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If a mathematician wishes to disparage the work of one of his
colleagues, say, A, the most effective method he finds for
doing this is to ask where the results can be applied. The hard
pressed man, with his back against the wall, finally unearths
the researches of another mathematician B as the locus of the
application of his own results. If next B is plagued with a
similar question, he will refer to another mathematician C.
After a few steps of this kind we find ourselves referred back to
the researches of A, and in this way the chain closes.

- ALFRED TARSKI, The Semantic Conception of
Truth (1952), p. 41.



Preface

We want to break the metaphorical chain referred to by Alfred Tarski by considering a meaningful
application in addition to and as the main motivation for the presented mathematical methods.
Due to the interdisciplinarity of the topic at hand, we will fluently transfer between different fields of
mathematics. The stochastic nature of particle dynamics as well as uncertainties, combined with the
need to numerically solve a partial differential equation, places radiation therapy at the interface between
numerical mathematics and stochastics. The core problem of particle transport can already be viewed
as a stochastic or numeric problem depending on the way it is framed. This then in turn influences not
only the notation and language used but also the methods which are applied and the way results are
analyzed. For example, the dose deposited by particles during irradiation through a stochastic lens is
the expected value of the dose deposited by particles in a random walk, where the states are defined by
the phase space and transitions by interaction probabilities. In this case, a Monte Carlo method is the
obvious choice and a good dose calculation method is characterized by its statistical properties, e.g. the
unbiasedness of a dose estimator or its standard error. The same problem through the lens of numerical
mathematics is the solution of a partial differential equation using numerical discretizations of the phase
space. Here, one would analyze the stability and convergence properties of a method. This work aims
to translate and draw connections between the two viewpoints and therefore draws from notations and
terminology from both fields.

Motivation

Radiation therapy is applied in approximately 50% of all cancer treatments [14]. To eliminate the tumor
without damaging organs in the vicinity, optimized treatment plans are determined. This requires the
calculation of three-dimensional dose distributions in a heterogeneous volume with a spatial resolution of
2-3mm [219]. Current planning techniques use multiple beams with optimized directions and energies to
achieve the best possible dose distribution. Each dose calculation however requires the discretization of
the six-dimensional phase space of the linear Boltzmann transport equation describing complex particle
dynamics. Despite the complexity of the problem, dose calculation errors of less than 2% are clinically
recommended [168] and computation times cannot exceed a few minutes [219]. Additionally, the treat-
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ment reality often differs from the computed plan due to various uncertainties, for example in patient
positioning, the acquired CT image or the delineation of tumor and organs at risk [e.g. 217, 156, 132, 133].
Therefore, it is essential to include uncertainties in the planning process to determine a robust treatment
plan. This entails a realistic mathematical model of uncertainties, quantification of their effect on the
dose distribution using appropriate propagation methods as well as a robust or probabilistic optimization
of treatment parameters to account for these effects.
Fast and accurate calculations of the dose distribution including predictions of uncertainties in the com-
puted dose are thus crucial for the determination of robust treatment plans in radiation therapy. Monte
Carlo methods are often used to solve transport problems, especially for applications that require high
accuracy [194, 219]. In these cases, common non-intrusive uncertainty propagation strategies that involve
repeated simulations of the problem at different points in the parameter space quickly become infeasible
due to their long run-times [225, 219, 11]. Quicker deterministic dose calculation methods allow for better
incorporation of uncertainties, but often use strong simplifications or admit non-physical solutions and
therefore cannot provide the required accuracy [225, 11].

This work is concerned with finding efficient mathematical solutions for three aspects of (robust) radiation
therapy planning: 1. Efficient particle transport and dose calculations, 2. uncertainty modeling and
propagation for radiation therapy, and 3. robust optimization of the treatment set-up.

Outline

The thesis is accordingly structured into three main parts: The first concerned with particle transport
and dose calculations (part II), the second discussing uncertainty modeling and propagation (part III)
and the third touching on robust treatment plan optimization (part IV). Each part starts by discussing
mathematical modeling and design decisions necessary to translate the physical problem into a form
that can be tackled using mathematical methods. Subsequently, we discuss established as well as novel
numerical methods and simulations to solve the resulting problem. Lastly, the results of realistic nu-
merical experiments for an application in radiation therapy are analyzed and compared to conventional
approaches.
Contrary to this structure, modeling and simulation are usually not consecutive steps. They are in fact
part of a modeling cycle. In this cycle, the way real-world phenomena are represented mathematically
influences the applicable methods available to solve the resulting problem. Vice versa also the available
methodology dictates how these models are chosen. For example, a probabilistic representation of uncer-
tainties in terms of a multivariate normal distribution might be convenient when aiming at an application
of the efficient uncertainty propagation methods introduced in chapter 13 and chapter 14. On the other
hand, the choice of viable propagation methods can be limited when modeling uncertainties in terms
of a discontinuous function which is difficult to sample, even if it is a good fit for the observed data.
Here we have opted for the chronological order in which the steps would be relevant in a robust planning
process.

After an introduction to radiotherapy planning in part I, part II of this thesis is concerned with the
problem of dose calculations, which require the solution of a particle transport problem. We initially derive
a physical model in chapter 4: The linear Boltzmann transport equation describes the behavior of different



particle types used for irradiation within heterogeneous materials. A prerequisite is the knowledge of
particle and material-dependent cross sections, which describe the likelihood of scattering, absorption
and energy loss. We discuss the common continuous slowing down approximation in section 4.2, which
decouples the angular deflection of particles from energy loss. Further, different models of physical
interactions are introduced in sections 4.3 to 4.5.
Computational methods for the solution of the resulting equation can be grouped into deterministic and
stochastic approaches. We discuss the most common approaches in chapter 5. In chapter 6, we introduce
the novel software framework KiT-RT for efficient dose calculations using classic deterministic methods
such as the SN , PN orMN method for angular discretizations. In chapter 7, we then propose to tackle the
challenges arising from high-dimensional phase spaces in radiation therapy applications by applying the
dynamical low-rank approximation (DLRA), which evolves the solution on a low-rank manifold in time.
To facilitate the use of boundary conditions and reduce the overall rank, the radiation transport equation
is further split into collided and uncollided particles through a collision source method. Uncollided
particles are then described by a directed quadrature set guaranteeing low computational costs, whereas
collided particles are represented by a low-rank solution. All discussed methods are finally compared
with respect to memory consumption, run-time and accuracy in chapter 8.

In part III, we add uncertainties to the transport problem. Again we start by discussing the mathematical
modeling of uncertainties in radiation therapy (chapter 11). Typically, uncertainties are assumed to follow
a Gaussian distribution and be invariant over time as well as for different beam parameters. More complex
models are difficult to incorporate in standard uncertainty propagation and optimization approaches due
to their high dimensionality. We introduce novel approximations for time-dependent and data-based
uncertainty modeling, which are based on a multivariate Gaussian phase space distribution.
We then discuss common uncertainty propagation strategies in chapter 12 and propose different novel
approaches to handle more complex uncertainty models in chapters 13 to 15. Specifically, we propose
two efficient uncertainty propagation strategies: One aimed at Monte Carlo dose calculations and one
for deterministic solutions of the transport equation. In chapter 14, we develop an importance sampling-
based approach to speed up non-intrusive uncertainty quantification in Monte Carlo dose calculations.
The main idea is to exploit the stochastic view of particle transport, where each phase space parameter
follows a physical probability distribution. Uncertainties in the phase space parameters can then be viewed
as a mere change in their probability distributions. For uncertainty propagation with deterministic dose
calculation methods, we again shift to a numeric point of view. A tensor DLRA can be used to directly
include (discretized) uncertain parameters. In chapter 15 we derive the time evolution equations for
tensor DLRA applied to the continuous slowing down equation and show results for a time-dependent
uncertainty in the tissue density.

Lastly, part IV is concerned with robust treatment plan optimization. We first discuss the design of the
optimization problem in chapter 17. The objective function and constraints can be used to model the
deviation of the computed dose from a prescribed treatment plan. Further, we can incorporate measures
of robustness, e.g. by considering different error scenarios or penalizing a high variance in the dose. This
part of the thesis thus consolidates the previous work on dose calculations and uncertainty propagation.
We demonstrate how to efficiently include the approach from chapter 14 in two given robust optimization
strategies.



Novelty and credit statement

This work presents a collection of novel research conducted with different coauthors put into the context
of previous work. This section serves to clarify which parts of this thesis describe new research and
highlight my own as well as my coauthors’ contributions to this work.

Chapter 6 introduces a novel code framework for deterministic transport solvers I developed together with
Jonas Kusch, Steffen Schotthöfer, Jannick Wolters and Tianbai Xiao [112]. Here, the basic code structure
was developed jointly and I worked on the implementation and tuning of the continuous slowing down
solvers and test cases aimed at a radiation therapy application. My coauthors on the other hand focused
on the implementation of classic and novel transport solvers for the Boltzmann transport equation in
non-radiation therapy applications (where the dose does not have to be computed).

The majority of chapter 7 is based on joint work I conducted with Jonas Kusch published in [113, 114].
Jonas Kusch proposed the idea of an application of the dynamical low-rank approximation to radiation
therapy using the CSD equations. After jointly deriving the time evolution scheme, I implemented the
initial electron CSD DLRA solver using the first collision source method and worked on designing initial
conditions to correctly model the beam structure in radiation therapy. I later extended the method to
solve the proton transport equation in addition to that for electrons. My coauthor was responsible for
the stability proofs, as well as the extension to 3D and higher order numerical schemes. Advice on the
physical models and data bases used in proton therapy was given by Niklas Wahl and Danny Lathouwers.
The implementation of the recent 3D and proton extensions is openly available on GitHub but has not
been published elsewhere.

The numerical test cases for the comparisons of all novel and classic methods in chapter 8 were designed
and implemented by myself.

In chapter 11, the simplified model for range uncertainties is based on joint work I conducted with Niklas
Wahl, Lucas Burigo, Martin Frank and Oliver Jäkel [203], published in Physics in Medicine and Biology
and presented at PTCOG [205]. Here, Niklas Wahl pointed out the connection between density, particle
range and energy and I developed as well as implemented the presented mathematical model. Further, I
developed the multivariate models for autocorrelated time-dependent errors described in section 11.4.1,
which are published in [206] together with the same coauthors, who were however not involved in this
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part of the work. I presented an application of the multivariate Gaussian framework for time-dependent
uncertainties to patient data as a proof of concept in [204] and further supervised a master’s thesis
conducted by Jean Radig [181] on this topic. Specifically, the implementation in the APM toolbox,
validation against Monte Carlo, as well as the hyperparameter tuning for kernels based on patient data,
were subjects of the master’s thesis.

Chapter 14 is based on [203, 206], which I worked on together with Niklas Wahl, Lucas Burigo, Martin
Frank and Oliver Jäkel. I developed the idea of reusing information accumulated during regular sim-
ulations for uncertainty quantification in a discussion together with Niklas Wahl. I then derived the
mathematical framework based on importance sampling, including the required probability distributions,
as well as conducted the validation for different test cases and investigation of mathematical properties
such as bias, bounds and convergence. The implementation within the MC framework TOPAS was sup-
ported by Lucas Burigo and credit for advice on phase space distributions in radiation therapy goes to
Niklas Wahl.

Chapter 15 describes unpublished work together with Jonas Kusch. This is an extension of our work
described in chapter 7 to the tensor DLRA which enables us to directly include uncertainties.

Part IV contains novel and unpublished work on the use of chapter 14 for efficient robust optimization for
MC dose calculations. Here, I worked independently on the transfer of the methods from chapter 14 to
a worst-case and expected value optimization context as well as the derivation of the variance influence
computation algorithm and numerical test cases.
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Part I

Introduction to radiotherapy
planning

In the following chapters, we give a brief overview of the process of radiotherapy planning
and introduce some common domain-specific quality criteria. We will touch on the steps and
mathematical problems involved in treatment planning, which will be the topic of or motivate
the following chapters. Note, that this is not a comprehensive overview and further details
will be discussed when deriving models or methods in the subsequent chapters. This should
mainly serve as context and background knowledge for readers not familiar with radiation
therapy.
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CHAPTER 1

From initial diagnosis to irradiation

Once a patient has been diagnosed with cancer, the data required for treatment planning is acquired: a
CT scan is taken, from which the position and extent of volumes of interest (VOI) such as the tumor and
surrounding organs at risk (OAR) are determined through manual or automatic image delineation [97].
Further tissue/material parameters required for the dose calculations, such as the tissue density ρ(r),
electron density, stopping power, or scattering cross sections, are estimated at each point r ∈ X ⊂ R3

of the bounded region X containing the relevant patient anatomy. Typically, this is done based on the
grayscale values of the CT scan [for details see e.g. 188, 189]. These conversions constitute one of the
main sources of uncertainty since in addition to calibration and measurement errors, CT scans cannot
capture information on all physical effects governing dose deposition [188].

Based on this data, a doctor prescribes a treatment plan and corresponding target dose distribution
D∗(r). The plan details the amount of dose the tumor should receive as well as other requirements such
as the maximum dose limits for certain organs. In treatment planning, all specifics of the treatment set-up
are then defined in order to best fulfill this prescription. This includes the choice of treatment modality
(i.e. particle type), beam geometry, number of sittings (so-called fractions) and also the computation
of the corresponding dose distributions. Figure 1.1 shows an overview of the complete process. In the
following, we will focus mostly on treatment planning and dose calculation. The other steps will however
be of interest as the sources for uncertainties in part III.

Diagnosis
Planning CT

/Imaging
Segmentation

Dose

calculation

Treatment

planning
Irradiation Follow-up

Figure 1.1: Overview of radiation therapy process from diagnosis to irradiation.
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CHAPTER 2

Intensity-modulated radiation therapy

This thesis is written within the context of a variant of radiation therapy called intensity-modulated radi-
ation therapy (IMRT). IMRT uses numerous small charged particle or photon beams, called beamlets or
pencil beams, with different shapes and intensities which are superimposed to achieve better coverage of
the tumor and organ sparing [e.g. 229, 53, 159]. Here, beamlet is the smallest instance with a designated
source position, energy and angle of irradiation. An ensemble of beamlets coming from the same geomet-
rical set-up of nozzle and patient is then referred to as beam, a group of beamlets with the same lateral
positioning within a beam as ray and a group of beamlets with the same energy within a beam as energy
level. The beamlets are irradiated according to a temporal pattern dictated by machine requirements.
For example, all beamlets of the same energy level are applied in sequence to minimize the waiting times
during ramp-ups to higher energy levels. Note, that the term intensity-modulated particle therapy (IMPT)
is also frequently used to denote this concept in particle-based radiation therapy [159].

Figure 2.1 shows a schematic illustration of intensity-modulated radiation therapy and fig. 2.2 illustrates
how superimposing beamlets can be used to tailor the dose distribution to different target shapes.

2.1 Treatment plan optimization

A treatment plan in intensity-modulated particle therapy is given by a set of beamlets b = 1, ..., B, each
with a defined intensity wb, energy Eb, source position rb and angle of irradiation Ωb. The combined
dose at position r can be computed from the doses Db(r; rb,Ωb, Eb) delivered by each individual beamlet
as [e.g. 236]
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Target volume
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ray
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Figure 2.1: Illustration of IMRT set-up with three irradiation angles (beams) à several beamlets with
different energies which are layered to spare the organ at risk partly encircled by the tumor.

D(w, r) =
B∑
b=1

wb ·Db(r; rb,Ωb, Eb). (2.1)

For simplicity, we will omit the dependency of Db(r; rb,Ωb, Eb) on the beamlet position, angle and energy
and write Db(r) in the following. The goal when optimizing a plan is to determine intensities wb for a
given set of viable beamlets such that the best possible conformity to a prescribed dose is achieved.
Usually, this is modeled using an objective function and constraints which penalize deviation from the
prescribed dose in the tumor volume and prohibit overdosing in organs at risk within the vicinity. A
variety of approaches exists to implement these concepts in the design of an optimization problem. More
details on this can be found in [e.g. 236, 53, 11] and two options for robust optimization will be discussed
in part IV. For an examplary choice of objective and constraints [see 11], the optimization problem could
take the following form:

w∗ = arg min
w≥0

F (D(w, r)) (2.2)

where e.g. F (D(w, r)) =
Nt∑
t=1

FtD(w, r) +
Nr∑
ro=1

FroD(w, r)

Ft(D(w, r)) =
∑

i∈Tumor
stl1D(w,ri)≤Dmint

[D(w, ri)−Dmin
t ]2 + stu1D(w,ri)≥Dmaxt

[D(w, ri)−Dmax
t ]2

Fro(D(w, r)) =
∑

i∈Risk organ
srou 1D(w,ri)≥Dmaxro

[D(w, ri)−Dmax
ro ]2

Here Nt, Nr are the number of cells in the discretizations of the tumor and risk organs respectively,
Dmin
t is the minimum dose requirement in the tumor and Dmax

ro/t is the maximum dose limit in tumor
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Figure 2.2: Layered proton beams from one ray with different energies (135, 138, 142, 145, 148, 151 and
155 MeV) and intensity modulations/beamlet weights. Left: Equal weights lead to a wedge-shaped dose
distribution. Right: Optimized weights lead to a plateau shape.

and risk organs. The penalties stl , stu, srou can be used to steer the importance of the different constraint
violations.

Depending on the design of the optimization problem, many different optimization algorithms can be used
and have been used in the context of radiation therapy [53]. In the presence of non-linear constraints,
penalty or Lagrangian methods are typically used to obtain an unconstrained problem [e.g. 157]. Varia-
tions of Newton’s method have been used for quadratic objective functions [236] and simulated annealing
or genetic algorithms are common in IMRT [53]. In part IV, we will employ an interior point method as
implemented in the open-source treatment planning software matRad [224, 234]. Here, an unconstrained
problem is obtained by shifting inequality constraints to the objective function using logarithmic bar-
rier functions. The unconstrained problem can then be solved using a Quasi-Newton algorithm and the
L-BFGS approximation. More information on the optimization methods can be found in [53, 157].

Regardless of the exact optimization algorithm, the optimization of a dose-based objective function in-
volves numerous iterations and updates of the beamlet weights/intensities [236]. In each of the iterations,
the dose for updated intensities has to be computed, i.e., the linear Boltzmann transport equation (LBE)
has to be solved. This process is illustrated in the left column of fig. 2.3. While the optimization can be
sped up by precomputing the beamlet doses Db, this also requires additional storage and pre-processing
time.

Figure 2.3 also shows the additional steps necessary to include uncertainties in this process. From addi-
tional data on measurable uncertainties, over uncertainty models, propagation through the dose calcu-
lation to an incorporation into the treatment plan optimization, uncertainty quantification touches each
step in the treatment planning process. In part III and part IV, each of these steps will be addressed,
however, in the following part of this thesis we focus on the problem which is at the center and the com-
putational bottleneck of the whole process: dose computation, i.e. the solution of the linear Boltzmann
transport equation.
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Figure 2.3: Overview of the treatment planning process with and without uncertainties, as well as which
step is discussed where within this thesis.
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CHAPTER 3

Quality criteria

In the following, we briefly introduce the quality criteria that will be used to evaluate the outcome of
dose calculations as well as treatment plan optimizations.

3.1 Dose-volume histograms

Dose-volume histograms (DVH) summarize the amount of delivered dose associated with a treatment plan
for each volume of interest (VOI) of a patient [e.g. 49]. For each VOI, the dose values are plotted against
the fraction of the volume receiving at least this dose (see fig. 3.1 for an example). DVHs are frequently
used to compare different treatment plans with respect to the amount of dose delivered to organs at risk
as well as the uniformity of tumor coverage. Here, we will make use of this tool in part IV to compare
conventional and robust treatment plans determined using different dose calculation and uncertainty
propagation methods. However, the majority of positional information about dose distributions is lost
by aggregating the dose for each VOI. Therefore, DVHs are typically not used as a sole evaluation
criterion.

3.2 Integrated depth-dose curves

The so-called integrated depth dose (IDD) is used to evaluate the dose deposition along the depth di-
mension. Note, that here the coordinate system is defined in a way such that the z-axis is pointing in the
beam direction. Depth-dose values are obtained by integrating the three-dimensional dose distribution
in space along the lateral dimensions, i.e., dimensions orthogonal to the beam direction.

IDD(rz) =
∫
R

∫
R
D(rx, ry, rz)drxdry. (3.1)
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Figure 3.1: Example of a dose volume histogram for an optimized treatment plan of a liver patient. The
clinical target volume (CTV) and planning target volume (PTV) describe different margins around the
tumor. Here, nearly 100% of the volume receives at least 45 Gy. The remaining structures are organs at
risk, where the majority of the volumes receive less than 2 Gy.

While the IDD is well-equipped to validate certain particle-specific characteristics such as the Bragg peak
for protons or the particle range, it also averages out noise or oscillations and disposes of all information
about lateral distributions.

3.3 Gamma index

While the previous criteria have strongly compressed the available information, the gamma index analysis
aims at comparing two complete 3D dose matrices. To compare dosesD andDc, one first computes

γ(r) = min
rc

√
|rc − r|2

∆r̃2 + |Dc(rc)−D(r)|2
∆D̃2 , (3.2)

where r and D(r) are a location and the dose at that location respectively, rc and Dc(rc) are locations
and dose in the cube to be compared and ∆r̃ and ∆D̃ are the user-defined distance and dose tolerances
[135]. The overall agreement is then measured according to the γ-passrate over all points r [135]. For
each point

γ(r) ≤ 1, r passes

γ(r) > 1, r fails
. (3.3)

The criterion is clinically used and implements the idea of agreement within a predefined neighborhood
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and tolerance around a single coordinate or data point. In contrast to criteria such as the difference
or (root) mean square error, which compare the values at an exact location, this does not take minor
fluctuations in the spatial dose distribution into account. Since Monte Carlo simulations are often used
as a reference when validating novel methods, the reference itself can also be subject to statistical errors.
Thus, the dose distribution is not necessarily incorrect if it deviates slightly from the reference. However,
the γ-criterion is not a metric in the mathematical sense if the tolerances are larger than zero. Two
dose cubes could have 100% agreement according to the γ-passrate without actually being the same.
Therefore the γ-passrates always have to be interpreted together with the applied tolerances. In the
following, we choose values frequently used in literature: a distance tolerance of 2 mm− 3 mm and a dose
tolerance of 2 % − 3 %. Furthermore, the γ-passrate can depend on the grid resolution as well as the
implementation [89]. We use the matRad implementation [234], which reduces the dependency on the
resolution by interpolating the comparison dose cube and comparing it at a higher resolution.

3.4 Difference maps

A far simpler criterion, which we will use in chapter 14 is the absolute difference between dose values in
each voxel of the discretized matrix. For the difference maps, we compute

diffi(Dref
i , Dest

i ) = Dref
i −Dest

i , (3.4)

for each voxel i in the reference result Dref and estimate Dest.
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Part II

Particle transport and dose
calculations

Dose calculations in radiation therapy require the solution of a particle transport problem.
Particle dynamics and interactions are described by the linear Boltzmann transport equation.
In the following, we discuss physical models to compute scattering cross sections and the
continuous slowing down approximation for charged particles. Further, common determinis-
tic and stochastic solution methods are introduced and compared. We present the software
framework (KiT-RT) which consolidates efficient deterministic solvers for radiation transport.
Lastly, the dynamical low-rank approximation is introduced as a novel method to reduce com-
putational costs and memory associated with fine numerical discretizations in deterministic
dose calculations.
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CHAPTER 4

Physical modeling

4.1 The Boltzmann transport equation

We are interested in charged particle transport for an application in radiation therapy. The behavior of
particles can be described by the Boltzmann transport equation. Here we focus on protons and electrons
because of their dose deposition properties, which can be exploited to explicitly target tumors at certain
depths. This however also makes protons especially sensitive to uncertainties due to the sharp peak in
their depth-dose curve [132, 130]. Electrons are further of interest as the most common type of particle
considered in mathematical research on transport equations.

In radiation therapy, we are mainly interested in the spatial distribution of deposited dose in the patient
after the irradiation. Since the speed of particles is high in relation to the irradiation time and size of
the irradiated region, all processes can be viewed as time-independent [e.g. 94]. For the sake of brevity,
we thus consider the steady state transport equation in the following.

Let X be a bounded region containing the patient anatomy. The linear Boltzmann equation reads

Ω · ∇ψ(r,Ω, E) + Σt(r, E)ψ(r,Ω, E) = QSca(r,Ω, E) + S(r,Ω, E) , (4.1)

ψ(r,Ω, E) = ψBC(r,Ω, E) for r ∈ ∂X , (4.2)

where QSca is given as

QSca(r,Ω, E) =
∫ ∞

0

∫
Ω′∈S2

Σs(r,Ω ·Ω′, E′ → E)ψ(r,Ω′, E′)dΩ′dE′ . (4.3)
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The phase space of the particle density ψ consists of energy E ∈ [0, Emax] ⊂ R+, space r ∈ X ⊂ R3 and
direction of flight Ω ∈ S2. Σt and Σs are material cross sections, which describe scattering and absorption
interactions of particles with tissue. In particular, Σs(r,Ω ·Ω′, E′ → E) is the differential cross section,
which describes the probability of scattering from direction Ω′ and energy E′ to direction Ω and energy
E after a collision. Note that Ω ·Ω′ = Ω′ ·Ω = cos(θ) := µ, where θ is the deflection angle, i.e., change
in direction caused by the collision. Σt(r, E) on the other hand describes the total cross section, which
can be determined by

Σt(r, E) = 2π
∫ ∞

0

∫ 1

−1
Σs(r, µ, E′ → E)dµdE′ + Σa(r, E), (4.4)

where Σa(r, E) is the absorption coefficient.

The terms in eq. (4.1) can be interpreted as follows: The quantity we solve for is the angular flux or
particle density ψ(r,Ω, E), which represents the density of particles moving in direction Ω with kinetic
energy E and at spatial position r. The left-hand side (LHS) then describes advection plus absorption and
out-scattering of particles. The first LHS term is the advection term, which describes free flight of particles
through the domain. The second LHS term consolidates the total removal of particles by out-scattering
to a different energy or direction and absorption. The right-hand side (RHS) then describes particles
entering the state (r,Ω, E) through a source S(r,Ω, E) or in-scattering described by the Boltzmann
scatter operator QSca. Here, all particles scattered from different energies E′ and different directions Ω′

to the currently considered energy and direction E and Ω are considered. Further, ψBC(r,Ω, E) defines
the boundary condition which will later be used to model particles entering the domain, e.g., through a
Gaussian beam source.

Next, we will consider the common continuous slowing down (CSD) approximation to the linear Boltz-
mann transport equation. This approximation is convenient since it decouples angular deflection and
energy loss, which simplifies the dose computation and scattering terms. Further, we will show that
the energy can be treated as a pseudo-time, such that methods for time-dependent partial differential
equations can be applied.

4.2 Continuous slowing down approximation

When considering charged particles, i.e., electrons or protons, the interactions are dominated by Coulomb’s
law. The energy loss of particles is stochastic and described accurately by Bethe-Bloch’s formula [18,
24, 152]. Macroscopically, energy loss may however be considered to be continuous as well as behave
proportionally to the stopping power [152]. The stopping power then represents the expected energy loss.
This yields the so-called continuous slowing down (CSD) approximation [120] to the linear Boltzmann
equation:

− ∂E (L(r, E)ψ(r,Ω, E)) + Ω · ∇rψ(r,Ω, E) + Σt(r, E)ψ(r,Ω, E) (4.5a)

=
∫
S2

Σs(r,Ω ·Ω′, E)ψ(r,Ω′, E) dΩ′ + S(r,Ω, E) . (4.5b)

The quantity of interest in radiation therapy is the dose absorbed by the tissue, which can be now
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determined from

D(r) = 1
ρ(r)

∫ ∞
0

∫
S2
L(r, E)ψ(r,Ω, E) dΩdE . (4.6)

Here, we use L : R+×R3 → R+ to denote the stopping power, which describes the rate at which particles
lose energy. The tissue density of the patient is ρ : X → R+. The stopping power L as well as material
cross-sections Σt and Σs are given from physical databases or approximation formulas and discussed
further in sections 4.3 to 4.5.

Since particles are assumed to lose energy continuously, the energy can be interpreted as a pseudo-time
t. To simplify the evaluation of material properties, we further follow the common assumption that all
materials are water-equivalent and differ only in density [e.g. 235, 161, 107], i.e.,

L(r, E) = LH2O(E)ρ(r),

Σt(r, E) = ΣH2O
t (E)ρ(r),

Σs(r,Ω ·Ω′, E) = ΣH2O
s (Ω ·Ω′, E)ρ(r) ,

(4.7)

where we leave out the superscript H2O in the following. For a given maximal energy Emax let us define
the transformed energy as

Ẽ(E) :=
∫ Emax

E

1
L(E′) dE′ (4.8)

and the transformed particle density as

ψ̃(r,Ω, Ẽ) := L(E)ρ(r)ψ(r,Ω, E(Ẽ)) . (4.9)

Then, multiplying eq. (4.5) with L(E) and plugging in the defined transformation gives

∂
Ẽ
ψ̃(r,Ω, Ẽ) + Ω · ∇r

ψ̃(r,Ω, Ẽ)
ρ(r) + Σ̃t(Ẽ)ψ̃(r,Ω, Ẽ) =

∫
S2

Σ̃s(Ω ·Ω′, Ẽ)ψ̃(r,Ω′, Ẽ) dΩ′ + S(r,Ω, Ẽ) ,

(4.10)
where we define Σ̃t(Ẽ) := Σt(E(Ẽ)) and Σ̃s(Ẽ,Ω ·Ω′) := Σs(E(Ẽ),Ω ·Ω′). Dropping the tilde notation
and treating Ẽ as a pseudo-time t gives a slightly modified version of the classical linear Boltzmann
equation

∂tψ(t, r,Ω)+Ω · ∇r
ψ(t, r,Ω)
ρ(r) + Σt(t)ψ(t, r,Ω) =

∫
S2

Σs(t,Ω ·Ω′)ψ(t, r,Ω′) dΩ′ + S(t, r,Ω)

ψ(t = 0, r,Ω) = L(Emax)ρ(r)ψ(r,Ω, Emax) ,
(4.11)

which can be treated numerically with classical closure methods and space-time discretizations.

Both the linear Boltzmann transport equation and its continuous slowing down approximation depend
on material as well as particle-specific parameters. When considering different treatment modalities,
i.e., types of particles used for irradiation, this affects the interactions of particles with the background
medium. Besides the accurate computation of stopping power L and scattering/absorption cross sections
Σs,Σt, the production of secondary particles in some cases adds to the complexity of particle dynamics.
In the following sections, we will give an overview of the relevant physical interactions for electron and
proton transport. For the sake of completeness, a brief insight into photon therapy will also be included.
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This will however not be considered further within this thesis. We further give details on how to accurately
model the charged particle interactions in the context of a system of transport equations which can be
tackled with numerical solvers as described later in chapter 5.

Remark 4.1. The transport equations as stated here are formulated in terms of the total particle energy,
made up of the kinetic energy as well as the particle’s rest energy (caused by its mass): Etot = Ekin+Erest.
This is often neglected in the case of electrons, which have a comparably low rest energy of Ee−rest ≈
0.511 MeV. For the much heavier protons, the rest energy of Eprest ≈ 938.272 MeV should however
absolutely not be neglected.

Note that physical databases often state cross section or stopping power in terms of the kinetic particle
energy. Thus, it may be necessary to also transfer the tabulated values to the equivalent total energy using
the simple formula above.

4.3 Electron transport

While electron therapy is not as widespread as photon or proton therapy, electrons within a range of
6 to 22 MeV are frequently applied to specific types of cancers, such as breast cancer, located near the
surface of the skin [80]. This is due to their dose deposition properties which are illustrated in fig. 4.1.
Most of the dose is deposited shortly after the beam entry, rendering them unsuitable for deeper seated
tumors.
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Figure 4.1: Depth dose curve, integrated along lateral dimensions, of an electron beam with 5(dashed),
10 (dotted) and 20 (solid) MeV in water. Data generated using TOPAS MC [175].

As charged particles, electrons directly deposit the majority of the ionizing radiation, i.e. dose, into the
background medium. For this reason, it suffices to consider the transport equation for these primary
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particles and neglect the production of secondary particles during physical interactions. Further, we
assume that projectile electrons do not interact with each other, only with the background medium.
Under these assumptions, we can distinguish the following types of physical interactions.

4.3.1 Elastic scattering

Elastic scattering describes interactions that merely change the direction of flight of the electron, without
causing the system to lose energy. This mainly includes interactions of electrons with the atomic shell
of molecules in the background material, which cause small deflections but virtually no energy loss.
Electrons of higher energy can also penetrate the outer shell of an atom and scatter elastically from the
nucleus. Cross sections for both of these elastic scattering events in common materials (such as water)
can be found in different databases, e.g. the ICRU 77 [55] or NIST database [91]. Note, that elastic
scattering is represented by Σs(r,Ω ·Ω′, E) on the right-hand side of eq. (4.5) and also included in the
total cross section Σt, which can be obtained by integrating the differential cross sections over all angles
(and energies if they are differential in energy). While a transfer of energy between particles is also in
principle possible, the amount of transferred energy is negligible for the types of particles considered in
this thesis [160, 152].

4.3.2 Inelastic scattering

Inelastic scattering events are responsible for the majority of a projectile particle’s energy loss [160]. They
are categorized into soft and hard collisions according to the amount of energy loss and deflection.

Soft e−-e− collisions

In so-called soft collisions, electrons interact with other electrons in the outer shell, causing excitation
or ionization of the target particle. Due to the low binding energies, there is however very little energy
transfer and angular deflection.

Hard e−-e− collision

During hard collisions, electrons not only transfer large amounts of energy to the target electron, but this
electron is also ejected with a larger scattering angle.

In Monte Carlo algorithms, both types of interactions are frequently modeled jointly using condensed
history methods [118, 119, 98], in which the cumulative effects of several soft collisions are approximated
by a single hard collision after a certain interaction-free advection step.

In terms of eq. (4.5), energy loss and angular deflections are considered separately in the collision stopping
power L(r, E) and inelastic scattering cross sections, respectively. Values for the collision stopping power
in different materials can be found in [17] and are further discussed in section 4.3.4. Deflection due to
inelastic scattering does not play a significant role in the clinically relevant energy ranges [160] and is
therefore often neglected. For this reason, it will not be further discussed here, the interested reader may
however find detailed information on the derivation and formulas governing these cross sections in [e.g.
185, 160, 187].



4.4. Proton transport 25

4.3.3 Bremsstrahlung

When electrons enter the electric field of a nucleus, they are accelerated and produce radiation called
bremsstrahlung. The energy lost during this process is taken into account through the radiative component
of the total electron stopping power. These quantities can be retrieved using the EStar interface of the
NIST database [17].

4.3.4 Stopping power

Stopping power describes the material dependent slowing down of particles due to energy loss. For
electrons, this energy loss is caused mainly by inelastic collisions (section 4.3.2) as well as bremsstrahlung
(section 4.3.3). The contributions of these effects to the total stopping power are illustrated in fig. 4.2.
Here, the total stopping power is determined as the sum of the collision and radiative stopping power and
can be retrieved from [17]. Clearly, the collision stopping power is the dominating force in the lower to
medium energy range typically used for irradiation, while the radiative stopping power only has a major
impact for large energies.
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Figure 4.2: Total, radiative and collision stopping power of electrons in water. Data retrieved from EStar
(based on NIST database) [17].

4.4 Proton transport

Proton therapy can offer large potential advantages over electron or photon therapy due to the character-
istic way protons deposit dose along the tissue depth. Figure 4.3 shows the depth dose curves of proton
beams in water. The position of the so-called Bragg peak visible in this graph is energy-dependent and
can be exploited to achieve a high dose within the tumor while sparing preceding and surrounding tissue
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or organs. In clinical application, energies of 70 to 250 MeV [148] are applied, which corresponds to a
range, i.e., peak position, of 3 to 40cm depth in water.
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Figure 4.3: Depth dose curve, integrated along lateral dimensions, of a proton beam with 80 (dashed),
100 (dotted) and 120 (solid) MeV in water. Data generated using TOPAS MC [175].

