p

E p mp
m

 
  
 = = ⋅
 
  
 

The absolute value of the momentum of the Earth is 
always equal to the absolute value of the momentum of 
B. Hence, we have

p2
Earth = p2

B

and we can reduce the fraction after the right equals 
sign. We obtain

Earth B

B Earth
.E m

E m
=

Hence, the energy distributes between the Earth 
and B in the inverse proportion to the masses. But the 
mass of the Earth is very much larger than that of B. 
The Earth therefore receives so little energy during the 
oscillation that it can be safely disregarded. We can 
consequently say: the energy flows back and forth be-
tween B and the spring, Fig. 1.10b. We can also formu-
late this result in more general terms: 

If one of the two bodies between which the mo-
mentum flows back and forth has a much larger 
mass than the other one, it will no longer take part 
in the energy turnover of the oscillator.

momentum

energy

B

earth

B

earth

Fig. 1.10  (a) Momentum flows back and forth between 
body B and the Earth. (b) Energy flows back and forth 
between body B and the spring with the double fre-
quency.

Fig. 1.11  How is the path of the energy and of the mo-
mentum?

Fig. 1.9  One of the two bodies from Fig. 1.3 is replaced 
by the Earth.

B

Exercise
1. Describe the path of momentum and energy when the 

body from Fig. 1.11 performs oscillations. Check in this 
process whether the flow direction of the momentum in 
the springs is correct.

1.4 � Harmonic oscillations
We start with some mathematics. For the description 

of oscillations, a function that you should already know 
plays an important role: the sine function. For reasons 
of practicality, it should be written in a specific form:

y(t ) = ŷ · sin(ωt + φ)	 (1.2)

( ŷ is pronounced „wye-hat“)

a)

b)
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The corresponding graph is shown in Fig. 1.12. In the 
following, the time t will always be the independent 
variable. y stands for the dependent variable in equation 
(1.2). For y, we will later insert a physical quantity: posi-
tion, momentum, velocity, electric charge or electric 
current strength. The equation expresses that the value 
of the quantity y changes periodically between a maxi-
mum value and a minimum value.

Besides t and y, equation (1.2) contains three other 
symbols:  ŷ, ω and φ. Their meaning can be seen from 
Fig. 1.13.

ŷ is the amplitude of the quantity y. It is the maxi-
mum value of the function y(t). It is taken on when 
sin(ωt + φ) has the value 1. Fig. 1.13a shows two graphs 
of the function that only differ in the value of the am-
plitude.

The argument of the sine function

ωt + φ

is called phase at the instant of time t. We would like 
to understand the meaning of the two constants ω and 
φ.

If we set t = 0, the phase will take on the value φ. 
Thus, φ is the starting phase.

When t is equal to the oscillation period T, the ar-
gument of the sine function, i.e. the phase ωt + φ, has 
just increased by 2π. (This is what mathematics teaches 
us.) Hence, the following must apply:

ωT + φ = 2π + φ.

It follows

ωT = 2π

and

	 (1.3)2π .
T

=ω

As the frequency is f = 1/T, we also have

ω = 2π f .

The angular frequency ω in equation (1.2) is − apart 
from the factor 2π − equal to the frequency and we can 
also write (1.2):

y(t) = ŷ · sin(2π f t + φ) .	 (1.4)

Fig. 1.13b shows two graphs of the function (1.4) 
that only differ from each other in the value of the fre-

y

t

–5

5

0

0 20 40 60 80 100

Fig. 1.12  Graph of the sine function. The independent 
variable is the time t, the dependent variable is y.

Fig. 1.13  The two sine functions only differ in (a) the am-
plitude ŷ, (b) the frequency f and (c) of the starting 
phase φ.

a)

b)

c)

t

y

t

y

t

y

quency f, and Fig. 1.13c shows two graphs that only 
differ from each other in the starting phase φ.

Now back to physics. When a quantity that is used 
to describe an oscillation as a function of time is simi-
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lar to equation (1.4), the oscillation is called a harmon-
ic oscillation. Most oscillations we will examine are 
harmonic oscillations, but we will see that function 
(1.4) also plays an important role for non-harmonic 
oscillations.

An example of a harmonically oscillating system is 
the arrangement from Fig. 1.3. If there is no friction 
(or if friction is small that it can be neglected) and if 
the spring is not overstretched (i.e. if Hooke’s law ap-
plies), various quantities are described as a function of 
time by sine functions:
•• the momentum of the bodies,
•• the momentum current through the spring,
•• the position of the bodies,
•• the velocities of the bodies

and others.
Also the spring oscillator from Fig. 1.9 performs 

a harmonic oscillation. We will examine how the 
different quantities are related to each other in this 
case.

The position x of body B changes according to a 
sine function:

x(t) = ŝ · sin(2π f t)	 (1.5)

ŝ is the position amplitude. We have chosen the time 
zero in a way that the starting phase is φ = 0. The pro-
gression over time of all other quantities we are inter-
ested in can be calculated from (1.5).

With

(̂ )( ) ds tv t
dt

=

by deriving with respect to time we obtain

v(t) = ŝ · 2π f · cos(2π f t) .

As

cosx = sin(x + π/2)

always applies, we can transform this equation in a 
way that it contains the sine function instead of the 
cosine function:

v(t) = ŝ · 2π f · sin(2π f t + π/2) .

If we then only rename the term ŝ · 2π f to v̂, we ob-
tain an expression that has once again the structure of 
equation (1.2):

v(t) = v̂ · sin(2π f t + π/2).	 (1.6)

Here, v̂ is the velocity amplitude.
In contrast to the position function (1.5), the start-

ing phase is no longer zero in (1.6). The phase of the 
function v(t) is at all times greater than that of s(t) by 
π/2. We also say that there is a phase difference of π/2 
between v(t) and s(t).

Also the momentum as a function of time can be 
calculated from (1.6). With

p(t) = m · v(t)

we get

p(t) = m · v̂ · sin(2π f t + π/2) .

If we denominate the momentum amplitude m · v̂ 
with p̂, we obtain:

p(t) = p̂ · sin(2π f t + π/2),	 (1.7)

hence, a sine function once again.
The energy as a function of time in the two energy 

storage devices „body B“ and „spring“ is more interest-
ing. We will calculate both energy contents.

We start with the spring. Its energy content can be 
calculated according to

2
S .

2
DE s=

We insert (1.5):

2 2
S ˆ( ) sin (2 ).

2
DE t s f= ⋅ ⋅ π

Also this function term contains the sine function. 
But here it is squared. In Fig. 1.14a, the spring energy 
is illustrated as a function of time.

The fact that the square of the sine function is itself 
a sine function, which, however, is displaced in the di-
rection of the ordinate axis and which oscillates at 
twice the frequency can be concluded from a generally 
applicable equation that you might have learned earli-
er in math class 

2 1 1sin cos(2 ).
2 2

= −α α

Besides the energy ES(t) of the spring, also its devia-
tion s(t) is shown in Fig. 1.14a.

A comparison of the two functions shows:
The curve belonging to the energy is sine-shaped. 

However, the sine function is displaced in the direc-
tion of the ordinate axis so that the energy values will 
never become negative – which would not be possible, 
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of course. The lowest energy value is 0 J. The frequency 
of the energy sine function is twice as high as the fre-
quency of the s-sine function.

We now calculate the energy content of the body in 
the same way:

2

kin .
2
pE
m

=

We rewrite (1.7):

p(t) = p̂ · sin(2π f t + π/2) = –p̂ · cos(2π f t)

and insert
2

2
kin

ˆ
( ) cos (2 ).

2
pE t �
m

= ⋅ π

The function graph is shown in Fig. 1.14b. It looks 
like that of ES(t) with the exception of being displaced 
with respect to ES(t) in such a way that its maximum 
values are located at the same points as the minimum 
values of ES(t) and vice versa. The sum of the two func-
tions

ES(t) + Ekin(t)

is constant, its function graph is a horizontal straight 
line, Fig. 1.14c. This simply means that the total en-
ergy content of the system does not change. The en-
ergy flows back and forth between the spring and 
the body but the total amount of energy does not 
change.

Exercises
1. Calculate for the spring oscillator from Fig. 1.9 the func-

tion term for the momentum current that flows back 
and forth between the body and the Earth. Graphically 
illustrate the momentum of the body and the momen-
tum current between the body and the Earth in a dia-
gram. Discuss the relationship between the two func-
tion graphs.

2. Calculate for the spring oscillator from Fig. 1.9 the func-
tion term for the energy current that flows back and forth 
between the body and the spring. The result contains a 
combination of trigonometric functions. Try to simplify 
this term. You will probably need a mathematical formu-
lary. Discuss the result in connection with Fig. 1.14.

3. The position of body A in Fig. 1.3 was described by the 
function s = ŝ · sin(2π f t). What is the corresponding func-
tion for body B? Indicate the function terms for: the mo-
mentum of the two bodies; the momentum current be-
tween A and B; the energy of the spring and the two bod-
ies individually; the total energy; the energy current be-
tween the bodies and the spring.

Fig. 1.14  (a) Deviation of the spring and energy of the 
spring as a function of time. (b) Velocity and kinetic 
energy of the body as a function of time. (c) The sum of 
the energy of the spring and the energy of the body is 
constant.

t

t

t

E (t)s

E    (t)kin

s(t)

v(t)

E (t) + E    (t) s kin

a)

b)

c)

1.5 � What the period length 
depends upon

We will examine the question on the example of the 
oscillator from Fig. 1.9 because it is the simplest sys-
tem for this purpose. We already know that the oscilla-
tion period is independent of the amplitudes of posi-
tion, velocity or momentum. We now would like to 
make the oscillator oscillate more slowly. What could 
be done? There are two possibilities.

1. Changing the oscillating body
We try it out. We double the mass by attaching a 

second glider to the first one. The oscillation becomes 
significantly slower. It would not be unreasonable to 
expect the oscillation period to double. We check by 
measuring and find out that our expectation is not ful-
filled. The oscillation period has indeed increased, but 
to less than the twice its initial value. We add another 
body and measure once again. Also this time, the pe-
riod length increases but it still has not reached the 
double value. Only when four bodies are connected to 
the spring, i.e. after having quadrupled the mass, the 
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period will double, Fig. 1.15. By how much would the 
mass have to be increased in order to achieve a triple 
period?

We conclude: for the oscillator from Fig. 1.9, the os-
cillation period is proportional to the square root of 
the mass of the oscillating body.

2. Changing the spring
If it is replaced by a softer spring, i.e. by a spring 

with a smaller spring constant, the oscillation will 
become slower, i.e. the oscillation period will be-
come longer. We proceed in a similar way as during 
the examination of the dependence on the mass. We 
change the spring constant to half its initial value. 
This is not difficult either: we simply add another 
spring to the first spring. (In analogy to electric re-
sistors we could say: „two springs are connected in 
series“.) This time, the result is no longer surprising: 
the period has increased but not doubled. To reach 
a double value, we have to combine four springs, 
Fig. 1.16.

Again, we conclude:
For the oscillator from Fig. 1.9, the period is pro-

portional to the reciprocal value of the root of the 
spring constant.

Both results can be summarized to one relationship:

.mT
D

∼

To make an equation of the proportionality, it is suf-
ficient to measure the period of an oscillator with any 
mass and spring constant. We find that the factor 6.3 
has to be ahead of the square root. Addressing the 
problem theoretically would lead us to the more pre-
cise equation:

(1.8)2 .mT
D

� π

By means of equation (1.3), we obtain the angular 
frequency:

.D
mω �

This equation might appear complicated to you. 
In addition, the corresponding formula looks differ-
ent for other systems. Can we memorize something 
like this? When you have more experience with oth-
er oscillation systems, you will notice that the fre-
quency formulas (or oscillation period formulas) 
can be obtained by means of skilled guessing. At 
first, you reflect on the quantities the angular fre-
quency must depend on. In the simple examples 

Fig. 1.15  The mass is increased by adding further, identi-
cal bodies. Quadrupling the mass leads to doubling of 
the oscillation period.

that we examine, it always depends on two quanti-
ties. In the previous example, these quantities were 
the mass of the body and the spring constant of the 
spring. Next, you consider whether the angular fre-
quency increases or decreases with the quantities. If 
it increases with a quantity (here with the spring 
constant), this quantity will stand in the numerator; 
if it decreases (in our case with the mass), this quan-
tity will stand in the denominator. Then, only the 
square root of the fraction obtained this way has to 
be calculated.

Exercises
1. An oscillator like the one in Fig. 1.9 has a period of 2 s. 

The mass of the body is 250 g. Which mass would be 
needed to increase the period to (a) 3 s, (b) 10 s. (The 
spring constant should be kept constant.)

2. How will the oscillation period behave if a further, identi-
cal spring is added to the first one in an oscillator of the 
type from Fig. 1.9? What will happen if a total of four 
identical springs are arranged in parallel?

3. The two bodies in Fig. 1.3 have the masses m, the spring 
has the spring constant D. What is the formula for the 
period length? Clue: divide the system into two parts to 
which the formula (1.8) can be applied.

4. The body in Fig. 1.11 has the mass m, each of the springs 
has the spring constants D. What is the formula for the 
oscillation period?

Fig. 1.16  The spring constant is decreased by attaching 
several identical springs to one another. If the spring 
constant is reduced to a quarter, the oscillation period 
will double.
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1.6 � The pendulum
An object that is suspended on a thread or a rope 

can perform an oscillation movement. This process is 
probably the best-known oscillation process, but not 
the simplest one.

Such an arrangement that has been built deliber-
ately for the purpose of performing oscillations is 
called pendulum. Instead of a flexible thread, also a 
rigid bar is often used for suspension. In this case, the 
pendulum can oscillate even beyond the horizontal 
position.

At first, we simply observe the movement of a pen-
dulum. The angle α by which the pendulum deviates 
from the vertical resting position is suitable as a quan-
tity to characterize the position of the pendulum, 
Fig. 1.17.

Figure 1.18 shows this angle as a function of time 
for different initial deviations. Be aware that the scale 
of the ordinate axis is different in the three subframes. 
A comparison of the three images shows:

1. The oscillation is not harmonic for large ampli-
tudes. For sufficiently small amplitudes it becomes ap-
proximately harmonic.

α

Fig. 1.17  The angle α is a measure for the deviation of 
the pendulum from its position of rest.

Fig. 1.18  The angle α as a function of the time t. (a). 
Oscillation with a very large amplitude, shortly prior to 
overshooting. The function graph is not a sine curve. (b) 
The amplitude of α(t) is now only 23°, i.e. much less 
than in (a). The function graph is now a sine curve. The 
period length is significantly smaller than in (a). (c) The 
amplitude of α(t) is slightly less than 5°, i.e. much less 
than in (b). The function graph is still a sine curve, and 
also the period length has not changed anymore.

0 5 10 15 20

30

20

10

0

–10

–20

 –30

α in degrees

0 5 10 15 20

5

2.5

0

–2.5

–5

α in degrees

0 5 10 15 20

α in degrees

–200

–100

200

0

100

t

t

t

a)

b)

c)

2. For large amplitudes, the oscillation period de-
pends on the amplitude. For sufficiently small ampli-
tudes it becomes practically independent of the ampli-
tude.
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The momentum balance of the pendulum
It is more complicated than in the systems examined 

earlier because the movement takes place in two dimen-
sions. If, however, we limit our experiment to small ini-
tial deviations, i.e. to the case that the oscillation is har-
monic, also the momentum balance will remain quite 
simple. The vertical component of the momentum vec-
tor of the body will then always be much smaller than 
the horizontal component and it makes sense to limit 
the examination to the horizontal component. This hor-
izontal momentum changes approximately as a sine 
function. It flows back and forth between the oscillating 
body and the Earth through the rope and the suspen-
sion of the pendulum. It is not difficult to perform the 
experiment shown in Fig. 1.19. While the body swings 
back and forth, also the vehicle with the suspension 
moves back and forth, always in the opposite direction. 
We can therefore clearly see where the horizontal mo-
mentum is located in every moment.

The energy balance of the pendulum
If the pendulum is deviated, the body will necessar-

ily be slightly lifted. Therefore, energy is supplied to 
the gravitational field. If the pendulum is then re-
leased, the body will start moving while its height co-
ordinate decreases. Thus energy from the gravitational 
field comes back and the kinetic energy of the body 
increases. After having passed the deepest point, the 
body becomes slower again. Energy flows out of the 
body and back into the gravitational field. The formu-
las for the energy content of the two storage systems 
„gravitational field“ and „body“ are:

Eg = m · g · h

and

2
kin .

2
mE v�

In each oscillation period, the energy flows back 
and forth twice between these two storage devices – 
similar as in the case of the spring oscillator.

The oscillation period of the pendulum
It would be best if you could try to find out the for-

mula yourself.
We do not make a detailed examination at the start. 

The period probably depends on the mass of the body, 
possibly also on the pendulum length. We try it out. 
First, we measure the period of two pendulums that 
only differ from each other in the mass of the oscillating 
body. The thread length should be equal. The measure-

Fig. 1.19  The momentum oscillates back and forth be-
tween the swinging body and the vehicle.

ment shows a surprising result: the oscillation period is 
identical for both pendulums. Hence, we can make the 
pendulum as heavy or light as we wish – the period re-
mains the same. Apart from this, we examine whether 
the period depends at least on the length of the thread. 
This time we have more success. It turns out that the 
period is proportional to the square root of the length of 
the pendulum. But should the period only depend on 
the length of the pendulum? You certainly have a good 
intuition for mechanical processes and you will suggest 
to repeat the measurement on the Moon. In the next 
physics class, you can certainly go on a short trip up 
there. You would find: the pendulum oscillates more 
slowly. Apparently, the period depends on the gravita-
tional field strength g. The measurement shows that the 
dependence follows a square root law again.

The definite formula is:

2 .lT g� π

The similarity with equation (1.8) is noticeable.
The fact that the period is independent of the am-

plitude (at least as long as the amplitude is small) was 
taken advantage of to build the old pendulum clocks, 
Fig. 1.20. The clock hand advances by a small step with 
each oscillation period of the pendulum.

Fig. 1.20  Pendulum clock
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The two weights, i.e. one for the clockwork mech-
anism and the other one for the bell, are used as en-
ergy sources of the clock. Each weight is suspended 
on a cord that is coiled up on a drum while the clock 
is being wound up. This process is used to store the 
energy in the gravitational field. While the clock is 
running, the weights are lowering slowly. Energy 
thereby comes back from the gravitational field and 
goes to the clockwork mechanism and the bell via 
the drums.

The progression of the clock hands is controlled by 
the pendulum by means of a sophisticated mechanism: 
after every half oscillation of the pendulum, the min-
ute hand makes a tiny step forward (and also the hour 
hand via a 12 : 1 gearwheel transmission system).

All modern clocks also work according to this prin-
ciple. But other oscillation systems are used instead of 
a pendulum these days.

Exercises
1. The thread of a pendulum has a length of 1.2 m. What is 

the pendulum’s period? What would be its period on the 
Moon? Although the pendulum would not survive a 
journey to a neutron star: Theoretically, what would be 
the period at the surface of such a star?

2. What must be the length of the pendulum of a clock, so 
that it swings forth in one second and back again in one 
second?

3. Which are the disadvantages of a pendulum clock com-
pared with other types of mechanical clocks?

4. Somebody has taken a pendulum clock to the Moon. 
Does the clock work there? (Which problems arise for the 
pendulum, and which for the weights?)

5. A body with a mass of 2 kg is suspended on a string with 
a length of 2 m. With a short stroke the body is brought to 
a velocity of 0.2 m/s. Which height will the body reach? 
(Attention: The question if only for the height.) The same 
body now hangs an a string with a length of 10 m. What 
height does it reach now?

1.7 � Angular oscillations: angular 
momentum flowing back and 
forth

A flywheel is connected to the „Earth“ via a spiral 
spring, Fig. 1.21. The arrangement is a system that can 
perform harmonic oscillations.

If the flywheel is turned out of its equilibrium posi-
tion and released, it will rotate back and forth in a sine-
shaped way. The similarity to the oscillator from 
Fig. 1.9 is obvious. Everything that has been said in 
connection with this oscillator also applies to the an-

gular oscillator provided that we translate the respec-
tive quantities as follows:
•• position x → angle α
•• velocity v → angular velocity ω
•• momentum p → angular momentum L

Here, angular momentum flows back and forth be-
tween the flywheel and the Earth while energy flows 
between the flywheel and the spring, Fig. 1.22. Com-
pare with Fig 1.10.

Also the formula for the oscillation period is similar 
to the respective formula for the oscillator from 
Fig. 1.9. However, it includes quantities that you have 
not yet learned about. It is not worth deriving the de-
tails of this formula. We would only like to examine 
what the period depends on after all.

A sort of spring constant can also be introduced for 
spiral springs so that the „hardness“ of the spring can 
be characterized. The harder the spiral spring, the fast-
er the oscillation and hence the shorter the period.

Fig. 1.22  Angular momentum flows back and forth 
between the flywheel and the Earth. The energy flows 
back and forth between the flywheel and the spring at 
the double frequency.

Fig. 1.21  The system that consists of a flywheel, a spiral 
spring and the Earth performs angular oscillations.

energy

angular
momentum
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It is logical and easy to verify that the period will 
become longer if the mass of the flywheel is increased.

The fact that the period length also depends on 
where the masses are sitting makes this matter slightly 
more complicated than a normal back-and-forth oscil-
lation. If the flywheel has a large radius so that the 
masses are sitting far towards the outside, it will oscil-
late more slowly than in cases where the masses are 
concentrated at the center. This dependence can be 
examined most conveniently if a sort of dumbbell is 
made oscillate instead of a flywheel, Fig. 1.23. Here, 
the distance of the two bodies from the center can be 
increased and reduced without changing the total 
mass. We find that the period length is proportional to 
this distance.

The angular oscillator has been built in hundreds of 
millions of copies. Named „balance wheel“, it is used to 
control the hands of all mechanical wrist watches, 
pocket watches and alarm clocks; see exercise 2.

Exercises
1. An angular oscillator can also be built in analogy to the 

system from Fig. 1.3. What does it look like? How do the 
angular momentum and the energy flow?

2. What are the advantages of the balance wheel, in contrast 
to a pendulum and to an oscillator with a helical spring as 
shown in Fig. 1.9, as a timer of a clock?

3. Carefully open a mechanical wrist or pocket watch or a 
mechanical alarm clock and look for the balance wheel. 
Try to understand how the balance wheel controls the 
clockwork. Describe.

1.8 � Electric oscillations: electric 
charge flowing back and 
forth

It would be best for you to close this book and try to 
invent an electric oscillator yourself.

The simplest solution is shown in Fig. 1.24. The sys-
tem is very similar to the mechanical oscillator from 
Fig. 1.3 that we show here once again as Fig. 1.25.

Just as the momentum „swashes back and forth“ be-
tween the two bodies A and B in the case of a mechan-
ical oscillator, the electric charge oscillates back and 
forth between the plates A and B of the capacitor in the 
case of the electric oscillator. In the connection be-
tween the plates A and B of the capacitor a coil has to 
be installed. It is analogous to the spring in Fig. 1.25. 
(But the fact that the illustrations of a coil and a spring 
look similar is a pure coincidence.) The capacitor has 

Fig. 1.23  Also a „dumbbell“ can be used instead of the 
flywheel. The farther to the outside the two bodies are 
sitting, the slower the oscillation of the dumbbell.

A

coil

capacitor

electric charge

B

Fig. 1.24  Resonant circuit. The electric charge flows 
back and forth between the two capacitor plates.

Fig. 1.25  Mechanical oscillator, similar to Fig. 1.3
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to be charged at first in order to enable the oscillation 
to start. Fig. 1.26 shows how this is done in practice.

In a resonant circuit, the electric charge flows 
back and forth between the plates of a capacitor.

As the electric oscillator has the structure of a cir-
cuit, the arrangement from Fig. 1.24 is also called reso-
nant circuit. Just like the mechanical systems examined 
earlier, the resonant circuit performs harmonic oscilla-
tions. The electric charge on one of the capacitor plates 
changes over time according to a sine function:

Q(t) = Q̂  · sin(2π f t)	 (1.9)

(The charge of the other plate only differs in its 
sign.)

The change of the electric charge of the plates goes 
together with an electric current. When the change 
dQ/dt is large, a strong electric current flows. This fact 
is expressed by the equation

( )( ) .dQ tI t
dt

=

Thus, the electric current strength in the conductor 
between the plates of the capacitor is obtained by de-
riving the function Q(t) with respect to time:

I(t) = Q̂  · 2π f · sin(2π f t + π/2).

We abbreviate the current amplitude Q̂  · 2π f as Î  and 
obtain:

I(t) = Î  · sin(2π f t + π/2).

energy

Fig. 1.27  The energy flows back and forth between the 
capacitor and the coil.

The comparison with (1.9) shows that the current 
strength is „phase-shifted“ by π/2 with regard to the 
charge.

Just as the energy in the case of the mechanical os-
cillator flows back and forth between the body and the 
spring at twice the frequency, it flows back and forth 
between the capacitor and the coil at twice the fre-
quency in the resonant circuit – more precisely: be-
tween the electric field in the capacitor and the mag-
netic field in the coil, Fig. 1.27. When the charge of the 
capacitor reaches its maximum, the whole energy is 
located in the capacitor and there is no energy in the 
coil. When the charge of the capacitor is zero, the 
whole energy is in the coil.

In a resonant circuit, energy flows back and 
forth between a capacitor and a coil.

The back-and-forth flow of the energy is twice as 
fast as the back-and-forth flow of the electric charge.

The period can be calculated from the capacitance 
C of the capacitor and the inductance L of the coil:

2T L C .� π �

Just as in the corresponding formulas for mechanical 
oscillations, there is the square root and the factor 2π.

Resonant circuits are not only a nice physical toy. 
They have a high relevance for technical applications. To 
transmit messages by means of electromagnetic waves, a 
sender and a receiver is needed. A resonant circuit has 
to be installed in both of them. The one in the sender is 
used (together with the transmitting antenna) to create 
the wave. The one in the receiver captures the signal 

Fig. 1.26  The switch is turned upwards to charge the 
capacitor. It is turned downwards to start the oscilla-
tions.
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with the desired frequency out of a multitude of other 
signals that come from the receiver antenna.

Exercises
1. Which geometrical quantities do the capacitance and the 

inductance depend on? What is the structure that the ca-
pacitor and the coil need to have in order to enable a long 
period of the respective resonant circuit?

2. What is the time function of the energy that is contained 
in the electric field of the capacitor? What is the time 
function of the energy in the magnetic field of the coil?

1.9 � The damping of oscillations
Up to now, we have regarded friction, that causes an 

oscillation to decay or die away, as a disturbance that 
should be avoided in the best possible way. In fact, how-
ever, there are systems in which, although they can os-
cillate in principle, the oscillation is undesired. A swing 
door, Fig. 1.28, has a spring that is used to make the 
door shut by itself after someone has passed it. However, 
some doors oscillate back and forth several times before 
they stop. Hence, this might cause some inconvenience 
for the next person wishing to pass through said door. 
In this case, it would therefore be useful to provide a 
damping system for the oscillation.

Fig. 1.29 schematically displays a system that per-
forms damped oscillations. It differs from the system in 
Fig. 1.9 due to the damper that is installed in parallel to 
the spring.

Fig. 1.30 shows the design of a damper. When the 
piston is moved in one or the other direction, the liq-
uid has to flow through a small hole from one to the 
other side. The faster the piston is moved, the harder it 
becomes or, formulated with physical quantities, the 
higher the velocity of the piston relative to the cylinder 
of the damper, the stronger the momentum current 
through the damper. Hence, the bars with the corre-
sponding loops on both sides of the damper are the 
inlet and outlet for a momentum current.

We can therefore describe the effect of the damper 
as follows:

The greater the velocity difference between the 
inlet and the outlet, the stronger the momentum 
current through the damper.

In the simplest case, the relation between the veloc-
ity difference Δv and the momentum current strength 
FD is linear so that the following applies:

Fig. 1.28  Swing door

Fig. 1.29  Oscillator with a damper, schematic display

spring

damper

bodyEarth

cylinder

piston with a hole

liquid
Fig. 1.30  Mechanical damper

Fig. 1.31  Relationship between momentum current 
strength and velocity difference for three different 
dampers

∆v in m/s 

F in N
200

100

0

–100

–200
–0.02 –0.01 0 0.01 0.02



19

1.9  The damping of oscillations

1  O
SCILLATIO

N
S

FD = k · Δv

Fig. 1.31 shows the relation for three different 
dampers. The higher the value of the damping con-
stant k, the steeper the straight line and the harder 
the damper. Or in other words: a damper that is 
hard to compress is a good conductor for a momen-
tum current; a damper that is easy to compress is a 
bad momentum current conductor.

Even if we do not install a damper, i.e. if there is 
only the inevitable natural friction, we can often as-
sume terms that the respective momentum current 
approximately depends linearly on the velocity.

Maybe you have noticed that a damper is the 
same for a momentum current as an electric resistor 
is for an electric current, because the following ap-
plies for an electric resistor:

The greater the electric potential difference be-
tween the inlet and the outlet, the stronger the elec-
tric current through the resistor.

When the electric voltage is proportional to the 
electric current strength, we say that Ohm’s law ap-
plies.

We come back to our swing door that should be 
equipped with a damper. What should the damper 
be like in order to make the door convenient to use? 
Should it rather be soft or hard? If it is too soft, it 
will only slow down the oscillation slightly. Al-
though the door will oscillate a bit less, it will not 
stop completely. So should we rather choose a very 
hard damper? If we do, the door will no longer os-
cillate but it will have another defect: it will move 
very slowly so that it will take long to shut com-
pletely.

