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ABSTRACT
The increasingly popular GW method is becoming a convenient tool to determine vertical ionization energies in molecular systems. However,
depending on the formalism used and the range of orbitals investigated, it may be hampered by a steep computational scaling. To alleviate this
issue, correlated natural virtual orbitals (NVOs) based on second-order Møller–Plesset (MP2) and direct MP2 correlation energies are imple-
mented, and the resulting correlated NVOs are tested on GW quasiparticle energies. Test cases include the popular GW variants G0W0 and
evGW0 as well as more elaborate vertex corrections. We find that for increasingly larger molecular systems and basis sets, NVOs considerably
improve efficiency. Furthermore, we test the performance of the truncated (frozen) NVO ansatz on the GW100 test set. For the latter, it is
demonstrated that, using a carefully chosen truncation threshold, NVOs lead to a negligible loss in accuracy while providing speedups of one
order of magnitude. Furthermore, we compare the resulting quasiparticle energies to very accurate vertical ionization energies obtained from
coupled-cluster theory with singles, doubles, and noniterative triples [CCSD(T)], confirming that the loss in accuracy introduced by truncat-
ing the NVOs is negligible compared to the methodical errors in the GW approximation. It is also demonstrated that the choice of basis set
impacts results far more than using a suitably truncated NVO space. Therefore, at the same computational expense, more accurate results can
be obtained using NVOs. Finally, we provide improved reference CCSD(T) values for the GW100 test set, which have been obtained using
the def2-QZVPP basis set.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0144469

I. INTRODUCTION

Correlated natural virtual orbitals (NVO)1 are an emerging
class of orbitals that diagonalize a correlated density matrix span-
ning the full virtual orbital space. Most prominently, second-order
Møller–Plesset perturbation theory (MP2) has been used for the
construction of the virtual part of the density matrix.2,3 Another
viable alternative that can provide correlated density matrices at
a rather low cost is the random-phase approximation (RPA).4 It
has further been shown that using only a truncated subset of these
MP2-based NVOs is a well-suited approach for obtaining correla-
tion energies or properties from higher-order correlated methods,
allowing for truncation of the space spanned by the virtual orbitals.
MP2-based NVOs have since been applied to coupled-cluster (CC)
theory with singles–and–doubles (CCSD),5 with perturbative triples

[CCSD(T)],6–11 and in equation-of-motion-based CC (EOM-CC)
and linear-response CC methods.12–14 Recently, MP2-based NVOs
have also been applied to two- and four-component relativistic
electron-correlation methods.15

Another interesting application for correlated NVOs is the GW
approximation for molecules.16–18 In the GW approximation, the
self-energy is calculated to correct a set of Kohn–Sham (KS) orbital
energies to yield quasiparticle energies. The latter are closely related
to vertical ionization energies (VIEs). Obtaining the correlation part
of the self-energy is however not a trivial task. Within the random-
phase approximation, a naive ansatz scales as N6 with molecular size,
which is roughly the same scaling behavior as CCSD. While certain
techniques have been developed to lower this high computational
effort,19–24 they are usually specific to a single variant of GW, namely,
with the response calculated in the direct RPA approximation
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(dRPA), neglecting all exchange terms. Furthermore, these approx-
imations are often limited to only a few quasiparticle states, either
drastically losing either efficiency or accuracy if full quasiparticle
spectra are to be extracted. Also, specific vertex corrections are not
accessible using these low-scaling GW variants. In many molecular
applications, a GW calculation is only the beginning of a larger series
of calculations, including follow-up calculations. Typical examples
of follow-up calculations are simulations of optical excitation spectra
using the Bethe–Salpeter equation,22,25–29 transport simulations,30–33

or computations of further molecular properties.34–36 When these
types of calculations are performed a posteriori, it is questionable
to only use partial quasiparticle spectra, and instead full ones are
desirable. Therefore, the GW step is often the time-limiting step,
especially if more than a few quasiparticle states are to be computed.
Reducing the virtual expansion space can then significantly speed
up the GW step, which has been recognized early as a viable path to
obtaining fast yet reliable results. Previous techniques employed to
reduce the virtual expansion space in GW, for example, focused on
directly optimizing the virtual orbital space.37 In solid-state applica-
tions, attempts to reduce the expansion space in a GW calculations
have also been applied successfully.38,39 A straightforward reduc-
tion of the virtual space is however connected to many caveats, as
the GW self-energy generally converges only slowly with respect to
the number of empty states. Therefore, truncation-based approaches
are usually accompanied by extrapolation techniques or other error
compensation approaches.37,38 Still, the convergence of truncated
virtual spaces is still problematic.40,41 Like coupled-cluster theory,
GW methods would see significant benefits from being able to trun-
cate the virtual space drastically. In this study, we will demonstrate
that correlated NVOs provide a convenient route toward truncat-
ing the virtual space. Viable paths to use truncated NVO spaces
in GW calculations will be outlined, and the impact of certain
truncation parameters will be discussed based on carefully assessed
test sets.

II. THEORY
Unlike in correlated wave-function theory, as, for example,

in coupled-cluster or configuration-interaction theory, the start-
ing point for a GW calculation is usually a Kohn–Sham reference
Slater determinant, not a Hartree–Fock (HF) reference determinant.
Therefore, in Sec. II, all orbitals are assumed to be obtained from a
converged KS calculation. While certainly there is a strong depen-
dence of the GW results on the functional used to optimize the
orbitals,42,43 in this study, we will show that the performance of
NVOs is similar for all functional approximations.