The characteristic shape of the proton depth dose curve can be attributed to the interplay of different
physical interactions. The most relevant of these interactions for a therapeutic energy range and how to
obtain the corresponding cross sections will be discussed in the following sections.

4.4.1 Elastic scattering

(Multiple) Coulomb scattering

Similar to the electron, a significant part of proton interactions are governed by Coulomb forces. Recoiled
by the positive charge of the nucleus, incident protons deviate from their previous direction of flight. This
is referred to as Coulomb scattering. A single such scattering event can be described by the Rutherford
formula [184].

σs =
(

1
4πε0

ZtZpe
2

4E0

)2

· 1
sin4(ϑ2 )

, (4.12)

where Zt, Zp are the atomic numbers of the target and projectile, respectively, ε0 is the electric field
constant, E0 is the initial projectile energy (in Joule), e is the elementary electric charge and ϑ the
deflection angle.

Remark 4.2. The Rutherford cross sections determined by eq. (4.12) are stated in terms of a center-of-
mass frame of reference, i.e. the deflection angles are defined by the relative difference between the vectors
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connecting the two involved particles (projectile and target) before and after the collision. We are however
interested in knowing the deflection angle of the projectile particle in relation to its previous direction of
flight defined in a static laboratory coordinate system. While the two are equivalent if the target particle
remains stationary, this is not generally true in practice. According to [67], the angle ϑ in laboratory
frame can be determined from the angle θ in a center of mass frame using the following relation

cos(ϑ) =
cos(θ) + mp

mt√
1 + 2mpmt cos(θ) +

(
mp
mt

)2
,

where mp is the projectile (here proton) mass and mt is the target mass. [215, 160] further demonstrate
how the cross section can be directly transformed from one frame of reference to another.

With remark 4.2, the Rutherford cross section in laboratory frame takes the form:

σs,lab =

(
1 + 2ApAt cos(θ) +

(
Ap
At

)2
) 3

2

1 + cos(θ)ApAt
·
(

1
4πε0

ZtZpe
2

4E0

)2

· 1
sin4( θ2 )

, (4.13)

where Ap, At are the mass numbers of projectile and target particles and θ is the deflection angle in
center of mass frame.

Numerous such Coulomb interactions with small angular deflections occur along the trajectory of a par-
ticle. Therefore, often the aggregated deflection after a predefined path length is considered. For a large
enough number of individual collisions, the so-called multiple Coulomb scattering angular distribution
can be assumed to be Gaussian at small angles [140]. This is captured accurately within Molière’s theory
[149], but can also be modeled sufficiently well for the purpose of a Monte Carlo transport solver using
simpler approximations such as (variations of) the Highland formula [77, 140].

Since most models for multiple Coulomb scattering are designed for Monte Carlo solvers, they often
depend on the path length or traversed thickness, which is not explicitly defined within deterministic
Boltzmann solvers. Molière’s theory can also be used to derive differential scattering cross sections [see
192, 57, 27, 90]. However, applications within different radiative transport solvers [e.g. 154, 161] suggest,
that within the significant parameter ranges, Rutherford’s formula is sufficient to capture the relevant
effects of elastic proton scattering due to Coulomb forces.

Nuclear scattering

In the case of high-energy protons, the incident particles can penetrate the outer atomic shell and scatter
directly from the nucleus. This is referred to as nuclear elastic scattering. Cross sections for these
interactions are available for example in the ICRU Report 63 [13]. Further, [58] introduces formulas
derived from an analytical fit to the SAID data [8] for elastic nuclear proton scattering in oxygen and
hydrogen. Nuclear scattering is however often neglected since it merely acts like a correction to the
electromagnetic interactions [58].

Remark 4.3. Note, that the discussed formulas for nuclear and Coulomb scattering typically compute
microscopic cross sections σ, i.e. represent the interaction probability with a single particle of the back-
ground material. In water, the macroscopic cross section Σ for a specific target material T (hydrogen or
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oxygen) with density ρT can be determined using the following relation

Σs(Ω ·Ω′, E) = ρT ·NA
wT
AT

σs(Ω ·Ω′, E),

where NA is the Avogadro constant, wT is the weight proportion of the target in water and AT is the
atomic weight of the target.

4.4.2 Stopping power & inelastic scattering

Inelastic scattering of protons can occur due to interactions with the electrons in the atomic shell or the
nucleus itself and is the predominant cause of energy loss [152]. While bremsstrahlung is also emitted
as a result of the latter interactions, it is negligible for the therapeutic energy ranges used with protons
[215]. The angular deflection is also small and therefore often omitted [160, 154]. The energy loss caused
by inelastic scattering is again modeled using the stopping power, divided into an electronic and a nuclear
component according to the two different types of interactions. Their contributions to the total stopping
power can be observed in fig. 4.4: Nuclear stopping only has a discernible contribution in very low energy
ranges, whereas electronic stopping is responsible for the majority of energy loss. Values for the stopping
power in different materials such as water can be retrieved using PStar, based on the NIST database
[17].
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Figure 4.4: Total, nuclear and electronic stopping power of protons in water. Data retrieved from PStar
(based on NIST database) [17].

4.4.3 Range/Energy straggling

In the continuous slowing down approximation, all particles are assumed to lose energy at the same rate
defined by the stopping power. However, interactions with the material are actually stochastic and thus
the amount of deposited energy through such interactions differs [18, 24, 152].
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For protons, this largely manifests in a varying particle range, which is why the terms range and energy
straggling are used interchangeably. While range or energy straggling can be explicitly included in the
transport equation, the energy can then no longer be treated as a pseudo-time as derived for the CSD
approximation (see section 4.2). This affects the numerical solution methods which can be applied
and significantly increases the computation time [215]. Therefore, cheaper approximations have been
developed [e.g. 25], where the number of particles that have lost all of their energy is assumed to be
normally distributed [19]. The dose D̂(z) with range straggling at depth z is then approximated by
folding the computed dose D1(z) without range straggling with the Gaussian distribution:

D̂(z) =
∫ ∞

0
D1(z̄) · e

−(z−z̄)2

2σ2
z(z̄)

√
2πσz(z̄)

dz̄ (4.14)

It has been shown that the depth-dependent standard deviation σz(z̄) can be approximated well through
a constant value σz(z̄) ≡ σ. In [25] this value is chosen as:

σ ≈ 0.012 ·R0.935
0 ,

where R0 is the particle range, which can be computed from the kinetic energy using the Bragg-Kleemann
rule (see eq. (11.5)). Note that in reality, the energy loss is described by a Landau distribution and is thus
slightly asymmetric [20, 152]. Nevertheless, the approximation has been shown to produce good results
in combination with an analytical pencil beam method [25]. However, inaccuracies have to be expected
especially in heterogeneous materials.

4.5 Photon transport

Photon therapy is the most widespread modality of radiation therapy, mostly due to its early development
and the relatively small space and costs required for building a treatment facility [74, 160]. Here, in
contrast to the previously discussed electrons and protons, the production of secondary particles cannot
be neglected. Secondary electrons are responsible for a majority of dose deposited in the patient. We
therefore have to consider a more complex system of several coupled equations governing the transport
process [74].

The depth dose curve for photons is illustrated in fig. 4.5. The influence of secondary electrons can
mostly be seen in the dose build-up. After the dose maximum, charged particles are in equilibrium and
the fall-off is characterized by exponential photon attenuation [9]. Though dose deposition by photons
lacks the convenient peak exploited for proton therapy, it has a longer range than electrons, making
photons suitable also for deeper seated tumors.

4.5.1 Scattering and production of secondary particles

The main physical interactions relevant for photon therapy are

1. Compton scattering: Here the photon collides with a free electron. Energy is transferred and both
particles are scattered. This effect acts as a source for electrons and is therefore very relevant for
dose deposition.
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Figure 4.5: Depth dose curve, integrated along lateral dimensions, of a photon beam with 5 (dashed), 10
(dotted) and 20 (solid) MeV in water. Data generated using TOPAS MC [175].

2. Elastic Coulomb/Mott scattering: Here an incoming electron is deflected by the nucleus without
losing energy.

3. Inelastic Møller scattering: Incoming electrons interact with outer shell electrons, both are deflected
and energy is transferred from the incoming electron. Thus, this process acts as a further electron
source.

4. Pair production/annhilation: During pair production a photon interacts with the atomic nucleus,
emitting an electron-positron pair. This is only relevant for high-energy photons and never a
dominating effect. Pair annihilation describes the opposite process of an electron-positron pair
creating a photon.

5. Bremsstrahlung: see section 4.3.3, is negligible.

4.5.2 Coupled system of equations

The photon transport equation considering only Compton scattering is given by

Ωγ · ∇ψγ(r,Ωγ , Eγ) =
∫ ∞

0

∫
Ω′

γ∈S2
ΣC,γ(r,Ωγ ·Ω′

γ , E
′
γ → Eγ)ψγ(r,Ω′

γ , E
′
γ)dΩ′

γdE′γ

− ΣtC,γ(r, Eγ)ψγ(r,Ωγ , Eγ) , (4.15)

where ΣC,γ and ΣtC,γ are the differential and total cross sections for Compton scattering of photons, re-
spectively. However, since photons do not deposit energy themselves, but through electrons and positrons
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produced in their interactions with matter, we have to further consider the coupled electron transport
equation

Ωe · ∇ψe(r,Ωe, Ee) =
∫ ∞

0

∫
Ω′

γ∈S2
1/2

ΣC,e(r,Ω′
γ ·Ωe, E

′
γ → Ee)ψe(r,Ω′

γ , E
′
γ)dΩ′

edE′e

+
∫ ∞
Es

∫
Ω′

e∈S2
1/4

ΣM,e(r,Ωe ·Ω′
e, E

′
e → Ee)ψe(r,Ω′

e, E
′
e)dΩ′

edE′e

+
∫ ∞
Es

∫
Ω′

e∈S2
2/4

ΣM,δ(r,Ωe ·Ω′
e, E

′
e → Ee)ψe(r,Ω′

e, E
′
e)dΩ′

edE′e

+
∫

Ω′
e∈S2

ΣMott(r,Ωe ·Ω′
e, Ee)ψe(r,Ω′

e, Ee)dΩ′
e

− ΣtM (r, Ee)ψe(r,Ωe, Ee)− ΣtMott(r, Ee)ψe(r,Ωe, Ee), (4.16)

where ΣC,e and ΣtC,e are the differential and total cross sections for Compton scattering of electrons.
Further, ΣM,e and ΣM,δ are the cross sections for primary and secondary ("delta-rays") electrons for
Møller-scattering and ΣtM is the corresponding total cross section. Lastly, ΣMott (ΣtMott) is the (total)
cross section for elastic Mott-scattering. Further information on how to obtain these cross sections can
be found for example in [45, 74].

Note that here interactions from the previous section which produce electrons appear as in-scattering
sources. If one wanted to also consider pair production and annihilation, this would introduce a third,
coupled positron equation.

Despite the complexity of its governing equations, dose computations for photons are typically less time-
consuming than in the case of protons. This is because the transport of primary photons is computation-
ally inexpensive and secondary electrons deposit dose locally and virtually positionally invariant. This
allows for the use of computationally cheap approximations such as the pencil beam method (section 5.2).
Due to the structure of their dose deposition curve, photon therapy is also less sensitive to uncertainties
compared to proton therapy [132, 130]. This robustness however reduces the necessity for further research
on both better numerical solutions of the transport equation and uncertainty quantification. Further,
due to their lack of charge, the Coulomb force is not as deciding for the behavior of photons and thus the
continuous slowing down approximation does not hold. For these reasons, photons will not be further
discussed in this thesis and we will focus on charged particle transport in the following.
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CHAPTER 5

Background: Numerical solution methods

In this chapter, we will recall the most common numerical solution methods to the previously discussed
transport equations. Due to the widespread and especially interdisciplinary interest in transport problems,
they have been addressed using methods from different fields of mathematics. As discussed in the preface
to this work, we will thus have to switch between a stochastics and numerics perspective depending on
the approach in each section.

The Boltzmann- or grid-based methods are most widely used in the mathematical field of transport theory.
Here, the focus lies on a numerical discretization of all phase space variables in eq. (4.5). The Monte
Carlo method on the other hand focuses on a probabilistic view of particle dynamics, where the properties
of particles at their source follow a probability distribution function and their behaviour over time is a
stochastic process. The pencil beam method uses a macroscopic approximation, also based partly on
probabilistic assumptions combined with knowledge about dose deposition in a reference material. This
point of view offers a more intuitive description of particle behavior. Therefore, the Monte Carlo and
pencil beam method are especially popular in (medical) physics applications.

5.1 Monte Carlo method

The Monte Carlo method [147, 223] is a numerical integration method, which is based on evaluating the
integrand at random positions sampled from the probability distribution of the integration variable. For
realizations xi , i = 1, ..., N of the random variableX ∈ Rd with probability density function p : Rd → R+,
the estimator is defined as follows:

I(f) = Ep[f(X)] =
∫
Rd
f(X)p(X)dX ≈ 1

N

N∑
i=1

f(xi) := IN (f) . (5.1)
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Note, that with the Strong Law of Large Numbers, one can show

P
(

lim
N→∞

IN (f) = I(f)
)

= 1 , (5.2)

i.e., the Monte Carlo estimator converges to the true value in probability. Further, the independence
of the random variables xi and the Central Limit Theorem provide a formula for the variance of the
estimator:

V ar(IN (f)) =
v2
f

N
, (5.3)

which depends solely upon the variance v2
f of the integrand and the number of samples N . The esti-

mator thus converges with O( 1√
N

) and its accuracy can be controlled through the number of computed
realizations.

5.1.1 The Boltzmann equation in integral form

In order to solve eq. (4.1) using the Monte Carlo method, it needs to be given in its integral form. Given
the integro-differential equation stated in eq. (4.1), this integral equation can be formally derived by
integrating along rays as outlined in [206]. Here, we want to use the description of radiation transport
as a stochastic process to directly and more intuitively obtain the required form.

Integral equations for random walks

Let {Xi, i ≥ 0} be a random walk in Rd with the probability distribution function (referred to as source)
S(X) with

S(X) ≥ 0,
∫
S(X)dX = 1

and the transition distribution T (X | X′) with

T (X | X′) ≥ 0,
∫
T (X | X′)dX ≤ 1.

Here, the fact that the transition distribution does not integrate to one reflects to possibility for the walk
to terminate at X′.

The average of the distribution of arrivals at X, A(X), is given by [230]

A(X) = S(X) +
∫
T (X | X′)A(X′)dX′.

Radiation transport as a stochastic process

In order to derive the integral Boltzmann equation, we need to identify the functions governing the
corresponding stochastic process. After their initialization according to a source or boundary conditions,
particles can be viewed to follow a random walk {(r,Ω, E)i, i ≥ 0} . Here, the state or position of the
random walk is the particle phase space (r,Ω, E). The quantity of interest corresponding to the angular
flux, i.e. probable number of particles, at state (r,Ω, E) is ψ(r,Ω, E). When just considering primary
particles which are created at the boundary, the source term S0 in the integral equation is induced only
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by the boundary condition ψBC(r,Ω, E), r ∈ ∂X . In terms of a random walk this source determines
the distribution of the initial state/phase space parameters, i.e., (r0,Ω0, E0) ∼ S0. In order to include
particle interactions which produce secondary particles, other source terms would have to be considered.
For simplicity, we however omit these in the following, as they are not relevant for the electron and proton
physics models used in this work.

What remains to be derived is the transition distribution T ((r,Ω, E) | (r′,Ω′, E′)), i.e. the distribution of
next steps (r,Ω, E) in the random walk, given the current state is (r′,Ω′, E′). The transition probability
from one phase space state to another can be seen as the probability for a particle to

1. move from r′ to r without collision

2. and then undergo an interaction at r, which changes its direction of flight to Ω and energy to E.

Let’s collect the probabilities for the terms above: The probability for a particle to fly from r′ to r without
collision is proportional to [44, 230]

exp
(
−
∫ r

r′
Σt(r′′, E)dr′′

)
. (5.4)

The cross section Σs(r,Ω′ · Ω, E′ → E) precisely describes the probability for a particle to undergo a
scattering event at r , which changes its direction from Ω′ to Ω and energy from E′ to E. We can put
the terms together to determine the transition probability per unit length [230]

T ((r,Ω, E) | (r′,Ω′, E′)) = exp
(
−
∫ r

r′
Σt(r′′, E)dr′′

)
· Σs(r,Ω ·Ω′, E′ → E).

Alternatively, the source could directly generate particles at state (r,Ω, E). In our application case, this
would only happen with positive probability at r ∈ ∂X . We now want to trace particles starting from
their creation at the boundary along their trajectories, which consist of straight lines between points of
interaction. A particle with (r0,Ω0) can be traced along the line r0 + sΩ0 until its next collision at
distance s. For simplicity, we rename r0 + sΩ0 → s.

Plugging everything into the integral formula for random walks, we get

ψ(s,Ω, E) = S0(s,Ω, E)

+
∫ s

0

∫ ∞
0

∫
Ω′∈S2

(
e
−
∫ s
s′

Σt(s′′,E)ds′′ · Σs(s,Ω ·Ω′, E′ → E)
)
ψ(s′,Ω′, E′)dΩ′dE′ds′. (5.5)

Equation (5.5) is a Fredholm equation of the second kind [221], i.e. has the form

ψ(z) = ψ0(z) +
∫
ψ(z′)k(z′ → z)dz′.

It can be solved by sampling the associated random walk or Markov chain [221, 230].

First the initial state, here phase space coordinates (r0,Ω0, E0), are sampled from their probability dis-
tribution S0, which can for example be modeled as a multivariate Gaussian probability distribution. The
subsequent states are reached by simulating particle trajectories and random interactions according to
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the respective probability distributions. Here, the interaction probabilities are defined by the scatter-
ing/absorption cross sections and the length of paths of free flight is exponentially distributed (comp.
5.4). For the most accurate solution, this simulation is done event by event for each individual particle,
always sampling the distance to the next collision, the type of collision, energy loss and scattering angle
[221]. However, in order to increase computation speed, different variations of this method exist, such as
condensed history algorithms which only explicitly simulate "hard" collision events within a certain step
size distance. We will not elaborate this further here, the interested reader might take a look at [221]
or [179] for a more concise derivation of the probability measures, the resulting solution algorithm and
different Monte Carlo variations.

The Monte Carlo dose calculation algorithm can then be seen as a black box BB(r;Z), returning the
dose D(r) at position r for the initial particle phase space Z = (r0,Ω0, E0) ∼ S0 on DS0 .

D(r) = ES0 [BB(r;Z)] =
∫
DS0

BB(r;Z)S0(Z)dZ ≈ 1
H

H∑
p=1

BB(r; zp) , (5.6)

where the realisations z1, ...,zH are sampled from S0(Z). Note, that the output of the black box for fixed
realizations of only the input parameters is still a random variable, due to the stochasticity of the path
lengths and interactions of the particles. Each response BB(r0,Ω0, E0) therefore also implicitly includes
realizations of the probability distributions governing these interactions. We omit this in the following
for the sake of brevity.

In this work, S0 is assumed to be Gaussian for each beamlet b = 1, ..., B:

Sb0 = N (µbZ ,Λb). (5.7)

Then in IMRT, the source distribution for particles from all layered beamlets is a Gaussian mixture

S0 =
B∑
b=1

wbS
b
0 =

B∑
b=1

wb · N (µbZ ,Λb) . (5.8)

Note, that while the assumption of normal distributions is a common one [233, 217, 174, 10, 61, 226],
point sources (mainly for radioactive sources), uniform distributions or the use of phase space files is also
widespread [e.g. 220].

5.2 Pencil beam algorithm

One of the simplest and also most frequently used dose calculation methods is the pencil beam algorithm
[81, 177, 3, 84]. Here the dose deposited by infinitesimally thin, so-called pencil beams is considered to
be known in a reference medium. This pencil beam kernel is then convolved with the incident fluence of
an incoming beam to determine the dose distribution for a given beam set-up.

The algorithm itself consists of ray-tracing along the pencil beam’s central axis and modeling the dose
deposition at each point along the rays through the simple kernel function. The dose can then be defined
as
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D(r) =
∑
j

wjDj(r)

=
∑
j

wjL
x
j (r)Lyj (r)Rj(r)

=
∑
j

wjN (rx;µ(j)
x ,Σ(j)

x ) · N (ry;µ(j)
y ,Σ(j)

y ) ·Rj(r) (5.9)

For protons, the pencil beam kernel and spread along the two lateral dimensions can be modeled by
Gaussians [68, 200], whereas the depth dependent scaling Rj(r) is usually done according to measured
or MC simulated depth dose curves [25]. Here, Σ(j)

x/y is computed as

Σ(j)
x/y(zrad) = σ

(j)
x/y;init

2
+ σ

(j)
x/y;MCS(zrad)

2
, (5.10)

where σ(j)
x/y;init

2
describes the initial width of the pencil beam and σ(j)

x/y;MCS(zrad)
2
the depth dependent

spread according to a Gaussian approximation to multiple Coulomb scattering (see section 4.4.1). Fur-
ther, zrad is the radiological depth on the central beam axis, which is computed using ray-tracing and
the measured depth dose adjusted by the sum of CT densities along the ray up to the current point
[197].

The pencil beam algorithm is very computationally efficient due to its simplified deterministic form. Since
densities are only considered along the central axis, the standard pencil beam algorithm is however not
able to incorporate lateral inhomogeneities aside from the central axis, well. Several approaches exist to
alleviate this problem [186, 209, 201], e.g. fine sampling decomposes the lateral Gaussians into several
Gaussian components to allow for density-related changes of the kernel along the lateral dimensions
[201].

5.3 Boltzmann/Grid-based methods

Deterministic, numerical methods based on discretizations of eq. (4.1) are often referred to as Boltzmann-
solvers. These are opposed to stochastic methods such as the Monte Carlo method and deterministic
methods based on extremely simplified point-spread functions referred to as kernel-based methods, such
as the pencil beam algorithm introduced in section 5.2.

To allow for numerical approximations of solutions to the Boltzmann equation, (pseudo-)time/energy,
space and angle need to be discretized. Artifacts that numerical solutions exhibit depend crucially on
the angular discretization, for this reason deterministic Boltzmann-solvers are classified by the type of
angular discretization into nodal and modal methods. Note, that in the following we will use the energy
as a pseudo-time t as derived in section 4.2.

5.3.1 Modal methods

For the modal discretization of eq. (4.5), we span the solution in terms of spherical harmonics basis
functions.
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For degree ` and order k, the spherical harmonics for an angle Ω = (
√

1− µ2 cosϕ,
√

1− µ2 sinϕ, µ)T ,
with µ ∈ [−1, 1] and ϕ ∈ [0, 2π], are defined as

Y k` (Ω) =

√
2`+ 1

4π
(`− k)!
(`+ k)! e

ikϕP k` (µ) ,

where P k` are the associated Legendre polynomials. In this work, we use the real spherical harmon-
ics

mk
` =


(−1)k√

2

(
Y k` + (−1)kY −k`

)
, k > 0 ,

Y 0
` k = 0 ,

− (−1)ki√
2

(
Y −k` − (−1)kY k`

)
, k < 0 .

Let us collect all basis functions up to degree N in a vector

m = (m0
0,m

−1
1 ,m0

1,m
1
1, · · · ,mN

N )T ∈ R(N+1)2

and define the so called moments

ukl (r, t) :=
∫
S2
ψ(r,Ω, t)mk

l (Ω) dΩ. (5.11)

Evolution equations for these moments are derived by testing the transport equation against m and yield
an unclosed system. The different modal methods can then be interpreted as different closures [125,
124].

PN method

The most common modal discretization technique is the spherical harmonics (PN ) method [32]. Here
the model is truncated at order N , setting moments of order N + 1 to zero or choosing the modal
approximation ψ(r,Ω, t) ≈ u(r, t)Tm(Ω). Then, the PN equations for r = (rx, ry, rz)T read

∂tu(r, t) = −A · ∇r
u(r, t)
ρ(r) − Σt(t)u(r, t) + Σu(r, t), (5.12)

where A · ∇r := Ax∂rx + Ay∂ry + Az∂rz with Ai :=
∫
S2 mmTΩi dΩ, i ∈ {x, y, z}. The diagonal

in-scattering matrix Σ has entries Σkk(t) = 2π
∫

[−1,1] Pk(µ)Σs(µ, t) dµ. Note that Σt(t) = Σ11(t) > 0
and

|Σkk(t)| ≤ 2π
∫

[−1,1]
|Pk(µ)| · |Σs(µ, t)|dµ ≤ 2π

∫
[−1,1]

|Σs(µ, t)|dµ = Σ11(t) . (5.13)

While the PN method is computationally efficient, it has some drawbacks. It can produce oscillations
and further does not preserve the positivity of the solution. There are however approaches to mitigate
these effects [144].
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MN method

The MN method [124, 125] closes the system by solving an optimization problem, which minimizes the
mathematical entropy H(g) :=

∫
S2 η(g) dΩ, where η : R+ → R is the so-called kinetic entropy density

[see e.g. 6].

Thus ψ is chosen from the set F =
{
g(r,Ω, t) > 0 : u =

∫
S2 mg dΩ <∞

}
by solving

min
g∈F

∫
S2
η(g) dΩ

s.t. u =
∫
S2

mg dΩ . (5.14)

The MN method has the advantage of preserving important properties of the underlying equation, in-
cluding positivity of the solution [125, 6]. However, the need to repeatedly solve eq. (5.14) makes it
relatively computationally expensive, especially for realistic high-dimensional transport problems [190].
For this reason, it is not as widespread as the PN discretization for radiation therapy applications, with
the exception of occasional work on photon [12] and recently also proton transport [154].

5.3.2 Nodal methods

A conventional nodal method is the discrete ordinates (SN ) [126] method, which evolves the solution on
a chosen angular quadrature set. In radiative transport, the directional domain is usually assumed to be
the unit sphere S2 ⊂ R3, a suitable parametrization is therefore given by spherical coordinates

S2 =



√

1− µ2 sin(ϕ)√
1− µ2 cos(ϕ)

µ

 : µ ∈ [−1, 1] , ϕ ∈ [0, 2π)

 . (5.15)

Thus, the numerical flux is evaluated at NQ discrete nodes
{
Ω1, ...,ΩNQ

}
⊂ S2. Note, that different par-

ticle velocities can be incorporated by scaling the unit sphere with a given maximum velocity. The nodes
and corresponding weights are determined according to the chosen quadrature rule, common choices in-
clude for example a Gaussian quadrature, spherical Monte Carlo, Levelsymmetric [134], LEBEDEV [141]
and LDFESA [93]. A comparison of different quadrature sets and their approximation behaviour for SN
methods can be found in [31].

The evolution equations for nodes Ωq, weights wq and ψq(r, t) := ψ(r,Ωq, t), q = 1, ..., NQ are then given
by

∂Eψq(r, t)+Ωq · ∇r
ψq(r, t)
ρ(r) + Σt(t)ψq(r, t) =

Q∑
p=1

wpΣs(Ωq ·Ωp, t)ψp(r, t) . (5.16)

A main disadvantage of SN methods are so called ray-effects [121, 150, 142], which are spurious artifacts
that stem from the limited number of directions in which particles can travel. Moreover, radiation therapy
applications exhibit forward-peaked scattering, which cannot be captured well by classical quadrature
rules.
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To allow for moderate computational costs when computing scattering terms and to efficiently treat
forward-peaked scattering, it is also possible to combine nodal and modal methods. This will be discussed
further in chapter 7.

5.3.3 Spatial and time/energy discretization

Having discretized the angular variable Ω, the spatial as well as time/energy dimensions remain to be
discretized. Both nodal and modal methods result in a system of transport equations, that can be solved
using a finite volume scheme. In the following, we demonstrate the implementation of an exemplary finite
volume method with an explicit Euler discretization and first order upwind flux.

In chapter 6, the spatial domain will be divided into triangular, unstructured grids in two spatial di-
mensions, while chapter 7 will use 2D and 3D quadrilateral structured grids. Thus, to keep it as general
as possible, we consider a not necessarily structured grid X̃ = {Xi}i=1,...,Nx , which is a partition of a
bounded spatial domain X ⊂ Rd. In the following, we refer to individual grid cells as Xi, with centroid
ci and measure Vi. N(i) denotes the indices of neighboring cells of Xi and ni,j the unit-normal vector of
the interface dividing cell i and its neighbor j ∈ N(i).

Consider a system of transport equations

∂tψ(r, t) +∇r · F(ψ(r, t)) = R(r, t, ψ(r, t)), r ∈ X , t ∈ [0, tend) (5.17)

where F describes advection and the right hand side R contains velocity discretizations of collision terms,
sources and absorption terms. As we have already eliminated the angular dependence in the previous
sections, we omit the dependence on Ω here. Finite volume methods consider the solution as an average
over one space-energy cell. First, we handle the time discretization and divide the domain into Nt discrete
values 0 = t0 < · · · < tNt−1. Let ψ(r, tn) := ψn(r) be the solution at time tn and define the averaged
solution over one time step [tn, tn+1] as

ψ̄n(r) := 1
∆t

∫ tn+1

tn

ψ(r, t)dt.

Then eq. (5.17) integrated over one time step [tn, tn+1] is given by

ψn+1(r)− ψn(r)
∆t +∇r · F (ψ̄n(r)) = R(r, t, ψ̄n(r)), (5.18)

where ∆t = tn+1 − tn. Assuming we solve the equation iteratively from t0 to tNt , the quantities ψ̄n(r)
and ψn+1(r) are unknown. The system can, for example, be closed by approximating ψ̄n by the values
at the upper (implicit Euler scheme) or lower bound (explicit Euler scheme) of the time interval. Here,
we use an explicit Euler scheme, which yields

ψn+1(r)− ψn(r)
∆t +∇r · F (ψn(r)) = R(r, t, ψn(r)). (5.19)

With the spatial discretization into Nx cells, the average over one cell is defined as

ψni = 1
Vi

∫
Xi

ψn(r)dr.
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We then integrate eq. (5.17) over a time step (see eq. (5.19)) and one spatial cell and solve the integrals
in the advection term using Gauss’ theorem. This yields

1
∆t
(
ψn+1
i − ψni

)
+ 1

∆tVi

∫ tn+1

tn

∑
j∈N(i)

F(ψ(xi,j , t)) · ni,j dt = R(r, t, ψni )), (5.20)

where ψ(xi,j , t) is the conserved variable evaluated at the interface between cell i and its neighbor j. In
order to compute ψn+1

i we choose the common ansatz

F (ψnj , ψni ) ≈ 1
∆t

∫ tn+1

tn

F(ψ(xi,j , t)) · ni,j dt, (5.21)

where the numerical flux F (ψnj , ψni ) at face (i, j) is approximated using the cell averaged values at cell i
and j. For transport equations, a well known numerical flux is given by the Upwind scheme [123]

F (ψnj , ψni )up = F(ψni ) · ni,jH(ni,j ·Ω) + F(ψnj ) · ni,j (1−H(ni,j ·Ω)) , (5.22)

where H is the heaviside step function. The explicit solution iteration of a first order scheme can now be
obtained by approximating the source, absorption and collision terms using current cell averages:

ψn+1
i = ψni −

∆t
Vi

∑
j∈N(i)

F (ψnj , ψni )up + ∆t R(xi, t, ψni ). (5.23)
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CHAPTER 6

KiT-RT: A software framework for kinetic transport in radiation therapy

In [112], we introduce a software package, which consolidates several variations of the three deterministic
Boltzmann CSD solvers introduced in the previous chapter 5 for applications in electron radiation therapy.
This makes it possible for the first time, to directly compare the classical numerical Boltzmann solvers in
a realistic setting, while also being easily extendable for research and validation of new approaches. Note,
that KiT-RT further contains solvers for the original linear Boltzmann equation for flux computations in
general radiative transport. These will however not be further discussed here, as we focus on the specific
application to radiation therapy using the continuous slowing down approximation.

6.1 Implementation and parallelization

All continuous slowing down solvers included in KiT-RT follow the scheme presented in algorithm 6.1.
Here, the flux update, finite volume update and subsequent dose calculation are parallelized using
OpenMP and parallel for-loops when iterating over the grid cells.

The different numerical methods SN , PN and MN differ in their numerical flux functions, which are
required for the finite volume method. The numerical flux for the SN method is given by

F(ψn
i ) = Ω⊗ ψni

ρ(xi)
, (6.1)

while that for the PN method reads

F(un
i ) = [A1uni ,A2uni ,A3uni ]T , (6.2)

where Ai are the flux Jacobians emerging from the spherical harmonics recursion scheme. In contrast to
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Algorithm 6.1 KiT-RT CSD solver execution
Read settings from config file
Create solver
Create/Load mesh and densities from CT file
Preprocessing: Set BC, Transform energies, compute stopping powers
for Energies E0 to Emax do
Compute scattering coefficients
Flux update
Finite volume update
Dose update
Write Output

end for
Save Output

the SN and PN method, the flux function of the MN method takes a more complex form

F(un
i ) =

∫
S2

Ω⊗m(Ω)ψuin(Ω) dΩ. (6.3)

where ψuin is the reconstructed radiation flux density of the minimal entropy closure at the cell averaged
moment uin. To evaluate the numerical fluxes with an upwind scheme, the formulas above are plugged
into eq. (5.22). Note, that for the MN method we need to discretize the velocity integral. This can for
example be achieved using a quadrature rule.

Further, it has to be ensured that the updated solution of the MN method remains a feasible moment
for the minimal entropy closure. This can be achieved for example by a flux-limiter [106], a realizability
reconstruction [109] or by using a regularized entropy closure formulation [6].

6.2 Software design and architecture

The design principle of the KiT-RT software package is focused on efficient implementation, high re-
usability of its components and ease of extension. It contains a set of efficient numerical solvers for
radiation transport, which are constructed of basic, reusable building blocks. These building blocks can
be freely arranged to implement new solvers or tools for completely different applications.

On the other hand, KiT-RT is equipped with an easy to use command line interface based on readable
configuration files, which allow easy manipulation of the solvers. Thus the software is attractive for
developers, who want to experiment with the framework and build their own numerical solvers as well as
users and application engineers, who want to gain experimental insights without directly interfering with
the codebase.

KiT-RT is implemented in modern C++ and uses mainly polymorphism for its construction. In fig. 6.1,
we present the class structures used to build the numerical CSD solvers. Note that the diagram merely
presents the subsection of the total classes, which is relevant to this thesis and should serve more as an
insight into the software structure than a comprehensive overview. Most building blocks consist of a
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r

Figure 6.1: Schematic illustration of KiT-RT user interface and class structure for a subset of classes
most relevant for dose computations.

virtual base class, which contains a static factory method to build an instance of the concrete derived
class, defined by the given configuration details. Furthermore, the virtual base class defines the interface
of this building block with other parts of the KiT-Framework.

Results generated with KiT-RT will be presented in the following section and compared to the other
methods discussed in part II in chapter 8.

6.3 Results

The KiT-RT framework has been validated for standard line-source and checkerboard testcases using
StarMAP [195] and the TOPAS Monte Carlo framework [175] in [112]. In order to validate our continuous
slowing down solvers, we first consider a mono-energetic electron beam in a homogeneous 2D water box
with the initial condition

ψ(r,Ω, Emax) = 1
(2π)3/2σΩ2σrxσry

· exp(−(µΩ2 − Ω2)2/2σΩ2)

· exp(−(µrx − rx)2/2σrx) · exp(−(µry − ry)2/2σry ),

where (µrx , µry ) = (0.5cm, 0cm) is the beam position within the 1cm × 1cm domain and µΩ2 = π
2 rad is

the beam direction. The remaining parameters are chosen as σrx = σry = 0.01 and σΩ2 = 0.1.

In fig. 6.2 the normalized dose computed with the S40, P17 and M11 CSD solvers included in the KiT-RT
framework is compared to a reference Monte Carlo solution. All solutions from the deterministic solvers
are able to capture the beam structure including a higher dose and the correct beam width at the entrance
and a gradual fanning out with increasing depth due to scattering.
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(a) Monte Carlo (b) S40

(c) P17 (d) M11

Figure 6.2: Dose deposited by a 5 MeV electron beam in a 2D water box computed with (a) a Monte Carlo
method (TOPAS MC) compared to KiT-RT implementations of (b) S40 (c) P17 and (d) M11 solvers.

