
L I D A R D O M A I N A D A P TAT I O N

—

AU T O M O T I V E 3 D S C E N E U N D E R S TA N D I N G

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von der KIT-Fakultät für Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

M.Sc. Larissa T. Triess

Tag der mündlichen Prüfung: 20.12.2022

Referent: Prof. Dr. J. Marius Zöllner

Korreferent: Prof. Dr. rer. nat. Markus Enzweiler

A B S T R A C T

Environment perception and scene understanding play essential
roles in autonomous vehicles. A vehicle needs to be aware of the
geometry and semantics of its surroundings to predict the behavior
of other traffic participants and localize itself in the drivable space
to navigate properly. Today, virtually all modern perception systems
for automated driving are based on deep learning methods. They
require tremendous amounts of data with matching annotations to
be trained. Obtaining the data is relatively easy, since it only requires
a vehicle equipped with the correct sensors to drive around. How-
ever, generating annotations is a very time consuming and expensive
process. To make this challenge even more difficult, autonomous
vehicles are required to operate virtually anywhere (e.g. Europe and
Asia, rural and urban) and anytime (e.g. day and night, summer and
winter, rain and fog). This requires the data to cover an even larger
amount of different scenarios and domains.

In practice it is not feasible to collect and annotate data for such
a variety of domains. However, training only with data from one
domain will result in bad performance in a different target domain,
due to domain gaps in the data. For a safety-critical application
this is not acceptable. The field of domain adaptation introduces
methods that help to close these domain gaps without the usage of
annotations from the target domain and thus work towards design-
ing scalable perception systems. The majority of domain adaptation
works focus on two-dimensional camera perception. In autonomous
vehicles, however, the three-dimensional scene understanding is es-
sential, for which Light Detection and Ranging (LiDAR) sensors are
used widely nowadays.

This dissertation addresses domain adaptation for LiDAR percep-
tion from multiple perspectives. First, a number of techniques are
introduced that improve the performance and run-time of semantic
segmentation systems. The obtained insights are integrated into
the perception model which is used throughout this dissertation
to evaluate the effectiveness of the proposed domain adaptation
approaches. Second, existing approaches are discussed and gaps
in research are presented by a formulation of open research ques-
tions. To answer some of these questions, this dissertation presents
a novel quantitative LiDAR metric. This metric allows to estimate
the realism of LiDAR data, which is decisive for the performance
of a perception system. Thus, the metric is used to evaluate the
quality of LiDAR point clouds that are generated for the purpose
of domain mapping, where data is transferred from one domain
to another. This allows to re-use labels obtained from a source do-

III

main in the target domain without any additional annotations. In
a different take on domain adaptation, this dissertation proposes a
novel method that uses the geometry of the scene to learn domain-
invariant features. The geometric information helps to improve the
domain adaptation capabilities of the segmentation model and ob-
tains state-of-the-art performance without any additional overhead
in the inference. In the end, a novel method to generate semantically
meaningful object shapes from continuous descriptions is proposed,
which can – with additional work – be used to augment scenes
to improve the detection capabilities of the models. To summarize,
this dissertation presents a comprehensive framework for domain
adaptation and semantic segmentation of LiDAR point clouds in the
context of autonomous driving.

IV

Z U S A M M E N FA S S U N G

Umgebungswahrnehmung und Szeneverständnis spielen bei au-
tonomen Fahrzeugen eine wesentliche Rolle. Ein Fahrzeug muss
sich der Geometrie und Semantik seiner Umgebung bewusst sein,
um das Verhalten anderer Verkehrsteilnehmer:innen vorherzusagen
und sich selbst im fahrbaren Raum zu lokalisieren, um somit richtig
zu navigieren. Heutzutage verwenden praktisch alle modernen
Wahrnehmungssysteme für das automatisierte Fahren tiefe neu-
ronale Netze. Um diese zu trainieren, werden enorme Datenmengen
mit passenden Annotationen benötigt. Die Beschaffung der Daten
ist relativ unaufwendig, da nur ein mit den richtigen Sensoren
ausgestattetes Fahrzeug herumfahren muss. Die Erstellung von An-
notationen ist jedoch ein sehr zeitaufwändiger und teurer Prozess.
Erschwerend kommt hinzu, dass autonome Fahrzeuge praktisch
überall (z.B. Europa und Asien, auf dem Land und in der Stadt) und
zu jeder Zeit (z.B. Tag und Nacht, Sommer und Winter, Regen und
Nebel) eingesetzt werden müssen. Dies erfordert, dass die Daten
eine noch größere Anzahl unterschiedlicher Szenarien und Domänen
abdecken.

Es ist nicht praktikabel, Daten für eine solche Vielzahl von Domä-
nen zu sammeln und zu annotieren. Wenn jedoch nur mit Daten
aus einer Domäne trainiert wird, führt dies aufgrund von Unter-
schieden in den Daten zu einer schlechten Leistung in einer an-
deren Zieldomäne. Für eine sicherheitskritische Anwendung ist dies
nicht akzeptabel. Das Gebiet der sogenannten Domänenanpassung
führt Methoden ein, die helfen, diese Domänenlücken ohne die
Verwendung von Annotationen aus der Zieldomäne zu schließen
und somit auf die Entwicklung skalierbarer Wahrnehmungssysteme
hinzuarbeiten. Die Mehrzahl der Arbeiten zur Domänenanpassung
konzentriert sich auf die zweidimensionale Kamerawahrnehmung.
In autonomen Fahrzeugen ist jedoch das dreidimensionale Verständ-
nis der Szene essentiell, wofür heutzutage häufig LiDAR-Sensoren
verwendet werden.

Diese Dissertation befasst sich mit der Domänenanpassung für
LiDAR-Wahrnehmung unter mehreren Aspekten. Zunächst wird
eine Reihe von Techniken vorgestellt, die die Leistung und die
Laufzeit von semantischen Segmentierungssystemen verbessern.
Die gewonnenen Erkenntnisse werden in das Wahrnehmungsmodell
integriert, das in dieser Dissertation verwendet wird, um die
Wirksamkeit der vorgeschlagenen Domänenanpassungsansätze zu
bewerten. Zweitens werden bestehende Ansätze diskutiert und
Forschungslücken durch die Formulierung von offenen Forschungs-
fragen aufgezeigt. Um einige dieser Fragen zu beantworten, wird in

V

dieser Dissertation eine neuartige quantitative Metrik vorgestellt.
Diese Metrik erlaubt es, den Realismus von LiDAR-Daten
abzuschätzen, der für die Leistung eines Wahrnehmungssystems
entscheidend ist. So wird die Metrik zur Bewertung der Qual-
ität von LiDAR-Punktwolken verwendet, die zum Zweck des
Domänenmappings erzeugt werden, bei dem Daten von einer
Domäne in eine anderen übertragen werden. Dies ermöglicht die
Wiederverwendung von Annotationen aus einer Quelldomäne in der
Zieldomäne. In einem weiteren Feld der Domänenanpassung wird
in dieser Dissertation eine neuartige Methode vorgeschlagen, die
die Geometrie der Szene nutzt, um domäneninvariante Merkmale
zu lernen. Die geometrischen Informationen helfen dabei, die
Domänenanpassungsfähigkeiten des Segmentierungsmodells zu
verbessern und ohne zusätzlichen Mehraufwand bei der Inferenz
die beste Leistung zu erzielen. Schließlich wird eine neuartige
Methode zur Erzeugung semantisch sinnvoller Objektformen
aus kontinuierlichen Beschreibungen vorgeschlagen, die – mit
zusätzlicher Arbeit – zur Erweiterung von Szenen verwendet werden
kann, um die Erkennungsfähigkeiten der Modelle zu verbessern.
Zusammenfassend stellt diese Dissertation ein umfassendes System
für die Domänenanpassung und semantische Segmentierung von
LiDAR-Punktwolken im Kontext des autonomen Fahrens vor.

VI

A C K N O W L E D G M E N T S

First and foremost, I would like to express my gratitude to Prof.
Dr. J. Marius Zöllner for accepting me as a Ph.D. student in his
research group at Karlsruhe Institute of Technology. Thank you for
guiding me through this work and providing valuable feedback
to my research. I am especially grateful for the shift of the weekly
doctoral colloquium to online mode, such that I had the chance to
participate in every meeting from then on.

Next, I would like to thank Prof. Dr. rer. nat. Markus Enzweiler
for providing me with the opportunity to conduct my research in
the LiDAR Perception Group at Mercedes-Benz R&D and for acting
as second reviewer of this dissertation. Thank you for encouraging
me to write my first paper, for providing insightful comments to my
work, and for being a great mentor.

My sincere and deepest gratitude goes to Dr. rer. nat. David Peter,
my technical adviser at Mercedes-Benz R&D. You were my mentor
in many aspects of the Ph.D. studies and beyond. Thank you for
being encouraging and inspiring, for having an open ear to my ideas
and problems, and your dedication in the days and nights before
submission deadlines.

My thanks also go to the remaining colleagues of the LiDAR Per-
ception Group and the Scene Understanding Team at Mercedes-Benz,
especially to my office room mates Christoph Rist, Stefan Baur, and
David Emmerichs. Thank you for all the valuable discussions and
your support. Thank you even more for creating a great atmosphere
that made our working hours enjoyable and for becoming friends.

Eventually, I would like to thank everyone else who supported me
emotionally, let them be friends or family. My biggest gratitude goes
to you Christoph for not just being a colleague that taught me a lot,
but also for sharing your love with me. In the office you supported
me on a technical level and at home you supported me emotionally.
Thank you for always being there. I am very much looking forward
to being married to you.

VII

P U B L I C AT I O N S

journals

L. T. Triess, C. B. Rist, D. Peter, and J. M. Zöllner. A Realism
Metric for Generated LiDAR Point Clouds. In International Journal of
Computer Vision (IJCV), 2022.

conference proceedings

L. T. Triess, A. Bühler, D. Peter, F. B. Flohr, J. M. Zöllner. Point
Cloud Generation with Continuous Conditioning. In Conference on
Artificial Intelligence and Statistics (AISTATS), 2022.

L. T. Triess, D. Peter, J. M. Zöllner. Semi-Local Convolutions for
LiDAR Scan Processing. In Advances in Neural Information Processing
Systems (NeurIPS) Workshops, 2021.

L. T. Triess, D. Peter, S. A. Baur, and J. M. Zöllner. Quantifying
point cloud realism through adversarially learned latent representa-
tions. In Proc. of the German Conference on Pattern Recognition (GCPR),
2021.

L. T. Triess, M. Dreissig, C. B. Rist, and J. M. Zöllner. A Survey
on Deep Domain Adaptation for LiDAR Perception. In Proc. IEEE
Intelligent Vehicles Symposium (IV) Workshops, 2021.

