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Abstract—Software architectures consist of more and more
connections to different components or elements. With the in-
creased connection and exchange between different elements also
the attack surface increases, since each element might contain
vulnerabilities. The vulnerabilities may be harmless on their own,
but attackers could develop attack paths from the combination of
different vulnerabilities. For a model-based attack propagation
analysis, it is useful to have an annotated components model with
vulnerabilities. However, depending on the size of the system, the
manual annotation of these models is very time-consuming and
error-prone. In this context, we present in this paper an approach
that automatically annotates vulnerability information to the
components of an architectural model. The goal here is to extract
security information of source artifacts and transform them into
an existing architecture-based security model to enable model-
based security risk assessment. We evaluate our approach using
three open-source case studies to demonstrate feasibility and
accuracy. The results indicate high recall reading vulnerabilities.

Index Terms—Component-based, Context-Aware QoS Model,
Modeling and prediction, Software architecture, Security

I. INTRODUCTION

The increase in more and more activities in online areas,
such as online banking, also increases the importance of
software security [1]. Many security problems are rooted in the
design of the software. Therefore, the Open Web Application
Security Project (OWASP) introduced in 2021 the new element
Insecure Design [2]. It states, that a security issue is based on
design flaws or architectural flaws. Identifying these security
issues in the software architecture can be helpful because
it abstracts from the detailed source code and can consider
properties other than the source code such as the deployment.
There exist already architectural security analyses, such as [3],
[4], which can be used to determine security properties.

However, the creation of software architecture models and
security models is very cumbersome and time-consuming.
Especially for existing legacy software, there is a high initial
modeling effort. While some modeling effort can be reduced
by more user-friendly tools, the main effort still exists. Here,
automatic recovery approaches might help to reduce the mod-
eling effort.

While classical architecture recovery approaches focus more
on extracting the structure, such as components, our architec-
tural attack analysis [5] needs additional information, such as
the available vulnerabilities, as input. Software architects can
find this information about vulnerabilities in databases, such

as the US National Vulnerability Database (NVD) [6]. These
databases also provide public interfaces to access the data.
Additionally, there exist static source code analyses, which can
extract the existing vulnerabilities for components based on
the same classifications as the databases. Therefore, recovery
approaches could combine this security information with the
software architecture and provide automatically created archi-
tectural models enhanced with security properties.

Based on this proposed enrichment, our contributions are:
C1) We propose an approach to extract vulnerabilities with
static code analyses from available development artifacts
to provide input models for architectural security analyses.
C2) We propose an approach to link available development
artifacts to components of a reverse-engineered software archi-
tecture model to enrich these with security information from
different data sources.

The resulting architectural model can then be used in
security analyses, such as in our attack propagation [5]. This
enrichment can help software architects to identify security
issues based on the software architecture and might give
software architects new insight into existing attack paths.

We evaluated our approach on three open-source case
studies (Acme Air, Spring PetClinic, Piggy Metrics) and
investigated the properties’ feasibility and accuracy regarding
the automatic extraction of security vulnerabilities. The results
indicate that we can transform vulnerabilities from static code
analyses to architecture models. However, some vulnerabilities
are overestimated or not all vulnerabilities are transferred.

II. FOUNDATION

Our approach is based on an architectural description lan-
guage (ADL). We use this ADL for a model-driven attack
analysis and combine it with a model-driven reverse engineer-
ing approach.

A. Architecture Description Language

As an ADL, we use the Palladio Component Model (PCM)
[7]. PCM already provides support for attacker propagation
using vulnerabilities [5], [8]. Hence, using it is beneficial since
we can reuse the existing metamodel. In addition, PCM sup-
ports various quality analyses, such as performance, reliability
[7], and other security properties [3]. Supporting components,
and provided and required interfaces, PCM aids the compo-
nent-based development process. The PCM repository defines
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Figure 1: Excerpt of the metamodel for modeling vulnerabilities and attackers based on [5]

components and interfaces. The representation of a component
in the PCM is called a BasicComponent. Interfaces
define services, which are implemented by ServiceEffect-
Specifications (SEFFs) in BasicComponents. The defined
components are instantiated in the assembly (or system) model
and called AssemblyContext. In the resource environment,
hardware resource containers representing servers or other
processing units and linking resources representing network
nodes are modeled. These elements are used in the allocation
model to model the deployment of AssemblyContexts
onto hardware resources.