Fig. 1.32 shows the movement of an oscillator for 
5 differently chosen dampers. In our case, the coor-
dinate y would stand for the angle by which the door 
is moved out of its closed position.

In the first case, the damping effect is weak. The 
door oscillates back and forth for a long time. In the 
second case, the damping effect is a bit stronger, i.e. 
the door comes to a resting state faster. In the third 
case, it shuts very quickly. It remains shut after a 
single overshoot. In the fourth picture, an even 
harder damper was chosen. But the door does not 
shut faster now. Although it does not oscillate any 
longer, it needs more time to shut. In the last image 
with an even harder damper, the situation is even 
worse. It takes very long until the door will be shut 
completely. We can see that there is an optimal 
damping case if we want the oscillator to stop mov-
ing after a short time.

Fig. 1.32  Decay behavior of an oscillator for 5 different 
damping systems. The dampers become increasingly 
harder from the top towards the bottom. For a very 
weak damping effect, the system needs a long time to 
gradually stop oscillating. For a very strong damping 
effect, it reaches the equilibrium state very slowly. In 
case of an optimally chosen damping mechanism, it 
returns to the equilibrium situation very quickly.
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In the case of an optimal damper, an oscillation 
system will return to the state of equilibrium with a 
minimum time.

We have discussed the usefulness of a damper with the 
example of the swing door. But there are countless other 
situations in which we look for a fast-decaying oscillation.

The needles of any meters should reach their final 
position as fast as possible. They should not oscillate 
around the measurement value for a long time, and 
neither should they approach the definite measure-
ment position too slowly. Therefore, meters with nee-
dles are always equipped with an appropriate damper.

The most important oscillation damper application 
is probably in vehicles: in passenger cars and trucks, 
locomotives and railway cars, motorcycles, mopeds 
and even in certain bicycles.

In the following, we will sometimes need to make 
reference to the different masses of a vehicle. We name 
them in the way that is illustrated in Fig. 1.33: the part 
of the vehicle that is carried by springs shall be called 
H (for „heavy“), the part between the springs and the 
road (or rail), i.e. the axes, wheel suspensions, the 
wheels and any associated parts in case of driven 
wheels, shall be referred to as L (for „light“).

Vehicles need a damping system because they have 
springs. What are the springs used for? You can cer-
tainly imagine how we would feel in a vehicle without 
any springs. The movement of H would follow the ir-
regularities of the routes, the roads or the rails. The 
springs ensures the movement of H to be smoothened.

Now we imagine a car that has a spring system but 
no damper yet. What will happen if such a car drives 
on a road that is not completely even? The car will 
make movements that are not quite as we want them to 
be in two respects.

1. Together with the 4 springs, part H of the vehicle 
forms a system that is essentially identical to our spring 
oscillator from Fig. 1.9. H is nudged by every irregu-
larity of the road so that the car begins to performs an 
oscillation in the vertical direction and also keeps 
swaying for some time after passing the irregularity. 
This is not convenient for the passengers.

2. After driving over an irregularity, a wheel makes 
a bouncing movement similar to a rubber ball. During 
such a bouncing movement, the wheel has no contact 
to the road anymore for most of the time. With a wheel 
that is currently in the air, however, neither braking 
nor accelerating or steering is possible. It would conse-
quently be dangerous to drive such a car.

Both the oscillation movement of the vehicle part H 
as well as the bouncing movement of the vehicle part L 

Fig. 1.34  Relationship between momentum current 
strength and velocity difference for the shock absorber 
of a car

Fig. 1.33  The heavy part H of the vehicle is connected to 
the light parts L via the springs and the dampers.
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is now damped away by means of the so-called shock 
absorbers – one for each wheel.

The shock absorber of a car essentially has the 
structure shown in Fig. 1.30 and is installed „in paral-
lel“ to the spring; see Fig. 1.33. Also, the spring and the 
shock absorber sometimes form a single module.

A subtle difference between a real car shock absorb-
er and the dampers that we examined earlier becomes 
clear in Fig. 1.34. The shock absorber is asymmetric: 
during compression, it is softer than while being pulled 
apart. Can you imagine why this is done?

Do you also understand now why the shock absorb-
ers are checked during the legally required technical 
inspections?

Exercises
1. Identify for a car, a truck, a railway-car and a motorcycle 

the springs and the shock absorbers.
2. The oscillator of Fig. 1.3 is to be damped. Make a sche-

matic drawing that shows how the damper has to be built 
in. Sketch the flow of momentum and energy in the way 
of Fig. 1.7 and Fig. 1.8.
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2.1  Resonance
Suspend a heavy object (several kg of weight) on a 

cord and hold the cord on the other end. Then, move the 
upper end of this pendulum back and forth slowly, Fig. 
2.1a. The object follows your movement but does not 
quite do what we would call an oscillation. Now acceler-
ate the back-and-forth movement of your hand gradually. 
The pendulum starts to oscillate, the thread will no longer 
remain vertical. If you increase the frequency of the back-
and-forth movement further, the oscillation of the pen-
dulum will become increasingly intense. At even higher 
frequencies, however, it will slow down again. It will sim-
ply not manage to keep pace.

Hence, at a well-defined frequency of the move-
ment of your hand, the pendulum reacts strongest. 
This phenomenon is called resonance.

Maybe you have noticed that you have to make 
more or less of an effort to perform the back-and-forth 
movement. At first, i.e. at a lower frequency, less and 
then, during resonance, a lot, and finally – i.e. at high 
frequencies – less again. In case of the resonance, we 
apparently „pump“ much energy into the oscillator. 
We can also conclude from another fact that things 
have to be like this: during resonance, the pendulum 
moves fastest. Therefore, friction is strongest and a 
maximum of entropy is created. For the creation of en-
tropy, however, energy is required.

2.2 � Resonance of a mechanical 
oscillator

Although the pendulum is particularly easy to set 
up, its theoretical description is a bit complicated. We 
therefore come back to our spring oscillator. It can also 
be used to observe the phenomenon of resonance: we 
move the left end of the spring sinusoidally (like a sine 
function) back and forth, Fig. 2.2. For this purpose, we 

Fig. 2.1  „Excitation“ of a pendulum (a) with a low fre-
quency (b) with the natural frequency (c) with a high 
frequency

Fig. 2.2  The spring oscillator is excited by means of an 
electric motor.

crank

motor

a)	 b)	 c)

use a motor (i.e. a source of energy) with a crank han-
dle. The fact that the spring does not only move back 
and forth but also up and down in this process will not 
disturb the experiment.

Fig. 2.3 is a schematic illustration of the oscillator. 
As friction will be important in the following, we have 
illustrated it by means of a damper. The damper sym-
bol stands for both the natural, i.e. involuntary, fric-
tion as well as for real damper that might exist.

First, some technical terms have to be introduced.
The frequency at which the spring oscillator (or any 

other oscillator) oscillates after being nudged once and 
then let up to itself is called natural frequency f0 of the 
oscillator. The motor with the crank handle is called ex-
citer. The frequency of the sine-shaped back-andforth 
movement of the motor is called exciter frequency.
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Now we examine the movement of the oscillator as 
a function of the exciter frequency. We find out the fol-
lowing:

1. Body K makes a harmonic movement regardless 
of the value of the exciter frequency f. Would you have 
expected that? It means that the time dependence of 
the position, the velocity, the momentum and other 
quantities is given by a function of the type:

y(t) = ŷ  · sin(2π f t + φ)
The values of the amplitudes of these quantities, 

however, depend on the frequency of the exciter.
2. We can see best how the oscillator reacts to the 

excitation if we ask how much energy it „absorbs“ per 

5

00
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15

20

4 6 8f0

P–

f

Fig. 2.4  Resonance curve: the average energy current from 
the exciter to the oscillator as a function of the frequency

springexciter

dampera b

K

Fig. 2.3  Schematic display of a mechanical oscillator 
with a damper and an exciter

time. We mean the energy that flows from the exciter to 
the oscillator and that is used in the exciter for the pro-
duction of entropy (due to mechanical friction). As this 
energy current changes constantly in the course of an 
oscillation period, we look for its time average value P

_
.

Hence: we are interested in the average energy cur-
rent from the exciter to the damper as a function of the 
exciter frequency f, i.e. for the function P

_
(t). Fig. 2.4 

shows the function graph. This graph is called reso-
nance curve of the oscillator.

The phenomenon of resonance can be seen easily: 
the oscillator absorbs most of the energy when the ex-
citer frequency is equal to its natural frequency f0 . For 
both f = 0 as well as for f → ∞, the energy current from 
the exciter to the oscillator becomes zero.

3. Even if not intended, the oscillator is damped by 
friction. If the damping effect is increased, for example 
by installing a damper, the resonance curve will 
change. The stronger the damping effect, the wider and 
flatter the hump of the graph, Fig. 2.5 and 2.6. Con-
versely, the curve becomes narrower the weaker the 
damping of the oscillator. If there is not damping at all, 
the resonance hump will become a very fine jag situ-
ated at the natural frequency, whose edges approach 
asymptotically an infinite value of the energy current.

The energy current that flows from the exciter to 
the oscillator reaches its maximum value when the 
frequency of the excitation is equal to the natural 
frequency. Then, the oscillator is in resonance with 
the exciter. The stronger the damping effect, the 
flatter the resonance curve.

Exercise
1. Fig. 2.6 shows a section of Fig. 2.5. Compare the energy 

current values of the resonance curves for the frequencies
f = 1.5 Hz, f = 1.7 Hz, f = 2 Hz.

Fig. 2.6  Section of Fig. 2.5Fig. 2.5  Resonance curves for different dampings
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2.3 � How to draw a resonance 
curve

To draw a resonance curve, we have to measure the 
energy absorbed per time for many different frequen-
cy values. We do not have a meter for direct measure-
ment of this energy. Therefore, we have to find some 
alternative way.

We try to take advantage of the relationship

P = Δv · FD

that we know from earlier observations. Here, FD is the 
momentum current that flows through the damper 
and Δv is the difference of the velocities between the 
„connections“ of the damper. As the left connection 
(a) does not move in Fig. 2.3, we can replace Δv by the 
velocity of the right connection (b). This velocity, how-
ever, is also equal to the velocity v of the oscillating 
body. We thus have:

P = v · FD .

We can set the momentum current FD through the 
damper as proportional to the velocity:

FD = k · v .	 (2.1)

The energy current to the damper therefore becomes:

P = k · v2 .

As the velocity changes continuously in the course 
of a period, also this energy current changes periodi-
cally. With

v(t ) = v̂ · sin(2π f t)

we obtain

P(t) = k · v̂ 2 · sin2(2π f t) .

We are now interested in the time average value of 
the energy current. We therefore have to find the time 
average of the term on the right side of the equation. k 
and v̂ do not depend on time. Hence, we need to calcu-
late the following

 
      _                   ________
P(t) = k · v̂ 2 · sin2(2π f t) .

The time average of sin2(2π f t) can be read directly 
from the function graph of the function

Fig. 2.7  Function graph of f(t) = sin2(2π f t). The time 
average of the function values is 1/2.

–0.5

0.5

1

1.5

0

0 2 4 6 8 10

t

f(t) = sin2(2π f t) ,

Fig. 2.7. The curve is a sine curve that oscillates up and 
down between the values 0 and 1. The average value is 
obviously 0.5.

We can obtain the same result by means of the gen-
erally valid equation

2 1 1sin cos(2 ).
2 2

= −α α

that we have already used before. The mean value of 
the cosine on the right side is zero. Hence, only the ad-
dend 1/2 will be left.

We therefore have:

2ˆ .
2
kP v= ⋅

 	
(2.2)

The velocity amplitude and the damping constant k 
can both be measured easily. Hence, also the absorbed 
energy can be determined.

As v̂ depends on the exciter frequency, also the av-
erage energy current depends on f. Thus, to draw the 
resonance curve, the velocity amplitude is measured 
for different values f and the absorbed energy is calcu-
lated on by means of equation (2.2).

Exercise
1. Earlier in this text, we stated that the average value of f(t) 

= sin2(2π f t) is 0.5 and that this conclusion can be drawn 
from the function graph in Fig. 2.7. Explain this conclu-
sion.
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2.4 � Resonance of a resonant 
circuit

With regard to experiments, an electric oscillator, 
i.e. a resonant circuit, has advantages and disadvan-
tages. Although the measurements are easier and more 
precise – as no velocity and force sensors are required 
–, the oscillations can only be seen indirectly through 
the scales of a voltmeter, an ammeter or on the com-
puter screen.

Fig. 2.8 shows a resonant circuit with a damping 
device and an „exciter“. The exciter is an electric en-
ergy source that supplies an alternating voltage with a 
constant amplitude and whose frequency can be 
changed.

Just as in the case of the mechanical oscillator, 
„resonance curve“ shall be understood as the func-
tion graph that illustrates the average value of the en-
ergy absorbed per time as a function of the exciter 
frequency f.

The resonance curve cannot be distinguished from 
that of a mechanical oscillator, Fig. 2.4 to Fig. 2.6.

Also here, the energy current can be determined by 
means of quantities that are easier to measure.

We apply

P = U · I

to the resistor and replace the electric current that 
flows through the resistor by means of

.UI
R

=
	

(2.3)

We obtain:
2

.UP
R

=

As the voltage between the connections of the resis-
tor changes according to

U(t) = Û  · sin(2π f t)

we obtain
2

2
ˆ

( ) sin (2 )
2
UP t ft

R
= ⋅ π

 
.

From this the mean value of P(t) can be derived in 
the same way as shown in the previous section:

(2.4)
2ˆ

.
2
UP

R
=

exciter

capacitor coil

resistor

Fig. 2.8  Resonant circuit with exciter and damping 
resistor. The exciter creates a sine voltage with a con-
stant amplitude. The frequency can be changed.

Û  and R can be measured easily. Therefore, also the 
absorbed energy can be determined without difficulty.

The equations (2.2) and (2.4) should actually be 
equivalent to each other. You might be confused that 
the constant k that characterizes the damper stands in 
the numerator whereas the constant R that character-
izes the electric resistor stands in the denominator. 
The reason for this deviation is that k and R are not 
exactly equivalent to each other in the equations (2.1) 
and (2.3). While k tells us how well a mechanical resis-
tor (the damper) conducts the momentum current, R is 
a measure for how strongly an electric resistor hampers 
the electric current. In fact, k corresponds to the recip-
rocal value of the electric resistance, i.e. a quantity that 
is also used in electrical engineering. It is called elec-
tric conductance.

2.5 � Feedback oscillators
Systems that perform oscillations are technically 

important. They are used in clocks of any type. Also, 
they are needed for the creation of periodic waves that 
will be discussed in the next chapter.

In any case, we need a system that creates oscilla-
tions. The creation of oscillations is our problem now. 
„But haven’t we just solved this problem?““ you might 
ask.
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Let’s recall once again how we defined „oscillations“ 
at the very beginning: an oscillation: „…will run by it-
self after an initial energy supply“ was stated there. But 
later we saw that all oscillations are damped. Mechani-
cal oscillations lose energy due to friction. In case of 
electric oscillations, electric resistance causes the os-
cillation to gradually lose the energy that we put into it 
at the beginning. Every oscillation that we initiate 
therefore decays more or less quickly. To maintain an 
oscillation, the energy losses have to be compensated 
continuously.

We had already done that by means of an „exciter“. 
Regarding our current problem, however, it is not a 
suitable method as the exciter itself has to contain an 
oscillation generator that can create a sineshaped mo-
mentum current or voltage. Hence, the problem would 
only be deferred.

We therefore have to manage to supply an oscillator 
with energy from a „normal“ energy source, i.e. a 
source that does not already create an oscillation by 
itself.

We look at the oscillation from Fig. 1.9 as a specific 
example. The oscillator is illustrated once again in 
Fig. 2.9.

How could we supply energy to it? Let’s try by pull-
ing it to the right. The energy supply works – but only 
if we pull in the right moment, i.e. while the body is 
moving to the right. Due to the fact that we are pulling, 
the body gets additional momentum, the movement 
becomes more intense. But if we pull while it is moving 
to the left, we will slow it down (the absolute value of 
its momentum decreases) and we will take energy 
away from it. Hence, we are doing just the opposite of 
what we wanted. We see: to feed energy to the oscilla-
tion, we have to pull in the right moment, or rather in 
the right time interval.

Fig. 2.9  If we pull on the thread while the body is mov-
ing to the right (a), we will provide energy for the oscil-
lator. If we pull while it is moving to the left (b), we will 
take energy out of the system.

You will certainly find this observation logical if 
you think of how we can maintain – or also reinforce 
– the movements of a swing. The system has to be 
kicked at the right time.

If an oscillation is not maintained by a person who 
always pays attention to the pushing or pulling some-
where, we will need a device that ensures this process 
to occur automatically. Such devices exist, both for 
mechanical as well as for electric oscillations. Oscilla-
tions that are generated this way are called feedback 
oscillations. The oscillation itself controls the energy 
supply. We will not explain in detail how this is done 
because there are many different possibilities.

We keep in mind:

To maintain an oscillation, we need
•• an oscillator
•• an energy source
•• a system to control the energy supply.

Exercises
1. How does the control system of the energy supply work 

in a pendulum clock? To make a resonant circuit perform 
a continuous oscillation, a „feedback system“ is installed. 
How does that work? Use literature (for example an ency-
clopedia) or the Internet to find the information.

2. Also for periodic processes, which are not necessarily re-
ferred to as oscillations, a self-control is used: in the 
steam engine, the car engine, in a seesaw for children and 
also in the case of the back-and-forth movement of a ten-
nis ball. Describe how the control system works in these 
cases.

a)

b)
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3.1 � Some mathematical results
We will see that there are systems that can perform 

two or even more sine oscillations at the same time. To 
understand what this means and to see how such oscil-
lations can be described, we have to familiarize our-
selves with some mathematical results.

We have to add up sine functions, i.e. terms of the 
type

ŷ · sin(2π f t + φ)

Hence, the question is: what does the function

y(t) = ŷ1 · sin(2π f1 t + φ1) + ŷ2 · sin(2π f2 t + φ2)
	 + ŷ3 · sin(2π f3 t + φ3) + …

look like? ŷ1, ŷ2, ŷ3, … are the amplitudes of the indi-
vidual sine functions, f1, f2, f3,... are their frequencies 
and φ1, φ2, φ3,... the starting phases.

At first, it appears as if there was not much to say 
about this sum. A sine function is a simple, regular 
function. But if several of such functions are added up, 
the result will probably be something complicated and 
confusing.

But in fact, mathematics tells us that a few simple 
rules apply for such a sum; they will be addressed in 
the following.

We will not deal with the proof of these rules but 
trust that the conclusions from the mathematics books 
are correct. (If you would like to look things up in a 
mathematics book, you have to search with the key-
word „Fourier series“.)

The first rule we examine applies for a simple spe-
cial case.

1. Sine functions with equal frequencies
At first, we only add up sine functions with the 

same frequency f. Amplitudes and starting phases can 
have any value. Hence:

y(t) = ŷ1 · sin(2π f t + φ1) 	+ ŷ2 · sin(2π f t + φ2)
	 + ŷ3 · sin(2π f t + φ3) 	+ …

Now, mathematics teaches us: the sum is again a 
sine function of frequency f. Fig. 3.1 shows an exam-
ple. The three functions that are displayed in the image 
section (a) result in the function from image section 
(b) when added up.

The sum of sine functions with equal frequen-
cies f but any different amplitudes and starting 
phases is again a sine function with the frequency f.

Fig. 3.1  Three sine functions with equal frequencies but 
different amplitudes and starting phases (a) result in a 
sine function with the same frequency (b) when added 
up.
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2. Periodic functions
We add up two sine functions whose frequencies 

are integer multiples of the same fundamental frequen-
cy f0. The frequency of the first sine function should be 
n1 · f0, that of the second one n2 · f0, where n1 and n2 are 
integers:

y(t) = ŷ1 · sin(2π n1 f0 t + φ1) + ŷ2 · sin(2π n2 f0 t + φ2)

During the period T0 = 1/f0 of the fundamental 
oscillation, the first addend performs n1 oscillations 
and the second one n2 oscillations. After the end of 
this period, each of the two addends has conse-
quently performed a certain number of complete 
oscillations. Therefore, the sum function y(t) is once 
again in the same state as at the beginning. In other 
words: the sum function is periodic with the period 
T0.

Fig. 3.2 shows an example.
Here, the following addends were chosen:

5 · sin(2π · 8 Hz · t + 0.5 π),
3 · sin(2π · 20 Hz · t + 1.5 π).

The amplitudes are 5 and 3, the frequencies 8 Hz 
and 20 Hz and the starting phases are 0.5 π and 1.5 π. 
The largest common divisor of 8 and 20 is 4. Hence, 
the frequencies are integer multiples of

f0 = 4 Hz.

We can therefore also write the addends as follows:

5 · sin(2π · 2 · 4 Hz · t + 0.5π),
3 · sin(2π · 5 · 4 Hz · t + 1.5π).

The period of the sum function is

T0 = 1/f0 = 0.25 s.

During this time, the first addend performs 2 oscil-
lations, the second one 5 oscillations, see image sec-
tion (a). The image of the sum function is a curve sec-
tion that repeats itself every 0.25 seconds; see image 
section (b).

You certainly anticipate that the rule we have just 
discovered can be generalized. Even if we add up more 
than two sine functions whose frequencies are integer 
multiples of a frequency f0, the result will be a periodic 
function.

Not as obvious, on the other hand, is the following 
generalization that goes even further:

Fig. 3.2  Two sine functions whose frequencies are inte-
ger multiples of the same fundamental frequency f0 (a) 
result in a periodic function with the period T0 = 1/f0 (b) 
when added up. In the image section (b), the curve 
section that repeats itself periodically is highlighted in 
a red color.
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Every periodic function (frequency f0 = 1/T0) can 
be expressed as a sum of sine functions whose fre-
quencies are integer multiples of f0 .*

Once again the meaning of this phrase in other 
words: there is a periodic function y(t) with the period 
T0 = 1/f0. This function can be written as a sum of sine 
functions:

y(t) = ŷ1 · sin(2π · 1 · f0 · t + φ1) 
	 + ŷ2 · sin(2π · 2 · f0 · t + φ2)
	 + ŷ3 · sin(2π · 3 · f0 · t + φ3)
	 + ŷ4 · sin(2π · 4 · f0 · t + φ4)
	 + …

Of course, it can be that very large number of ad-
dends is needed. But if we content ourselves with rep-
resenting the function approximately, a few addends 
will be sufficient.

3. Any function
The rule that we have just learned is already astonish-

ing enough. But its validity is actually not limited to peri-
odic functions. Also nonperiodic functions can be writ-
ten as a sum of sine functions. However, the frequencies 
of the addends will then no longer be integer multiples of 
a fundamental frequency. The following rule applies:
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Every function can be expressed as a sum of sine 
functions.** We summarize the results * and **:

Every function y(t) can be expressed as a sum of 
sine functions.

If y(t) is periodic (period T0) the frequencies of 
the sine functions are integer multiples of the fun-
damental frequency f0 = 1/T0

This is an important result because we often want to 
know which sine components a function is made of.

Now, this result is not very useful as long as we do 
not know how its sine components can be deter-
mined. Let’s assume that there is a given time func-
tion. What are its addends? What are the values of the 
amplitudes and of the phases of the different ad-
dends?

Of course, mathematicians are able to calculate 
these amplitudes and phases, but the method is quite 
complicated. We therefore use a method that is less so-
phisticated but more practical instead: we make a 
computer solve the problem. This means that we have 
the work done by a program that uses the mentioned 
mathematical method. In doing so, we also facilitate 
our task in another way: we would only like to know 

the amplitudes but not the phases of the sine func-
tions. Hence, we ask: „What is the contribution of the 
sine function with a given frequency in a given time 
function?“. We do not ask about the starting phase, 
meaning that we do not inquire about the position of 
the sine function on the t-axis.

Exercises
1. Calculate (with the calculator or the computer) for 0 < x 

< 4π a table with the values of the following function: y(x) 
= sin(2x) + 3 sin(2x + π/2) + 3 sin(2x + π). Represent the 
function graphically.

2. Calculate (with the calculator or the computer) for 0 < x 
< 4π tables with the values of the following functions: 

( ) sin ,
1( ) sin sin3 ,
9
1 1( ) sin sin3 sin5 ,
9 25
1 1 1( ) sin sin3 sin5 sin7 .
9 25 49

y x x

y x x x

y x x x x

y x x x x x

=

= −

= − +

= − + −

Represent the function graphically. Could you make a 
conjecture?

3. Calculate (with the calculator or the computer) for 0 < x 
< 4π a table with the values of the following function: 

1 1 1 1( ) sin sin3 sin5 sin7 sin9
3 5 7 9

1 sin11 .
11

y x x x x x x

x

= + + + +

+

Represent the function graphically. Could you make a 
conjecture?

3.2 � Spectra
We start with any time function whose sine compo-

nents are known. We would like to tell someone else 
about this known fact. How can that be done? A some-
how bold method would be to draw a table of values 
with the frequencies of the existing sine terms in the 
first column and the corresponding amplitudes in the 
second column. If we were interested in the starting 
phases, we could list them in a third column. But such 
a table would not be very clear. A graphical display is 
more suggestive.

In fact, it is a common practice to illustrate the sine 
components of a function y(t ) in a graph: the ampli-
tude of the sine functions over the frequency.

We are therefore dealing with two different graphi-
cal illustrations:

Fig. 3.3  Top: time function; bottom: y associated spec-
trum
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•• with the time function y(t ), 
•• with the spectral function ŷ( f ).

The graphical display of the spectral function is 
called spectrum of the function.

With some mathematical skills and understanding 
of physics, you will be able to draw the spectrum for a 
given function y(t ). You will learn it best from the ap-
plications that are discussed in the following sections. 
For the time being, we will only show one single ex-
ample of a time function together with its spectrum: 
Fig. 3.3. As y(t ) only consists of 6 sine functions with 
frequencies whose values are far apart from each other, 
it is useful to draw the spectrum as a bar chart. If the 
spectral function shows a steady progression, it will be 
drawn like a normal function graph.

Exercise
1. Graphically illustrate the spectra of the functions from 

Exercises 2 and 3 of the previous section. Use x = 2π t.

3.3 � Double oscillators
Fig. 3.4 shows once again an oscillator that we know 

from earlier chapters. We assume that the oscillating 
body has a mass of 0.5 kg and the spring a spring con-
stant of 30 N/m.

We make the body oscillate again, but record its po-
sition with a sensor this time. The digital signal pro-
vided by the sensor is transferred to the computer, 
which will then determine the sine contribution to the 
movement by means of an appropriate program. It will 
display the result on the screen in form of two graphs:

1. The position of the body as a function of time: s(t)
2. The spectrum of this function: the abscissa is the 

frequency, the ordinate is the amplitude ŝ of the sine 
components of the time function s(t).

The task is still so simple that we already know the 
result in advance. We can therefore check whether the 
computer works correctly. It does indeed work cor-
rectly. The result it provides is shown in Fig. 3.5. The 
time function of the movement of the body is a sine 
function. The spectrum shows a pointed jag, a „peak“.

After having learned how to deal with the computer 
and how to interpret the graph, we will now address 
more interesting movements. We set up a double oscil-
lator: two bodies and three springs as illustrated in 
Fig. 3.6.

Playing a bit with this oscillator gives us the impres-
sion that it is substantially different from that in 

Fig. 3.4  The spectrum of the function x(t) (position of 
the glider as a function of time) only contains a single 
sine contribution.

Fig. 3.5  Time function (top) and spectral function (bot-
tom) for the movement of the glider from Fig. 3.4
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Fig. 3.6  Double oscillator. If only one of the two natural 
oscillations is excited, both bodies will perform a pure 
sine movement with equal frequencies. If both natural 
oscillations are excited at the same time, the position 
of each of the two bodies will be described by the sum 
of two sine functions. For each of the two bodies of a 
double oscillator, the function s(t) is the sum of two 
sine functions.

Fig. 3.4. The oscillator from Fig. 3.4 always performs 
the same movement, no matter how it is nudged. Of 
course, it can oscillate with a smaller or a larger ampli-
tude, but it will always perform a sine-shaped move-
ment. Our double oscillator seems to behave differ-
ently. Depending on how it is nudged, it makes a 
different movement. Also, we can see that in general it 
does not perform any sine movement.

Now we will examine the double oscillator a bit 
more systematically by recording the time function 
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and the spectrum. We mount the sensor on one of the 
two gliders and nudge the bodies in any way so that 
they start moving. The computer displays the result. It 
could look like that shown in Fig. 3.7a.

We repeat the experiment. Again, we nudge the 
bodies but this time a bit differently so that we obtain 
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Fig. 3.7  The position of the body on the left as a func-
tion of time, recorded twice. The oscillator was nudged 
differently in the two cases. The associated spectrum is 
shown respectively below.

a different result, for example the one from Fig. 3.7b. 
We repeat the experiment a few more times and ob-
serve the result displayed on the screen each time. If 
we concentrate exclusively on the time functions, our 
first impression will be confirmed: depending on how 
the bodies are nudged, we obtain a different function 
curve. We cannot identify any systematic scheme. 
But we will get a completely different impression if 
we look at the spectra. In any case, the spectrum con-
sists of two peaks that are always at the same frequen-
cies f1 and f2. In the example of our Figures, we have 
the value f1 = 1.2 Hz and f2 = 2.0 Hz. We can conclude 
from this observation that the time function is the 
sum of two sine functions in any case. The various 
experiments differ from each other in the amplitudes 
of the two sine functions that have different values 
each time.