L. T. Triess, D. Peter, C. B. Rist, and J. M. Zöllner. Scan-based
Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study. In Proc. IEEE Intelligent Vehicles Symposium (IV), 2020.

L. T. Triess, D. Peter, C. B. Rist, M. Enzweiler, and J. M. Zöllner.
CNN-based synthesis of realistic high-resolution LiDAR data. In
Proc. IEEE Intelligent Vehicles Symposium (IV), 2019.

supervised theses

B. Johannsen. Domain Invariant Feature Learning for Cross-Sensor
Semantic Segmentation of Lidar Point Clouds by Leveraging the underlying
Scene Geometry. Master thesis, University of Stuttgart, 2022.

IX

A. Bühler. GAN-based Synthesis of 3D Point Clouds conditioned on
Continuous Object Dimensions. Master thesis, University of Stuttgart,
2021.

patents

L. T. Triess, C. B. Rist. Computer-implementiertes Verfahren
zum semantischen Segmentieren und computerimplementiertes Ver-
fahren zum Trainieren eines computer-implementierten Algorithmus
zur Bestimmung einer Szenensegmentierung. Filed: 2022/06/28. DE.
Patent DE102022002324 (A1), 2022. Patent pending.

L. T. Triess, C. B. Rist. Verfahren zum semantischen Segmentieren
von ersten Sensordaten eines ersten Sensortyps. Filed: 2021/05/21.
DE. Patent DE102021002684 (A1), 2021. Patent pending.

L. T. Triess, D. Peter. Verfahren zum Transformieren von Sensor-
daten. Filed: 2021/05/21. DE. Patent DE102021002689 (A1), 2021.
Patent pending.

L. T. Triess, D. Peter. Verfahren zur Generierung realistischer
Karten von Strahlausfällen in simulierten LiDAR-Daten. Publication
Date: 2021/07/08. DE. Patent DE102021002559 (A1), 2021.

L. T. Triess, D. Peter. Verfahren zur automatischen Erkennung
und Lokalisierung von Anomalien in mittels eines Lidarsen-
sors erfassten Daten. Publication Date: 2021/04/15. DE. Patent
DE102021001043 (A1), 2021.

L. T. Triess, D. Peter. Verfahren zum Trainieren von einem
neuronalen Netzwerk einer elektronischen Recheneinrichtung
eines Kraftfahrzeugs. Publication Date: 2021/04/15. DE. Patent
DE102021000803 (A1), 2021.

L. T. Triess. Verfahren zur Transformation erfasster Sensordaten
aus einer ersten Datendomäne in eine zweite Datendomäne. Publi-
cation Date: 2020/10/01. DE. Patent DE102020001541 (A1), 2020.

L. T. Triess, D. Peter. Verfahren zur Verarbeitung von Li-
darsensordaten. Publication Date: 2020/01/02. DE. Patent
DE102019003621 (A1), 2020.

X

A C R O N Y M S

2D 2-Dimensional
AcGAN Auxiliary classifier Generative Adversarial Network
ADAS Advanced Driver Assistance Systems
AdvEnt Adversarial Entropy Minimization
BEV Bird’s-Eye View
BN Batch Normalization
CcGAN Continuous conditional Generative Adversarial Network
CD Chamfer’s Distance
CNN Convolutional Neural Network
COV Coverage
DA Domain Adaptation
DNN Deep Neural Network
ECA Euclidean Correlation Alignment
EMD Earth Mover’s Distance
FCN Fully Convolutional Network
FPD Fréchet Point Cloud Distance
GAN Generative Adversarial Network
GCA Geodesic Correlation Alignment
GCN Graph Convolution Network
GPS Global Positioning System
HDL-64 Velodyne HDL-64
ICP Iterative Closest Point
JSD Jensen-Shannon Divergence
KDE Kernel Density Estimation
KNN K-Nearest-Neighbors
LiDAR Light Detection and Ranging
LReLU Leaky Rectified Linear Unit
MAE Mean Absolute Error
MinEnt Minimal-Entropy Correlation Alignment
mIoU mean Intersection over Union
MLP Multi-Layer Perceptron
MOS Mean Opinion Score
MSE Mean Squared Error
RADAR Radio Detection and Ranging

XI

ReLU Rectified Linear Unit
RGB Red-Green-Blue
SLC Semi Local Convolution
t-SNE t-Distributed Stochastic Neighbor Embedding
VAE Variational Auto Encoder
VLP-32 Velodyne VLP-32

XII

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Dissertation Goals . 3

1.3 Dissertation Outline 5

1.4 Contributions . 5

2 preliminaries in 3d point cloud processing and

deep learning 9

2.1 LiDAR Sensors . 9

2.1.1 Measurement Principle 9

2.1.2 Rotating LiDAR Systems 10

2.2 Deep Learning for LiDAR Perception 13

2.2.1 Data Representation 13

2.2.2 Semantic Segmentation 13

2.3 Deep Generative Models 14

2.3.1 Generative Adversarial Networks 14

2.3.2 Conditional GANs 15

3 scan-based semantic segmentation 17

3.1 Overview . 17

3.2 Efficient Network Configuration 18

3.2.1 Method . 19

3.2.2 Evaluation . 21

3.2.3 Summary . 24

3.3 Semi Local Convolution 24

3.3.1 Weight Sharing in Convolution Layers 24

3.3.2 Method . 25

3.3.3 Evaluation . 26

3.3.4 Discussion . 27

3.4 Conclusion . 28

4 deep domain adaptation for lidar perception 31

4.1 Background . 33

4.1.1 Domain Adaptation 33

4.1.2 Baselines . 34

4.1.3 Applications and Use-Cases 35

4.2 Methods . 35

4.2.1 Domain-Invariant Data Representation . . . 35

4.2.2 Domain Mapping 36

4.2.3 Domain-Invariant Feature Learning 38

4.2.4 Normalization Statistics 39

4.2.5 Other Methods 40

4.3 Discussion . 40

4.3.1 Comparability and Transfer from other
Modalities . 40

XIII

4.3.2 Discrepancies in Domain Gap Quality 41

4.3.3 Relevance of Cross-Sensor Adaptation 41

4.3.4 Adaptation in Different Weather Scenarios . 42

4.3.5 Generative Models for Domain Translation . 42

4.3.6 Open-Partial Domain Adaptation 42

5 a metric to quantify the realism of lidar point

clouds 45

5.1 Overview . 46

5.2 Related Work . 48

5.2.1 GAN Evaluation Measures 48

5.2.2 Metric Learning 51

5.3 LiDAR Realism Metric 51

5.3.1 Objective and Properties 52

5.3.2 Architecture 53

5.4 Experimental Setup 56

5.5 Evaluation . 58

5.5.1 Balance between Accuracy and Fairness . . . 58

5.5.2 Metric Results 59

5.5.3 Adversary Ablation 60

5.5.4 Feature Continuity 62

5.5.5 Anomaly Detection 63

5.5.6 Limitations . 65

5.6 Conclusion . 65

6 domain adaptation via data generation for

domain mapping 67

6.1 Up-sampling for Sensor Mapping 67

6.1.1 Related Work 68

6.1.2 Up-Sampling Network 69

6.1.3 Losses . 70

6.1.4 Metrics . 71

6.1.5 Evaluation . 73

6.1.6 Summary . 76

6.2 Mapping from Simulation to Real-World 77

6.2.1 Sim-to-Real GAN 77

6.2.2 Experiments 81

6.2.3 Evaluation . 82

6.2.4 Summary . 83

6.3 Discussion and Conclusion 84

7 domain adaptation via geometry-based

domain-invariant features 85

7.1 Overview . 86

7.2 Semantic Scene Completion using Local Deep Im-
plicit Functions on LiDAR Data 87

7.3 Method . 89

7.3.1 Baseline Domain Transfer 89

7.3.2 Using Self-Supervised Target Geometry . . . 89

XIV

7.3.3 Domain Losses for Domain Invariant Features 90

7.4 Dataset Curation . 91

7.5 Experiments . 92

7.5.1 Baseline and Domain Gap 93

7.5.2 Using Self-Supervised Target Geometry . . . 95

7.5.3 Domain Losses for Domain Invariant Features 97

7.5.4 Summary . 99

7.5.5 Comparison against State of the Art 99

7.6 Discussion . 102

7.7 Conclusion . 103

8 point cloud generation with continuous con-
ditioning 105

8.1 Overview . 106

8.2 Related Work . 108

8.2.1 3D Generative Models 108

8.2.2 Conditional Generation 109

8.2.3 Continuous Conditioning 109

8.2.4 3D Conditional Generation 110

8.3 Using TreeGAN as the Backbone Model 110

8.4 Method . 110

8.4.1 Continuous Parameters 111

8.4.2 Label Sampling for Training 111

8.4.3 Model . 112

8.4.4 Losses . 113

8.5 Experiments . 113

8.5.1 Dataset and Metrics 114

8.5.2 Implementation Details 114

8.5.3 Baselines . 114

8.5.4 Distribution Sampling 116

8.6 Results . 116

8.6.1 Quantitative Results 116

8.6.2 Label and Region Sampling Ablations 117

8.6.3 Continuous Parameter Interpolation 117

8.6.4 Out-of-Distribution Generation 120

8.6.5 Diversity and Novelty 120

8.6.6 Latent Interpolation 121

8.7 Discussion . 122

8.8 Conclusion . 122

9 conclusion 125

9.1 Discussion . 126

9.2 Future Work . 128

a appendix 131

a.1 Scan-based Semantic Segmentation 131

a.2 A Metric to Quantify the Realism of LiDAR Point
Clouds . 132

a.2.1 Implementation Details and Hyperparameters 133

XV

a.2.2 Theoretical Lower Bound 135

a.2.3 Qualitative Results 135

a.3 Domain Adaptation via Data Generation for Domain
Mapping . 136

a.3.1 Up-sampling Details 136

a.4 Domain Invariant Feature Learning 139

a.4.1 Pre-processing of the nuScenes dataset 139

a.4.2 Label Mapping for State of the Art Comparisons143

a.5 Point Cloud Generation with Continuous Conditioning144

a.5.1 Implementation Details 144

a.5.2 Additional Analysis 148

a.5.3 Additional Results 153

list of figures 159

list of tables 160

bibliography 163

XVI

1
I N T R O D U C T I O N

contents

1.1 Motivation . 1

1.2 Dissertation Goals 3

1.3 Dissertation Outline 5

1.4 Contributions 5

Automated driving will change the mobility of the future. This
requires a robust, reliable, and scalable environment perception sys-
tem. Among others, the system needs to operate in multiple domains,
e.g. different weather scenarios, countries, or daytime. Therefore,
this dissertation investigates domain adaptation methods, involving
data generation and evaluation for semantic scene understanding.
This chapter motivates the research topic and discusses the goals of
this dissertation. It starts with an introduction of automated driv-
ing, environment perception, and domain adaptation in section 1.1.
Section 1.2 gives an outline of the dissertation goals. Eventually, the
structure of the dissertation is presented in section 1.3 with its main
contributions in section 1.4.