Figure 6.3 further shows a lateral and longitudinal cut through the solutions. All three deterministic
solvers agree well with Monte Carlo at the beam entrance. While P17 andM11 remain close to the Monte
Carlo dose along the complete longitudinal cut, the dose computed with an S40 solver deviates slightly
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at larger depths and does not fall off as steeply as the reference. In the lateral cut, all solvers exhibit the
same beam width and peak height1. The SN solution however oscillates slightly to the side of the beam
and maintains a small positive dose value even in regions which should not be irradiated according to the
other methods.
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Figure 6.3: Cuts through dose in 2D waterbox along (a) central beam axis (x = 0.5) and (b) at y = 0.1cm.

After validating the solvers using a simple test case, we now examine a realistic 2D CT scan of a lung
patient as a proof of concept for the application of the framework to radiation therapy computations. The
patient data was retrieved from an open source data set [127] in The Cancer Imaging Archive (TCIA)
[39]. The patient is irradiated with an electron beam of Emax = 20 MeV. We model this beam analogously
to the previous test case, as a Gaussian, where (µrx , µry ) = (2.5cm, 5.8cm) is the beam position within
the 6cm× 6cm domain and µΩ2 = π

2 rad is the beam direction. The remaining parameters are chosen as
σrx = σry = σΩ2 = 0.1. To determine a tissue density ρ for given gray-scale values of the CT image, we
set the maximum density, represented by white pixels, to the density of bone ρbone = 1.85 g/cm3. The
remaining tissue is scaled such that the minimum pixel value of zero corresponds to a minimal density
of ρmin = 0.05 g/cm3. This corresponds approximately to the lower bound of observed lung densities
[104].

Figure 6.4 compares the normalized dose for a CSD S13, P13 and M5 solver. While all methods show
similar behaviour and are able to capture the effects of heterogeneities in the patient density, some
differences, e.g., in the maximum depth of the S13 solution compared to P13 and M5 or the shape of the
lowest two isolines can be observed. The cross sections in figure 6.5 further show that the S13 dose has a
lower maximum and higher minimum value than the M5 and to a lesser extent also P13 solutions.

1Note that the difference at the peak between the methods stems partly from the different spatial grids used in KiT-RT
vs. TOPAS MC. The rectangular grid cells in the MC code are aligned/perpendicular to the beam direction. This can lead
to a more squared-off plateau in the MC solution, which is not reproduced by the irregular, triangular grid in KiT-RT.
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(a) CT scan (b) S13

(c) P13 (d) M5

Figure 6.4: Patient CT scan with lung tumor (red box) (a) as well as corresponding simulation results
for the S13, P13 and M5 solver with spherical harmonics basis and partially regularized entropy.

6.4 Runtime and parallel scaling

In [112] the parallel performance of the three base solver implementations SN , PN andMN is investigated
based on a 1D line source benchmark testcase [62] with up to 16 workers on a fixed unstructured triangular
mesh of size n = 578290. In the following the findings are briefly summarized : We observe almost linear
scaling for up to 12 workers for all three methods. For higher amounts of workers, the SN and to a
smaller degree also PN method lose efficiency, while the MN method scales well also for 12-16 workers.
While the performance of the continuous slowing down solver implementations has not been explicitly
evaluated, it can be assumed to follow the corresponding base solver performance, since the same spatial,
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Figure 6.5: (a) Vertical (at x = 2.5cm) and (b) horizontal (at y = 5cm) cross section through the
normalized dose in the patient CT. Comparison of the S13, P13 and partially regularized M5 solver.

velocity and (pseudo) temporal discretizations are used.

A comparison of the run-times of the SN , PN and MN solver for a fixed number of 8 workers is presented
in fig. 6.6. The parallel implementation scales equally well for all presented methods, as can be seen by
the similar structure of CPU time and absolute run time plots. It is apparent that the SN method is the
least computationally expensive, followed by the PN and then the MN method. The longer run-times of
PN andMN are due to their slightly more complex set-up compared to the SN method, which requires the
computation of spherical harmonics basis functions and moments. The MN method additionally solves
an optimization problem to minimize the entropy, which further increases the computational costs.
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Figure 6.6: Runtimes (a) and CPU times (b) of the SN , PN and MN method for CSD equations imple-
mented in KiT-RT.
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For increasing N , the SN method is consistently the most computationally efficient of the compared
methods in our experiments. However, the nodal nature of the angular discretization used in the SN
method can be problematic for strongly forward-peaked beams and the solution can exhibit ray-effects. In
the previous section, we could already observe some artifacts and deviations in the SN solution compared
to the other methods and MC reference. Therefore, it is necessary to choose the best suited method on
a case by case basis.
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CHAPTER 7

Dynamical low-rank approximation for Boltzmann dose calculations

Deterministic Boltzmann solvers have the downside that they require fine numerical discretizations in
order to achieve an accurate dose for directed beams in a heterogeneous medium. This negates their
advantage over Monte Carlo methods and can not only lead to prohibitively long run times but also
storage problems.

In the following chapter, we tackle the challenges arising from high-dimensional phase spaces in radiation
therapy applications through dynamical low-rank approximation (DLRA) [102]. DLRA represents the
solution by a low-rank ansatz. When the solution is an n×m time-dependent matrix with huge n and m,
such a low-rank representation can be defined by a singular value decomposition (SVD) truncated to a
(small) rankR.1 Time evolution equations for each of the low-rank factors of the SVD are then derived by
minimizing the residual while maintaining the solution’s low-rank structure. When the original method
requires O(n·m) operations per time step, the updates of the low-rank factors only require O(R2 ·(n+m))
operations. Robust integrators for the time evolution of these factors are the matrix projector–splitting
integrator (PSI) [137] and the recently developed “unconventional” basis-update & Galerkin low-rank
matrix integrator of [36]. Unlike the unconventional integrator, the projector–splitting integrator can
be extended to high order. However, since it includes a backward step in time, the projector–splitting
integrator can yield instabilities for parabolic equations. Moreover, the backward time step can result
in unstable schemes for hyperbolic problems, which is not an issue for the unconventional integrator
[111].

The efficiency of DLRA highly depends on the rank required to capture important solution characteristics.
Choosing this rank sufficiently high to guarantee a satisfactory solution quality while at best maintaining
low computational costs requires a great amount of intuition. Furthermore, a fixed choice of the rank

1Note that the low-rank solution does not require a diagonal R by R singular value matrix. In fact, DLRA uses dense
coefficient matrices.
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does not capture the time evolution of the solution complexity. Rank adaptive DLRA integrators which
pick the rank in an automated fashion during run time have for example been proposed in [47, 239, 35,
79, 87, 76]. In the following, an efficient choice of the rank for every energy is provided through the rank
adaptive integrator of [35].

In addition to applying the DLRA to the CSD equation for radiation therapy, we introduce the following
novelties:

1. A stable and efficient time discretization of stiff scattering terms. Following [162, 111], stiff scatter-
ing terms are split from the radiation transport equation. The unconventional integrator is used to
time update the streaming part and the matrix projector-splitting integrator updates the scattering
part. According to [111], the scattering part only requires an update of a single low-rank factor.
By using an implicit time discretization on this part of the integrator and explicit updates on the
remainder, we significantly reduce computational costs while allowing for a less restrictive CFL
condition.

2. A first-collision source method to reduce the rank and impose boundary conditions. Boundary
conditions in radiation therapy are often Dirichlet conditions of uncollided particles traveling into
a single direction. To efficiently incorporate this information into our solution ansatz, we perform
a collided-uncollided split, see e.g. [2, 72]. Here, collided and uncollided particles are treated in
two separate equations. For the uncollided particles, an SN method with a directed quadrature set
resolving only the small number of relevant directions can be used. The collided part of the solution
is represented through dynamical low-rank approximation. This strips away highly peaked particle
distributions in the low-rank approximation, thereby potentially reducing the rank. Furthermore,
since the density of uncollided particles is zero at the boundary, imposing boundary conditions
becomes straightforward.

3. A multilevel dynamical low-rank approximation. The collided-uncollided split can be extended to
L-collided splits. This can be interpreted as writing the solution as a telescoping sum. Expecting a
reduced rank in each of these telescoping updates, individual dynamical low-rank approximations
are derived for every term.

7.1 Mesoscopic transport models in radiation therapy

First, we recall the numerical discretization and splitting techniques used to determine the semi-discretized
time/energy-dependent transport equations to which we can apply the dynamical low-rank approxima-
tion. Further, for the sake of conciseness, we introduce some simplified notation. The proposed method is
based on the CSD equation (eq. (4.11)) with transformed energy, i.e., pseudo time t as well as transformed
cross sections and particle density as defined in section 4.2. Omitting phase space dependencies, we now
rearrange eq. (4.11) and call the right-hand side R(t, ψ):

∂tψ = −Ω · ∇r
ψ

ρ
− Σtψ +

∫
S2

Σs(t,Ω ·Ω′)ψ(t, r,Ω′) dΩ′ := R(t, ψ) . (7.1)

Furthermore, the in-scattering operator will be denoted as Q, i.e.,

(Qψ)(t, r,Ω) :=
∫
S2

Σs(t,Ω ·Ω′)ψ(t, r,Ω′) dΩ′ . (7.2)
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7.1.1 Collision source method

First collision source methods split the solution to the radiation transport equation eq. (7.1) into a collided
and uncollided part, see e.g. [5, 72]. Let us write ψ(t, r,Ω) = ψu(t, r,Ω)+ψc(t, r,Ω), where ψu represents
uncollided and ψc represents collided particles. Then, the radiation transport equation (7.1) can be split
into

∂tψu = −Ω · ∇r
ψu
ρ
− Σtψu := Ru(t, ψu) , (7.3a)

∂tψc = −Ω · ∇r
ψc
ρ
− Σtψc +Q (ψu + ψc) := Rc(t, ψu, ψc) . (7.3b)

The first equation describes the dynamics of uncollided particles. Since collided particles cannot generate
or deplete uncollided particles, eq. (7.3a) solely depends on ψu. Furthermore, as uncollided particles that
scatter will no longer be uncollided, only the out-scattering term −Σtψu describes interactions with the
background material. Uncollided particles that undergo a collision are added to the collided particles
which are described by eq. (7.3b). Hence, the in-scattering term of uncollided particles Q(ψu) is treated as
a source term in the collided equation. This methodology of representing the solution in terms of collided
and uncollided particles can be developed further: Denoting the particles that have collided ` = 0, · · · , L
times as ψ` and particles that have collided more than L times as ψc, we have ψ = ψ0 +ψ1 + · · ·+ψL+ψc.
Then, we obtain the equations

∂tψ0 = −Ω · ∇r
ψ0
ρ
− Σtψ0 := R0(t, ψ0) , (7.4)

∂tψ` = −Ω · ∇r
ψ`
ρ
− Σtψ` +Qψ`−1 := R`(t, ψ`−1, ψ`) , for ` = 1, · · · , L, (7.5)

∂tψc = −Ω · ∇r
ψc
ρ
− Σtψc +Q (ψL + ψc) := Rc(t, ψL, ψc) . (7.6)

Boundary conditions for the above equations can be imposed by noting that all particles entering from
the boundary are uncollided. I.e., we have ψ0(E, r,Ω) = ψBC(E, r,Ω) for r ∈ ∂D and n ·Ω < 0. Since
no collided particles will enter the spatial domain from the boundary, we have ψ` = 0 and ψc = 0 at the
boundary for n ·Ω < 0.

7.1.2 Spatial and angular discretization

The dynamical low-rank approximation can be applied to time-dependent matrix differential equations.
Thus, we discretize the phase space only with respect to space and angle. For the angular discretization,
we use a PN approach as introduced in section 5.3.1. The continuous slowing down approximation
discretized only in angle according to the PN method is given by eq. (5.12). The spatial variable is then
discretized using a finite volume approach similar to section 5.3.3. In contrast to chapter 6 we now use
a rectangular, structured grid. We further introduce the method for a two-dimensional spatial domain,
i.e., the spatial variable becomes r = (x, y)T , an extension to three dimensions is straightforward. Then,
we have

∂tu(t, r) = −Ax∂x
u(t, r)
ρ(r) −Ay∂y

u(t, r)
ρ(r) + Gu(t, r) . (7.7)

The finite volume discretization splits the spatial domain D into Nx · Ny cells. In case of a structured
quadrangle grid, the x and y domains are discretized into uniform one-dimensional grids x1 ≤ x2 ≤ · · · ≤
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xNx+1 and y1 ≤ y2 ≤ · · · ≤ yNy+1 with grid size ∆x and ∆y respectively. Then, the cell of index (i, j) is
defined on Iij := [xi, xi+1]× [yj , yj+1] on which the numerical solution is chosen as

uij(t) '
1

∆x∆y

∫
Iij

u(t, r) dr .

In the same manner, we compute the patient density ρij . To simplify the presentation of the spatial
discretization, let us collect uij(t) = (uijk(t))mk=1 ∈ Rm for i = 1, · · · , Nx and j = 1, · · · , Ny into a
matrix u(t) ∈ Rnx×m, where nx := Nx · Ny. For this, we define the function idx : N × N → N as
idx(i, j) = (i− 1) ·Nx + j. Then, the entries of u(t) are defined as uidx(i,j),k(t) = uijk(t).

With this notation at hand, we can define a finite volume scheme for eq. (7.7) in compact notation. Let
us define the sparse diffusion stencil matrices L(1)

x,y ∈ Rnx×nx as

L
(1)
x,idx(i,j),idx(i,j) = 1

ρij∆x
, L

(1)
x,idx(i,j),idx(i±1,j) = − 1

2ρi±1,j∆x
,

L
(1)
y,idx(i,j),idx(i,j) = 1

ρij∆y
, L

(1)
y,idx(i,j),idx(i,j±1) = − 1

2ρi,j±1∆y ,

as well as the sparse advection stencil matrices L(2)
x,y ∈ Rnx×nx as

L
(2)
x,idx(i,j),idx(i±1,j) = ±1

2ρi±1,j∆x
, L

(2)
y,idx(i,j),idx(i,j±1) = ±1

2ρi,j±1∆y .

Furthermore with Ax,y = Vx,yΛx,yVT
x,y, the Roe matrices |Ax|, |Ay| ∈ Rm×m are defined as

|Ax| := Vx|Λx|VT
x , and |Ay| := Vy|Λy|VT

y .

Here, Vx,y collects the orthonormal eigenvectors of the symmetric matrices Ax,y and Λx,y = diag(λx,y1 , · · ·λx,ym )
are the corresponding real eigenvalues. Then, the semi-discrete finite volume update becomes a huge ma-
trix differential equation of the form

u̇(t) = F(u(t)) + G(t,u(t),u(t)) ,

where

F(u) := L(2)
x uAT

x + L(2)
y uAT

y + L(1)
x u|Ax|T + L(1)

y u|Ay|T ,
G(t,v,u) := − Σt(t)u + vΣ(t) .

The costs of evaluating the right-hand side are CPN . nx · m, when accounting for the sparsity of all
stencil, flux and Roe matrices which leads to linear costs in nx and m of matrix products.

7.2 Main framework

This section gives a brief overview of dynamical low-rank approximation [102] for matrix differential
equations u̇(t) = F(t,u(t)). Dynamical low-rank approximation represents and evolves the solution on
a manifold of rank R matrices, which we denote by MR. A low-rank representation is given by the
SVD-like factorization

u(t) ≈ X(t)S(t)W(t)T , (7.8)
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where X ∈ Rnx×R and W ∈ Rm×R are basis matrices with orthonormal column vectors and S ∈ RR×R

is a dense coefficient matrix. Time evolution equations for the factors can be defined by imposing

u̇(t) ∈ Tu(t)MR such that ‖u̇(t)− F(t,u(t))‖ = min . (7.9)

We use Tu(t)MR to denote the tangent space ofMR at u(t), i.e., the solution should remain of rank R
over time while minimizing the defect. These conditions yield a time evolution equation for the low-rank
solution [102, Lemma 4.1], which reads

u̇(t) = P(u(t))F(t,u(t)) . (7.10)

The operator P is the orthogonal projection onto the tangent space, given by

Pg = XXTg−XXTgWWT + gWWT .

Evolution equations can then be derived for the factors X, S and W, see [102]. However, the resulting
equations depend on the inverse of the commonly ill-conditioned coefficient matrix, which substantially
limits the permitted step size [99].

7.3 Robust fixed rank integrators

Two robust integrators have been proposed for the evolution equation (7.10). First, the matrix projector–
splitting integrator [137] splits eq. (7.10) by a Lie-Trotter splitting technique, yielding

u̇I(t) = F(uI(t))WWT , uI(t0) = u(t0) , (7.11a)

u̇II(t) = −XXTF(uII(t))WWT , uII(t0) = uI(t1) , (7.11b)

u̇III(t) = XXTF(uIII(t)) , uIII(t0) = uII(t1) . (7.11c)

The resulting consecutive movement in the low-rank manifold ensures robustness irrespective of singular
values and thereby allows for increased step sizes [137]. Defining the decompositions uI = KWT as
well as uIII = XL gives the matrix projector-splitting integrator, which updates the low-rank factors
X0 = X(t0), W0 = W(t0) and S0 = S(t0) to time t1 = t0 + ∆t:

1. K-step: Update X0 to X1 and S0 to S̃0 via

K̇(t) = F(K(t)W0,T )W0 , K(t0) = X0S0 . (7.12)

Determine X1 and S̃0 with K(t1) = X1S̃0 by performing a QR decomposition.

2. S-step: Update S̃0 to S̃1 via

˙̃S(t) = −X1,TF(X1S̃(t)W0,T )W0 , S̃(t0) = S̃0 (7.13)

and set S̃1 = S̃(t1).

3. L-step: Update W0 to W1 and S̃1 to S1 via

L̇(t) = X1,TF(X1L(t)) , L(t0) = S̃1W0,T . (7.14)

Determine W1 and S1 with L(t1) = S1W1,T by performing a QR decomposition.
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Then, the time updated solution is u(t1) = X1S1W1,T . It has been noted in [111] that when the
flux function takes the form F(t,u(t)) = u(t)G(t), the K and S-steps cancel out and only the L-step
determines the dynamics.

The second robust integrator is the unconventional integrator, which has recently been introduced in [36].
This integrator first performs basis updates ofX andW in parallel and then updates the coefficient matrix
S by a Galerkin step. It shares the robustness properties of the matrix projector–splitting integrator [36]
and takes the form

1. K-step: Update X0 to X1 via

K̇(t) = F(K(t)W0,T )W0 , K(t0) = X0S0 . (7.15)

Determine X1 with K(t1) = X1R and store M = X1,TX0.

2. L-step: Update W0 to W1 via

L̇(t) = X0,TF(X0L(t)) , L(t0) = S0W0,T . (7.16)

Determine W1 with L(t1) = W1R̃ and store N = W1,TW0.

3. S-step: Update S0 to S1 via

Ṡ(t) = X1,TF(X1S(t)W1,T )W1 , S(t0) = MS0NT (7.17)

and set S1 = S(t1).

Unlike the projector–splitting integrator, the unconventional integrator only propagates the solution
forward in time. Thereby, it inherits the structure of the full method, which can for example be used
to ensure stability for hyperbolic and kinetic problems [111]. Therefore, the unconventional integrator
yields the same semi-discrete evolution equations, irrespective of whether the problem is discretized first
and then DLRA is applied to the resulting matrix ODE, or the DLRA projections are first performed on
the continuous level and the resulting continuous evolution equations are then discretized as proposed in
[54]. This equivalence holds when the same spatial and angular discretization is used in both approaches.
A disadvantage of the unconventional integrator is that it cannot be interpreted as a classical splitting
method which is why it currently is only first order accurate in time, if the exactness property [36,
Theorem 1] does not hold.

7.4 Rank adaptive unconventional integrator

The unconventional integrator has recently been extended to allow for rank adaptivity [35]. That is,
given a tolerance parameter ϑ, the integrator adapts the rank in time.

Starting from time t0 where the solution has rank R0, the integrator gives the factored solution at time
t1 with rank R1 ≤ 2R0. In the following, we use R = R0 and use hats to denote matrices of rank 2R.
Then the rank adaptive integrator reads

1. K-step: Update X0 ∈ Rnx×R to X̂1 ∈ Rnx×2R via

K̇(t) = F(K(t)W0,T )W0 , K(t0) = X0S0 . (7.18)
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Determine X̂1 with [K(t1),X0] = X̂1R and store M̂ = X̂1,TX0 ∈ R2R×R.

2. L-step: Update W0 ∈ Rm×R to Ŵ1 ∈ Rm×2R via

L̇(t) = X0,TF(X0L(t)) , L(t0) = S0W0,T . (7.19)

Determine Ŵ1 with [L(t1),W0] = Ŵ1R̃ and store N̂ = Ŵ1,TW0.

3. S-step: Update S0 ∈ RR×R to Ŝ1 ∈ R2R×2R via

˙̂S(t) = X̂1,TF(X̂1Ŝ(t)Ŵ1,T )Ŵ1 , Ŝ(t0) = M̂S0N̂T (7.20)

and set Ŝ1 = Ŝ(t1).

4. Truncation: Determine the SVD Ŝ1 = P̂ Σ̂Q̂> where Σ̂ = diag(σj). For a given tolerance ϑ,
choose the new rank R1 ≤ 2R such that( 2R∑

j=R1+1
σ2
j

)1/2
≤ ϑ .

Compute the new factors as follows: Let S1 be the R1 ×R1 diagonal matrix with the R1 largest
singular values and let P1 ∈ R2R×R1 and Q1 ∈ R2R×R1 contain the first R1 columns of P̂ and Q̂,
respectively. Finally, set X1 = X̂1P1 ∈ Rm×R1 and W 1 = Ŵ 1Q1 ∈ Rn×R1 .

7.5 A robust collision source method for dynamical low-rank
approximation

In this section, we present the main method, which aims at providing an efficient and robust alternative
to conventional strategies. Key ingredients for the construction are 1) a collision source method to define
a splitting of the original equation, 2) a further splitting of collision terms which are treated implicitly, 3)
computing individual DLRA updates by using the unconventional integrator for collided particles.

7.5.1 Collided-uncollided split

Let us define a discretization in space and angle for the system of the `-collided split eq. (7.4). We start
by deriving moment equations for the collided particles in the collision source method and use an SN
method for uncollided particles. Without going into detail, we denote the SN solution of the uncollided
particles as ψ and the right-hand side of a time continuous SN method for streaming (i.e., particles move
without interacting with tissue) as FS(ψ). Then the evolution equations for the semi-discrete solution
become

ψ̇(t) = FS(ψ(t))− Σt(t)ψ(t) , (7.21a)

u̇1(t) = F(u1(t))− Σt(t)u1(t) +ψ(t)TMΣ(t) , (7.21b)

u̇`(t) = F(u`(t))− Σt(t)u`(t) + u`−1(t)Σ(t) , for ` = 2, · · · , L, (7.21c)

u̇c(t) = F(uc(t))− Σt(t)uc + (uL(t) + uc(t)) Σ(t) , (7.21d)
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where the matrix TM maps the nodal solution onto its moments. These L + 2 equations can be solved
consecutively. Since radiation therapy commonly investigates the effects of particle beams that enter
the computational domain from the boundary, the SN equations from the uncollided particles can be
solved efficiently by using a biased quadrature rule. I.e., the quadrature only encodes the small number
of possible flight directions. After the first collision, particles move into all directions. To account for the
increased complexity, we describe the collided solution through dynamical low-rank approximation. Fol-
lowing [111], we split streaming and scattering parts and use the matrix projector–splitting integrator to
update in-scattering in equation (7.21d) as well as the unconventional integrator for the remainder.

To simplify our presentation, we start by discussing this strategy for eq. (7.21b) and then extend it to the
remaining equations. Let us first split streaming and scattering in eq. (7.21b). Omitting the subscript 1
gives

u̇I(t) = F(uI(t)) , uI(t0) = u1(t0) , (7.22a)

u̇II(t) = −Σt(t)uII(t) +ψ(t1)TMΣ(t) , uII(t0) = uI(t1) . (7.22b)

The updated solution at time t1 = t0 + ∆t is then given as u1(t1) = uII(t1). Note that the splitting
method introduces an error of O(∆t), which can be reduced by high-order splitting methods. We start
with the derivation of the basis update and Galerkin step equations of the unconventional integrator for
the streaming part (eq. (7.22a)). That is, we derive evolution equations for XI(t),SI(t),WI(t) such that
uI(t) ≈ XI(t)SI(t)WI(t)T . To simplify notation let us omit Roman indices in the following. The K-step
equations (7.15) read

K̇(t) = F(K(t)W0,T )W0

= L(2)
x K(t)W0,TAT

xW0 + L(2)
y K(t)W0,TAT

y W0

+ L(1)
x K(t)W0,T |Ax|TW0 + L(1)

y K(t)W0,T |Ay|TW0

= L(2)
x K(t)Â0

x + L(2)
y K(t)Â0

y + L(1)
x K(t)|Âx|0 + L(1)

y K(t)|Ây|0 , (7.23)

where we use Â0
x,y := W0,TAT

x,yW0 and |Âx,y|0 := W0,T |Ax,y|TW0. The numerical costs to compute
these matrices are of O(R2 ·m) and evaluating the right-hand side of the K-step equations has costs of
O(R2 · nx). To point out that the spatial basis is not yet updated by the scattering step (eq. (7.22b)),
we define the superscript 1/2, i.e., the solution is given as X1/2 := XI(t1).

The L-step equations (7.16) read

L̇(t) = X0,TF(X0L(t))

= X0,TL(2)
x X0L(t)AT

x + X0,TL(2)
y X0L(t)AT

y

+ X0,TL(1)
x X0L(t)|Ax|T + X0,TL(1)

y X0L(t)|Ay|T

= L̂(2),0
x L(t)AT

x + L̂(2),0
y L(t)AT

y + L̂(1),0
x L(t)|Ax|T + L̂(1),0

y L(t)|Ay|T , (7.24)

where we use L̂(2),0
x,y := X0,TL(2)

x,yX0 and L̂(1),0
x,y := X0,TL(1)

x,yX0. The numerical costs to compute these
matrices are ofO(R2·nx) and evaluating the right-hand side of the L-step equations has costs ofO(R2·m).
To point out that the directional basis is not yet updated by the scattering step (eq. (7.22b)), we define
W1/2 := WI(t1).



7.5. A robust collision source method for dynamical low-rank approximation 57

The S-step equations (7.17) read

Ṡ(t) = X1/2,TF(X1/2S(t)W1/2,T )W1/2

= X1/2,TL(2)
x X1/2S(t)W1/2,TAT

xW1/2 + X1/2,TL(2)
y X1/2S(t)W1/2,TAT

y W1/2

+ X1/2,TL(1)
x X1/2S(t)W1/2,T |Ax|TW1/2 + X1/2,TL(1)

y X1/2S(t)W1/2,T |Ay|TW1/2

= L̂(2),1/2
x S(t)Â1/2

x + L̂(2),1/2
y S(t)Â1/2

y + L̂(1),1/2
x S(t)|Âx|1/2 + L̂(1),1/2

y S(t)|Ây|1/2 . (7.25)

The numerical costs to compute update matrices and to evaluate the right-hand side of the S-step
equations are of O(R2 · (nx + m)). To point out that the coefficient matrix is not yet updated by the
scattering step (eq. (7.22b)), we define S1/2 := SI(t1).

In a second step, we use the updated factors as the initial condition, i.e., XII(t0) = X1/2, SII(t0) = S1/2

and WII(t0) = W1/2. Again Roman numbers are omitted in the following. However, we do include a
subscript 1 to denote that we are solving for the factors of u1. For the scattering step (eq. (7.22b)),
determining the K, L and S-steps is straightforward and leads to

K̇1(t) = − Σt(t)K1(t) +ψ(t1)TMΣ(t)W1/2
1 , (7.26a)

L̇1(t) = − Σt(t)L1(t) + X1/2,T
1 ψ(t1)TMΣ(t) , (7.26b)

Ṡ1(t) = − Σt(t)S1(t) + X1,T
1 ψ(t1)TMΣ(t)W1

1 . (7.26c)

The time updated solution after streaming and scattering is given as u1(t1) = X1(t1)S1(t1)W1(t1)T .
When the directed SN quadrature set has nq nodes, computational costs are of O(R·nq · (nx+m)). Note
that since radiation therapy uses highly peaked particle beams as boundary conditions or source terms,
only a limited number of directions needs to be resolved by the quadrature, i.e., nq is expected to be
small.

In the same manner, evolution equations for the factors of the solutions to the remaining moment equa-
tions (7.21c) and (7.21d) are derived. Here, the streaming update can be determined with eq. (7.23),
eq. (7.24) and eq. (7.25) (except for eq. (7.21a), since for ψ we use a directed SN method instead of a
dynamical low-rank approximation). The scattering update for a general ` = 2, · · · , L which we denote
by a subscript reads

K̇`(t) = − Σt(t)K`(t) + X1
`−1S1

`−1W
1,T
`−1Σ(t)W1/2

` ,

L̇`(t) = − Σt(t)L`(t) + X1/2,T
` X1

`−1S1
`−1W

1,T
`−1Σ(t) ,

Ṡ`(t) = − Σt(t)S`(t) + X1,T
` X1

`−1S1
`−1W

1,T
`−1Σ(t)W1

` .

Computational costs are of O(R2 · (nx + m)). Lastly, for the fully collided solution uc we perform a
further splitting step. Omitting the subscript c, we have

u̇I(t) = F(t,uI(t)) , uI(t0) = u1(t0) , (7.28a)

u̇II(t) = uL(t1)Σ(t) , uII(t0) = uI(t1) , (7.28b)

u̇III(t) = −Σt(t)uIII(t) + uIII(t)Σ(t) , uIII(t0) = uII(t1) . (7.28c)

In this case, the K, S, L-equations for inscattering from uL, i.e., equation (7.28b) read (omitting Roman
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indices)

K̇c(t) = X1
LS1

LW1,T
L Σ(t)W1/2

c , (7.29a)

L̇c(t) = X1/2,T
c X1

LS1
LW1,T

L Σ(t) , (7.29b)

Ṡc(t) = X1,T
c X1

LS1
LW1,T

L Σ(t)W1
c . (7.29c)

For the in-scattering and out-scattering of the collided flux, i.e., equation (7.28c) we use the matrix
projector–splitting integrator. Following [111], only the L-step needs to be computed and we are left
with

L̇c(t) = −Σt(t)Lc(t) + Lc(t)Σ(t). (7.30)

The costs for the collided particles are again O(R2 ·(nx+m)). According to the derived steps, the scheme
then consecutively updates the uncollided particles ψ, the factors of u1, · · · ,uL and lastly the factors
of uc. In every step, the factors are first updated by a streaming step, followed by a scattering step.
Lastly, when updating the factors of the collided flux, the additional L-step is performed to account for
self-scattering. This procedure is repeated until a final time (or minimal energy) is reached. A flow chart
to visualize the presented method is given in figure 7.1.

7.5.2 Time (or energy) discretization

The presented equations still continuously depend on the pseudo-time (or energy) t. To treat stiff scat-
tering terms, we use an implicit time update method for the scattering equations. The remainder uses
explicit time discretizations. More specifically, we use implicit and explicit Euler time-discretizations in
this work. Let us start with Xn

` = X0
` , Sn` = S0

` and Wn
` = W0

` , where ` denotes the individual collision
steps, i.e., ` ∈ {1, · · · , L− 1, L, c}. The streaming update is the same for all collision steps. Hence, when
omitting a specific collision index, we obtain

K1/2 = K0 + ∆t
(
L(2)
x K0Â0

x + L(2)
y K0Â0

y + L(1)
x K0|Âx|0 + L(1)

y K0|Ây|0
)
, X1/2R1 = K1 ,

(7.31a)

L1/2 = L0 + ∆t
(
L̂(2),0
x L0AT

x + L̂(2),0
y L0AT

y + L̂(1),0
x L0|Ax|T + L̂(1),0

y L0|Ay|T
)
, W1/2R2 = L1,T ,

(7.31b)

S1/2 = S̃0 + ∆t
(
L̂(2),1/2
x S̃0Â1/2

x + L̂(2),1/2
y S̃0Â1/2

y + L̂(1),1/2
x S̃0|Âx|1/2 + L̂(1),1/2

y S̃0|Ây|1/2
)
, (7.31c)

where S̃0 = X1/2,TX0S0W0,TW1/2 and flux matrices are computed before evaluating the right-hand side.
The collision equations differ for the ` = 1 and ` ∈ {2, · · · , L} collided fluxes as well as the collided flux.
For ` = 1, we have

K1
1 = 1

1 + ∆tΣ(t1)

(
K1/2

1 + ∆tψ(t1)TMΣ(t1)W1/2
1

)
, X1

1R1 = K1
1 , (7.32a)

L1
1 = 1

1 + ∆tΣ(t1)

(
L1/2

1 + ∆tX1/2,T
1 ψ(t1)TMΣ(t1)

)
, W1

1R2 = L1,T
1 , (7.32b)

S1
1 = 1

1 + ∆tΣ(t1)

(
S̃1/2

1 + ∆tX1,T
1 ψ(t1)TMΣ(t1)W1

1

)
. (7.32c)
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input
• SN solution ψ(t0)
• factored moments u`(t0) with ` ∈ {1, · · · , L, c} as X0

` ,S0
` ,W0

`

compute ψ(t1) from (7.21a)

compute factored u1,I(t1) with (7.23), (7.24) and (7.25)

compute factored u1(t1) with (7.26)

compute factored u`,I(t1) with (7.23), (7.24) and (7.25)

compute factored u`(t1) with (7.27)

` = L?

compute factored uc,I(t1) with (7.23), (7.24) and (7.25)

compute factored uc,II(t1) with (7.29)

compute factored uc(t1) with (7.30)

`← `+ 1

output
• SN solution ψ(t1)
• factored moments u`(t1) with ` ∈ {1, · · · , L, c} as X1

` ,S1
` ,W1

`

no

yes

Figure 7.1: Flowchart of the presented method.



60 Chapter 7. Dynamical low-rank approximation for Boltzmann dose calculations

For ` ∈ {2, · · · , L} we have

K1
` = 1

1 + ∆tΣ(t1)

(
K1/2
` + ∆tX1

`−1S1
`−1W

1,T
`−1Σ(t1)W1/2

`

)
, X1

`R1 = K1
` , (7.33a)

L1
` = 1

1 + ∆tΣ(t1)

(
L1/2
` + ∆tX1/2,T

` X1
`−1S1

`−1W
1,T
`−1Σ(t1)

)
, W1

`R2 = L1,T
` , (7.33b)

S1
` = 1

1 + ∆tΣ(t1)

(
S̃1/2
` + ∆tX1,T

` X1
`−1S1

`−1W
1,T
`−1Σ(t1)W1

`

)
. (7.33c)

The collided flux is then updated through

K1
c = K1/2

c + ∆tX1
LS1

LW1,T
L Σ(t1)W1/2

c , X1
cR1 = K1

c , (7.34a)

L1
c = L1/2

c + ∆tX1/2,T
c X1

LS1
LW1,T

L Σ(t1) , W̃1
cR2 = L1,T

c , (7.34b)

S1
c = S̃1/2

c + ∆tX1,T
c X1

LS1
LW1,T

L Σ(t1)W̃1
c , (7.34c)

L̃1
c = S1

cW̃1,T
c (I + Σt(t1)∆tI−∆tΣ(t1))−1 , W1

cS1,T
c = L̃1,T

c . (7.34d)

Note that since Σ is a diagonal matrix, the inversion in eq. (7.34d) is given explicitly without having to
solve a linear system of equations. The time updated solution is then given by Xn+1

` = X1
` , Sn+1

` = S1
`

and Wn+1
` = W1

` , where ` ∈ {1, · · · , L− 1, L, c}.

Remark 7.1. The proposed idea of multilevel DLRA can be applied in various settings with various
strategies. The core ingredient is to write the solution as a sum of different contributions

u(t) = u1(t) + u2(t) + · · ·+ uL(t) .