A. Natural virtual orbitals from second-order
perturbation theory

Natural orbitals in their most general form were introduced
for the first time in 1955 by Löwdin as a set of molecular orbitals
with the property of diagonalizing a one-electron density matrix.44

First defined only for occupied orbitals, it was shown that post-HF
calculations using natural orbitals could be brought to convergence
significantly faster than with canonical orbitals. As shown by David-

son,1 natural orbitals minimize the least square error between the
canonical density matrix and its truncated approximate

f err. =∑
ab
∣Dab − D̃ab∣. (1)

Therefore, they provide an optimal expansion space for truncation,
as they guarantee the overall lowest possible error in the matrix ele-
ments of the density matrix. The choice of the density matrix is
here decisive for the efficiency of the natural orbitals in the desired
post-HF method for which there are various proposals in the liter-
ature. The most common examples of natural orbitals are the pair
(or pseudo) natural orbitals (PNOs),45–47 natural transition orbitals
(NTOs),48 and MP2 natural orbitals.49,50 While NTOs are mainly
used for the calculation of excited state properties,51 PNOs and
MP2-NOs are primarily used for ground state calculations. Whereas
PNOs are constructed for pairs of occupied HF orbitals, MP2-NOs
are constructed from the total first-order wave function.

To obtain natural virtual orbitals (NVOs) at the MP2 level of
theory, the construction of the virtual–virtual block of the (RI-)MP2
density matrix49,50,52,53 is the most central step. This virtual–virtual
block is given by

DMP2
ab =

1
2∑ijc

[(ai∣c j) − (ci∣a j)][(ib∣ jc) − (ic∣ jb)]
(εi j − εac)(εi j − εbc)

, (2)

where εpq = εp + εq denotes the sum of two orbital energies from
two canonical spin-orbitals, and (pq∣rs) is a two-electron integral
in Mulliken notation. We denote occupied spin-orbitals with the
indices i, j, k, . . ., virtual spin-orbitals with a, b, c, . . ., and general
spin-orbitals with p, q, r, . . .. Note that in our implementation, the
computed occupation numbers (i.e., eigenvalues) refer to the spin-
orbital-based density matrix in Eq. (2) not only in the case of an
unrestricted Hartree–Fock (UHF) or Kohn–Sham (UKS) reference
determinant but also in the case of a restricted Hartree–Fock (RHF)
or Kohn–Sham (RKS) reference determinant.

The NVOs are then obtained from the eigenvectors N of the
virtual–virtual density matrix DMP2 of Eq. (2). We keep all vectors Ñ
with occupation numbers larger than some prescribed threshold. In
the next step, we build semi-canonical NVOs by diagonalizing the
Fock matrix in the truncated space. The essential steps for the deter-
mination of the semi-canonical NVOs, collected in the matrix C̃, are
summarized in Table I. The orbital energies of the semi-canonical
NVOs are the diagonal elements of the matrix ε̃. The matrix C
contains the original HF or KS virtual spin-orbitals.

Note that the density matrix becomes block diagonal if the wave
function is chosen to be an eigenfunction of the spin operator Ŝz ,
as it is done in restricted or unrestricted HF/KS calculations. Then,
the off-diagonal α–β blocks are zero, i.e., (Dαβ = Dβα = 0). Accord-
ingly, the density matrix can be diagonalized separately for the α–α
and β–β blocks. The computational effort can be reduced even fur-
ther in the closed-shell RHF/RKS case by exploiting the symmetry
Dαα = Dββ. Otherwise, steps (1)–(5) must be carried out separately
for the two spin cases. If the wave function is neither an eigen-
function of Ŝz nor Ŝ 2, as it is the case when spin–orbit effects are
included, also the off-diagonal blocks must be included in the cal-
culation of DMP2. In the latter case, the resulting complex NVOs
are suitable to be applied in two- or four-component relativistic cal-
culations, or calculations in external magnetic fields.22,54–57 Direct
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TABLE I. Outline of the most essential steps in the determination of MP2 semi-canonical natural virtual orbitals.

(1) Computation of the virtual–virtual MP2 density matrix DMP2

(2) Diagonalization of the density matrix N†DMP2N = n
(3) Selection of a reduced number of eigenvectors N→ Ñ
(4) Construction of Fock matrix in truncated space F̃ = Ñ †ε Ñ
(5) Diagonalization of the Fock operator in the truncated space U†F̃ U = ε̃
(6) Construction of semi-canonical orbitals C̃ = C Ñ U

MP2-based NVOs (denoted as dNVOs) can be obtained similarly
by simply neglecting the exchange integrals when generating the
MP2 density matrix using Eq. (2).58 Note that a prefactor of two
has to be applied additionally in this case. Equation (2) also deter-
mines the overall scaling of the NVO generation step, scaling as N5.
For dNVOs, the scaling can be reduced to N4 using Laplace trans-
formations.59 While MP2 density matrices are a convenient choice
in localized orbital simulations, they are less common in periodic
frameworks. For the latter, density matrices based on the RPA may
be better suited. Virtual–virtual RPA density matrices, for example,
occur in self-consistent RPA,60 and their calculation scales similar to
Laplace-transformed direct MP2.61

B. Correlation self-energies from the GW method
within the random-phase approximation

A rather general way to obtain correlation energies in the direct
random-phase approximation (dRPA) is the “plasmon formula”

ERPA
c = tr(Ω −A), (3)

where Ω is a matrix containing all positive dRPA excitation ener-
gies (see, for example, Ref. 62). The latter can be obtained from the
eigenvalue problem

⎛
⎜
⎝

A B

−B∗ −A∗
⎞
⎟
⎠

⎛
⎜
⎝

X Y∗

Y X∗
⎞
⎟
⎠
=
⎛
⎜
⎝

X Y∗

Y X∗
⎞
⎟
⎠

⎛
⎜
⎝

Ω 0

0 −Ω

⎞
⎟
⎠

, (4)

where X and Y satisfy the condition X†X − Y†Y = 1. Within the
dRPA, the orbital rotation matrices A and B are given as

Aia, jb = (εa − εi)δabδi j + via, jb, (5)

Bia, jb = via,b j , (6)

where εp refers to a KS orbital energy. Within the direct RPA,
the interaction kernel vpq,rs = (pq∣sr) is just the bare Coulomb
interaction.