Now we repeat the series of experiments but put the 
sensor on the other body. We try to nudge the bodies 
in the same way as in the first series of experiments. 
We find that the time function that describes the 
movement of the second body is also a sum of two sine 
functions. Again, the frequencies are f1 and f2, i.e. the 
same as in the first series of experiments. The ampli-
tudes, in turn, have other values than before.

For each of the two bodies of a double oscillator, 
the function s(t) is the sum of two sine functions.

The frequencies f1 and f2 of the two sine functions 
are called natural frequencies of the double oscillator.

We have seen that the amplitudes of the two sine 
functions depend on how the oscillator is nudged. 
Now we would like to examine this influence.

We therefore nudge the double oscillator in a very 
specific way: the two bodies are displaced leftwards by 
the same distance and then released simultaneously. 
You can probably predict what happens next: both 
bodies oscillate in a sine-shaped way with the frequen-
cy f1, i.e. they oscillate in sync and the distance be-
tween them will always remain the same. Fig. 3.8a 
shows the positions of the two bodies as a function of 
time. This result does not conflict with our experiences 
up to present. Only the amplitude of the oscillation 
with the frequency f2 is zero.

Now we nudge the double oscillator in a different 
way: both bodies are displaced outwards by the same 
distance and then released simultaneously. Again, 
both perform a pure sine movement but this time 
against each other. The frequency is f2, Fig. 3.8b.

The two sine movements that we have excited are 
called natural oscillations of the system.

tt

Fig. 3.8  Position of the two bodies as a function of 
time, (a) for the first natural oscillation, (b) for the sec-
ond natural oscillation

a)			   b)

a)

b)
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A double oscillator can perform two different 
natural oscillations. A natural oscillation is charac-
terized by the fact that each of the two bodies makes 
a pure sine movement.

If we nudge the double oscillator in any random 
way, just as we did at the beginning, so that the time 
functions s(t) of the two bodies are composed of two 
sine functions, we can say that the system performs 
two natural oscillations at the same time.

Exercises
1. We have observed that the first of the two natural oscilla-

tions that we had triggered has a lower frequency than the 
second one. This could also have been predicted.

2. We are interested in the result of an experiment that is 
similar to that from Fig. 3.6. However the springs are no 
longer identical. (a) The two external springs are quite 
hard, that in the middle is very soft. What can be said 
about the two natural frequencies? (b) The spring in the 
middle is hard, the two external springs are soft. What 
can be said about the two natural frequencies?

3. In the first oscillator that we have examined, Fig. 1.3, two 
bodies are moving as well. However, we did not notice 
anything about a second frequency back then. Can you 
comment on this matter?

4. How can two pendulums that are suspended next to each 
other be transformed into a double oscillator?

3.4 � Multiple oscillators
Now we connect not only two, but three, four or 

even more bodies to each other by means of springs, 
Fig. 3.9. The experiment confirms what we could also 
have guessed. The spectrum of the triple oscillator has 
three peaks, i.e. also three natural frequencies whereas 
the spectrum of a quadruple oscillator has four peaks, 
i.e. four natural frequencies, etc.

The spectrum of a N-fold oscillator has N peaks. 
The system has N natural frequencies and can per-
form N different natural oscillations.

Fig. 3.9  The six-fold oscillator can perform six different natural oscillations.

Again, we recognize a natural oscillation by the fact 
that all the bodies perform pure sine movements.

The question of how the N bodies move in case of 
the different natural oscillations and how to excite the 
individual natural oscillations is more difficult to an-
swer. There are rules and principles, but they are com-
plicated and should not be of interest here. With some 
physics skills, however, we can guess easily how at least 
some of the natural oscillations look like.

Exercises
1. Describe the movement of the individual bodies for a 

maximum number of natural oscillations (a) for a triple 
oscillator, (b) for a quadruple oscillator.

2. Describe the movement of the individual bodies for one 
of the natural oscillations of a thousand-fold oscillator.

3.5 � When inertia and elasticity 
are no longer separated

The oscillators that we have examined so far had a 
common feature that we have taken for granted: they 
consisted of „bodies“ and „springs“. We have imagined 
the bodies as similar to hard blocks. They have a cer-
tain mass and therefore they have inertia but they are 
not elastic or deformable. Regarding the springs, by 
contrast, we have assumed its mass to be so small that 
it could be neglected. We considered its elasticity as its 
only relevant property. Let’s take another look at the 
oscillator from Fig. 1.2: the oscillating ruler that is 
clamped on one side. Here, inertia and elasticity are 
not separated from each other. Each piece of the ruler 
is both inert as well as elastic, and both characteristics 
are relevant. The ruler can practically not be distin-
guished from an oscillator that consists of a very large 
number of very small inert bodies that are separated 
from each other and that are connected to one another 
by means of many tiny springs. If things worked this 
way, we could in fact expect the ruler to have not only 
one natural oscillation – as it appeared at first – but 
several ones, or rather many of them. And this is actu-
ally true.
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Such natural oscillations can be observed particu-
larly well in a slightly different system, which, however, 
behaves essentially like the ruler: an elastic rope that is 
clamped on both sides, Fig. 3.10.

To find out the frequencies of the natural oscilla-
tions, we move one of the two fixations sinusoidally up 
and down with a small amplitude. We start with a 
movement at a very low frequency and gradually in-
crease the frequency. Exactly the same is done to draw 
the resonance curve of the system.

Now we find that the rope makes a very simple 
movement at a specific frequency: the shape of the 
rope changes between two extremes. Each point of the 
rope makes a pure sine movement; i.e. we are dealing 
with a natural oscillation. By the way: the amplitude of 
the movement is very large. Hence, the rope is in reso-
nance with the exciter. If we increase the frequency 
further, the amplitude will decrease again and the 
movement will no longer be sine-shaped. By further 
increasing the frequency, we will arrive again at a state 
in which the individual points of the rope perform a 
sine movement with a large amplitude. The shape of 
the rope, however, is now different from what it was 
during the first resonance. We have a second natural 
oscillation and a second resonance. We can increase 
the frequency more and more and will observe a series 
of natural oscillations.

The natural oscillation with the lowest frequency is 
called fundamental oscillation; the other ones are re-
ferred to as harmonics. The frequencies of the harmon-
ics are integer multiples of the fundamental frequency.

We can also try to excite the natural oscillations 
with our hands. But the result will be somewhat poor.

Musical instruments
You might have noticed that the structure of our ex-

periment is similar to a string instrument. To achieve 
higher frequencies, the oscillating „cord“ in a musical 
instrument is a steel wire. When playing the instru-
ment, the string is excited in different ways to perform 
oscillations: by means of beating or plucking with the 
fingers in case of guitars, through beating with a small 
felt hammer in the case of pianos, by means of striking 
with the bow in case of violins, violas, cellos and bass-
es. Apart from the fundamental oscillation, several or 
many other harmonics are excited in any case.

The working principle of the wind instruments is 
not very different from that of the string instruments. 
But there, not a string but the air inside the instrument 
performs the oscillations. While every piece of a string 
oscillates back and forth transversally to the string di-
rection, the air in a wind instrument moves in a longi-

fundamental
oscillation

1st harmonic

2nd harmonic

3rd harmonic

4th harmonic

Fig. 3.10  Snapshots of the natural oscillations of a taut 
rope or the string of a musical instrument

Fig. 3.11  Air oscillations in a wind instrument (flute, 
clarinet, organ pipe...). (a) fundamental oscillation, (b) 
first harmonic, (c) fourth harmonic. The arrows indicate 
how the air is moving. The density of the air changes 
due to this movement. The gray shading illustrates a 
sort of „snapshot“ of the density.

a)

b)

c)

tudinal direction, Fig. 3.11. This class of instruments 
includes the recorder and the transverse flute, the clar-
inet and the saxophone, the oboe and the bassoon, the 
brass instruments trumpet, trombone, horn, etc., and 
also the organ.

The spectra of the sounds of wind instruments are 
very similar to the spectra of sounds of the string in-
struments although these sounds are created very dif-
ferently. Also in this case, the frequencies of the har-
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monics are integer multiples of a fundamental 
frequency.

Fig. 3.12 shows the movement of the air in a clarinet 
at the top as well as the associated spectrum below. It is 
obvious that the frequencies of the harmonics are inte-
ger multiples of the fundamental frequency.

Also objects with other shapes can be excited to 
perform oscillations, and such objects have their char-
acteristic natural oscillations. In most cases, however, 
the spectrum is much more irregular than in the case 
of a string or wind instrument: the frequencies of the 

Fig. 3.12  Oscillation spectrum of a clarinet. The fre-
quencies of the natural oscillations are integer mul-
tiples of a fundamental frequency (here the standard 
pitch A with f = 440 Hz).
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harmonics are no longer integer multiples of the fun-
damental frequency. As the frequency of the funda-
mental oscillation is generally in the range in which 
our ear is sensitive, we can hear all these oscillations. 
They are the sounds that constantly surround us and 
that are formed when two objects collide.

Some musical instruments also have spectra with 
harmonic frequencies that are no integer multiples of 
the fundamental frequency. They are the ones for 
which the oscillating body is not only extended in one 
direction: the cymbal, the timbale and the bell.

The quartz clock
The name is due to the fact that, instead of the pen-

dulum or the balance wheel, the clock has a tiny quartz 
crystal that performs one of its natural oscillations and 
therefore sets the clock pulse.

The fact that it has to be a quartz crystal is due to a 
special property of this material. When a quartz crys-
tal is deformed – compressed or stretched – it charges 
itself electrically on two opposite faces. Conversely, a 
crystal changes its shape when it is charged on two op-
posite sides by applying a voltage.

Thanks to this property, the crystal can be provided 
with the energy that it loses while oscillating due to the 
inevitable damping effect. This way, an electric circuit 
can at the same time be given a time signal, which re-
peats itself with each period of the quartz, with the 
mechanical oscillation. This time signal is used to con-
trol the clock hands.
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4  �  WAVES

Everyone knows them as water waves, Fig. 4.1: a 
sort of deformation of the water surface that moves by 
itself.

Another wave phenomenon is the sound: very small 
pressure changes of the air that move through the air.

Water and sound waves are so interesting that it 
would definitely be worth dealing with waves in great-
er detail.

In fact, however, waves have a much higher signifi-
cance in science and technology because many phe-
nomena of which we would not expect it in advance 
can be interpreted as waves.

At first and above all, there is the large class of the 
so-called electromagnetic waves. They include the 
waves that are used for radio and television broadcast-
ing, for mobile phones and for wireless landline 
phones. In addition, there are the „microwaves“ used 
in microwave stoves. Then, there is a wide range of 
phenomena that we call radiations: infrared and ultra-
violet radiation, X-rays and gamma radiation, and fi-
nally the light that we are all familiar with. Later we 
will deal with the question about the medium in which 
these waves are moving. Comparing these waves to 
water waves, what would be the equivalent of the water 
and what would correspond to the deformation of the 
water?

Another type of waves, i.e. the gravitational waves, 
are much more difficult to create and to detect. In 
principle, they are formed when several masses move 
opposite to each other. But to be intense enough as to 
be detectable, the masses need to have huge values. 
Noticeable gravitational waves emerge for example 
during the explosion of a star; i.e. a process that is 
called supernova.

What’s more, there is also another, maybe even 
more important type of waves in nature: the matter 

Fig. 4.1  Water wave

waves. All matter can be described as a wave. Quantum 
mechanics teaches us the meaning of this statement 
that seems almost absurd.

Waves transport energy. Having bathed in the sea 
during a heavy swell, you might have already felt your-
self that water waves carry energy. During an explo-
sion, windows can break even at a long distance. The 
energy is transmitted with sound waves in this case. 
Also the movements of the Earth during an earth-
quake are sound waves. You certainly know that light 
and other electromagnetic waves carry energy.

Now you will understand that it is worth dealing 
with waves. At first, we will omit the gravitational 
waves and the matter waves.

4.1  The carrier of waves
We start our examination with a very simple type of 

wave: „waves on a string“.
A long string is laid on the floor and one of its ends 

is moved briefly and forcefully upwards and back 
downwards immediately after. A wave moves away 

     A
ttention!

     A
 wave!
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from the end that we move. Fig. 4.2 shows 3 snap-
shots.

Hence, what we call a wave is the deformation that 
runs through the string. It is logical that no such a 
wave can be created without a string.

We generalize: a condition for the existence of a 
wave is something in which the wave can move. We 
call this „something“ carrier of the wave. (In our case, 
the string is the carrier.) The carrier is at first in its 
ground state. (The string is extended straightly on the 
floor.) A generator of the wave or sender then causes a 
change of the ground state for a short time. (A person 
moves the string up and down at one point during a 
short time.) This change of the ground state moves 
through the carrier or beyond the carrier.

With these considerations in mind, we examine a 
second wave type: a water wave in a long gutter. The 
water is the carrier of the wave. In the ground state, the 
surface of the water is horizontal everywhere, Fig. 4.3a. 
We dip a body briefly into the water on one end of the 
gutter, Fig. 4.3b, and pull it back out. This creates a de-
viation from the ground state: a bulge and a dent are 
formed on the surface of the water and move away 
from the point of creation, Fig. 4.3c.

A third example of a wave is shown in Fig. 4.4. The 
carrier of the wave is a long and slightly pre-stressed 
steel spring. The change of the ground state: one end of 
the spring is quickly moved a bit to the left and imme-
diately back to its old place. Also this perturbation of 
the ground state moves away from the point of cre-
ation by itself.

We summarize:

A wave needs a carrier. At the point of creation 
of the wave, the ground state of the carrier is 
changed quickly. This deviation from the ground 
state moves away by itself.

In all examples that we have examined, the wave 
carrier was moving besides the wave. Please distin-
guish these two movements properly!

The movement of the wave carrier is sometimes 
transversal to the direction of propagation of the wave, 
for example in the case of the wave on a string. Such 
waves are called transverse waves.

In other cases, the back-and-forth movement of the 
wave carrier goes in the same direction as the move-
ment of the wave, for example in case of the wave in 
the steel spring. Such waves are called longitudinal 
waves.

But there are also waves for which the movement of 
the carrier is more complicated. In a water wave, for 

Fig. 4.4  Three snapshots of a longitudinal wave in a 
steel spring

Fig. 4.2  Three snapshots of a wave on a string

Fig. 4.3  The body that swims in the water (a) is pushed 
downwards for a short time and pulled back up (b). A 
wave moves away from the „sender“ (c).

a)

b)

c)

example, the carrier, i.e. the water, moves on a closed 
curve.

And sometimes nothing moves at all, for example 
in the case of the electromagnetic waves.

Do not confuse the movement of the wave and 
the movement of the wave carrier.

4.2 � The velocity of waves
Try to make a wave on a string faster or slower by 

moving the string end in different ways. All you will 
achieve is to change the shape and the size of the defor-
mation of the wave. You do not have any influence on 
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the velocity. It is different from throwing a stone. The 
velocity of the stone depends on the momentum that 
the stone has received in the process of throwing. But 
what does the velocity of a wave depend on?

The answer to this question is actually a bit intri-
cate. But we can already give you an approximate an-
swer at this point:

The velocity of a wave depends on the carrier in 
which the wave is moving.

A wave on the surface of water has a different veloc-
ity than on the surface of alcohol, gas or mercury. Or a 
wave in a hard spring moves with a different velocity 
than in a soft one. Sound waves move in air at approx-
imately 300 m/s, in water at 1480 m/s. (The waves in 
water can be created easily in a swimming pool by div-
ing and letting out a yell under water.)

Light moves in the so-called empty space (we will 
see later that the empty space is actually not really 
empty) at 300 000 km/s but only at 200 000 km/s in 
glass.

Exercise
1. Many dominoes are put next to each other in an upward 

position. If we nudge the first one, it will fall against the 
second domino so that it will fall as well, etc. Hence, a 
change of the state of the dominoes runs through the row. 
What does this process have in common with a wave? 
How does it differ from a wave?

4.3 � One-, two- and three-
dimensional wave carriers

We would like to sort the waves that we have come 
across so far according to the number of dimensions of 
the wave carrier.

A wave on a string moves on a string, and a string 
can be regarded as a one-dimensional object. Water 
waves move on the two-dimensional surface of water. 
Sound waves are finally an example for a three-dimen-
sional wave carrier.

If we want to track the progression of a one-di-
mensional wave, we will have to focus our view on 
one point, e.g. a maximum of deviation. In the case of 
a two-dimensional wave, the peaks are lines. The 
movement of the wave can therefore be observed by 
looking at such a line. These lines are called wave 
fronts. For three-dimensional waves, the wave fronts 
are surfaces.

Wave fronts can have a variety of shapes. However, 
we will often come across waves for which they have a 
simple shape.

The simplest two-dimensional waves are those 
whose wave fronts are straight lines, Fig. 4.5. For the 
simplest three-dimensional waves, the wave fronts are 
planes. Therefore, they are called plane waves.

Another simple wave type among the two-dimen-
sional waves is the circular wave, Fig. 4.6. Such a shape 
is formed when the wave moves away from the sender 
in all directions. For example, they are created on a wa-
ter surface by throwing gravel stones into the water. 
The equivalent for three-dimensional waves is a spher-
ical wave. An example is the sound wave that moves 
away from a bursting balloon.

As the energy current of the wave spreads over a 
constantly growing spherical surface, the maximum 
deviation of the wave decreases with a growing dis-
tance from the sender. A small section of the spherical 
wave can be regarded approximately as a plane wave.

Fig. 4.5  Two-dimensional wave with a straight wave 
front

Fig. 4.6  Two-dimensional wave with a circular wave 
front
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4.4 � Sine waves
We are not satisfied with a single wave moves over 

the water. We would like the transport process to con-
tinue. What can we do? Well, we can simply send out 
several or many individual waves, i.e. a wave train. To 
create a wave train, it is not sufficient that the body, 
which generates the waves, is moved up and down 
once. We have to move it up and down time and again, 
i.e. periodically.

In each of our examples, the sender had to perform 
a specific type of movement: an up-and-down move-
ment for a water wave and a back-and-forth move-
ment for the wave in the steel spring. Hence, to create 
a periodic wave, this movement has to be periodic.

If this periodic movement is sine-shaped, a sine 
wave will be result.

A sine wave in a string can be detected easily as a 
snapshot of the string has precisely the shape of a sine 
function graph. We imagine making several snapshots 
of the string shortly after each other, Fig. 4.7. The first 
picture shows a sine shape, the second one as well, the 
third one too, etc. But the three pictures are offset 
against one another.

In mathematical terms, this behavior of a wave on a 
string is described by the function

(4.1)ˆ( , ) sin 2 .x ty x t y
T

  = ⋅ π −  λ  
Here, x is the position coordinate in the direction 

of propagation of the wave. t is the time. The depen-
dent variable y will later stand for a variety of physical 
quantities: for the water level above the normal level 
in the case of a water wave, for the pressure or the 
velocity of the air in case of a sound wave, for the 
electric or the magnetic field strength in case of an 
electromagnetic wave. For the wave on a string that 
we are currently talking about, y is the deviation: the 
displacement of the string from the resting position, 
transversally to the direction of propagation of the 
wave. In case of a longitudinal wave as in Fig. 4.4, the 
deviation y has the same direction as the direction of 
propagation.

Just as in the case of an oscillation, ŷ is also called 
amplitude here.

The special feature of the function (4.1) is the fact 
that y depends on two independent variables: on the 
position x and on the time t. Making a snapshot of the 
wave at a specific instant of time t1 means inserting a 
specific value t1 in equation (4.1) for the time. The re-
sult is a function that only depends on a single inde-
pendent variable, i.e. on x:

x1 x3x2

Fig. 4.7  Three snapshots of a rope through which a sine 
wave is moving

x

λy

t3t2t1

Fig. 4.8  The functions that correspond to the three 
instants of time t1, t2 and t3 only differ from each other 
in the starting phase.

1
1 ˆ( ) sin 2 .t

x ty x y
T

  = ⋅ π −  λ  
The functions that correspond to snapshots at the 

later times t2 and t3 are

2
2 ˆ( ) sin 2 ,t

x ty x y
T

  = ⋅ π −  λ  

3
3 ˆ( ) sin 2 .t

x ty x y
T

  = ⋅ π −  λ  
Fig. 4.8 shows the graphs of the three functions 

yt1(x), yt2(x) and yt3(x). We can see that the choice of 
the instant of the snapshot only has an influence on the 
starting phase of the function. For the picture, this 
means that the sine line moves to the right over time.

„Snapshot“ means: choose an instant of time, for 
example t1, and consider y as a function of the posi-
tion, i.e. the function yt1(x). We would now like to re-
verse things. We choose a fixed position x1 and let the 
time run:

1
1 ˆ( ) sin 2 .x

x ty t y
T

  = ⋅ π −  λ  
This is the equation of a sine oscillation. Its starting 

phase is 2π · x1/λ. In other words: at each position x, the 
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wave carrier performs a sine movement, for example at 
the point x1 or at the point x2 or x3 in Fig. 4.7. The 
function graphs of the corresponding movements are 
displayed in Fig. 4.9.

The distance between two adjacent peaks of the 
graph in Fig. 4.8 corresponds to the wavelength λ. The 
distance between two peaks of the graph in Fig. 4.9 
corresponds to the period T.

You have seen that it is quite time-consuming to de-
scribe the function (4.1). If you have more trust in the 
computer than in mathematics, you can convince 
yourself much more easily that equation (4.1) de-
scribes a wave. Just enter the function in an algebra 
program and have it displayed as an animation. If only 
the qualitative progression is relevant, it will be suffi-
cient to enter the function

y = sin(x – t) .

(Your computer possibly requires other names for 
the variables.)

Equation (4.1) only describes a one-dimensional 
wave, for example a wave on a string. But there are also 
two- and three-dimensional sine waves. The position 
coordinate x will then be measured in the direction of 
propagation of the wave. This means that the wave 
fronts have to be lines for a two-dimensional wave and 
planes for a three-dimensional wave. Fig. 4.10 shows a 
wave on a two-dimensional wave carrier. 

A circular wave (on a two-dimensional carrier) or a 
spherical wave (in a three-dimensional carrier) can 
never be real sine waves. Even if the sender makes a 
sine movement, the maximum deviation, i.e. the „am-
plitude“, will decrease towards the outside, Fig. 4.11.

Exercises
1. We look at the sine wave on a water surface. The x-coor-

dinate in the wave equation (4.1) has to be measured in 
the direction of propagation of the wave. Now we turn the 
coordinate system in a way that the x-direction is parallel 
to the wave fronts. How will equation (4.1) change?

2. Water waves on the sea or on a pond are sometimes near-
ly sine shaped. Which wavelengths can be found?

3. Compare the „snapshots“ of the function of the equation 
(4.1) for t = 0 · T, t = 1 · T, t = 2 · T and t = 3 · T. Explain the 
result.

4. Also the equation 

ˆ( , ) sin 2 .x ty x t y
T

  = ⋅ π +  λ  
describes a wave. (Please mind the plus sign in the argu-
ment of the sine function.) What is the difference be-
tween this wave and that described by equation (4.1)?

Fig. 4.9  The functions that correspond to the three 
positions x1, x2 and x3 only differ from each other in the 
starting phase.

t

Ty

x3x2x1

Fig. 4.11  Circular wave on a two-dimensional carrier

x

Fig. 4.10  Section of a sine wave on a two-dimensional 
carrier, for example on a water surface

4.5 � The relationship between 
velocity, frequency and 
wavelength

We examine how the wave crests and wave troughs 
come out of the sender. Per period T, exactly one com-
plete wave crest plus one complete wave trough emerg-
es: a wave piece with the length λ. This means that the 
whole wave moves forward by λ during the time inter-
val T.



39

4.6  Sound waves

4 W
AVES

We therefore know the velocity of the wave. As the 
velocity is equal to the traveled distance divided by the 
time required for this distance, we obtain

.v
T
λ=

We now replace the period T by the frequency f. 
With T = 1/f we obtain

v = λ · f.

Example: if a wave has the wavelength λ = 2 m and 
if every part of the wave carrier oscillates with the fre-
quency 4 Hz, the wave will have the velocity:

v = 2 m · 4 Hz = 2 m · 4/s = 8 m/s.

Exercises
1. The velocity of sound waves in the air is approximately 

300 m/s. What is the wavelength of the wave that corre-
sponds to the standard pitch? The standard pitch has a 
frequency of 440 Hz.

2. Radio waves have a velocity of v = 300000 km/s. A sender 
sends with a frequency of 98.4 MHz. What is the wave-
length of the waves?

4.6 � Sound waves
In our examination of waves, we will always jump 

back and forth between the analysis of properties that 
all wave types have in common and special features of 
the individual wave types. After having gathered a lot 
of general properties, we will now take a detailed look 
at two particular wave types, first the sound waves and 
afterwards the electromagnetic waves.

Air is a carrier of the sound waves. As air is invisi-
ble, the sound waves cannot be seen either. (However, 
there is generally nothing visible of a sound wave mov-
ing through a solid material either. The amplitude is 
simply too small.) But the fact that sound must be a 
wave in the air can be seen well when looking at the 
formation of sound in a speaker. We need a speaker 
whose membrane is not covered, i.e. a speaker without 
its box.

Fig. 4.12 shows the design of a speaker. The mem-
brane is suspended in a way that it can be displaced 
elastically and perpendicularly to the speaker. A coil is 
fastened at the rear of the membrane. The coil extends 
into a permanent magnet. One of the magnetic poles is 
located on the outer side of the internal part of the 

coil

magnet

membrane

Fig. 4.12  Design of a speaker

magnet, the other one on the inner sides of the exter-
nal part. When an electric current flows through the 
coil, it is pushed forwards or backwards – depending 
on the direction of the electric current – by the mag-
netic field. Thereby, the membrane is moved as well.

We connect the speaker to a battery by means of a 
switch, Fig. 4.13. If we now close the switch, we will 
hear a cracking noise. And if we open the switch, there 
will be another cracking sound. When switching the 
system on, we can also see how the membrane jumps 
out of its initial resting position just as we can see it 
jump back during the switch-off.

The fast displacement of the membrane causes the 
pressure of the air, which moves directly in front of the 
membrane, to increase beyond or to fall below the 
normal pressure. This deviation from the normal state 
of the air detaches itself from the speaker and moves 
away. This moving deviation from the normal state is 
what we call a sound wave.

The air moves back and forth in the same direction 
in which the sound wave is moving. Hence, sound is a 

Fig. 4.13  We can hear a cracking noise during closing 
and opening of the switch.
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longitudinal wave – at least in air. Later we will learn 
about acoustic transverse waves. Such transverse 
waves, however, can only exist in solid materials.

There is also another, simpler experiment that dem-
onstrates that the carrier of the sound must be the air, 
Fig. 4.14. A bell is connected to a battery and placed 
under a glass dome. While the bell rings, air is being 
pumped out of the bell. During pumping, the sound 
becomes increasingly quiet until it can almost not be 
heard anymore. As soon as we let the air flow back in, 
its ringtone will become loud again.

The fact that we can still hear something in spite of 
the missing air is due to the sound being transported 
through solid substances as well, in this case the base 
of the bell.

The air is usually the carrier of the sound waves. 
The sound (in the air) is a longitudinal wave.

We connect a loudspeaker to an electric energy 
source that switches the voltage periodically on and 
off. Fig. 4.15 shows this „squarewave voltage“ as a 
function of time. The source should be designed in a 
way that the frequency can be changed. To begin with, 
we choose a very low frequency: approximately 1 Hz. 
We can hear two cracking sounds per second – one 
during each switch-on and one during each switch-off 
process.

Now we slowly increase the frequency. The cracking 
noises come in an increasingly faster succession. Upon 
reaching approximately 20 Hz, our ear will no longer 
be able to perceive the cracking noises separately. 
What we hear is a sound: a lasting, constant sensation.

The sound that we perceive at first is a low-pitched 
sound. If we increase the frequency further, it will be-
come increasingly highpitched.

Instead of a square-wave voltage, we now apply a 
sine voltage to the speaker. Again, we start with a very 
low frequency. But this time we do not hear anything 
below 20 Hz. Our auditory system is only sensitive for 
sine waves in a specific frequency range: approximate-
ly from 20 Hz to 20 000 Hz. As we become older, this 
range decreases. With a growing age, the upper limit 
moves towards lower frequency values.

Our auditory system is sensitive for sine waves 
with frequencies from approximately 20 Hz to 
20 kHz. The higher the frequency, the higher 
pitched the sound.

In a sine-shaped sound wave, both the velocity v of 
the air as well as the deviation ∆p from the normal 

Fig. 4.14  When there is no air in the glass dome any-
more, the bell can (almost) not be heard any longer. 

vacuum pump

glass cover

U

t

Fig. 4.15  „Square-wave voltage“

pressure behave according to equation (4.1). Hence, 
the following applies

(4.2)ˆ( , ) sin 2 x tv x t v
T

� �� �= � π −� �� �λ� �� �
and

(4.3)ˆ( , ) sin 2 x tE x t E
T

� �� �� � � �� �� �� �� �λ
The fact that the position coordinate x stands in the 

argument of the sine function, but not y and z, means 
that the wave moves in the x-direction. Thus the equa-
tions describe a plane sound wave.

We measure the velocity of a sound wave, Fig. 4.16. 
The wave is created by someone clapping his or her 
hands.