B. Model-Driven Attack Analysis

In [5], we extended the PCM to support attack propaga-
tion based on vulnerabilities and access control. Figure 1
illustrates the extended metamodel for the vulnerabilities and
attackers. The excerpt does not contain the access control
properties for brevity reasons. The figure is based on UML
class diagrams. For simplicity reasons, we left out most of
the attributes and show only the most important ones for
understanding our approach. We annotate PCM elements (e. g.
AssemblyContext, LinkingResource) with vulnera-
bilities and defining access control policies for architectural
elements such as services or devices. Our vulnerability meta-
model is based on commonly used attack classifications. We
use the Common Weakness Enumeration (CWE) [9] and Com-
mon Vulnerabilities and Exposure (CVE) [10] to model vul-
nerabilities (CWEVulnerability, CWEVulnerability)
and attacker capabilities (CVEAttack, CWEAttack). We
further specify the vulnerabilities with properties from the
Common Vulnerability Scoring System (CVSS) [11] (see
fig. 1 Vulnerability). We reuse properties such as
Privileges here, which describe whether an attacker needs
to be authenticated or not to exploit the vulnerability. Reusing
these properties is beneficial since they are commonly used
to classify vulnerabilities and many properties are publicly
available in databases such as the US NVD [6]. By using
just the values and not the score, we do not rely on the
score calculation. In addition, our modeling approach does
not necessarily need to use CVSS. Any other approach with
similar values can be used. A complete list of the attributes
used can be derived from our original publication [5]. For

access control, we use attributes called credentials. The
policies are based on the eXtensible Access Control Markup
Language (XACML) [12], which is an industry standard
for access control policies. Our analysis then uses this ex-
tended PCM to calculate a potential attack graph through
the software architecture. This graph exploits access control
properties and vulnerabilities. In this work, we want to tackle
the manual annotation of vulnerabilities to components. The
manual annotation is cumbersome since software architects
have to manually identify the vulnerabilities for modeled
components. This involves the identification of vulnerabilities
on the implementation level. Afterward, they need to trace
the implemented source to a modeled component and then
manually add the vulnerability properties in the annotation
model. For small source code examples, this might be done
quickly, however, in bigger systems with multiple components
it is harder, and the tracing could be more unclear.

C. Model-Driven Reverse Engineering

The objective of reverse engineering is to identify structures
in the form of elements and relations within the software sys-
tem under investigation. When a reverse engineering approach
focuses on recovering models such as architectural models,
the task is referred to as Model-Driven Reverse Engineering
(MDRE) [13].

In [14], we present a model-driven approach to improve
reverse engineering of component architectures. Considering
the technologies used, the components with their interfaces
are reverse-engineered from software development artifacts
such as source code or configuration files. The approach is
to model knowledge about the domain of technologies used
in component-based software development in order to reverse
engineer the architecture from existing text-based artifacts.
Text-based artifacts which are considered are written during
the development of software systems, e. g., source code or
other configuration files such as build configurations.

This modeled domain knowledge captures the impact of
a used technology on the architecture of the system. This
knowledge might describe how a component is implemented
using a particular framework. The approach involves first
parsing the existing artifacts and accumulating structure and
behavior information about these in models. Then, these



models are analyzed using rules represented by model-to-
model transformations, leading to the final transformation of
the recognized concepts into a PCM instance.

