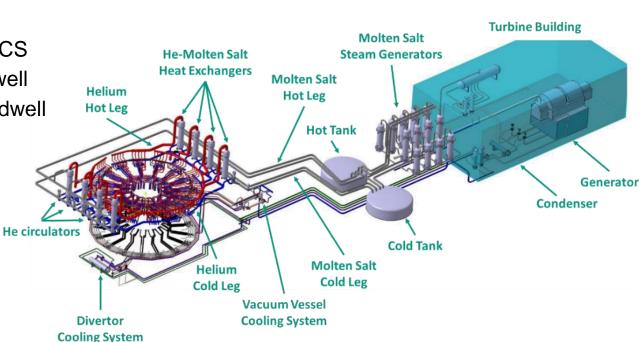


This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

R&D Needs for the Design of the EU-DEMO HCPB ICD Balance of Plant in FP9

S. Perez-Martin^a, E. Bubelis^a, W. Hering^a, L. Barucca^b


a Karlsruhe Institute of Technology b Ansaldo Nucleare

Introduction: DEMO HCPB ICD

- DEMO HCPB ICD: BOP featuring an IHTS
 - decouple the plasma intermittent heat source from the PCS
 - IHTS buffers energy during pulse and releases during dwell
 - constant PCS steam load and electrical power in pulse&dwell

- Strengths:
 - mitigate frequent plasma pulse operation effects
 - high ranked technology readiness systems/components

- Tasks to be performed to consolidate the Conceptual Design:
 - 1. to solve issues found in FP8 and continue with the **Conceptual Design Development**
 - 2. to assess the BOP functional feasibility by evaluating the maturation of the industrial components
 - 3. to validate experimentally the ICD in a dedicated facility

Karlsruhe Institute of Technology

T1. Conceptual Design Development

Ranking table:

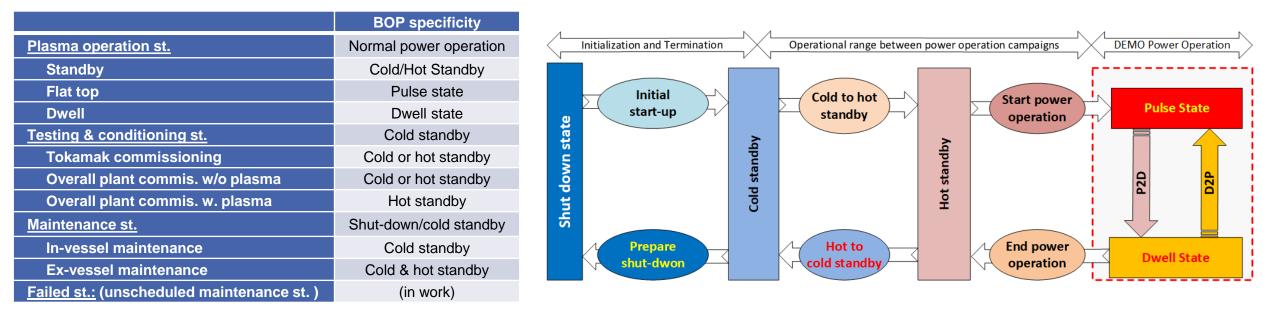
- summary of main characteristics/features
- variant comparison and down-selection
- identify critical issues
- Further optimization of BOP architecture:
 - allow operations according to latest Energy Map
 - solve integration aspects regarding VV-PHTS
 - Plant Regulation System based on plasma states
- Critical issues in DEMO HCPB ICD \rightarrow R&D
 - Plant Regulation System
 - He compressor
 - He-MS HX

PHTS		He-MS HX	
	BB PHTS SG/HX	He compressor	
PHIS	PHTS Techn. Derivation	Gas Nuclear Reactor and CSP	
IHTS	BB PHTS HX/SG Pressures	High-~Atmospheric	
	IHTS/ESS Fluid	HITEC	
	IHTS/ESS Storage Capacity	2x3000m ³	
	Other Thermal Storage	-	
	Auxiliary Heating System	-	
	Gas Fired Boiler Supply	-	
	Space for IHTS (+Storage)	Large (IHTS + Large ESS)	
PCS	Turbine for operation at dwell	Yes	
	Tolerant to frequent transients	Yes	
Variant	Power output/Suppl. power needed	almost constant / -	
Safety	Inherent Safety Barriers (T, ACP)	2	
Summary	Critical components	·He compressor	
		·He-MS HX	
		· MS Steam Generator	
	Preliminary Feasibility Assessment	ТВІ	