Strategies to write the solution as a sum of different components can be the use of telescoping identities,
a split into symmetric and anti-symmetric solution contributions, a splitting of the original phase space,
e.g. particles that move forward and backward and many more. In a second step, evolution equations
for every component need to be derived. Third, every component ui is represented through a low-rank
factorization and evolution equations for every factor are derived with DLRA.

7.5.3 Boundary conditions

Boundary conditions for dynamical low-rank approximation are not straightforward to impose. Methods
to realize boundary conditions preserve relevant basis functions by excluding such functions from the
DLRA approximation [see e.g. 151, 110] or through rank adaptivity [87]. In this work, we shift the
complicated structure of the boundary condition onto a solution component that can be efficiently treated
with a conventional method. A main advantage of using an SN method for uncollided particles, besides
having to resolve a limited number of beam directions, is that its boundary conditions can be treated in
a straightforward manner. Since at the beam position we have n · Ω < 0 for all directions resolved by
the SN method, we can impose ψ0 = ψBC at all spatial points and ordinates. Hence, we have a simple
Dirichlet condition, which can be incorporated into the SN method with the use of ghost cells. For the
collided solution components, we assume u` = 0 and uc = 0 at the boundary. This encodes the fact that
no collided particles enter from the boundary and collided particles that reach the boundary from within
the computational domain will not reenter and can therefore be removed. This Dirichlet condition can
be imposed with DLRA in a straightforward manner, see e.g. [110, Section 4].
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7.6 L2-stability of the proposed scheme

The derived method is robust in that its time step restriction (or CFL number) does not depend on small
singular values of the coefficient matrix or stiff terms arising in the scattering step. By the choice of
the splitting steps, we ensure that this stability is achieved without having to invert matrices or solve a
nonlinear problem, which is commonly the case for implicit time integration methods.

In [114] the following theorems are proven, showing that the proposed method is L2-stable under a time
step restriction:

Lemma 7.1. Assume that the CFL condition
λmax(Ax,y)

ρmin

∆t
∆x ≤

1
2 (7.35)

holds true. Then, the streaming scheme in eq. (7.31) is L2-stable, i.e.,

‖X1/2S1/2W1/2,T ‖F ≤ ‖X0S0W0,T ‖F .

Theorem 7.1. Assume that the CFL conditions from eq. (7.35) and

max
k

1
1 + ∆tΣt(t)−∆tΣkk(t) ≤ 1 (7.36)

hold true for all pseudo-times t ∈ [0, T ]. Then, the scheme is L2-stable, in the sense that with u1
c :=

X1
cS1

cW1,T
c and u1

` := X1
`S1

`W
1,T
` we have

‖u1
c‖F +

L∑
`=1
‖u1

`‖F + ‖ψ(t1)‖F ≤ ‖u0
c‖F +

L∑
`=1
‖u0

`‖F + ‖ψ(t0)‖F .

The proofs are omitted in this thesis, all details can be found in [114].

7.7 Extension to rank adaptivity

In a last step, we discuss the extension of the proposed scheme to the rank adaptive integrator of [35]
and how it simplifies for a forward Euler time discretization. The core ingredient of this method is to
extend the time updated basis with the basis at time t0. Hence, for the streaming step, the updated basis
becomes X̂1/2 = [X0,X

1/2], where X
1/2 is chosen such that the column range of X̂1/2 contains K(t1) from

the streaming K-step and the basis is orthonormal, i.e., X0,TX
1/2 = 0 and X

1/2,TX
1/2 = I. Thus, the

matrix to compute the initial condition of the S-step reads M̂ = X̂1/2,TX0 = [I,0]T ∈ R2R0×R0 , where
R0 is the rank at time t0. In the same manner, we have N̂ = [I,0]T ∈ R2R0×R0 . Hence, as pointed out in
[35], we have X̂1/2Ŝ(t0)Ŵ1/2,T = X0S(t0)W0,T ∈ MR0 . The fact that the initial condition of the S-step
is of rank R0 can be used to reduce computational costs when using an explicit Euler step. The S-step
of the rank adaptive integrator for the streaming step then reads

Ŝ1/2 = [I,0]T S0 [I,0] + ∆t
(
L(2),1/2

x S0A
1/2

x + L(2),1/2

y S0A
1/2

y + L(1),1/2

x S0|Ax|1/2 + L(1),1/2

y S0|Ay|1/2
)
,

where the flux matrices are given by

A
1/2

x,y := W0,TAT
x,yŴ

1/2 ∈ RR0×2R0 , |Ax,y|1/2 := W0,T |Ax,y|TŴ1/2 ∈ RR0×2R0 ,

L(2),1/2

x,y := X̂1/2,TL(2)
x,yX0 ∈ R2R0×R0 , L(1),1/2

x,y := X̂1/2,TL(1)
x,yX0 ∈ R2R0×R0 .
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Thus, the flux matrices that need to be computed have 2R2
0 entries. When using more general time

integration schemes to solve the S-step for the rank adaptive integrator, the flux matrices have 4R2
0

entries. We determine the solution factors after the streaming update X1/2,S1/2 and W1/2 as well as the
rankR1/2 through the truncation step of the rank adaptive integrator. For components ` ∈ {1, 2, · · · , L, c},
the scattering steps have modified S-step equations

Ŝ1
1 = 1

1 + ∆tΣ(t1)

(
[I,0]T S1/2

1 [I,0] + ∆tX̂1,T
1 ψ(t1)TMΣ(t1)Ŵ1

1

)
,

Ŝ1
` = 1

1 + ∆tΣ(t1)

(
[I,0]T S1/2

` [I,0] + ∆tX̂1,T
` X1

`−1S1
`−1W

1,T
`−1Σ(t1)Ŵ1

`

)
, for ` = 2, · · · , L ,

Ŝ1
c = [I,0]T S1/2

c [I,0] + ∆tX̂1,T
c X1

LS1
LW1,T

L Σ(t1)Ŵ1
c .

For ` ∈ {1, · · · , L, c} we use X̂1
` = [X1/2

` ,X1
` ], where X1

` is chosen such that the column range of X̂1
`

contains K`(t1) from the scatteringK-step and the basis is orthonormal, i.e., X1/2,T
` X1

` = 0 and X1,T
` X1

` =
I. The directional basis Ŵ1

` is defined analogously. Note that for the scattered particles, we need to
do a final L-step (7.34d) after having updated the coefficient. In this case, the truncation step of the
rank adaptive integrator yields W̃1

c and S1
c . Since eq. (7.34d) is constructed through the fixed-rank

projector–splitting integrator, it will not modify the rank.

Besides allowing for a dynamic choice of the rank, the rank adaptive integrator remains L2 stable.

Lemma 7.2. Assume that the CFL condition from eq. (7.35) holds true. Then, the streaming scheme of
the rank adaptive integrator is L2-stable, i.e.,

‖X1/2S1/2W1/2,T ‖F ≤ ‖X0S0W0,T ‖F . (7.37)

Theorem 7.2. Assume that the CFL conditions from eq. (7.35) and eq. (7.36) hold true for all pseudo-
times t ∈ [0, T ]. Then, the scheme is L2-stable, in the sense that with u1

c := X1
cS1

cW1,T
c and u1

` :=
X1
`S1

`W
1,T
` we have

‖u1
c‖F +

L∑
`=1
‖u1

`‖F + ‖ψ(t1)‖F ≤ ‖u0
c‖F +

L∑
`=1
‖u0

`‖F + ‖ψ(t0)‖F .

Again, the full stability proofs can be found in [114].

7.8 Implementation

The proposed method including options for rank adaptivity and a multi-level collided-uncollided split has
been implemented in julia and is openly available on GitHub. First results presented in [114] used a 2D
electron code running on CPUs. The current version includes GPU-based solvers using CUDA and also
supports three-dimensional spatial domains as well as proton dose calculations.

7.9 Results: Electron transport

In the following, we demonstrate numerical experiments to compare conventional and the proposed meth-
ods. First, we present results for electron transport published in [114]. All results can be reproduced
with the openly available code framework [113].

https://github.com/CSMMLab/TITUS/
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7.9.1 2D results

Line source benchmark

To demonstrate the applicability of the proposed collision source method for dynamical low-rank approx-
imation in general radiation transport applications, we first take a look at the time-dependent radiation
transport equation for the line source benchmark [62, 63]

∂tψ + Ω · ∇rψ + Σsψ = Σs
4π

∫
S2
ψ dΩ , (r,Ω) ∈ [−1.5, 1.5]2 × S2 ,

ψ(t0) = 1
4πσ2 exp

(
−‖r‖

2

4σ2

)
,

(7.38)

where Σs = 1 and σ = 0.03. This equation can be recovered from the continuous slowing down ap-
proximation when choosing ρ ≡ 1 and treating the energy variable as time. The line source benchmark
is a common test case for radiation transport problems, exposing deficiencies of different methods. A
comparison of conventional methods for this benchmark can for example be found in [64]. Common
methods require high computational costs or parameter tuning to yield a satisfactory approximation.
Uses of dynamical low-rank approximation for this benchmark are [172, 171, 35], where it is observed
that high ranks are needed to achieve a desired level of accuracy. Nevertheless, in comparison to classical
methods, DLRA yields reduced run times and memory requirements. We use the following computational
parameters for our calculations:

nx = Nx ·Ny = 40000 number of spatial cells
m = (N + 1)2 = 484 number of spherical basis functions
nq = 968 number of quadrature points for uncollided flux
tend = 1 end time

We use a CFL number of 0.5 according to eq. (7.35). That is, the time step size is chosen as ∆t = ρmin
∆x
2 .

The scalar flux Φ(t = 1, r) =
∫
S2 ψ(t = 1, r,Ω) dΩ computed with different methods can be found in

Figure 7.2. We observe a significant increase in the solution quality when using L = 4 instead of L = 1
levels. The level 4 approximation with a tolerance parameter of ϑ = 0.3 agrees well with the PN solution.
Here, we use the term PN to indicate the use of an SN solver for uncollided particles as well as a PN
solver for the remainder. While PN takes 5408 seconds to compute the scalar flux at time t = 1, the
DLRA methods with L = 1 and L = 4 levels only require 1009 and 1278 seconds respectively. Since
particles move into all directions, a main factor in this run time is the SN solution. Taking a look at the
rank evolution in time, depicted in Figure 7.3, we see that most information is carried by the uncollided
flux as well as solution components with little collisions.

Treatment planning for lung patient

In the following, we examine the application of the proposed method to a realistic 2D CT scan of a lung
patient. The patient is radiated with an electron beam of Emax = 21 MeV. We model this beam as

ψin(E, r,Ω) = 105 · exp(−(Ω1,∗ − Ω1)2/σΩ1) · exp(−(Emax − E)2/σE)

· exp(−(r∗x − rx)2/σx) · exp(−(r∗y − ry)2/σy) ,
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Figure 7.2: Scalar flux Φ(t = 1, r) =
∫
S2 ψ(t = 1, r,Ω) dΩ with different methods and analytic reference

solution.
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(b) ϑ = 0.3, L = 4

Figure 7.3: Rank evolution in energy for different numbers of intermediate collision levels L.

which is used as boundary condition for the uncollided particle flux. To determine a tissue density ρ

for given gray-scale values of the CT image, we assume a value of one, i.e., a white pixel, to consist of
bone material with density ρbone = 1.85 g/cm3. The remaining tissue is scaled such that a pixel value
of zero corresponds to a minimum density of ρmin = 0.05 g/cm3. Air around the patient is filled with
material since this region does not impact the dose distribution. Note, that CT-calibration curves or
density look-up tables can be used for a more sophisticated mapping of pixel values to density [see e.g.
188, 189]. The chosen settings are the same as in section 7.9.1. Since we are using a directed particle
beam as boundary condition for the uncollided particles, the number of quadrature points nq reduces by
over 59 percent. The remaining parameters are:

nq = 396 number of quadrature points for uncollided flux
Emax = 21 energy of beam in MeV
r∗x = 7.25, r∗y = 14.5 spatial mean of particle beam in cm
Ω1,∗ = 1 directional mean of particle beam
σ−1

Ω1
= 75 inverse directional beam variance

σ−1
x = σ−1

y = 20 inverse spatial beam variance
σ−1
E = 100 inverse energy variance

We again use a CFL number of 0.5 according to eq. (7.35), leading to ∆t = ρmin
∆x
2 . For this setting, we

compute the full PN solution, the proposed dynamical low-rank method with a fixed rank of 50 consisting
only of collided and uncollided particles as well as the rank adaptive version with L = 1 intermediate
levels. Due to its reduced computational costs, the DLRA methods show a significantly reduced run
time. While the full PN method runs for 47329 seconds, the DLRA methods have a run time of 4373,
3917 and 5392 seconds respectively.
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(a) L = 1, ϑ = 0.01 (b) L = 1, ϑ = 0.001

(c) L = 0, fixed rank r = 50 (d) PN

Figure 7.4: Dose distribution with different methods.
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The resulting dose distribution can be found in Figure 7.4. All considered variations of the proposed
method are able to capture the effect of heterogeneities in the patient density and agree very well with
the PN solution in the relevant dose areas. The efficiency of the method concerning both time and
memory is a step towards feasibility for practical applications. This includes the generation of optimal
treatment plans with gradient-based optimization methods. It is observed that choosing a low refinement
tolerance ϑ = ϑ̄ · ‖S‖F with ϑ̄ = 0.01 leads to a very slight difference to the full solution for the smallest
two isolines. However, these deviations are barely visible to the naked eye.

The corresponding ranks at different energies for ϑ̄ ∈ {0.001, 0.01} are depicted in Figure 7.5. It is
observed that the rank of collided particles remains small at low and high energies. At intermediate
energies, the rank reaches its maximum. A possible explanation for this is, that advection (which is
dominant at the beginning) and diffusion (which is dominant at the end), are both individually low
rank. Thus, higher ranks are mainly required at medium energies, where a complex interplay of both
effects takes place. Particles that have collided once can be described with a small rank throughout the
simulation. Note that particles which have collided once are only present for energies below 21 MeV. The
reason for this is that particles enter the patient tissue with maximum energy and are then directly subject
to energy loss and scattering. The first four dominant spatial modes at the lowest energy are depicted
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Figure 7.5: Rank evolution in energy for different ϑ = ϑ̄ · ‖S‖F .

in Figure 7.6 and the first four dominant directional modes are shown in Figure 7.7. These modes have
been computed by an SVD of the coefficient matrix S = UDVT . We then plot the first four columns of
XU and WV. The directional basis carries the information that particles are predominantly traveling
into the x-direction, i.e., in direction of the particle beam. The spatial basis encodes that particles with
low energies are situated at the left of the CT scan and can mostly be found in high-density tissue.
Due to the low energy of these particles, no significant contribution to the overall dose distribution is
observed.
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Figure 7.6: First four dominant spatial modes with fixed rank integrator.
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Figure 7.7: First four dominant directional modes with fixed rank integrator.
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7.10 Results: Proton transport

Due to the structure of electron dose deposition, electron beams are only used for a small fraction of
treatment cases, where the tumor is close to the surface of the skin. Therefore, we now consider the
more widely applicable proton transport equation as described in section 4.4. Initially, we only include
nuclear scattering cross sections from [13] as well as the stopping power from [17] and consider elastic
Coulomb scattering as described by Rutherford without corrections for Multiple Coulomb Scattering
(eq. (4.12)).

7.10.1 Cross-validation in 2D

First, we consider a 7.25 × 7.25cm2 2D spatial domain with a Gaussian beam directed forward, i.e.
Ω1,∗ = 1. We set Emax = 90 MeV, σx = σy = 0.1cm, σE = 0.01, σΩ1,∗=0.01 and use a rank of R = 5.
Figure 7.8 compares the dose distributions between the DLRA and a MC dose engine for computations
in a water phantom (ρ = 1 everywhere). The dynamical low-rank approximation is able to capture the
beam width, dose magnitude and particle range correctly. Figure 7.9 further shows that the Monte Carlo
solution is in very good agreement with the DLRA on the central beam axis, both for the homogeneous
water phantom and when inserting a box with higher density ρbone = 1.85 g/cm3 at 3.625 cm depth
behind the beam entry. Some deviations from the MC reference can however be observed in the lateral
dose spread near the Bragg peak. Here, the MC solution fans out due to the increased scattering of slow
protons. The lack of this effect in the DLRA solution can most likely be attributed to the simplified physics
model, which relies on coarse approximations and merely includes a subset of all particle interactions.

(a) MC (b) DLRA

Figure 7.8: Dose computed using (a) Monte Carlo and (b) DLRA for a beam in a water box.
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Figure 7.9: Central beam axis cut through dose computed using Monte Carlo and DLRA for a beam in
a water box and a heterogeneous target (water box with a bone insert).

The runtime of the DLRA approach (here still without GPUs) is reduced significantly from 26707s to
653s compared to a full deterministic Pn solver. Note, that for protons we require a much lower rank
than in our previous electron dose calculations. Here, we observe that ranks R ≤ 5 are usually sufficient.
A possible explanation for this behavior is the fact that protons experience much less scattering during
the build-up of the beam. Intuitively, advection appears dominant until shortly before the Bragg peak,
where it is directly superseded by diffusion. Thus both effects, that are individually low rank, are more
disjoint than during electron transport.

7.10.2 3D extension

Lastly, we consider a three-dimensional water phantom and compare to results from the Monte Carlo
dose engine TOPAS. The Gaussian beam is defined analogously to the previous section with σz = σx =
σy = 0.1 and we use rank R = 3. The physical model is now extended to also include the range straggling
approximation described in section 4.1. Figure 7.10 shows a 3D plot of the delivered dose and fig. 7.11
the integrated depth dose in comparison to the Monte Carlo method. We see that DLRA agrees well
with the Monte Carlo reference in terms of the overall structure and range. The DLRA however produces
an overly sharp Bragg peak compared to the dose plateau during build-up. This effect can stem from
the lack of nuclear scattering in the cross sections used for the dynamical low-rank approximation [25].
In order to verify this suspicion, fig. 7.11 also shows the results of a Monte Carlo simulation with only
electromagnetic (Coulomb) interactions. Here, the integrated depth dose curve indeed agrees better with
our DLRA results and now predicts only very slightly higher values during the dose build-up. Note,
however, that since we are looking at integrated depth dose curves, the observed effects or the remaining
difference could also stem from lateral deviations. Further investigations, e.g. into the approximation
error introduced by using the Rutherford formula instead of a multiple Coulomb scattering model, are
necessary for more certainty in this regard.
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Figure 7.10: 3D plot of proton dose distribution computed with DLRA.

The run time of the DLRA with rank 3, on a (100 × 100 × 400) cell spatial domain with 372 moments
for the Pn angular discretization is 4 minutes and 13 seconds, which is comparable to a Monte Carlo
simulation with 105 particles (6 minutes 30 seconds) and significantly less than MC with 106 particles
(60 minutes 9 seconds).
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Figure 7.11: Comparison of MC with complete physical model and only electro-magnetic interactions vs.
DLRA integrated depth dose for a beam in a 3D water box.

Note, that professional Monte Carlo dose calculations are highly optimized and parallelized. Therefore,
despite their slow convergence, the run times remain relatively low when computing in parallel. During
treatment planning, typically several million particles have to be simulated for the numerous pencil
beams. The achievable speed-up for an IMRT plan, therefore, depends largely on the required rank and
discretization when considering a weighted sum of Gaussian beams. The reduced storage and energy
consumption however serve as additional arguments for the use of DLRA. Our results further indicate
that the accuracy of DLRA dose computations could be improved by incorporating more exact physical
models including nuclear scattering.
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CHAPTER 8

Results: Comparison of the numerical solution methods

In this last chapter of part II, we want to directly compare the previously discussed deterministic methods
with a reference Monte Carlo code for a simple radiation therapy test case. Since the Monte Carlo
method is prevalent in the medical physics community, while the deterministic Boltzmann solvers as well
as improvements like the DLRA are almost exclusively used in more mathematically focused research,
these are seldomly juxtaposed.

We consider a simple Gaussian electron beam in a 2D 1 × 1cm2 homogeneous water box (ρ ≡ 1). We
model the beam as

ψin(E, r,Ω) = 105 · exp(−(Ω1,∗ − Ω1)2/σΩ1) · exp(−(Emax − E)2/σE)

· exp(−(r∗x − rx)2/σx) · exp(−(r∗y − ry)2/σy) ,

where Emax = 5 MeV, Ω1,∗ = 1, σx = σy = 0.01cm, σE = 0.01, σΩ1,∗ = 0.1. The dose is computed using
the KiT-RT implementations of S40, P17 andM11 solvers as well as the dynamical low-rank approximation
using SN for the uncollided particles and P17 for the at least once collided particles with fixed rank
r = 50. All methods are compared to a Monte Carlo reference computed using TOPAS MC [175] with
106 simulated particle histories.

Figure 8.1 compares the dose solutions along a lateral and longitudinal cut. Along the central beam
axis, the P17, M11 and dynamical low-rank solver agree well with the Monte Carlo reference, while the
S40 solver increasingly overestimates the dose with growing depth. In the lateral cut, all methods are
able to correctly predict the beam width. However, the S40 and dynamical low-rank method exhibit
slight oscillations to the side of the beam. Further, the S40 method again overestimates the solution
in the low-dose regions. The parallel between S40 and DLR is likely due to the use of the SN method
for the uncollided particle equation in the dynamical low-rank approach. An improvement of the DLR
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results could thus be achieved by using a method with fewer artifacts, such as an analytical ray-tracing
or method of characteristics approach.
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Figure 8.1: (a) Vertical (at x = 0.1cm) and (b) horizontal (at y = 0.5cm) cross section through the
normalized dose in a waterbox. Comparison of the KiT-RT S40, P17, M11 solver, a DLRA solver with
rank 50 based on P17 and a reference Monte Carlo solution with 106 simulated particles.

Figure 8.2 shows the trade-off between accuracy in terms of the root mean square error (RMSE) compared
to the Monte Carlo reference and computation time or memory consumption.
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Figure 8.2: Comparison of different KiT-RT SN , PN and MN solvers as well as DLRA solvers with
different ranks based on P13/17 in terms of (a) accuracy (measured in root mean squared error (RMSE)
vs. CPU time and (b) accuracy vs. system size/required memory.

Here, it becomes apparent, that all methods lie within a similar range of accuracy. The PN and MN

solvers show the highest agreement with the reference, however, computation time is relatively high for
the MN method due to the need to solve an optimization problem in each solver iteration. While the
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dynamical low-rank method shows slightly higher RMSE values than the PN and MN method, both
run-time and system size are reduced. As chapter 7 has demonstrated, this complexity reduction is
significantly higher for proton dose computations, where a much lower rank of 3-5 is sufficient. Further,
due to the structure of the DLRA complexity formulas, the effect can be expected to be larger in higher
spatial dimensions.

Overall, deterministic dose calculations are an alternative to Monte Carlo in terms of accuracy. How-
ever, standard SN , PN and MN solvers are typically not able to compete with the speed and memory
requirements of an optimized, highly parallelized MC code. The dynamical low-rank approximation is
a promising approach to increase the efficiency of deterministic dose calculation methods, especially for
proton therapy.
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CHAPTER 9

Discussion

The preceding chapters defined a mathematical model of radiation transport and solved the corresponding
system of equations in order to obtain the deposited dose. We recalled the most common dose calculation
methods used in medical physics: The Monte Carlo method and the pencil beam algorithm. While the
Monte Carlo method is seen as the gold standard in terms of accuracy, it is computationally expensive.
The pencil beam algorithm on the other hand is a heavy approximiation, relying on simplified assump-
tions in handling density and medium heterogeneities. For this reason, we consider the class of Boltzmann
solvers as a deterministic alternative with accuracy comparable to Monte Carlo transport. While numer-
ical methods focused on solving the discretized transport equation are widely researched in mathematical
transport theory, they are far less common in the application field of medical physics.

KiT-RT

In chapter 6, we first present a collection of deterministic transport solvers for radiation therapy applica-
tions. The open-source code framework aims at making this class of dose calculation methods accessible
for medical physics researchers as well as allowing applied mathematicians to easily implement and test
their methods in a realistic and relevant setting. The implemented SN , PN and MN solvers agree well
with results obtained with conventional radiation therapy codes. Due to the use of polymorphism, we
are able to guarantee a straightforward extension to further numerical methods, which facilitates the
investigation of novel radiation therapy solvers and their comparison to conventional methods. How-
ever, the framework so far does not include attempts to lower the computational costs associated with
high-dimensional dose calculations. Further, the solvers are limited to a 2D spatial domain and elec-
tron transport. Future work could incorporate the methodology from chapter 7 to reduce memory and
run-time and extend the implementation to 3D as well as proton or photon therapy.
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Dynamical low-rank approximation

In chapter 7, we proposed a dynamical low-rank approximation for use in radiation therapy. Instead
of computing the full solution, dynamical low-rank approximation evolves a low-rank factorization of
the solution in time, thereby significantly reducing computational times and memory requirements. The
method can be understood as a Galerkin method, which automatically and dynamically picks basis
functions to capture relevant information of the solution. Through rank adaptivity, the rank of the
solution approximation (that is, the number of basis functions) decreases or increases in time according
to the solution complexity.

Furthermore, a collided-uncollided split is used to evolve only collided particles with a dynamical low-rank
approximation. Thereby, we potentially reduce the required rank while facilitating the implementation
of boundary conditions. This approach can be extended to L-collided splits, which can be interpreted
as writing the solution as a telescoping sum. By applying DLRA to each update in this sum, we can
decrease the solution complexity in a multilevel fashion. Additionally, we propose an efficient implicit
time discretization for scattering terms, which allows for increased time step sizes while not requiring the
inversion of matrices. The proposed method is shown to be L2-stable under a CFL restriction which only
depends on the streaming term. We apply the proposed method to electron and proton dose calculations
in 2D and 3D spatial domains. Here, we observe good agreements with a Monte Carlo reference solution.
While run times could already be reduced by more than an order of magnitude in a simple implementation
for electrons, the approach is shown to be especially effective for proton dose calculations. Due to the
structure of proton beams, extremely low ranks are sufficient. In combination with a parallelized GPU
implementation, this leads to significantly lower memory requirements as well as run-times which are
1-2 orders of magnitude lower than in the electron case, even in higher spatial dimensions. To further
improve the accuracy of dose calculations, more exact physical models are required, which explicitly
consider multiple Coulomb scattering and include nuclear scattering or range/energy straggling. Further,
an SN method with a directed quadrature set was used for the uncollided particles. Here, an analytical
approach such as ray-tracing could be used to potentially improve efficiency and reduce the sensitivity
to numerical artifacts.

In future work, we aim at using the proposed forward method to facilitate optimization and uncertainty
quantification in radiation therapy. Our results promise an approach that is efficient enough for use in
dose optimization, while still taking into account the most relevant physical interactions.

Preview

In the next part of this thesis, we will introduce uncertainties to the transport equation and explore
efficient ways of modeling as well as propagating them through dose calculations. With view to the
observations made in this chapter, we will focus on two dose calculation methods: First, we will consider
how uncertainty quantification can be reconciled with the expensive gold standard MC method. Second,
we will explore the possibility to include uncertainty quantification directly in the novel dynamical low-
rank approximation for radiation therapy.
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Part III

Uncertainty quantification
Uncertainties can significantly affect the dose delivery in radiation therapy. This can hinder
plan fulfillment, reducing treatment effectiveness and causing unwanted side effects. In this
part, we therefore introduce uncertain parameters to the transport equation and discuss how
to mathematically model as well as efficiently propagate uncertainties. We introduce novel
approaches to incorporate higher-dimensional or time-dependent uncertainties into a multi-
variate Gaussian phase space model. Further, two novel uncertainty propagation methods
are discussed: 1. For Monte Carlo dose calculations based on importance sampling and the
reuse of particle trajectories and 2. for deterministic dose calculations based on the dynamical
low-rank approximation for tensor differential equations.
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CHAPTER 10

Sources of uncertainty in radiation therapy

In application sciences such as radiation therapy, uncertainties play a key role in the actual fulfillment of
a computed plan. Due to the structure of its dose delivery curve, proton therapy is especially sensitive
to uncertainties and a displacement of the dose peak into a risk volume can have dire consequences [132].
For this reason, we are interested in quantifying the effect of uncertainties on the delivered dose and the
consequent plan fulfillment.

To this end, we introduce an uncertain parameter to the problem eq. (4.1), which we assume to be a
vector of random variables ∆ : Ω∆ → Rd with probability density function (pdf) p∆ : Rd → R+. The
corresponding uncertain linear Boltzmann equation takes the following form.

Ω · ∇ψ(r,Ω, E,∆) + Σt(r, E,∆)ψ(r,Ω, E,∆) = QSca(r,Ω, E,∆) + S(r,Ω, E,∆) , (10.1)

We want to determine uncertainty statistics such as the expected value and variance of the dose estimate
with respect to these uncertainties. First, however, let’s consider which uncertainties are prevalent in
radiation therapy and how they can be modeled mathematically.

10.1 Spatial uncertainties

Among the most important sources of uncertainties in particle therapy are spatial displacements of the
patient anatomy relative to the irradiating beam [169, 130, 174, 132, 133]. In most cases, treatment plans
are optimized with respect to one initial pre-treatment CT. Afterward, the patient position as well as
the anatomy are assumed to be fixed throughout the complete treatment. This can lead to two types of
uncertainties: So-called inter-fractional uncertainties are caused for example by errors in the set-up or
positioning of the patient at the beginning of each the treatment or fraction (treatment session). Intra-
fractional uncertainties on the other hand occur during the irradiation and can be caused by patient
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movements, organ motion or respiratory motion. Since we only consider single fractions, inter- and intra-
fractional uncertainties coincide. Due to the varying densities a beam passes through depending on its
spatial position, spatial uncertainties do not lead to a static shift, but can also affect the particle range
and distort the structure of the dose distribution.

Intrafractional uncertainties can further lead to interplay effects when the application pattern of pencil
beams in IMRT and patient or organ motion interact.

10.2 (Calculational) Range uncertainties

The second type of uncertainty, which is important for dose calculations, is caused by a variety of factors
concerning the patient density, ranging from CT conversion errors to imaging artifacts or changes in the
patient geometry [217, 166, 132, 145].
Here, we will focus mostly on so-called calculational range uncertainties. The tissue density which is
required for dose calculations cannot be measured directly. For this reason, the CT image is converted
into density values and used to derive the material stopping power [see e.g. 188, 189]. However, this
conversion is not straightforward and often subject to unknown or erroneous parameters. In [132], it is
estimated that an uncertainty of ±3% has to be anticipated in the density conversion. Other sources cite
even higher deviations of 2.7− 4.6% [166].

10.3 Further sources of uncertainty

Apart from set-up and range errors, there are numerous additional sources of uncertainty including the
delineation of volumes of interest [e.g. 156, 218], organ motion [e.g. 129], tumor shrinkage or growth [e.g.
146, 128] or the biological tumor response [e.g. 52]. The subdivision of the treatment into fractions, spread
over the space of several weeks, can also cause different random and systematic errors [122, 136]. These
types of errors require tailored models and propagation methods, which will not be discussed in depth
within this thesis. The models for spatial uncertainties discussed in section 11.4 can be used to approxi-
mate target or organ motion in simple geometries. Further investigations would however be necessary to
assess the magnitude of the approximation error introduced by the simplifications. Chapter 15 will also
address the direct incorporation of time-dependent CT scans, which can reflect anatomical deformations
happening in the time frame of the recorded data.
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CHAPTER 11

Uncertainty modeling

The first challenge in uncertainty quantification is deriving an adequate mathematical model of the
observed uncertainties. Adequate in this case entails both that the form of the model is suitable for
an efficient use with common uncertainty propagation methods and that the description is as close to
reality as possible. While the focus in research often lies more on uncertainty propagation methods, the
uncertainty model is as much if not more responsible for the quality of the uncertainty analysis. An
unrealistic or faulty model will never yield helpful insights, independent of the method used to generate
them.

In the following, we will first review the standard uncertainty assumptions used in radiation therapy.
Subsequently, we will develop models which are able to reflect more complex and realistic uncertainties,
all while maintaining their usability within the propagation methods introduced in chapters 12 to 15.
Here, we will focus on the two main sources of uncertainty introduced in chapter 10, i.e. set-up and range
errors, many of the concepts could however also be adapted to different types of uncertainty using suitable
probability distribution functions and parameters. Note that in the following we will adopt a stochastic
view of particle dynamics as introduced in section 5.1. Here, we see particles as following a random walk
given by a black box according to their random initial phase space parameters Z = (r0,Ω0, E0). We will
investigate how uncertainties affect the phase space distribution and derive probabilistic representations
of the phase space under uncertainty. In terms of a numerical view of particle dynamics, the phase space
distributions define the boundary conditions in the transport equation.

11.1 Modeling set-up uncertainties

Set-up uncertainties correspond to a shift of the patient position or equivalently the positions of primary
particles relative to the patient. They can be modeled by random shifts in the initial particle positions
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r0. The initial phase space of the deterministic solver Z = (r0,Ω0, E0) is thus affected by the error
additively, i.e., the input Z(∆) under uncertainty is

Z(∆) = Z + ∆ ,where Z = (r0,Ω0, E0) and ∆ = (∆r,0, 0). (11.1)

We follow the common assumption, that errors, as well as input parameters, are normally distributed for
each pencil beam b = 1, .., B [233, 217, 174, 10, 61, 226]:

p∆ = N (µ∆,Σ∆) , Sb0 = N (µbZ ,Λb) . (11.2)

In this case we can define the density S(Z(∆)) of the input including the uncertain factors through
convolution of p∆ and S0 =

∑B
b=1 wbS

b
0 (comp. eq. (5.8)):

S :=
B∑
b=1

wb · N (µbZ + µ∆,Λb + Σ∆) . (11.3)

An individual error realization δk ∼ p∆ then formally just corresponds to a shift of the original primary
positions, which now follow the distribution

Sk := P(Z + ∆ |∆ = δk) =
B∑
b=1

wb · N (µbZ + δk,Λb) , (11.4)

corresponding to the nominal distribution shifted by δk.

Remark 11.1 (Standard assumptions). The most frequently used uncertainty model for set-up errors
assumes one global error ∆r = (∆rx ,∆ry ,∆rz ) ∼ N (µ∆r

,Σ∆r
). This would correspond to movements

or mispositioning of the patient which affect the complete body or at least the area of interest around the
tumor.

11.2 Modeling range uncertainties

In contrast to set-up uncertainties, which directly affect the phase space parameters (r,Ω, E), range
uncertainties modify the density values ρ(r). They can be caused by different effects described in chap-
ter 10, here we however only consider calculational range uncertainties, which occur when determining the
tissue density or relative electron densities/stopping powers from the voxel values in a CT image. These
conversion errors are typically assumed to manifest as the same percentage-wise deviation of densities in
each voxel:

ρ(r,∆ρ) = (1 + ∆ρ) · ρ(r),

where ∆ρ ∈ [1,−1] represents the relative deviation.

Using common uncertainty propagation methods, it would be sufficient to again assume for example a
Gaussian distribution of ∆ρ with a standard deviation of ±3% [132], to compute the required uncertainty
statistics. However, for the methods which will be presented in chapters 13 and 14, it is advantageous to



82 Chapter 11. Uncertainty modeling

model uncertainties in terms of the phase space parameters, such that we can derive a joint distribution
of Z(∆).

In the following, we therefore derive an approximate model of range uncertainties using the initial particle
energy E0. We exploit that the largest dose uncertainty is induced near the range of a beam [25], although
the uncertain density variation affects the whole trajectory. The deviation in density is thus equated to
a deviation in range. Range can be expressed in terms of the initial energy of particles, using the Bragg-
Kleemann rule

R = α · Ep0 , (11.5)

where R is the range, E0 is the initial energy and α and p are application-specific parameters. For the
case of the slow-down of therapeutic protons in water, values of α = 0.022 mm/MeVp and p = 1.77 can
be chosen [216].