D. Static Security Code Analysis

Different code analysis techniques can be used to auto-
matically identify vulnerabilities in software products. Some
static dependency analyses such as Snyk or similar approaches
analyze the dependencies of software and match them with
databases for security vulnerabilities. However, they usually
cannot find new vulnerabilities, but only identify already
known vulnerabilities. So, they can list potentially vulnerable
spots in the code, open-source dependencies, or container
images. To this end, Snyk provides a command-line interface
(CLI) for finding security vulnerabilities. Among other things,
the Snyk CLI scans the build configurations of a project, i. e.
Gradle1 build.gradle or Maven2 pom.xml files. The
CLI can be run locally or in a build pipeline, to check open-
source dependencies for security vulnerabilities, for example.
However, for smart systems, which often consist of several
components, static security code analyze alone cannot provide
comprehensive security aspects.

III. APPROACH

The goal of our approach is to transform architecture-
based security models to enable model-based security risk
assessment of a component-based system. To this end, we have
developed an approach that automatically annotates vulnera-
bility information to the components of an architectural model.
The approach supports reverse engineering as soon as code and
dependencies are available. Thereby, it detects statically known
and publicly available security vulnerabilities. However, the
resulting models can also be supplemented later by hand.
Figure 2 provides an overview of our approach. Java source
code is used as direct input, as well as configurations for
build automation using Maven and Gradle. Then, the approach
can be divided into two different phases. In the first phase
(section III-C), we convert the source code with associated
build configurations of a system into its architectural model.
In the second phase (section III-D), the information obtained
from build configurations is combined with the PCM models to
generate the corresponding security models. We first introduce
our approach using a motivating example.

A. Motivating Example

The following example briefly illustrates our approach.
Listing 1 shows a fragment of the source code for a REST
controller implemented using the Spring framework3. The
Spring framework is an open-source framework for the Java
platform that is commonly used for web applications. The
@RestController annotation indicates that an annotated
class is a controller for web requests. The @GetMapping
annotation indicates the mapping of HTTP GET requests to

1https://gradle.org/
2https://maven.apache.org/
3https://spring.io/
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Figure 2: Overview of the key elements of our enhancement
architecture for security. From the existing source code and
build configurations, our approach automatically extracts a
component-based software model and its associated security
model. The darkly shaded boxes are the contributions of this
paper.

specific handler methods. In a reverse engineering approach
[14], that we developed previously and introduced in sec-
tion II-C, knowledge of these annotations is used to determine
the interfaces of a component.

@RestController
public class HelloController {
@GetMapping("/hello")
public String helloWorld(World world, Model

model) {
return "Hello " + world;

}
}

Listing 1: Source code fragment for a REST controller with
one handler method implemented using the Spring
framework.

The extension of this approach makes it possible to create a
trace link between the source code files and the corresponding
BasicComponents in the PCM. In addition, a similar
extension was implemented, which makes it possible to create
a link between the source code files and the corresponding
build configuration. Listing 2 shows a fragment of the Maven
build configuration for the rest controller from listing 1. Using
the build configuration, Snyk can now detect a vulnerability
based on the dependencies defined there.

Figure 3 shows an example of how this interface imple-
mentation can be mapped into the PCM. Snyk returns an
ID of the vulnerability. In our case, it is CVE-2022-22965
[15]. Afterward, our analysis looks up the detailed CVSS
description on a vulnerability database such as NVD. This
description contains for instance the attack vector, in our case
this is Network, which means that this vulnerability can be

https://gradle.org/
https://maven.apache.org/
https://spring.io/


<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<version>2.5.4</version>

</dependency>

Listing 2: Maven build configuration fragment for a Spring
dependency in version 2.5.4.

HelloService

«interface» HelloController

helloWorld(world : World, model : Model) : String

CVE-2022-
22965

provides

Figure 3: Example mapping of the code from listing 1 into
a component with interface definition annotated with vulner-
ability information based on the dependencies in listing 2.

exploited from any network resource. This information can
now be automatically annotated directly to the corresponding
BasicComponents in the PCM through the link between
the build configuration and the source code. Afterward, our
attack propagation analysis can use these annotated models to
calculate an attack propagation.

