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1 Introduction

Chemical kinetics of complex oxidation processes in homogeneous systems is described by systems
of ordinary differential equations (ODEs). These systems are tend to be very complex in terms of
dimensionality (number of species involved), non-linearity and stiffness (due to elementary reaction
rates) [1].

The computational demand (CPU time, memory) required to treat such systems can be very high. In
order to integrate such systems numerically within reasonable time reduction methods are required.
These need to provide us with models of lower dimension and less stiff in comparison to the detailed
model [2].

The Global Quasi-Linearisation approach makes use of the time scale hierarchy [3] inherent in the
system to reduce the model by using fast and slow invariant manifolds. The method allows to identify
existing decomposition of time scales and to split the system into sub-systems of low-dimension, which
govern the thermo-chemical processes at different characteristic time scales. By using these sub-systems
the dimension of the original detailed model can be reduced [4, 5].

The method identifies automatically the reduced system dimension. It provides with the slow manifold
equation. Though it is given in an implicit form it nevertheless can be used to investigate a chemical
reaction mechanism [6] and to project the system onto this manifold [5, 7]. However, the method might
not be accurate when the time scale separation is not asymptotically small, which is typically the case
in applications. The decomposition between time scales of fast and slow subsystems might exist, but it
is never infinitely large. Thus, in actual implementations one can face this problem which may lead to
accuracy loss of the reduced model solutions.

At present, there is no appropriate solution to cope with this problem. Typically, increasing of the slow
manifold dimension is implemented to improve the accuracy and performance of the reduced model in
such cases.

In this work, the increase of the order of the approximation of the Global Quasi-Linearisation (GQL) ap-
proach is suggested to cope generically with this problem. The resulting manifold equation is improved
by considering a first order correction. By using the implicit implementation strategy suggested to the
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first order correction to the manifold equation the reduced model is integrated in the same manner as the
zeroth order model reduction.

For simplicity an isobaric closed reacting system of hydrogen / air is considered. The problem of auto-
ignition is in the focus of the study. The results illustrate that the accuracy of the reduced model can be
significantly improved by using the suggested first order correction to the GQL slow manifold.

2 Mathematical modeling for homogeneous reacting system

The considered system is described by a spatially homogeneous adiabatic system with constant volume
condition. It is isolated with no mass and energy transfer with the surrounding. The corresponding
mathematical model is represented by

d~ψ
dt

= ~F
(
~ψ
)
, (1)

where ~ψ is the vector of the thermo-kinetic states [8]. For an isochoric closed homogeneous reacting
system, ~ψ = (u, V, φi)

T with u the specific internal energy, V the system volume, φi the specific mole
number defined as the ratio of mass fraction wi to molar mass Mi (φi = wi/Mi). The term ~F stands
for the source term, and ~F = (0, 0, ω̇i/ρ)T for the isochoric closed homogeneous reacting system with
ω̇i as the molar rates of formation of a chemical species due to chemical reactions. Note that the choice
of a different thermo-kinetic states (e.g. using mass fraction instead of specific mole number) does not
affect the methodology of the GQL method, which will be proposed in the next section.

3 Global Quasi-Linearisation (GQL)

3.1 Methodology of the GQL

The detailed description for the Global Quasi-linearisation (GQL) can be found in e.g. [4].

Two main assumptions underlie the GQL methodology:

• there exists a decomposition of fast and slow processes of the system;

• the decomposition of fast and slow processes is valid everywhere inside our domain of interest.

Based on these two assumptions, the following procedure allows us to find a global linear approximation
of the vector field defined by right hand side of (1) that results in the dynamical decomposition. If matrix
TGQL defines a valid linear approximation of the right hand side of (1)

~F (~ψ) ≈ TGQL · ~ψ (2)

we can say that TGQL has to reproduce the asymptotical decomposition, which is present in the original
vector field F . Thus, this global linear transformation matrix TGQL aims at finding out the fast and slow
invariant subspaces by using an algorithm similar to the ILDM method. Namely, the eigenvalue/-vector
decomposition allows us obtaining two groups of eigenvalues consisting different slow and fast time
scales:

TGQL = VΛV−1 =
(
Zs Zf

)
·
(

Λs 0
0 Λf

)
·
(
Z̃s
Z̃f

)
(3)
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3.2 Implementation: Zeroth order of the GQL

Once the decomposition Eq. (3) is defined, then, similar to the ILDM method, the slow manifold is the
manifold where the reaction rates in direction of the fast invariant subspaces vanish:

M0,s
GQL = {~ψ : Z̃f · ~F (~ψ) = 0} (4)

The original ODE system can be transformed into the following DAE when the GQL slow manifold is
implicitly used

Qs ·
d~ψ
dt

= ~F (~ψ), where: Qs =
(
Zs Zf

)
·
(
Z̃s
0

)
. (5)

3.3 Implementation: First order of the GQL

The linear decomposition of the dynamical system obtained though (3) can be used to determine the fast
and slow manifolds. The implicit form of the invariant equation can be used to improve the manifold
Eq. (4), namely, when Φ0(~ψ) = Z̃f ·F (~ψ) = 0 represents the zeroth order approximation of the invariant
manifold defined for F (~ψ)

The first order approximation would then be defined by

Φ1(~ψ) = Dψ(F (~ψ))Φ0(~ψ) = 0. (6)

Substituting Φ0(~ψ) = Z̃f · F (~ψ) into the above equation and considering that Z̃f is constant, the first
order approximation to a leading order magnitude is obtained as

M1,s
GQL = {~ψ : Z̃f ·Dψ(F (~ψ)) · F = 0}. (7)

Then the first-order approximation of slow manifold is simply given by

M1,s
GQL = {~ψ : Z̃f · J(~ψ) · ~F (~ψ) = 0}. (8)

Here J(~ψ) = Dψ(F (~ψ)) is the Jacobian matrix of the system’s source term. Therefore, using the
first-order slow manifold based on GQL, the time evolution of species in original coordinate is slightly
different from (5) following the DAE system:

Qs ·
d~ψ
dt

=

(
I

J(~ψ)

)
· ~F (~ψ), where: Qs =

(
Zs Zf

)
·
(
Z̃s
0

)
, (9)

where I is the identity matrix.