The initial energy spectrum of a scanned pencil beam at the exit of the nozzle can be approximately
represented by a Gaussian [25, 100, 212, 201]. We can use this connection to model range uncertainties
through random variations of the initial energy [compare treatment of range straggling in 170]. To achieve
this, we use a first order Taylor expansion. In statistics, this approach is also known as the delta method
[e.g. 167].

Let’s assume range uncertainties are normally distributed and range is otherwise deterministic, i.e. ∆R ∼
N (0, σ2

R) and R(∆R) ∼ N (µR, σ2
R) [comp. 132, 238]. Note, that when considering range straggling,

the particle range itself is also considered to be random [18, 24, 152]. However, since this is typically
modeled using a normal distribution [19], the derivation of the range distribution under uncertainty is
straightforward. For the random variable R with mean µR and variance σ2

R, the mean and variance of
a differentiable function g(R) can be approximated using a Taylor approximation around µR = E[R]. A
first order Taylor expansion gives:

g(R) ≈ g(µR) + g′(µR)(R− µR) (11.6)

E[g(R)] ≈ g(µR) + g′(µR)E[R− µR]

= g(µR) (11.7)

V ar(g(R)) ≈ E
[
(g(R)− g(µR))2

]
≈ E

[
(g′(R)(R− µR))2

]
= g′(µR)2V ar(R). (11.8)

Now we can determine the parameters µE0 , σE0 of the energy distribution due to range uncertainties by
choosing g(R) := ( 1

αR)
1
p = E0 according to the Bragg-Kleemann rule (see eq. (11.5)).

µE0 = E[g(R)] ≈ g(µR) = ( 1
αµR)

1
p (11.9)

σ2
E0

= V ar(g(R)) ≈ g′(µR)2V ar(R) (11.10)

=
(

1
pα (µR 1

α )
1
p−1
)2
σ2
R
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We then further assume, that the energy E0 is normally distributed and set the parameters of this normal
distribution to µE0 and σ2

E0
. Thus, the randomness in range is approximated through an energy distri-

bution E0 ∼ N (µE0 , σ
2
E0

) and we can derive joint phase space and uncertainty distributions analogous
to section 11.1. Note, that considering the functional relation given by the Bragg-Kleemann rule and
the fact that R is normally distributed the assumption that E0 is also normally distributed is a coarse
approximation. We will investigate the associated approximation error numerically in chapter 14 and
section 11.5.

11.3 Multivariate models

In radiation therapy, often numerous beamlets with different energy levels, positions and incoming angles
are used to achieve better coverage of the tumor. Recall that the term beamlet refers to a fine proton beam
with specific energy directed at a certain position in the tumor. An ensemble of beamlets coming from
the same geometrical set-up of nozzle and patient is then referred to as beam, a group of beamlets with
the same lateral positioning within a beam as ray and a group of beamlets with the same energy within a
beam as energy level. In this case, contrary to remark 11.1 it may be more reasonable to assume beamlet-
specific correlation patterns, e.g., depending on the differences in time and position of application of the
individual beamlets. Additionally, treatments are usually administered in several sittings or fractions,
which can also affect how errors are correlated.

We therefore now differentiate between uncertainties in each beamlet and define the error in beamlet b
as δb = (δbx, δby, δbz) ∼ N (µbδ,Σb) and their covariance by

C =


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· · · ΣB



.

Here ρabxy is the covariance between the set-up errors of beamlet a in dimension x and beamlet b in
dimension y. It is then possible to obtain error realizations for different choices of the covariance matrix,
using a known probability distribution or, alternatively, a Copula with mean µ and covariance matrix
C.

Simple correlation models, assuming full correlation between the beamlets belonging to the same beam
or ray, have been investigated by different authors [10, 226, 178]. Figure 11.1 illustrates the covariance
matrix C for five examples of such simple correlation models.
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(a) (b) (c) (d) (e)

Figure 11.1: Correlation matrices for different assumptions. Rows and columns of the matrices correspond
to the individual pencil beams, and beam and ray separators indicate sections of pencil beams with
the same irradiation angle and lateral position, respectively. (a) No correlation between beamlets, (b)
correlation of energy levels within one beam, (c) ray-wise correlation, (d) all pencil beams with the same
lateral position, i.e. hitting the same material are fully correlated and (e) beamwise correlation, pencil
beams with the same irradiation angle are fully correlated.

In case the covariance matrix is singular (perfect correlation between some pencil beams), the dimension
of the uncertain vector can be reduced and one joint error can be sampled for the respective perfectly
correlated pencil beams.

As multivariate Gaussian distributions of the initial phase space parameters can be handled very efficiently
by the propagation methods proposed in chapters 13 and 14, we want to explore how this framework
can be used to model more complex correlation patterns. This can, for example, be used to incorporate
knowledge about the radiation process and even model certain time dependencies causing interplay effects
[e.g. 193, 202]. In the following, we demonstrate the derivation of the covariance matrix C for two examples
of autocorrelated set-up errors as well as time series data from a simple chest displacement data set and
a 4D CT scan.

11.4 Time-dependent models

We assume a multivariate Gaussian error model, where each dimension corresponds to the error in an in-
dividual beamlet with a Gaussian marginal distribution. The covariance matrix of this multivariate model
can reflect the spatial as well as time-dependent (auto-)correlation patterns. Uncertainty quantification
methods such as importance reweighting for MC (chapter 14) or analytical probabilistic modeling (APM)
for pencil beam dose calculations (chapter 13) then allow an efficient quantification of the uncertainties
directly from the error model.

We use the time-dependency inherent in the beam application process to derive covariance matrices rep-
resenting intrafraction motion interplaying with the beam application pattern. Each beamlet b = 1, ..., B
is therefore associated with a point in time during treatment t(b) at which particles are emitted from the
position and with the energy associated with this beamlet. The correlations between uncertainties of each
beamlet can then be derived from those between the errors at the associated time points. Previous works
have already demonstrated that specific types of intrafraction motion may be modeled as time series
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using, e.g., random walks, auto-regressive (ARMA) models or Gaussian processes [86, 50, 83]. Then the
required correlations can be determined using the autocovariance function. The process is illustrated in
fig. 11.2.
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Figure 11.2: A covariance matrix reflecting the correlations of beamlet positions can be derived from the
beam scanning pattern and covariances between errors at different time points. Illustration published in
[204].

11.4.1 Autocorrelated set-up errors

To demonstrate how the covariance matrix C can be obtained for a given correlation model, we first
consider the case of autocorrelated set-up errors, which follow an AR(1) process. While irradiation itself
usually only takes a few milliseconds, beamlets are applied sequentially according to their energy level and
up to 1-2 seconds can pass between them. Thus, assuming the patient is exhibiting random movement
with some probability at all points in time, the patient position corresponding to beamlets in adjacent
energy groups should be correlated to a higher degree than those of beamlets with a larger difference in
energies. Since first order autoregressive models are sufficient to capture interfractional set-up errors [86],
we choose such a model for the random patient movements during treatment.

We thus describe movements by an autoregressive process of order one, meaning that the overall deviation
at time t depends on the deviation at time t − 1 as well as a random variable Ut

iid∼ N (µδ,Σ), which
represents the movement error introduced between t− 1 and t:

δt = αδt−1 + Ut . (11.11)

Here, the factor |α| < 1 controls how strongly the position at the previous time step affects the current
position. It can, for example, be chosen depending on how much time passes between the time steps. In
our case, each beam b corresponds to a point in time t(b) according to its energy and we assume that
there is no additional correlation between the (x,y,z)-coordinates, i.e.,

Σ =


σ2
x 0 0

0 σ2
y 0

0 0 σ2
z

 . (11.12)
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From this description of the process, it is now possible to obtain the covariance matrix C using the
Autocovariance Function (ACVF):

ρijab = Cov(δt(i), δt(j)) =



α|t(i)−t(j)|σ2
x

1−α2 , a = b = x

α|t(i)−t(j)|σ2
y

1−α2 , a = b = y

α|t(i)−t(j)|σ2
z

1−α2 , a = b = z

0 , a 6= b

. (11.13)

Note that the variance is constant in time and the covariances only depend on the time difference. To
obtain a joint probability function we use a Gaussian copula, which for Gaussian marginals reduces to
the multivariate normal distribution N (µδ, C) with µδ = (µ1

δ , µ
2
δ , ..., µ

B
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

.

This AR(1)-correlation model gives an intuitive description of the random movements of a patient over
the time of irradiation. However, there are also errors caused by periodic movements such as respiratory
motion or heartbeats. Respiratory motion is often modeled using Gaussian processes with an appropriate
covariance kernel [50], however, there is also literature exploring the use of a periodic autoregressive
moving average (ARMA) model [83]. Both could be incorporated into our uncertainty framework, we
however confine ourselves to showing an example for a Gaussian process with a (local) periodic kernel
here.

The Gaussian process (GP) implements the concept of data in a time series following a joint multivariate
Gaussian distribution, where the covariance kernel defines the dependencies between different data points.
As the type of movement we are interested in has a dominant periodic component, which may however
vary over time, we choose the following kernel k(δt(i), δt(j)), proposed similarly by [51],

k(δt(i), δt(j)) = σ2 · exp
(
−2 sin2(π(t(i)− t(j))2/p)

l21

)
· exp

(
− (t(i)− t(j))2

2l22

)
. (11.14)

Here, σ is the variance of the stationary process, p is the period and l1 and l2 are scale parameters.
The first exponential term describes an exact periodic repetition, whereas the second term is a local
kernel that introduces the variations over time. Figure 11.3 illustrates the covariance kernel as well as
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Figure 11.3: Local periodic covariance kernel with σ = 3, p = 3, l1 = 1 and l2 = 5 (a) and five realizations
of the associated GP (b)

five exemplary realizations for a choice of σ = 3, p = 3, l1 = 1 and l2 = 5. The process starts at a
random point in the cycle and periodically repeats itself with some random variations. From eq. (11.14)
the derivation of the covariance matrix C is straightforward with the entries

ρijab = Cov(δt(i), δt(j)) =



σ2
x · exp(− 2 sin2(π(t(i)−t(j))/p)

l21
) · exp(− (t(i)−t(j))2)

2l22
) , a = b = x

σ2
y · exp(− 2 sin2(π(t(i)−t(j))/p)

l21
) · exp(− (t(i)−t(j))2)

2l22
) , a = b = y

σ2
z · exp(− 2 sin2(π(t(i)−t(j))/p)

l21
) · exp(− (t(i)−t(j))2)

2l22
) , a = b = z

0 , a 6= b

. (11.15)

The errors for all pencil beams can now be sampled from the multivariate Gaussian N (µδ, C) and will
depend on the time at which their corresponding energy level is applied.

The two examples above demonstrate, that it is possible to implement complex movement patterns and
even to some degree model time dependencies, by changing the way error realizations for the beamlet
positions are sampled.

11.4.2 Fitting models to data

We have seen in the previous section that – with some simplifying assumptions – it is possible to model
time-dependent uncertainties using the covariance structure of a multivariate Gaussian distribution of
the initial phase space. In the following, we want to apply the introduced concepts to realistic data and
highlight a possible workflow from patient data to personalized treatment planning.

We consider two sets of observed time series data TO ∈ RTxd describing patient or tumor movement
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within a certain measurement period with T observation times and d-dimensional data points. To derive
the covariance between uncertainties at the beam application times t(b), b = 1, ..., B, we want to fit a
time series model with associated autocovariance function or kernel. In the following, we will use the
example of a Gaussian process.

Kernel fitting and hyperparameter search

Fitting kernels or Gaussian processes to time series data is a problem for which a wide range of methods
and research is available, not least due to the recent popularity of machine learning and the use of
Gaussian processes in this context [180, 183, 182].

Here we use maximum likelihood estimation to find the set of hyperparameters θ ∈ Dθ ⊆ Rd, which
maximize the probability for observing the given set of data points. This likelihood is given by

L = p(TO | θ) = N (TO | θ)

= N (TO | µ,Σθ), (11.16)

where Σθij = kθ(ti, tj), i, j = 1, ..., T is the covariance kernel with hyperparameters θ. Note, that in the
following we assume that the function kθ is known and we merely optimize the choice of hyperparameters.
This is a reasonable assumption here since we have some insight into the structure of the respiratory data.
However, depending on the application and type of data this decision is not trivial. Numerous works [e.g.
51, 211, 1] therefore investigate approaches for an automated choice of kernel functions. This is however
beyond the scope of this thesis.

Given the likelihood function L, the maximum likelihood estimator solves

argmax
θ
L(θ) = N (TO | θ) (11.17)

or rather the equivalent problem using the logarithmic likelihood function due to its monotonicity

argmax
θ

log (N (TO | θ)) = −1
2(TO − µ)TΣθ−1(TO − µ)− 1

2 log(|Σθ|)− d

2 log(2π). (11.18)

Setting the partial derivatives for hyper parameters θ = (θ1, ..., θNθ ) to zero, we arrive at the extrema
candidates

∂

∂θi
p = 1

2(TO − µ)TΣθ−1 ∂Σθ
∂θi

Σθ−1(TO − µ)− 1
2 tr

(
Σθ−1 ∂Σθ

∂θi

)
!= 0. (11.19)

Note, that this approach can not only be used to derive an autocovariance kernel for given data, but also
constitutes a basis for Bayesian inference, i.e. for observed data TO in a time series, one could predict
the most likely next observations. This is discussed in more detail in [181]. Future work could explore
the possibility of a use for in-line radiotherapy, where the energy and position of the gantry are adapted
during the irradiation according to predictions of tumor movement.

Example 1: Fitting to surrogate chest displacement signal

The first dataset we consider has been retrieved from an open source platform [153] and contains one-
dimensional chest displacement data of 75 patients for high, medium and low breathing rates, measured
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Figure 11.4: Raw (green) and smoothed (black) data for the surrogate signal of a patient’s respiratory
pattern.

at a rate of 1/256s over the course of one minute. In order to directly obtain tumor movement data,
invasive procedures or a large number of CT scans (which are associated with further dose to the patient)
are necessary. For this reason, surrogate signals of the chest displacement are used in their place. These
can be recorded via an external marker block.

We will initially optimize for the hyperparameters σ and l of the squared exponential (SE) kernel [183]
as defined by

k(ti, tj) = σ2 exp
(
− (ti − tj)2

2l2

)
, (11.20)

where σ models the amplitude of the uncertainty and the specific length l the frequency of the variations.
Since the original data is recorded at a high frequency and contains a lot of noise, we first smooth the
signals using a Gaussian-weighted moving average as illustrated in fig. 11.4.

The optimization of hyperparameters then yields

σopt. = 1.7167 lopt. = 0.9146. (11.21)

We further apply the same strategy for different kernel types from [183]: the exponential kernel, Matérn
kernel, rational quadratic kernel and local periodic kernel. The different kernels as well as their optimal
hyperparameter values are summarized in table 11.1. Sampling from the corresponding multivariate
Gaussian distribution we can obtain uncertainty patterns that reflect the amplitude and period of the
initial data set (see fig. 11.5).

Using the derived covariance kernel with the optimized parameters, the required covariance matrix C

describing beamlet correlations can be directly obtained by evaluating the kernel function at the beam
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application times t(b), b = 1, ..., B. Figure 11.6 shows the beamlet covariance kernel and an excerpt from
the corresponding covariance matrix for a treatment plan with 1408 beamlets in 21 energy groups.

Table 11.1: Hyperparameter optimization for the surrogate signal from patient n◦4, for different kernel
types, where r =

√
(ti − tj)2.

Kernel Function Optimized Hyperparameters

Exponential k(ti, tj ; σ, l) = σ2 exp(− rl ) [σ = 1.1837, l = 1.6127]
Matérn3/2 k(ti, tj ; σ, l) = σ2

(
1 +

√
3r
l

)
exp

(
−
√

3r
l

)
[σ = 1.1329, l = 0.5972]

Rational Quadratic k(ti, tj ; σ, l, α) = σ2
(

1 + r2

2αl2

)−α
[σ = 1.3192, l = 0.4288, α = 0.2317]

Local periodic k(ti, tj ; σ, p, l1, l2) = σ2 exp
(

2 sin2(π(ti−tj).2/p)
l21

)
· exp

(
− (ti−tj)2

2l22

)
[σ = 1.0014p = 0.9967, l1 = 1.0002, l2 = 0.9997]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

time [s]

D
isp

la
cm

en
t

[m
m

]

Sample 1
Sample 2
Sample 3

Figure 11.5: 6 second extract of three displacement patterns sampled from the Gaussian process with a
local periodic kernel and optimized hyperparameters.

Having demonstrated how to incorporate simple one-dimensional data into our time-dependent uncer-
tainty model, we now proceed to show a proof-of-concept for higher dimensional 4D cone beam CT
(CBCT) imaging data.

Example 2: Fitting To Patient’s CBCT

In addition to standard three-dimensional CT images, which are obtained at the beginning of each
treatment planning process, so called 4D CTs are sometimes acquired. A 4D CT contains several 3D
images of the patient anatomy at different points in time. When considering respiratory motion, images
corresponding to the equivalent stages in the breathing cycle are merged to obtain a representative time
series. In the following, we use 4D lung CT data [88] from the open-source cancer imaging archive (TCIA)
[40], which covers 10 different time points during a breathing cycle (see fig. 11.7). Besides image data,
the chosen dataset further includes tumor and organ delineations in the form of contours for each slice
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Figure 11.6: (a) Excerpt from the covariance matrix and (b) beamlet covariance function for a local
periodic model fit to the chest displacement data set.

Figure 11.7: Slice of 4D CT taken from the first fraction of the breathing pattern.
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of the 3D CTs. In order to track the tumor movement, we approximate the position of the tumor by
its centroid. Note, that this representation can only approximate positional shifts of the complete tumor
structure and disregards information on deformations that might affect tumor shape or size. Given a set
of points {r1, . . . , rn} ∈ R3 defining the target contour, the centroid c is given by,

c = r1 + · · ·+ rn
n

(11.22)

An example of a centroid determined from tumor contours as well as the evolution of the centroid position
in x, y and z direction over time is shown in fig. 11.8.

contours
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Figure 11.8: (a) Tumor contours and computed centroid (b) displacement of tumor centroid separated
into x, y and z coordinates for an exemplary patient CT from [88].

Assuming no correlation between spacial dimensions, we optimize the hyperparameters of a squared
exponential kernel for each dimension individually. The optimized parameters are summarized in ta-
ble 11.2.

Table 11.2: Optimized hyperparameters corresponding to the process depicted in fig. 11.8

Squared Exp. Kernel Hyperparameters x y z
σ 0.9261 1.0476 2.3406
l 1.2009 0.7712 1.5304

A covariance matrix for the beamlets can be derived analogously to the previous sections. For example,
using a squared exponential kernel and assuming a time lag of 20ms between each energy level yields the
covariance structures presented in fig. 11.9 .
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Figure 11.9: (a) Excerpt from the beamlet covariance matrix (according to z-axis) and (b) kernel function
for a squared exponential model fit to the 4D lung CT data set (table 11.2).

11.5 Model validation

In the previous sections, several approximations have been introduced to model uncertainties for an
efficient use in uncertainty propagation methods. In the following, we want to examine the validity of
these approximations.

11.5.1 Range-energy approximation

First, we consider the approximation of calculational range uncertainties using the distribution of initial
particle energies. To investigate the error introduced by this simplification, we scale the density of a water
phantom and a CT scan (downsampled for the sake of simplicity) up and down by ±5% and compare the
results to an equivalent scaling of the initial energy according to the model introduced in section 11.2.
For the computations in the water phantom, a single pencil beam with 90 MeV is used, while the CT is
irradiated with 134.68 MeV.

Figures 11.10 and 11.13 show that the approximation is able to accurately reflect the change in the
particle range in water as well as the heterogeneous CT scan. It however introduces some deviations
during the dose build-up and around the Bragg peak. These deviations do not appear to be amplified
by heterogeneities. Further, the agreement according to a γ3 mm/3 % is at least 99.9% (see figs. 11.11
and 11.14). While some minor variations can also be caused by the stochastic nature of the Monte Carlo
solver used to compute the dose distributions, figs. 11.11 and 11.14 also show some systematic differences
around the peak/range of the beams.

In chapter 14 we apply the derived energy distribution for the quantification of expected dose and dose
variance in the presence of range uncertainties. We observe, that the model errors do not affect the
accuracy of the expected value significantly, but introduce deviations similar to those in fig. 11.11 and
fig. 11.14 when computing the variance.
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Figure 11.10: Comparison of dose cross sections in a water box for density scaled with factor (1± 0.05)
and approximation using energy scaled with (1 ∓ 0.05)(1/p), p = 1.77 (according to section 11.2). (a)
Cuts through central beam axis, (b) Lateral cut across beams at z = 3.625[mm].
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Figure 11.11: Comparisons of dose in water for density scaled with factor (1± 0.05) and approximation
using energy scaled with (1∓ 0.05)(1/p), p = 1.77 (according to section 11.2).
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Figure 11.12: Original and downsampled version of the prostrate CT scan from [42], axial plane at 36
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Figure 11.13: Comparison of dose cross sections in a low-resolution heterogeneous CT scan (fig. 11.12)
for density scaled with factor (1± 0.05) and approximation using energy scaled with (1∓ 0.05)(1/p), p =
1.77 (according to section 11.2). (a) Cuts through central beam axis, (b) Lateral cut across beams at
z = 4.5[mm].

11.5.2 Representation of time-dependent uncertainties via their autocovari-
ance function

Next, we want to investigate the approximation of time-dependent spatial uncertainties through the
covariance matrix of beamlets applied at different time points during the treatment. First, our imple-
mentation was validated against Monte Carlo results for individual realizations of positional shifts of the
patient over time. This ensures, that shifting just the beamlet applied at the considered time points is
equivalent to a shift of the complete patient geometry. For a single ray with 6 energy levels in a water
box, shifted by ±2 mm every 10 ms, the dose results in each time step reached 100 % agreement in a
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Figure 11.14: Comparisons of dose in a low-resolution heterogeneous CT scan (fig. 11.12) for density
scaled with factor (1 ± 0.05) and approximation using energy scaled with (1 ∓ 0.05)(1/p), p = 1.77
(according to section 11.2).

γ-analysis with tolerances of 2 mm/2 % in dose and location, respectively.

Further, we want to validate, that the derived multivariate Gaussian models with tailored covariance
matrices are sufficient to represent the considered time-dependent processes. First, we consider a simple
one-dimensional spatial uncertainty following an AR(1) process as described in section 11.4. Figure 11.15
shows that a step-by-step simulation of the time series using a Monte Carlo method for the uncertain
variable Ut yields equivalent results for the dose expected value and variance in a water phantom as
inputting the covariance matrix into the uncertainty propagation method introduced in chapter 13.

Figure 11.16 shows that this also holds for a three-dimensional uncertainty following a Gaussian process
with a periodic squared exponential kernel with parameters σ = 1, p = 3, l1 = 10 and l2 = 2. Note,
that this level of accuracy can only be expected when using the exact time points at which beamlets
are applied for the simulation of the time series and when considering either homogeneous materials or
shifts of the complete region of interest. Future work could investigate the possibility of an application
for uncertain shifts of the target within a heterogeneous material.
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Figure 11.15: Comparison of expected value and variance for a Monte Carlo simulation of the AR(1)
process and a direct APM computation based on the covariance matrix.
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Figure 11.16: Comparison of a Monte Carlo simulation of the AR(1) process using eq. (11.11) and the
approximation using a multivariate Gaussian with a covariance structure according to the AR(1)-process.
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CHAPTER 12

Background: Uncertainty propagation methods

Given an uncertainty model for the input parameters of a dose calculation algorithm, as defined in the
previous chapter, we want to gain insight into the uncertainty of the output, i.e., the dose. Typically,
this uncertainty is quantified in terms of a probability distribution or moments of this distribution, such
as the expected value or variance.

Different approaches for uncertainty propagation can be grouped into intrusive and non-intrusive methods
according to the extent of their interference with the deterministic solution method (here dose calculation).
The boundaries between both are blurred, here we therefore define non-intrusive to mean that a method
does not change the system of equations of the deterministic problem. Note, that this also includes
methods where slight changes to the solver would be necessary, e.g., in the accumulation of quantities
of interest or the sampling of random parameters. Approaches that fall into this marginal category will
sometimes be referred to as minimally intrusive. In the following, we will briefly review a number of
well-known uncertainty propagation methods for a general class of problems. Afterward, we will put a
more in-depth focus on three methods aimed at specific types of dose calculation algorithms, which are
developed and/or extended within the novel work presented in this thesis.

12.1 Intrusive methods

12.1.1 Stochastic Galerkin

Generalized polynomial chaos

The most frequently used intrusive uncertainty propagation method is based on an expansion of the
random variable or function in orthogonal polynomials. While the initial polynomial chaos approach [65,
231] used only Hermite polynomials as the orthogonal basis to represent random processes, generalized
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polynomial chaos uses different kinds of orthogonal polynomials based on the probability density function
of the random quantity [237]. Table 12.1 gives an overview of common distributions and the associated
orthogonal polynomials.

Following the Cameron-Martin theorem [30], any function from L2(C) can be approximated using or-
thogonal polynomials and the approximation converges in an L2(C)-sense. Thus, we can e.g. rewrite the
uncertain particle density in eq. (10.1)

ψ(Z; ∆) =
∞∑
p=0

cp(Z)Φp(∆) (12.1)

with Φp orthogonal polynomials, i.e.

〈Φi,Φj〉 = 1
2π

∫ ∞
−∞

Φi(∆)Φj(∆)p∆(∆)d∆ = δij〈Φ2
i 〉 = δijh

2
j . (12.2)

In practice, the sums in eq. (12.1) are truncated to a finite order P , resulting in the approximation

ψP (Z; ∆) =
P∑
p=0

cp(Z)Φp(∆). (12.3)

The goal is to compute the coefficients cp. This would give us not only a functional representation of the
particle density depending on the uncertain parameter but also the expected value and variance which
can be determined using the orthogonality of the polynomials as follows:

µψ = Ep∆ [ψ(Z; ∆)] = Ep∆

[ ∞∑
p=0

cp(Z)Φp(∆)
]

=
∞∑
p=0

cp(Z)Ep∆ [1 · Φp(∆)]

=
∞∑
p=0

cp(Z)Ep∆ [Φ0(∆) · Φp(∆)]︸ ︷︷ ︸
=δ0p

= c0(Z) (12.4)

σ2
ψ = V ar

( ∞∑
p=0

cp(Z)Φp(∆)
)

(12.5)

= Ep∆

( ∞∑
p=0

cp(Z)Φp(∆)− c0(Z)
)2


= Ep∆

( ∞∑
p=1

cp(Z)Φp(∆)
)2


=
∞∑
p=1

cp(Z)2h2
p ≈

P∑
p=1

cp(Z)2h2
p. (12.6)
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Table 12.1: Common continuous probability distributions and the associated types of gPC basis polyno-
mials [237, see e.g.]

Distribution Orthogonal polynomial
Gaussian Hermite
Uniform Legendre
Exponential Laguerre
Gamma Generalized Laguerre
Beta Jacobi

Galerkin projection

In order to find the coefficients of the truncated polynomial expansion eq. (12.3), a Galerkin projection
is applied. If f(ψ(Z,∆),∆) = 0 describes the transport equation for ψ(P ), plugging in the truncated
expansion from eq. (12.3) creates a non-zero residual r(P )(Z,∆) = f(ψ(P )(Z,∆),∆). In the stochas-
tic Galerkin method, we demand that the residual is orthogonal to the ansatz space spanned by the
polynomial basis functions, i.e.,

E[f(ψ(P )(Z; ∆),∆)Φj ]
!= 0 j = 0, ..., P. (12.7)

This yields a new system of P+1 equations. Depending on the structure of the equations and the required
order P of the expansion, the stochastic Galerkin method can be very efficient compared to non-intrusive
methods. However, it also requires the sometimes non-trivial derivation of a new system of equations and
subsequently changes in the solution algorithm. Especially in clinical practice, intrusion into the solver
code is often infeasible due to the use of proprietary software for dose computations. For this reason, we
focus mostly on non- or minimally intrusive strategies when considering Monte Carlo dose calculations,
which are typically carried out with professional software. Note, that there is also a non-intrusive method
based on generalized polynomial chaos, which will be discussed in section 12.2.4.

12.2 Non-intrusive methods

Non-intrusive strategies typically involve computing the dose at different points in the uncertain pa-
rameter space. When considering non-intrusive UQ methods, the dose calculation algorithm can thus
be treated as a black box returning the dose D(r; δj) at position r for a point δj in the space of the
uncertain variable ∆ ∼ p∆.

12.2.1 Monte Carlo

Remark 12.1. Note, that for the reader’s convenience, we again recapitulate the classical Monte Carlo
method, previously introduced in section 5.1, in the following section.

The Monte Carlo method is a numerical integration method, which is based on evaluating the integrand at
random positions sampled from the probability distribution of the integration variable. For realizations
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δi , i = 1, ..., N of the random variable ∆ ∈ Rd with probability density function p : Rd → R+, the
estimator is defined as follows:

I(f) = Ep[f(∆)] =
∫
Rd
f(∆)p(∆)d∆ ≈ 1

N

N∑
i=1

f(δi) := IN (f) . (12.8)

Note, that with the Strong Law of Large Numbers, one can show

P
(

lim
N→∞

IN (f) = I(f)
)

= 1 , (12.9)

i.e., the Monte Carlo estimator converges to the true value in probability. Further, the independence
of the random variables δi and the Central Limit Theorem provide a formula for the variance of the
estimator:

V ar(IN (f)) =
v2
f

N
, (12.10)

which depends solely upon the variance v2
f of the integrand and the number of samples N . The esti-

mator thus converges with O( 1√
N

) and its accuracy can be controlled through the number of computed
realizations.

12.2.2 (Randomized) quasi-Monte Carlo

Due to the slow convergence and therefore often large sample sizes required for Monte Carlo estimates,
numerous variations of the method exist, which reduce the variance of the estimator [28]. The Monte
Carlo method relies on randomly sampled points, which are in practice implemented using pseudo-random
numbers [29]. These can be generated to be uniformly distributed using a random number generator and
transformed to the required probability distribution [210, 48, 21]. The quasi-Monte Carlo method replaces
the pseudo-random points, which imitate a random uniform distribution, by a set of deterministic low
discrepancy points PN := {u1, ...,uN} ∈ [0, 1)d. These points aim to cover the domain more uniformly
[28]:

INqMC(f) := 1
N

N∑
i=1

f(ui) . (12.11)

Here, the discrepancy of a point set PN is defined as

DN (PN ) = sup
J⊆[0,1]d

∣∣∣∣#points from PN in J
N

− vol(J )
∣∣∣∣ (12.12)

where vol(J ) is the volume of the d-dimensional subset J of the unit cube. Further, the Koksma-Hlawka
inequality states that for functions with finite variation, the integration error is bounded by the product
of the variation and the discrepancy of the sequence used for numerical integration. Thus, quasi-Monte
Carlo methods aim at minimizing the discrepancy.

Theorem 12.1 (Koksma-Hlawka). Let {ui}i=1,..,N ∈ [0, 1)d a sequence of N points with discrepancy
DN and f a real-valued function on [0, 1)d with bounded Hardy-Krause variation V (f), then∣∣∣∣∣

∫
[0,1)d

f(X)dX − 1
N

N∑
i=1

f(ui)
∣∣∣∣∣ ≤ V (f) ·DN
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This can for example be achieved using grid points or number theoretic sequences such as the Halton [70]
or Sobol sequence [198], which will be used in chapter 14. An upper bound to the discrepancy is derived
by [155]:

DN ≤ c(d) log(N)d
N

. (12.13)

When considering a non-uniform distribution p, the low-discrepancy points have to be transformed to
represent this probability distribution, i.e., apply τp such that τp(u) ∼ p for u ∼ U [0, 1]d [29]. In order to
analyze the properties of the quasi-MC approximation for non-uniform distributions, one can either use
eq. (12.11) and theorem 12.1 with the original low-discrepancy point-set PN and the composed function
fτp = f ◦ τp or use a generalized framework that applies to measures apart from the Lebesgue measure
[29], such as the generalized Koskma–Hlawka inequalities discussed in [78, 4].

Typically, a faster convergence rate can be achieved with quasi-MC compared to standard MC, especially
in lower dimensions. However, due to the deterministic nature of quasi-MC, properties such as the
unbiasedness of the standard Monte Carlo estimator are lost and no general error formula is known
[116].

Randomized quasi-Monte Carlo therefore reintroduces randomness to the method, while retaining the
convergence properties of quasi-MC. The resulting point set is a low discrepancy sequence, in which each
individual point is uniformly distributed [116]. In the case of a grid rule, this can, for example, be achieved
by rotating the lattice or randomly drawing points within the grid cells from a uniform distribution. For
number theoretic sequences, different random shuffling and scrambling1 strategies have been developed
[163, 143, 117, 105]. We use a Sobol sequence with linear scrambling and a random digit shift according
to [143]. For square-integrable functions, the resulting randomized quasi-Monte Carlo approach preserves
the properties of Sobol sequences, ensuring a variance of O

(
log(N)d
N

)
for N d-dimensional sample points,

while also generating an unbiased estimate and allowing for statistical estimation of the integration error
[163, 164].

12.2.3 Stochastic collocation

Similar to quasi-Monte Carlo, the stochastic collocation method is also a non-intrusive method based on
a deterministic set of points, at which the model (here dose calculation algorithm) is evaluated. However,
collocation methods are based on the idea of finding a low-dimensional, continuous representation of the
solution (often a polynomial). This representation should satisfy the underlying equations exactly at
the so-called collocation points and serves as an interpolation function otherwise. Note, that stochastic
collocation is sometimes also used as an overarching term to denote non-intrusive methods which evaluate
a deterministic solver at different collocation points. In this definition, Monte Carlo as well as quasi-Monte
Carlo methods would also be included.

An example of interpolation polynomials used in stochastic collocation are Lagrange polynomials, de-
scribed e.g. in [56] for the interpolation of one-dimensional points:

1Shuffling refers to a randomization of the sample index while scrambling refers to the randomization of the sample
value.
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Lj(δ) =
N∏
k=1
k 6=j

δ − δk
δj − δk

. (12.14)

The dose response would then be approximated using N collocation points by

D(r; δ) ≈
N∑
j=1

D(r; δj)Lj(δ). (12.15)

From eq. (12.14), it is apparent, that D(r; δ) returns exactly the dose response values at points δj , j =
1, ..., N and interpolates smoothly inbetween. The choice of δ1, ..., δN is crucial for the efficiency of
the approach, especially in higher dimensions. Typically the point sets are then constructed from one-
dimensional quadratures (e.g. Clenshaw-Curtis or Gaussian quadrature rules [41, 207]). In the following,
we will briefly review two common ways of constructing higher-dimensional grids.

Tensorized grids

The simplest way to obtain a d-dimensional quadrature rule Q(d) from a given one-dimensional quadrature
rule

Q(1)f :=
N∑
i=1

f(δi)wi ≈
∫

[0,1]
f(δ)p(δ)dδ, δ ∼ p(δ)

is tensorization, i.e. applying the one-dimensional quadrature in each dimension. Then

Q(d)f :=
N1∑
i1=1

...

Nd∑
id=1

f(δ(1)
i1
, ..., δ

(d)
id

) · w(1)
i1
· ... · w(d)

id
≈
∫

[0,1]
...

∫
[0,1]

f(δ1, ..., δd)p1(δ1) · ... · p(δd)dδ1...dδd,

with δ = (δ1, ..., δd) ∼ p(δ) =
d∏
k=1

pk(δk)

is the d-dimensional quadrature. The tensorization of a one-dimensional quadrature rule with N points
requires Nd points to maintain the same error in d dimensions. Thus, the convergence rate decreases
with the number of dimensions. This issue is referred to as the curse of dimensionality and prohibits
the use of grid-based collocation methods for applications with high-dimensional phase spaces (such as
radiation therapy). An effort to mitigate the curse of dimensionality is made by sparse grids.

Sparse grids

In contrast to tensorized grids, which aim at integrating polynomials of maximal degree N exactly, sparse
grids reduce the number of required quadrature points and focus on the integration of polynomials with
total2 degree N . To achieve this, sparse grids use nested quadratures, where each level l reuses the points
of the previous level l − 1. A one-dimensional quadrature at level l is defined by

Q
(1)
l f :=

Nl∑
i=1

f(δ(l)
i )w(l)

i .