B. Extension to the Attack Propagation

Before we can analyze recovered software architectures
with our attack propagation, we need to extend our attack
propagation analysis. In [5], we only considered instantiated
components and did not consider component types in PCM.
However, the architecture recovery process can so far only
recover component types, called BasicComponent in PCM.
Therefore, we extended the approach to support vulnerabilities
with BasicComponents. This extension contains two parts.
First, we need to extend the metamodel and second, we
need to extend the analysis. For the metamodel extension,
we added, similar to the existing vulnerable architectural
elements, a link to the repository type (see Figure 1 gray
element). For the analysis, we added an initialization step that
rolls out the vulnerabilities to the instantiated components. In
detail, we first identify for each instantiated component the
component type and its modeled vulnerabilities and then create
a vulnerability annotation for the instantiated component. This
keeps the actual attack propagation algorithm the same as in
[5] but considers the vulnerability of component types.

C. Component Model

The first step of our approach is to obtain an architecture
model from existing artifacts that provides a structural view
of the software system. Artifacts that are written during the
development of a software system, i. e. source code or other
configuration files, are considered.

For this purpose, we use the approach [14] we developed,
which we described in section II-C. Existing artifacts are
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Figure 4: Excerpt of our trace link model with the links of the
implementation artifacts to BasicComponent, in order to
be able to trace back further analysis results from the source
code level to the associated architecture level.

analyzed using transformations from text to models. The
underlying idea of transformations is to use them to model
domain knowledge about technologies. In this context, trans-
formations capture how a particular concept is implemented in
a technology and what impact this concept has on the system
architecture.

The interfaces of the recognized components identified in
this way are then transformed into a PCM instance. This
PCM instance is a primarily structural view of the system. For
each BasicComponent, so-called trace links are stored as
references to the original source code. Through this model,
any further analysis result can be traced from associated
source code or the configuration files to the components at
the architecture level.

In order to be able to assign a security vulnerability found in
the next step (section III-D) to a detected BasicComponent,
the existing approach had to be extended by a trace link model.
Figure 4 shows the key elements and relationships of the newly
introduced trace link model as a UML class diagram.

This model maps the recognized BasicComponent in
the PCM instance to the underlying compilation units with
their unique file path. This means that a BasicComponent
is always implemented by one to many compilation units.
These compilation units can then be assigned any number
of build configurations with their unique file path. In a build
configuration, the open-source dependencies can be defined
for a compilation unit.

D. Security Annotation

The second step of our approach is the annotation of security
vulnerabilities to the components of the architecture model.
For this purpose, the architecture model is passed with the
associated trace links between components and associated
artifacts from the first step. The previously generated trace
links associate the components recovered from the source code
with their associated development artifacts.

These development artifacts, such as source code and con-
figuration files, are then statically analyzed in this step using
third-party software. At this point, the CLI of the company
Snyk is used. The CLI is executed to find vulnerabilities in
the software project. It supports Java with Gradle and Maven
among other constructs. The results of this analysis are CVE
numbers, each of which is assigned to a development artifact.



For this derived CVE number, further additional required
information is then retrieved via the US National Vulnerability
Database. If available, in addition to a possible attack vector
and privileges, the effects on availability, confidentiality, and
integrity are also stored in the security model for the CVE
number. This additional information forms the basis for the
attack propagation analysis [5].

The artifact that the information is associated with is a build
configuration, i. e. a Gradle build.gradle or a Maven
pom.xml, in which abstract information about the project’s
structure is stored instead of the source code. For the attack
propagation analysis, the CVE number, and its associated
information should be annotated to the components that they
stem from instead of the build configurations that describe
those components. To match the vulnerability information to
the components, the trace models of the build configurations
are used.