1.1 motivation

autonomous driving Mobility is a key aspect of life and has
taken a big leap forward for humans with the invention of the
modern automobile [Benz 1886]. Ever since, the number of vehicles
worldwide has increased steadily. The higher dissemination of motor
vehicles and the associated increase in driven kilometers comes at
the cost of increased road accident fatalities [Statistisches Bundesamt
2020]. As a consequence, passive and active safety systems have been
invented, installed, and made mandatory for new vehicles. While
passive safety systems, such as airbags or seatbelts, protect the occu-
pants during a crash, active safety systems aim to prevent or mitigate
the crash. For these Advanced Driver Assistance Systems (ADAS)
to work, the vehicles are equipped with a variety of sensors, such
as camera, microphone, Radio Detection and Ranging (RADAR),
and only recently also with Light Detection and Ranging (LiDAR).
These sensors provide a detailed mapping of the surrounding which
is then interpreted in efficient scene understanding systems.

Besides safety, comfort nowadays plays a major role in the fur-
ther development of mobility. Being able to relax or work while

1

2 introduction

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Human is driving even if driver
support features are engaged.

Human is not driving when auto-
mated driving features are engaged.

Human must constantly supervise
support features and steer, brake,
or accelerate to maintain safety.

Human
drives at
feature
request.

Automated driving
features do not require

human take over.

driver support features automated driving features

Warnings
and mo-
mentary

assistance

Steering
or accel.
/ brake
support

Steering
and accel.
/ brake
support

Drive under lim-
ited conditions

Drive
under all

conditions

Figure 1.1: SAE J3016 Levels of Driving Automation: SAE J3016 defines
a taxonomy of six levels of driving automation. They range
from Level 0 (no driving automation) to Level 5 (full driving
automation) in the context of motor vehicles and their operation
on roadways. The graphic is inspired by [SAE International
2021].

stuck in heavy traffic is one of several desires that drive the devel-
opment of automated driver systems. These systems are divided
into six levels of automation. Fig. 1.1 shows the levels of automation
defined by SAE J3016 [SAE International 2021]. The lower three
levels account for driver support features with the human constantly
driving. The upper three levels have automated driving features
which require a human only, if a feature requests the human to take
over, or not at all. Only recently, the first official level 3 system in
the world was approved by the German Federal Motor Transport
Authority [Mercedes-Benz Group AG 2021]. The methods developed
in this dissertation aim to enable automated driving features from
level three upwards.

scene understanding The field of scene understanding ad-
dresses automatic understanding of sensor data from a semantic
and geometric perspective. Assigning meaning to raw sensor data
or parts of it is typically done in form of predefined class labels.
Fig. 1.2 shows an example for environment perception via a LiDAR
sensor. Here, both object bounding boxes with semantic classes and
point-wise semantic class labels are visualized. Bounding boxes are
most commonly used to classify and localize objects within a scene.
They are typically defined as the smallest possible bounding box
around an object of interest augmented with a class label and a confi-
dence score. Bounding box object detection only works for countable
classes, such as cars and pedestrians, but individual instances of
road or terrain are not well defined. To account for these classes,
point-wise semantic segmentation is better suited. The task is to

1.2 dissertation goals 3

Figure 1.2: Example for Environment Perception: The vehicle uses camera
and LiDAR to scan the environment. In the top, bounding
boxes for 3D object detection are visualized in both the camera
image and the LiDAR point cloud. The bottom image shows
point-wise semantic segmentation of the point cloud, projected
into the camera view. The visualization is of the nuScenes
dataset [Caesar et al. 2020].

assign a semantic class label to each point measured by the LiDAR
scanner. Objects that do not well fit a bounding box thus can be
accurately classified.

domain adaptation Nowadays, virtually all methods for au-
tomotive scene understanding rely on deep learning [Zhou and
Tuzel 2018; Lang et al. 2019; Milioto et al. 2019; Sirohi et al. 2022].
This requires huge amounts of data and corresponding annotations.
Acquiring these annotations is time consuming, expensive, and er-
ror prone. Since autonomous vehicles are exposed to a variety of
domains, such as different weather conditions, geographic regions,
illumination situations, and seasons, the data needs to cover all
these scenarios. Given the complexity of the manual annotation
process in combination with an endless variation of domains, it is
impossible to use human annotated data and have a scalable system.
Furthermore, fast development cycles of the system additionally in-
troduce hardware changes, such as sensor types and vehicle setups,
and might require knowledge transfer from simulation. To enable
scalable automated driving, it is therefore crucial to address these
domain shifts in a robust and efficient manner. These techniques are
typically called domain adaptation.

1.2 dissertation goals

There is a large interest and progress in robust and reliable 3D
environment perception, such as semantic segmentation or object

4 introduction

detection, in the research community. Nowadays, data often is of
higher importance than neural network architecture design, as it
can have larger impacts on the system behavior. Automated vehicles
are exposed to a number of different data domains in terms of
weather situations, geography, street signs and rules, sensor types
and mounting positions, and even transition from simulation to
real-world. Therefore, scalable automation systems that can handle
these domain shifts are essential but not yet at the desired level
of maturity. An efficient data handling combined with a domain
knowledge transfer can help to construct such systems.

To this end, this dissertation first identifies the decisive factors
of LiDAR perception, where the data can be identified as one im-
portant aspect. Some concepts, such as domain mapping, heavily
rely on automatic data generation to bridge domain gaps. Since the
generated data influences the final performance of the model, this
dissertation investigates the correlation between the realism of the
data and the resulting perception performance. Therefore, a suitable
realism measure for the LiDAR point clouds is required. Besides
data generation, the transfer of knowledge between different data
domains, is another essential factor to construct scalable systems.
Regarding the aforementioned points, this dissertation identifies and
addresses the following research questions:

• What are the decisive factors for successful LiDAR perception?
(Chapter 3)

• What are important domain gaps for LiDAR perception and
how are they approached in the literature? (Chapter 4)

• Is it possible to estimate the realism of LiDAR point clouds,
and if so how? (Chapter 5)

• Does the realism of generated LiDAR data directly correlate
with the performance of perception systems? (Chapter 5, Chap-
ter 6)

• Is it possible to generate realistic LiDAR data and use it effi-
ciently for domain mapping applications? (Chapter 6)

• Can transfer of geometric scene knowledge help to learn se-
mantics for another domain? (Chapter 7)

While investigating these open items throughout the dissertation,
a common procedure is followed. A thorough literature review
discusses existing solutions, then identifies the open issues, and
finally addresses these by improving upon existing methods or
introducing new concepts. This is done by keeping the particular
challenges in an automotive environment, as discussed above, in
mind and work towards a pipeline that generates and evaluates
LiDAR data that is used to deliver robust and reliable semantic
scene information.

1.3 dissertation outline 5

1.3 dissertation outline

Fig. 1.3 shows the structure of this dissertation. Chapter 2 starts with
an overview of related work and technical background with respect
to the scope of the dissertation. The discussion is conducted from
a high-level point of view and only provides a general understand-
ing for the following topics, as more specific related literature is
addressed in the individual technical chapters. The final application
for all proposed methods in this dissertation is the perception model
itself. Therefore, chapter 3 investigates various influences on seman-
tic segmentation performance and proposes a final model that has
faster run-time and lower capacity demands but similar performance
to a baseline model. The insights of this chapters are used to create
the validation module in the following domain adaptation chap-
ters. An extensive overview on deep domain adaptation for LiDAR
perception is provided in chapter 4. Besides presenting several do-
main adaptation mechanisms and tasks, the chapter also introduces
relevant open research questions in the field. Among others, the
necessity for a reliable metric for generated LiDAR point clouds is
identified for the case of domain mapping. This need is addressed in
chapter 5 which presents a novel approach to quantify the realism of
LiDAR point clouds. The metric is applied in chapter 6, where data
generation is used for domain mapping to address the applications
of sensor-to-sensor and sim-to-real adaptation. Additionally, a study
on the relationship between data realism and semantic segmenta-
tion performance is provided. Chapter 7 tackles the more general
application of dataset-to-dataset adaptation by using self-supervised
geometry information to learn domain-invariant features. Another
aim of data generation, besides using it for domain mapping, is to
enhance existing training data, for example by augmenting it with
synthetically generated objects. Therefore, chapter 8 introduces a
Generative Adversarial Network (GAN) method to generate single
object point clouds with continuous parameters for specific object
features. Eventually, the dissertation is concluded in chapter 9 with
a discussion and an outlook for future work.

1.4 contributions

The contributions of this dissertation are as follows:

improved semantic scene segmentation Semantic seg-
mentation models as proposed in literature are more often optimized
for benchmark performance instead of real-world applications. This
often leads to very powerful but at the same time slow and hardware
demanding systems. Chapter 3 reduces the memory demands of
an existing method and proposes a new data representation com-

6 introduction

Source
Data

Target
Data

Segmentation
(Ch. 3)

enhancement

train apply

Domain Mapp-
ing (Ch. 6)

LiDAR
Metric (Ch. 5)

Domain-
Invariant
Learning

(Ch. 7)

Augmentation

Object Gener-
ation (Ch. 8)

Figure 1.3: Structure of Dissertation: Perception models are trained on
source data and are then deployed on target data. This disserta-
tion aims to make this process more robust in a scalable system.
Chapter 6 uses the method of domain mapping, where data
from a source domain is translated to a target domain. Since this
requires realistic data generation, chapter 5 proposes a metric
to quantify the realism of LiDAR point clouds and includes a
study on their effect on perception performance. Chapter 7 pro-
poses a new method that leverages domain-invariant feature
learning to account for domain shifts. Data augmentation is
another approach to make deployment of perception systems
more robust. Chapter 8 proposes a novel method to generate
custom-fit object shapes that can be used for data augmentation.
Further methods for better segmentation performance are inves-
tigated in chapter 3, whereas chapter 4 gives a detailed overview
and discussion on domain adaptation for LiDAR applications.

1.4 contributions 7

bined with an enhanced processing scheme which leads to a smaller
and faster network with no reduction in perception performance.
The insights of this chapter are used for the segmentation models
throughout this dissertation.