The wave passes the microphones M1 and M2 suc-
cessively. These microphones are connected to an elec-
tronic stopwatch. When a signal comes from M1, the 
stopwatch starts running and will be stopped when a 
signal comes from M2. Hence, it measures the time 
that the wave needs to travel the distance from M1 to 
M2.
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We obtain the velocity of the wave by dividing the 
distance between the microphones by the runtime. 
The measurement is not very accurate. With a more 
accurate measurement method we could find that the 
sound velocity depends on the temperature. Memorize 
300 m/s as an approximate value.

The velocity of sound waves in air is approxi-
mately 300 m/s.

The sound created by the speaker membrane is a 
longitudinal wave. We would like to create a transverse 
sound wave as a thought experiment. Instead of mov-
ing the membrane in the direction of its perpendicular 
axis, we move it back and forth in parallel to itself. You 
can imagine that there is no need to try this out. It can-
not work because the membrane simply slides past the 
air instead of setting the air in motion. The situation is 
similar for liquids.

In gases and liquids only longitudinal sound waves 
can exist. Things are different in solid media. Although 
they are difficult to deform due to their hardness, ev-
ery material has a certain elasticity and can therefore 
be deformed to some extent. A short impact against 
the end of a long bar leads to a slight deformation that 
runs through the bar, Fig. 4.17.

Earthquakes are an example of transverse waves in 
solid materials. From the place of origin of the earth-
quake, waves move away in all directions. Even at a 
distance of up to a hundred kilometers, they can cause 
destruction, Fig. 4.18. We can observe that seismic 
waves arrive in two phases: first the p-waves (p for pri-
mary) and then the s-waves (s for secondary). The p-
waves are longitudinal waves while the s-waves are 
transverse waves (here is another way to remember 
this: p for push and s for shake.) The p-waves move 
approximately twice as fast as the s-waves.

Exercises
1. Name different sound sources, i.e. generators of sound 

waves.
2. What is the frequency of a sound wave with a wavelength 

of 2 m?
3. What are the wavelengths of the lowest pitched sound 

and the highest pitched sound that we are able to hear?
4. The sound velocity grows with an increasing air tempera-

ture. Assuming that a sine-shaped sound wave moves 
from an area of cold air to an area of warm air, what hap-
pens to its frequency and its wavelength?

5. During a thunderstorm you will see lightning and hear 
the thunder 10 seconds later. How far away from you is 
the thunderstorm?

M1M2

Fig. 4.16  Measuring of the velocity of a sound wave

Fig. 4.17  A sound wave is created with a hammer. The 
arriving sound wave pushes the ball away.

s

s

s

p

p

a)

b)

c)

Fig. 4.18  (a) Formation of seismic waves. (b) A bit later 
the p-waves reach the skyscraper. (c) The s-waves arrive 
at the skyscraper even later.
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4.7 � Electromagnetic waves
We would like to create an electromagnetic wave. 

Therefore, we use the same method as for the creation 
of other waves: we have to ensure that the state of a 
carrier will change quickly at a certain point. As a 
sender, we use a wire in which an electric current can 
flow. While the current is flowing, the wire is sur-
rounded by a magnetic field. We can therefore change 
the state of the environment of the wire: when no cur-
rent is flowing, there is no magnetic field; when a cur-
rent is flowing, a field exists.

By switching the current on and back off very 
quickly by means of closing and re-opening a switch 
within a short time, we can cause a fast change of the 
state of the environment of the wire. The changed state 
– i.e. the magnetic field – detaches itself from the wire 
and moves away by itself, Fig. 4.19. To understand how 
the magnetic field can move away, we have to remem-
ber that every time a magnetic field changes, an elec-
tric field emerges or disappears. Another magnetic 
field emerges or disappears through the change of the 
electric field. These interdependent processes consti-
tute the wave. Hence, not only a magnetic field moves 
away from the wire, but also an electric field. Now you 
understand why these waves are called electromagnet-
ic waves.

The wire from which the wave originates is in this 
case also called „transmitter antenna“.

If we switch an electric current in a wire on and 
off, an electromagnetic wave will run away from the 
wire.

Although the way in which we have described the 
formation of an electromagnetic wave works in prin-
ciple, its practical feasibility is very poor because it is 
difficult to switch an electric current on and off fast 
enough as to create an observable wave. If we use a 
common switch, the switching process will be much 
too slow for our purposes: when touching the contacts 
for the first time, the current starts rising relatively 
„slowly“. Also, the current strength does not decrease 
as fast as we would require when the switch is opened. 
A better method is to create a spark discharge by 
means of a very high voltage. Such a spark discharge 
comes with a much stronger change of the electric cur-
rent.

In principle, an electromagnetic wave could also be 
created in a different way: taking a permanent magnet 
and moving it back and forth very quickly. Also in this 
case, the magnetic field changes. This method, how-

Fig. 4.19  The wire and the wave (in crosssection) at 
three different instants of times. The electric current is 
switched on and off very quickly.

t2 t3

cross section of a wire

t 1

ever, is not working well because we will not be able to 
move the magnet fast enough.

But how can we tell whether a wave has been creat-
ed at all? We need a device that reacts to the arrival of 
the wave: a „receiver antenna“. The simplest method: 
we switch on a radio and set it to short, medium or 
long wave (only FM is not convenient for our pur-
pose). Every time one of the waves created by us ar-
rives, we hear a cracking noise. The arrival of the wave 
can also be made visible. We connect the two ends of a 
wire with the input of an oscilloscope, Fig. 4.20. The 
wire forms a coil with a single winding. The arrival of 
the wave means a change of the magnetic field in this 
coil. This magnetic field change causes a voltage be-
tween the ends of the coil. We have called this process 
electromagnetic induction. As the change happens 
within a very short time, only a very short „voltage 
pulse“ is produced. This pulse can be seen on the 
screen of the oscilloscope.

One important question is still unanswered: which 
is the medium in which the electromagnetic wave is 
moving? What is the carrier of the wave? It cannot be 
the air: electromagnetic waves also move through mat-
ter-free spaces. The light, which is indeed an electro-
magnetic wave, passes the 150 million km from the 
Sun to the Earth without any problem, i.e. through a 
space that is practically free of air and any other mat-

Fig. 4.20  The wire loop is the receiving antenna. In this 
antenna, a voltage is induced by the arriving wave. The 
oscilloscope indicates this voltage.

oscilloscope
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ter. (The atmosphere of the Earth only has a thickness 
of several km.)

We can therefore conclude that the so-called empty 
space has to contain something that assumes the role 
of the carrier of the electromagnetic waves. When it 
was discovered that light is a wave, this „something“ 
was called „ether“. At first, scientists believed that light 
was a mechanical wave in this ether, i.e. a wave whose 
carrier is moving just as the air moves in case of sound 
waves. Only later, they found that the change of state of 
the carrier of the electromagnetic waves is not a defor-
mation and that this carrier has other surprising char-
acteristics as well.

Consequently, it was renamed because too many 
obsolete concepts had been associated with the name 
„ether“. This new name is „vacuum“, meaning „empti-
ness“.

The carrier of the electromagnetic waves is 
called „vacuum“.

We must not misunderstand this name. Emptiness 
is not the same as „nothing“. Nothing means that there 
is no substance at all. In an empty recipient, by con-
trast, there can still be something else. An empty coke 
bottle contains no more coke but there is generally air 
in it. In an empty gum vending machine, there are no 
more chewing gums but there is still the entire vending 
machine mechanism. And although we cannot take 
any more electric energy out of an empty battery, the 
battery is still full of lead sulphate and sulphuric acid.

When we say that there is a vacuum in a region of 
space, we mean that, although there is no matter in the 
chemical sense, there can still be something else: pre-
cisely the carrier of the electromagnetic wave. As long 
as no wave moves through the vacuum, the vacuum is 
in its „ground state“.

The electromagnetic waves that we created were 
short pulses, similar to the few individual sound wave 
pulses in the air that we had created with the speaker at 
first. To create a permanent wave, we have to switch 
the electric current in our transmitting antenna on and 
off in quick succession. And if we want to have an elec-
tromagnetic sine wave, we will have to send a sine-
shaped alternating current through the wire. To make 
the antenna emit a wave, however, the frequency has to 
be very high. Only an extremely weak wave will be 
formed with the 50 Hz of the normal alternating cur-
rent.

In a sine wave, both the electric field strength E as 
well as the magnetic field strength H behave in accor-
dance with equation (4.1).

Hence, we have:

(4.4)ˆ( , ) sin 2 x tE x t E
T

� �� �� � � �� �� �� �� �λ
and

(4.5)ˆ( , ) sin 2 .x tH x t H
T

  = ⋅ π −  λ  
Also in this context, the fact that the position coor-

dinate x, but not y and z, stands in the argument of the 
sine function means that the wave moves in the x-di-
rection. The equations describe a plane electromag-
netic wave.

Both the direction of the electric as well as of the 
magnetic field strength vector is orthogonal to the x-
direction. In addition, the electric and the magnetic 
field strength vector are orthogonal to each other. 
When we position the y-axis in the direction of the 
electric field strength, the magnetic field strength vec-
tor points in the z-direction, Fig. 4.21.

Bear in mind that the electric and the magnetic field 
strength are „in phase“: when the electric field strength 
takes on a maximum value, also the magnetic field 
strength has a maximum value.

You already know the velocity of movement of elec-
tromagnetic waves. In vacuum it is 300 000 km/s.

Electromagnetic waves with a variety of wave-
lengths surround us at all times. On one hand, there 
are natural sources of electromagnetic waves with di-
verse wavelengths. On the other hand, waves of many 
different wavelengths are also generated and used 
technically.

The wavelength range of the waves that we create or 
observe reaches from a millionth of a nanometer up to 
kilometers. Although these waves are all of the same 
nature and although they only differ from each other 
in their wavelength, the creation methods are very dif-
ferent. In addition, many things happen when waves of 
diverse wavelength ranges hit matter. This is the reason 

Fig. 4.21  Electric field strength vector, magnetic field 
strength vector and direction of propagation of an 
electromagnetic wave

direction of travel 
of the wave

y

E
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why they can be used for a variety of purposes and why 
the waves were given different names depending on 
the wavelength range: gamma radiation, X-rays, ultra-
violet radiation (or ultraviolet light), („visible“) light, 
infrared radiation (or infrared light), microwaves, ra-
dio waves.

Exercises
1. Why does a thunderstorm interfere with radio reception?
2. Name different sources of electromagnetic waves.
3. How can we tell from equations (4.4) and (4.5) that the 

electric and the magnetic field strength are in phase?
4. Draw a three-dimensional coordinate system of the posi-

tion coordinates x, y and z in perspective. Sketch the elec-
tric field lines (in one color) and the magnetic field lines 
(in a different color) for a defined time (snapshot).

4.8 � Energy transport with waves
Waves transport energy. We would like to examine 

the energy transport of sine waves as an example. First, 
we will formulate the question more clearly.

The energy transport is described by the physical 
quantity P, i.e. the energy current strength or energy 
current in short. This quantity tells us how much en-
ergy flows through a chosen area per second. No en-
ergy at all flows through an area that is parallel to the 
direction of propagation of the wave. We therefore 
choose the area that is orthogonal to the direction of 
propagation, i.e. parallel to the wave fronts, Fig. 4.22.

But the energy current depends of course on the 
size of the area. When looking for a measure for the 
energy flow that is independent of the area, we have to 
divide by the surface area. This is how we obtain the 
energy current per area, i.e. the energy current density 
jE:

E
Pj
A

=

Energy current density = energy current divided 
by the area

As the wave is a sine wave, the energy current den-
sity will change at every point in the rhythm of the 
passing wave.

Although the energy current density that changes 
over time can be calculated, we will be more interested 
in its time average value in most cases. Therefore, we 
like to know:

Fig. 4.22  No energy flows through the area A that is 
parallel to the movement direction of the wave (right). 
The energy current reaches its maximum when the 
area is parallel to the wave fronts (left).

A

A

j
_
E = time average of jE.

We look for the relationship between this average 
energy current density and the other quantities that we 
use to describe the wave. But which other quantities? 
We can describe the same wave with different quanti-
ties: sound waves with the velocity or with the pres-
sure, equations (4.2) and (4.3), electromagnetic waves 
with the electric or the magnetic field strength, equa-
tions (4.4) and (4.5). And there are even other possi-
bilities. Each of these quantities, however, behaves in 
accordance with an equation of the same form: equa-
tion (4.1) that we repeat once again at this point:

(4.6)ˆ( , ) sin 2 .x ty x t y
T

  = ⋅ π −  λ  
Regardless of the quantities that we look at, the es-

sential features of the relationship with jE are the same. 
In the following, you can imagine that we use y to de-
scribe the movement of the air in a sound wave. But 
the result will also apply for the other quantities.

Instead of making long and complex calculations, 
we derive the relationship by means of skilled guess-
ing. At first, we check the simplest assumption that we 
might think of: the time average value of jE is propor-
tional to the time average value of y, i.e.:

ˆ( , ) sin 2 .E
x tj y x t y

T
  = ⋅ π −  λ  

∼

However, this relationship cannot be correct as the 
temporal time average of the sine term on the right 
side of the equation is zero. The average energy current 
density would consequently be zero, too, which is cer-
tainly not the case. A slightly more complicated as-
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sumption would be that the jE average value is propor-
tional to the average value of the square of y. As you 
know, the square of a number is always positive. Hence, 
the following would apply

(4.7)
2

2ˆ( , ) sin 2 .E
x tj y x t y

T
   = ⋅ π −    λ   

∼

The time average value of the bracket on the right 
side of the equation is 1/2.

Therefore, we would have

21 ˆ .
2Ej y∼

According to this assumption, the average energy 
current density would be proportional to the square of 
the amplitude – and this is actually correct. The quan-
tities that we use to describe the wave are not relevant 
in this context: the pressure or the velocity for the 
sound wave, the electric or the magnetic field strength 
for the electromagnetic wave. The average energy cur-
rent density tells us how much energy is transported 
by the wave and therefore also how „vigorous“ the 
wave is at a certain point, i.e. the strength of the move-
ment in case of a mechanical wave and the strength of 
the fields in case of an electromagnetic wave. As we 
will often refer to this characteristic in the following, 
we introduce an abbreviated name for the long de-
nomination „time average of the energy current den-
sity“: intensity.

The intensity of a sine wave is proportional to 
the square of the amplitude.

Exercises
1. Not only the energy current is proportional to the square 

of quantities that can admit positive and negative values, 
but also the energy content. Give four examples. If you do 
not remember the formulas, look up in your physics text 
book. This is also a good opportunity to memorize them.

2. Why is the time average value of the sine term on the 
right side of equation (4.7) equal to 1/2?

4.9 � Two waves at the same place
We examine what happens when two waves collide 

with each other. Will there be a clash?
We can see it best in the case of waves on a string. We 

simultaneously send out a wave from each of the two 
ends of a long string that is lying on the floor, Fig. 4.23. 
The waves move towards each other and then other two 

waves move away in both directions from the meeting 
point. What happened? Did the two waves rebound 
from one another. Were they reflected on each other?

We change the experiment slightly. From one end of 
the string we send out a deviation to one side (trans-
versal to the string) and from the other end a deviation 
to the opposite side, Fig. 4.24. The waves that arrive at 
the ends after the collision are those that had been sent 
out from the opposite end. Hence, the waves have not 
been reflected on one another but they have „moved 
through each other“. One wave is not changed by the 
other one and each of the two waves moves as though 
the other one was not there.

Here is what we could not see in our experiments as 
things were going too fast:

When the waves meet halfway, the deviations are 
added up. For the waves from Fig. 4.23, this means that 
a single wave with the double deviation is located in 
the middle of the string for a moment, Fig. 4.25.

before

after

before

after

t 3

t 2

t 1

Fig. 4.23  Were the waves reflected on each other?

Fig. 4.24  The waves move through each other.

Fig. 4.25  At the time t2, there is a wave crest with the 
double deviation at the center.



46

4.10  Two sine waves – interference

4 
W

AV
ES

And in the case of the waves from Fig. 4.24, the 
string is completely straight for a moment. The devia-
tions add up to zero, Fig. 4.26. Of course, this addition 
rule already applies prior to the collision of the waves 
and also after the waves have moved away from each 
other. However, the deviation of one wave will then be 
zero at the place of the other wave. It is consequently 
not surprising that the waves can move through each 
other in an undisturbed way.

The addition rule does not only apply for the devia-
tions of a wave on a string, but also for all the other 
quantities that we had denominated with y: for the ve-
locity and the pressure in the case of sound waves and 
for the electric and the magnetic field strength in the 
case of electromagnetic waves.

These somehow unhandy formulations can be sum-
marized as follows:

Waves move undisturbed through each other.

Just like some other rules, this rule does not always 
apply. It will no longer be valid if the deviations of the 
waves are too large. Example: two large waves in the 
sea that are about to break over and that move towards 
each other will no longer move through each other un-
disturbed. Most waves that we come across, also sound 
and electromagnetic waves, however, are so weak that 
our statement is fulfilled very well.

Exercises
1. Is wind a wave? Can „ two winds“ move through each 

other in an undisturbed way?
2. When two electromagnetic waves move through each 

other, the overall field strengths can be calculated by add-
ing up the field strengths of the two individual waves. We 
have already come across a similar matter earlier as we 
discussed simple electric and magnetic fields. What was 
the rule back then?

4.10 � Two sine waves – 
interference

We experiment once again with the string: we 
stretch it out on the floor and start sending out sine 
waves on each of the two ends, Fig. 4.27. The wave 
trains move towards each other until they meet and 
subsequently move through each other.

What we see is quite peculiar. There is no longer a 
movement in one or in the other direction of the 
string. Fig. 4.28 shows a section of the string at nine 

t 3

t 2

t 1

Fig. 4.26  At the time t2, the string is completely 
straight.

normal wave normal wave

standing wave
Fig. 4.27  Two sine-shaped wave trains move opposite 
to each other and through each other. The process is 
displayed for ten successive points in time.

Fig. 4.28  The different hues correspond to the standing 
wave at nine different points in time.

different instants of time. The string is sine-shaped, but 
the height of the crests and troughs changes. The 
points where the string is deviated neither in one nor 
in the other string direction remain fixed, i.e. they do 
not move in one or another string direction as would 
be the case for a normal wave.



47

4.10  Two sine waves – interference

4 W
AVES

Such a phenomenon is called standing wave. The 
points of the strongest movement are the antinodes; 
the points of the string that do not move are the nodes.

Fig. 4.29 shows how the nodes and antinodes are 
formed. Please bear in mind that the standing wave is 
a superposition of two sine waves moving opposite to 
each other. The deviation of the standing wave can be 
obtained by adding up the deviations of the two wave 
parts.

For three different instants of time each Figure a, b 
and c shows at the top of the two wave components, 

Fig. 4.29  The standing wave is formed by adding up 
the deviations of two waves moving opposite to each 
other. The image sections a, b and c show the addition 
for three points in time.

a)

b)

c)

and below it displays the wave that actually arises 
through addition. We can see that in the antinodes, the 
amplitude of the standing wave is twice as large as in 
the component waves: here, two deviations of the same 
direction come together each time. At the places of the 
nodes, the deviations of the component wave are op-
posite. Their sum is zero.

We can also see that the distance between two 
neighboring nodes is half a wavelength.

Also the formation of a standing wave can be ob-
served much better by looking at the wave function as 
a computer animation. We enter:

y = sin(x – t) + sin(x + t).

The first addend on the right side describes a wave 
moving to the right; the second addend describes a 
wave moving to the left. Hence, the sum represents 
two waves moving in opposite directions.

For a standing wave to be formed, the amplitudes of 
the waves moving opposite to each other have to be the 
same. But amplification and attenuation will also oc-
cur if the component waves do not have the same am-
plitude.

The process in which the superposition of two 
waves leads to amplification at some places and to at-
tenuation or extinction at other places is called inter-
ference. We also say that the two waves interfere with 
one another.

A standing wave arises if two sine waves with the 
same amplitude and wavelength move in opposite 
directions.

The distance between two adjacent nodes is half 
of the wavelength.

The process of mutual amplification and attenu-
ation of waves is called interference.

Exercises
1. What happens when two sine waves with the same wave-

length but different amplitudes move through each other 
after coming from opposite directions?

2. What happens when two sine waves, which have the same 
amplitude and wavelength and which move in the same 
direction, superpose?

3. In case you have a suitable algebra program: let the func-
tion y = sin(x – t) + sin(x + t) run as an animation. Change 
the amplitude of one of the two waves, i.e. for example:  
y = sin(x – t) + (2 · sin(x + t)). Change the frequency of 
one of the two waves, i.e. for example: y = sin(x – t) + 
sin(x + 2 t). Describe the results.
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4.11 � Reflection of waves
A convenient method to create standing waves is to 

let a sine wave be reflected. The reflected wave super-
poses with the incoming one whereby a standing wave 
is formed. The method works for example with waves 
on a string. End A of the string is attached somewhere. 
End B is moved back and forth in a sine-shaped way. A 
sine wave starts moving from B and is reflected at A. 
The result is a standing wave. But this standing wave is 
only well-shaped near the end A because only there, 
the two wave parts have the same amplitude. At B, the 
wave moving in the direction A is much stronger than 
the wave coming from A because something of each 
wave is lost on the way.

Our method to create standing waves also works 
with sound waves, Fig. 4.30. The speaker sends a sine 
wave against the wall where the wave is reflected. The 
reflected and the incoming wave move through each 
other and a standing sound wave results.

We move a microphone that is connected to an os-
cilloscope between the speaker and the wall. We can 
clearly see the points of amplification and attenuation 
on the oscilloscope. As sound waves are three-dimen-
sional waves, nodes and antinodes are surfaces.

Electromagnetic waves are reflected on electrically 
conductive surfaces. If we let an electromagnetic wave 
move perpendicularly against a metal wall, a standing 
electromagnetic wave will be formed. The shorter the 
wavelength, the smoother the „reflector“ has to be. A 
very smooth metal surface is needed for the reflection 
of light: a mirror. If we send monochromatic light (i.e. 
a sine-shaped light wave) onto a mirror, a standing 
light wave will be formed in front of the mirror. As the 
wavelength of the light is very short, the nodes, how-
ever, are so close to one another that it is difficult to 
detect them. Later we will get to know a trick that en-
ables us to increase the distances between the nodes.

4.12 � Natural oscillations of wave 
carriers

Again, we attach the end A of our string but this 
time we hold end B in the air and tighten the string, 
Fig. 4.31.

It will not touch the ground during the whole ex-
periment. Therefore, friction is lower than in the pre-
vious experiments and the waves in the string are at-
tenuated much less. As we create a sine wave here, this 
wave will not only be reflected at A but it will move 

Fig. 4.30  Creation of standing sound waves by reflec-
tion on a wall

Fig. 4.31  Natural oscillations of a string. The length of 
the string can accommodate an integer multiple of half 
the wavelength.

B					             A

back and be reflected a second time at B and subse-
quently a third time at A, and so forth. If the returning 
wave crests arrive at B in the right moment, there will 
be an amplification: the deviation of the wave reflected 
by A is added to the deviation of the newly created 
wave at B in a way that an amplification occurs. The 
movement of the string „builds up“ to a standing wave 
that has a node both at A and at B. For such a wave to 
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arise, the string length l has to match exactly with an 
integer multiple of half of the wavelength. Thus we 
have:

l = n · λ/2	 n = 1, 2, 3... 	 (4.8)

As each wavelength is associated with a specific fre-
quency, the string end has to be moved with a very 
specific frequency to obtain one of the possible stand-
ing waves.

You have probably noticed by now that we have al-
ready discussed this phenomenon earlier, in sections 
3.4 and 3.5. We are talking about natural oscillations of 
the string. Now we can see that such natural oscilla-
tions can be interpreted as two sine waves moving in 
opposite directions.

A natural oscillation can be considered as two 
sine waves moving in opposite directions. The fol-
lowing applies:

Amplitudes and wavelengths are equal.
The wavelength is in line with condition (4.8).

We have explained the standing waves with the 
example of waves on a string because they illustrate 
the processes particularly well: the wave carrier is 
visible and the movements are pretty slow. But 
standing waves can also be created in or on any oth-
er wave carrier. This requires two reflectors stand-
ing opposite to one another. Depending on the type 
of the wave, something else is used for reflection, 
Table 4.1.

The oscillations of the string of a musical instru-
ment can be imagined as two „waves on a string“ 
moving opposite to each other, and the oscillations 
of the air in a wind instrument may be imagined to 
consist of two sound waves moving opposite to each 
other. Notice that both an open as well as a closed 
tube reflects the wave. Equation (4.8) only applies 
when either both ends are open or when both ends 
are closed. In fact, some wind instruments are open 
on both ends, for example the flute, and some only 
on one end, for instance the clarinet and the brass 
instruments.

Up to now, we have clarified the conditions un-
der which a standing wave can exist. We know how 
the oscillator that performs the natural oscillations 
must look like. What we have not yet fully clarified 
is the question of how to excite a natural oscillation. 
In principle, it works similar as for the simple oscil-
lations that we had studied before. Also in this con-
text, there are two methods: either using an „excit-

Table 4.1  About the reflection of waves

Wave type Wave is reflected on

wave on a string fastening devices of the 
string

water waves, 
sound waves smooth walls

sound waves in a tube (closed or open) tube end

electromagnetic waves electrically conductive 
surface, mirrors

er“, i.e. an energy source that already creates an 
oscillation with the right frequency itself, or ensur-
ing an energy supply that is controlled by the natu-
ral oscillation itself. Again, the self-controlled oscil-
lations are the most interesting ones. Just as in case 
of common oscillations, the following applies:

To maintain a natural oscillation, we need
•• an oscillator (wave carrier + reflectors)
•• an energy source
•• a control of the energy supply.

Like in the case of simple oscillations, diverse and 
often quite complicated technical tricks are applied for 
the control. We will look at a few examples. However, 
we only ask about the oscillator and the energy source 
and not about the working principle of the self-con-
trol.

Musical instruments
In string instruments, the string performs a natural 

oscillation. It constantly loses energy to the body of the 
instrument, which, similar to a speaker membrane, 
emits a sound wave. When we pluck the string only 
slightly, it performs a strongly damped oscillation. Its 
energy is used up quickly. But when we strike the 
string with the bow, we constantly supply new energy. 
In fact, we would have to say: the string itself takes up 
the energy by jumping over the bow in sync with the 
oscillation.

In woodwind instruments, the air inside the instru-
ment oscillates. The energy supply from the air current 
is controlled by the oscillating air inside the instru-
ment.

In the case of harmonica, squeeze box, accordion 
and bandoneon, metal tabs oscillate in a similar way as 
the ruler from Fig. 1.2. Also in this case, the metal tab 
itself controls its energy supply from the air current.
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Laser
In a laser, a standing light wave is created between 

two mirrors, Fig. 4.32.
Between the mirrors, there is a material whose elec-

trons can be brought to an excited state by means of an 
electric current. As an excited state, we choose a state 
from which the electrons will not jump back to the 
ground state by themselves. The electrons are conse-
quently charged with energy by the electric current, 
similar to the weight of the pendulum clock when it is 
pulled up. The natural oscillation of the light between 
the mirrors now takes up energy from this storage sys-
tem. It makes the electrons emit light in sync with the 
natural oscillation. This process is called stimulated 
emission. (The word „laser“ is an acronym for „light 
amplification by stimulated emission of radiation“.)

To take advantage of the laser, one of the two mir-
rors is slightly transparent (approximately 5 %) so that 
some light can escape the laser. The energy that this 
light carries away has to be replaced repeatedly by 
means of stimulated emission.

Exercises
1. Generate standing water waves at home in your kitchen. 

You need a rectangular baking mold and a small cutting 
board that is a bit narrower than the baking mold. Fill 
around three quarters of the baking mold with water. Dip 
one end of the board perpendicularly in the water on one 
end of the baking mold. Move it up and down very slowly 
at first, without touching the walls of the baking mold. 
Almost nothing happens in the water. The water surface 
rises and drops but to such a slight extent that we can 
hardly see it. Now make the up-and-down movement a 
bit faster. The water will move increasingly vigorously. If 
you reach the correct frequency of the movement, the wa-
ter will slop over. Now you have triggered the natural os-
cillation of the water. Describe the movement of the wa-
ter. Now the first harmonic: move the board up and down 
in the middle of the baking mold. The frequency has to be 
higher now. Also here, we can make the water slop over. 
Describe the movement of the water once again. 

2. An elastic thread with a length of 1 m is attached firmly 
on one end. Through continuous up-and-down move-
ments of the free end, we can create a wave that moves 
through the thread at a velocity of 6 m/s and that is re-
flected on the ends. (a) What is the maximum wavelength 
that the created wave can have so that a standing wave is 
formed in the thread? (b) At which frequency does the 
free end have to be moved up and down so that a standing 
wave with two nodes is formed in the thread (in addition 
to the nodes on the thread ends)? (c) Sketch the move-
ment of the thread in this case.

3. Find out how the self-control of the natural oscillation 
works in string instruments, in the recorder and in the 
harmonica (use the Internet, specialist literature, ency-
clopedias).

standing light wave light output

mirror material with electrons 
in excited state

mirror
(5% transparency)

Fig. 4.32  Schematic illustration of the laser: a standing 
light wave is located between the mirrors. Some light 
continuously escapes through the right mirror. The 
respective quantity is supplied anew by the excited 
electrons of the laser material.

4.13 � The interference of waves
We have already come across this phenomenon. 

When two sine waves with the same amplitude and the 
same wavelength move opposite to each other, the 
quantity y (i.e. the quantity that we use to describe the 
wave) is always zero at some points. At other points, its 
value changes in a sine-like way with an amplitude that 
is larger than that of the individual waves.