2Note, that for a multivariate polynomial with d variables, the maximal degree refers to the highest occurring power of
any one variable with non-zero coefficient, while the total degree refers to the maximum sum of such powers in a product
of the d variables
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We further define the difference between two consecutive levels of a one-dimensional quadrature as

Diff(1)
l f :=

(
Q

(1)
l −Q

(1)
l−1

)
f,

where Q(1)
0 = 0.

These operators also constitute a quadrature with the nodes of Q(1)
l and weights which are given by the

difference of the weights in Q(1)
l at levels l and l− 1. We can tensorize this new quadrature to construct

a d−dimensional sparse grid as follows

Q
(d)
l f =

∑
|l′|≤l+d−1

(
Diff(1)

l1
⊗ ...⊗Diff(1)

ld

)
f ,

where |l′| is the total degree of the multi-index l′ ∈ Nd.

According to [213], sparse grids require O(N log2(N)d−1) nodes to integrate polynomials of total degree
N exactly. While this is an improvement over tensorized grids, the number of points is still higher than
the order in a gPC expansion with the same total degree [108]. Therefore, we now lastly consider a
non-intrusive variation of the gPC approach.

12.2.4 Non-intrusive polynomial chaos

From section 12.1.1, we recall the truncated polynomial chaos expansion, here however we directly expand
the dose itself

D(r; ∆) ≈
P∑
p=1

cp(r)Φp(∆).

For a d-dimensional random variable, univariate polynomials can be chosen according to the distribution
in each dimension based on the Wiener-Askey scheme (see table 12.1). Multivariate orthogonal polyno-
mials can then be derived similarly to the construction of higher-dimensional quadrature rules through
tensorization.

Construction of a polynomial basis

Let {γj}j=0,..,N ⊆ Nd0 denote the set of multi-indices and let γj = (γ(1)
j , ..., γ

(d)
j ) be a multi-index from

the set. A multivariate polynomial Φj is constructed from univariate polynomials as follows

Φj(δ) =
d∏
k=1

Φ
γ

(k)
j

(δk).

The full Oth-order set of basis polynomials is then usually considered to include all N + 1 = (d+O)!
d!O!

polynomials of total order ≤ O:

{
d∏
k=1

Φ
γ

(k)
j

(δk) :
d∑
k=1

γ
(k)
j ≤ O

}
=
{

Φj(δ) :
d∑
k=1

γ
(k)
j ≤ O

}
.
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Table 12.2: Two-dimensional example for the construction of multi-indices and the full polynomial basis
set of order O = 2. Here Φ1

γ
(k)
j

,Φ2
γ

(k)
j

could be two different types of polynomials chosen according to the
distributions of δ1, δ2.

order γj Φj
O = 0 γ0 = (0, 0) Φ0(δ) = Φ1

0(δ1) · Φ2
0(δ2)

1 γ1 = (1, 0) Φ1(δ) = Φ1
1(δ1) · Φ2

0(δ2)
γ2 = (0, 1) Φ2(δ) = Φ1

0(δ1) · Φ2
1(δ2)

2 γ3 = (1, 1) Φ3(δ) = Φ1
1(δ1) · Φ2

1(δ2)
γ4 = (2, 0) Φ4(δ) = Φ1

2(δ1) · Φ2
0(δ2)

γ5 = (0, 2) Φ5(δ) = Φ1
0(δ1) · Φ2

2(δ2)

Table 12.2 shows the construction of a polynomial basis for d = 2 and maximal order O = 2. It is apparent
that the number of polynomials in the basis set grows rapidly with increasing order and dimension. For
this reason, approaches to generate sparse polynomial bases have been developed [22, 23, 173]. A simple
method introduced e.g. in [22] excludes high-order interactions between parameters by truncating the
multi-index set. Here only multivariate polynomials whose associated multi-index has a q-quasi norm ≤
order O are included. The q-quasi norm is defined as [23]

‖γj‖q =
(

d∑
k=1

γ
(k)
j

q

)q
.

Note that by choosing q = 1 we recover the full basis set.

Non-intrusive spectral projection

Using the orthogonality and a spectral projection, the coefficients of the polynomial expansion are given
by

cp = 〈D(r; ∆),Φp(∆)〉
〈Φp(∆),Φp(∆)〉 =

∫
...
∫
D(r; ∆) · Φp(∆) · p∆(∆)d∆1...d∆d

h2
p

. (12.16)

Thus, to determine the coefficients, we need to solve a multi-dimensional integral depending on the un-
known dose response. This can be done using any of the methods introduced in this chapter, e.g. for a grid
rule with nodes δ(1), ..., δ(Nq) ∈ Rd , weights w(1), ..., w(Nq) and dose responses D(r, δ(1)), ..., D(r, δ(Nq))
the coefficients can be estimated by

cp = 1
h2
p

Nq∑
i=1

D(r, δ(i))Φp(δ(i))w(i). (12.17)

Point collocation

Instead of deriving the expansion coefficients from a spectral projection, the point collocation method
solves a linear system of equations
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
Φ0(δ(1)) · · · ΦN (δ(1))

...
...

Φ0(δ(N+1)) · · · ΦN (δ(N+1))

 ·

c1
...
cN

 =


D(r, δ(1))

...
D(r, δ(N+1))

 (12.18)

which requires at least N + 1 dose response values at collocation points chosen e.g. according to a multi-
dimensional quadrature as described in section 12.2.3. For more than N + 1 collocation points, the
system is overdetermined and can be solved using a least squares approach. In [85] oversampling by
at least factor 2 is recommended, to increase the accuracy of the polynomial coefficients. For higher
dimensions, oversampling is even found to be more computationally efficient than increasing the number
of polynomials to achieve the same accuracy [85].
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CHAPTER 13

Analytical probabilistic modeling for pencil beam methods

The first more specialized uncertainty propagation method we want to introduce here was first presented
in [10]. Analytical probabilistic modeling (APM) exploits the simple functional form of the dose in
pencil beam computations (section 5.2), which is based on a Gaussian kernel convolved with the incident
fluence. This model makes it possible to analytically include Gaussian uncertainty models. In this
thesis, we merely extend the applicability of APM to a more generalized set of uncertainty models (see
chapter 11) and use the results to validate other, novel methods.

The goal of APM is to compute moments of the dose (or some other related quantity of interest [e.g.
232]) given by

Ep∆ [D(r,∆)m] =
∫
p∆(∆)D(r,∆)md∆.

The simple functional approximation of the pencil beam algorithm is used for the dose and uncertainties
are assumed to have a multivariate normal distribution ∆ ∼ N (µ∆,Σ∆). While this seems like a very
restricting assumption, it is a common one [233, 217, 174, 10, 61, 226]. Also, we have shown in chapter 11
that even complex time-dependent uncertainties can be fit into a Gaussian framework and how this can
be achieved. We now consider the deterministic dose approximation in the pencil beam approach:

D(r) =
∑
j

wjL
x
j (r)Lyj (r)Rj(r)

=
∑
j

wjL
x
j (rx)Lyj (ry)Rj(rz)

=
∑
j

wjN (rx;µ(j)
x ,Σ(j)

x ) · N (ry;µ(j)
y ,Σ(j)

y ) ·Rj(rz)
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The pencil beam approximation already employs a conveniently Gaussian form for lateral components Lxj
and Lyj [200, 68]. The depth component Rj(rz) on the other hand cannot be modeled with an individual
Gaussian [25], however under the assumption of smoothness, it can be approximated arbitrarily well using
a Gaussian mixture [191]:

Rj(rz) =
K∑
k=1

w
(k)
j N (rz;µ(k)

z ,Σ(k)
z ).

In [10] the parameters µ(k)
z ,Σ(k)

z are found by fitting a Gaussian mixture model with ten components,
each with distinct weight, mean and variance to integrated depth dose data from TOPAS MC [175] using
an expectation maximization algorithm. Then, the integrals for expected value and variance as well as
higher moments can be solved in closed form. Let δ = (δx, δy, δz) be a realisation of the lateral offset in
x and y direction as well as range uncertainties affecting the radiological depth z. We assume the errors
to be independent, i.e.

p(δx, δy, δz) = px(δx) · py(δy) · pz(δz) = N (δx; 0,Σ∆x
) · N (δy; 0,Σ∆y

) · N (δz; 0,Σ∆z
)

The dose for specific realization δ of the uncertain parameters is given by

D(r, δ) =
∑
j

wjL
x
j (rx + δx) · Lyj (ry + δy) ·Rj(rz + δz)

=
∑
j

wjN (rx;µ(j)
x + δx,Σ(j)

x ) · N (ry;µ(j)
y + δy,Σ(j)

y ) ·
K∑
k=1

w
(k)
j N (rz;µ(j,k)

z + δz,Σ(j,k)
z ).

The expected value can then be computed by solving

Ep∆ [D(r,∆)] =
∫
D(r,∆) · p(∆x,∆y,∆z)d∆

=
∫ ∫ ∫

D(r, (∆x,∆y,∆z)) · px(∆x) · py(∆y) · pz(∆z)d∆xd∆yd∆z

=
∑
j

wj

{∫
Lxj (rx + ∆x)px(∆x)d∆x

}{∫
Lyj (ry + ∆y)py(∆y)d∆y

}{∫
Rj(rz + ∆z)pz(∆z)d∆z

}

and the covariance by plugging Epz [D(r,∆)] and

Ep∆ [D(r,∆)D(r′,∆)]

=
∫ ∫ ∫

D(r, (∆x,∆y,∆z))D(r′, (∆x,∆y,∆z)) · px(∆x) · py(∆y) · pz(∆z)d∆xd∆yd∆z

=
∑
i,j

wjwm ·
{∫

Lxj (rx + ∆x)Lxm(r′x + ∆x)px(∆x)d∆x

}
·
{∫

Lyj (ry + ∆y)Lym(r′y + ∆y)py(∆y)d∆y

}

·
{∫

Rj(rz + ∆z)Rm(r′z + ∆z)pz(∆z)d∆z

}
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into
Cov(D(r,∆), D(r′,∆)) = Ep∆ [D(r,∆)D(r′,∆)]− Ep∆ [D(r,∆)]Ep∆ [D(r′,∆)].

Since all terms are Gaussian, the integrals can be solved analytically and the expected value and covariance
of the dose can be computed directly. While this is very efficient, it relies on strong assumptions about
both the dose deposition function and the uncertainties. The underlying pencil beam method is known to
have difficulties with heterogeneities, near which the variance due to uncertainties is however especially
high. While this could e.g. be alleviated by combining the approach with methods like fine-sampling, this
is outside the scope of this thesis. For this reason, APM will only be used for validation in homogeneous
water test cases.

In the following two chapters, we introduce two novel approaches developed within the context of this
thesis to improve the efficiency of uncertainty propagation in Monte Carlo as well as grid-based dose
computations.
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CHAPTER 14

Importance (re-)weighting for Monte Carlo dose simulations

First, we introduce a (re-)weighting approach to speed up non-intrusive uncertainty propagation in Monte
Carlo dose calculations following [203, 206].

The proposed method generates estimates of the expected value and variance of radiation therapy doses
from a single MC simulation run. It exploits the probabilistic nature of regular dose calculations to frame
uncertainties in the phase space parameters as a change of measure. The approach then uses the concept
of importance sampling [95, 71] and mimics the computation of scenarios in the parameter space by
(re-)weighting the results of a single realization. The computational overhead of a complex simulation is
thus reduced to that of the (re-)weighting step, effectively making the uncertainty quantification problem
a scoring problem independent of the underlying physical simulation.

Similar strategies have been previously employed, e.g., to estimate the average of samples from different
distributions [15, 214], for more efficient updates in optimization [196] and reinforcement learning [176,
69] or to artificially increase the sample size in costly simulations [208]. However, to the best of our
knowledge, there is no previous research on computing a conditional variance by (re-)weighting a single
original sample. Also, in the field of medical physics and in particular dose calculation, we are not aware
of any previous use of importance (re-)weighting for the reuse of samples, neither for dose estimates
(which are averages) nor for the variance with respect to input uncertainties.

In the following, we first introduce the problem of particle transport with uncertain input in the context of
Monte Carlo dose calculations. We then show how to use importance sampling to quantify uncertainties
(section 14.3), discuss mathematical properties of this approach (section 14.6) and lastly show results for
a water phantom as well as several patient cases and different uncertainty models (section 14.9).

Note, that the proposed method falls into the aforementioned category of minimally intrusive meth-
ods. Although the approach is based on non-intrusive methods, it is not completely non-intrusive as it
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requires access to the probability distributions of input parameters as well as the accumulation of quanti-
ties of interest such as the dose. The underlying equations are however not affected and even proprietory
code frameworks typically allow access to superficial parts of the code like input configuration and scor-
ing functions. Therefore, our approach does not suffer from the typical drawbacks of a non-intrusive
method.

14.1 Solution of the uncertain problem using Monte Carlo

When considering non-intrusive UQ methods, the Monte Carlo simulation of a particle history can be
treated as a black box BB(r; r0,Ω0, E0), returning the dose D(r) at position r for the random initial
phase space Z = (r0,Ω0, E0) ∼ S0 on DS0 (compare section 5.1).

D(r) = ES0 [BB(r; r0,Ω0, E0)] =
∫
DS0

BB(r;Z)S0(Z)dZ ≈ 1
H

H∑
p=1

BB(r; zp) , (14.1)

where the realizations z1, ...,zH are sampled from S0(Z).

Recall, that the black box for fixed realizations of the input parameters still describes a stochastic process,
due to subsequent sampling of the path and interactions of the particles. The input sampled from the
source distribution merely fixes the initial properties of released particles. Each response BB(r0,Ω0, E0)
however also implicitly includes realizations of the probability distributions governing the interactions of
these particles. Thus, the Monte Carlo method is applied to the complete random particle trajectory, we
however omit this, since we are only interested in uncertainties affecting the phase space at a superficial
level in the source distribution.

Most non-intrusive strategies involve computing the dose at different points in the parameter space.
In order to understand how non-intrusive methods are implemented when using MC dose calculation
algorithms, we now consider the Monte Carlo method, also for uncertainties. Here, these points are
realizations randomly drawn from the probability distribution p∆ of the uncertain variable ∆.

Note, that the introduction of an uncertain parameter adds a second stochastic process around the black
box transport solver. On the one hand, the dose distribution depends on random input parameters
following a distribution defined by the physical radiation source. On the other hand, this distribution
now depends on the random error vector ∆. Thus, if we want to compute the expected value D of the
dose with respect to both processes, we are looking for

D(r) = Ep∆

[
ESZ|∆ [BB(r;Z(∆)) |∆ = δ]

]
.

The Monte Carlo method can now be applied to both random processes. Starting with the error variable,
for a fixed realization, the black box MC solver can be applied analogously to the original problem. Thus,
the dose estimate Di(r) for realization δi and the corresponding conditional distribution

Si := P(Z(∆) |∆ = δi)
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is given by

Di(r) = ESi [BB(r;Z(∆)) |∆ = δi] =
∫
DSi

BB(r;Z)Si(Z)dZ ≈ 1
H

H∑
p=1

BB(r; zip) (14.2)

with zi1, ...,ziH sampled from Si. The Monte Carlo estimate of the expected value with respect to both
processes is then computed as the mean over D1(r), ..., DN (r) for δ1, ..., δN sampled from p∆

D(r) ≈ 1
N

N∑
i=1

Di(r) ≈ 1
N

N∑
i=1

1
H

H∑
p=1

BB(r; zip) , (14.3)

and the variance as the sample variance, defined as

S2
N = 1

N − 1

N∑
i=1

(xi − x̄)2 where x̄ = 1
N

N∑
i=1

xi , (14.4)

for xi, i = 1, ..., N that are independent and identically distributed. This is an unbiased estimator of the
variance of the random variable X. Applied to the problem at hand, this results in the following formula
for the dose variance:

V arp∆(D(r,∆)) ≈ 1
N − 1

N∑
i=1

(Di(r)−D(r))2

≈ 1
N − 1

N∑
i=1

 1
H

H∑
p=1

BB(zip)−
1
N

N∑
j=1

1
H

H∑
p=1

BB(zjp)

2

. (14.5)

14.2 Direct computation of the expected value

When the conditional and marginal distributions of Z and ∆ are known, according to Bayes’ theorem
their joint distribution S(Z(∆)) can also be determined. It is then possible to compute the expected
dose directly

Ep∆ [D(r,∆)] = ES [BB(Z(∆))] ≈ 1
H

H∑
p=1

BB(zp) , (14.6)

with zp, p = 1, ..,H sampled from S.

14.3 (Re-)weighting Monte Carlo samples for uncertainty quan-
tification

In the following section, we introduce the proposed (re-)weighting approach. We exploit the fact, that
the input vector Z is non-deterministic, i.e., has the probability density S0(Z) regardless of uncertain-
ties. Uncertainties in the phase space parameters usually manifest in a way that merely changes this
distribution. E.g., when using multivariate normal distributions the mean is shifted or the standard de-
viation increased in the dimensions corresponding to an uncertain phase space parameter. The concept
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of importance sampling can be used to gain insight into dose realizations for different input distributions
Si(Z) corresponding to error realizations δi, i = 1, ..., N from p∆, from one initial simulation.

We therefore now recall the basic principles of importance sampling.

14.4 Standard importance sampling

Importance sampling is a method originally introduced by [95] and later made popular in a more general
context by [71].

Let’s assume we are interested in g(Z). Let Z have the probability distribution function p(Z) with
support Dp, i.e., z ∼ p(Z). Then

∫
Dp
g(Z)p(Z)dZ =

∫
Dp
g(Z)p(Z)

q(Z)q(Z)dZ . (14.7)

So the integral can be approximated as

∫
Q
g(Z)p(Z)

q(Z)q(Z)dZ ≈
N∑
i=1

g(zi)
p(zi)
q(zi)

. (14.8)

Where zi, i = 1, ..., N are realisations of Z ∼ q(Z) and q is a distribution with support Q ⊇ Dp.

Thus, the computation of g(Z) for realisations of p(Z) can be replaced by computations of g(Z) with
realisations zi, i = 1, ..., N from q(Z), using additional weights p(zi)

q(zi) in the aggregation of the results.
This can be convenient if it is easier to sample from q(Z) than p(Z) or because choosing q(Z) cleverly
can reduce the variance of the estimate. It can also be helpful when evaluating g is much more expensive
than evaluating p(zi)

q(zi) , for example, because g is an expensive simulation. In this case, if we are interested
in g(Z) for different distributions of Z, we can reuse the realizations g(z1), ..., g(zN ).

14.5 Importance (re-)weighting

For our purpose, this can be applied to mimic dose computations at different points in the parameter
space from a previously computed sample of particle trajectories. In the following, we will assume random
samples, the method can however be analogously applied to quadratures or quasi-random numbers. We
further assume that the uncertain parameter ∆ is independent of the initial phase space parameters
Z.

Instead of solving the transport problem N times with slightly different input distributions S1, ..., SN

(compare eq. (14.2)), it is solved once and the results for other error realizations are determined by
(re-)weighting the deposited dose of this one sample of particles as explained in section 14.4. For an error
realization δi from p∆, initial parameter realizations z1, ...,zH from the sampling distribution q(Z) and
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target distributions Si(Z), the dose is given by

Di(r) =
∫
DSi

BB(r;Z)Si(Z)dZ =
∫
DSi

BB(r;Z) Si(Z)
q(Z) · q(Z)dZ

≈ 1
H

H∑
p=1

BB(r; zp) Si(zp)
q(zp)

. (14.9)

This yields the following procedure:

Algorithm 14.1 Calculate doses Di

(a) On-the-fly

for particles p=1:H do
Sample zp ← q(Z)
Compute BB(r; zp)
Sample δi ← p∆(∆)
for target distributions Si(Z) ,
i = 1, ..., N do
Di += 1

H
BB(r;zp) Si(zp)

q(zp)
end for

end for

(b) In post-processing

for particles p=1:H do
Sample zp ← q(Z)
Compute and store BB(r; zp)

end for
Sample δi ← p∆(∆)
for target distributions Si(Z) ,
i = 1, ..., N do
Di = 1

H

∑H
p=1

BB(r;zp) Si(zp)
q(zp)

end for

Here, the on-the-fly computation in algorithm 14.1 (a) has the advantage of not requiring the storage of
particle histories. However, in this case the target distributions have to be defined a-priori, whereas the
post-processing routine (algorithm 14.1 (b)) can be applied for different uncertainty models and quantities
of interests after the initial simulation.

The importance and target distributions are chosen according to the quantities of interest. Here, we show
the derivation for the nominal dose without uncertainty, the expected dose and the dose variance with
respect to uncertainties.

14.5.1 Nominal dose

The nominal dose is the solution to the problem introduced in section 4.1 without uncertainty, i.e., for
the input distribution S0(Z). Let q(Z) be the simulated particle distribution, then the nominal dose can
be computed by replacing p(Z) with S0(Z) in section 14.4.

D(r) = ES0 [BB(r;Z)] =
∫
DS0

BB(r;Z)S0(Z)dZ =
∫
DS0

BB(r;Z)S0(Z)
q(Z) · q(Z)dZ (14.10)

≈ 1
H

H∑
p=1

BB(r; zp) S0(zp)
q(zp)
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This reduces to the regular dose computation with Monte Carlo described in eq. (5.6), when q is chosen
to be S0.

14.5.2 Expected value

Using eq. (14.9) to compute the dose for individual error realizations, we can mimic the Monte Carlo
method for uncertainties and compute the expected dose as

D(r) ≈ 1
N

N∑
i=1

Di(r) ≈ 1
N

N∑
i=1

1
H

H∑
p=1

BB(r; zp) Si(zp)
q(zp)

, (14.11)

with δi, i = 1, ..., N sampled from Si = P(Z(∆) | ∆ = δi) and BB(r; zp) again the pre-computed
particle trajectories with input parameters zp, p = 1, ...,H sampled from q.

Using the joint distribution of the uncertain input and initial phase space parameters, it is possible to
directly compute the expected value, without sampling from p∆, by adapting eq. (14.6)

D(r) = ES [BB(r;Z(∆))] ≈ 1
H

H∑
p=1

BB(r; zp) S(zp)
q(zp)

, (14.12)

where zp, p = 1, ...,H sampled from S.

14.5.3 Variance

The variance can also be computed for error realizations δ1, ..., δN from p∆, using dose realizations from
eq. (14.11) with the sample variance formula

σ2 = V arp∆(D(r,∆)) ≈ 1
N − 1

N∑
i=1

(Di(r)−D(r))2
. (14.13)

14.5.4 Choosing the importance distribution

The optimal choice of q(Z) depends largely on the target quantities. It follows from sections 14.5.1
to 14.5.3 that the nominal dose, expected dose and the error scenarios required for the variance com-
putation correspond to N + 2 different distributions of the input parameters. Thus, when all of these
quantities are computed from the same set of realizations, q(Z) needs to be suitable for not just one but
N+2 different target distributions. Therefore, it will most likely not be possible to choose a function that
is optimal for each individual computation and the choice depends on how the accuracy of the different
target quantities is prioritized.

For a given target distribution p(Z), there are two criteria by which q(Z) should be chosen (see e.g.
[165]):

• Let Q = {Z | q(Z) > 0}, if p(Z) ·BB(r;Z) 6= 0 then Z ∈ Q
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• To minimize the standard error of the approximation σ2
q = 1

H

∑H
p=1

[
p(zp)·BB(r;zp)

q(zp) − µ
]2

with
µ = ES0 [BB(r;Z)], q(Z) should be chosen to be proportional to p(Z) ·BB(r;Z)

The first point is jointly attainable for all target values, for example, if the support of q(Z) includes the
supports of S1(Z), ..., SN (Z) as well as those of S0 and S.

The second point creates a trade-off between the different targets. Choosing q(Z) = S or q(Z) = S0,
leads to accurate estimates of the expected dose and nominal dose respectively. It can be expected, that
q(Z) = S is a better choice with respect to the dose variance since it has more density in the outer regions,
which is necessary for an acceptable estimate of the shifted densities Si for larger errors δi.

When prioritizing the computation of the variance estimate, a more fat-tailed choice of distribution for
q(Z) is beneficial. This ensures a larger number of realizations and therefore higher accuracy in the outer
regions of the densities, where the variance is typically high. In general, it is not advisable to choose a
q which is more light-tailed than the target distribution, as the variance can explode if q is too small
in regions where the target distribution is not zero [165]. One option is using a mixture distribution of
the individual shifted distributions we want to reconstruct [75]. Another common rule of thumb in case
of a normal target distribution is to use a Student’s t distribution, as they are similar but the latter
has heavier tails [165]. The accuracy of estimates for some exemplary choices of q will be investigated
numerically in section 14.9.4.

14.6 Mathematical properties

14.6.1 Accuracy & bias

An advantage of the proposed method is that it inherits some of the mathematical properties of impor-
tance sampling. Namely, for the nominal dose, expected dose and dose for the single error realizations,
the estimates are unbiased [165].

Proposition 14.1. For q(Z) : DZ → R+ with Q = {Z | q(Z) > 0}, if p(Z) ·BB(r;Z) 6= 0 let Z ∈ Q.
Then the importance reweighting estimator D̂(r) is unbiased, i.e. Eq[D̂(r)] = D(r).

Proof: For Z ∼ q(Z) it follows by construction of the importance sampling estimator that

Eq
[
BB(r;Z) p(Z)

q(Z)

]
=
∫
Q

BB(r;Z) p(Z)
q(Z) · q(Z)dZ =

∫
Q
BB(r;Z) · p(Z)dZ

=
∫
Dp
BB(r;Z) · p(Z)dZ +

∫
Q∩Dcp

BB(r;Z)︸ ︷︷ ︸
=0

·p(Z)dZ +
∫
Qc∩Dp

BB(r;Z) · p(Z)︸ ︷︷ ︸
=0

dZ

=
∫
Q
BB(r;Z) · p(Z)dZ = Ep[BB(Z)]

Then the importance reweighting estimator

D̂(r) = 1
H

H∑
p=1

BB(r; zp) p(zp)
q(zp)

,
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where zp ∼ q, p = 1, ...,H are independent and identically distributed random variables, is obtained by
Monte Carlo integration and the unbiasedness can be shown analogously

Eq[D̂(r)] = Eq

[
1
H

H∑
p=1

BB(r; zp) p(zp)
q(zp)

]
= 1
H

H∑
p=1

Eq
[
BB(r; zp) p(zp)

q(zp)

]

= 1
H

H∑
p=1

∫
Q

BB(r;Z) p(Z)
q(Z) · q(Z)dZ

= Ep[BB(r;Z)] = D(r).

Also, the standard error εq of these estimators can be computed similarly to that of Monte Carlo estimates
[165]. It depends on the number of realizations as well as the similarity of the importance distribution
and the distribution of interest:

εq =
σ2
q

H
, where σ2

q ≈ σ̂2
q = 1

H − 1

H∑
p=1

[
BB(r; zp)p(zp)

q(zp)
− D̂(r)

]2
. (14.14)

To lower the standard error, the importance distribution should resemble the target distribution. In the
variance computation, the estimates for more extreme error realizations will thus be less accurate. For
the type and extent of errors in radiation therapy, the distributions are however mostly similar enough,
as we will demonstrate further in section 14.9.

In contrast to the dose estimates, the variance computed as in section 14.5.3 is not generally unbiased.
This is due to its computation from estimates of the dose for shifted beams, which rely on the same single
sample of particles. What we consider as the realizations in the sample variance computation, while
individually unbiased, are thus no longer independent.

Proposition 14.2. For zp from Si = P(Z(∆) |∆ = δi) and δi ∼ p∆, let wi(zp) = Si(zp)
q(zp) be condition-

ally independent of BB(r; zp) given zp. Then the importance reweighting estimator for the dose variance
is not generally unbiased and the bias is given by

bS2
N

=
(

1
H

H∑
p=1

BB(r; zp) · Ep∆ [wi(zp)]
)2

− 1
H2

H∑
p=1

H∑
h=1

BB(r; zp)BB(r; zh) · Ep∆ [wi(zp)wj(zh)]

Proof: In [16], general formulas for the moments of the sample variance S2
n are derived. The first moment

E[S2
n] for general non independent or identically distributed (iid) samples X1, ..., XN is given by:

E[S2
n] =

∑n
i=1 E[X2

i ]
n

−
∑
i 6=j E[XiXj ]
n(n− 1) .

Applied to our context, the realizations areDi = 1
H

∑H
p=1BB(r; zp)wi(zp) for i = 1, ..., N , with wi(zp) =

Si(zp)
q(zp) . Since all realizations use the same sample of computed particle trajectories BB(r; zp) and initial
particle properties zp, p = 1, ...,H, they cannot be assumed to be independent, in particular Di =
Dj + 1

H

∑H
p=1BB(r; zp) (wi(zp)− wj(zp)). Thus,
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E[S2
n] =

∑N
i=1 E[D2

i ]
N

−
∑
i6=j E[DiDj ]
N(N − 1) .

Since we assume that the Di are identically distributed, this reduces to

E[S2
n] = Ep∆ [D2

i ]− Ep∆ [DiDj ]

= Ep∆ [D2
i ]− Ep∆ [Di]Ep∆ [Dj ]︸ ︷︷ ︸

=V ar(D)

− (Ep∆ [DiDj ]− Ep∆ [Di]E[Dj ])︸ ︷︷ ︸
=bS2

N
6=0 , for i6=j

.

Thus the estimator is not necessarily unbiased and the bias is

bS2
N

= Ep∆ [Di]Ep∆ [Dj ]︸ ︷︷ ︸
=Ep∆ [Di]Ep∆ [Di]

−Ep∆ [DiDj ]

= Ep∆

[
1
H

H∑
p=1

BB(r; zp)wi(zp)
]2

− Ep∆

[(
1
H

H∑
p=1

BB(r; zp)wi(zp)
)(

1
H

H∑
p=1

BB(r; zp)wj(zp)
)]

=
(

1
H

H∑
p=1

BB(r; zp)Ep∆ [wi(zp)]
)2

− Ep∆

[
1
H2

H∑
p=1

H∑
h=1

BB(r; zp)BB(r; zh)wi(zp)wj(zh)
]

=
(

1
H

H∑
p=1

BB(r; zp)Ep∆ [wi(zp)]
)2

− 1
H2

H∑
p=1

H∑
h=1

BB(r; zp)BB(r; zh)Ep∆ [wi(zp)wj(zh)] .

Since this bias term is costly to compute, it is generally not feasible to score this in addition to the
quantities of interest. Computing the bias once for a given problem class could however be of interest
to judge its order of magnitude. Its potential impact on our results will be assessed in greater detail in
section 14.9.

14.6.2 Bounds on the variance

While the discussed estimators can be expected to significantly lower the expense of scenario computa-
tions, the variance still requires N scoring operations, either accumulated on the fly after each simulated
particle history, or in post-processing as (re-)weighting of stored histories. For a large number of sim-
ulated particles, run times can therefore exceed the required time frame, especially in the context of
robust optimization, where the variance has to be computed in each of numerous iterations [178, 130,
38].

Proposition 14.3. An upper bound to the variance estimator σ̂2 is given by

σ̂2 ≤
(

1
H

H∑
p=1

BB(r; zp)2

)(
1
H

H∑
p=1

S2
N (w(zp))

)
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Proof: Using the definition of the importance reweighing estimator for the dose variance, the dose for a
single error realization and the expected dose (see eqs. (14.9), (14.12) and (14.13)), we get

σ̂2 = 1
N − 1

N∑
i=1

 1
H

H∑
p=1

BB(r; zp) Si(zp)
q(zp)

− 1
N

N∑
j=1

1
H

H∑
p=1

BB(r; zp) Sj(zp)
q(zp)

2

= 1
N − 1

N∑
i=1

 1
H

H∑
p=1

BB(r; zp) wi(zp)−
1
N

N∑
j=1

1
H

H∑
p=1

BB(r; zp) wj(zp)

2

= 1
N − 1

N∑
i=1

 1
H

H∑
p=1

BB(r; zp) wi(zp)−
1
H

H∑
p=1

BB(r; zp)
1
N

N∑
j=1

wj(zp)

2

= 1
N − 1

N∑
i=1

 1
H

H∑
p=1

BB(r; zp)

wi(zp)− 1
N

N∑
j=1

wj(zp)

 2

≤
(

1
H

H∑
p=1

BB(r; zp)2

) (
1
H

H∑
p=1

1
N − 1

N∑
i=1

wi(zp)− N∑
j=1

wj(zp)

2

︸ ︷︷ ︸
=S2

N
(w(zp))≈V ar(w(zp))

)

=
(

1
H

H∑
p=1

BB(r; zp)2

)(
1
H

H∑
p=1

S2
N (w(zp))

)
.

The advantage of this bound is, that the squared simulation response BB(r; zp)2 is aggregated inde-
pendently from the error realizations. This includes the implicit assumption, that the variance in the
likelihood ratio between the simulated and target distribution, is enough to describe the variance of the
output. While this might hold for relatively homogeneous background media, it is unclear whether it is
sufficient in heterogeneous media as present in many patient anatomies.

14.7 Uncertainty models

In the following, we consider different uncertainty models introduced in chapter 11. We again use Gaussian
beam and uncertainty assumptions. Then for set-up uncertainties, the required probability distributions
S0(Z), Si(Z) and S corresponding to the nominal dose, individual error realizations and the joint phase
space and error distribution, respectively, are derived in section 11.1. For range uncertainties, we use
the approximation based on the initial beam energy introduced in section 11.2. Different correlation
assumptions as well as time-dependent spatial uncertainties are included using the covariance matrix of
the Gaussian beamlet distribution as discussed in sections 11.3 and 11.4.

14.8 Implementation and test cases

The described method was implemented as post-processing in Matlab. Radiation plans were generated
for proton dose calculations using the treatment planning software matRad [234] and dose calculations
were performed with the Monte Carlo engine TOPAS [175]. For quicker convergence, we use randomized
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quasi-Monte Carlo with scrambled Sobol numbers when sampling the error scenarios for the dose variance
estimate (see section 12.2).

In the following, we present the results for a 3D water phantom as well as a prostate and liver patient
obtained from the open CORT (common optimization for radiation therapy) data set [42]. Overall, we
consider three different treatment plans, combined with several error models discussed in chapter 11. For
the Gaussian set-up error, we assume a standard deviation of 3 mm and mean of µδ = 0, i.e., the errors
do not have a systematic component [comp. 174]. The range error is modeled using the approximation
introduced in section 11.2, with a standard deviation of 3 % and mean of 0. For three of the treatment
plans, intensity-modulated proton therapy (IMPT) [96, 131] was employed. In these cases, each source
consists of a large number of narrow pencil beams to enable better and more flexible coverage of the
target volume. More details concerning the treatment plans and the respective error models applied to
each of them can be found in table 14.1.

Table 14.1: Overview of simulated plans and error models per test case.

Test case Water phantom Prostate Liver
Size 60x25x25 voxels 183x183x90 voxels 217x217x168 voxels
Irradiation

(0°,0°) (0°,90°)/(0°,270°) (0°,315°)angles
Pencil beams 1 175 1 375/1 383 1408
Simulated

100 000 2 566 453 16 992 193/16 748 034 13 528 430particles
Error model global global/AR(1)/GP global, simple models (fig. 11.1) global/AR(1)/GP
Sample size 500 500 100 100

Note, that in this chapter, we only use a Gaussian distribution for the spatial and energy variable of the
phase space. The initial beam direction Ω0 is assumed to be deterministic. The presented concepts can
however be used analogously for a fully random initial phase space. A brief discussion of this case and
additional results can be found in the appendix (A4).

14.8.1 Evaluation criteria

To evaluate the quality of our estimates, we compute a reference for each test case using the regular
randomized quasi-Monte Carlo method for the uncertainties. The number of realizations was chosen to
be equal to that used for the importance (re-)weighting estimates, which is 500 for the water phantom
and 100 for the prostate patient.