3d data generation Training effective perception systems re-
quires large amounts of data with high-quality annotations. A variety
of possibilities exist to generate additional training data, such as
using simulation frameworks, augmenting existing data, or transfer-
ring data from other domains. However, most of these methods are
extensively investigated for 2-Dimensional (2D) images, but not for
3D LiDAR data. Therefore, generating realistic LiDAR point clouds
is still an open topic. Chapter 6 and chapter 8 propose several 3D
data generation methods for different use-cases within autonomous
driving using generative models. The models are designed to make
use of existing data and work towards improving performance on
downstream semantic segmentation tasks. Experiments show that
the effectiveness of this approach is highly dependent on the size of
the domain gap.

lidar evaluation measure Data with the right quality and
context is crucial to train and improve deep learning based percep-
tion systems. However, judging the realism of individual samples
can be tedious and time consuming, especially for complex data
structures, such as point clouds. Chapter 5 presents a novel approach
to quantify the realism of local regions in LiDAR point clouds. The
resulting metric can assign a realism score to samples without requir-
ing any task specific annotations and shows reliable interpolation
capabilities between data with varying degree of realism. Chap-
ter 6 additionally investigates the connection between the realism of
the point clouds and the resulting downstream semantic segmenta-
tion performance. This work is first to provide a system that rates
the realism of LiDAR data and also compares it with respect to
the expected perception performance. The proposed system there-
fore provides vital insights into the relevance of data realism and
generation.

domain-invariant feature learning via geometric cues

Using LiDAR sensors with different specifications causes domain
shifts, even if the sensors sample the same scene from the same
position. Therefore, sensor-to-sensor adaptation can be solved by re-
constructing the underlying geometry of the scene. However, existing
approaches produce additional overhead by explicitly constructing
this canonical domain, which leads to a slow runtime at inference
which is not real-time applicable. Chapter 7 proposes a novel method
that leverages the underlying geometry of the scene implicitly. The
geometry of both the source and target domains are represented

8 introduction

in a common compressed feature space, such that learned seman-
tics from the source domain can be applied to the target domain.
The resulting model shows that geometric information can help to
learn semantic features and can therefore be used to learn domain-
invariant features for semantic segmentation tasks.

2
P R E L I M I N A R I E S I N 3 D P O I N T C L O U D
P R O C E S S I N G A N D D E E P L E A R N I N G

contents

2.1 LiDAR Sensors 9

2.1.1 Measurement Principle 9

2.1.2 Rotating LiDAR Systems 10

2.2 Deep Learning for LiDAR Perception 13

2.2.1 Data Representation 13

2.2.2 Semantic Segmentation 13

2.3 Deep Generative Models 14

2.3.1 Generative Adversarial Networks . . 14

2.3.2 Conditional GANs 15

This chapter gives a general introduction to the basic building
blocks used in this dissertation. The sections contain additional refer-
ences for more information and the reader is referred to [Goodfellow
et al. 2016] for an excellent overview on the field of deep learning.
The chapter is structured as follows: Section 2.1 explains the basic
operating principles of a LiDAR sensor. Section 2.2 gives a brief
overview on common LiDAR perception tasks and data represen-
tations. Section 2.3 introduces generative models which are used
throughout this work.

2.1 lidar sensors

2.1.1 Measurement Principle

LiDAR sensors provide information about the distance, position,
and reflective intensity of an object. A LiDAR consists of one or
multiple LASER systems that emit light pulses. Fig. 2.1 shows that
the LASER light is emitted by the sensor (red) and is then reflected
by a target and returned to a receiver unit (blue). The distance r to
the target can then be computed with the time of flight ∆t and the
speed of light c

r =
∆t · c

2
. (2.1)

This measurement principle is similar to those of RADAR sensors.
Additionally, the sensor provides an estimate of the reflectivity of an
object by measuring the amount of the received light (blue part of

9

10 preliminaries in 3d point cloud processing and deep learning

LiDAR Target

distance r = ∆t·c
2

Figure 2.1: LiDAR Measurement Principle: The sensor emits a LASER
light (red) which is reflected by the target and returned to the
receiver. The amount of received light (blue) is measured and
used as an estimate of the reflectivity of the object.

LiDAR

reflections
on ground

reflections
on objects

no reflections

Figure 2.2: LiDAR Scene Scanning: The sensor emits an array of light
impulses that create the vertical Field Of View. Some of the
beams are reflected by the ground or objects (orange), while
others are not reflected at all (blue).

fig. 2.1). Retro-reflective surfaces, such as traffic signs or some road
markings, result in higher reflective measurements.

There are multiple ways in which a LiDAR sensor can fail to
provide a point distance measurement. First, the maximum distance
is limited due to beam divergence and atmospheric absorption.
Second, outgoing lasers pulses might hit specular reflective surfaces
and never return to the sensor. Third, the laser might not be pointed
towards an object at all, but towards the sky as visualized in fig. 2.2.

2.1.2 Rotating LiDAR Systems

There exists a multitude of LiDAR systems that possess different
scan patterns, illumination procedures, pulse techniques, and field of
view characteristics. In automotive applications – or more specifically
in this work – mainly rotating LiDAR systems are used. They are
also used in the most important public datasets, e.g. KITTI [Geiger

2.1 lidar sensors 11

tmtn

θ

ϕ

LiDAR

Figure 2.3: LiDAR Scanning Pattern: Rotating LiDAR sensors periodically
scan the environment at their current orientation defined by
an elevation θi and an azimuth ϕj angle. The indices i and j
represent the possible discrete orientations and construct the
sensor image.

et al. 2012], SemanticKITTI [Behley et al. 2019], and nuScenes [Caesar
et al. 2020].

These sensors possess multiple stacked send and receive modules
that rotate around a common vertical axis. While rotating, each
LASER module periodically measures the distance rij at its current
orientation (see fig. 2.3). This provides a constant stream of mea-
surement points, which are typically cut after each full 360° rotation
and are then referred to as frames or scans. The orientation in each
scan is described by an elevation angle θi and an azimuth angle ϕj
(additional offsets to the top and side from the rotation axis are
neglected in the following). The indices i = 1...H and j = 1...W
represent the possible discrete orientations and construct the sensor
image in RH×W×C. Here, H corresponds to the number of vertically
stacked modules, i.e. layers, of the sensor, while W results from
the pulse frequency of the sensor and its revolution speed (usually
between 10 Hz and 20 Hz). The number of channels C is determined
by the information that is provided by the sensor, e.g. C = 2 for
distance and reflectivity.

In automotive applications, the sensor is usually not static, but
moves with the ego-vehicle. This causes the reference point for each
measurement along the azimuth angle to be different. However, a
scan representation assumes a common reference point for all data
points within the scan. If the ego-motion of the vehicle is known,
the data can be transferred to such a common reference point. The
ego-motion can be computed from precise position measurements
obtained by Global Positioning System (GPS).

The 3D data of a LiDAR scan is also called point cloud. Generic
point clouds are usually represented as unordered sets of points in
RN×(x,y,z) with the number of points N. This is also a common way

12 preliminaries in 3d point cloud processing and deep learning

(a) Point Cloud (b) Semantic Segmentation

(c) Object Detection (d) Motion Estimation

Figure 2.4: Example Scene with Task Annotations: Shown is a recorded
scene (a) and the respective annotations for three different per-
ception tasks (b) - (d). Each color in (b) represents one semantic
class, such as road (purple) or car (blue). The same colors are
used for the object bounding boxes in (c), including only cars
(blue) and pedestrians (red). The colors of the arrows in (d)
indicate the direction of the motion (see color-wheel in the bot-
tom right corner). The length of the arrows correspond to the
respective velocity. The ego-vehicle is placed in the middle of
the circle with no measurements.

to store LiDAR point clouds. The Cartesian coordinates x, y, z can
easily be computed with spherical-to-Cartesian mappingxij

yij

zij

 = rij ·

cos ϕj · sin θi

sin ϕj · sin θi

cos θi

 . (2.2)

Since point sets are the more general representation for this kind
of 3D data, this work often refers to the image representation as a
cylindrical projection of the point cloud. Note that this projection is
a lossless representation of the 3D data, as there are no mutual point
occlusions. Since all orientation angles are known, the image can
always be transformed back to an approximation of the 3D point
cloud with spherical-to-Cartesian mapping.

2.2 deep learning for lidar perception 13

2.2 deep learning for lidar perception

LiDAR sensors are used in autonomous vehicles to obtain precise
distance measurements of the 3D surrounding and extract high-
level information about the underlying scenery to solve a num-
ber of different tasks. Fig. 2.4 shows three of the most common
LiDAR perception tasks. These include point-wise semantic seg-
mentation (fig. 2.4b), bounding-box object detection (fig. 2.4c), and
point-wise motion estimation (fig. 2.4d). Segmentation tasks may
also include instance segmentation, panoptic segmentation, and part
segmentation [Milioto et al. 2019; Xu et al. 2020; Sirohi et al. 2022],
while object detection and scene flow estimation can be combined to
solve tracking tasks [Zhou and Tuzel 2018; Lang et al. 2019; Liu et al.
2019]. Another field involves estimating unseen parts of the scenery
or completing sparse data, which is usually referred to as scene com-
pletion [Rist et al. 2020; Agia et al. 2020]. This dissertation mainly
uses semantic segmentation to evaluate the proposed approaches.

With the availability of large-scale datasets and sufficient compu-
tational resources, Deep Neural Networks (DNNs) are nowadays at
the core of almost all state-of-the-art scene understanding methods.
For an excellent overview on the field of deep learning, the reader is
referred to [Goodfellow et al. 2016].

2.2.1 Data Representation

As of today, no single method to represent 3D point clouds prevailed.
A detailed overview on point cloud representation and related ar-
chitectures for 3D data is given in a survey by Guo et al. [2021]. The
networks used for point-wise semantic segmentation can be divided
into two categories:

Projection-based networks: multi-view [Lawin et al. 2017; Boulch
et al. 2017], spherical [Wu et al. 2018, 2019; Milioto et al. 2019], and
volumetric [Meng et al. 2019; Rethage et al. 2018; Graham et al. 2018]
representations.

Point-based networks: point-wise Multi-Layer Perceptrons
(MLPs) [Qi et al. 2017a,b; Zhao et al. 2019b], convolution-based [Hua
et al. 2018; Thomas et al. 2019; Wang et al. 2018], and graph-
based [Landrieu and Simonovsky 2018; Wang et al. 2019a]
networks.

2.2.2 Semantic Segmentation

Semantic segmentation is a crucial part of detailed scene understand-
ing. Fully Convolutional Networks (FCNs) marked the breakthrough
for RGB image segmentation in deep learning research [Shelhamer
et al. 2017]. They use memory efficient filter kernels by convolving

14 preliminaries in 3d point cloud processing and deep learning

over the dense 2D regular grid of the images. Introduction of dilated
convolutions combined with conditional random fields improved the
prediction accuracy [Chen et al. 2017a; Yu and Koltun 2016; Krähen-
bühl and Koltun 2011]. Gains on speed were mainly achieved with
encoder-decoder architectures that fuse feature maps of higher layers
with spatial information from lower layers or approaches that com-
bine image features from multiple refined paths [Badrinarayanan
et al. 2017; Lin et al. 2020].