We now turn to the self-energy within the GW approximation.
As in our previous work,36,63 the GW self-energy64

Σ(x, x′; ω)= −
1

2π i∫
∞

−∞

exp ( iω′0+)W(x, x′; ω′)G(x, x′; ω+ω′)dω′

(7)
is calculated from Green’s function

G(x, x′; ω) =∑
q

ϕq(x)ϕ∗q (x′)
ω − εq + iδ sgn (εF

q)
(8)

and the screened interaction

W(x, x′; ω) = ∫ ε−1
(x, x′′; ω) v(r′′ − r′) dx′′, (9)

where εF
q = εq − εF is the difference between the energy εq of the

spin-orbital (or spinor) ϕq and the Fermi level εF. 0+ describes an
infinitesimally small, positive number. Note that the self-energy as
given in Eq. (7) contains an exchange part as well as a correlation
part. Using Eq. (4), and subtracting the Coulomb potential v from
the screened interaction W, the correlation part of the self-energy
can be rewritten as

Σc(x, x′, ω) =∑
k
∑
m≠0

Vm(x)V∗m(x′)ϕk(x)ϕ∗k (x
′
)

ω + ωm − εk − iη

+∑
c
∑
m≠0

V∗m(x)Vm(x′)ϕc(x)ϕ∗c (x′)
ω − ωm − εc + iη

, (10)

where η = 2δ, and where the fluctuation potential Vm(x) is deter-
mined for all excited states m as

Vm(x) = ∫
∞

−∞

v(r − r′)ρm(x′) dx′, (11)

ρm(x) =∑
ia
[ϕ∗a (x)ϕi(x)Xm

ia + ϕ∗i (x)ϕa(x)Ym
ia ]. (12)

Inserting Eqs. (11) and (12) into Eq. (10) yields the final expression
for the expectation value of the correlation self-energy,

⟨p∣Σc(εp)∣p⟩ =∑
k
∑
m≠0
(pk∣ρm)(pk∣ρm)

∗D+p,k,m

+∑
c
∑
m≠0
(cp∣ρm)(cp∣ρm)

∗D−p,c,m, (13)

with the element D±p,q,m being defined as

D±p,q,m =
εp − εq ± ωm

(εp − εq ± ωm)
2
+ η2 . (14)

The two-electron integral (pq∣ρm) is computed as

(pq∣ρm) =∑
ia
[(pq∣ai)Xm

ia + (pq∣ia)Ym
ia ]. (15)

GW correlation self-energies are tedious to compute, needing to
fully solve Eq. (4). This severely limits the accessible molecular
systems for GW.
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C. Introducing natural virtual orbitals in the GW
method

From Eq. (10), the GW quasiparticle energy can be calculated
as

εQP
p (ω) = εp + Z⟨ϕp∣Σx

+ Σc(ω) − VKS
∣ϕp⟩, (16)

where εQP
p (ω)marks p-th quasiparticle state with an energy of ω. At

the zeroth iteration ω corresponds to the KS orbital energy εp. ΣX is
the Hartree–Fock exchange energy of the p-th orbital, and VKS

p the
KS potential of the p-th orbital. Z is a linearization factor used to
circumvent self-consistent solutions of Eq. (16), which would oth-
erwise be necessary already for G0W0.17 To reintroduce G and W
explicitly, we rewrite Eq. (16) as

εQP
p (ω) = εp + Z⟨ϕp

RRRRRRRRRRRRRRRR

Σx
+

Variant 2
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
G(ω)

Variant 1

W(ω)
´¹¹¹¹¸¹¹¹¹¶

− VKS

RRRRRRRRRRRRRRRR

ϕp⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Variant 3

. (17)

Depending on where NVOs are used for the calculation of
the correlation self-energy, three different variants of the NVO-GW
method can be derived as outlined in Eq. (17). In the first variant,
we restrict ourselves by only representing the screened interaction
W using NVOs. This approach is equivalent to using NVOs exclu-
sively for the charge fluctuation ρm(x) by substituting the virtual
orbitals (or spinors) ϕc(x) by their NVO counterparts ϕ̃c(x) in
Eq. (12), as well as in the eigenvalue problem in Eq. (4). This trans-
formation of W is crucial to all approaches if NVOs are to be used
since the solution of the eigenvalue problem in Eq. (4) is associ-
ated with the greatest computational effort. Note that in Eq. (13),
in addition to the charge fluctuation ρm(x), also the energy eigen-
values ωm in D±p,q,m must be replaced by the eigenvalues obtained
from Eq. (4) using NVOs. If besides the screened interaction W also
Green’s function G is represented by NVOs, marked as variant 2
in Eq. (17), the whole correlation self-energy Σc is computed in the
NVO space. In this case, also the sum over all virtual orbitals ϕc(x)
in the second term on the right-hand side of Eq. (13) is replaced
by NVOs as well as the corresponding orbital energies εc in D−p,c,m.
In the third variant, in addition to the self-energy, also the orbitals
or spinors ϕp(x), for which the self-energy shall be computed, are
transformed into a basis of natural virtual orbitals. This variant is
relevant only if the considered orbital ϕp(x) in Eq. (13) denotes an
unoccupied orbital ϕc(x) because, otherwise, it is equivalent with
the second variant. While the first and second variants require the
parallel use of two basis sets during the GW calculation, the third
approach considerably simplifies the technicalities of implementing
the approach. In the latter, the virtual canonical orbitals are sim-
ply replaced by the NVOs throughout all necessary steps. However,
the eigenvalues of the NVOs are considerably worse approximations
of the quasiparticle energies, and therefore we mainly opt to use
NVOs to evaluate Eqs. (4) and (12), that is, variant 1. The remaining
terms in the correlation self-energy given in Eq. (13) are obtained
using the canonical KS orbitals. Variant 1 is generally also com-
patible with self-consistent variants as for example, evGW0, during
which G is updated but W is kept at its initial state. Introducing