Critical issue due to component size&integration, functional feasibility, market readiness or strategic aspects

and producible

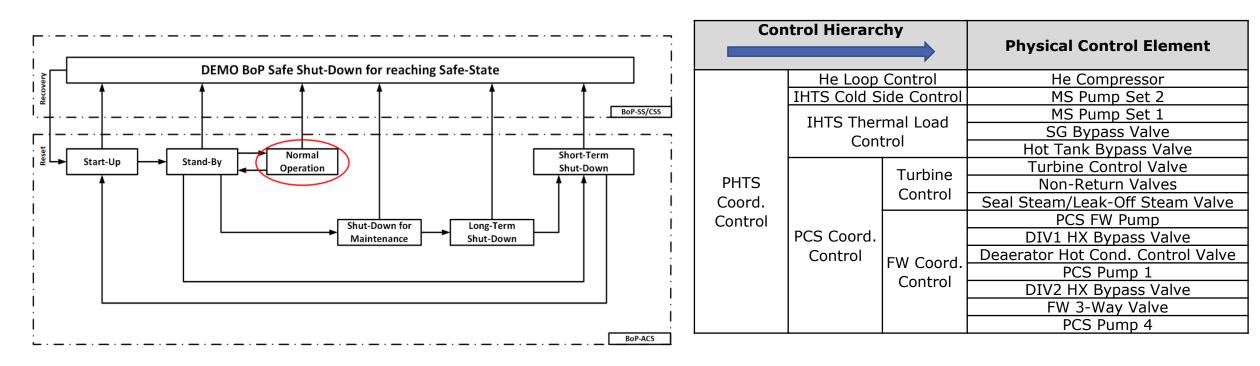
Market readiness: near or at present feasible


Market readiness: producible but not in shelf

Market readiness: component from shelf/ technology available

T1. DEMO Plant Regulation System

PHTS & IHTS & PCS controlled in a coordinated regime. Plasma power first priority → PHTS-IHTS in "plasma following mode"



BOP operation modes

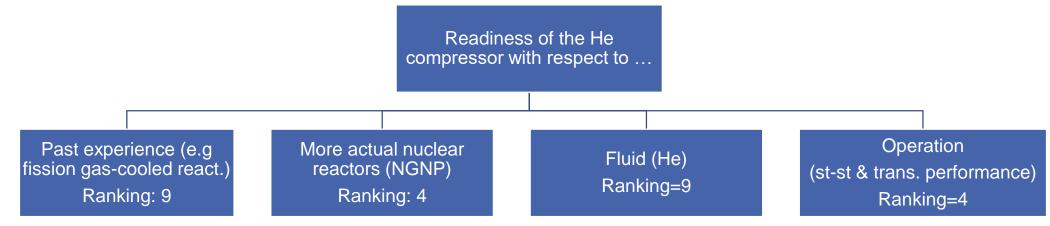
T1. DEMO Plant Regulation System

- BoP Automated Control System: responsible for the entire system and every single operation state incl. transitions
- BoP Safety System or Central Safety System: bringing in a safe state in case of incident/off-design condition

Preliminary DEMO HCPB ICD BoP Control Hierarchy (performed by our industrial partner KAH)

HELOKA-US tests: vital for improving the readiness level of the DEMO HCPB BoP ICD Regulation Scheme

T2. Critical Components: He compressor



	DEMO HCPB ICD
Total BB Thermal Power (MWth)	2117
# of BB-PHTS loops	8
Thermal Power per PHTS loop (MWth)	265
# of He compressors per PHTS loop	2
Compressor power (MW)	5.5
Total helium volume (m ³)	1735
Total pipework length (m)	6300

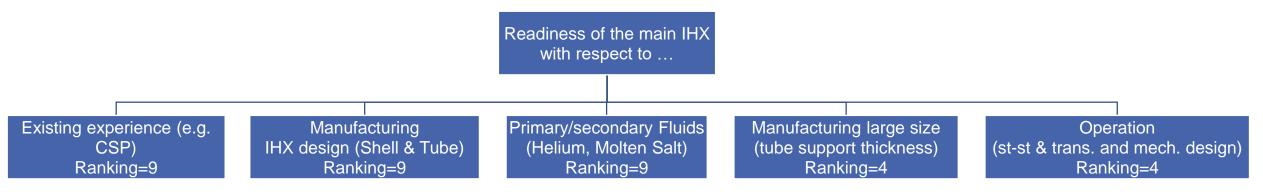
- Preliminary market survey: potential suppliers for DEMO compressor fulfilling main requirements:
 - working pressure (80 bar)
 - volume flowrate (126,000 m³/h)
 - other requirements not yet assessed (i.e. Helium, fluid density, work temperature, power, nuclear codes & standards).
- Proposed compressors technologies:
 - integrally geared, radial, geared turbo-compr., piston, GT-series centrifugal and multi-stage centrifugal
- **Threads**: No relevant current market is demanding such large compressors \rightarrow low interest for industrial companies.
- **Opportunities:** If FPP considered for future scenarios (e.g. ITER) \rightarrow + interested manufacturers (large compressors)
- Very positive recent involvement of Howden (historic supplier of AGR reactors compressor) in ITER Project.