For point-wise segmentation of 3D data, many approaches evolved
from their 2D ancestors by using projection-based intermediate
representations of the data. However, crucial modifications to the
respective network architectures had to be introduced to fit the needs
of projected data [Wu et al. 2018; Piewak et al. 2018]. Only since the
release of SemanticKITTI [Behley et al. 2019], a large scale dataset of
real-world driving scenarios with point-wise semantic annotations
of LiDAR scans is publicly available to facilitate the development of
point-wise semantic segmentation algorithms.

2.3 deep generative models

Deep learning models can be divided into two categories, discrimina-
tive models and generative models [Ng and Jordan 2001]. A discrim-
inative model is a model of the conditional probability P(Y | X = x)
of the target Y, given an observation x. Examples are segmentation
models as discussed in section 2.2.2. A generative model, on the other
hand, is a model of the conditional probability P(X | Y = y) of the
observable X, given a target y. Popular deep generative models in-
clude Variational Auto Encoders (VAEs) [Kingma and Welling 2014],
GANs [Goodfellow et al. 2014], auto-regressive models, and diffu-
sion models [Dhariwal and Nichol 2021]. This dissertation mainly
focuses on GANs.

2.3.1 Generative Adversarial Networks

Fig. 2.5 shows the basic concept of a vanilla GAN architecture, as
introduced by Goodfellow et al. [2014]. The network consists of
two models, the generator G and the discriminator D. The gener-
ator G(z; θG) is a differentiable function with parameters θG that
maps input noise pz(z) to data space. The differentiable function
of the discriminator D(x; θD) outputs a scalar that represents the
probability that x came from the data distribution pdata rather than
the generator’s distribution pG. The networks are trained, such that

2.3 deep generative models 15

noise

z

G

x̃

x

D

real

fake

Figure 2.5: Generative Adversarial Network (GAN): Basic structure of a
GAN consisting of two adversarial subnetworks, the genera-
tor G and the discriminator D [Goodfellow et al. 2014]. The
switch symbol indicates the alternating training process, where
either a real sample x or a generated sample x̃ is fed to the
discriminator.

D and G follow a two-player minimax game with value function
V(G, D):

min
G

max
D

V(G, D) = Ex∼pdata(x) [log D(x)]

+ Ez∼pz(z) [log (1− D(G(z)))] .
(2.3)

In other words, the aim of the discriminator is to determine
whether the sample x stems from the generator distribution pG or the
data distribution pdata. At the same time, the generator tries to trick
the discriminator into believing that its generated sample G(z) stems
from the data distribution pdata. With the GAN objective V(G, D)
and the alternating updates of D and G, both networks lead to the
improvement of the opponent’s performance.

2.3.2 Conditional GANs

Often it is required to not simply imitate a specific data distribution,
but also to condition the generated samples on certain classes or
styles that occur within the distribution. The vanilla GAN architec-
ture can easily be extended to a conditional model where both the
generator and the discriminator are conditioned on the label y [Mirza
and Osindero 2014]. Fig. 2.6 shows that the discriminator now re-
ceives x or x̃ with y as inputs, while the generator combines the
prior input noise pz(z) and y in a joint hidden representation. The
objective function V(G, D) from eq. (2.3) is now extended to

min
G

max
D

V(D, G) = Ex∼pdata(x) [log D(x | y)]

+ Ez∼pz(z) [log (1− D(G(z | y)))] .
(2.4)

16 preliminaries in 3d point cloud processing and deep learning

noise

z G

x̃

x

D

real

fake

y

Figure 2.6: Conditional Generative Adversarial Network (cGAN): Struc-
ture of the basic version of a cGAN [Mirza and Osindero 2014].
The real data comes with matching labels y (e.g. classes or
styles) for each sample x. The generator G now creates fake
samples x̃ conditioned on the label y. The discriminator D
always receives a sample and its corresponding label. The com-
bination of sample and label has many possibilities, a simple
version is to simply concatenate the features (here abstracted
with the white squares).

Conditional GANs soon reached popularity in image-to-image
translation [Isola et al. 2017] and accelerated research for many
mapping scenarios for camera images. CycleGAN [Zhu et al. 2017]
additionally introduces inverse mappings that are enforced by cy-
cle consistency losses. This solves the issue of solving an under-
constrained mapping problem and the model does not require any
paired samples for training. The introduction of the cycle consis-
tency constrain opened the doors to a variety of domain mapping
use-cases. CyCADA [Hoffman et al. 2018] is a cycle-consistent adver-
sarial domain adaptation model that adapt representations at both
pixel-level and feature-level.

3
S C A N - B A S E D S E M A N T I C S E G M E N TAT I O N

contents

3.1 Overview . 17

3.2 Efficient Network Configuration 18

3.2.1 Method 19

3.2.2 Evaluation 21

3.2.3 Summary 24

3.3 Semi Local Convolution 24

3.3.1 Weight Sharing in Convolution Layers 24

3.3.2 Method 25

3.3.3 Evaluation 26

3.3.4 Discussion 27

3.4 Conclusion . 28

Autonomous vehicles need to have a semantic understanding
of the three-dimensional world around them in order to reason
about their environment. State of the art methods use deep neural
networks to predict semantic classes for each point in a LiDAR scan.
A powerful and efficient way to process LiDAR measurements is
to use two-dimensional, image-like projections (section 2.2.1). This
chapter contains a comprehensive experimental study of image-
based semantic segmentation architectures for LiDAR point clouds.
Various techniques are introduced that boost the performance and
improve runtime as well as memory constraints.

This chapter is adapted from [Triess et al. 2020] and [Triess et al.
2021c] and contains verbatim quotes of these works.

3.1 overview

Many state-of-the-art semantic segmentation approaches make use
of traditional two-dimensional Convolutional Neural Networks
(CNNs) by using the cylindrical image representations of the point
clouds [Behley et al. 2019; Wu et al. 2018; Piewak et al. 2018]. How-
ever, most of these works use ego-motion corrected point clouds that
lead to systematic point occlusions in the image projection which
impacts the semantic segmentation performance in those regions
(cf. fig. 3.1a). Therefore, this chapter proposes a scan unfolding
method for KITTI [Geiger et al. 2012] that features less projection
artifacts than those currently used in literature. Further, the scan
unfolding allows for the application of a periodic padding scheme

17

18 scan-based semantic segmentation

that provides context at the horizontal field-of-view boundaries and
can be propagated through the entire network.

Additionally, this chapter shows that the spatial stationary as-
sumption of convolutions is still applicable to inputs with varying
statistical properties over parts of the data, such as projected LiDAR
scans. These data structures exhibit similar features as aligned im-
ages for which locally connected layers have been introduced [Taig-
man et al. 2014]. At the time of writing, the introduction of Semi
Local Convolutions (SLCs) showed that weight sharing convolutions
stay the most powerful tool for semantic segmentation. Nowadays
transformers [Vaswani et al. 2017; Dosovitskiy et al. 2021] perform
en-par or better than many of the existing convolution based net-
works.

In order to surpass the current baseline of a specific metric, the net-
works tend to become bigger in terms of more free parameters. This
can result in a declined generalization capacity, since the network
rather “remembers” than “learns”. Further, the architectures require
more resources in terms of memory and runtime in both training
and inference. Especially for autonomous vehicles it is vital that the
components match specific resource constrains and are operable in
real-time. The experiments show that at the expanse of very little
accuracy, the resource requirements of the models can be heavily
decreased.

The main contributions of this chapter are:

• a comprehensive study on training techniques for real-world
image-based semantic segmentation architectures

• a proposal for dense scan unfolding on KITTI and a cyclic
padding mechanism for horizontal field-of-view context

• introduction of Semi Local Convolutions, a layer with weight-
sharing along only one of the two spatial dimensions

3.2 efficient network configuration

Semantic segmentation is an important component of 3D scene
understanding, where the goal is to augment precise geometric in-
formation from the LiDAR sensor with a detailed semantic interpre-
tation. Behley et al. [Behley et al. 2019] showed that projection-based
networks outperform state-of-the-art point-based networks for point-
wise semantic segmentation on LiDAR point clouds. Therefore, this
dissertation uses the spherical projection as the representation of the
LiDAR data for the segmentation task.

The following introduces three methods (section 3.2.1) and
presents their results in section 3.2.2. Finally, the insights are
combined to produce a final model with improved performance and
runtime (section 3.2.3).

3.2 efficient network configuration 19

(a) Ego-motion corrected projection
method [Milioto et al. 2019]

(b) Scan unfolding method [Triess et al.
2020]

car bicycle motorcycle truck other-vehicle
person bicyclist motorcyclist vegetation trunk
road sidewalk parking terrain other-ground
building pole traffic-sign fence unlabeled

Figure 3.1: Cylindrical Point Cloud Projection: (a) Correcting for ego-
motion leads to a projection that suffers from systematic point
occlusions as some 3D points are projected into occupied pixels.
Hidden points can not provide any information to the network
and may not be accurately classified. (b) The proposed scan un-
folding method provides a dense projection without systematic
discretization artifacts. The proposed cyclic padding mechanism
provides context at the horizontal field-of-view boundaries by
closing the gap in the cylindrical projection (top right). The
figure is adapted from [Triess et al. 2020].

3.2.1 Method

The method of this section is composed of three parts. Sec-
tion 3.2.1.1 proposes an efficient scan-unfolding that enables using
a more efficient padding scheme within the network, called cycle
padding, as proposed in section 3.2.1.2. Section 3.2.1.3 introduces
two loss functions for the task of semantic segmentation, which are
then compared in the experiment section.

3.2.1.1 Scan Unfolding

Section 2.1.2 explained the working mechanism of LiDAR sensors
and how to transform between the 3D point clouds and their corre-
sponding 2D cylindrical projections. Openly available datasets usu-
ally provide the data as lists of Cartesian coordinates which requires
a back-projection into the image-like structure for projection-based

20 scan-based semantic segmentation

networks [Geiger et al. 2013; Caesar et al. 2020]. However, this is
sometimes not trivial, as ego-motion correction is applied to the data
or missing measurements are not represented in the list-like struc-
ture. Fig. 3.1 shows two different projection schemes: ego-corrected
projection and the proposed scan unfolding.

ego-motion corrected projection The projection shown
in fig. 3.1a is a proxy representation by Milioto et al. [2019]. It suffers
from mutual point occlusions due to the ego-motion correction of
the data and leaves large areas without data (white pixels).

scan unfolding Fig. 3.1b depicts a projection with reduced
mutual point occlusions, thus minimizing the loss of information.
The scan unfolding method is designed to be a proxy representation
of the original raw sensor data. The algorithms leverages information
about this particular sensor layout. For details on the proposed
projection algorithm, see appendix A.1.