E. Limitations

For our approach, we use the Palladio Component Model
as a software architecture model. However, the concepts of
our approach are also applicable to other software architecture
models. Our approach can be adapted easily to use other
notations for describing component-based architecture models.

Snyk itself is currently limited to detecting only stati-
cally known and publicly available vulnerabilities. Possible
unknown attack paths are not detected. At the moment, the
vulnerabilities found automatically with Snyk are linked to the
architecture based on the own code or dependencies. In future
work, other artifacts such as containers and the infrastructure
as code will also be considered in the recovery of both the
architecture model and the security model.

Snyk compares file signatures against a database of known
files to determine vulnerability. If a vulnerability is fixed in
code other than by updating dependencies, the vulnerability is
still listed. This can lead to an overestimation of practically ex-
ploitable vulnerabilities. Similarly, if dependencies are defined
for a code file, but are not used in this file, an overestimation
also takes place here. However, our approach is designed in
such a way that theoretically any analysis tool that links CVEs
to code or configuration files can be used.

IV. EVALUATION

We structure our evaluation similarly to the Goal Question
Metric [16] approach. Our first goal, G1 is to evaluate the
feasibility of our approach. Our evaluation question is Q1: Can
we transfer the vulnerabilities from static security analyses to
our architectural vulnerability model? Our metric is a binary
with correct and incorrect for each case, whether elements
are transferred or not. Our second evaluation goal G2 is
the accuracy of our approach. Accuracy is often used in
the evaluation of other architectural approaches, such as [3],
[17] to demonstrate the functionality of the approach. Our
evaluation question is Q2: How accurately can we annotate
found security issues from static code analyses? Our metrics
are precision (p), recall (r) [18], and the harmonic middle

Case Study Java (LOC) Maven (LOC) Gradle (LOC)

Piggy Metrics 97 (3292) 10 (684) -
Spring PetClinic 44 (1180) 8 (828) -
Acme Air 81 (6207) 1 (56) 2 (75)

Table I: Case studies performed during the evaluation, with
the number of relevant files and their sum of code lines.

F1 of both: p =
tp

tp+fp
r =

tp
tp+fn

F1 = 2 p∗r
p+r . The tp are

true positives, meaning correctly annotated components. fp
are false positives: incorrectly annotated components, which
are not vulnerable but have been reported as vulnerable.
Finally, fn are false negatives: components with undiscovered
vulnerabilities. Higher values are better, with the perfect result
being 1.00.

The third goal G3 is the applicability of our approach
regarding the usage with the attack propagation. The evalu-
ation question Q3 is: What manual refinement activities are
necessary to use the derived models in the attack propagation
analysis? We try to answer this with a discussion and not with
numerical metrics.

A. Evaluation Design

For the evaluation, we used three case studies. Using a case
study might increase the insight, show the applicability of the
approach, and might increase the comparability [19].

The three open-source case studies conducted during the
evaluation are component-based software systems that provide
Web services and are built on technologies that are widely
used in the industry [20], such as Spring. Table I lists the
open-source case studies.

For the feasibility analysis, we performed the following
process. One author downloaded each case study from the
public code repositories. Afterward, the author performed
an automatic architecture recovery with our recovery tool.
Then our newly developed annotation tool scans with the
help of Snyk for vulnerabilities in components and creates
a vulnerability model based on our vulnerability metamodel.
This involves the transformation from textual results to models
and the extraction from remote databases. Therefore, it is
important to syntactically check the generated models. After
the automatic steps are finished, two different authors manu-
ally evaluated the output models as experts. The two authors
were always different persons from the author who used the
analyses. During the evaluation process, they investigated the
correct syntax of the vulnerability models and whether the
constraints of the vulnerability are fulfilled. This covers the
creation of matching vulnerability types and the annotation
of PCM elements. Therefore, some semantic aspects are also
checked. If they both decided that the output was correct, we
counted the case as a correct case.