We now examine the interference for the case in 
which the two sine waves do no longer move exactly 
opposite to each other, but diagonally to one another. 
The Figures show waves on a two-dimensional carrier 
in a top view. But we can also imagine the pictures as 
sections through a three-dimensional wave carrier. 
Black stands for negative y-values, white for positive 
ones. The gray color outside of the wave areas charac-
terizes y = 0.

Fig. 4.33 shows a snapshot of two waves that move 
through each other at an angle of 40°. The movement 
of the wave fronts is indicated by the arrows.

Fig. 4.33  Snapshot of two waves that intersect at an 
angle of 40°
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as an animation. Fig. 4.34 is a somehow poor substi-
tute for it. The picture shows the interfering waves at 
four different instants of time. From one picture to the 
next, the waves have advanced by a quarter of a wave-
length. We can see the difference between the images if 
we look exactly at the place where the arrow points to. 
The arrow does not move along with the waves.

Here is the interesting aspect of these pictures: in 
the area that is covered by both waves, there are hori-
zontal lines on which y = 0 at all times. At these points, 
the waves extinguish each other. In the middle be-
tween these straight lines, the y-values perform sine 
oscillations with an amplitude that is larger than that 
of the individual waves. Here, the two waves are ampli-
fied.

There is another method to explain the phenome-
non: Fig. 4.35 shows a snapshot of the same wave as in 
Fig. 4.33 with the only difference that not y but y2 is 
shown. Here we have
•• white: y2 = 0,
•• black: y2 = maximum.

If the picture were animated, the black areas would 
move as indicated by the arrows. If we make many of 
such snapshots and if we calculate the temporal mean 
value of y2 at each point, we will obtain the intensity of 

Fig. 4.34  From one image to the next, the wave advances by a quarter of a wavelength.

1							       2

3							       4

Fig. 4.35  Similar to Fig. 4.33, but the square of y is dis-
played.

the wave, Fig. 4.36. In this illustration, the interference 
can be seen best. In the white areas, the intensity is 
zero, and consequently also the temporal mean value 
of y2 is zero. The intensity is highest at the black re-
gions. Outside of the intersection area, it is equal ev-
erywhere. Fig. 4.36 shows that the energy that arrives 
with the two waves from the left is channeled in the 
intersection area by the stripes that are illustrated with 
a dark color in the Figure.
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We would now like to calculate the distance be-
tween the stripes. Therefore, the process is once again 
illustrated schematically in Fig. 4.37. The lines indi-
cate the position of the wave maxima at a specific in-
stant.

The section marked by the black frame is displayed 
in an enlarged way in Fig. 4.38. Besides the maxima, 
also the minima are indicated by straight dashed lines 
in that picture. Amplification occurs where a maxi-
mum meets a maximum and where a minimum meets 
a minimum. Extinction occurs where a maximum 
meets a minimum. Both the points with amplification 
as well as those with extinction are located on straight 
lines as we have already concluded from the previous 
pictures.

Fig. 4.39 shows how we can calculate the distance a 
between two neighboring amplification lines.

The distance between two successive maxima in ev-
ery individual wave is equal to the wavelength λ. We 
can therefore conclude from the Figure:

(4.9)sin .
2 2a
α λ=

Here, α is the angle between the wave fronts of the 
two waves. We therefore obtain for the distance be-
tween the amplification lines:

.
2 sin

2

a λ= α
�

We can read from the equation: a is greater than or 
equal to λ/2 because the values of the sine function are 
between 0 and 1. The smaller the angle α between the 
wave fronts, the larger is a. If we make α small enough, 

Fig. 4.36  Similar to Fig. 4.35, but the temporal mean 
value of the y square is displayed here. We can see the 
interference in the intersection area of the two waves. 
Light stripes: extinction; dark stripes: amplification

Fig. 4.37  The lines are the places of the maxima of the 
individual waves. The area of the frame is shown in an 
enlarged display in Fig. 4.38.

amplification

extinction

Fig. 4.38  Bold, continuous lines: wave maxima; thin, 
dashed lines: wave minima. The points where maxima 
meet and where minima meet are located respectively 
on a straight line, and so are the places where a maxi-
mum meets a minimum.

amplification

amplification

amplification

2a

α
α/2

Fig. 4.39  a is the distance between two adjacent am-
plification lines.
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the distance between the amplification areas can reach 
any size, Fig. 4.40.

The smaller the angle between two interfering 
sine waves, the greater the distance between the 
amplification and the extinction areas.

Now we can see a first benefit of our discussions. 
The wavelength of light is so short that it cannot be 
measured with conventional methods such as using a 
ruler. But if we make two sine-shaped light waves in-
tersect at a very small angle, we can obtain amplifica-
tion and extinction areas with a distance that is long 
enough to be measured easily. A white screen is put in 
the way of the two light waves, i.e. placed in the inter-
ference area or, in other words, where the waves move 
through one another, Fig. 4.41. We can then see, with 
our naked eye, places of amplification and points of 
extinction on the shield. As the light waves also have 
an extension in a direction that is perpendicular to the 
drawing plane, light and dark stripes are formed on the 
screen (perpendicularly to the drawing plane): an in-
terference pattern.

We can therefore measure the distance a. As we also 
know the angle α, we can calculate the wavelength of 
the light. This method is very important, but there is a 
snag: it is relatively difficult to produce sine-shaped 
light waves. Most of the light that we are dealing with 
is anything but sine-shaped. We will come back to this 
topic in the next chapter.

Exercises
1. The standing waves that we obtain when two waves move 

against one another are a special case of the interference 
phenomena that we have just discussed. What is the value 
of the angle α in this case? Will there be the correct dis-
tances between antinodes and nodes?

2. At which angle do two light waves have to intersect (we 
assume λ = 550 nm) so that neighboring amplification 
stripes on a screen have a distance of 2 mm?

4.14 � The diffraction of waves
The movement of a wave differs from that of a body 

in one essential aspect. The body maintains its shape. It 
is easy to indicate how it moves from a point A to a 
point B. If we want, we can even indicate a „trajectory“ 
for each of its points, Fig. 4.42.

Things are different for a wave. A wave does not 
only change its place but also its shape. There is no tra-

Fig. 4.40  Two sine waves intersect at 20° (a) and at 60° 
(b). The smaller the angle, the longer the distance be-
tween adjacent amplification areas.

a)

b)

Fig. 4.41  On the screen that we put in the way of the 
light, we can see bright and dark stripes. (In our Figure 
perpendicular to the drawing plane)

Fig. 4.42  Each point of a moving body describes a spe-
cific trajectory.
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jectory at first. What comes closest to a trajectory 
would be a line that always stands perpendicularly on 
the wave fronts. Let’s look at the speaker A and the per-
son B in Fig. 4.43. To the question about the way that 
the sound takes from the speaker to the person we 
could answer: a straight way because the straight con-
nection line between A and B stands orthogonally on 
the wave fronts everywhere.

The example suggests that the wave movement is al-
ways linear. Both for a plane wave as well as for a spher-
ical wave, the orthogonal lines are straight lines. This is 
what we claim when we describe light by means of rays.

Now we look at the situation of person C. Music 
comes out of the speaker and the person hears this 
music. But the sound waves do certainly not go from A 
to C on a straight line because they would have to 
move through the wall in that case. They move around 
the wall. Hence, the path of the wave is no longer 
straight but curved.

We say that the waves are diffracted. Therefore, 
waves can move on curved ways in this sense.

Diffraction
A wave moves from A to C although there is an 

obstacle on the straight connection line between A 
and C.

Diffraction is a phenomenon that occurs to all 
waves. We have already addressed the sound: to hear 
something, we do not need a straight „line of sight“ to 
the sound source. Although the waves that come from 
the open sea are held back by a pier, something of the 
swell can still be felt behind the pier. Radio reception is 
also possible at a place where there is no line of sight to 
the sender, albeit to a varying extent depending on the 
wavelength range.

Things only seem to be different for the light. Light 
only moves to places that it can reach on a straight 
path. This is the reason why we can create harsh shad-
ows and the reason behind the existence of light rays. 
But how can this be compatible with the fact that 
waves are diffracted on obstacles?

We look once again at a plane wave that moves par-
tially against a wall that extends into its path, Fig. 4.44.

The wave is diffracted on the edge of the wall. It also 
moves into the area behind the wall. But not all of the 
light that arrives on the left of the edge will be diffract-
ed. The impact of the edge becomes increasingly weak-
er towards the left. We can memorize as a rule:

The part of a wave whose distance to the obstacle 
is approximately one wavelength is diffracted.

Fig. 4.43  The sound can move on the straight connec-
tion line from A to B. From A to C, the sound waves run 
around an obstacle.

A

B

C

The longer the wavelength, the more of the incident 
wave is therefore diffracted into the shadow area.

Now we can see why light waves are diffracted so 
little compared to sound waves: light has a much 
shorter wavelength than sound.

Nevertheless, there are situations in which we can 
clearly see the diffraction of light. In a thin wall, there 
is an opening with a diameter of only a few light wave 
lengths. We illuminate the pinhole from one side. On 
the other side, i.e. behind the wall, instead of the pin-
hole we can see a bright spot, also when looking from 
the side at an angle. As the opening is small, not much 
light can pass it. But practically all the light that passes 
will be diffracted.

Fig. 4.44  The part of the wave that reaches into the 
„shadow area“ comes from an area whose width is 
approximately one wavelength.

λ
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We can therefore also understand the conditions 
under which light can be regarded as rays: all openings 
delimiting a light wave have to be large compared to 
the wavelength. But the width of a light wave is not 
only constricted by openings (so-called apertures) but 
also by the edges of mirrors and lenses.

As we know, the law of reflection („angle of inci-
dence equal to angle of reflection“) applies for mirrors. 
But if a mirror is too small, the law will no longer ap-
ply. The light will be diffracted on the mirror edges. 
Accordingly, this is true for refraction.

For the laws of „geometrical optics“ to apply, the di-
ameter of apertures, lenses and mirrors has to be large 
compared to the wavelength.

The laws of geometrical optics can just as well be 
applied to radio waves and sound waves. We only need 
to use mirrors and lenses that are sufficiently large.

For a „wall“ to reflect an electromagnetic wave, its 
surface must be electrically conductive. The shorter 
the wavelength, the smoother the mirror surface needs 
to be. Irregularities have to be significantly smaller 
than the wavelength. If the irregularities have a similar 
size as the wavelength, the wave will be scattered, i.e. 
diffracted in a variety of directions. The „mirror“ will 
no longer be a mirror.

Very remote galaxies are observed inter alia by 
means of the radio waves they emit. Typical wave-
lengths are in the range of several meters. Parabolic 
mirrors with a diameter of up to 100 m are used to 
bundle these waves. Due to the long wavelength, such 
mirrors can be made of meshed wire.

Exercise
1. A normal television antenna is mostly set up in a way that 

there is no line of sight to the television channel. From a 
parabolic antenna, in turn, there has to be a straight, un-
obstructed connection to the satellite. Explain the differ-
ence. Why do clouds not disturb the reception with the 
parabolic antenna? Why do mobile phones and wireless 
landline phones also work behind a wall?

4.15 � The elementary portions 
of sound waves, 
electromagnetic waves and 
matter waves

It would actually be much more convenient if this 
last section were not needed. The world would be clear 
and simple: light and sound are waves on a carrier that 

can be imagined as a substance that is distributed com-
pletely evenly, i.e. a continuum as we say. Unfortunate-
ly, however, natural science has demonstrated time 
and again that, after having quite understood a topic, 
new problems, which could no longer be solved with 
the methods and tools used up to then, emerged. This 
was also the case for the sound and the light and for 
other waves. The evidence of them being wave phe-
nomena is unambiguous, but there are still observa-
tions that cannot be explained based on the concept of 
waves. They even appear to be contradictory to the 
idea of waves.

Actually, light sometimes behaves like a current of 
small bodies that are flying at irregular distances.

This can be seen in the diagram from Fig. 4.45. It 
shows the „signal“ that a highly sensitive light meter (a 
photomultiplier) provides when it is hit by an extreme-
ly weak light beam. As light is a wave, we might expect 
the meter to provide an even, albeit weak, signal. In 
case the meter reacts sufficiently fast, we could possi-
bly also expect a sineshaped signal. But neither the first 
nor the latter happens. Small portions of light are reg-
istered in irregular intervals.

We therefore have to get used to the fact that light 
may exist in different states, i.e. sometimes clearly as a 
wave and in other cases clearly as a small portion or 
„particles“, but in most cases somewhere in between. 
And this also applies for the other wave phenomena, 
for example the sound. But the fact that something be-
haves sometimes like a wave and sometimes as if was 
formed of particles does not only apply for the phe-
nomena that we have gotten to know as waves. It also 
holds true for the entities that usually appear to us as 
particles: electrons, protons, atoms, etc. Under specific 
circumstances, these objects also appear to us as waves.

Fig. 4.45  The photomultiplier registers portions of 
light.
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For the two extremes – waves and particles – we 
have quite simple description methods. But there is 
also a theory that describes the light – and also the 
other phenomena – in all states: quantum mechanics. 
It is necessarily more complicated and less intuitive 
than the theory of waves and that of particles. Only 
when dealing with quantum mechanics, you will un-
derstand under which circumstances something be-
haves like a wave and under which circumstances it 
behaves like a particle. Table 4.2 shows the names of 
the waves with those of the associated particles.

Here you can already see some rules that will allow 
us to connect one aspect to another.

In all cases, the energy E of the particles is connect-
ed in a simple way to the frequency f of the associated 
wave:

E = h · f

Here, h is Planck’s constant:

Table 4.2  Names of waves wave particle and associ-
ated particles

wave particle

electromagnetic wave photon
sound wave phonon
matter wave electron, ...
gravitational wave graviton

h = 6.626 · 10–34 Js

The relationship between the momentum p and the 
wavelength λ is only a little more complicated:

hp =
λ

We would like to leave it at that for the moment. 
You will read more about it later in the context of 
quantum mechanics.
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5  �  INTERFERENCE OF LIGHT AND X-RAYS

Interference effects, i.e. the amplification and at-
tenuation that occur during the superposition of two 
or more sine waves, are an essential instrument of 
physical research.

The light originating from excited atoms and mole-
cules when they return to the ground state can be ana-
lyzed very accurately by means of interference mea-
surements. Therefore, the most important instrument 
to explore the structure of atoms and molecules is at 
our disposal.

The structure of solid substances and large mole-
cules consisting of atoms are examined by means of 
the interference of X-rays, i.e. with electromagnetic 
waves with very short wavelengths. In this context, the 
complicated substances that we come across in mo-
lecular biology are particularly interesting.

Another field of application is astrophysics. For ex-
ample the diameter of remote stars is often measured 
by means of the interference of light.

In the following, we will therefore look at the inter-
ference of light and X-rays. You might think that there 
is nothing fundamentally new anymore. But there is a 
problem in connection with these radiations that will 
cause us some trouble: in the previous sections we 
have studied only sine waves. In reality, however, we 
never come across pure sine waves.

5.1 � Coherence
Again: to cause interference of light, we need two or 

more sine waves. And this is our problem because the 

Fig. 5.1  This is how irregular light waves are outdoors 
on a foggy day.

light that is usually available to us is anything but sine-
shaped. For example the light on a foggy day only con-
sists of untidy wave ripples. A corresponding two-di-
mensional wave would look approximately like that 
illustrated in Fig. 5.1.

Now we recall a rule that we have learned in con-
nection with oscillations.

Every function can be expressed as a sum of sine 
functions.

At first, we look at a wave with straight wave fronts 
that moves in the x-direction, for example that from 
Fig. 5.2. We can see that it is not a sine wave. But we 

Fig. 5.2  This „plane“ wave can be decomposed into 
plane sine waves.
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can conclude from the rule cited above that we may 
imagine the wave to be composed of sine waves with 
different wavelengths and amplitudes. In mathemati-
cal terms: the function yt0(x), which describes a snap-
shot of the wave at the instant of time t0, can be ex-
pressed as a sum of sine functions. In fact, the wave 
from the figure was created by adding up 5 sine terms.

The rule can even be generalized. Also a wave that 
has no straight wave fronts can be decomposed in sine 
waves. But in this case, the sine wave components 
must also have different directions.

Each wave can be composed of sine waves with 
different amplitudes, wavelengths and directions.

The wave ripples from Fig. 5.1 were created through 
the addition of 10 sine waves with different directions, 
wavelengths and amplitudes.

We would like to obtain a few rules to assemble a 
wave from sine waves. We examine the problem by 
adding up 5 sine functions. The rules that we find, 
however, will also be valid if many more sine waves are 
added up.

1. Sine waves with different wavelengths
We start with the addition of 5 waves of the same 

direction and illustrate the result in one dimension, i.e. 
the wave quantity y over the position x.

At first, we take waves whose wavelengths only dif-
fer by a small amount. All five wavelengths are in a 
narrow interval Δλ. They differ by a maximum of 
8 nm. The result is displayed at the top of Fig. 5.3.

Then, we choose an increasingly larger Δλ range: 
20 nm, 40 nm, 80 nm, 200 nm and finally 400 nm. We 
can see: the larger the λ range, the less the resulting 
wave resembles a sine wave. While we can still identify 
larger continuous sine-like sections at the top, the 
wave only consists of an untidy up-and-down at the 
very bottom. When the wavelengths of the wave com-
ponents are only slightly different from each other, we 
obtain long pieces that roughly look like sections of 
sine waves. The length of these pieces is called cohe
rence length (from the Latin word cohaerere: to be con-
nected). For the upper wave, it amounts to approxi-
mately 20 to 30 wavelengths. The wave behaves like a 
continuous sine wave over approximately 25 wave-
lengths; then, it goes out of sync. For the fourth wave 
from the top, the coherence length is approximately 3 
wavelengths; in case of the penultimate wave, we might 
detect – optimistically speaking – one sine period, and 
in the case of the wave at the extreme bottom, the sine 
character has disappeared completely. The coherence 

Fig. 5.3  Each of the waves is composed of 5 sine waves. 
The λ range of the wave components is very small at 
the top, i.e. 2 % of 400 nm, and increases downwards 
up to 100%.

λ = 400 nm to 408 nm

λ = 400 nm to 420 nm

λ = 400 nm to 440 nm

λ = 400 nm to 480 nm

λ = 400 nm to 600 nm

λ = 400 nm to 800 nm

length λcoh in wavelength units can be obtained as a 
quotient of λ and the interval Δλ:

coh .λ=
λ ∆λ
�

For λ, we insert the mean wavelength of the wave-
length interval. It is not worth calculating the coher-
ence length with a very high accuracy. Let’s use the 3rd 
wave from the top in Fig. 5.3 as an example. Here, we 
have λ ≈ 420 nm and Δλ = 40 nm. The coherence 
length in wavelength units turns out to be

coh 420 nm 10 .
40 nm

λ= = =
λ ∆λ
�

We thus have the following rule for assembling sine 
waves:

Sine waves from a small wavelength range:
long coherence length of the resulting wave

Sine waves from a large wavelength range:
short coherence length of the resulting wave

2. Sine waves with different directions
Now we compose a wave of sine waves with differ-

ent directions but with the same wavelength. Again, 
we take 5 components and again, they are very similar 
to one another at the start: the angle Δα, by which their 
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directions differ as a maximum, is at first 2 °, Fig. 5.4a. 
Then, we choose Δα = 5 °, 10 ° and finally 20 °.

Again, we can observe connected areas that look 
like sections of sine waves. This time, however, they are 
not limited in their length but in the width. This width 
is the coherence width. In the first case it is largest. 
With increasing Δα, the coherence width decreases 
more and more.

Sine waves from a small angular range:
long coherence with of the resulting wave

Sine waves from a large angular range:
small coherence width of the resulting wave

3. Sine waves with different wavelengths and  
directions

Now we compose a wave from sine waves with dif-
ferent wavelengths and different directions. The wave 
from Fig. 5.5 consists of 6 different sine waves, of a 
relatively small wavelength range and a small angular 
range.

Fig. 5.4  Assembling 5 sine waves of the same wavelength but different directions. The angular range of the waves 
is 2 ° (a), 5 ° (b), 10 ° (c) and 20 ° (d). The smaller this range, the larger the width of the connected areas, i.e. the coher-
ence width.

a)

b)

c)

d)

Fig. 5.5  Assembling 6 sine waves of different wave-
lengths and different directions. Two coherence ranges 
are marked by dashed lines.

We can now identify coherence regions of a certain 
length and a certain width.

Let’s describe these findings once again and in a dif-
ferent way.
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A wave generally consists of a mishmash of sine 
waves. There are two contributions to this mish-
mash:
•• a mishmash of wavelengths;
•• a mishmash of directions.

Light of a variety of compositions can be found in 
nature and technology. We will look at a few examples.

1. Fog
You are surrounded by fog. Light comes from all di-

rections, and all wavelengths are represented, i.e. from 
approximately 400 nm to 800 nm. Hence, the light is 
completely disordered, both regarding the directions 
as well as the wavelengths. A snapshot would look ap-
proximately like Fig. 5.1. No coherence ranges whatso-
ever can be identified. We say that this light is com-
pletely incoherent.

2. A remote light bulb
The light comes from a very small angular range, i.e. 

practically from a single direction, but there are sine 
waves with a variety of wavelengths. The light looks 
approximately as illustrated in Fig. 5.2: a very large co-
herence width (the width is larger than the displayed 
wave piece), but no coherence length exists. Hence, it 
is highly ordered in terms of direction but a mishmash 
as far as the wavelength is concerned. Light that is 
completely incoherent with regard to the wavelength is 
formed in thermal light sources: bodies that are made 
glow by means of increasing their temperature to a suf-
ficiently high level. Examples are the Sun, all other 
stars, light bulbs and other glowing bodies.

3. Orange street lamp and fog
Again, let’s assume there is fog. You are standing 

close to a street lamp that creates orange light. We as-
sume that it consists of sine waves with a single wave-
length. (Strictly speaking, this is slightly exaggerated. 
Although the orange light of street lamps has a nar-
rower spectrum than the light of a light bulb, it has 
more than just a single wavelength.) The sine waves of 
our assumed light consequently have a single wave-
length but very different directions. With regard to the 
wavelength, the light is highly ordered, but chaotic in 
terms of its direction.

4. Laser
The light has a uniform direction and a uniform 

wavelength. It is a single sine wave. It is ordered with 
regard to the wavelength and the direction, i.e. it is co-
herent. Strictly speaking, the coherence length is not 

Fig. 5.6  Apples: (a) different colors, different sizes; (b) 
one color, different sizes; (c) one size, different colors; 
(d) one color, one size

a)			   b)

c)			   d)

unlimited in case of the laser either. Even laser light 
goes out of sync from time to time. A typical value for 
the coherence length of laser light is 1 m. This corre-
sponds to no less than 100,000 wavelengths.

As a conclusion, consider the following parable.
We compare the light with apples. Apples can also be 

a mishmash in two respects, Fig. 5.6. First, they can have 
different colors, and second, they can have different 
sizes. A box with apples of different colors and sizes cor-
responds to the completely incoherent light. A box with 
apples of a single color but different sizes would corre-
spond for example to the light from the remote light 
bulb, i.e. the light with the mishmash of wavelengths. A 
box with apples of a uniform size but different colors 
would correspond to the light of the orange street lamp 
in the fog. A box with apples of a uniform size and color 
(like the ones at the supermarket) would correspond to 
the completely coherent laser light.

Exercises
1. The spectrum of a red light-emitting diode ranges from 

approximately 640 to 650 nm. What is the coherence 
length in wavelength units?

2. The yellow light of a sodium flame has a wavelength of 
approximately 590 nm and comes from a wavelength 
range of Δλ = 0.6 nm. What is the coherence length in 
mm and in wavelength units?

3. Radio channels are assigned frequency intervals. In the 
sender, the signals to be broadcast (music, speech, etc.) 
that only contain the sound frequencies are transformed 
into a mix of waves from the range of the assigned fre-
quencies (they are „encoded“). The signals of SWR2 in 
Stuttgart are approximately in the range from 105.65 and 
105.75 MHz. What is the coherence length of the radio 
waves?



61

5.2  How to produce coherent light

5 IN
TERFEREN

CE O
F LIG

H
T AN

D
 X-RAYS

5.2 � How to produce coherent 
light

To obtain interference, pure sine waves are needed. 
Hence, coherent light. But what can be done if only a 
completely incoherent light is available? How can a 
pure sine wave be obtained from such light?

There is only a single method, and it is the same as 
that described with the apples. We imagine to have a 
large box with apples of diverse sizes and colors, i.e. a 
mingle-mangle in two respects. However, only the big 
red ones can be sold. What can we do? It is very simple: 
we take out the big red ones and put all the other ones 
aside, maybe to make apple juice.

Things are similar for the light. If we have a mix of 
sine waves but only need one type, we will have to filter 
out the waves that we need. All remaining ones are 
useless. We cannot transform incoherent into coherent 
light, just as we cannot transform red into green apples 
or big into small ones.

So how can we then blind or filter a single sine wave 
out of a sine wave mix, like that supplied by a normal 
lamp?

Let’s first extract light with a single direction (or 
better: light from a small angular range) from light 
with many different directions. Fig. 5.7 shows a pos-
sibility: putting two small pinholes in a row. Only 
waves that have the direction of the connection line 
between the two holes can pass the second hole. A 
second method: we move far away from the light 
source. In the environment of any observation point 
P, we have a nearly plane light wave that moves in the 
direction of the straight line that connects the light 
source to P. The light waves that come from a star are 
perfect plane waves in the small ranges that are inter-
esting to us.

Let’s assume that we have sorted out the undesired 
directions; our wave has now a unique direction. But 
there is still the chaos of wavelengths. There are many 
methods to filter out a sine wave of a single wave-
length, or more precisely: sine waves with a small 
wavelength interval. The cheapest one is (as the word 
„filter out“ already indicates) a filter: a glass plate that 
absorbs or reflects the greatest part of the light and that 
only lets light from a small wavelength range pass.

The analogy with the apples can once again be help-
ful. If only the big red apples could be sold, it would be 
better to plant only apple trees whose apples are big 
and red from the outset.

The same applies for the light: if we need coherent 
light, it will be best to use a light source that only sup-
plies coherent light from the start: a laser. In earlier 

Fig. 5.7  At the point A, the light consists of sine waves 
of diverse directions. At B, it is a nearly plane wave.

Fig. 5.8  A wave goes out of sync at P. It makes a „phase 
jump“.

P

A B

times when there was no laser, people had to get by 
with the methods that we described before.

5.3 � Even laser light is not 
sufficient

Again, we explain the problem by means of two 
plane waves that move towards each other at an acute 
angle and that move through one another, Fig. 4.33. 
We discussed this experiment theoretically in the pre-
vious chapter, but we abstained from trying it out – be-
cause it would not have worked. But how should it 
have been done then? We could assume that nothing is 
easier than that. We take two lasers, i.e. sources of co-
herent light, direct the beams onto each other at an 
acute angle and set up a screen in the intersection area. 
Bright and dark stripes should be visible on the screen. 
In fact, however, we can only see a medium-light spot. 
Why?

This is because lasers do not do what we expect 
from them. Although every laser makes a wave that 
looks like a sine wave over many wavelengths, it still 
goes out of sync after a certain time. And a bit later 
again...and this happens to both lasers, regardless of 
each other. We could imagine it best as the laser mak-
ing a jump in the phase at a random time as shown by 
the „sine function“ of Fig. 5.8.
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What is the effect of this on the interference picture 
on the shield? What will happen to the interference 
pattern if for example one of the waves is displaced by 

B

A

B

A

Fig. 5.9  Two sine waves interfere. On the screen (right 
side) we can see a sequence of bright and dark stripes. 
In the lower image wave A was displaced by half a 
wavelength in relation to B. As a consequence the 
stripe pattern was offset. Where there are bright spots 
on the screen in the upper picture, it is dark in the low-
er picture and vice versa.

half a wavelength? Fig. 5.9 shows two interference pro-
cesses. The difference is that the wave A in the lower 
picture is displaced by λ/2 in relation to wave A in the 
upper picture. The result: also the interference pattern 
was offset. Where there is extinction in the upper pic-
ture, there is amplification in the lower one and vice 
versa.

Hence, each time a wave goes out of sync, the stripe 
pattern on the screen jumps to one or the other side. 
The process of going out of sync does not have to hap-
pen abruptly. It can also be a bit more unhurried, be-
cause in that case, also the interference stripes move 
steadily back and forth. This is exactly what happens in 
reality, even when we use very good lasers. The back-
and-forth jumping movement of the interference 
stripes is so fast that we can only perceive the mean 
value with the naked eye: we observe an even, texture-
less brightness.

After these long deliberations, we are finally able to 
set up an interference experiment that actually works. 
As we cannot find two light sources that stay in sync 
for a long time, we have to use two sine waves from the 
same source. If one of them will go out of sync, the 
other one will go out of sync at the same time and the 
interference pattern will not be offset in the process. 
There are many possibilities to make two waves out of 
one; an example is shown in Fig. 5.10. The light wave of 
a laser falls onto a „mirror“ that reflects half of the 
light and lets the other half pass. The waves A and B do 
not only have the same coherence length, but each de-
viation from a sine wave in A corresponds to an identi-
cal deviation in B. Hence, wave A stays in sync in rela-
tion to wave B. When A and B intersect, an interference 
pattern that does not jump back and forth is formed.

There is only one further aspect to consider: the 
paths that A and B travel from the semi-transparent 
mirror to the region of interference must not be very 
different. If wave B has a longer way than A, it will hit 
sections of A that are still part of the preceding coher-
ence range. The path difference between A and B has 
to be in any case smaller than the coherence length. 
But this condition is usually easy to fulfill.