We compare the results according to the γ criterion (see section 3.3), as well as a difference map (see
section 3.4).
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14.9 Results

14.9.1 Fully correlated pencil beams

Figure 14.1 presents the expected dose and standard deviation for a single pencil beam in a water phantom.
Figure 14.2 shows results for the prostate patient with fully correlated pencil beams, i.e., one global error.
The importance distribution was chosen to be the nominal distribution S0. For this reason, the nominal
dose estimate is just a regular Monte Carlo estimate and is therefore omitted in the following.

E[D]

Estimate Reference Difference γ-map

σ

Figure 14.1: Expected dose and standard deviation w.r.t. set-up uncertainties with 3 mm standard
deviation for one pencil beam in a water box. The columns from left to right show the estimate computed
with the proposed (re-)weighting approach, a reference computed with randomized quasi-MC, a difference
plot and a plot of the γ3 mm/3 %-indices.

The results using the importance (re-)weighting estimate are in good agreement with the reference,
with a γ3 mm/3 %-passrate of 100 % for the expected value and over 99.9 % with respect to the standard
deviation in both waterbox and prostate patient. Additional results for the liver case with a full Gaussian
phase space distribution, i.e. a distribution also in the angular variable, can be found in the appendix
(A1).
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E[D]

Estimate Reference Difference γ-map

σ

Figure 14.2: Expected dose and standard deviation w.r.t. set-up uncertainties with 3 mm standard
deviation for two beams (gantry angles 90° and 270°, couch angle 0°) in a prostate patient. The columns
from left to right show the estimate computed with the proposed (re-)weighting approach, a reference
computed with randomized quasi-MC, a difference plot and a plot of the γ3 mm/3 %-indices.

14.9.2 Range errors

In contrast to the set-up errors, for which dose estimates can also be shown to be mathematically accurate,
range errors can only be modeled through an approximation introduced in section 11.2. Figure 14.3
displays results for range errors as well as the combination of range and set-up errors in the water
phantom.

The difference maps for both expected value and standard deviation show that the deviations when
including range errors are expectedly higher. We observe a systematic bias primarily at the distal edge,
where our method seems to consistently underestimate the variance. The standard deviation estimate
using our importance weighting method also expresses strong local artifacts, as evident in the difference
maps (compare figure 14.3). This is an indicator of too little statistical mass, i.e., computed particle
trajectories, in the original simulation. For more extreme error realizations, relatively high weights are
assigned to a small number of particles, thereby amplifying single realizations or errors. Especially in the
case of relatively small beam energy spread in the original simulation (here 1 %), compared to the range
error of 3 %, such artifacts are likely to appear. In order to prevent this, one could either compute a
larger number of particle histories in the simulation or sample the particles from a different distribution
that has more density mass in its outer regions or tails.

To underline the explanation for the appearance of the artifacts above, we recomputed the estimates
using the (re-)weighting method based on a direct computation of the expected value, which can be
calculated using the convolution S of the Gaussian error kernel with the nominal phase space parameter
distribution (compare 14.2). Figure 14.3 shows that this alleviates the discrepancy from the references,
causing artifacts to disappear and also reducing the overall amount of deviation displayed in the difference
maps.
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D

Estimate (S0) Difference Estimate (S) Difference

E[D]

σ

Figure 14.3: Nominal dose D, expected dose E[D] and standard deviation σ w.r.t. range uncertainties
with a 3 % standard deviation for a spread out Bragg peak in a water phantom. The first and third
column shows the estimate computed with the proposed (re-)weighting approach, reconstructed either
from the nominal distribution S0 or its convolution S with the error kernel. The second and fourth
column shows the difference to the corresponding references.

Thereby, we can conclude that the irregularities in the solution can be attributed to the lack of statistical
support in certain areas. Contrary to this, parts of the systematic differences remain and are thus most
likely a result of the model approximations.

Figures 14.5 and 14.6 validate these observations for a liver patient. The difference maps for estimates
computed based on the expected distribution S, have less severe artifacts and systematic deviations. The
γ2 mm

2 % -pass rate also consistently increases for both the liver patient and water phantom (see table A1
(b), (c)).

Also, it has to be noted that using S to sample the initial particles leads to an expected dose estimate
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D
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σ

Figure 14.4: Nominal dose D, expected dose E[D] and standard deviation σ w.r.t. range uncertainties
with 3 % and set-up errors with 3 mm standard deviation for a spread out Bragg peak in a water phantom.
The first and third column shows the estimate computed with the reweighting approach, reconstructed
either from the nominal distribution S0 or its convolution S with the error kernel. The second and fourth
column shows the difference to the corresponding references.

which is equivalent to the reference computations (compare eq. (14.6)), but a nominal dose estimate
which now shows deviations from a nominal standard Monte Carlo reference computation in the order
of magnitude that we could previously observe for the expected dose (see table A1 (b), (c)). This is
due to the fact that the importance sampling error depends on the similarity of the sampling and target
distribution. One can however expect a slightly lower error when constructing the nominal dose from
a simulation of S, since here the deviations of the target distribution occur in a region with a higher
probability mass.
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D
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σ

Figure 14.5: Nominal doseD, expected dose E[D] and standard deviation σ w.r.t. range uncertainties with
a 3 % standard error in a liver patient (couch angle 0°, gantry angle 315°). The first and third column
shows the estimate computed with the reweighting approach, reconstructed either from the nominal
distribution S0 or its convolution S with the error kernel. The second and fourth column shows the
difference to the corresponding references.

14.9.3 Other correlation models

In chapter 11, we derived correlation matrices and error distributions for different uncertainty models. In
figure 14.7 we first present the standard deviation estimate for four examples of simple error correlation
models discussed in section 11.3. The results indicate that different correlation assumptions have a
crucial impact on the standard deviation of dose distributions. While it is in principle possible to define
arbitrary correlations within the proposed framework, estimates can be prone to artifacts due to a lack of
statistical information. This is especially noticable for the ray-wise correlation model since a ray comprises
the smallest number of beamlets. When sampling error realizations independently for smaller beam
components, the reconstruction depends solely on the particle histories associated with these components.
For rays with small weights, only very few histories are computed, therefore we observe similar artifacts
as encountered in above range uncertainty computations (section 14.9.2).

We further investigate the more complex time-dependent uncertainty models presented in section 11.4.1.
Our implementation was validated against Monte Carlo results for individual realizations of shifts over
time. For a single ray with 6 energy levels in a water box, shifted by ±2 mm every 10 ms, the dose results
in each time step reached 100 % agreement in a γ-analysis with tolerances of 2 mm/2 % in dose and
location, respectively. Figure 14.8 compares the dose standard deviation for three such models in a water
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D

Estimate (S0) Difference Estimate (S) Difference

E[D]

σ

Figure 14.6: Nominal doseD, expected dose E[D] and standard deviation σ w.r.t. range uncertainties with
3 % and set-up errors with 3 mm standard deviation in a liver patient (couch angle 0°, gantry angle 315°).
The first and third column shows the estimate computed with the reweighting approach, reconstructed
either from the nominal distribution S0 or its convolution S with the error kernel. The second and fourth
column shows the difference to the corresponding references.

(a) (b) (c) (d)

Figure 14.7: Standard deviation of dose in a prostate patient for (a) no correlation (b) correlation between
pencil beams in the same energy level (c) "ray-wise" correlation (i.e., between pencil beams with the same
lateral position) and (d) correlation between pencil beams with the same irradiation angle (compare
figure 11.1), w.r.t set-up errors and in case (c) also range errors.

phantom with a beam consisting of several superimposed pencil beams of seven different energy groups.
The results illustrate that already in this simple case the uncertainty assumption has a significant impact
on both the amount and shape of the dose standard deviation. However, due to the low amount of energy
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levels and homogeneous tissue, the characteristics of the different input models are not fully visible. This

(a) (b) (c)

Figure 14.8: Standard deviation of dose from a beam made up of 175 pencil beams in a 3D waterbox
for different error models: (a) one global error (b) AR(1) model for movement between energy levels (c)
local periodic model for movement between energy levels

becomes apparent in fig. 14.9, which compares the standard deviation for the three error models in a
realistic liver patient, with 21 energy levels and 166 rays. While the region of high standard deviation
is still at the gradients at the edge of the beam in the fully correlated and periodic model, several local
peaks can additionally be observed in the latter. In this case, considering the accumulated dose over
all time steps/energy levels results in a lower magnitude of standard deviation, due to averaging of the
errors. In the AR(1) model, which mimics a random movement process over time, the standard deviation
is less concentrated to the beam edges. Here, pencil beams are frequently shifted against instead of with
each other, due to the larger random component of the error in each time step/energy level.

14.9.4 Practical investigation of mathematical properties

Bias

The above findings indicate that the bias in the dose variance estimate, introduced in proposition 14.2,
does not significantly affect the accuracy of the results, as the agreement with the reference solutions is
comparable for the unbiased expected value estimator and the biased variance estimator for set-up errors.
Further, figure 14.10 shows that the bias reduces for an increasing number of particle histories.
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(a) (b) (c)

Figure 14.9: Standard deviation of dose from a beam with irradiation angle (gantry angle 315°, couch
angle 0°) made up of 1378 pencil beams in a liver patient for different error models: (a) one global error
(b) AR(1) model for movement between energy levels (c) local periodic model for movement between
energy levels
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Figure 14.10: Convergence of the variance estimator’s bias in (a) number of error realizations used to
compute the bias and (b) the number of particle histories used for the dose reconstructions for a single
pencil beam in a water box.

Standard error

So far, the dose estimates were reconstructed mainly from samples of the distribution S0. However, we
have seen in eq. (14.14), that the standard error of the estimates depends on the relation of distribution
from which the original sample was drawn to the target distribution. When computing the dose standard
deviation, each error scenario corresponds to a Gaussian input distribution with a shifted mean value
(see chapter 11).
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Figure 14.11: Accuracy of dose estimates for increasing distance between importance distribution q and
target distribution Si. (a) Measured by mean square error (MSE), (b) by γ-passrate and (c) the mean of
the theoretical error (see eq. (14.14)) in voxels with non-zero dose.

Figure 14.11 shows that the accuracy of the estimates decreases with growing distance of the mean of
the target distributions from that of the sampling distribution. This development can be observed not
only for the theoretical standard error but also for the mean square error and γ-passrates. This indicates
that the more extreme realizations of the uncertain parameters introduce relatively high errors to the
overall standard deviation estimate. Section 14.9.2 has already shown that it can be beneficial for the
variance estimation to use a wider Gaussian distribution. We want to investigate more systematically,
whether the use of a better-suited sampling distribution, such as a wider Gaussian or a Gaussian mixture
of some of the target distributions, can improve the accuracy of the estimate. For this, we sample input
parameters once from the joint distribution S and once from a mixture of the narrower Gaussian S0,
shifted by ±σ and ±2σ in all coordinate directions. To better detect differences in the results, we use
the stricter criteria 2 mm/2 % for the γ-analysis.

Figure 14.12 illustrates that the γ-passrate increases when using both the wider Gaussian and the Gaus-
sian mixture. Thus, especially when one has an uncertainty model involving errors with a high variance
or if the expected value and standard deviation of the dose are more important than the nominal dose, it
can be worthwhile to not use the regular parameter distribution to generate the initial sample. For med-
ical purposes, the high accuracy of the nominal dose is however an integral part of the quality assurance
of a method and could often be prioritized over the quantification of uncertainties.

Variance upper bound

Lastly, in section 14.6.2 an upper bound for the dose variance estimate was derived, which is significantly
less computationally expensive than the variance estimate itself. Figure 14.13 shows a comparison of this
upper bound estimate to the dose variance. While the variance values are expectedly higher in the upper
bound estimate, both exhibit a similar structure with two distinct variance peaks at positions with high
dose gradients. This indicates a potential use for optimization purposes. However, further analyses in
more complex test cases, in particular such with several irradiation angles and in heterogeneous materials,
are necessary.



130 Chapter 14. Importance (re-)weighting for Monte Carlo dose simulations

(a) S0, γ2 mm/2 %-passrate =
94.64 %

(b) S, γ2 mm/2 %-passrate =
99.86 %

(c) Gaussian mixture, γ2 mm/2 %-
passrate = 99.98 %

Figure 14.12: Estimates of the dose standard deviation in a water box using different sampling distribu-
tions: (a) the nominal distribution S0, (b) the distribution S corresponding to the expected value and
(c) a Gaussian mixture distribution

Upper bound of dose variance Dose variance Difference

Figure 14.13: Comparison of the upper bound to the dose variance estimate for a beam made up of 175
pencil beams in a 3D water box.
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14.9.5 Convergence

The proposed approach mimics a sampling-based uncertainty quantification method. The solution of
the modified problem for each error realization using the black box solver is replaced by (re-)weighting
the dose corresponding to particle trajectories from a previous simulation. Thus, the convergence of the
method is equivalent to that of the underlying UQ method, which in our case is randomized quasi-Monte
Carlo. Figure 14.14 illustrates this for the dose standard deviation of the single beam in a water box.
While the convergence of reference and estimate is very similar per computed realization, the speed-up
is achieved by the quicker computation of each iteration, that is, only performing MC scoring operations
compared to physical simulations. Therefore, the amount of time that can be saved also depends on the
specific patient case, treatment plan and software, which determine how much overhead is produced for
example by the initialization and simulation of physical processes.
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Figure 14.14: Mean squared error of different methods compared (a) per iteration and (b) per time for
dose computation in the water box with 175 pencil beams (see table 14.1).

For run-time comparisons, reference computations and the (re-)weighting approach were run on the same
virtual machine1 and timed during the computation of the dose standard deviation using the global error
model. As table 14.2 shows, we observe reduced CPU times by a factor of approximately 183 and 80 for the
two treatment plans using the water phantom and factors of 32 and 23 for the liver and prostate patient.
Note, that the large difference in initialization times between the IMPT plans and the plan involving just
one beam is due to the size of the sparse matrix containing the doses for all particle histories. For the
larger plans, this exceeded the available RAM such that the use of less efficient tall arrays was necessary.
Note, that these conclusions refer solely to a post-processing implementation of the method. When
implemented as on-the-fly scoring, no storage of histories is required, instead, one sparse dose cube per
considered scenario has to be stored. Also, the possibility to use existing efficient structures of the Monte
Carlo code might enable performance improvements compared to the post-processing routine.

1Virtual machine including 64 CPUs with 1.995 GHz and 200GB RAM



132 Chapter 14. Importance (re-)weighting for Monte Carlo dose simulations

Table 14.2: CPU time comparison for the reference vs. (re-)weighting approach applied to different test
cases and computed on the same machine. All values are given in seconds. Note that the times for 100
realizations include the initialization times, while the time for a single realization only refers to the dose
computation time.

reference (re-)weighting

Water phantom (1 beam)
Initialization 2.27 1.34
One realization 72.21 0.38
100 realizations 7221.64 39.34

Water phantom (IMPT)
Initialization 2.35 61.53
One realization 2331.30 28.51
100 realizations 233126.93 2912.53

Liver
Initialization 2.44 2038.75
One realization 39066.44 1198.74
100 realizations 3906650.90 121912.75

Prostate
Initialization 4.26 4867.75
One realization 58762.40 2479.07
100 realizations 5876253.86 252774.75

14.10 Extension to other non-intrusive methods

The proposed method can be used analogously to speed up uncertainty quantification using other non-
intrusive methods, simply by replacing the required function evaluations by reweighting instead of several
runs of the Monte Carlo dose calculation algorithm.

In the case of the standard Monte Carlo method, we merely have to change the choice of sample points for
the uncertain parameter to random sampling instead of a number theoretic sequence. The results are more
or less equivalent to the randomized quasi-MC method but require slightly higher sample sizes.

14.10.1 NISP

A more interesting application is for the response calculation in a non-intrusive spectral projection. Here,
we follow the method described in [174] and replace the deterministic pencil beam method for dose
calculations with MC importance reweighting. Our implementation is an extension of the open-source
package OpenPC. We further implement a regression-based fitting of the coefficients besides the included
spectral projection.

Figure 14.15 compares the expected dose and variance for both NISP approaches combined with impor-
tance reweighting and the reference from fig. 14.1. All methods are in good agreement visually. The
regression-based NISP approach however takes on average around 10 times longer for the simple water
box test case (209.36 CPU seconds) than the projection-based approach. For a polynomial model with
35 coefficients, the projection approach is approximately two times quicker (19.52 CPU seconds) than
the quasi-Monte Carlo importance reweighting approach with 100 sample points (comp. table 14.2). The
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(a) Expected value: Left to right: Estimate with regression-based NISP, estimate with projection-based NISP
and a randomized quasi-MC reference.

(b) Variance: Left to right: Estimate with regression-based NISP, estimate with projection-based NISP and a
randomized quasi-MC reference.

Figure 14.15: (a) Expected dose and (b) dose variance computed for a three-dimensional, Gaussian set-up
error with 3mm standard deviation and a single pencil beam in a water box using a non-intrusive spectral
projection with 35 coefficients/polynomials compared to a randomized quasi-MC reference where full dose
computations are run for each sample point.
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number of required coefficients and therefore dose evaluations however depends on the complexity of the
test case and will likely be higher for a heterogeneous CT scan.

Figure 14.16 shows the dose expected value and variance for a three-dimensional, Gaussian set-up error
with 3mm standard deviation in a liver patient. Even using sparse grids and a truncated polynomial
basis, the method requires at least 50 − 100 dose response calculations to achieve good variance results
in these heterogeneous cases. We however not only receive a dose expected value and variance estimate
but also a functional representation of the dose depending on the uncertain parameters, which could be
used for sensitivity analyses or to generate dose samples cheaply on demand.

(a) Expected value: Left estimate with NISP and importance reweighting, right a randomized quasi-MC reference.

(b) Variance: Left estimate with NISP and importance reweighting, right a randomized quasi-MC reference.

Figure 14.16: (a) Expected dose and (b) dose variance computed for a three-dimensional, Gaussian set-up
error with 3mm standard deviation in a liver patient using a non-intrusive spectral projection with 84
coefficients/polynomials compared to a randomized quasi-MC reference where full dose computations are
run for each sample point.
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CHAPTER 15

Dynamical low-rank approximation for uncertainty quantification

In the previous chapter, we have seen an approach that allows a more efficient consideration of uncertain-
ties when using Monte Carlo dose calculations. Even in the deterministic case and with more efficient
uncertainty propagation methods, MC simulations are however relatively computationally expensive and
the storage requirements quickly exceed the limitations of regular personal computers as well as smaller
workstations.

The dynamical low-rank approximation has been introduced in chapter 7 to increase the cost and storage
efficiency of deterministic Boltzmann solvers. Several ways of making use of this framework in a UQ
context are imaginable. First, due to the reduced computational cost, larger sample sizes and thus a
higher accuracy can be afforded. Thus, non-intrusive propagation methods from section 12.2 that were
deemed infeasible for a use with standard dose calculation methods can now be applied using DLRA.
Further, the choice of rank could be utilized as the lever for different levels of accuracy and cost in a mutli-
level Monte Carlo approach [73, 66]. While these options are straightforward to implement, they draw
their increased efficiency solely from the improved deterministic dose calculation rather than a specific
uncertainty quantification approach. We therefore want to consider an intrusive approach, making use
of the fact that the dynamical low-rank approximation for matrix (partial) differential equations can be
extended to tensors [158, 103, 139]. Recently, a use of the additional dimensions for uncertain parameters
has been proposed and applied for different simple problems in [110, 222]. In the following, we first
recall the DLRA for tensors and subsequently demonstrate an application for uncertainty quantification
in radiation therapy including initial numerical results compared to a collocation approach.
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15.1 Tensor DLRA

We follow the description in [158] and extend the dynamical low-rank approximation for matrix differential
equations u̇(t) = F(t,u(t)) to tensor differential equations U̇(t) = F(U(t)), where U(t) ∈ RN1×N2×N3 .
Note, that an extension to higher dimensional tensors is possible and straightforward. The tensor could
for example denote the time (or energy) dependent solution of the transport equation for a discretization
in space, angle as well as a one-dimensional uncertainty.

Let MR = M(N1,N2,N3)
R be the manifold of rank R = (R1,R2,R3) tensors. A low-rank representation

is given by

Uhij(t) ≈
R1∑
k=1

R2∑
l=1

R3∑
m=1

cklmqhk ⊗ vil ⊗ wjm ∈MR, (15.1)

where (qhk) ∈ RN1×R1 , (vil) ∈ RN2×R2 and (wjm) ∈ RN3×R3 . Here, C = (cklm) ∈ RR1×R2×R3 is an
arbitrary tensor of full-rank also referred to as core tensor. Using the notation from [158, 46], the entries
of the n-mode tensor product A×n B are given by

(A×n B)i1i2···in−1jnin+1···id =
∑
in

ai1i2···in−1inin+1···idbjnin ,

for A ∈ RI1×···×Id , B ∈ RJn×In . Then every tensor U ∈ MR can be written as

U = C ×1 Q×2 V ×3 W

and Q = (q1| · · · |qR1) ∈ RN1×R1 , V = (v1| · · · |vR2) ∈ RN2×R2 ,W = (w1| · · · |wR3) ∈ RN3×R3 have
orthonormal columns. Further, the tangent tensor can be uniquely decomposed as

∂U = ∂C ×1 Q×2 V ×3 W + C ×1 ∂Q×2 V ×3 W + C ×1 Q×2 ∂V ×3 W + C ×1 Q×2 V ×3 ∂W,

where

QT∂Q = 0, V T∂V = 0, WT∂W = 0, ∂Q ∈ RN1×R1 , ∂V ∈ RN2×R2 , ∂W ∈ RN3×R3

Analogous to chapter 7, time evolution equations for the factors can be defined by imposing

U̇(t) ∈ TU(t)MR such that
∥∥U̇(t)−F(U(t))

∥∥ = min .

We now want to apply the tensor DLRA to a CSD equation with uncertainties and derive equations for
the unconventional integrator [36].

15.2 Application to radiation transport

We start with the original collided-uncollided split

∂tψu = −Ω · ∇x
ψu
ρ
− Σtψu := Ru(t, ψu) , (15.2a)

∂tψc = −Ω · ∇x
ψc
ρ
− Σtψc +Q (ψu + ψc) := F (t, ψu, ψc) . (15.2b)
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Note that for simplicity, we will only consider a one level collided-uncollided split and the equation in
one spatial dimension, the derivations for higher dimensions and levels are however analogous.
Let us thus simplify eq. (15.2) to slab geometry, i.e., we have

∂tψc = −µ∂x
ψc
ρ
− Σtψc +Q (ψu + ψc) := F (t, ψu, ψc) (15.3)

and extend the phase space to include the uncertain parameter ∆: ψc(t, x, µ,∆). A Tucker tensor
approximation of this gives

ψc(t, x, µ,∆) = C(t)×1 U
x(t, x)×2 U

µ(t, µ)×3 U
∆(t,∆). (15.4)

Here, Ux ∈ RN1×R1 , Uµ ∈ RN2×R2 , U∆ ∈ RN3×R3 and C ∈ RR1×R2×R3 is also referred to as the core
tensor. For the sake of brevity, we will often omit the phase space dependencies in the following. To
define the tensor unconventional integrator, we now want to iteratively matricize the tensor equations
and apply the matrix unconventional integrator (UI) [36] following the derivation in [36, 34]. More details
on the derivation for general tensor differential equations and properties of the resulting integrator can
also be found in [36, 34, 138, 228]. To be able to work with the more convenient matrix operations, we
now introduce i-mode matricization of tensor A ∈ RN1×···Ni−1×Ni×Ni+1×···×Nd as

Mati(A) ∈ RNi×N1···Ni−1Ni+1···Nd ,

where the i − th mode of the original tensor is fixed and all other indices are folded together. In the
resulting matrix, the k-th row then contains all entries of A which have index k in the i-th mode, ordered
colexicographically. The reverse operation of i-mode tensorization is defined by

Teni(Mati(A)) = A.

Then according to [228] eq. (15.4) is equivalent to

Mat1(ψc) = UxMat1(C)
(
Uµ,T ⊗ U∆,T ) (15.5)

Mat2(ψc) = UµMat2(C)
(
Ux,T ⊗ U∆,T ) (15.6)

Mat3(ψc) = U∆Mat3(C)
(
Ux,T ⊗ Uµ,T

)
. (15.7)

Let’s consider one time step from t0 to t1 = t0+h with initial decomposition ψc,0 = C0×1U
x
0 ×2U

µ
0 ×3U

∆
0 .

We start with the first, i.e., spatial dimension and factorize the matricized core tensor using a QR-
decomposition:

Mat1(C0)T = Rx0S
x,T
0 ∈ RR2R3×R1 ,

where Rx0 ∈ RR2R3×R1 and Sx0 ∈ RR1×R1 . With

V x,T0 := Rx,T0

(
Uµ,T0 ⊗ U∆,T

0

)
∈ RR1×N2N3

the solution can be rewritten as

Mat1(ψc,0) = Ux0 Mat1(C0)
(
Uµ,T0 ⊗ U∆,T

0

)
= Ux0 S

x
0V

x,T
0 . (15.8)
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Note, that here V x0 is constant in time. Equation (15.8) is now an SVD-like matrix representation to
which the UI can be applied. With Kx(t0, x) := Ux0 S

x
0 , this yields:

∂tK
x(t, x) = Mat1

(
F
(
t, ψu,Ten1(Kx(t)V x,T0 )

))
V x0 . (15.9)

Integrating eq. (15.9) from t0 to t1, the updated factor Ux1 can be directly determined using a QR-
decomposition

Kx(t1) = Ux1R
x
1 (15.10)

and we store Mx = Ux,T1 Ux0 . To update the core tensor, the updated factors corresponding to the
angular and uncertain parameter dimensions are required. We can proceed analogously and now matricize
according to the second, i.e., angular, mode and again factorize the core tensor into Mat2(C0)T =
Rµ0S

µ,T
0 ∈ RR1R3×R2 . Moreover, we define Kµ(t0, µ) := Uµ0 S

µ
0 and V µ,T0 (t,∆) := Rµ,T0

(
Ux,T0 ⊗ U∆,T

0

)
.

Then the equations of the UI read

∂tK
µ(t, µ) = Mat2

(
F
(
t, ψu,Ten2(KµV µ,T0 )

))
V µ0 (15.11)

Kµ(t1) = Uµ1 R
µ
1 (15.12)

Mµ = Uµ,T1 Uµ0 . (15.13)

Lastly, we consider the third mode, corresponding to the uncertain parameter ∆ and factorize the
core tensor into Mat3(C0)T = R∆

0 S
∆,T
0 ∈ RR1R2×R3 with K∆(t0,∆) := U∆

0 S
∆
0 and V ∆,T

0 (t,∆) :=
R∆,T

0

(
Ux,T0 ⊗ Uµ,T0

)
. We again integrate

∂tK
∆(t,∆) = Mat3

(
F
(
t, ψu,Ten3(K∆V ∆,T

0 )
))

V ∆
0 (15.14)

from t0 to t1 and set

Kµ(t1) = Uµ1 R
µ
1 (15.15)

Mµ = Uµ,T1 Uµ0 . (15.16)

Note, that these updates of factors Ux, Uµ, U∆ can all be performed in parallel. Finally, the core tensor
can be updated using the updated factors and stored quantities by integrating the following tensor
differential equations from t0 to t1

C(t0) = C0 ×1 M
x ×2 M

µ ×3 M
∆

˙C(t) = F
(
t, ψu, C(t)×1 U

x
1 ×2 U

µ
1 ×3 U

∆
1
)
×1 U

x,T
1 ×2 U

µ,T
1 ×3 U

∆,T
1 (15.17)

and setting C1 = C(t1).

The explicit form of the equations can now be obtained by plugging in the right-hand side function F

from eq. (15.3). Moreover, we assume in the following that ρ(x,∆) = cρ0(x)
c+ρ1(x)∆ , i.e. the uncertainty

manifests in the tissue density.

15.3 Results

Quantifying the effect of arbitrary time-dependent variations of the density is typically difficult to achieve
in standard dose calculation algorithms combined with non-intrusive uncertainty propagation, due to the



15.3. Results 139

high dimensionality of the parameter space when sampling the density at each spatial position and
time-point explicitly. Using the time-dependent CT data from [88], we want to demonstrate that ten-
sor DLRA is suitable to capture realistic uncertainties due to respiratory motion, including anatomical
deformations.

As a proof-of-concept, we interpret a time series of 10 CT images from the given data set as samples
from a stochastic process. The CT images are interpolated to obtain a continuous process and facilitate
sampling at arbitrary time points. Figure 15.1 shows a comparison between a computationally expensive
non-intrusive collocation approach with 100 nodes, which runs a full dynamical low-rank dose calculation
for each sample point and the tensor DLRA approach, which incorporates the samples directly as a
discretization of the uncertain parameter dimension. For both approaches, we use a rank of 50 and

(a) Collocation, 100 nodes

(b) DLRA, rank 50

Figure 15.1: Dose expected value (left), standard deviation (middle) and log-scale plot of the standard
deviation (right) for a reference collocation approach (a) compared to tensor DLRA for uncertainty
quantification (b).

moments up to degree 17 for the spherical harmonics angular discretization. The CT scans are scaled to
a 14.5cm×14.5cm spatial domain, which is divided into a 50× 50 cell angular grid. One can see that the
variance due to density changes is highest at the beam entry, where dose values are high as well as near
the end of the beam, where the largest deformations occur in the time-dependent CT scan. At first glance,
all results shown in fig. 15.1 agree well between the tensor DLRA and the collocation approach. In the
log plots of the standard deviation, it is however visible, that the DLRA estimate is slightly less smooth
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and exhibits some artifacts in the low-dose regions. However, the standard deviation and expected value
show the same structure and agree well in the regions where higher doses are delivered. Further studies
with different types of uncertainties and higher temporal resolution are necessary to validate these results
and investigate whether small artifacts are a common effect of the DLRA or merely a result of the low
sample size of the original data set (only 10 points in the time dimension). In the initial implementation,
the tensor approach is approximately 2 times faster and allocates overall 3.1 times less memory than
the collocation method1. This performance can likely be improved through optimized implementation
and possibly by using a different tensor format. Since classical tensor formats such as the Tucker tensor
used in this work can exhibit structural weaknesses in higher dimensions [82], the use of different, more
sophisticated tensors formats such as the hierarchical Tucker tensor or Tensor train could be beneficial
[139]. Further, [139] show that these formats can be used to compute updates within an optimization
algorithm. Future work could also investigate an adaptation of this approach for (robust) optimization
in treatment planning.

1Performance measured on the same workstation using TimerOutputs.jl. Note, that the memory allocations refer to the
total allocations made during the computation, thus in the collocation approach, the allocations per sample are much lower.
Depending on whether the computations are done in parallel for several samples or sequentially, either approach could have
an advantage memory-wise.

https://github.com/KristofferC/TimerOutputs.jl
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CHAPTER 16

Discussion

Chapters 10 to 15 discussed the uncertain transport problem, starting with mathematical models of
uncertainties over common uncertainty propagation methods to novel and efficient approaches tailored
to different dose calculation methods.

Uncertainty modeling

Initially, we recall relevant uncertainties in radiation therapy and the simplified mathematical models
typically used in radiation therapy planning. We then proceed to introduce several novel modeling
approaches which model uncertainties in terms of the multivariate Gaussian phase space parameter
distribution. Range errors can be approximated using the distribution of the initial particle energy.
Time-dependent movements are translated into beamlet correlations according to the beam application
pattern. We further demonstrate how to adjust these time-dependent models to realistic patient data
and validate our approximations. The range approximation preserves the correct solution structure but
introduces a small systematic error. For our model, which assumes all materials as water-equivalent with
different densities, these errors are not amplified by heterogeneous vs. homogeneous materials. Future
work could investigate whether the approximation error increases for more detailed material calibration
models. The time series modeling produces accurate results when using the beam application times as
time steps and considering whole-body motion or homogeneous materials.

As an extension to this work, the time-dependent error modeling introduced in chapter 11 might be
extended to simulate spatial motion for 4D treatment planning or even deformations in geometry compo-
nents [10]. The derived correlation models are of interest in their own right and can be transferred to any
dose calculation and uncertainty quantification framework which supports multivariate error correlations
[e.g. 10]. Further, the data-based models could be used outside the realm of uncertainty quantification
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to predict patient or tumor motion in inline radiation therapy.

Uncertainty propagation

Next, we discuss different established and novel approaches for uncertainty propagation using the derived
uncertainty models. Due to the high computational cost of dose calculations, uncertainty propagation can
be infeasible with standard approaches. We introduce two methods aimed at the efficient computation
of uncertainty statistics for Monte Carlo and deterministic dose calculations, respectively.

Importance (re-)weighting

In chapter 14 we demonstrate how importance sampling can be adapted to lower the computational costs
of sampling-based uncertainty quantification in Monte Carlo dose calculations using the example of proton
irradiation. We derive an unbiased estimator and the standard error for the expected value, as well as an
estimator, bias and upper bound for the standard deviation. We apply the proposed method to Gaussian
set-up uncertainties with 3 mm standard deviation in a homogeneous water phantom, a prostate and a
liver patient. For a simple global uncertainty model, we observe high agreements of at least 99.9 % for
both test cases (figs. 14.1 and 14.2). We show that these results can be further improved by adapting the
distribution function used for the initial Monte Carlo simulation to the quantity which is of the highest
interest. Here, the user can choose between the exactness of the nominal dose estimate and that of the
expected dose or standard deviation.

The sampling of error realizations is completely independent of the solution of the transport problem,
which allows us to incorporate complex correlation models including movement patterns and time depen-
dence. This is a clear advantage compared to classic sampling-based methods, which would require an
elaborate setup and a large number of realizations to account for the degrees of freedom in a multivariate
model. Therefore, more complex correlation models are currently often neglected in uncertainty studies
[10, 178, 130], although it is apparent in figs. 14.8 and 14.9, that different uncertainty models can have
a significant impact on the dose standard deviation, already in a homogeneous material.

While an extension to other types of uncertainties in the phase space parameters is straightforward, the
method is limited to parameters that have a non-degenerate density function. Uncertainties in other
parameters of the simulation might require more complex, non-Gaussian error models which are able to
reflect physical constraints as well as space- and time dependencies. Here, the derivation of the required
conditional and joint probability distributions may not be straightforward. Future work could explore
the adaptation and application of the model to uncertainties beyond Gaussian errors in the patient setup
and particle range.

The main computational advantage of the proposed method is that it minimizes the overhead associated
with complex MC simulations. Therefore, we cannot claim a faster convergence rate and the speed-up
is dependent on the specific application and implementation. A combination with more sophisticated
scenario-based UQ methods, such as quadratures or a non-intrusive polynomial chaos expansion, could
be explored further, also with view to the use of the derived functional model for sensitivity analyses and
probabilistic optimization.
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Tensor dynamical low-rank approximation

Since the efficiency of the importance (re-)weighting method is still limited by the costly initial MC
simulation, we then consider a second uncertainty propagation method based on the more time and
memory-efficient dynamical low-rank approximation for deterministic dose calculations. Here, tensor
DLRA is used to include additional dimensions for uncertain parameters in the transport problem. Due
to the explicit time/energy evolution of the solution also in the uncertain dimensions, this approach al-
lows direct modeling of temporal changes even in previously deterministic quantities, such as the tissue
density. A proof-of-concept example with an electron beam in a lung CT and uncertainties according to
4D-CT density data shows that the results are comparable to those determined with a standard collo-
cation approach. In future work, the method could be extended to higher-dimensional time-dependent
uncertainties and different tensor formats could be investigated, also with view to a use within robust
optimization algorithms. With view to a realistic clinical application, an extension to proton transport
as well as further validations against Monte Carlo-based results and a more in-depth analysis of the
convergence and run-time improvements would be of interest.