3.2.1.2 Cyclic Padding

When convolving over data in a CNN, the input is usually padded
in order to match the desired output shape. Since LiDAR measure-
ments represent a constant stream of data along the horizontal axis
of the projections, the precise padding would take snippets from
the previous and subsequent 360° scan in time. This is not practical
when training the network and not applicable at inference time.
However, using the scan-based projection it becomes possible to
implement a cyclic padding strategy by basically taking the values
from the opposite side of the range image. Due to the cylindrical
projection of the scan, a closed 360° view is formed (see fig. 3.1b).
This can be propagated through the entire network.

3.2.1.3 Loss Functions

For semantic segmentation tasks, the multi class cross-entropy

CE(ŷ, y) = −∑
i,c

ŷi
c log yi

c (3.1)

is the most-often used loss function [Good 1956]. Here, ŷi
c is the one-

hot encoded ground truth distribution for class c at pixel position i,
while yi

c is the corresponding softmax prediction.
The performance of such systems is usually evaluated with the

Jaccard Index over all classes [Jaccard 1901], which is often referred
to as mean Intersection over Union (mIoU). In order to reach high
mIoU values, the cross-entropy is minimized over training. However,
the loss does not directly reflect the inverse of the metric.

3.2 efficient network configuration 21

In order to directly maximize the mIoU, it is possible to use
the Dice coefficient which measures the similarity between two
samples [Sorensen 1948; Dice 1945]. The soft Dice loss can be written
as

DL(ŷ, y) = 1− 1
C ∑

c

2 ∑i ŷi
cyi

c

∑i(ŷi
c)

2 + ∑i(yi
c)

2 (3.2)

where C is the total number of classes.

3.2.2 Evaluation

The basis of the experiments in this section is the RangeNet imple-
mentation of Milioto et al. [2019]. Note that the proposed models are
compared against a slightly modified version of RangeNet, referred
to as RangeNet? (R?), which omits x, y, and z as input channels.
Both version are benchmarked against each other and show no sig-
nificant difference in the resulting metric results. The second column
of table 3.1 shows the baseline results of RangeNet?.

The following shows experiments that vary the network parame-
ters (section 3.2.2.1), the loss function (section 3.2.2.2), and the scan
construction (section 3.2.2.3).

3.2.2.1 Network Parameters

Larger networks tend to be more prone to overfitting. RangeNet with
its 50.4 million trainable parameters is also affected by this. Fig. 3.2
and table 3.2 show the performance of the network for a decreasing
number of trainable parameters by adapting the filter sizes within
the convolutions. A large reduction of parameters, causes the per-
formance to decrease only slightly. Further, it can be observed that
the smaller networks generalize better due to decreased overfitting.
With a reduction to only 10% of the original number of parameters,
the model (in the center) still reaches 96% of the performance while,
at the same time, decreasing the inference time of the network to
one third.

3.2.2.2 Loss Functions

The third column of table 3.1 shows that replacing cross-entropy loss
with Dice loss increases the mIoU by 3.2%. Class-wise the two losses
show distinguished quality. Dice loss reaches better performances on
classes bicycle, bicyclist, pole, traffic-sign, and trunk. Cross-entropy,
on the other hand, performs better on motorcycle, parking, and
person. If IoU is the metric to reflect the desired quality in a network
performance, it is advisable to use Dice loss instead of cross-entropy.
It has the advantage of directly maximizing the metric as opposed
to cross-entropy.

22 scan-based semantic segmentation

Table 3.1: Semantic segmentation performance: This table shows exper-
imental results for a subset of the proposed techniques and
compares them with RangeNet? (R?). Note that the numbers de-
viate from the ones published in [Milioto et al. 2019], as numbers
are reported on the validation dataset instead of the test dataset.
The table is based on [Triess et al. 2020].

Baseline Ablations Combined

Base Network R? R? R? R? R? D
Dice Loss X X X

Scan Unfolding X X X X

Cyclic Padding X X X

Inference
[ms

frame

]
74.3 74.3 74.3 74.3 74.3 30.9

Mean IoU [%] 46.7 48.2 47.5 47.9 48.5 48.2

Bicycle 23.0 24.3 23.9 23.1 22.1 25.5
Car 91.0 92.0 90.7 92.1 93.3 91.1
Motorcycle 31.8 28.1 37.6 32.3 26.0 25.6
Truck 29.5 39.5 31.3 35.5 29.3 38.8
Other-Vehicle 29.6 25.6 24.9 22.8 21.9 21.7
Person 26.2 17.5 22.9 24.9 15.3 23.0
Bicyclist 48.4 55.6 53.0 51.5 41.8 48.6
Motorcyclist 0.0 0.0 0.0 0.0 0.2 0.0
Road 92.9 92.4 93.2 94.8 93.1 93.1
Sidewalk 78.9 78.5 79.2 79.9 77.7 77.9
Parking 41.5 36.9 43.2 43.0 38.1 43.3
Other-Ground 0.4 0.0 0.3 0.3 0.7 0.5
Building 82.1 81.9 83.5 84.2 82.1 82.9
Fence 49.7 48.3 51.2 49.4 50.1 55.9
Traffic-Sign 25.7 34.6 25.8 25.4 38.2 37.3
Pole 36.1 47.2 36.2 36.3 45.8 48.6
Trunk 42.9 53.5 45.9 47.9 49.9 48.3
Vegetation 82.7 84.0 84.0 84.1 84.2 83.3
Terrain 75.5 75.0 75.4 77.2 74.3 70.8

? drop x, y, and z channels from the input as experiments show that these features do not influence
the performance in a significant way

3.2 efficient network configuration 23

Table 3.2: Performance for different network sizes: We report the mean
value of training and validation mIoU as well as the respective
standard deviation (±x). The table is based on [Triess et al. 2020].

Network A B C D RangeNet?

Number of parameters 0.4M 1.3M 4.2M 12.7M 50.4M
Filter size config. 32, 32, 32,

32, 32, 32

32, 48, 64,
64, 64, 64

32, 48, 64,
96, 128, 256

32, 48, 64,
128, 256, 512

32, 64, 128,
256, 512, 1024

Train mIoU [%] 39.2 ± 0.5 45.6 ± 1.0 52.0 ± 1.3 54.1 ± 3.2 59.7 ± 4.1
Val mIoU [%] 38.7 ± 0.6 41.7 ± 5.1 43.5 ± 2.5 44.7 ± 1.2 46.4 ± 0.7
Inference time [ms] 20.5 22.1 23.9 30.9 74.3

105 106 107 108
0

20

40

60

Number of parameters

m
Io

U
[%

]

train val

0

40

80

120

Ti
m

e
pe

r
fr

am
e
[m

s]

inference time

Figure 3.2: Overfitting: A significant overfitting gap is present for networks
at RangeNet size. The effect only vanishes when reducing the
number of parameters by two orders of magnitude. The figure
is based on [Triess et al. 2020].

24 scan-based semantic segmentation

3.2.2.3 Scan construction

This section compares the ego-motion corrected projection with the
proposed scan unfolding method in two otherwise identical settings.
The former uses the ego-motion corrected data from SemanticKITTI,
while the latter uses the raw data obtained from KITTI. The point-
wise annotations are identical for both. However, note the target
segmentation might differ depending on the occlusions that arise
from the projection. Table 3.1 shows the validation results for our
scan unfolding method (second column in the ablation section) in
comparison to RangeNet? using the ego-motion corrected data. The
scan unfolding achieves a gain of 1.7% in mIoU. Classes with small
or thin objects, such as bicyclist or trunk, benefit especially. This can
be attributed to the differences in projection for foreground objects,
as highlighted in fig. 3.1.

In addition, zero padding is replaced with the proposed cyclic
padding strategy in all convolution layers. The results are listed in
the fifth column of table 3.1. Exploiting the cycle consistency of the
scan renders beneficial for the performance but does not generate a
substantial boost. It can be concluded that this is a more accurate
padding scheme than the default zero-padding for 360°scans.

3.2.3 Summary

In a final experiment, the above insights are used to combine the
components that generated a positive effect on the segmentation
accuracy. Table 3.1 shows that combining Dice loss and the scan
unfolding method with cyclic padding reaches the best performance.
These settings are also tested on a smaller network D (see table 3.2)
which achieves a higher segmentation score than the plain version
of the much larger RangeNet?. The inference time of this model is
less than half of the time of the bigger model.

3.3 semi local convolution

This section introduces a new base layer for neural networks,
specifically designed to process LiDAR depth projections. First,
section 3.3.1 gives a brief overview on weight sharing in convolution
layers, before introducing the new layer type in section 3.3.2.
Experiments and discussions on the results are presented in
section 3.3.3 and section 3.3.4, respectively.

3.3.1 Weight Sharing in Convolution Layers

Convolution layers apply a filter bank on their input. The filter
weights are shared over all spatial dimensions, meaning that for ev-

3.3 semi local convolution 25

ery location in the feature map the same set of filters are learned. The
re-usability of weights causes a significant reduction in the number
of parameters compared to fully connected layers. This allows deep
convolutional neural networks to be trained successfully, in turn
leading to a substantial performance boost in many computer vision
applications. The underlying premise of convolutional methods is
that of translational equivariance, i.e. that features that have been
learned in one region of the image are useful in other regions as
well.

For applications such as face recognition which deal with aligned
data, locally connected layers have proved to be advantageous [Gre-
gor and LeCun 2010; Huang et al. 2012; Taigman et al. 2014]. These
layers also apply a filter bank. Contrary to convolutional layers,
weights are not shared among the different locations in the feature
map, allowing different sets of filters to be learned for every location
in the input.

The spatial stationary assumption of convolutions does not hold
for aligned images due to different local statistics in distant regions
of the image. In a projected LiDAR scan, the argument holds true for
sensors that are mounted horizontally. Each horizontal layer is fixed
at a certain vertical angle. As the environment of the sensor is not
invariant against rotations around this axis, this leads to different
distance statistics in each vertical layer. Prior to [Triess et al. 2020],
applying locally connected filters on point cloud projections has not
been investigated.

3.3.2 Method

In order to introduce Semi Local Convolutions (SLCs), consider an
input feature map x with shape [Hx, Wx, Cx], representing a cylin-
drical projection with height Hx, width Wx, and Cx channels. The
output of the layer is another feature map y with shape

[
Hy, Wy, Cy

]
.

In the following, without loss of generality, x is considered to be
padded such that Hy = Hx and Wy = Wx.