3.4 A general comment on the GQL methodology

Although the GQL has been proven to be more accurate compared to the QSSA method, as it is shown
in e.g. [8], we would like to mention here that finding out an optimal GQL basis requires some com-
putational effort, because in the current implementation one uses a statistical approach and tests and
validates a number of candidates for linearisation matrix for different system conditions and reduced
dimensions. However, if one uses the first order approximation as suggested, the GQL basis does not
need to be optimal to reach higher accuracy (see subsections below).
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4 Implementation: Hydrogen-Oxygen Isochoric Homogeneous Reaction System

In this section, the hydrogen-oxygen isochoric homogeneous reacting system is considered as a simple
but representative example. This system has been intensively investigated in our previous work [8],
showing the advantage of GQL over QSSA. There are several further studies [5, 7, 9] where one looks
for an optimal GQL reduced chemistry and implement it for different mechanisms and systems.

In the following, we show the results using an optimal GQL reduced chemistry as described above in
subsection 4.1, but also the results of the improved manifold by using the first order approximation (see
subsection 4.2).
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Figure 1: Dependence of the ignition delay times on the initial temperature T0 at p0 = 1 bar and Φ = 1.0.

4.1 Results using an optimal GQL with zeroth order approximation

The results using an optimal GQL, which was intensively studied in our previous works, and an op-
timal 4D GQL reduced model (see e.g. [5]) which describes the auto-ignition process with very high
accuracy are shown in Fig. 1. In this figure, an optimal 4D GQL model is selected and used for the
prediction of the ignition delay times for different initial temperature ranging from 800 K to 2000 K.
It shows that the relative errors of the reduced solution based on the optimal 4D GQL model are less
than 5% for all temperatures. It should be mentioned here that during the generation procedure for the
4D GQL reduced chemistry, the 4D-GQL with zeroth order approximation has the maximal errors for
temperatures between 900 K and 1100 K. This is due to the competition between the chain branching
reaction O2 + H = OH + O and the chain termination reaction O2 + H + M = HO2 + M that the GQL
reduced model should be able to take into account. Numerical experiments showed that it costs some
computational effort to find out an optimal 4D GQL reduced model which is valid for the whole range
of temperatures.

4.2 Results for GQL with zeroth and first order approximation

In this subsection, we apply an GQL based reduced chemistry model, which is not optimized, and focus
on the comparison of the accuracy between GQL with 0th order approximation and GQL with 1st order
approximation. In Fig. 2 we show the predicted ignition delay time over a wide range of temperatures
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Figure 2: Dependence of the ignition delay times on the initial temperature T0 at p0 = 1 bar and Φ = 1.0.

0 10 20 30

O
2

0

5

10

15

20

H

detailed solution
GQL-0 solution
GQL-1 solution

(a) φO2 − φH state space
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Figure 3: Different projections of the state space in terms of the specific mole number with unit mol/kg.
Initial conditions: T0 = 1050 K, p0 = 1bar, Φ = 1.0.

using the 4D-GQL reduced chemistry based on zeroth order approximation Eq. 5 (blue line) and 1st order
approximation Eq. 9 (red line). Note that, the same Qs was used for both first and zeroth order cases.
The result shows clearly that if the 4D GQL reduced model is not optimal, large errors up to 150% can
be observed within the aforementioned initial temperature range between 900 K and 1100 K. However
the corresponding 4D-GQL with 1st order approximation significantly improves the accuracy (red lines
in Fig. 2), and the maximal error is now reduced to about 10%. The improvement of the accuracy using
the first order approximation can also be observed in Fig. 3, where different projections of the system
state space are presented. The initial temperature T0 = 1050 K is chosen as a representative example,
because the accuracy of the prediction for the ignition delay time by using the 4D GQL with first order
approximation is largely improved (c.f. Fig. 2). The comparison of species time histories shows that the
state spaces predicted by the 4D GQL with first order approximation better agree with those predicted
by the detailed solution.
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5 Conclusions

The implementation of a first order approximation of the GQL reduced chemistry was introduced. The
problem of efficient implementation of the GQL based slow manifolds was treated by using the implicit
scheme of the reduced model numerical integration. This approach can be used generically to verify
any decomposition (into fast and slow) based manifolds. Moreover, we have suggested to use it to
improve significantly the accuracy and performance of the GQL. The first order correction of the man-
ifold equation was employed. The improved performance was illustrated by a benchmark model of the
hydrogen-air ignition problem of combustion. Again of an order of magnitude in the relative error with
respect to the ignition delay time was reported. The results show that not only the ignition delay time but
also the course of the species state space ( in terms of the species specific mole numbers in this work)
are improved by using the first order manifold equation. The simplicity of the suggested correction of
the manifold equation and no need in demanding improvement and optimization of the original GQL
basis opens new perspectives in the implementation of the GQL model reduction approach.
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