T2. Maturation evaluation: He compressor

Example NGNP project: Howden concept. design (from 3-7 and up to 16 MW) 5.8 MW (centrifugal) & 13 MW (axial)

	NGNP Project Two MCs parallel	NGNP Project Single MC	HCPB PHTS He compressor
He mass flowrate (kg/s)	112	224	232
Compressor inlet pressure (MPa)	6.996	6.996	7.81
Compressor inlet temperature (°C)	480	480	290
Compressor pressure rise (kPa)	176	176	266
Power of a single compressor (MW)	5.8/2	5.8	5.5

■ Path for DEMO compressor to reach TRL 6/7 (as in NGNP NPR compressors): supplier identification & performance tests in scaled mock-up under relevant DEMO conditions (P2D and D2P) → Maturity expected with HELOKA-US tests (Phase 2).

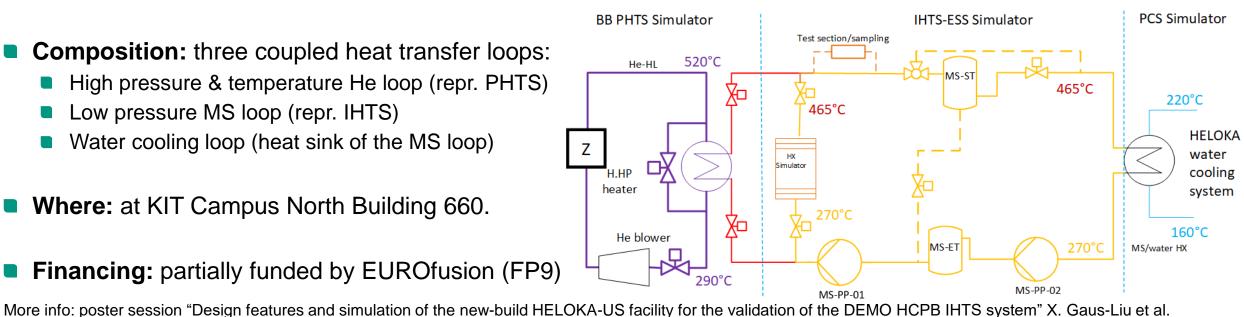

T2. Maturation evaluation: He-MS IHX

Validation of a Once Through Shell & Tube He-MS HX design fulfilling basic DEMO BOP requirements

	Tube side	Shell side	
Coolant	Helium	HITEC	
Thermal Power (MW)	265.6 (BB + 2 compressors per loop)		
Inlet temperature (°C)	520	270	
Outlet temperature (°C)	290	465	
Inlet pressure (bar)	78	6	
Mass flowrate (kg)	222	873	

- Main challenges:
 - high coolant temperature and related implications on materials strength, lifetime and fabrication related factors
 - tritium migration allowance and purification capability (i.e., removal of tritium) → IHX design and secondary fluid selection

• Experimental facility to test a He-MS HX mock-up \rightarrow HELOKA-US


T3. HELOKA-US

What: R&D infrastructure to demonstrate exp. HCPB ICD BOP (mock-up of the DEMO PHTS and IHTS)

How:

- Ph. 1: prototyp. components (HX and MS loop operation) and testing & developing control strategies for DEMO HCPB ICD
 - Ph. 1a: MS loop using an electrical simulator of the real He-MS HX.
 - Ph. 1b: upgrade with a real He-MS HX (high temperature, high pressure He from HELOKA-HP)
- Ph. 2: DEMO relevant helium compressor integration to prove and validate the solutions
- **Composition:** three coupled heat transfer loops:
 - High pressure & temperature He loop (repr. PHTS)
 - Low pressure MS loop (repr. IHTS)
 - Water cooling loop (heat sink of the MS loop)
- Where: at KIT Campus North Building 660.
- **Financing:** partially funded by EUROfusion (FP9)

- DEMO HCPB ICD BOP: high ranked design where further R&D is needed for
 - Plant Regulation System
 - He compressor
 - He-MS IHX
- **HELOKA-US** experimental facility:
 - Vital for demonstrating the feasibility of the DEMO HCPB ICD concept (PHTS-IHTS)
 - Validation of He-MS HX design and possible HX optimization
 - He compressor assessment for DEMO HCPB needs
 - Experimental insights for DEMO Plant Regulation System optimization

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.