self-consistency in W through full eigenvalue self-consistent GW
(evGW) is however troublesome using NVOs. Starting from the sec-
ond iteration, the eigenvalues used in the construction of W are
no longer the NVO eigenvalues, but the evGW ones, which are, in
general, not compatible with the NVO eigenfunctions. This leads
to significant errors in the unoccupied quasiparticle states. Due to
the iterative nature, the errors in the unoccupied quasiparticle states
subsequently also disturb the occupied quasiparticle states. Quasi-
particle self-consistent GW (qsGW)65 is currently beyond the scope
of this work, as it would require to also update the NVOs during
the iterative process. We note in passing that, contrary to evGW,
the use of NVO for qsGW is nevertheless well-defined, as long as
they are updated in each iteration. From a methodical scaling point
of view, classical GW variants scale as N6 with system size. There-
fore, using NVOs pays off given that they can be determined with at
most N5 cost. For low-scaling GW algorithms, scaling as N4 or bet-
ter, NVO is less rewarding. Nevertheless, the possibility of applying
low-scaling GW algorithms is mostly limited to direct RPA response,
while NVOs in combination with Eqs. (4) and (13) are generally
applicable. We further note that the construction of the (d)MP2
density matrix can be made local, reducing its effective scaling
drastically.66

D. Vertex corrections
Vertex corrections are the next step on the GW hierarchy of

methods, surpassing the simple approach of using solely Coulomb
interactions from the direct random-phase approximation.67–70

Unfortunately, calculating vertex corrections is computationally
demanding, yielding rather complicated expressions. While it is
yet to be determined if vertex corrections improve VIEs obtained
from the GW method,71 current investigations of transition-metal
monoxides have revealed some importance for certain molecular
systems.72 The high costs of calculating vertex corrections, how-
ever, severely hamper further investigations, being unfeasible for
molecular systems of chemically relevant size. As NVOs provide a
convenient route to reducing the cost of obtaining vertex correc-
tions, we will expand our discussion by including NVOs in their
computation.

In Ref. 68, Grüneis et al. use ordered second-order diagrams to
obtain the vertex correction Δεp(ω) as

Δεp(ω) =∑
i,a,b

(ia∣W∣pb)(ib∣W∣pa)∗

εa + εb − εi − ω
−∑

i, j,a

(ia∣W∣ jp)(ip∣W∣ ja)∗

εa + ω − εi − ε j
.

(18)

W in Eq. (18) refers to the full static screened interaction as
described in Eq. (9), where ω = 0 is set. The latter choice is termed
test-charge–test-charge (TC–TC) interaction, and labeled WTC–TC

in Ref. 68. Evaluating Eq. (18) scales as N6, providing a steep increase
in computational demands for GW. Using the resolution-of-the-
identity approximation for the construction of WTC–TC can reduce
this to N5,22 and accordingly using NVOs can further accelerate
the construction of vertex corrections. In our current implemen-
tation, we use NVOs for all orbital functionals as well as in the
construction of WTC–TC, yielding an efficient way to calculate vertex
corrections.
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III. COMPUTATIONAL DETAILS
The NVO generation scheme outlined in Table I has been

implemented into a locally modified version of TURBOMOLE 7.7,
making use of OpenMP parallelization.73,74 The corresponding nec-
essary modifications of the GW code of TURBOMOLE have been
carried out in the course of this work. To test the performance of
NVOs within the GW method, VIEs are obtained with NVOs using
the linearized G0W0 and the evGW0 approaches. As reference VIE
values, the canonical results (obtained using canonical orbitals), will
be used. This allows us to assess the deviations caused directly by
truncating the NVO space. Furthermore, we compare the obtained
VIE values, with and without using truncating the NVO space, to
accurate CCSD(T) reference values. GW-based VIEs will be evalu-
ated for three density-functional approximations (DFAs), namely,
the global hybrid PBE0,75 the range-separated hybrid wB97X-
D,76 and the local hybrid TMHF.77 Hybrid functionals, especially
range-separated and local hybrid functionals, have earlier shown
to yield excellent results for VIEs in combination with the G0W0
method.42,43 This will allow one to conclude the transferability of
NVOs between different reference functionals. All DFT calculations
were tightly converged, with energy and density-matrix thresholds
being set to 10−9 Eh and 10−8, respectively. Fine integration grids
of size 4 or better were used to obtain fully converged results for
all tested molecules and functionals.78 To determine the depen-
dence of the NVO approximation on a given basis-set expansion, all
G0W0 and evGW0 computations were carried out using the triple-
ζ def2-TZVPP basis set.79 Additionally, for an initial investigation,
the G0W0 computations were also performed using the quadruple-ζ
def2-QZVPP basis sets.79 All DFT, NVO, and GW calculations were
performed using a locally modified development version of TUR-
BOMOLE 7.7.73 The resolution-of-the-identity approximation has
been used in all NVO and GW calculations, and the correspond-
ing def2-TZVPP and def2-QZVPP auxiliary basis sets optimized
for post-HF calculations (denoted as cbas in TURBOMOLE jar-
gon), were used.80 See Ref. 80 and references therein for a detailed
description of the auxiliary basis sets.

For the GW100 test set,81 we compare the computed VIEs
obtained as GW quasiparticle energies with reference data obtained
at the coupled-cluster level, including single and double substitu-
tions as well as a perturbative correction for connected triple substi-
tutions, that is, at the CCSD(T) level. The CCSD(T) reference values
have been carefully re-assessed, and changes and new values are
outlined in Sec. IV. All EOMIP-CCSD and EOMIP-CCSDT calcula-
tions have been performed using the CFOUR program.82 All of our
primary reference data [geometries, UHF/def2-TZVPP, UHF/def2-
QZVPP, CCSD(T)/def2-TZVPP, and CCSD(T)/def2-QZVPP ener-
gies, number of orbitals excluded from the correlation treatment] are
published as supplementary data in the supplementary material.