Preview

So far, we have discussed different numerical methods for dose calculations and established realistic
uncertainty models as well as methods to efficiently propagate them through the dose calculations. In
the next and last part of this work, we tackle the questions of how dose calculations as well as uncertainty
estimates can be included in treatment plan optimization in order to determine more robust plans.
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Part IV

Robust planning
Predictions of the delivered dose and the impact of uncertainties are used in robust treatment
planning to adjust the beam set-up and achieve the optimal treatment outcome. As a proof-of-
concept, we consider two common approaches for the design of a robust optimization problem,
based on worst-case scenarios or the expected value, respectively. Further, the speed-up of
optimization through precomputation of dose and variance influence matrices is discussed.
We derive an algorithm to compute such influence terms efficiently for Monte Carlo dose
calculations using importance (re-)weighting.
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CHAPTER 17

Modeling robustness

In part III of this thesis, we have covered how uncertainties in radiation therapy can be modeled math-
ematically and propagated through the dose calculation algorithm to receive estimates of uncertainty
statistics such as the expected value and variance. Ideally, this knowledge should be incorporated into
the treatment planning process to reduce negative side effects and ensure tumor coverage and organ spar-
ing. In the following chapters, we discuss how to quantify the robustness of a treatment plan and include
this in the treatment plan optimization. Further, we demonstrate the use of the importance (re-)weighting
method for uncertainty propagation (chapter 14) within a robust optimization framework.

17.1 Margin recipes

Treatment planning is based on an initial delineation of volumes of interest such as the tumor or organs
at risk. A simple but common way of handling uncertainties is to define a planning margin around
these structures according to the expected uncertainty model. Here, the majority of approaches rely on
linearly expanding the margin size based on the aggregated standard deviation [218]. While recent works
explore margin recipes aimed at incorporating more complex models of patient behavior and adapting
margins in time according to time-dependent motion [e.g. 101, 26, 92], [26] show that a more expensive
optimization-based consideration can still significantly reduce the dose delivered to organs at risk while
ensuring within 1% equivalent dose in the tumor.

17.2 Robust and probabilistic optimization

Especially when considering intensity-modulated radiation therapy, it seems natural to incorporate knowl-
edge about uncertainties into the optimization process which determines the treatment plan, i.e., beams



146 Chapter 17. Modeling robustness

at which position and with which energy are irradiated with which intensity (duration). There are many
approaches to how this can be done, including simple approximations which assume invariance of the
dose [43] as well as more sophisticated approaches with probabilistic objective functions or constraints
[199, 37, 7]. Here we will consider two examples from the generalized class of minimax stochastic pro-
gramming [59]. First, we however recall the deterministic dose and optimization problem in IMRT from
part I:

D(w, r) =
B∑
b=1

wb ·Db(r), (17.1)

where Db(r) is the dose delivered to spatial position r by the beamlet b = 1, ..., B with weight/intensity
wb. The weights are determined through optimization

w∗ = arg min
w≥0

F (D(w, r)) (17.2)

and the objective function can be chosen to reflect different quality metrics, such as the tumor coverage
or deviation from the prescribed dose. Different common choices for the objective function are described
e.g. in [234]. Here, we will use a squared deviation function, i.e.,

F (D(w, r)) = P (r) · (D(w, r)−D∗(r))2
, (17.3)

where D∗(r) is the prescribed dose and P (r) is a location-specific penalty, which can be used to especially
enforce compliance with the prescription in regions of importance like the tumor or vital organs.

Note that in practice, the dose computation is often shifted out of the optimization routine by precom-
puting so-called dose influence matrices. For a voxelized geometry with V = nx · ny · nz cells and an
IMRT dose as in eq. (17.1), the dose influence matrix DI ∈ RN×B at entry DIvb, v = 1, .., V, , b = 1, ..., B
contains the dose delivered by beamlet b to voxel v. Then for every iteration of the optimization algorithm
the dose in each voxel DIv,∗(w) =

∑B
b=1 wb · DIvb can be aggregated using just the updated weights.

While these matrices can easily have more than 109−1010 elements for common patient CTs and particle
treatment plans, they are extremely sparse (∼1% of nonzeros).

17.2.1 Worst-case optimization

Worst-case or minimax optimization refers to a group of conservative robust optimization approaches
which incorporate uncertainties only in terms of a discrete set of worst case scenarios, without considering
their associated probabilities. There are several variations of worst-case optimization, described and
compared for example in [60]. Here, we will focus on composite worst-case optimization, where the
maximum over a weighted sum of the scenario objective functions is minimized:

min
w≥0

max
s∈S

K∑
k=1

vkFk(D(w, r, s)). (17.4)
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Here S is the set of scenarios and F1, ..., FK are different objective functions, e.g. representing different
goals in the optimization.

When considering set-up and range uncertainties typically one positive and negative offset per parameter
dimension is considered, i.e. ±δwcrx = δwcry = δwcrz

e.g.= 3mm for each spatial dimension of the set-up error
and ±δwcR

e.g.= 3% for the range error [174].

The advantage of this approach is that no knowledge of a probability distribution is required and only
a small number of scenario doses needs to be computed. Further, [59] have shown that a worst-case
approach can lead to sharper dose fall-off outside of the treated volume compared to an expected value
approach. However, potential knowledge of the uncertainty model or probability distributions is ignored
and a conservative choice of the "worst case" can lead to possibly unjustified pessimistic predictions of
plan quality [33]. We therefore also consider a second option, which makes use of the uncertainty models
and propagation techniques developed previously in chapter 11 and chapters 12 to 15.

17.2.2 Expected value optimization

As the name suggests, in expected value optimization we consider the expected value of the objective
function with respect to the probability distribution of uncertain parameters. Thus, the following opti-
mization problem has to be solved

w∗ = arg min
w≥0

Ep∆ [F (D(w, r,∆))] . (17.5)

For a squared deviation objective function and dose influence matrix approach, it can be shown that this
expected value is given by [227]:

Ep∆ [F (DI(w,∆))] =
V∑
v=1

Pv

N∑
b,m=1

Vvbmwbwm + F (Ep∆ [DI(w,∆)]), (17.6)

where Pv is the penalty in voxel v. Thus, similarly to the dose influence matrix, we can precompute
the variance influence tensor V ∈ RN×B×B+ , which in each entry Vvbm contains the variance between the
doses delivered by beamlets b and m to voxel i. Since penalties are not dependent on the beamlet weights
and vice versa the weights do not depend on the voxel position, we can further exchange the summation
such that the first term becomes

V∑
v=1

Pv

N∑
b,m=1

Vvbmwbwm =
N∑

b,m=1
wbwm

V∑
v=1

PvVvbm :=
N∑

b,m=1
wbwmΩbm, (17.7)

with Ωbm =
V∑
v=1

PvVvbm (17.8)

and precompute and store the smaller matrix Ω ∈ RB×B+ .
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CHAPTER 18

Robust optimization with importance (re-)weighting

Robust optimization entails the computation of several dose distributions in each iteration of the opti-
mization routine. While precomputing the dose and variance influence matrices saves time during the
optimization, it is still necessary to determine and store the dose influence for B individual beamlets and
several scenarios. Especially when using Monte Carlo simulations for dose calculation, this can be very
computationally expensive. As beamlet weights are not known in advance and the effects of each beamlet
need to be separated, it is also not possible to reduce the costs by using fewer particles for beamlets with
low intensities or reusing the particles simulated for neighboring beams.

For this reason, we want to incorporate the more efficient importance reweighting approach from chap-
ter 14 to reconstruct the individual beamlet influences for different scenarios from one joint Monte Carlo
simulation. This not only reduces the number of necessary simulations but could also allow for a more
efficient initial simulation using cheaply precomputed weights or the synergies of neighboring beamlets
by eliminating the need for separate computations.

18.1 Scenario and expected value computation

The dose distribution for worst-case scenarios as required for the worst-case optimization approach can
be determined analogously to that of individual realizations in eq. (14.9). Similarly, the dose expected
value and variance can be determined using eqs. (14.12) and (14.13). However, even using a more efficient
approach, computing the variance in each iteration of the optimization is infeasible in a typical treatment
planning process.

Therefore, we would like to precompute influence matrices for worst-case scenarios, expected dose and
variance as efficiently as possible.
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18.2 Dose and variance influence matrix

The computation of worst-case and expected dose influence matrices using importance reweighting is
straightforward. Assuming we have simulated particles from the initial phase space distribution q(Z), the
target distributions in each beamlet b = 1, ..., B are simply the individual Gaussian beamlet distributions
Sb0 = N (µbZ ,Λb) shifted by the worst-case offsets for each scenario ±δwcrx ,±δwcry ,±δwcrz ,±δwcR or convolved
with the (Gaussian) distribution of the uncertain parameter p∆ = N (µ∆,Σ∆). Then the formulas in
chapter 14 apply analogously and the B dose results for N voxels are collected in the matrix DI ∈
RN×B .

For the variance influence, we need to compute

Ωbm =
V∑
v=1

Pv · Vvbm =
V∑
v=1

Pv · Cov[DIvb, DIvm] = Ep∆ [(DIvb − Ep∆ [DIvb])(DIvm − Ep∆ [DIvm])].

Using a (quasi-)MC approach with N points to solve the expected values numerically and applying
the importance reweighting method, the summation order can be changed to yield the following algo-
rithm, where BBI(zp) is the vector of voxelized black box responses for sampled phase space parameters
zp.

Algorithm 18.1 Calculate variance influence matrix Ω

for particles p=1:H do
Sample zp ← q(Z)
Compute BBI(zp)

end for
for i=1:N do
Sample δi ← p∆(∆)
for beamlet distributions Sbi (Z) ,
b = 1, ..., B do
Cb,∗ = 1

H

∑H
p=1BBI(zp) ·

(Sbi (zp)−S(zp))
q(zp)

end for
Ω += 1

N

∑V
v=1 Pv · C∗,v · CT∗,v

end for

Note, that the matrix Ω can also be aggregated per volume of interest by only summing over voxels
within this volume in the last line of algorithm 18.1:

ΩV OI += 1
N
PV OI ·

∑
v∈V OI

C∗,v · CT∗,v.

Since each volume of interest typically shares the same penalty value for all voxels, the penalty multipli-
cation can then also be pulled out of the summation. This strategy further has the advantage of allowing
an individual analysis of the variance in each component.

It is further important for the convergence of the optimization algorithm, to ensure that the produced
variance influence is always positive semidefinite. This can be easily shown by construction of the algo-
rithm:
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Figure 18.1: Phantom geometry with associated penalty values: Gray is the body, blue the tumor/target
and red the organ at risk.

Proof. Since for any real matrix A and nonzero real column vector u:

uTAATu = (ATu)T (ATu) = |ATu|22 ≥ 0

and C∗,v · CT∗,v is the product of a real matrix by its transpose, this term is positive semi-definite. Further,
the sum of positive semi-definite matrices multiplied by a positive factor is again positive semi-definite,
therefore

∑V
v=1 Pv · C∗,v · CT∗,v is positive semi-definite and lastly for the same reason

Ω += 1
N

V∑
v=1

Pv · C∗,v · CT∗,v

is always positive semi-definite.

Note, that Ω is also symmetric by construction.

18.3 Results

We now consider a simple water phantom including a target surrounded by an organ at risk to illustrate
the effects of the two previously discussed robust optimization strategies. The geometry and penalties
used for the different volumes of interest are shown in fig. 18.1. The intensities or beamlet weights are
optimized using the radiation therapy planning software matRad [234]. The matRad optimizer is based
on IPOPT, which implements a primal-dual interior point method [224].
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The target dose for the tumor is set to 60 Gy, while the upper bound for the organ at risk is 10 Gy and
20 Gy for the rest of the phantom body.

Note, that in the following, results from a robust optimization based on the pencil beam algorithm will
be compared with such based on Monte Carlo dose calculations. Since both dose calculation meth-
ods themselves yield different results already in a deterministic setting, slight differences between the
scenarios, variance influences or optimized dose are not necessarily due to the uncertainty propagation
methods. Therefore, the focus here lies more on the structure and changes in the solution than the exact
values.

18.3.1 Worst-case optimization

In the first optimization model, we consider 7 worst-case scenarios: ±3mm shift of the position in each
spatial direction as well as a nominal scenario without shifts. The objective functions for the composite
worst-case model are chosen to be a squared deviation function for the target volume and squared
overdosing for the body and organ at risk. We compare a completely analytical computation using
the pencil beam algorithm implemented in matRad with scenarios reconstructed from a nominal Monte
Carlo dose calculation using importance reweighting. Through the use of the reweighting approach,
we do not require the accurate simulation of individual beamlets to construct a dose influence matrix,
as the dose for each beamlet can be derived from a joint simulation with arbitrary initial phase space
distribution.
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Figure 18.2: Comparison of nominal dose at surface depth and two error scenarios computed with a pencil
beam method and APM vs. Monte Carlo dose calculation with importance reweighting (IRW). The red
star marks the beam center in the nominal scenario without shift.

Figure 18.2 shows the surface level dose for the nominal scenario as well as shifts along one lateral
dimension. It is apparent that both methods yield the same effects and beams are shifted analogously in
each scenario. It is however notable, that the dose in the Monte Carlo-based computations is consistently
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higher than that using the pencil beam method. Note that for this reason also slightly different ranges
are used for the colormaps of the two methods in fig. 18.2. This serves to emphasize the effect of the
scenario shifts rather than the differences due to the dose calculation algorithms.

0 10 20 30 40 50 60 70 80 90 100 1100

20

40

60

80

100

Dose [Gy]

Vo
lu

m
e

[%
]

Body (conv.)
Target (conv.)
Organ (conv.)
Body (robust APM)
Target (robust APM)
Organ (robust APM)
Body (robust IRW)
Target (robust IRW)
Organ (robust IRW)

Figure 18.3: Comparison of conventional with robust DVHs computed with worst case optimization
based on a pencil beam method and APM vs. Monte Carlo dose calculation with importance reweighting
(IRW), respectively.

Figure 18.3 shows the dose volume histograms for a conventional (non-robust) optimization as well as the
robust optimizations based on APM and Monte Carlo reweighting, respectively. Both methods exhibit
the effect of reducing the dose delivered to the organ at risk and increasing the maximum dose delivered
to the target. These effects are more pronounced in the Monte Carlo reweighting results, which further
also slightly increase the dose delivered to the total body. Note, that the optimal outcome of robust
optimization is to decrease the amount of dose delivered to organs at risk while maintaining at least the
same level of dose in the tumor. The prioritizing of organs at risk is vs. target is then mainly steered by
the chosen penalty values. Keeping this in mind, both methods have a positive effect on the expected
treatment outcome and the MC reweighting approach performs better than APM. However, uniformity
is also a criterion for the dose distribution in the target volume, which is not fulfilled well especially by
MC reweighting. Since the organ at risk is placed to the sides of the target, a decrease of dose in the
OAR can only be achieved by reducing the dose at the interface between the target and OAR. In order to
maintain the total amount of dose to the target, the optimization then increases the dose in the center,
leading to less uniformity overall. Since scenario shifts are portrayed accurately in both methods (see
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fig. 18.2), the difference between worst-case optimization with APM and importance reweighting is likely
mainly due to the difference between pencil beam and MC dose calculations rather than the scenario
computation itself.

18.3.2 Expected value optimization

Second, we consider expected value optimization based on a squared deviation objective as described
in section 17.2.2 and chapter 18. Figure 18.5 compares the variance influence matrices computed with
APM and Monte Carlo importance reweighting for each volume of interest. Beamlets in the matrix are
grouped per ray (all beamlets with the same spatial position) and ordered by their lateral position from
low to high and left to right. Thus beamlets in the middle of the matrix are positioned in the center of
the domain and beamlets with lower/higher indices are increasingly more left and lower/right and higher
than the center (see fig. 18.4).

While for all volumes of interest, block structures representing groups of beamlets within the same ray
are visible and beamlets with closer spatial proximity tend to show higher correlations, some differences
in structure can be observed especially between the target and organ at risk. Due to the positioning of
the organ to the sides of the central tumor, beamlets in the middle of the domain cause higher variance
in the dose delivered to the target, while beamlets at the lower and upper end of the index spectrum have
a larger influence on the dose variance in the organ at risk.
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Figure 18.4: Spatial position and index in variance influence matrix of each of the 25 rays. Each ray
contains 7 beamlets with the same spatial position, but different energies.
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Figure 18.5: Variance influence matrix for a plan with 175 beamlets in a water phantom (fig. 18.1) and a
global set-up error with 3mm standard deviation. (a) Influence matrix for the complete body computed
with APM, (b) influence matrix for the target computed with APM, (c) influence matrix for the organ at
risk computed with APM and (c) influence matrix for the complete body computed with MC importance
reweighting, (d) influence matrix for the target computed with MC importance reweighting as well as (e)
influence matrix for the organ at risk computed with MC importance reweighting.

The described structures are captured similarly in the variance influence matrices computed with both
different methods. The total magnitude of variance values is however slightly higher in the target and
lower in the organ at risk for the APM method compared to Monte Carlo reweighting. This also affects
the results of the robust optimization presented in fig. 18.6.

Here, again both methods can reduce the dose delivered to the organ at risk while increasing the maximum
dose in the target. Further, the uniformity of the dose distribution in the target is reduced in both cases.
However, APM shows a larger difference to the conventional optimization in the target, while Monte Carlo
importance reweighting has a larger effect in the organ at risk. This is likely due to the differences in their
variance influence matrices: APM expects and tries to avoid a larger variance in the target, while the
organ at risk is not expected to be affected by uncertainties as much and vice versa for MC reweighting.
Which is a more desired outcome depends largely on the specific patient case and the marginal benefits
of a little less dose in the specific OAR compared to more dose in the target.
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Figure 18.6: Comparison of conventional with robust DVHs computed with expected value optimization
based on a pencil beam method and APM vs. Monte Carlo dose calculation with importance reweighting
(IRW), respectively.
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CHAPTER 19

Discussion

The main use of uncertainty statistics in radiation therapy is for the choice or configuration of more robust
treatment plans. In this part, we have discussed two ways of incorporating knowledge about uncertainties
into the plan optimization: One based on a discrete set of worst-case scenarios and the other on the
optimization of the expected value of the objective function. The main challenge for robust or probabilistic
optimization in radiation therapy lies in the high computational costs associated first with computing the
dose and further the uncertainty estimates. As a proof-of-concept, we discuss how importance reweighting
can be applied to reconcile costly Monte Carlo dose calculations with robust optimization and derive an
algorithm to precompute variance influence matrices for expected value optimization.

The optimized plan as well as computed scenarios and variance influences are then compared between the
Monte Carlo-based importance reweighting approach and a completely analytical pencil beam algorithm
with APM for the uncertainty propagation. The reweighting approach allows a direct construction
of scenarios and influence matrices from a regular simulation and significantly decreases the costs of
uncertainty quantification, which makes optimization feasible also for Monte Carlo dose engines. We see
similar effects of the optimization for both robustness models and both uncertainty propagation methods.
Due to the difference already in the dose calculation methods, it is however unclear whether the small
deviations that we observe have to be attributed to the dose calculation or uncertainty quantification
approach. Further analysis of different test cases would be necessary to investigate this and validate
the results. Further, different, time-dependent uncertainty models as discussed in chapter 11 could be
incorporated to achieve robustness in a wider, more realistic set of scenarios. The optimization design and
solution algorithms presented within this work are merely a meant as a proof-of concept and represent a
small excerpt of the possible approaches. Robust or probabilistic optimization is a research field of its own,
which could be further explored to find more efficient ways of handling the multiple optimization criteria,
uncertainties and constraints in treatment plan optimization. Since Monte Carlo-based optimization,
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even with the described adjustments, is costly compared to a simplified analytical approach, the use of
dose and uncertainty computations based on the dynamical low-rank approximation is a promising field
for future work. Especially in combination with optimization strategies that may exploit the low-rank
structure or underlying system of partial differential equations, this approach could be a good alternative
to the cheap but very simplified APM pencil beam method and the accurate but costly Monte Carlo-based
approach.
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Part V

Summary & outlook
Radiation therapy treatment planning especially under consideration of uncertainties offers
a variety of mathematical challenges. In this thesis, we have introduced a novel software
framework for deterministic dose calculations, tackeled the high-dimensional phase space of the
(uncertain) transport equation using the dynamical low-rank approximation and introduced
novel efficient methods for uncertainty propagation with MC or determinstic solvers. The
following chapter summarizes our findings and discusses limitations as well as potential for
future work building on this thesis.
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CHAPTER 20

Summary

In this thesis, we have investigated different strategies to reduce the high computational costs associated
with treatment planning for charged particle radiation therapy under uncertainties.
First, we considered the core problem of solving the linear Boltzmann transport equation to determine the
delivered dose for a given beam set-up. We introduced the transport equation for electrons and protons
as well as the continuous slowing down approximation, which allows a use of the energy as a pseudo-time.
We then recalled the three most common types of numerical methods used for dose calculations: The
Monte Carlo method, which is based on a stochastic interpretation of particle transport as a random
walk; the pencil beam algorithm, a simplified probabilistic approach based on Gaussian lateral repre-
sentations of the beam convolved with measured depth dose data; and lastly deterministic Boltzmann
solvers, which take a classic numerical approach of discretizing the six-dimensional phase space of the
transport equation.
While the Monte Carlo method is often seen as the gold standard in terms of accuracy, it is also very
computationally expensive and converges slowly. Pencil beam models are computationally efficient, how-
ever, they can only describe layered heterogeneities in depth (and not lateral direction) accurately. Thus
simulation results are inaccurate, especially in cases including air cavities or other inhomogeneities. We
therefore focused on the deterministic Boltzmann solvers, which are relatively unknown in the field of
medical physics. We introduced a solver framework – KiT-RT – implementing the three most well-known
deterministic approaches, PN , SN and MN , for the continuous slowing down approximation. While we
could see that the application of deterministic Boltzmann equations for dose calculation can achieve sim-
ilar accuracy as MC simulations, they also exhibited high computational complexity and memory costs.
Therefore, we introduced a novel approach to reduce the computational costs and memory associated with
a deterministic solution of the Boltzmann equation: The dynamical low-rank approximation (DLRA) for
radiation therapy. Here, the solution is evolved on a low-rank manifold in time. To facilitate the use
of boundary conditions and reduce the overall rank, we split the radiation transport equation into col-
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lided and uncollided particles through a collision source method. Further, stiff scattering terms were
treated through an efficient implicit energy discretization and a rank adaptive integrator was chosen to
dynamically adapt the rank in energy. The method can be shown to be L2-stable under a time step
restriction. We then demonstrated that the dynamical low-rank approximation can significantly reduce
run-times by more than an order of magnitude for electrons while maintaining high accuracy compared
to the full-rank solution as well as a Monte Carlo reference. The method further proved to be well-suited
for GPU implementations and especially efficient for proton transport, which requires only a tenth of the
rank needed in electron transport.

In part III, we extended the phase space and investigated the transport equation with uncertain param-
eters. We first discussed relevant uncertainties in radiation therapy and common assumptions or models
used in uncertainty propagation. These were found to be extremely simplified and not able to represent
more high-dimensional or time-dependent uncertainties. With view to the novel uncertainty propagation
approaches discussed later within this part, we introduced efficient ways of modeling uncertainties in
tissue density as well as time-dependent spatial uncertainties within the multivariate Gaussian model of
the particle phase space.
We then introduced two novel uncertainty propagation methods: The first aimed to reconcile costly
Monte Carlo dose calculations with uncertainty quantification. Here, we considered realizations of the
uncertain parameter as changes in the probability distribution of the initial phase space parameters and
used importance sampling to reconstruct scenario and expected dose estimates from one set of simulated
particle trajectories. We further showed that these dose estimates are unbiased and that the overall error
when reconstructing several quantities from the same initial sample can be reduced by sampling from
a mixture, i.e. weighted sum, of the target probability functions. The method was applied to several
patient cases, where run times could be reduced by more than an order of magnitude for all cases.
Since the Monte Carlo-based methods were still relatively costly and additionally required more memory
when storing simulated trajectories for later reconstruction, we next considered a use of DLRA also for
uncertainty quantification. We demonstrated how a tensor DLRA approach can be applied to the con-
tinuous slowing down approximation with uncertainties. This approach allowed a direct propagation of
time-dependent uncertainties in the tissue densities. The computed expected value and variance of the
dose were validated against a collocation approach. Even in this first proof-of-concept implementation, the
results agreed well with the reference and the computational costs could be reduced significantly.

Lastly, in part IV, we joined together the previous methods to determine the optimal treatment set-up
while considering uncertainties. Two options for the design of the robust optimization problem were dis-
cussed, one based on a discrete set of error scenarios in addition to the nominal dose, and the other based
on the expected value of a squared deviation objective function. The latter required the computation of
the dose expected value as well as a variance term. We further elaborated on how the optimization itself
can be sped up by precomputing influence matrices or tensors for a set of viable beam options and merely
optimizing the weights used for their accumulation. We derived an algorithm to efficiently compute these
influence terms using importance reweighting of a MC dose simulation and argue that it produces positive
semidefinite covariance matrices. We find that this approach makes robust optimization (more) feasible in
combination with MC dose calculations and observe similar effects on the plan quality for both objective
function designs and in comparison to an analytical pencil beam-based approach.
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CHAPTER 21

Outlook

The presented work leaves several open questions and tasks that could be tackled in future research,
both with view to a better mathematical understanding and in bringing the methods closer to clinical
applicability.

Dynamical low rank approximation

To improve the accuracy of dose calculations for proton transport, more exact physical models are re-
quired. We have seen in chapter 7 that incorporating nuclear scattering could close the majority of the
gap to the Monte Carlo reference. Unfortunately, cross section data for nuclear scattering is only available
for specific materials and medium to high energy ranges. Since available mathematical models are usu-
ally obtained by regressing on this data, they inherit their limitations. Future work could aim at finding
better mathematical models for nuclear scattering, e.g., by translating the often more exact interaction
models used for Monte Carlo simulations to differential scattering cross sections. Similarly, the Ruther-
ford formula can accurately model single Coulomb scattering events. However, the macroscopic effect of
multiple Coulomb scattering cannot be accurately modeled with Rutherford scattering, as the accumula-
tion of individual Rutherford events cannot be realistically resolved. Models derived from, for example,
Molière’s theory would need to be adapted to the formulation. The use of dedicated multiple Coulomb
scattering models could also aid in alleviating problems with the singularity of Rutherford cross sections
around zero angular deflection. In contrast to Rutherford’s formula, multiple scattering typically employs
aggregate models for the many small-angle scattering events, resulting in a nearly Gaussian distribution
in angle. [215] state that the Boltzmann scattering operator is not well-suited for small-angle scattering
and proposes a hybrid Fokker-Planck-Boltzmann method. Future research could investigate such a hybrid
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approach using Rutherford scattering in comparison to a Boltzmann method with a multiple Coulomb
scattering model.

So far, time evolution equations for the proposed dynamical low-rank approximation have only been
derived based on the continuous slowing down approximation to the linear Boltzmann transport equation.
This allows a treatment of the energy as a pseudo-time. Certain physical effects relevant to proton
transport, such as range/energy straggling however introduce stochasticity to the energy loss which
cannot be modeled exactly within a continuous slowing down setting. Further, the most commonly used
treatment modality relies on photons for which the continuous slowing down approximation does not
hold. Thus, future work could explore the use of the dynamical low-rank approximation for the classical
Boltzmann transport equation. Possible approaches could include adapting [115], who propose to use the
iteration index in a power iteration scheme as a pseudo-time when solving a neutron transport problem
with multi-group discretizations of the energy variable. In photon transport, a hybrid approach might
be taken, which uses the dynamical low-rank approximation for the electron transport equation (where
continuous slowing down can be assumed) and a coarse deterministic or pencil beam method for the
coupled photon equation.

With view to a clinical application, the optimization of the GPU implementation as well as thorough
quantitative comparisons to state-of-the-art commercial dose calculation engines would be of interest
to realistically judge the speed and memory capabilities on workstations used in treatment planning.
Further, the current work is limited to the computation of single (pencil) beams. An extension to an IMRT
setting could be achieved using Gaussian mixtures for the boundary conditions modeling the radiation
source, where the weights in the mixture model are determined during the enveloping optimization
process. Monte Carlo methods typically compute beams individually and merely use variance reduction
techniques such as importance sampling to reduce the number of trajectories that need to be simulated.
Therefore, it would be especially interesting to explore the effect of more complex boundary conditions
on the costs of dose calculation using the dynamical low-rank approximation.

Lastly, the dynamical low-rank approximation is still a relatively young topic and very much developing.
In the time during and after this work was conducted a lot of new and interesting research, e.g., on
fully parallel integrators has been published, which could be built upon and brought to an application
in radiation therapy. Especially the topic of tensor DLRA has merely been touched upon here. While
we have seen promising results for an application for uncertainty quantification in radiation therapy,
there is a lot of potential for future work. This could be in exploring different tensor formats or a use
for updates in (robust) plan optimization as suggested in [139]. Further, uncertainty quantification for
dose computations with the dynamical low-rank approximation could be handled non-intrusively. For
example, the choice of rank could be utilized as the lever for different levels of accuracy and cost in a
multi-level Monte Carlo approach.

Uncertainty Modeling

The uncertainty models introduced in chapter 11 exploit the time-dependency of beam application pat-
terns in intensity-modulated radiation therapy to include spatial shifts during the treatment in the initial
phase space distribution. In this work, we have only considered the uses of these models as input for un-
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certainty propagation methods. This however limits the format to multivariate (Gaussian) distributions
and fixes the temporal resolution to the intervals between beam application times. More complex and
higher resolution models could be directly used for robust optimization which assumes spatial invariance
[43] or for real-time predictions of tumor or organ positions needed in inline radiation therapy.

Further, recent developments in adaptive (real-time) radiotherapy interact with uncertainty modeling
and robustness requirements. Uncertainty mitigation techniques, such as gating (irradiation is stopped
if the patient moves out of a predefined window) or tracking (beam follows the movement of the patient)
can affect the distribution of the net displacement of the patient in relation to the beam. This needs to
be included in the uncertainty models to account for such effects in robust optimization and avoid over-
corrections. For example, [92] propose a truncated Gaussian model to account for gating during margin
computations. Tracking on the other hand could result in a narrowed distribution within the tolerance
window. Such probabilistic models can be directly included in our proposed uncertainty framework. In the
case of tracking, however, additional range uncertainties would have to be considered, since both the target
and beam can constantly change their lateral position and encounter different tissue compositions.

Importance (re-)weighting for MC dose calculations

Importance (re-)weighting was introduced as a method to improve the efficiency of sampling or collocation-
based uncertainty quantification for Monte Carlo simulations. It relies on the derivation of probability
distributions representing the realizations of uncertain parameters. In our work so far, we have used
the common assumption of Gaussian phase space and uncertainty distributions. This is however not
a reasonable assumption for all types of uncertainties or treatment modalities. For example, photons
are typically physically forced into a flattened nearly uniform distribution. Future work could consider
the use of non-Gaussian probability distributions and investigate to which extent joint and conditional
probabilities can be derived in these cases.

One could further lean more into the combination of importance (re-)weighting with non-intrusive spectral
projections. While we have seen that this does not improve efficiency for expected value or variance
computations, the functional representation of dose in terms of uncertain parameters could be used for
sensitivity analyses or in robust optimization.

Robust optimization

As the main focus of this work lies on radiation transport and uncertainty quantification, we have merely
scratched the surface of also using this information for robust treatment plan optimization. There are
many options for future work, ranging from different optimization designs, e.g., using probabilistic con-
straints to different optimization algorithms. Within a closer vicinity to the methodology used here,
expected value optimization could be extended to a wider range of objective functions. For a squared
deviation objective, we saw that the expected value could be simplified and brought into a form where
expensive quantities can be precomputed. Future work could explore whether similar results can be
obtained for other common objective functions, e.g. based on equivalent uniform dose (EUD) or dose
volume histograms.
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More broadly, we could study how the uncertainty propagation techniques discussed in this work can most
efficiently be combined with different ways of incorporating robustness and balancing the trade-off between
different objectives. For example, the variance influence matrices for individual volumes of interest
computed using importance reweighting could be used for Pareto optimization. On the other hand,
as discussed in previous sections, deterministic dose calculation methods and specifically the dynamical
low-rank approximation could lend themselves to very cost-efficient optimization algorithms.
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Appendix
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A.1 Detailed results of γ-analysis in chapter 14

Table A1 presents more detailed results of the γ-analysis shown in chapter 14, including a breakdown
into passrates per volume of interest in each patient and additional data on the liver patient for set-up
uncertainties.

Table A1: γ2 mm
2 % -pass rates in volumes of interest (VOI) of the water phantom, liver and prostrate patient

for (a) set-up errors, (b) range errors and (c) set-up and range errors. All estimates were computed from
the nominal distribution S0 and in (b) and (c) also compared against such from the expected distribution
S.

(a) Set-up errors

Patient VOI
Waterbox Total Body Target
E[D] 99.95 99.95 99.81
σ(D) 98.04 98.04 98.44
Liver Total GTV Liver Heart CTV Contour PTV
E[D] 99.01 98.07 97.71 99.83 94.99 97.83 96.59
σ(D) 99.81 100 99.79 99.67 100 99.72 99.49
Prostrate Total Rectum Penile Lymph Femoral Prostate PTV PTV Bladder Body

bulb nodes heads bed 68 56
E[D] 99.99 100 100 99.75 100 99.71 99.85 99.88 99.96
σ(D) 99.82 99.85 95.92 100 100 100 100 99.36 99.94 99.79

(b) Range errors

Distribution Patient VOI
Waterbox Total Body Target

S0
E[D] 99.58 99.58 99.44
σ(D) 91.63 91.63 92.58

S
D 99.98 99.98 100
σ(D) 93.55 93.55 87.88
Liver Total GTV Liver Heart CTV Contour PTV

S0
E[D] 99.91 99.71 99.91 100 99.74 99.93 99.81
σ(D) 73.32 79.47 70.68 83.38 66.49 72.16 57.38

S
D 99.93 99.90 99.96 100 99.85 99.85 99.91
σ(D) 93.70 99.05 92.17 95.51 90.06 93.80 86.22
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(c) Set-up and range errors

Distribution Patient VOI
Waterbox Total Body Target

S0
E[D] 99.39 99.39 99.81
σ(D) 95.10 95.10 82.76

S
D 99.93 99.93 99.81
σ(D) 99.50 99.50 97.04
Liver Total GTV Liver Heart CTV Contour PTV

S0
E[D] 99.86 99.71 99.86 99.93 99.61 99.91 99.67
σ(D) 95.56 96.76 89.87 87.77 95.85 91.74 91.89

S
D 99.87 100 99.94 100 99.77 99.97 99.86
σ(D) 96.64 100 93.39 84.96 98.67 92.50 92.58

A.2 Full Gaussian phase space model

The simplified model used in 14 can be extended to include distributions in the initial momentum direction
Ω0. The additional variables are included in the Gaussian mixture model:

S0(Z) =
B∑
b=1

wbS
b
0(Z) , Sb0(Z) = Sb0(r0,Ω0, E0) = N (µbZ ,Σb

Z) (1)

where the respective entries in the covariance matrix ΣbZ can be chosen 6= 0 to model randomness
in the momentum direction as well as correlations of the momentum directions with primary particle
positions.

Table A4: γ2 mm
2 % -pass rates in volumes of interest (VOI) of the liver patient computed using the full phase

space parameterizations.

From S0 From S
Error type Set-up
Liver D E[D] σ(D) D E[D] σ(D)
Overall 100 99.86 95.88 99.85 100 96.32
GTV 100 99.52 95.09 99.23 100 97.21
Liver 100 99.96 94.63 99.93 100 95.32
Heart 100 100 95.10 100 100 97.04
CTV 100 99.79 92.78 99.67 100 94.22
Contour 100 99.99 95.89 99.97 100 96.30
PTV 100 99.89 90.92 99.78 100 89.93

Figure 1 presents results for the nominal dose, expected dose and standard deviation in a liver patient,
for set-up uncertainties with 3 mm standard deviation, 0.2 standard deviation in the momentum direction
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Figure 1: Nominal dose, expected dose and standard deviation w.r.t. set-up uncertainties with 3 mm
standard deviation for one beam (couch angle 0°, gantry angle 315°), computed using the full phase space
parameterizations.

and 0.3 correlation between Ωv and rv, v ∈ {x, y}. Estimates were computed based on the convolution
function S of the error and beam parameter densities, as well as the nominal parameter density S0. The
corresponding global γ-analysis pass rates can be found in table A4.
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