For the accuracy analysis, we reuse the results from the
feasibility evaluation. In addition, we used the output of Snyk.
It provides the contained vulnerabilities for each build project
as a textual output. We compared the annotated vulnerability
model to the textual output. We only considered the issues



that have a CVE assigned. If a component in the PCM was
annotated and the textual description from Snyk contains the
same vulnerability, we count it as tp. If the textual description
does not contain the vulnerability and the vulnerability model
has a vulnerability, we count it as fp. If the textual output
contains a vulnerability and the vulnerability model does not,
we count it as fn. We counted this for each case study and
then calculated precision, recall and F1.

For the applicability, we discuss as the developers of the
attack propagation, which additional activities are necessary
to use the attack propagation analysis. We focus the activities
on creating a valid input model.
Piggy Metrics: Piggy Metrics4 is intended as an example
of the microservice architecture pattern using Spring Boot,
Spring Cloud, and Docker. It is designed to demonstrate how
these industry-relevant technologies can be used to implement
a personal financial advice application. In addition to an
authorization service, Piggy Metrics is divided into three core
microservices: The account service contains the general input
logic and validation, the statistics service performs calculations
of key statistics parameters and collects time series for each
account, and the notification service stores the user’s contact
information and notification settings.

We first extracted a PCM from the directly available Java
source code and Maven configurations in the public code
repository of the Piggy Metrics reference system. This PCM
provides a structural view of the system. Based on this, the
next step was to fully automatically annotate the components
of the architecture model with the security vulnerabilities. For
the account service, a total of 146 different CVEs were iden-
tified and annotated. The notification service was annotated
with a total of 143 CVEs, the authorization service with a
total of 146 CVEs, and the statistics service with a total of
146 CVEs.
Spring PetClinic: The Spring PetClinic5 is an open-source
application for exploring and demonstrating technologies and
design patterns implemented with the Java Spring Framework.
The microservice version of this application consists of the
API Gateway, Customers, Vets, and Visits microservices.

First, a PCM was created from the directly available Java
source code and Maven configurations in the reference system
code repository. In the next step, based on this, the components
of the architecture model were fully automatically annotated
with the security vulnerabilities. For the API Gateway service,
a total of 10 different CVEs were identified and annotated. The
Customers service was annotated with a total of 4 CVEs, the
Vets service with a total of 4 CVEs, and the Visits service
with a total of 4 CVEs.
Acme Air: Acme Air6 is an open-source benchmark system
based on microservices. The system is an implementation of
a fictitious airline website. We use the Java-based implemen-
tation of the application layer here.

4https://github.com/sqshq/PiggyMetrics
5https://github.com/spring-petclinic/spring-petclinic-microservices
6https://github.com/Acmeair/Acmeair

Case Study p r F1

Piggy Metrics 1.00 0.94 0.97
Spring PetClinic 1.00 0.84 0.91
Acme Air 0.39 1.00 0.56

Table II: Evaluation results for accuracy

First, a PCM was created from the directly available Java
source code and Maven configurations in the benchmark
system code repository. In the next step, based on this, the
“morphia” service as a data service implementation was auto-
matically identified and annotated with a total of 2 different
CVEs.

B. Result and Discussion

We evaluate the feasibility for each case study. The re-
sults are, that for each case study, our approach annotated
vulnerabilities to components. However, some vulnerability
annotations are duplicated. Nevertheless, this does not affect
the later analysis.

For the accuracy analysis, we ignored the duplicated ele-
ments as long as the duplicates contain the same information
(vulnerability and affected component). Table II shows the
result for accuracy. In the first column, the case studies are
listed, and then for each case study the precision (p), recall
(r), and the F1 value. The lowest precision is 0.39 for Acme
Air, despite that it only has two vulnerability types since the
same vulnerability type can affect multiple components. This
precision illustrates, that our approach overestimates highly.
This overestimation is due to that our approach assigns the
found vulnerabilities for the parent project to all the child
projects. However, some child projects are not affected. In the
future, we have to tackle this issue. The lowest recall is 0.84
for Spring PetClinic, because not all CVEs found by Synk
were annotated to components. This is due to the fact that
when multiple CVEs are specified by Snyk for a vulnerability,
our approach only annotated one. In the future, we will need to
address this issue as well. Overall, despite the overestimation,
the result is promising. In security analyses, identifying secu-
rity issues can be more important than the additional effort of
false positives, since all vulnerable components are identified.