IV. COUPLED-CLUSTER REFERENCE DATA
The CCSD(T)/def2-TZVPP reference data have already been

published in an earlier work,83 and in the present paper, we specif-
ically report revised data for four molecules of the test set. Further-
more, CCSD(T)/def2-QZVPP reference data for the GW100 test set
have been computed, and a full overview of the calculated VIEs is
provided in the supplementary material. In our previous work,83 the

CCSD(T) computations were based on unrestricted Hartree–Fock
(UHF) reference determinants, both for the cationic and neutral sys-
tems, and for all systems, we had attempted to find the UHF solution
with the lowest energy. Recently, Bruneval, Dattani, and van Set-
ten (BDvS) have repeated our CCSD(T)/def2-TZVPP calculations
using a restricted Hartree–Fock (RHF) reference determinant for
the neutral systems instead.84 In the course of the latter work, BDvS
found UHF solutions with lower energy for the cations of uracil
(CAS Reg. No. 66-22.8), cytosine (71-30-7), and hydrogen cyanide
(74-90-8). We have adopted these solutions in our present work.
Furthermore, BDvS pointed out in their work that our previously
reported value for carbonyl selenide (1603-84-5, OCSe) had erro-
neously been computed for carbonyl sulfide (in the OCSe geometry).
In the present work, we report the correct values for the carbonyl
selenide molecule.

After the above revisions, only two clear outliers remain when
comparing our CCSD(T)/def2-TZVPP data with the data of BDvS.
These outliers are sulfur dioxide (7446-09-5, SO2) and magnesium
oxide (1309-48-4, MgO), which will be discussed below. Exclud-
ing SO2 and MgO from the comparison, the mean deviation of
our values from those of BDvS amounts to 0.003 eV. The mean
absolute deviation is 0.02 eV, and the sample standard deviation
is 0.05 eV (note that data for the cesium dimer are missing from
DBvS’s supplementary data, such that the comparison is made for
97 molecules).

The problem with SO2 is that we use the lowest-energy UHF
solution for the SO+2 cation, which amounts to −546.881 967 Eh,
whereas BDvS use the solution with EUHF = −546.861 914 Eh.
Admittedly, our lowest-energy solution is heavily spin-
contaminated (⟨Ŝ 2

⟩ = 1.13 h̵2
) and the corresponding CCSD(T)

energy does not seem accurate. The CCSD(T) energy obtained
with BDvS’s UHF solution is much closer to the CCSD(T) energy
obtained with a restricted open-shell Hartree–Fock (ROHF)
reference determinant for SO+2 (Table II). Also the EOMIP-CCSD
(equation-of-motion-ionization-potential coupled-cluster-singles-
and-doubles) value85 favors BDvS’s CCSD(T) result.

The problem with MgO is that we use the lowest-energy UHF
solution for the neutral molecule, whereas BDvS use the closed-
shell restricted Hartree–Fock (RHF) solution (Table III). Also in
this case, the EOMIP-CCSD value of 8.172 eV for the VIE favors
BDvS’s CCSD(T) result (7.909 eV). We acknowledge that our value
(7.487 eV) is very likely to be too small by about 0.4 eV and sug-
gest using the EOMIP-CCSDT (EOMIP-CCSD-and-triples) values
for the molecules SO2 and MgO instead. Those VIE values amount
to 12.225 and 7.877 eV for SO2 and MgO, respectively, as com-
puted by the CFOUR program.82 In the def2-QZVPP basis set,
the corresponding EOMIP-CCSDT values are 12.403 and 7.939 eV,
respectively (cf supplementary material).

V. RESULTS
A. Ionization energies using NVOs

To test the capabilities of NVOs within the GW approximation,
as a first test, we calculate quasiparticle energies for the GW100 test
set. The latter consists of VIEs of 100 small molecules.

Figure 1 outlines the general convergence of the correlation
self-energy as NVOs are subsequently added, starting from 20%
to 100%, with the latter value exactly reproducing the untruncated
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TABLE II. Coupled-cluster reference data (total energies in Eh) for SO+2 as obtained in the def2-TZVPP basis set. The
EOMIP-CCSD and EOMIP-CCSDT energies were computed with the CFOUR program.82

Type of computation Hartree–Fock CCSD CCSD(T) VIE (eV)

UHF (this work) −546.881 967 −547.461 26 −547.488 62 13.486
UHF (BDvS)84 −546.861 914 −547.494 98 −547.532 27 12.298
ROHF −546.844 345 −547.493 36 −547.532 89 12.281
EOMIP-CCSD −547.496 39 12.373
EOMIP-CCSDT 12.225

TABLE III. Coupled-cluster reference data (total energies of in Eh) for MgO as obtained in the def2-TZVPP basis set. The
EOMIP-CCSD and EOMIP-CCSDT energies were computed with the CFOUR program.82

Type of
computation Hartree–Fock CCSD CCSD(T) VIE (eV)

UHF (this work) −274.464 527 −274.813 34 −274.820 75 7.487
RHF (BDvS)84 −274.374 647 −274.811 94 −274.836 26 7.909
EOMIP-CCSD 8.172
EOMIP-CCSDT 7.877

canonical value. First, it is visible that simply truncating the space
spanned by the canonical orbitals in GW calculations is not a viable
choice. The convergence toward the canonical result is slow, with
any practically useable truncation parameter leading to unaccept-
able errors. Even including 80%–90% of the canonical orbitals does
not yield converged results. Contrary, very good results are obtained
if NVOs are used to calculate the self-energy Σ. In Fig. 1, NVOs are
employed to evaluate Eqs. (4) and (12), consistent with variant 1 out-
lined in Sec. II A. Converged results are obtained if 30%–40% of the
total number of virtual orbitals are included. Before this point, the
error curve is less steep and the overall deviation therefore already
largely reduced. This effect gets more prominent as more virtual
orbitals are discarded. Note that the basis set size does not seem to
be too important. The def2-QZVPP basis set shows deviations sim-
ilar to those of the def2-TZVPP basis set, with the latter showing
slightly reduced deviations in the case of a very low number of virtual
orbitals taken into account.