A normal convolution layer has a kernel k of shape
[
I, J, Cx, Cy

]
,

with the spatial sizes I, J and the filter sizes Cx, Cy. The output of
such a layer is

yh,w,cy = ∑
cx

∑
i

∑
j

ki,j,cx ,cy · xh−i,w−j,cx (3.3)

where the sum over i (and similarly for j) is appropriately restricted
to the range −bI/2c . . . bI/2c.

In a SLC layer, the kernel has multiple components for different
parts along the vertical axis of the input as illustrated in fig. 3.3 (note
that the concept can also be applied to the horizontal direction).

26 scan-based semantic segmentation

(a) α = 1 (b) α = 2 (c) α = Hx = 8

Figure 3.3: Semi Local Convolution (SLC): (a) Illustration of a normal
convolution for an input tensor of shape [Hx, Wx] = [8, 11]. A
3× 3 sliding kernel is represented by the gray rectangle. Weight
sharing is active across the full image. This is a special case of
SLC with α = 1. (b) SLC with α = 2. Weights are shared in the
upper and lower half of the input, respectively. This allows the
network to learn different kernels depending on the horizontal
position in the input image. (c) For α = Hx, weight sharing
along the vertical dimension is completely turned off, weights
are only shared horizontally. Different filters can be learned for
each individual vertical position. The figure is based on [Triess
et al. 2020].

With the number of components α ∈ N with 1 ≤ α ≤ Hx, the
kernel has a shape of

[
I, J, Cx, Cy, α

]
. The output of the SLC is then

given by
yh,w,cy = ∑

cx
∑

i
∑

j
ki,j,cx ,cy,αh · xh−i,w−j,cx (3.4)

where αh = bh/H · αc selects the respective filter-component de-
pending on the vertical position h.

For α = H, there is no weight sharing along the vertical axis, a
new filter is used for every single data row. A regular convolution, as
defined in eq. (3.3), is obtained with α = 1. For values in between, the
degree of weight sharing can be adapted to the desired application.

3.3.3 Evaluation

This section investigates the introduction of SLC layers in various
experiments. The implementation of Milioto et al. [2019] is used for
the experiments. All results are reported on the validation split of the
SemanticKITTI dataset [Behley et al. 2019]. The input to the network
is a two-channel image with the projected depth measurements and
the respective reflecivity values.

3.3 semi local convolution 27

Table 3.3: Overall Results: Shown is the semantic segmentation perfor-
mance over 19 object classes for two different base networks
on the validation split of the SemanticKITTI dataset. Each base
network is augmented with the proposed SLC layer and tested
for different values of α, i.e. the number of vertical filters within
the convolution. All convolution layers, except input and out-
put layer, are replaced within the network. The table is based
on [Triess et al. 2021c].

Network Metric # vertical filters α

1 2 4 8 16 32 64

DarkNet21

[Milioto et al. 2019]
Accuracy 0.83 0.82 0.81 0.79 0.75 0.73 -
mIoU 0.36 0.34 0.32 0.30 0.27 0.26 -

SqueezeSegV2

[Wu et al. 2019]
Accuracy 0.84 0.82 0.81 0.80 0.76 0.75 0.71

mIoU 0.36 0.35 0.31 0.30 0.27 0.26 0.25

Table 3.3 shows the overall results for two different base net-
works. First, it shows that SLCs do not outperform normal convolu-
tions. Second, the performance decreases with increasing α. Third,
the above two points apply to both base networks, even though
DarkNet21 has approximately 24.7M trainable parameters, whereas
SqueezeSegV2 only has approximately 928.5k parameters.

When α increases with a factor of 2, then also the number of
trainable parameters increases by a factor of 2 (approximately)1.
Therefore, a second row of experiments is conducted, where the
number of trainable parameters in the base network are decreased
by decreasing the number of filters in each layer. Naturally, we expect
a network with lower capacity to perform worse. Table 3.4 shows
the semantic segmentation accuracy and mIoU performance for the
DarkNet21 model. The entries with the gray background mark those
networks that have approximately the same number of trainable
variables as the base network, since the modification in α and output
filter size cancel each other out. Here again, an increase in α leads to
decreased performance. One has to note, that even if the number of
parameters is the same for the gray cells, the increase in α only leads
to more capacity over the spatial dimension of the feature maps,
whereas larger output filters in general lead to more capacity over
the depth of the network for the entire spatial extent.

3.3.4 Discussion

The experiments show that SLCs are not able to outperform normal
convolutions and performance usually decreases with increasing α.
This effect is stronger for networks with a large number of parame-

1 DarkNet21 with α = 64 is too large for a single GPU, therefore no results are
reported

28 scan-based semantic segmentation

Table 3.4: Scaled Network Performance: This table shows the semantic
segmentation performance of the DarkNet21 [Milioto et al. 2019]
model (Accuracy / mIoU). Over the columns of the table, the
number of vertical filters within each SLC layer are increased.
Over the rows of the table, the number of overall output filters for
each layer are decreased, i.e. 2 means multiplying the number of
filters by a factor of 1

2 which results in 1
4 of the original trainable

variables. The gray cells mark those that contain configurations
where the increase in α is neutralized with the decrease of filter
sizes and thus results in approximately the same number of
trainable parameters. The table is based on [Triess et al. 2021c].

1 2 4 8 16 32 64

1 0.83 / 0.36 0.82 / 0.34 0.81 / 0.32 0.79 / 0.30 0.75 / 0.27 0.73 / 0.26 -

2 0.83 / 0.35 0.81 / 0.32 0.83 / 0.33 - / - - / - - / - 0.70 / 0.24

4 0.82 / 0.34 - / - 0.77 / 0.30 0.76 / 0.28 0.74 / 0.25 - / - 0.72 / 0.24

8 0.77 / 0.31 - / - - / - 0.74 / 0.27 0.72 / 0.25 0.71 / 0.24 0.71 / 0.23

ters. Therefore, it can be assumed that normal convolution layers of
adequate capacity can already handle the different statistical proper-
ties across the vertical spatial dimension. This claim is supported by
the findings of Kayhan and van Gemert [2020] who show that con-
volutional layers exploit absolute spatial location. Therefore, CNNs
are in fact not translation invariant which means a network with
sufficient capacity is able to learn even differing statistics over the
vertical dimension of such a LiDAR scan.

3.4 conclusion

This chapter presented an experimental study on projection-based
semantic segmentation of LiDAR point clouds. The experiments
show that carefully chosen loss functions and input data representa-
tions can lead to a boost in semantic segmentation performance. The
proposed scan unfolding method is preferred over the cylindrical
projection of ego-motion corrected data. In the case of single-frame
processing, it can be combined with a cyclic padding mechanism
which leads to another small improvement. The scan unfolding and
cyclic padding are applied to the LiDAR projections for all further
experiments in this dissertation.

However, using the proposed SLCs instead of normal convolutions
decreases segmentation performance, especially when decreasing
the amount of weight sharing. Since normal convolution layers can
already exploit spatial location information within the network, it is
not necessary to explicitly address the large difference in appearance
along the vertical axis of a LiDAR scan in a special layer.

The chapter also demonstrated that the network size, in terms of
parameters, can be drastically reduced at very little cost to accuracy,
allowing for applications on hardware with limited resources or

3.4 conclusion 29

hard real-time constraints. By combining Dice loss and the proposed
scan unfolding method with cyclic padding, a fast network archi-
tecture is constructed that outperforms much slower state-of-the-art
networks without these modifications. Such a combination of high
performance and low run-time is required to enable autonomous
driving.

4
D E E P D O M A I N A D A P TAT I O N F O R L I D A R
P E R C E P T I O N

contents

4.1 Background . 33

4.1.1 Domain Adaptation 33

4.1.2 Baselines 34

4.1.3 Applications and Use-Cases 35

4.2 Methods . 35

4.2.1 Domain-Invariant Data Representation 35

4.2.2 Domain Mapping 36

4.2.3 Domain-Invariant Feature Learning . 38

4.2.4 Normalization Statistics 39

4.2.5 Other Methods 40

4.3 Discussion . 40

4.3.1 Comparability and Transfer from
other Modalities 40

4.3.2 Discrepancies in Domain Gap Quality 41

4.3.3 Relevance of Cross-Sensor Adaptation 41

4.3.4 Adaptation in Different Weather Sce-
narios 42

4.3.5 Generative Models for Domain Trans-
lation 42

4.3.6 Open-Partial Domain Adaptation . . . 42

Deep learning techniques for perception applications typically
require a huge amount of annotated data matching the considered
scenario to obtain reliable performances. A major assumption in
these algorithms is that the training and application data share
the same feature space and distribution. However, in many real-
world applications, such as in the field of automated driving, this
assumption does not hold, since the agents operate in an open-world
setting. Furthermore, collection and annotation of large datasets for
every new task and domain is extremely expensive, time-consuming,
and not practical for scalable systems. For clarification, a domain is
defined as the scope of application for the algorithm.

A common scenario includes solving a detection task in one do-
main with training data stemming from another domain. In this
case, the data may differ in their feature space or follow a differ-
ent data distribution. Examples for these divergent domains can
be different geographical regions, weather scenarios, seasons, other

31

32 deep domain adaptation for lidar perception

Transfer Learning

Inductive Transfer
Learning

Unsupervised Transfer
Learning

Transductive Transfer
Learning

no annotated dataannotated data only in
source domain

annotated data in target
domain

same domain and same
task

different domains but
same task

Sample Selection Bias /
Covariance Shift Domain Adaptation

annotated data in source
domain, source and

target tasks are learned
simultaneously

Self-Taught LearningMulti-Task Learning

no annotated data in
source domain

Figure 4.1: Overview of Transfer Learning: Domain adaptation is a type of
transductive transfer learning where the same task is performed
in different, but related domains with annotated data only in
the source domain. The figure is based on [Triess et al. 2021a].

timely aspects, and many more. For scalable automated driving, fast
development cycles, simulated data, and changing sensor setups
also play a major role. Usually, when a perception system is exposed
to such a domain shift, its performance drops drastically [Ganin
and Lempitsky 2015]. However, it is possible to pass knowledge
from a different but related source domain to the desired target do-
main with transfer learning. Specifically, Domain Adaptation (DA)
requires no manual annotations to adapt to new domains and there-
fore promises a cheap and fast solution to deal with domain shifts
(compare fig. 4.1).

This chapter presents a comprehensive review of the recent
progress in DA methods and formulates interesting research
questions specifically targeted towards LiDAR perception. This
chapter is based on [Triess et al. 2021a] and contains verbatim
quotes of that work1.

The chapter is organized as follows: Section 4.1 explains the ter-
minology of DA and includes an overview on typical baselines,
datasets, DA applications, and metrics. Section 4.2 categorizes com-
mon DA approaches for LiDAR. Section 4.3 discusses different
aspects of the presented approaches and gives an outlook on in-
teresting research directions that are partially addressed in this
dissertation.