C. Applicability Discussion

While we can automate some parts of the reverse engi-
neering approach, there are some manual refinements steps
necessary by the software architect. The manual steps cover
four activities: a) creation of the system model and allocation
b) specification of access control rights c) refinement of
vulnerability properties d) attacker model creation.

For a), software architects have to manually define the
instantiated components and their connection. During the
automatic reverse engineering of the component and interfaces,
all implementations of components contained in the code
repository are tried to discover. This covers also, alternative
component implementations for test or benchmark purposes,
which are contained in a PCM repository. Therefore, a manual

https://github.com/sqshq/PiggyMetrics
https://github.com/spring-petclinic/spring-petclinic-microservices
https://github.com/Acmeair/Acmeair


refinement step is necessary, to exclude irrelevant components
for the actual running system. In the future, a combination
with a dynamic analysis could help. Nevertheless, software
architects can reuse the recovered components from our ap-
proach. The extended attack propagation (see section III-B)
can automatically use the vulnerability from component types.

Regarding b), the attack propagation internally uses a
XACML policy decision point and this one can evaluate regu-
lar policy files. Therefore, if the runtime system uses XACML
policy specifications no manual specification is necessary. If
they are not used, software architects or security experts need
to manually specify them.

For c), there exist different reasons why a manual refinement
could be necessary. One reason could be the manual adaption
of the values derived from the CVSS specification. While
the vulnerability database contains the classification of a
vulnerability in general, this classification might not be correct
in every case. For instance, different vendors might compile
an open-source product differently and therefore might have
different vulnerabilities or properties. Therefore, a software
architect might want to adapt the properties. The other part,
where a manual refinement is necessary when vulnerability
properties cannot be automatically derived from databases. For
instance, a vulnerability might leak a certain attribute used
in access control policies. These vulnerability properties are
system specific and therefore cannot automatically be derived
from a universal database.

The last manual refinement step (d)) necessary to run the at-
tack propagation analysis is the creation of an attacker model.
The attacker model contains the capabilities of the attacker
expressed by CVEs or CWEs they can exploit. Besides the
capabilities, the attacker contains also properties about the
knowledge or state of the attacker. This contains the initial start
point, such as hardware resources, that is similar to the breach
point in real-world attacks. While the knowledge and state are
system-specific and need to be adapted for each system, the
capabilities of the attacker can be reused for similar systems
or similar analyses on different systems.

Based on this enriched model, our extended attack propaga-
tion analysis can then calculate affected architectural elements
from an attack.

D. Threats to Validity

We structured our threats to validity, based on the guidelines
for case study research from [21].
Internal Validity discusses whether only the expected factors
influence the results. The approach used for determining
components with their interfaces returns only one possible
view of the system. We have compared these components and
interfaces with the existing documentation of the case studies
and found discrepancies. However, we cannot say whether
these discrepancies are since the documentation is outdated
or incomplete in some places.
External Validity discusses how generalizable the results are.
Using a case study might increase the insights, but could
potentially affect the generalization. To avoid overfitting cases,

we used only external case studies. However, the number
of case studies is limited, and we only demonstrated the
annotation of vulnerabilities. In the future, we want to apply
the approach to more external case studies and also evaluate
the applicability of the attack propagation analysis.
Construct Validity discusses whether the investigated proper-
ties help to answer the evaluation goals. For our approach, this
is the relationship between the metrics and goals. The usage
of a dedicated evaluation approach like GQM lowers the risk
since it shows the relationship between goals and metrics. The
first metric is only a binary decision, we assume that it fits
well to the feasibility goal. The accuracy goal uses precision,
recall, and F1, which are often used in related architectural
analyses such as [3], [17], [5].
Reliability is about how well other researchers can reproduce
the results. For the accuracy result, we use common metrics,
which avoids subjective interpretation and increases repro-
ducibility. However, the other goals depend on the experience
of the researcher and might be subjective to the researcher.
Also, in addition to the possible subjectivity, we publish a
dataset containing all our models and raw data [22] and the
source code7 will be publicly available. This helps researchers
to reproduce the results.