Next, we will analyze the deviation introduced by NVOs depen-
dent on the system size and the cardinality of the correlation-
consistent basis set used.86,87 Therefore, the deviations of the VIEs
in the acene series from benzene to hexacenes are shown in Fig. 2
for a 50% truncated virtual space. Furthermore, Fig. 2 also shows the
deviations obtained for benzene with increasing basis set size.

Figure 2 exhibits that the deviation of the VIE normalized to ΣC
obtained in the fully intact virtual space decreases with the system
size. The latter effect is to be expected as the virtual expansion size
linearly increases in the row, providing more flexible combinations
from which the NVOs can be generated. Moreover, Fig. 2 outlines
how the deviation of the VIEs converges with an increasing num-
ber of basis functions for the benzene molecule. Again, raising the
cardinal number of the basis set (adding a considerable amount of
basis functions) provides a more flexible basis from which the NVOs
can be generated. Discarding half of the virtual orbitals in each case
therefore still leads to an increasingly efficient description of the

FIG. 1. Averaged deviation of the vertical ionization energy (VIE) for the GW100
test set of molecules, for a gradually decreasing truncated virtual orbital space.
VIEs were obtained using the G0W 0@PBE0 method, using the def2-TZVPP
and def2-QZVPP basis sets. The untruncated G0W 0@PBE0 values are used as
references. All deviations in eV.

virtual space by the NVOs, significantly increasing the accuracy of
NVO calculations. Overall, Fig. 2 points out at large molecules com-
bined with large basis sets being a primary target for NVOs, with the
latter working exceptionally well in these cases.

Table IV outlines the timings needed to build NVOs from
scratch for the acenes shown in Fig. 2. Even on moderate compu-
tational resources, building NVOs for systems with up to 1000–1500
Cartesian basis functions (BFs) only takes seconds to a few minutes.
Compared to classical N6 scaling GW calculations, this is a vanishing
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FIG. 2. Left: Deviation of vertical ionization energies (VIEs) for the series of acenes
ranging from benzene to hexacene. Right: Deviation of the VIEs for benzene in the
series of basis sets ranging from cc-pVDZ to cc-pV6Z. For the G0W 0 calculation, a
PBE0 functional was used as a reference. The virtual orbital space was truncated
consistently by 50%.

TABLE IV. Wall times needed to obtain the NVOs for the acenes from benzene to
hexacene. Timings were measured on four cores of an AMD Ryzen 5500 CPU. All
calculations were done using a PBE0/def2-TZVPP reference. Timings in seconds.

Acene NBF TMP2 (s)

C6H6 306 1.3
C10H8 480 11.3
C14H10 654 50.9
C18H12 828 161
C22H14 1002 403
C26H16 1176 910

effort. Still, for extensive systems, the overall N4–N5 effort needed to
construct canonical NVOs will be significant once 2000–3000 BF are
surpassed. In this case, local methods to construct the (d)MP2 den-
sity matrix need to be employed to reduce the overall scaling in the
NVO construction.

B. Ionization energies using NVOs for the GW100
test set

To analyze the overall deviation stemming from truncating the
virtual orbitals space, we determine the error in the quasiparticle
energies for the GW100 test set using various settings that deter-
mine how many virtual orbitals are neglected (frozen). Figures 3 and
4 outline a more detailed statistical analysis of the usage of NVOs
in the GW100 test set for the def2-TZVPP and def2-QZVPP basis
sets, respectively. Both plots show the obtained deviations for a 50%
reduced virtual space and for three different occupation number
thresholds that have been used to choose NVOs of lesser importance.
Box plots were used to give a compact representation of the data dis-
tribution with respect to the full virtual orbital space. The horizontal
orange line indicates the median and the upper and lower limits of
the box (upper and lower quartiles) indicate that 25% of the data val-
ues are located above and below the quartile. The range of the box is
the interquartile range (IQR). The whiskers extend to the data with
values less than 1.5 times the interquartile range plus the lower or
upper quartile.

First, comparing Figs. 3 and 4 suggests that a required occu-
pation number threshold is dependent on the basis set size. For

example, for the def2-TZVPP basis set, a threshold of less than
10−4 below which NVOs are discarded leads to basically converged
results. Contrary, the def2-QZVPP basis set requires a threshold
of less than 5 × 10−5 to reduce the deviations found for the VIEs
to a similar accuracy. For comparison, Figs. 3 and 4 also outline
results with truncated canonical orbital spaces, where the number of
active virtual orbitals has been chosen to match those of the NVOs.
Figures 3 and 4 confirm the initial assumption that truncating
canonical orbitals is a rather error-prone approach. For any trunca-
tion threshold, truncating canonical virtual orbitals yields a broad
error distribution, being unsuitable to obtain quasiparticle ener-
gies. While truncating the NVO space is superior to truncating
canonical virtual orbitals, both plots exhibit that the exact means
of the generation of the NVOs are not too important. Quasipar-
ticle energies obtained from NVOs generated from a direct-MP2
density matrix (dNVOs) are practically indistinguishable from their
standard counterparts. Especially for larger molecules, where high-
performance algorithms for Laplace-transformed direct MP2 have
been developed,58,59 this can be translated in considerable gains
while practically no accuracy is lost. Concerning the choice of the
density functional approximation, no dependence of the NVOs on
the underlying functional can be observed. Figure 5 depicts the
fraction of the discarded virtual orbitals in dependence on the
occupation number thresholds used in Figs. 3 and 4.