Fig. 5.10  Waves A and B interfere with each other. A 
stripe pattern can be seen on the shield.

mirror

screen

laser
A

B

semi-transparent
mirror



63

5.4  Diffraction by pinholes and slits

5 IN
TERFEREN

CE O
F LIG

H
T AN

D
 X-RAYS

Even if we were not to get any further benefit from 
the interference of light, the experiment described be-
fore is of particular importance. It proves that light is a 
wave. The first interference experiment was made suc-
cessfully by the physicist Thomas Young in 1801. Up to 
then it had been assumed that light was a wave phe-
nomenon, but there had not yet been a clear proof.

Exercises
1. (a) Let’s assume that the light of a laser has a wavelength 

of 633 nm and a coherence length of 15 cm. How many 
wavelengths is the equivalent of the coherence length? 
How fast does the stripe pattern flicker when we create an 
interference picture with two such lasers? (b) What would 
have to be the coherence length in order to make a stripe 
pattern stay in the same place for 1 second?

2. Interference experiment with sound waves: we create two 
sine waves with two speakers and examine the wave by 
means of a microphone. Do we have the same problems 
as with light in this case? If no, why not? If yes: how can 
they be bypassed?

5.4 � Diffraction by pinholes and 
slits

Now we get to know an even simpler method to cre-
ate interference patterns. We have seen that we need 
two sine waves that either never go out of sync or, in 
case it still happens, it has to happen simultaneously to 
both.

We let a sine wave move against a pinhole. The pin-
hole should be smaller than the wavelength. The wave 
is diffracted and moves away in all directions behind 
the pinhole, Fig. 5.11. We have a sort of spherical wave. 
It differs from a real spherical wave in the dependence 
of the amplitude on the direction. In a „forward direc-
tion“, the amplitude is large, and it decreases with a 
growing angle against this direction.

Fig. 5.11  The wave fronts are circular behind the pinhole 
(and spherical for a three-dimensional wave).

Fig. 5.12  a) Snapshot of the spherical waves that move 
out of two pinholes. b) Mean value of the square of the 
wave function.

a)

b)

Now we let the incoming wave move against two 
pinholes. Now, two spherical waves are formed behind 
the obstacle, and these waves interfere with one an-
other. As both of them originate from the same incom-
ing wave, they will always stay in sync.

The two „spherical waves“ and their superposition 
are displayed as a snapshot on the left in Fig. 5.12. The 
image on the right shows the time average value of the 
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square of the wave function, i.e. the intensity. Black 
stands for a high intensity, white for a low one. There is 
amplification in the black areas and extinction in the 
white areas. Hence, we have obtained an interference 
pattern in a very simple way. If we put a screen in the 
way of the light, we will see bright and dark spots in an 
alternating way on it.

If we take two slits – in Fig. 5.12, they would be per-
pendicular to the drawing plane – instead of two pin-
holes, we will obtain bright and dark stripes as an in-
terference pattern on the screen, similar to those that 
we created earlier by means of the mirrors.

We would like to analyze in greater detail how these 
stripes originate and calculate their distance.

A plane sine wave falls from the left onto the double 
slit in Fig. 5.13. Two waves whose wave fronts are cir-
cular in a cross-sectional view originate from the two 
slits. We only want to see what happens in the plane of 
the screen: will the waves in a given point P amplify or 
extinguish themselves?

We connect each of the two slits with P through a 
straight line. The straight lines are the radii of the cir-
cular waves. We can see that the path r1 of the lower 
wave is longer than the path r2 of the upper one. As the 
waves are in sync at slit 1 and slit 2, they are no longer 
in sync on the screen. The farther P is away from the 
center of the screen, the greater will be this path differ-
ence. Every time the path difference is an integer mul-
tiple of λ, the two waves amplify. When it is λ/2, 3λ/2, 
etc., they will extinguish themselves:

	 Path difference		  results in
	 0, λ, 2 λ, 3 λ, 4 λ,… 	 amplification
	 λ/2, 3 λ/2, 5 λ/2, 7 λ/2,… 	 extinction
This can be written in a shorter way:
	 Path difference		  results in
	 k · λ			   amplification
	 (k + 1/2) · λ		  extinction 

Here, k stands at first for the integers 0, 1, 2 etc. But 
we can also insert the negative integers for k. A nega-
tive path difference means that the path of the upper 
wave is longer than that of the lower wave.

At the point on the shield where the path difference 
is 0, there is the intensity maximum of zeroth order; the 
neighboring points of maximum intensity are the two 
maxima of first order, which are followed by the maxi-
ma of second order, and so forth.

We would like to express the path difference by 
means of the angles that form the two radii r1 and r2 
with the line that is perpendicular to the slit plane. 
This appears complicated at first, but it is not. The dis-

Fig. 5.13  The path r2 from the upper slit to the point P is 
shorter than the path r1 from the lower slit to P. If the 
path difference is an integer multiple of λ, the two 
waves will amplify.

slits

screen

r 2

r 1

P

slits screen

r 2

r 1

P

d

φ

φ

r 2r 1 –

a)

b)

Fig. 5.14  (a) The distance between the double slit and 
the observation shield is so long that the radii r1 and r2 
are practically parallel. (b) Enlarged view of the vicinity 
of the double slit

tance between the slit plane and the screen is usually 
so big compared to the distance between the slits d that 
the two radii are practically parallel. Hence, Fig. 5.13 is 
actually a poor illustration of this matter. When we il-
lustrate the experiment to scale, we have to draw the 
distance between the slits so small that nothing can be 
recognized anymore, Fig. 5.14a. Fig. 5.14b therefore 
only shows the vicinity of the slits in a strongly en-
larged way.
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The angle of the two radii r1 and r2 against the line 
perpendicular to the slits shall be called φ. We can read 
from the Figure:

1 2sin ,r r
d
−φ=

or

r1 – r2 = d · sin φ.

We can therefore reformulate our rule:

d · sin φ = k · λ		  amplification
d · sin φ = (k +1/2) · λ	 extinction
with k = ... –2, –1, 0, 1, 2, …

To each angle φ corresponds a particular point on 
the screen. When we denominate the distance from 
the center of the screen with a and the distance be-
tween the slit plane and the plane of the screen with l, 
Fig. 5.15, we obtain:

(5.1)tan .a
l

φ=

We would like to express our rule for amplification 
and extinction with a instead of the angle φ. Here, we 
can once again take advantage of the very long dis-
tance between the slits and the shield. This is why a is 
also very small in relation to l. The angle φ is conse-
quently very small, and the value of the sine function 
for small angles is approximately equal to the value of 
the tangent function:

tan φ ≈ sin φ.	 (5.2)

With (5.1) and (5.2), our rules for amplification and 
extinction become:

			   amplification
la k
d

= ⋅ ⋅λ

			   extinction
1
2

la k
d
� �� � � �λ� �
� �

d = distance between the slits
a = distance from the center of the interference
	 pattern
l = distance slit plane - screen

Here, we have only determined the points where 
the amplification of the waves reaches a maximum and 
where they are fully extinguished. In between, the in-

intensity

m
axim

um

second order

first order

zeroth order

first order

second order

third order

third order

slits

screen

P

a
φ

l

Fig. 5.15  On the relationship between l, a and φ

Fig. 5.16  Intensity of the light as a function of the posi-
tion on the observation screen

tensity changes steadily from a high value to zero. Fig. 
5.16 shows the intensity as a function of the position a 
on the screen.

Exercises
1. (a) Test with your calculator how well is the approxima-

tion tan φ ≈ sin φ. What is the discrepancy in percent for 
angles of 1 °, 5 ° and 10 °? (b) Show that the approximation 
follows from the geometrical definition of the sine and 
the tangent of an angle. (The sine of an angle is the length 
of the opposite side divided by…, etc.).

2. A plane sine wave of light with λ = 520 nm runs against 
double slit, with a slit distance of 0.2 mm. What is the 
distance between the interference stripes, if the screen is 
located at 1.2 m from the slits.

3. Interference stripes with a distance of 2 cm between them 
are observed. The screen is at a distance of 8 m from the 
double slit. The distance between the slits is 0.2 mm. 
What is the wavelength of the light?

5.5 � Diffraction grating – the 
grating spectrometer

Diffraction by a slit only becomes really interesting 
when we use not only two but many more slits, e.g. a 
thousand or ten thousand slits. What will change in 
that case?
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It is not hard to predict where on the screen the in-
terference maxima will appear. Fig. 5.17 shows a sec-
tion of such a grating. If the length of the path between 
any slit and the screen differs from that between the 
neighboring slit and the screen by one wavelength (or 

Fig. 5.17  Many parallel slits form a grating. If the path 
difference between the slit and the observation shield 
for waves of neighboring slits is equal to k · λ, the waves 
will amplify at the shield.

path difference of 
 two neighboring waves

d

Fig. 5.18  Intensity on the screen for a grating with (a) 10 
slits, (b) 50 slits

a)

b)

by an integer multiple of a wavelength), an intensity 
maximum will appear on the screen. All waves are in 
phase at the respective point of the screen.

Things are more complicated for the regions be-
tween these maxima. If the path difference of the waves 
of two neighboring slits is λ/2, respectively two neigh-
boring waves are extinguish. We already know this 
phenomenon. But there are many other path differ-
ences for which the extinction occurs. If the path dif-
ference between two neighboring waves is λ/4, each 
wave will extinguish itself with its next but one neigh-
bor because the path difference is again λ/2 between 
these two waves. If the path difference between neigh-
boring waves is λ/6, each wave will extinguish itself 
with its next but two neighbor, etc.. In between, there 
are path differences for which no complete extinction 
occurs, but the intensity remains much smaller every-
where than in the maxima. The exact examination is a 
bit painstaking. The result is shown in Fig. 5.18a for a 
grating with 10, and in Fig. 5.18b for a grating with 50 
slits: the intensity on the screen as a function of the 
distance from the center.

At the points that correspond to a path difference of 
λ, there are sharp „peaks“ and in between, the intensity 
is very low or zero. The more slits there are in the grat-
ing, the more waves interfere and the sharper are the 
peaks and the lower is the intensity between the peaks. 
In a grating with several thousand slits, practically 
nothing will be left between the amplification peaks.

This is an important result because it means that a 
grating can be very helpful: it can be used to decom-
pose a light wave into its sine components. How does 
that work?

We do not send a sine wave onto the grating, but for 
example a wave that is composed of two sine waves 
with different wavelengths. If one of the waves were 
alone, we would obtain the interference picture of Fig. 
5.19a. If the other one were alone, we would obtain the 
picture from Fig. 5.19b. The composed wave provides 
the sum of the two intensities, Fig. 5.19c. Hence, we 
can not only determine the wavelength of one sine 
wave from the interference picture, but also of several 
sine waves; we can determine the sine components of a 
complex wave.

The grating creates a spectrum on the screen.

If the light contains waves of very different wave-
lengths, however, the maxima of a sine wave of one 
order will superpose with those of another sine wave 
of the next higher order. A grating is therefore only 
suitable for the analysis of light from a wavelength 
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range that is not too large. Its advantage over the de-
composition of light with a prism, is the high resolu-
tion: we can still measure very fine structures in a spec-
trum. The device that takes advantage of the 
interference caused by a grating is called grating spec-
trometer. It is an essential instrument to examine the 
structure of the atoms and molecules. The major ad-
vances of atomic physics, molecular physics, solid state 
physics and quantum mechanics in the past century 
are largely based on measurements with the grating 
spectrometer.

The grating in a technical spectrometer has a diam-
eter of several centimeters and it typically has 1800 
lines per millimeter. This means that several tens of 
thousands of sine waves are brought to interference.

The „gratings“ that we have examined so far consist-
ed of slit-shaped openings in an otherwise nontranspar-
ent platelet. The grating can also be set up in a way that 
not the transmitted but the reflected light is brought to 
interference. This means using a platelet on which thin 
reflecting stripes are mounted. It absorbs the light be-
tween the stripes. Also these reflecting stripes can be 

regarded as light sources that emit waves with round 
wave fronts. The same interference picture as for a slit 
grating is formed, not behind the grating but in front of 
it, i.e. on the side the light comes from. In order to pre-
vent the light from being reflected back to the light 
source, one ensures that it falls onto the reflection grat-
ing at a slight angle. The zeroth intensity maximum will 
then be precisely in the direction in which the light 
would be reflected by a continuous mirror. All CDs are 
simple versions of such a grating. There are continuous 
reflecting areas between the data tracks. You have cer-
tainly noticed already that this „grating“ decomposes 
the light into its spectral components.

Exercises
1. The light reflected from a CD look quite confusing at first 

sight. But this is not surprising because the light that hits 
the CD usually comes from a variety of directions. Try to 
establish conditions under which you can clearly identify 
the spectra that correspond to the interference maxima of 
first and second order.

2. (a) The light of a laser pointer is directed onto a diffrac-
tion grating with 300 slits per millimeter. A line pattern is 
formed at a distance of two meters with the line distance 
being 32 cm. What is the wavelength of the light? (b) The 
grating is replaced by another grating with an unknown 
distance between the slits. The interference lines now 
have a distance of 48 cm from each other. What are the 
distances between the slits?

5.6 � Two- and three-dimensional 
gratings

We have assumed up to now that the distance be-
tween the slits of the grating is known and that the 
wavelength of the light is unknown. We were able to 
calculate the light wavelength from the interference 
pattern. But also the opposite case can occur: the light 
wavelength is known and we look for the slit distance. 
This is the situation when dealing with a different ap-
plication of interference: the exploration of the struc-
ture of crystalline substances by means of X-rays. Also 
this method is based on the interference of waves that 
are diffracted on a „grating“. However, this grating 
does not consist of a series of slits, i.e. it is not a 
monodimensional grating but it extends into the three 
dimensions of space. To understand the particularities 
that occur, we use a gradual approach. After the 
monodimensional grating that we already know, we 
will at first look at two-dimensional gratings and even-
tually three-dimensional ones.

Fig. 5.19  Grating interference picture, created with 
light of the wavelengths: (a) λ1, (b) λ2, (c) λ1 and λ2. The 
maximum of zeroth order is located at the center. The 
positions of the maxima of first order depend on the 
wavelength

a)

b)

c)
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For the normal, monodimensional grating, we ob-
tain as an interference pattern stripes on the screen 
that are parallel to the slits of the grating. A two-di-
mensional grating consists of a platelet with intersect-
ing rows of pinholes or of small mirrors on an absorb-
ing background, Fig. 5.20.

As an interference pattern on the screen, we will not 
only obtain a structure in the horizontal but also in the 
vertical direction, Fig. 5.21. As the grating from Fig. 20 
only has a width and a height of five points each, the 
maxima are not yet very clear and there are still points 
between them at which no complete extinction occurs.

Here we can clearly observe what the formula tells 
us about the position of the maxima:

la k
d

= ⋅ ⋅λ

The shorter the distance between the slits, the great-
er the distance between the interference maxima. In 
Fig. 5.20, the distance of the diffracting points is half as 
long in the vertical direction as in the horizontal direc-
tion. Therefore, the distance of the intensity maxima is 
twice as long in the vertical direction as in the horizon-
tal direction.

Now we pass from the two- to the three-dimension-
al grating. The points from which spherical waves 
originate are located on a three-dimensional grid. Fig. 
5.22 shows a section of such a grating. During the 
transition from the monodimensional stripe grating to 
the two-dimensional point grating, the condition for 
observing amplification has become more stringent. 
Instead of lines, only points were visible on the screen. 
When passing from the two- to the three-dimensional 
grating, the condition becomes even stricter. It appears 
as if no amplification could be expected anymore at all.

We let the sine wave obliquely onto the grating and 
imagine at first that there would only be the first plane 

Fig. 5.20  Two-dimensional grating Fig. 5.21  Interference picture of the grating from Fig. 
5.20

?

?

Fig. 5.22  Cross-section through a three-dimensional 
point grating. A sine wave comes from the left. The 
biggest part of the wave moves straight ahead through 
the grating. In which directions will the diffracted 
waves amplify?

Fig. 5.23  Diffraction at the upper plane. The indicated 
paths have all the same length because the angle of 
reflection is equal to the angle of incidence. Without 
the underlying planes, we would have amplification in 
the respective direction: the zeroth intensity maxi-
mum.

of diffraction centers, Fig. 5.23. The zeroth intensity 
maximum is located in the direction that can be de-
duced from the law of reflection (angle of incidence = 
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angle of reflection) because the paths of the wave are 
all equal for this direction.

But behind this first plane of diffraction centers, 
there is the next plane on which another amplified 
wave with the same direction as the first one is formed, 
and on the third plane there will be another one, and 
so forth. These amplified waves, however, travel paths 
of different lengths, i.e. they interfere with one anoth-
er. There will only be amplification with lots of luck: if 
the paths of the waves that are associated with the dif-
ferent planes differ from each other by exactly λ. And 
this will generally not be the case. But we can give this 
process a helping hand: the path difference depends on 
the angle at which the incident wave falls onto the 
planes. If we rotate the grating, the waves that are re-
flected on two neighboring planes will at some point 
have a path difference of exactly λ, Fig. 5.24. When this 
occurs, all these waves will amplify and a reflected 
wave with a high intensity results.

We could have just as well raised the same argu-
ment if we had not examined the planes of Fig. 5.24 

but any other set of parallel planes on which diffrac-
tion centers are located. Fig. 5.25 shows four of many 
possibilities. For each of these sets of planes we have: if 
the path difference of waves that are diffracted on 
neighboring planes is equal to λ, an intensity maxi-
mum will emerge. And there will also be a maximum 
if the path difference is 2 λ or 3 λ etc.

Hence, we also obtain an interference picture with a 
three-dimensional grating, but only after rotating the 
grating around one of its axes. We can calculate the 
distances of the diffraction planes from the position of 
the intensity maxima. Now we will see how this can be 
done.

Planes on which diffraction centers are located are 
drawn into the grating from Fig. 5.26. We compare the 
path of the wave that is „reflected“ on the first plane to 
the path of the wave that is „reflected“on the second 
plane.

The path difference is 2 · s, i.e. twice the side s of the 
triangle highlighted in gray. The relationship between 
s and the distance d between the planes and the angle 

Fig. 5.24  The undashed and the dashed paths have 
different lengths. There is a phase difference between 
the corresponding waves.

Fig. 5.25  Each set of planes creates intensity maxima, 
provided that the grating is at a suitable angle to the 
incident wave.

Fig. 5.26  The path of the wave that is reflected on the 
lower plane is 2 s longer than the path of the wave that 
is reflected on the upper plane.

φ

S

φ
d
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of incidence of the wave can be derived from the draw-
ing. We obtain

s
d

φ=

or

s = d · sin φ.

We obtain amplification when the path difference is

2 s = k · λ,

with k = 1, 2, 3, ...

Amplification in the case of a three-dimensional 
grating:

2 d · sin φ = k · λ with k = 1, 2, 3, ...

If the wavelength is known, we can calculate the 
distance d of the planes based on an observed angle. To 
different sets of planes correspond different maxima.

Exercises
1. We let a plane wave, which is composed of sine waves 

with many different wavelengths from a large λ range, fall 
onto a three-dimensional grating. (The grating is not ro-
tated.) What can be observed?

2. A plane sine wave falls onto a grating like that from 
Fig. 5.24. The grating is rotated slowly. Most of the waves 
moves straightly through the grating. But for certain ori-
entations of the grating, outcoming waves of other direc-
tions are formed. Which information about the grating 
can be obtained from the wave with the slightest devia-
tion from the straightforward direction?

5.7 � Diffraction of X-rays in 
crystals

To obtain interference patterns through diffraction 
of sine waves, we need gratings whose distance be-
tween the slits has similar dimensions as the wave-
length.

A diffraction grating for visible light therefore has a 
slit distance of approximately 0.5 to 1 μm. The wave-
length of X-rays is approximately 1000 times shorter. 
To create an interference pattern with X-rays, a grating 
with distances between the slits of around 1 nm is 
needed. Now, we do not even have to deal with the 
production of such gratings because they are abundant 

Fig. 5.27  Recording of an X-ray diffraction picture. The 
crystal to be examined is rotated. The interference 
maxima are recorded with the cylindrical film.

film

X-ray wave   
crystal

in nature. The atoms of most solid substances are ar-
ranged in a regular three-dimensional „crystal lattice“. 
Most rocks and minerals as well as almost all metals 
belong to these crystalline substances.

In some solid substances, the atoms are arranged ir-
regularly. Such substances are referred to as amor-
phous. The amorphous substances include most or-
ganic substances in our environment – natural ones 
such as wood or artificial ones such as organic plastics 
–, but also glass (in contrast to what you might have 
expected). In the following, we will examine only crys-
talline substances, i.e. those with a regular, periodic 
arrangement of the atoms.

A beam of X-rays with a single wavelength is sent 
onto such a crystal. The radiation is diffracted on each 
of the atoms. As we have seen, however, the diffracted 
radiation interferes in such a way, that the partial 
waves extinguish mutually so that the X-ray beam sim-
ply traverses the crystal in a straight direction. How-
ever, if the crystal is rotated, the amplification require-
ment will be fulfilled for specific directions and a part 
of the radiation will be diffracted in a well-defined di-
rection.

Fig. 5.27 shows how the examination method works 
in principle. A thin X-ray beam with a single wave-
length, i.e. an X-ray sine wave, comes from the left. It 
falls onto the crystal to be examined. The crystal is ro-
tated slowly around an axis. Around the crystal there is 
a photographic film.

During rotation of the crystal, the amplification re-
quirement is fulfilled every now and then so that 
beams in a variety of directions arise and disappear 
again. Each of these beams creates a small spot on the 
film. Hence, we obtain an image with many of such 
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spots in the end. The structure of the crystal lattice can 
be calculated from the position and intensity of these 
spots. The diffraction picture from Fig. 5.28 was cre-
ated with a gypsum crystal (CaSO4 · 2 H2O).

It will become clear how interesting this method is 
if we consider that there is a very large number of dif-
ferent crystal structures. The interference picture con-
tains this structure in an encoded form. From such 
pictures one can derive the coordinates of each atom of 
a complicated molecular crystal.

In fact, this X-ray structure analysis provides even 
more far-reaching information about the structure of 
matter. While explaining the method, we had sup-
posed that the atoms were punctiform objects on 
which the sine wave is diffracted.

However, the X-ray wave is not diffracted on the 
atomic nuclei but on the electronium, i.e. the „sub-
stance“ that is located between the nuclei and whose 
elementary portions are the electrons. The X-ray waves 
are diffracted strongest where the electronium density 
is highest. A detailed analysis of the interference pic-
ture does not only allow us to determine the position 
of the atomic nuclei, but also the density distribution 
of the electronium. Fig. 5.29 shows such a picture for 
diamond, i.e. crystalline carbon. At the dark spots 
(high electronium density), the illustration plane in-
tersects with covalent bonds that have to be imagined 
as perpendicular to the drawing plane.

Now we can also understand that it is interesting in 
some cases to use waves of a different nature than X-
rays. Depending on the way in which the waves are 
diffracted in the material to be examined, we obtain a 
different picture and therefore other information.

For example an electron beam is sometimes used in-
stead of an X-ray wave. Electron beams can be created 
in a way that they form a pure sine wave. Also with 
such an electron sine wave, important data can be 
found about the structure of a material. As very thin 
electron beams can be produced, very small areas of 
homogeneous material can be examined separately by 
means of electrons.

Fig. 5.29  Electronium density of diamond (crystalline 
carbon) in a plane that does not pass through the 
atomic nuclei. The density is high (dark) where the 
plane intersects with the covalent bonds between two 
adjacent atoms.

Fig. 5.28  X-ray diffraction picture of a gypsum crystal

Another variant is interference with neutrons. Neu-
tron beams can form a sine wave as well. Neutrons are 
not electrically charged. Therefore, they are almost not 
diffracted by the electronium but mostly by the atomic 
nuclei. One thus can obtain information about the po-
sition of the nuclei and about their thermal movement. 
As neutrons are magnetic, a neutron interference pic-
ture also contains information about the distribution 
of the magnetism in the examined crystals.
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6  �  DATA TRANSFER AND STORAGE

6.1 � The amount of data
The German telephone operator (Telekom) estab-

lishes telephone connections, a cable network operator 
provides us with television programs, a provider gives 
us access to the Internet. All these companies make 
money by transporting and storing data for other peo-
ple. They do not care about the nature of the news and 
information, texts, images or music they transmit for 
us. From essential news or trivial chatting via tele-
phone to soap operas or reports about a famine via 
television channels up to a train information or a 
horoscope from the Internet – there is only one impor-
tant aspect for the companies: the amount of data that 
is transferred. The expenditure they make for us and 
the corresponding fees they charge us at the end of the 
month depend on this amount. Hence, the amount of 
data is the relevant factor.

The symbol of the amount of data is H, the mea-
surement unit is the bit. The eightfold amount of a bit, 
i.e. the byte – abbreviated B – is often used. Hence:

1 B = 8 bits.

As very large amounts of data are handled frequently, 
both the bit as well as the byte are used with the well-
known multiplying factors kilo, mega, giga, tera, etc.

How can we determine the amount of data? How 
much is 1 bit? We could already look at a formula that 
is used to calculate the amount of data. However, we 
cannot really tell from this formula why it supplies the 
amount of data. It is therefore better to consider care-
fully what we want. Then, it will be easy for us to find 
the formula ourselves.

In the following, we will examine processes in which 
data are transmitted or transferred: from a place that we 
call data source to another one, i.e. the data receiver. 
Data transfer is only possible when an agreement has 
been made between the data source and the data receiv-

er in advance about the signals and signs to be used, i.e. 
a type of language or alphabet. We call these signs „char-
acter set“ and denominate its number with z.

We start with the simplest situation that we can 
think of: it has been agreed between the data source 
and the data receiver that only two signs will be used; 
hence, we have z = 2. We can also say that a binary code 
is being used (Binarius [Latin] means „consisting of 
two parts“.)

The nature of the signs is not relevant for our con-
siderations. We could use:
•• the spoken words „yes“ and„no“,
•• a red and a green light signal,
•• a positive and a negative electric potential in a wire,
•• we turn our thumb upwards or downwards.

A message that is transmitted by means of such a 
signal has the amount of data 1 bit. We therefore have 
a definition of the measurement unit 1 bit, and conse-
quently of the amount of data:

When the number of signs is z = 2, 1 bit is trans-
mitted with one sign.

You bet with a classmate X that you will score a 
grade A in the next physics test. You get the test back 
and you wish to tell X, who is sitting on the other end 
of the classroom, immediately whether you achieved 
your goal. You transmit the information with your 
thumb. The transmitted amount of data is 1 bit.

But what is the amount of data for the case that the 
number of signs is greater than two?

Let’s assume we have z = 4 different signs. One pos-
sibility could be that you wish to tell X the grade (A, B, 
C or D) you have obtained. (Grade E was excluded 
from the start.) First we replace the four lettes A, B, C 
and D by the numbers 1, 2, 3 and 4.

Again, not the realization is relevant for the calcula-
tion of the amount of data. You have agreed that you 
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would hold up one of 4 color pencils. The following 
code was agreed upon:

Grade	 color
1	 red
2	 green
3	 yellow
4	 blue
How many bits are transmitted with the color signal 

here? We can determine the amount of data by using 
our first rule. Instead of the four-color code, we trans-
mit the same data with a binary code, i.e. with a 
thumbs-up and thumbs-down sign. How does that 
work? You make two successive data transmissions. 
With the first, you communicate whether the grade is 
an even or an odd number, and with the second, 
whether it is the higher or the lower grade value.

Signal 1
Grade	 Thumb
1 or 3	 up
2 or 4	 down

Signal 2
Grade	 Thumb
1 or 2	 up
3 or 4	 down

The following table shows the two thumb orienta-
tions for the four different grades:

Grade	 Thumb
1	 up-up
2	 down-up
3	 up-down
4	 down-down

Let’s assume you scored a grade B, or 2 as a number. 
In this case, you first turn your thumb downwards and 
subsequently upwards. As the data transmission was 
now done with a binary code, we know the amount of 
data: you transmitted twice one bit, i.e. 2 bits in total. 
Fig. 6.1 shows the decision tree for our example. Prior 
to the transmission of the first signal, all four grades 
are possible for the data receiver X. With every binary 
signal, this number is halved, i.e. reduced to two, by 
the first signal and to one by the second signal. If you 
had used the four-sign code, you would also have 
transmitted 2 bits, but by means of a single signal:

If you had used the four-sign code, you would also 
have transmitted 2 bits, but by means of a single signal:

When the number of signs is z = 4, 2 bits are 
transmitted with one sign.

Hence:

2 different signs: 1 bit/sign
4 different signs: 2 bit/sign

What will be next?
If we wish to transmit a message that consists of a 

choice from among 8 different possibilities, 3 binary 
decisions, i.e. decisions between two possibilities, will 
be required. Three binary signs have to be transmitted. 
Fig. 6.2 shows the decision tree.

If the message is transmitted with a code that uses 8 
signs, we will only need to transmit a single one of 
such signs. Hence:

When the number of signs is z = 8, 3 bits are 
transmitted with one sign.

It goes on accordingly: for z = 16, 4 bits are trans-
mitted with one sign; for z = 32, 5 bits are transmitted, 
etc., see Table 6.1.

Now we have reached a point where we can get a 
clear idea of the amount of data. Put yourself in the 

1 2 3 4

1 3 2 4

1 3 2 4

Fig. 6.1  Decision tree for two binary decisions

D E F G HA B C

DA B C E F G H

A B DC G HE F

A B C D E F G H
Fig. 6.2  Decision tree for three binary decisions. By 
means of three binary decisions, one of the 8 signs A, B, 
C, D, E, F, G or H is selected.