V. RELATED WORK

We distinguish the related work in approaches related to the
attack modeling and analysis, and reverse engineering.

A. Attack Modelling & Analysis

During threat modeling [23], approaches to identify attack
paths are often used. Various approach use directed acyclic
graphs [24] to model attacks or attackers. One commonly
used approach is an attack tree introduced by Schneier [25].
An attack tree defines a goal as the root node and then
tasks as child elements to achieve this goal. Another graph-
based approach is the CySeMoL [26]. Based on an enterprise
architecture, it calculates how secure a system is by using the
likelihood of successful attacks. [4], [27] or Deloglos et al.
[28] provide an attack path calculation approach. They also
use various attack classifications as a basis. Aksu et al. [29]
and Yuan et al. [30] provide an attack path calculation by
explicitly considering the privilege of the attacker. Kramer
et al. [31] developed an attack analysis for the PCM. However,
they focus on physical attacks on components. Another model-
based approach is UMLSec [32]. It extends UML for security
properties and provides various security analyses. These anal-
yses can use a dedicated attacker model. However, they do
not consider the propagation of attacks through vulnerabilities.
Overall, many approaches use attack modeling and also use
reuse existing attack classification. In contrast to them, our
attack modeling and analysis approach supports fine-grained
access control policies and vulnerabilities in combination with
attack propagation. Additionally, we support the automatic

7https://github.com/FluidTrust/Palladio-ReverseEngineering-SoMoX-
Vulnerability

https://github.com/FluidTrust/Palladio-ReverseEngineering-SoMoX-Vulnerability
https://github.com/FluidTrust/Palladio-ReverseEngineering-SoMoX-Vulnerability


extraction of known vulnerabilities with our new addition and
therefore can partially automate our analysis.

B. Reverse Engineering Approaches

In [33] Raiboulet et al. compare a total of fifteen different
model-based reverse engineering approaches. They conclude
that these approaches as well as their application domains are
diverse. Building on this, MoDisco [34] is the most widely
related approach. Brunelière et al. developed with MoDisco
a model-based reverse engineering approach that provides
support for multiple technologies to generate model-based
views of the architecture. Although MoDisco is generic and
extensible, it does not support security vulnerability recovery.

VI. CONCLUSION

In this article, we present a model-driven approach that
automatically adds security vulnerability information to the
components of a software architecture model. We presented
how to link available development artifacts to components
of a reverse-engineered software architecture model to enrich
them with security information from different data sources. We
have also presented how vulnerabilities can be extracted from
available development artifacts using static code analysis to
provide input models for architectural security analysis. Using
our approach is beneficial to reduce the modeling effort in
defining and measuring the security of a service in software
architectures. We evaluated our approach on three open-source
case studies and investigated the properties, feasibility, and
accuracy related to the automatic extraction of security vulner-
abilities. Feasibility shows that we can transfer vulnerabilities
from static code analysis. The accuracy shows that in one
case there is an overestimation, but in this case all elements
are transmitted and that in two cases not all CVEs associated
with a vulnerability are transmitted. In the future, we want
to investigate the use of further tools for static code analysis,
to be able to look at security vulnerabilities that do not have
CVEs. Similarly, we also want to consider other artifacts such
as containers and the infrastructure as code when recovering
the architecture model and security model in the future. Based
on this, we also want to investigate our approach and further
case studies, and perform automated security analysis. g
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