As outlined by Fig. 5, the tighter truncation thresholds for def2-
QZVPP still lead to a higher relative number of NVOs that are
discarded, translating into more pronounced speedups. To further
check for the validity of NVOs in GW calculation, we also investi-
gate the behavior in the evGW0 method. In this method, specifically,
the screened exchange W is kept at the KS level. Accordingly, W can
be calculated using the NVOs obtained from the KS reference, and
we update only the Greens function in every iteration.88 Deviations
found for the evGW0 method, shown in Fig. 6, are in principle iden-
tical to the previously observed deviations for the G0W0 approxima-
tion. The same conclusions drawn before for the truncated virtual
spaces and difference density functional approximations therefore
also apply to evGW0. Using (d)NVOs can therefore help to con-
siderably accelerate evGW0. Notably, Fig. 6 shows that there is a
single outlier for the smaller thresholds. This outlier is in every case
helium, which reacts very sensitively to the omission of any orbitals
in the GW treatment. For atomic cases, especially for helium, NVOs
should therefore not be used.

Figure 7 depicts the statistical errors obtained for the VIE of
the energetically lowest occupied orbital. This orbital corresponds to
the 1s orbital when no effective core potential (ECP) is used, and to
the first orbital not included in the ECP otherwise. For these ver-
tical core ionization energies, a generally amplified magnitude of
errors is observed. The latter is caused by the significantly raised
ionization energies needed to expel core or non-valence electrons.
Non-valence electron VIEs exhibit an increased sensitivity to the
chosen occupation number threshold, with only the tighter thresh-
olds yielding acceptable results. Notably, using canonical orbitals,
the VIEs of these orbitals are strongly overestimated. In contrast,
as outlined in Figs. 4–6, valence electron VIEs are strongly under-
estimated with truncated canonical orbitals. The exceedingly large
error of VIEs when frozen canonical orbitals are used, reaching up
to 10–20 eV, basically renders this approach useless for core ioniza-
tion energies. Using NVOs, these errors can be largely reduced. The
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FIG. 3. Deviation of the vertical ionization energies (VIEs) for a truncated virtual space using the GW100 test set of molecules. For the Kohn–Sham reference orbitals and
the G0W 0 calculations three functionals were considered (PBE0, TMHF, and ωB97X-D). The def2-TZVPP basis set was used. The damping parameter η = 0.001 was
used.

FIG. 4. Deviation of the vertical ionization energies (VIEs) for a truncated virtual space using the GW100 test set of molecules. For the Kohn–Sham reference orbitals and
the G0W 0 calculations, three functionals were considered (PBE0, TMHF, and ωB97X-D). The def2-QZVPP basis set was used. The damping parameter η = 0.001 was
used.

overall accuracy with frozen NVOs is then again comparable to the
overall accuracy that can be reached with GW methods while speed-
ing up the calculation by an order of magnitude or more. Notably,
the outliers in Fig. 7 can be grouped into two classes. The first class
is constituted by elements where ECPs have been employed, as e.g.,
I2. The second class is built by elements with 1s VIEs exceeding
10 000 eV, for example, Br2 or GeH4. For orbitals close to an effective

core potential, using truncated NVOs is therefore not recommend-
able. For the second class, while larger than usual absolute errors are
obtained, the relative error, which is also connected to the overall
accuracy of GW, is very good. The presented approach can therefore
also be recommended for core ionization energies.

Finally, the question remains of how much the VIEs are
impacted at all by the use of a truncated set of virtual orbitals.
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FIG. 5. Fraction of frozen virtual orbitals
for truncation of the virtual space by
choosing an occupation number thresh-
old. (Top) def2-TZVPP basis, corre-
sponding IPs are found in Fig. 3. (Bot-
tom) def2-QZVPP basis, corresponding
IPs are found in Fig. 4.

Figure 8 compares the VIEs obtained from CCSD(T)/def2-TZVPP,
G0W0@DFT/def2-TZVPP, and G0W0@DFT/def2-QZVPP to the
reference VIEs obtained from CCSD(T)/def2-QZVPP.

In Fig. 8, it is visible that NVOs are not lowering the over-
all accuracy of the G0W0 method when compared to the results
using the full virtual space. The overall error when compared to
CCSD(T)/def2-QZVPP reference values is hardly affected at all,
with the NVO/def2-TZVPP combination even exhibiting a slightly
improved performance compared to a full virtual space. The lat-
ter effect can however safely be attributed to error cancellation. It
is therefore important to point out two things. First, using NVOs
one could accelerate a calculation using the same basis set, with-
out a significant loss in accuracy. Second, using a truncated NVO
space, quadruple-ζ results can be obtained basically at triple-ζ cost
or less. As shown in Fig. 8, the accuracy improvement of going
from triple-ζ to quadruple-ζ far outperforms any error introduced
by the NVOs. Contrary, truncating the canonical orbital space sig-
nificantly deteriorates the obtained VIEs. Figure 8 estimates that
the average errors are 2–3 times larger in the latter case. Note that
even CCSD(T), when used with a smaller basis set, is consider-
ably in error. Deviations of up to 0.25 eV are found for the latter

basis set when compared to the reference values, with a mean error
of ∼0.1 eV.

C. Vertex corrections
Subsequently, to standard G0W0 and evGW0 calculations,

NVOs are especially interesting to speed up the calculation of
otherwise rather expensive higher-order vertex corrections to the
G0W0 or evGW0 quasiparticle energies. Using NVOs, the virtual
space can be truncated, which leads to large gains when evaluat-
ing Eq. (18). Especially the evaluation of the first term in Eq. (18),
featuring a sum over two virtual indices, will benefit from truncat-
ing the virtual space. Of course, the question of how much NVOs
will affect the results remains. It turns out that for vertex correc-
tions the deviation introduced by using NVOs is again reduced
quickly and smoothly with the occupation number threshold as
outlined in Fig. 9.