74

6.1  The amount of data

6 
DA

TA
 T

RA
N

SF
ER

 A
N

D
 S

TO
RA

G
E

position of the data receiver. What would be your 
chance to predict a message that has not yet been re-
ceived?

If it is a 1-bit message, i.e. for example the informa-
tion whether team A or team B won a soccer game, 
you will predict the result correctly with a probability 
of 0.5 or of 50%. (We assume that the teams play equal-
ly well.) If the winner shall be determined among 4 
teams in a tournament, you will receive 2 bits with the 
announcement of the winner. Your chance of predict-
ing the winning team was 0.25 or 25%.

Someone thinks of a number from 1 to 64. How 
likely will you make the right guess if you can name a 
number? Your uncertainty is much higher now. The 
probability to make the right guess at the first go is 
1/64. If you are subsequently told the correct number, 
you will receive the amount of data H = 6 bit (see Ta-
ble 6.1).

The higher the amount of data of a message, the 
more uncertainty is eliminated when the message is 
received.

By means of Table 6.1, we can determine the amount 
of data H for a sign out of the number of signs z. You 
see that the table can be replaced by a simple formula:

H = log2 z bit.

In words: the number of bits turns out to be the bi-
nary logarithm of the number of signs. As we will need 
the binary logarithm frequently in the following, we 
use a special symbol:

log2 = ld,

(„Logarithmus dualis“). We therefore have

H = ld z bit.	 (6.1)

Although the formula is very simple, there is a snag: 
it only applies under specific conditions, and we will 
only learn about these conditions later. Therefore, be a 
little skeptical about everything we calculate with this 
formula now.

There are only powers of two in the left column of 
Table 6.1. With equation (6.1) we can even calculate 
the amount of data if z is not a power of two.

Let’s assume a test grade should be transmitted once 
again and that the whole grading scale is possible this 
time, i.e. one of the grades from A to E. Hence, z = 5 
applies now. With equation (6.1) we obtain:

z H in bit

2 1
4 2
8 3

16 4
32 5
64 6

128 7
256 8
512 9

1024 10
2048 11
4096 12
8192 13

Table 6.1  Amount of data H for various numbers of 
signs z

H = ld 5 bit ≈ 2.3 bit.

We look once again at Table 6.1. It starts with the 
value z = 2 for the number of signs. But what will be 
the amount of data if only one sign is available for the 
transmission? We apply equation (6.1):

H = ld 1 bit = 0 bit,

because the binary logarithm of 1 is 0. Thus, the 
amount of data is 0 bits. Can we understand this? Yes, 
we can. What is the degree of uncertainty that is elimi-
nated by the transmission of the sign? As only one sign 
is available, the data receiver knows with a certainty of 
100 % which sign will come, i.e. the only sign that ex-
ists. No uncertainty is eliminated at all. Hence, the for-
mula supplies the expected result also in this case.

But what is the situation in the following cases: the 
telephone rings, the bell sound at school can be heard or 
a car honks. It seems that there is only a single sign in 
each case, but still, data is transmitted without any doubt. 
But there are actually always two signs: in case of the tele-
phone, the options are „it rings“ and „it does not ring“, in 
case of the horn it „honks“ or „does not honk“, etc..

When we transmit data from a source A to a receiv-
er B over a longer time, a data current flows from A to 
B. The data current strength (or in short: the data cur-
rent) is the quotient of the transmitted amount of data 
ΔH and the time required for the transmission Δt :

H
HI
t

∆
∆

=
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6.2 � Examples for amounts of 
data and data currents

Writing
Writing is one of the most important methods of 

storing and transporting data. How many bits are car-
ried by one character? At first, we have to determine 
the number of existing characters: upper- and lower-
case letters, numerals, punctuation marks, math signs 
and other special characters. Also the space between 
two words is a character. We assume that only the 
characters that can be created with a normal keyboard 
may be used. The keyboard of a typical computer has 
approximately 50 keys. Each key has a dual function, 
i.e. depending on whether we press the shift key or not, 
a different character is written. In case of the letter 
keys, each one can be used to write either the upper- or 
the lower-case letter. Hence, a total of around 100 
characters can be written with a keyboard. With our 
provisional formula for the amount of data we obtain

H ≈ 7 bit.

Images
A computer creates an image on its screen. Which 

amount of data does the computer send to the screen 
for this purpose?

In a typical screen, each image point, i.e. each „pix-
el“ can take on one of 16.7 million different colors and 
degrees of brightness. Therefore, the amount of data 
for a pixel becomes:

H = ld (16 700 000) bit = 24 bit.

Now we assume the screen to have 4000 · 2500 =	
 10 000 000 pixels ≈ 10 megapixels. We therefore ob-
tain as an amount of data for the entire picture

10 000 000 · 24 bit = 240 000 000 bit = 240 Mbit.

This is also the amount of data that is needed for 
every picture of a digital camera (assuming that the 
camera takes pictures with 10 megapixels.)

A typical picture has an amount of data of ap-
proximately 200 Mbit.

When an image is saved, it is usually „compressed“. 
Sometimes, an image that initially contains 200 Mbit 
can be compressed to 200 kbit, i.e. to a thousandth of 
the initial amount of data. It will then require less stor-
age space. The fact that nothing of the image is lost in 

the process appears miraculous at first. You will learn 
how the trick works in sections 6.4 and 6.5. At the mo-
ment, we are only interested in uncompressed data.

„Moving images“ as can be seen on the television 
screen or at the movies can be obtained by showing or 
projecting many individual images onto the screen in 
rapid succession. The movements will appear continu-
ous if more than approximately 20 images are created 
per second. This resulting data current that has to flow 
to the projector and to the screen is:

IH = 240 Mbit per frame · 20 frames per second 
= 4800 Mbit/s

A data current of approximately 5,000 Mbit/s 
corresponds to moving images.

However, we will see later that a much weaker data 
current is also sufficient in this case.

Measuring values
When performing a measurement, we receive data 

about the object on which the measurement is applied.
We examine a meter with an analog display. The re-

sult is not displayed in numbers, but by means of a 
pointer on a continuous scale. A kitchen scale, Fig. 6.3, 
is a typical example.

The maximum value that it can display is 2 kg. The 
smallest difference that can still be read more or less 
reliably is 10 g. To the question of how heavy the object 
is, the scales can therefore give 200 different answers. 
Thus, the number of signs is 200 and the amount of 
data that comes with the answer is approximately 8 bit. 
This value is typical for all meters with an analog scale. 
Digital meters can have a much higher accuracy. We 
memorize as an approximate rule:

An amount of data of approximately 10 bit cor-
responds to a measuring value.

Fig. 6.3  To the question 
„how heavy are the fruits?“, 
the scale can give around 
200 different answers. The 
amount of data of an an-
swer is therefore approxi-
mately 8 bits.
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Music, speech, noise
Data is transmitted as soon as someone speaks or 

when the radio is on. The transmission occurs by 
means of sound waves. What is the data current in this 
case?

We know that the highest perceptible frequency is 
approximately 20 kHz. To be on the safe side, we calcu-
late with 25 kHz. This corresponds to a period of 0.04 
ms (why?). The velocity at which the fastest changes of 
a sound signal occur is therefore determined. Fig. 6.4 
shows the pressure of a sound wave that was recorded 
with a microphone as a function of time.

To digitalize this curve, i.e. if we wish to describe 
this curve by means of numbers, we have to measure 
the signal in short intervals. To prevent speech or mu-
sic from quality losses, the time lags between the indi-
vidual measurements have to be sufficiently short. To 
be able to still perceive the fastest occurring changes, 
two measurements per period of the fastest occurring 
oscillation are enough, i.e. approximately one value 
per 0.02 ms or 50,000 per second.

For the transmission to be good, the individual 
measuring values have to be determined and saved 
with a high accuracy. We calculate with 10 bit per mea-
surement value. For a stereo transmission, two such 
measurement values are needed for each instant of 
measurement.

This leads us to the data current:

IH = 2 · 10 bit per value · 50 000 values per second 
= 1 Mbit/s.

A data current of approximately 1 Mbit/s corre-
sponds to spoken language and music.

We can memorize as a general rule:

For the transmission of images, the data current 
is approximately 5,000 times larger than for the 
transmission of speech and music.

Brain and DNA
Biological evolution has created two „data storages“ 

that have not yet been outperformed by technical data 
storage systems in certain respects: the brain and the 
DNA.

The functioning of human and animal brains has 
not yet been completely deciphered. We can therefore 
only make a rough estimate of the data storage capac-
ity. The human brain can store an amount of data of 
approximately 1012 bit.

Fig. 6.4  Sound signal recorded with a microphone

t

Fig. 6.5  Structure of the DNA, schematic display

A living being comes into existence through the 
complicated interplay of many chemical reactions. A 
type of blueprint inherent in every living being en-
sures the right course of these reactions. This blue-
print consists of some very large molecules, i.e. the 
deoxyribonucleic acid molecules or, in short, DNA 
molecules. Many of these molecules are contained in 
every living being, more precisely in the nucleus of 
every single cell.

The structure of the DNA is easy to describe, 
Fig. 6.5: between two very long uniform molecule 
strands, atomic groups that exist as two different 
types are arranged like rungs of a ladder. Each of 
these groups can be integrated in the ladder in two 
ways. Therefore, there are four different „signs“ by 
means of which the data of the biological blueprint 
are encoded. As the number of signs is 4, each sign 
carries 2 bit.

An important goal of biological research consists 
of deciphering the rules according to which the blue-
print of a living being is encoded in the DNA mole-
cules.

Compared to the diameter, the length of such a 
molecular ladder is incredibly long. While the diam-
eter is approximately 1 nanometer, its lengths is 
around 1 millimeter, i.e. a million times larger, in a 
bacterium. The ratio of diameter to length is there-
fore approximately the same as for a thread with a 
length of 100 m. In order to fit into the nucleus, the 
DNA molecule is wound up to a ball.
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The DNA chain is longer the higher the degree of 
development, i.e. the complexity, of the respective liv-
ing being. In case of sophisticated organisms, the data 
is distributed over several DNA clusters, for example 
over 46 in human beings: This corresponds to a total 
length of the DNA ladder of 99 cm. The number of 
rungs in a bacterium is approximately 4 million, and 
2.9 billion in a human being. The blueprint of a bacte-
rium therefore has 8 Mbit and that of a human being 
approximately 6,000 Mbit.

Exercises
1. In the area of Deutsche Post (German mail service), 

100,000 different post codes can be used. What is the 
amount of data that is carried by a post code?

2. The amount of data of a telephone number depends on 
whether the number is selected from a local network, the 
national network or the international network. Estimate 
the amount of data of a telephone number from a local 
network with 10,000 telephone connections.

3. The Chinese alphabet has many different characters. Ap-
proximately 2,000 are sufficient for everyday use. How 
many bits are carried by one character?

4. A source emits 5 bits with each sign. What is the number 
of signs of the source?

5. The number of signs of a source is 3. Draw a decision tree 
for this source. It should comprise three successive deci-
sions. What is the amount of data that a recipient receives 
with three successive signs from this source?

6. Source A has a number of signs that is a power of two. The 
number of signs of source B is twice as high. What can be 
concluded for the amounts of data that both sources emit 
per sign?

7. A magic trick with cards: We use 16 different cards of any 
card game. The magician lets a participant draw a card. 
The participant looks at the card in a way that the magi-
cian cannot see it. The card is put back into the card game 
and the cards are shuffled. Then, the magician reveals the 
cards one by one by putting them on four different piles: 
one card on the first, the next on the second pile, one on 
the third, one on the fourth pile and once again one on 
the first etc. until all 16 cards are lying on the table. The 
participant then has to say on which of the four piles his 
card is lying. Subsequently, the magician makes a new 
package of the four piles and spreads out the cards in four 
piles once again and the participant tells him again on 
which pile his card is lying. The magician now knows the 
card that the participant has memorized: he merges the 
four piles again and then flips the cards over one by one 
until he arrives at the card that the participant has memo-
rized. Which amount of data does the magician has to 
receive in order to identify one out of 16 cards? How 
many bits does he get each time the participant names the 
pile in which the card is located? How does the trick 
work?

Exercises
8. Estimate how many bits we get if we determine the weight 

with a balance scale. (Maximum load: 5 kg, smallest 
weight piece: 1 g.)

9. Look for the amount of data of different files on a com-
puter. What is the type of the files that have a large amount 
of data? What are the files with a small amount of data?

10. When loading files, the web browser indicates the data 
current. Take note of some typical values.

11. There is a game in which small colored squared plastic 
discs are put onto a grating in a way that the grating is 
covered completely by the small discs. A picture can be 
composed this way. We assume the grating with a size of 
30 cm×40 cm to have 60×80 grid points (i.e. one small 
color disc has a size of 0.5 cm×0.5 cm) and there to be 
discs in 16 different colors. Calculate the amount of data 
of a picture in two different ways: (a) Calculate the 
amount of data of one small disc and multiply by the 
number of the „pixels“. (b) Think of each of the different 
pictures that can be produced as a sign. Calculate how 
many different pictures there are in total. Calculate the 
amount of data out of this „number of signs“. Compare to 
the result from part (a).

12. Keys are data carriers. Estimate how many bits are carried 
by your house key.

13. A music box has 18 tines that can each create one sound. 
During one rotation of the roller of the music box, one 
tine can be plucked 20 times as a maximum. How many 
bits are stored on the roller?

14. Retrieve the information requested in the following from 
the Internet. (a) Texts have been stored since the inven-
tion of a script. Outline the most important development 
steps of text storage from the beginnings up to today. (b) 
Outline the most important development steps of the 
data memory „picture“ from the beginnings up to today. 
(c) Outline the most important development steps of 
acoustic data stores.

15. Look for the size of the main memory of a computer and 
check how much of it is utilized. Also try to find out 
which amount of data fits into the hard drive and how 
much of it is utilized. Find out the data memory require-
ment of three different programs.

6.3 � Data carriers
We need a data carrier to move data from one place 

to another.

Data carriers for people
Humans receive the largest part of and the most im-

portant data through eyes and ears. The data carriers 
are the light, i.e. electromagnetic waves with wave-
lengths between 400 and 800 nm, and the sound, i.e. 
mechanical waves in the air with frequencies between 
20 Hz and 20 kHz. (For light, the wavelength can be 
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measured more easily, and the frequency for sound. 
This is the reason for the different measurement units.)

Technical data carriers
Electricity
When an electric connection is used, the data car-

rier is electricity, for example:
•• the cable between the amplifier and the speakers
•• the cable from the bell push to the bell
•• the telephone line
•• connections within electronic devices
•• the cable from the antenna to the television.

Electromagnetic waves
They are so important that they deserve a special 

treatment; see sections 6.9 to 6.11. Also the light is an 
electromagnetic wave. For technical use, it is not rele-
vant whether the waves belong to the visible light or 
not.

Mechanical data carriers
They have practically disappeared from use al-

though they were very significant in earlier times. For 
example railway signals were operated remotely by 
means of a cable-pull. Also doorbells worked by means 
of bars and ropes.

6.4 � Actual and apparent amount 
of data

We have learned how to calculate the amount of 
data. It is equal to the binary logarithm of the number 
of signs:

H = ld z bit .

But we have already noticed that the formula is not 
yet complete. When applying it, something must be 
taken into account – and this will be explained now.

Indeed, it is possible that a specific amount of data 
– let’s say 80 kbit – is encoded unhandily so that it 
takes up more storage space, for example 250 kbit. We 
therefore distinguish between the true amount of data, 
i.e. 80 kbit, and the apparent amount of data, i.e. 
250 kbit, Fig. 6.6.

As we mostly deal with the apparent amount of 
data, the adjective „apparent“ is mostly omitted in the 
following. Hence, „amount of data“ (without any ad-
jective) means apparent amount of data. In our case, 
we can say:

Fig. 6.7  (a) Uncompressed removal material; (b) com-
pressed removal material

0

100

200

300
kbit

uncompressed compressed
Fig. 6.6  Uncompressed (= redundant) data and com-
pressed data

a)

b)

•• actual amount of data: H0 = 80 kbit
•• (apparent) amount of data: H = 250 kbit

The amount of data can be reduced through re-cod-
ing until it is finally equal to the actual amount of data. 
We say that the data is compressed. As long as H > H0 
applies, the data is redundant. Hence:

 Redundant data can be compressed.

We explain the situation by means of an analogy:
A furniture truck has a loading capacity of 40 m3. 

Now, furniture and other removal material is loaded, 
Fig. 6.7.

Before, we determine the volume of the removal 
material by calculating length times width times height 
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for each object: for tables, cupboards, chairs and all the 
other furniture, for cardboard boxes and any other 
stuff. We find 110 m3. The moving truck would conse-
quently have to drive three times to take everything 
away. But we can immediately see that more things can 
be stored by skillfully packing things into each other. 
For example an entire chair can be stored between the 
legs of a table. And there are many other smaller gaps 
that can be filled with cardboard boxes and other small 
objects. Finally, a lot can be stored in drawers of clos-
ets, cupboards and desks. In the end, everything fits 
into the storage space of a single truck, and there is still 
a lot of space left. We have „compressed“ the removal 
material from 110 m3 to 36 m3. A very similar proce-
dure can also be used for the data. Poorly packed, they 
need 250 kbit; compressed only 80 kbit.

We had formulated the rule:
„The larger the amount of data of a message, the more 

uncertainty is eliminated upon arrival of the message.“
Here, we mean the actual amount of data because 

only the portion H0 of the amount of data eliminates 
uncertainty. What goes beyond that is responsible for 
redundancy and will not eliminate any uncertainty at 
the data receiver. We can therefore reformulate:

The higher the actual amount of data of a mes-
sage, the more uncertainty is eliminated during ar-
rival of the message.

Of course, we are very interested in reducing the 
„storage space“ that the data is taking up. We would 
like to compress the data as far as possible, i.e. until the 
(apparent) amount of data has become equal to the ac-
tual amount of data:

H = H0

In case of furniture, we can tell relatively easily 
whether the pieces can be nested into each other even 
better. Can we also tell whether data are still redun-
dant, i.e. whether they can be compressed further? We 
can tell indeed.

Data are no longer redundant when two precon-
ditions are met:
•• The probabilities of all signs are equal.
•• The probability of a sign is independent of the 

preceding signs.

Now we can understand why the equation

H = ld z bit

has to be applied with caution. It does not supply the 
actual but an apparent amount of data. It tells us how 
much memory space is needed, regardless of whether 
the data is compressed or not. Only if the precondi-
tions 1 and 2 are met, it will provide the actual amount 
of data.

6.5 � The principle of data 
compression

Most data we are dealing with are at first available in 
an uncompressed, i.e. redundant, form. Much more 
memory space is needed than what corresponds to the 
actual amount of data. Earlier, we estimated the fol-
lowing values for the amounts of uncompressed data 
and data currents:
•• picture: H ≈ 200 Mbit
•• moving images: IH ≈ 5000 Mbit/s
•• spoken words and music: IH ≈ 1 Mbit/s

It is not unusual for the apparent amount of data to 
be 1000 times as large as the actual amount of data. 
Therefore, compression of data is a profitable business.

How do compression methods work. We look at 
two simple examples that illustrate the principle.

1. Redundancy through conditional probabilities
We want to transmit an image whose pixels are only 

black or white like in the case of old fax machines,  
Fig. 6.8.

At first, we save the data in the simplest possible 
way. Each pixel corresponds to one of two possible 
signs, i.e. one for black and the other one for white, for 
example:
•• white	 0
•• black	 1

The whole picture will then be encoded by indicat-
ing for each line and from the top left to the bottom 
right – pixel by pixel – whether the corresponding 
pixel is black or white.

We limit ourselves to the small section that is shown 
in the enlarged picture at the very bottom. The section 
contains 40 · 10 pixels = 400 pixels. By means of our 
code, we obtain a sequence of zeros and ones:

000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000
00000000000000011111111100000000001111000000
00000000011111111111110000000011110000000000
00011111111111111111000000111100000000000011
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11111 111111111111000001111000000000001111111
11111111111111100011110000000000111111111111
11111111111100111100000000011111111100000001
11111111000000000000001111111000000000000111
111110

We obtain 400 bits as an amount of data. This en-
coding is redundant because precondition 2 is not met. 
The probability for the occurrence of each sign de-
pends on the preceding sign. After a zero (for white) a 
zero will appear with a much higher probability than a 
one. And after a one, the probability of there being 
once again a one is much higher than the probability of 
a zero. The reason: there are large continuous areas in 
the picture that are completely black and others that 
are completely white.

Therefore it is not difficult to compress the data. The 
old binary encoding starts with 101 zeros in a row. 
Then, there are 9 ones etc..

We can write instead:
101w9b10w4b15w13b8w4b13w17b6w4b12w19b-

5w4b11w22b3w4b10w24b2w4b9w9b7w9b14w7b-
12w8b1w

Here, „w“ stands for white and „b“ for black. We 
have used a total of 81 signs. What is the amount of 
data now? Our new number of signs is 12 because we 
use the ten figures 0 to 9 and the two letters b and w. 
The amount of data per sign therefore results in:

H = ld (12) bits ≈ 3.6 bit.

As we have 81 signs, the total amount of data of our 
image section is

H = 81 · 3.6 bits ≈ 292 bit,

i.e. clearly less than the initial 400 bit.
Of course, the method also works in cases where 

the pixels take on more than only two colors, i.e. in 
case of colored images.

But the compression possibilities are not yet ex-
hausted at this point. We have for example not yet 
taken advantage of the fact that the black and white 
pixels also form continuous areas in the vertical di-
rection as well. Let’s assume we have just arrived at 
pixel P from Fig. 6.9 with our transmission. This pix-
el is black with a high probability not only because 
the previously transmitted pixel Q is black, but also 
because pixel R, which is located directly above, has 
already been black.

If we also consider the dependencies in the vertical 
direction for encoding, redundancy will be decreased 
even further.

Fig. 6.8  (a) A printed text was broken down into pixels. 
A section of it was enlarged in four steps. Our lowest 
enlarged view has an underlying grid so that the pixels 
can be counted better.

R

Q P

Fig. 6.9  Prior to sending pixel P, we know that its prob-
ability of being black is high: 1. because pixel Q is black 
and 2. because pixel R is black.
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2. Redundancy due to unequal probabilities
A text should be transmitted by means of a letter 

code. We calculated earlier that approximately 7 bits per 
letter are needed. But this is an apparent amount of data. 
Also these data are actually redundant. Why? The prob-
abilities of the different letters and special characters are 
different. Thus, our first condition (section 6.4) is not 
fulfilled. The "e" is almost five times as probable as the 
"u" and around thirteen times as probable as the "v".

We examine with a somehow unrealistic but illus-
trative example how such signs with different proba-
bilities can be compressed. We assume our alphabet to 
consist only of the four letters "a", "b", "c" and "d". We 
suppose the probabilities of the four signs to be the 
values of the second column of Table 6.2.

The third column of the table contains a normal bi-
nary encoding. As there are 4 letters, we have z = 4, and 
the result is 2 bit per sign for the amount of data. This is 
also shown by the fact that we need two binary signs for 
each letter in the binary code. Now we can already see 
how the data can be compressed. To transmit the fre-
quently occurring „a“, we have used as many binary 
signs as for the rare „c“. If the encoding is changed in a 
way as to transmit the frequent letters with fewer binary 
signs and the rare ones with more binary signs, we can 
win. A little problem is the condition that we will not 
know at first where the binary sign sequence, which cor-
responds to a letter, ends. But due to the way in which 
the encoding of the fourth column of the table is cho-
sen, the problem does not occur. Any sequence of zeros 
and ones corresponds to exactly one sequence of letters 
of our original signs. Hence, we have for example:

01001000000111010100110001…
 → bcddaaabbcada…

Now, we need a different amount of bits for the 
transmission of different signs. We can see whether 
our encoding has been effective if we calculate the av-
erage number of bits: the number of bits for every sin-
gle letter weighed with its probability.

0.6 1bit 0.2 2bit 0.1 3bit 0.1 3bit
a cb d

1.6bit

H = ⋅ + ⋅ + ⋅ + ⋅

=

����� ����� ����� �����

The amount of data has decreased as we compressed 
the data.

6.6 � A few frequently used 
encodings

Images
The file of a normal, uncompressed image has an 

approximate amount of data of 200 Mbit.
There are numerous compression methods for such 

files. If you save a picture from a drawing program, the 
computer will ask you about the „format“ in which 
you want to save it. Depending on the image type and 
the purpose of use, one or the other encoding is suited 
better. The amount of data is different in each of these 
formats. Here are two examples from the list:
•• JPEG: strong compression. Is also used in the digi-

tal camera.
•• BMP: no compression.

Music, spoken words
A data current of approximately 1 Mbit/s corre-

sponds to uncompressed acoustic data.
On a CD, data are saved as they occur, i.e. in a com-

pletely uncompressed way, just like on an old music 
cassette or a vinyl record.

The data will need much less memory space if they 
are encoded in the MP3 format. However, the MP3 
method has a particularity: not only the apparent, but 
also the true amount of data will be reduced. Some de-
tails of the original sound file are simply omitted. This 
can be done because humans do not perceive the dif-
ference. But it also means that the original sound file 
cannot be recovered from the MP3-file.

The data current is reduced to approximately 1/10 
through MP3 encoding:

Acoustic data
uncompressed: IH = 1000 kbit/s
MP3-encoded: IH = 100 kbit/s

Table 6.2

binary code

sign probability without
compression

with
compression

a
b
c
d

0.6
0.2
0.1
0.1

00
01
10
11

1
01

001
000
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Moving images
In an uncompressed form, the data current is ap-

proximately 5000 Mbit/s. The respective amount of 
data was saved on a video tape by means of an old 
video camera.

But the successive images of a movie sequence are 
very similar to each other, Fig. 6.10. After transmit-
ting or saving one image, there will be little new in-
formation with the next image. Only little uncertain-
ty is eliminated. The data are consequently very 
redundant.

The MPEG encoding eliminates this redundancy 
to a large extent. Therefore, the data current is re-
duced to 1/10. It is consequently not surprising that a 
2-hour movie on a DVD only requires 70 Gbits of 
memory space.

Texts, technical drawings and instrumental music
Images and music often consist of elements that 

are frequently recurring and that the data receiver al-
ready knows:

1. A text consists of letters. When it is transmitted 
by fax, we explain time and again to the data receiver 
how an „a“, a „b“, etc. looks like. But the data receiver 
already knows this. No uncertainty is therefore elimi-
nated in this respect. All the receiver does not yet 
know is the order in which the letters are arrive. The 
fax is strongly redundant for this reason.

To eliminate this redundancy, the text is not en-
coded as an image but as a sequence of letters. We 
could see earlier that 7 bit per letter are required. The 
code that has been agreed upon is called ASCII code. 
In fact, not 7 but 8 or more bits are used per sign. This 
way, many special characters can be encoded besides 
the normal alphabetic signs. The ASCII code is used 
on many occasions, for example:
•• to transmit the data from the keyboard to the 

computer;
•• to save the files created with a word-processing 

program;
•• to transmit a text message or e-mail.

2. A technical drawing consists of line segments, 
rectangles, ellipses, circular arcs, dashed lines, etc..
When the drawing is transmitted as a BMP file or 
also as a JPEG file, the data receiver is told time and 
again how an ellipse, a straight line or a rectangle 
looks like – something that he already knows, though. 
What he does not know is the length of the line seg-
mens, the size of the ellipses or rectangles, etc., how 
they are arranged, the thickness of the lines… BMP 
and JPEG files are therefore redundant.

Fig. 6.10  Sequence of an old cinema movie. An image 
does not contain much new information in relation to 
the preceding images. The data are very redundant.

Fig. 6.11  The coordinate zero point for the data of the 
vector graphic is the top left corner of the figure.

To eliminate this redundancy, one does not encode 
the drawing as a pixel image but as a vector graphic. 
The „technical drawing“ from Fig. 6.11 could for ex-
ample be described by the following text:

Square
Edge length: 2 cm
Position of top left corner: (1.5 cm; 1.0 cm)
Orientation: 0°
Line thickness: 1 pt
Line color: 0, 0, 0, 100
Filling color: 100, 0, 0, 0

Circle
Radius: 1.0 cm
Position of center: (5.0 cm; 2.5 cm)
Line thickness: 10 pt
Line color: 0, 0, 100,0
Filling color: 0, 60, 90, 0

Straight line
Coordinates of start: (0.5; 3.5)
Coordinates of end: (6.0; 4.0)
Line thickness: 6 pt
Line color: (0, 0, 0, 40)



83

6.7  Games

6 DATA TRAN
SFER AN

D
 STO

RAG
E

The amount of data of this text is much lower than 
that of the pixel file. There are many different vector 
graphic formats because each drawing program has its 
own format.

3. A musical piece consists of sounds of known in-
struments such as clarinet, violin or piano. If the piece 
is uncompressed or transmitted as an MP3 file, the 
data receiver will be told what a clarinet, a violin or a 
piano sounds like although the data receiver has al-
ready had this information. No uncertainty is elimi-
nated in this respect. What he does not know is the 
temporal order of the sounds and which instruments 
creates a sound at what time, for how long and at 
which sound volume. The file is redundant for this rea-
son.

To eliminate this redundancy, we can create a MIDI 
file. In this process, the properties of every single 
sound are encoded: pitch, start and end time of the 
sound, instrument, sound volume etc. A MIDI file can 
be created by means of the electric piano and played 
with a synthesizer.