Given that the magnitude of the vertex corrections Δεp is usu-
ally much smaller than the initial correlation self-energy obtained
from G0W0 or evGW0, smaller deviations are obtained overall. Still,
truncating the virtual space while using canonical orbitals leads to

J. Chem. Phys. 158, 144102 (2023); doi: 10.1063/5.0144469 158, 144102-9

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0144469/16824815/144102_1_5.0144469.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 6. Absolute deviation of the vertical ionization energies (VIEs) for a truncated virtual space using the GW100 test set of molecules. For the Kohn–Sham reference
orbitals and the evGW 0 calculations three functionals were considered (PBE0, TMHF, and ωB97X-D). The def2-TZVPP basis set was used. The damping parameter
η = 0.001 was used.

FIG. 7. Deviation of the lowest calculated vertical ionization energies (VIEs) for a truncated virtual space using the GW100 test set of molecules. For organic molecules this
refers to the 1s orbitals, if effective core potentials (ECP) were used, it refers to the first orbitals not enclosed in the ECP. For the Kohn–Sham reference orbitals and the
evGW 0 calculations, three functionals were considered (PBE0, TMHF, and ωB97X-D). The def2-TZVPP basis set was used. The damping parameter η = 0.001 was used.

significant deviations. In the latter case, the incorporated error is of
the same order of magnitude as the vertex corrections itself, yield-
ing unacceptable deviations. Contrary, truncating the virtual space
is possible without sacrificing much accuracy when NVOs are used.
With NVOs the error is well under control, especially for lower occu-
pation numbers. An occupation number threshold of 10−4 again
seems to provide a reasonable balance between performance and
accuracy, with the mean error on the vertex correction approach-
ing 0.01–0.02 eV. The error distribution for vertex corrections is

therefore in line with that of the quasiparticle energies themselves.
Using the same thresholds for both, vertex corrections and quasi-
particle energies, is therefore possible and advisable, yielding a
consistent yet efficient and accurate method. As a final remark, it
is interesting to note that for the lowest occupation number thresh-
olds of 5 ×10−5 and 10−4, the single largest outlier exhibiting double
the error of the second largest one is again helium. The latter already
showed to be troublesome for evGW0 and is, in general, known to be
a challenging case for GW methods.89 We, however, note that this is
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FIG. 8. Comparison of vertical ionization energies (VIEs) from various methods to
reference CCSD(T)/def2-QZVPP VIEs. For NVOs, a truncation threshold of 10−4

was chosen. For canonical orbitals, the same number of neglected virtual orbitals
as in the truncated NVO space was assumed. Full virtual space labels untruncated
results. All deviations in eV.

FIG. 9. Deviation of the vertex correction for vertical ionization energies (VIEs) for
a truncated virtual space using the GW100 test set of molecules. TMHF was used
as Kohn–Sham reference. The def2-TZVPP basis set was used. All deviations in
eV.

only a minor setback, as truncating orbital spaces for a single atom
is hardly ever necessary.

VI. CONCLUSION
We have outlined the principal capabilities of using the trun-

cated natural virtual orbital spaces to accelerate the evaluation of
quasiparticle energies from the GW approximation. For VIEs, we
find that the NVO space can be considerably truncated without a
significant loss in accuracy in the quasiparticle energies obtained
from either G0W0 or evGW0. The truncation thresholds used to
construct a set of NVOs are furthermore shown to be transfer-
able between different classes of density functional approximations.
However, it is not automatically transferable between basis sets, and
most likely an optimal value needs to be determined for at least

every cardinal number of orbital basis sets. We recommend trun-
cating the space spanned by the NVOs by neglecting orbitals with
occupation numbers of less than 10−4 for triple-ζ basis sets, and
a slightly tighter threshold of 5 ×10−5 for quadruple-ζ basis sets.
Using these thresholds leads to tightly converged quasiparticle ener-
gies, and also to tightly converged vertex corrections. The remaining
error of using NVOs has then been shown to be insignificant com-
pared to the overall error of the GW method. This also holds for
non-valence orbitals, for example, 1s orbitals of lighter elements. For
the latter, NVOs yield excellent quasiparticle energies, while largely
reducing the cost of the associated GW calculation. It is further-
more interesting to note that the exact way the correlated NVOs
are obtained is not too important. NVOs obtained from direct MP2
lead to practically indistinguishable result, while speeding up the
process by an order of magnitude. For periodic GW calculations,
where MP2 density matrices are not commonly available, one could
resort to RPA density matrices, which have similar properties and
are expected to work as well as dMP2 density matrices for NVO
generation due to their principal similarity. Given the robustness of
the NVO scheme, exhibiting no significant difference between MP2
and dMP2 density matrices, we also expect RPA density matrices to
provide results of similar quality. These results are especially encour-
aging for vertex corrections, which are generally considered to be
computationally demanding. The latter can be accelerated using
NVOs to yield methods that are routinely applicable to molecular
systems, allowing future investigations to take them into account
when needed.

For electron attachment energies (not reported here), we find
NVOs to be not suitable within the GW ansatz when the full vir-
tual space is replaced by NVOs. The failure can be attributed to the
fact that the virtual eigenvalues of the Fock matrix in the truncated
space of the NVOs should not be used as starting points for the com-
putation of the respective quasiparticle energies. The problem can
be remedied by not replacing those virtual orbitals that are relevant
for the electron attachment energies by NVOs. This must also be
taken into account when computing excitation energies through the
Bethe–Salpeter equation, in which quasiparticle energies of occupied
and virtual levels are used as input.

SUPPLEMENTARY MATERIAL

See the supplementary material for the geometries used in the
GW100 test set, the Hartree–Fock and CCSD(T) energies in the
def2-TZVPP and def2-QZVPP basis sets for the cations as well as the
neutral systems, and energies for the molecules SO2, MgO, and their
cations. Hartree–Fock and CCSD(T) energies in the def2-TZVPP
and def2-QZVPP are additionally available as machine-readable
ASCII files. Furthermore, the G0W0 and evGW0 results are also
reported as machine-readable ASCII files.
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