We have addressed three encoding methods that 
have something in common. One advantage is obvi-
ous: the amount of data is low, i.e. we need little mem-
ory space. The methods also come with another benefit 
that we will explain by means of the example of text 
files. If we transmit a text with a fax machine and sub-
sequently enlarge it, we can see imperfections. We see 
the individual pixels and the letters are blurred. When 
the text is transmitted as a text file, the quality of the 
letters is only limited by the printer, and this is also the 
case when they are enlarged.

What are the disadvantages of these storage for-
mats?

Exercises
1. Create a sequence of zeros and ones with a length of ap-

proximately 40 signs by tossing a coin. What is the cor-
responding sequence of the letters a, b, c and d when you 
interpret it as a message that has been encoded according 
to Table 6.2 column 4?

2. Messages that are at first available in a code with 8 differ-
ent signs should be transmitted. Hence, we have: z = 8. 
We denominate the signs with the first 8 letters of the al-
phabet. The probabilities at which the signs occur are in 
brackets: a (0.6); b (0.2); c (0.1); d (0.06); e (0.02); f (0.01); 
g (0.005); h (0.005).
(a) Indicate a binary code that does not compress the 
data. What is the amount of data for each of the 8 signs?
(b) Look for a binary encoding method through which 
the data are compressed. What is the mean amount of 
data for each of the 8 initial signs? Make sure that the se-
quence of binary signs allows for unambiguous decoding.

Exercises
3. When a text in a certain language – for example English 

– is transmitted, also the compressed letter code is still 
redundant. Which encoding method could be used to re-
duce redundancy even further?

4. Estimate the amount of data that can be saved on a CD.
5. Create a simple image with a drawing program. Save it in 

different formats, in particular as a BMP and as a JPEG 
file. Compare the sizes of the files.

6. Willy and Lilly are sitting with their backs towards other. 
Lilly has a picture in front of her and describes it with 
words. Willy draws a new picture according to this de-
scription. Try this image transmission method with a 
friend. Compare the encoding with the methods dis-
cussed in the text. Which method is most similar to it? 
How can it be improved?

7. A musical piece is available in two formats: in MIDI for-
mat and in MP3 format. What are the disadvantages of 
the MIDI encoding?

8. A CD with an amount of data of 480 MB is copied. Will 
the amount of data double in this process? Explain.

6.7 � Games
In some games it is important to ask a question in 

such a way as to obtain a maximum information with 
the answer. Hence, the answer should have as little re-
dundancy as possible. We start with a very simple ver-
sion of such game.

Quizzes
Lilly thinks of one of the integers from 1 to 64. Wil-

ly should find out the number by asking Lilly as few as 
possible yes/no questions.

A „yes/no question“ is a question that can only be 
answered with either „yes“ or „no“. Therefore the 
amount of data that is transmitted with the answer to 
a yes/no question is 1 bit. Whether this amount is the 
actual or only the apparent amount of data depends 
on the probabilities of the two answers. If „yes“ and 
„no“ are equally likely, it will be the actual amount of 
data. If the two answers have different probabilities, 1 
bit is only the apparent amount of data. The actual 
amount of data will then be lower; the answer is re-
dundant. 

We assume Lilly thinks of the number 28. Willy can 
apply different guessing strategies. We compare two 
such strategies.

Strategy 1
B: Is it the 1?
A: No.
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B: Is it the 2?
A: No.

B: Is it the 3?
A: No.
......

B: Is it the 28?
A: Yes.

Willy needed 28 questions to find out the number.

Strategy 2
B: Is the number larger than 32?
A: No.

B: Is the number larger than 16?
A: Yes.

B: Is the number larger than 24?
A: Yes .

B: Is the number larger than 28?
A: No.

B: Is the number larger than 26?
A: Yes.

B: Is the number larger than 27?
A: Yes.

Willy knows the number after having asked 6 ques-
tions.

The second strategy is obviously better than the first 
one. There, the questions were formulated in a way 
that the two answers „yes“ and „no“ were always equal-
ly likely. With each answer the actual amount of data, 
i.e. 1 bit, was supplied.

For almost all questions of the first strategy, the an-
swer „no“ was more likely than the answer „yes“. 
Therefore, the actual amount of data of an answer was 
smaller than 1 bit.

The fact that Willy receives fewer bits when using 
the bad strategy than when using the good one is also 
in agreement with our rule:

„The larger the actual amount of data of a message, 
the more uncertainty is eliminated upon arrival of the 
message.“

In fact, Willy has a good chance of predicting the 
answer to each of the many questions he asks when 
using the bad strategy. He knows that to the question 
„is it the number 1?“, the answer is very likely to be 

Abb. 6.12  The 27 balls look the same, but one of them is 
heavier than the remaining 26. How many weighings 
are required to find the „odd“ ball?

„no“. The probability of him being wrong is only 1 : 
64, the probability of him being right is 63 : 64. That 
is why he has to ask a very large number of questions 
and he only receives a very small amount of data with 
each answer. In case of the good strategy, there is 
maximum uncertainty about the next question and 
the amount of data he gets with each answer is large, 
i.e. 1 bit.

A slightly more interesting variant of this game is 
the subject of exercise 2.

The best weighing strategy
One of 27 identical balls is heavier than the remain-

ing 26 ones with an equal weight. We would like to find 
the heavier ball by means of a balance scale and with as 
few weighings as possible. Thereby, only balls and not 
weight pieces or any other bodies may be placed on the 
weighing pans, Fig. 6.12.

With each weighing step, the balance answers one 
question it is asked. The balance scale can give three 
different answers: 1. The right weighing pan goes 
down, 2. the left weighing pan goes down and 3. equi-
librium.

If we seek to perform as few weighings as possible, 
we will have to ask the questions in a way as to obtain 
a maximum number of bits per weighing. This means: 
the probabilities of the three answers have to be as 
similar as possible for each weighing step. It is certain-
ly awkward to start with placing one ball on each 
weighing pan. The probability of the scale to remain in 
equilibrium will then be much higher than the proba-
bility of the scale being inclined right- or leftwards.

How many weighing steps are necessary? What is 
the best strategy?

The following version of the game is substantially 
more difficult: one of 12 balls has a deviating weight 
but we do not know whether the „odd“ ball is lighter or 
heavier than the others.
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Exercises
1. Willy throws a common dice (i.e. with numbers from 1 

to 6). Lilly should find out the number with as few as 
possible „yes/no questions“. How can Lilly ask the first 
question in order to obtain 1 bit with the answer? 
Name two possibilities. Explain why Lilly gets less than 
1 bit with the answer to the question „is it the number 
6?“.

2. Lilly thinks of a random word. Willy has to find out the 
word by asking Lilly as few as possible yes/no questions. 
What is the strategy that Willy has to apply? What is the 
approximate number of questions that have to be asked in 
case of this strategy?

3. A mole A presumes that the Sun rises in the west on some 
days. He hires mole B to make the observation. B goes out 
every day, looks where the Sun rises – in the east or in the 
west – and tells A about the result of the observation via a 
data line. Of course, the data are encoded: one sign for 
east and another one for west. What is the apparent 
amount of data? How much uncertainty is eliminated 
through the transmission? What is the actual amount of 
data? Explain.

4. You probably know someone who gets on your nerves be-
cause he/ she always tells you the same stories. Explain 
your annoyance by means of a statement about the 
amount of data.

6.8 � Data reduction
To save memory space, we are eager to compress 

data. Compression means: reducing the apparent 
amount of data while keeping the actual amount of 
data as it is.

But also the actual amount of data is often reduced. 
Why? Simply because a part of the data is not interest-
ing. In that case, we talk about data reduction.

Explaining it once again with the example of the 
furniture truck (see section 6.4): out of the 36 m3 of 
removal material, 12 m3 are not even loaded onto the 
furniture truck but put directly to the bulky waste be-
cause the things are no longer useful, Fig. 6.13. We can 
therefore also say that data reduction consists of 
throwing away „data waste“.

Data compression:
•• apparent amount of data is reduced
•• actual amount of data remains constant

Data reduction:
•• superfluous information is discarded
•• actual amount of data is reduced

bulky waste

Fig. 6.13  (a) Unreduced removal material (b) Reduced 
removal material

a)

b)

Input

Output
R

Fig. 6.14  The computer transforms each entered R (a) 
into the same R (b).

a)

b)

Data reduction in case of pattern recognition
Letters can be entered handwritten into the tablet 

computer. They are at first available for the computer as a 
pixel file with a large amount of data. A „character recog-
nition“ program converts this pixel file into a text file. The 
true amount of data decreases very strongly in this pro-
cess. Of course, much information is lost, too. A letter can 
be written in countless ways, Fig. 6.14. We can no longer 
tell from the R, which is created by the computer on the 
display field, how the handwritten R looked like.

Let’s assume that the pixel file on a small screen has 
an amount of data of 8 kbit. A letter saved in the ASCII 
format requires 8 bits. Hence, the computer has re-
duced the amount of data to a thousandth.

A computer can also be programmed in a way that 
it detects other shapes or „patterns“: squares, circles, 
straight lines, houses, trees, animals, fingerprints, faces 
and much more. The true amount of data is reduced in 
any case.

Pattern recognition is based on data reduction.



86

6.8  Data reduction

6 
DA

TA
 T

RA
N

SF
ER

 A
N

D
 S

TO
RA

G
E

Perception and data reduction
What is done by the computer in this case is done 

by our brain every second. We look out of the window. 
Immediately after, however, we will no longer remem-
ber the complex color pattern that we have perceived 
with our eyes. We rather know: here is a house, there is 
a road, there are two people and here is a dog.

The huge data current that enters the eye through 
the pupil could not be processed further by the brain 
without reduction.

Perception is based on data reduction.

Data reduction during calculation
We imagine the calculations to be performed by a 

computer or a calculator.
A computer receives and releases data. Does this 

mean that it only re-encodes the data, i.e. that the ac-
tual amount of data at the input is the same as at the 
output?

To see whether this is the case, we look at a simple 
example. The average of school grades should be cal-
culated. A class with 30 students did a test in which a 
maximum of 15 points could be achieved. Hence, 30 
numbers of which each one is one of the 16 integers 
from 0 to 15, are typed into the calculator. As 16 = 24, 
the calculator receives 4 bit with each figure, i.e.

Hin = 30 · 4 bit = 120 bit in total.

The average value is calculated down to one digit 
after the decimal point. The result is one of the values

0; 0.1; 0.2; 0.3; ....... 14.7; 14.8; 14.9; 15.

There are 151 possibilities. Therefore the number of 
signs of the result is z = 151. From this the amount of 

data can be calculated:

Hout = ld (151) ≈ 7 bit.

The calculator has reduced the amount of data from 
120 bit to 7 bit, Fig. 6.15.

Calculators reduce the amount of data.

So does this mean that someone who receives the 
data of the output knows less than someone who re-
ceives the data of the input? Yes, this is exactly the case. 
Those who only know the average value cannot derive 
the individual grade points of the students on that basis.

But why is the calculator still being used? It is used 
precisely because the large amount of data at the in-
put cannot be handled easily. If we wish for example 
to compare a class as a whole with a parallel class, the 
amount of data of the individual grades is usually too 
large. In case of large amounts of data, people easily 
get confused. Therefore, the calculator is not used be-
cause there is too little, but because there is too much 
data.

Data reduction during recording of acoustic signals
When music or other acoustic data is recorded with 

a microphone and saved on a CD, there is much data 
waste among the data. Much of what has been record-
ed and what is emitted by the speaker cannot be per-
ceived. The microphone absorbs sound waves of all 
frequencies with roughly the same accuracy. The sen-
sitivity of our auditory sense, however, varies greatly 
for the different frequency ranges. In addition, the sen-
sitivity of the auditory sense will be reduced very 
strongly for a wave of a specific frequency if waves of 
other frequencies are added. These effects can be taken 
advantage of in order to eliminate useless data. Hence, 
we can save only what can actually be heard. The 
method requires a high calculation workload but it is 
worth the effort. It is the well-known MP3 method. As 
an MP3 file, a musical piece only requires approxi-
mately one tenth of the memory space that it would 
require in an unreduced state on a CD – without 
changing the sound quality.

During encoding in the MP3 format, the amount 
of data is not only compressed but also reduced.

Data reduction during recording of optical signals
The situation is similar for optical signals. We look 

at a pixel of a video camera. The light that hits the pix-
el has a complicated spectrum. If we were to capture 

7 bit

120 bit

Fig. 6.15  120 bit enter the calculator, and 7 bit come out 
of it.
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this spectrum with some accuracy, we would have to 
measure the light intensity for many wavelengths and 
encode said light intensity as numbers. Assuming that 
we break down the spectrum into 100 wavelength in-
tervals, we would need around 800 bit for each pixel, 
Fig. 6.16. Then, the spectrum could be reproduced 
somehow in the playing device.

In fact, however, a lot of useless data would have 
been absorbed, transported and reproduced in this 
case. This is because our eyes cannot distinguish 
many different spectra from each other. All color im-
pressions that we perceive can be described with only 
3 numbers, e.g. a red, a green and a blue value. It is 
consequently reasonable to reduce the amount of 
data in a way that the superfluous information does 
not need to be transmitted. The data reduction is very 
simple in this case. It is already done by the camera. 
The camera only records 3 different color signals 
from the outset.

Video camera and digital camera reduce the 
spectral signal to three numbers.

Exercises
1. Most computing operations reduce the amount of data; 

some others leave it unchanged. Name a few examples.
2. Explain why the computer performs a data reduction 

when it calculates the value of x2 for an integer x.
3. Will the amount of data be reduced if the value of x3 is 

calculated? (x = integer).
4. Willy stayed with his grandparents for one week. Back 

home, his parents asked him about what the grandparents 
had told him. Willy’s report is rather short. With regard 
to the grandfather, Willy has compressed the amount of 
data. And he has reduced grandmother’s data.
What can you say about grandfather's and what about 
grandmother's narrative style?

6.9 � Data transmission with 
electromagnetic waves – 
carrier waves

Electromagnetic waves from a very large wave-
length range (and/or frequency range) are used: from 
approximately 500 nm, i.e. from visible light, to 
100 km.

We usually aim at making several data transmis-
sions at the same time at some place or in a specific 
area. You know that it is possible to receive different 
radio and television channels simultaneously. In addi-
tion, wireless phones, smartphones and laptops work 
at the same place. Radio clocks are controlled and po-
sitions are determined by means of GPS (Global Posi-
tioning System). Taxis are called over a radio connec-
tion and many other services, too. All this occurs by 
means of electromagnetic waves that run around si-
multaneously. In every place, waves with diverse direc-
tions, amplitudes and wavelengths move through each 
other. How can we prevent the different systems from 
disturbing one another?

Everyone who seeks to transmit data is assigned a 
carrier frequency with a specific, narrow frequency in-
terval on both sides of the carrier frequency. They may 
only use sine waves from this channel for their data 

a)

wavelength

b)

Fig. 6.16  (a) The spectrum is described by 100 values 
with 8 bit each, i.e. around 800 bit altogether. (b) Only 
three values with 24 bits in total are required to de-
scribe the color impression.

red      green      blue
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Fig. 6.18  A sine-shaped carrier signal is modulated with 
the data signal in the data source.

creation
of carrier

signal modulationcarrier
signal

data signal

transmitting antenna

receiving antenna

data signal

filter
demodulation

Fig. 6.19  In the data receiver, the frequency range of 
the desired data source is filtered out of the signal that 
comes from the antenna. Demodulation occurs after-
wards.

transmission. The frequency ranges of the different us-
ers are very close to each other but none of them dis-
turbs any other one, Fig. 6.17.

To „charge“ data onto the electromagnetic wave, we 
start from a sine wave with the carrier frequency and 
modulate this wave. This means that we create small 
deviations from the sine function and change these de-
viations in the rhythm of the signal to be transmitted. 
We will see in the next section how this works in detail.

The stronger the data current to be transmitted, the 
larger the required frequency interval (in technical 
terms: the „bandwidth“). Hence, television channels 
are assigned a frequency range of 7 or 8 MHz, VHF 
radio channels only 100 kHz.

Of course, the resulting signal is no longer purely 
sine-shaped. But it can be broken down into sine por-
tions (see chapter 3). Modulation has to ensure that 
the modulated signal will only contain sine portions 
from the assigned frequency range. Otherwise, the re-
ception in other channels would be disturbed.

Fig. 6.18 and 6.19 symbolically show the individual 
components of a data transmission and receiving sys-
tem: In the transmitting antenna, the signal to be 
transmitted as well as the sine-shaped carrier signal 
are fed into the „modulation“ box. The sine function is 
changed by means of the signal to be transmitted. The 
respective current flows through the sending antenna 
and this antenna emits a corresponding electromag-
netic wave.

In the receiving antenna, the arriving wave creates 
an electric current, whose time dependence is the 
same as that in the transmitting antenna, through elec-
trostatic and electromagnetic induction. But also other 
waves from other data sources arrive at the receiving 
antenna. The frequency interval that is associated with 
the desired data source is filtered out of this muddle 
(„filter“ box). In the „demodulation“ box, the initial 
signal is distilled back out of the nearly sineshaped 
current. The desired channel, i.e. the frequency inter-
val associated with the desired data source, can be set 
on the filter.

This method can be used to filter even a very weak 
signal out of an extreme chaos of signals with a variety 
of carrier wavelengths that are sometimes very strong. 
You can imagine the situation as follows: there is a ter-
rible noise in a room. Hundreds of musical pieces are 
played at the same time while there are also ugly 
sounds such as screams, thunder, creaking and squeal-
ing noises. Also the lowpitched chirp of a cricket is 
part of this din. Taking the detour using the carrier 
frequency, we are able to suppress the overall din in a 
way that only the chirp will be heard.

Fig. 6.17  Those who wish to transmit data with electro-
magnetic waves will be assigned a specific frequency 
range. The data source may only create frequencies from 
this range. The channels are illustrated by the gray 
stripes. Sections from the range of the radio channels (a) 
and the television channels (b). Mind the different

distance of channels
100 kHz

sound radio

television
distance of 

channels
7 MHz

97 98

frequency in MHz

frequency in MHz

180 190 200

182.25 196.25189.25

a)

b)
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To enable several simultaneous data transmis-
sions, every data source is assigned a carrier fre-
quency with a frequency interval (a channel). It 
may only emit waves with frequencies from this 
interval.

6.10 � Data transmission with 
electromagnetic waves – 
modulation

We look at a time function that describes a sine-
shaped signal y :

y(t) = ŷ · sin(ωt + φ) .

The function has three „parameters“: the amplitude 
ŷ, the frequency f and the starting phase φ. Each of 
these parameters can be changed over time, i.e. the 
function can be modulated in three ways.

Amplitude modulation
Let’s assume we would like to transmit binary data, 

i.e. an irregular sequence of zeros and ones. The signal 
is at first available as an electric signal (Fig. 6.20a):

1 → high electric potential
0 → low electric potential

Then, the amplitude of the carrier signal is modu-
lated by setting it to a larger and smaller size in accor-
dance with the initial signal, Fig. 6.20b:

1 → high potential → large amplitude
0 → low potential → small amplitude

An application of the amplitude modulation is the 
control signal for radio clocks. It comes from a data 
source that is located close to Frankfurt on the Main. 
The data source has a reach of approximately 1500 km. 
The carrier frequency is 77.5 kHz. The amplitude of 
the wave is now reduced once per second during 0.1 s 
or during 0.2 s to 25 % of the normal value. This is how 
the data receiver gets an accurate time signal every 
second. Why is it sometimes reduced for 0.1 s and 
sometimes for 0.2 s? Because other data can also be 
accommodated using this method: the minute, the 
hour, the date, whether summer or winter time ap-
plies, and more.

Amplitude modulation is also used for the old me-
dium- and longwave radio transmission.

Fig. 6.20  (a) Initial binary signal as a function of time. 
(b), (c) and (d): amplitude, frequency or phase were 
changed in accordance with the binary signal. (The 
modulation signals were not drawn to scale for the 
sake of clarity. In fact, many more oscillations of the 
carrier signal are part of each binary sign interval. Also, 
the relative frequency change during frequency modu-
lation is in reality much lower than in the Figure.)

amplitude modulation

frequency modulation

phase modulation

a)

b)

c)

d)

Frequency modulation
The name is self-explanatory. Here, not the ampli-

tude but the frequency of the carrier wave is changed 
in accordance with the signal to be transmitted, 
Fig. 6.20c. Of course, the frequency change has to be 
kept so small that it remains inside of the assigned fre-
quency interval.

An example for the application of the method is FM 
radio transmission („FM“ stands for „frequency mod-
ulation“). Not binary signs but sound signals are trans-
mitted in this case. The frequency is changed continu-
ously in accordance with the sound signal.

Phase modulation
This is the third possibility to change the carrier 

wave. Both the amplitude as well as the frequency are 
left constant whereas the starting phase of the sine-
function is changed – again in the accordance with the 
signal to be transmitted – for example as shown in Fig. 
6.20d. During each change from 0 to 1 or from 1 to 0, 
π is added to the starting phase.
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Digital radio transmission, digital television, UMTS
The available channels are scarce and expensive. 

Therefore, every channel has to be exploited to the 
maximum, i.e. by transmitting the largest possible data 
currents. The modulation method has to be as sophis-
ticated as possible.

For this reason, several modulation methods are of-
ten combined, for example in case of digital radio 
transmission (DAB = Digital Audio Broadcasting), for 
digital television (DVB = Digital Video Broadcasting) 
or for UMTS (Universal Mobile Telecommunications 
System).

Modulation: change of the amplitude, frequency 
or phase of the carrier wave in accordance with the 
signal to be transmitted.

The sine components of the modulated wave are 
within the assigned frequency interval.

The stronger the data current, the larger the re-
quired frequency interval.

Exercises
1. The radio clock signal consists of sine-shaped pieces. 

How many oscillation periods are associated with a short 
piece (with a duration of 0.1 s) and how many are associ-
ated with a long piece (0.9 s)? Which problem would arise 
if we were to display the radio signal graphically?

2. Search in the Internet the frequency intervals that are as-
signed to the best-known radio and television transmit-
ters.

6.11 � Data transmission with 
electromagnetic waves – 
direct and guided waves

Data move from the „producer“ to the „costumer“ in 
a variety of ways. The possibilities depend above all on the 
applied carrier frequency. In section 4.14, we learned:

„For the laws of ‘geometrical optics’ to apply, the di-
ameter of apertures, lenses and mirrors has to be large 
compared to the wavelength.“

This means: for short waves, there must be an unob-
structed view between the transmitting and the receiv-
ing antenna. The waves can be bundled by means of 
parabolic mirrors.

No line of sight is required for long waves. They can 
only be bundled to a limited extent.

There is a particularity for the light waves, i.e. the 
shortest waves used: they can be guided over any path 
by means of a glass fiber.

Fig. 6.21  From the perspective of the Earth, a geosta-
tionary satellite is standing still.

42 000 km

Data into all directions
To reach many data receivers, which are spread over 

a large area, simultaneously by means of an antenna, a 
wave is created that moves away in all horizontal direc-
tions. Such a wave becomes increasingly weak with a 
growing distance from the transmitting antenna. Ex-
amples are the antennas of normal radio and television 
data sources, of mobile telephone systems and UMTS.

Microwave radio relay
Data sometimes have to be transported over a long 

distance from one place to a single other place. There-
fore, the wave is bundled by means of a parabolic an-
tenna. The method is called Microwave radio relay. The 
wavelengths are in the range of a few centimeters. Mi-
crowave radio relay antennas are installed on tall 
buildings or on special antenna towers. Transmitting 
and receiving antennas have to be located within line 
of sight of each other.

Data transport through satellites
For a satellite at a distance of approximately 42,000 

km from the center of the Earth, the orbiting time is 
just 24 hours. Hence, its angular velocity is equal to 
that of the rotation of the Earth around its own axis. If 
the orbit of such a satellite is in the equator plane and 
if the rotating direction of the satellite around the cen-
ter of the Earth is the same as that of the Earth, it is at 
rest relative to the Earth, Fig. 6.21. It is always located 
at the same place above the equator and therefore ap-
pears motionless from the Earth. Such geostationary 
satellites are ideal data transmission stations. They are 
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used for data transmissions over long distances, i.e. for 
example across continents, but also for the distribution 
of television programs directly to the television cus-
tomer.

The data are sent with short waves from a ground 
station by means of a parabolic antenna towards the 
satellite. The satellite receives them with its receiving 
antenna, amplifies the signal and sends it back down-
wards with its transmitting antenna: either as a strong-
ly bundled beam to another ground station or less 
strongly bundled to the television customers in an en-
tire country or continent.

The waves that are received this way by means of a 
parabolic antenna have – similar to directional audio 
– wavelengths of several centimeters.

Optical waveguides
An optical waveguide is a thin fiber made of a trans-

parent material. The light that is fed in on one end 
moves through the fiber without escaping laterally, even 
if the optical waveguide makes curves or loops. (A 
sound wave behaves similarly in a tube – just try it out.)

Fibers made of quartz glass (SiO2) with a diameter 
of around 1/100 mm, i.e. the thickness of a hair, are 
used for data transmission. Both visible as well as in-
frared light is used. The light source is a small laser, the 
data receiver is a photo diode.

Modulation is ensured by switching the light on and 
off very quickly. Hence, the method is an amplitude 
modulation.

Compared to electric cables, optical guides are ad-
vantageous because they can carry much greater data 
currents. Data currents of up to 50 Gbits/s can be 
achieved with one fiber, i.e. approximately 50 times as 
much as can pass a copper cable. In addition, optical 
waveguides are less prone to failure than copper ca-
bles. Finally, the energy losses are smaller than for cop-
per cables so that fewer amplifiers are needed (see next 
section).

6.12 Amplifiers
Energy is needed for any type of transport. The 

truck that transports bricks from the brick factory to 
the construction site consumes Diesel fuel and hence 
energy. To make water flow through a water pipe or 
crude oil through the pipeline, pumps are needed – 
and such pumps require energy. What happens to the 
energy that is used for these transports? An energy loss 
always means that entropy is created somewhere: 

Fig. 6.22  The wave, and consequently its energy, 
spreads over a constantly increasing area.

through mechanical friction, in electric resistors, in 
chemical reactions.

Energy is needed for the transport of data, too. In 
most cases, it is supplied by the data source. In other 
words, the data carry it along as a provision. Therefore, 
sound waves created by a speaker, the electromagnetic 
waves that come from an antenna, or the light that 
comes from the screen of a television carry energy be-
sides the data.

Some data transports are particularly profuse: the 
wave sent out from the source spreads out over a con-
stantly increasing area, Fig. 6.22.

This applies for example for the sound that comes 
from a speaker or from a speaking person, or for the elec-
tromagnetic waves that are emitted by a television trans-
mitting antenna. Hence, also the energy is spread in the 
large area. This method is always practical in cases where 
we seek to reach many data receivers without laying a line 
to every single one. Most of the energy will of course not 
arrive at any data receiver but it will be lost.

If the electromagnetic waves are bundled with a 
parabolic antenna, a larger part of the emitted energy 
will arrive at the receiving antenna.

At the data receiver always something has to be op-
erated or controlled:
•• electric currents have to be induced in a receiving 

antenna;
•• the eardrum of a hearing person has to be set in 

motion;
•• the membrane of a speaker has to be moved.

These processes can only take place if a sufficient 
amount of energy arrives with the data. If the energy 
losses in a telephone line are too high or if the radio 
receiver is too far away from the data source, the arriv-
ing energy will no longer be sufficient.
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Amplifiers are used to ensure that enough energy 
will arrive at the data receiver in spite of a long dis-
tance from the data source. An amplifier has an input 
and an output for the data. They flow into the amplifier 
with little energy and leave it with much energy. Hence, 
the data current receives new provisions.

In an amplifier the energy current that accompa-
nies a data current is increased.

We use the example of the electric amplifier to get a 
clear idea of how an amplifier works. For the sake of 
simplicity, we assume the data to be encoded binarily. 
A „weak signal“, which could look like the illustration 
in Fig. 6.23a, enters into the amplifier.

Energy
amplifier

EnergyEnergy
a

Data Data

En
er

gy

CD
drive

speaker

Fig. 6.24  Energy and data current for CD drive, amplifier and speaker boxes

Here, the energy current is shown as a function of 
time. The amplifier transforms it into a „strong signal“. 
It is important to understand that the new energy cur-
rent is not simply added to the weak signal as shown in 
Fig. 6.23b. The result would still be referred to as a 
weak signal because the differences between the high-
er and the lower values are still as hard to detect as for 
the signal in Fig. 6.23a. The amplifier rather has to 
multiply the energy current with a factor that is as large 
as possible. The result of a multiplication with the fac-
tor 6 is shown in Fig. 6.23c.

An amplifier can be characterized by the amplifica-
tion factor, the factor by which the energy current at 
the output is stronger than at the input.

Fig. 6.24 shows schematically the data and energy 
current for a CD drive with its amplifier and speaker 
boxes. The drive supplies an energy current of approx-
imately 0.1 μW. But the speaker boxes require 10 W. 
Therefore, an amplifier is positioned between the drive 
and the speaker boxes. The amplification factor of a 
typical HiFi amplifier is 108.

The energy current of the electric signals that come 
from a radio antenna is typically 1 pW (= 10–12 W). 
The amplification factor for radio reception conse-
quently has to be around 1013.

t

t

t

a)

b)

c)

Fig. 6.23  Energy current as a function of time for (a) 
weak signal (b) weak signal + constant energy current 
(c) strong signal
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