1 The creation of the survey paper was initially driven by Larissa Triess and was
then continued as joint work with Mariella Dreissig and Christoph Rist.

4.1 background 33

Recognized Class

Unknown Class

Known Class

Target Domain

Source Domain

Closed Set Partial Open Set

Open-Partial Boundless

Figure 4.2: Intersections between Source and Target Domains: Domain
adaptation can be subdivided based on the classes considered
in the learning process. All classes of the source domain are
known and are provided with labels. The classes that also
occur in the target domain get recognized by the perception
network. The ones that are not in source, but in target do not
get recognized (except for boundless DA) and remain unknown.
The figure is based on [Triess et al. 2021a].

4.1 background

Wilson and Cook [2020] provide an extensive survey on image-
based DA approaches. This dissertation uses similar terminology but
extends the DA methods with LiDAR-specific categories and focuses
on LiDAR-related literature. The following gives an introduction to
the building blocks for deep learning-based LiDAR DA research.

4.1.1 Domain Adaptation

Domain Adaptation (DA) is a special type of transfer learning [Pan
and Yang 2010]. Fig. 4.1 shows the localization of DA research in
the field of transfer learning which is divided into three major
categories: unsupervised transfer learning, where no annotated data
is used; transductive transfer learning, where annotated data is only
available in the source domain; inductive transfer learning, where
annotations are available in the target domain.

DA is a type of transductive transfer learning where annotated
source data but no annotated target data is available. It is therefore
also called unsupervised domain adaptation in works that use a
different terminology [Wilson and Cook 2020]. The learning process
is defined by performing the same task in different but related
domains. Related domains refer to domains that are placed in a
similar setting, such as outdoor driving scenarios, whereas different
domains refer to a specific aspect that differs, for example sunny
versus rainy days.

In multi-class classification, DA can be subdivided based on the
classes of the source and target domains, and on the classes con-
sidered in the learning process (fig. 4.2). Most papers deal with

34 deep domain adaptation for lidar perception

Closed Set DA, where all classes appear in both the source and
target domains. In Partial DA, just a subset of the classes from the
source domain appears in the target domain. These two variants
are easiest to handle, since no special treatment of unknown objects
is required. Open Set DA is the opposite of Partial DA, such that
just a subset of the classes from the target domain appears in the
source domain. If both sets have both common and unique classes,
it is called Open-Partial DA, which is the most common scenario
for an open-world application such as autonomous driving. There
also exists boundless DA which is an Open Set DA where all target
classes are learned individually.

Wilson and Cook [2020] suggest a categorization of DA methods
that reflects the different lines of research in that field. These include:
domain-invariant feature learning, domain-mapping, normalization
statistics, ensemble methods, and target discriminative methods.
Section 4.2 structures the LiDAR-based DA approaches into these
categories. At the time of writing, the literature did not provide
works on ensemble methods or target discriminative methods for
LiDAR. Yet, there exist approaches that are specific for LiDAR appli-
cations which use domain-invariant data representations. Therefore,
[Triess et al. 2021a] introduces this additional category.

4.1.2 Baselines

Compared to DA in the camera world, the field of LiDAR DA is
rather small at this time. Therefore, many LiDAR papers compare
their DA approaches to image baselines to compensate for the lack of
LiDAR baselines. This section gives a short overview of the baselines
used in the presented papers and this dissertation.

The entropy minimization technique is one of the most often
referenced baselines. Vu et al. [2019] introduce Adversarial Entropy
Minimization (AdvEnt) which minimizes the distribution between
the source and target based on self-information. Chen et al. [2019b]
claim that the gradient of the entropy is biased towards samples
that are easy to transfer in the entropy minimization approach.
Therefore, they propose a maximum squares loss to balance the
gradient of well-classified target samples and prevent the training
to be dominated by easy-to-transfer samples. Morerio et al. [2018]
show with Minimal-Entropy Correlation Alignment (MinEnt) that
entropy minimization is induced by the optimal alignment of second
order statistics between source and target domains. On this basis,
they propose to use Geodesic instead of Euclidean distances, which
improves alignment along non-zero curvature manifolds. MinEnt is
used in chapter 7 for benchmarking purposes.

Other image methods that are used as baselines for DA are: Cy-
CADA [Hoffman et al. 2018], an advanced CycleGAN [Zhu et al.

4.2 methods 35

2017]; FeaDA [Chen et al. 2017b], a joint global and class-specific do-
main adversarial learning framework; and OutDA [Tsai et al. 2018],
a multi-level adversarial network that performs output space DA at
different feature levels.

4.1.3 Applications and Use-Cases

Using simulators for autonomous driving applications gained a
lot of interest in the past years and also increased the research on
sim-to-real DA. Similarly, geography-to-geography DA has to address
changes in geographical and environmental regions that largely dif-
fer in shapes of otherwise similar objects, e.g. traffic signs. Adverse
weather conditions, such as fog or rain can substantially deteriorate
the detection capabilities of a LiDAR, since laser beams are being
reflected and scattered by the droplets or particles in the atmosphere.
Therefore, weather-to-weather DA considers different weather scenar-
ios and seasons. In contrast to DA for cameras, day-to-night DA is
not important to investigate for LiDAR, since LiDAR is an active
sensor that is almost independent from external illumination.

Another important application in the field of development cy-
cles and vehicle setup is the case of sensor-to-sensor DA. It tackles
the differences in resolution, mounting position, or other sensor
characteristics, like measurement range, noise characteristics, and
reflectivity estimates. Most of the related work considers a far more
general case for their research, namely dataset-to-dataset. It involves
multiple of the above mentioned DA applications at once. Several
publicly available driving datasets are used to develop and evaluate
the adaptation capabilities. Here, geography-to-geography and sensor-
to-sensor usually occur at once, often paired with seasonal changes,
making this task especially challenging. This dissertation addresses
the following use-cases: sim-to-real in section 6.2, sensor-to-sensor in
section 6.1, and dataset-to-dataset in chapter 7.

4.2 methods

This section presents the state of the art on DA for LiDAR-based
environment perception. The approaches are either data-driven,
such as domain-invariant data representation (section 4.2.1), domain
mapping (section 4.2.2), and normalization statistics (section 4.2.4),
or model-driven, such as domain-invariant feature learning (sec-
tion 4.2.3). Remaining methods are presented in section 4.2.5.

4.2.1 Domain-Invariant Data Representation

A domain-invariant representation is a hand-crafted approach
to move different domains into a common representation.

36 deep domain adaptation for lidar perception

Perception
NetworkSource Data Prediction

Source
Pre-Processing Invariant

Data

(a) Training

Target Data
Perception
Network Prediction

Target
Pre-Processing Invariant

Data

(b) Testing

Figure 4.3: Domain-Invariant Data Representation: The data from the
source domain at train-time (a) and the data from the target
domain at test-time (b) are both converted into a hand-crafted
common representation prior to being fed to the perception
pipeline. The figure is based on [Triess et al. 2021a].

Fig. 4.3 shows that this approach is basically a data pre-processing
after which a regular perception pipeline starts. It is mostly
used to account for the sensor-to-sensor domain shift and receives
special attention in LiDAR research. Available sensors vary in their
resolution and sampling patterns while resulting point clouds are
additionally influenced by the mounting position and the recording
rate of the sensor. Consequently, the acquired data vary considerably
in their statistics and distributions.

This data distribution mismatch makes it unfeasible to apply the
same model to different sensors in a naive way. One method is
to align the sampling in 2D space which uses LiDAR sensor-view
images to either up-sample the data or drop scan lines to align
the sensor resolution [Triess et al. 2019; Shan et al. 2020; Elhadidy
et al. 2020; Alonso et al. 2020]. However, this is a simplification,
since different sensors are usually not only characterized by the
number of scan lines, but also by a multitude of other factors, such
as the vertical FOV. Other methods use geometric representations
in 3D space that are less prone to domain differences [Yi et al. 2021;
Piewak et al. 2019]. Many methods also include a normalization of
the input feature spaces with respect to different mounting positions
by spatial augmentations and replacing absolute LiDAR coordinates
with relative encoding schemes [Rist et al. 2019; Alonso et al. 2020].

All approaches mentioned in this section can only account for
small domain gaps, as they solely address the domain gap of the
data representation and not the data content.

4.2.2 Domain Mapping

Domain mapping aims at transferring the data of one domain to
another domain and is most often used in sim-to-real and dataset-
to-dataset applications. Fig. 4.4 shows a typical setup for domain
mapping. Annotated source data is usually transformed to appear
like target data, creating a labeled pseudo-target dataset. With the

4.2 methods 37

Domain
Mapper

Perception
Network

Target Data

Source Data PredictionSource Data

(a) Training

Target Data
Perception
Network Prediction

(b) Testing

Figure 4.4: Domain Mapping: This is the most commonly used configu-
ration for domain mapping. During training (a) the labeled
source data is conditionally (dashed line) mapped to the target
domain where a perception network is trained. At test time (b),
the trained perception network can directly be applied to the
target data. The figure is based on [Triess et al. 2021a].

transformed data, a perception network is trained which can then
be applied to target data at test time.

For images, domain mapping is usually done adversarially and
at pixel-level in the form of image-to-image translation with condi-
tional GANs [Mirza and Osindero 2014; Choi et al. 2018; Royer et al.
2020; Benaim and Wolf 2017; Taigman et al. 2017]. The generator
translates a source input to the target distribution without changing
the underlying semantic meaning. A perception network can then
be trained on the translated data using the known source labels. The
translated data shall have the same appearance as the target data.
The number of papers that adversarially generate realistic LiDAR
data is limited and most approaches use unmodified image GANs,
such as CycleGAN [Zhu et al. 2017], and apply them to top-view
projected images of the LiDAR scans [Saleh et al. 2019; Sallab et al.
2019a,b]. Caccia et al. [2019] provide an unsupervised method for
both conditional and unconditional LiDAR generation in projection
space and test their method on reconstruction of noisy data. The
generated data does not possess any point-drops as they usually
occur in real-world data. Therefore, DUSty [Nakashima and Ku-
razume 2021] additionally incorporates a differentiable framework
that can sample binary noises to simulate these point-drops and
mitigate the domain gap between the real and synthesized data. Sim-
ilarly, ePointDA [Zhao et al. 2021] learns a dropout noise rendering
from real data and applies it to synthetic data. A similar method is
proposed and used in section 6.2.1.1 of this dissertation.

There also exists a number of methods that do not rely on adver-
sarial training. The non-adversarial mapping techniques primarily
focus on the sampling and distribution differences between LiDAR
sensors. Alonso et al. [2020] use a data and class distribution align-
ment strategy. Langer et al. [2020] use a re-sampling technique via

38 deep domain adaptation for lidar perception

Feature
Extractor

Perception
Network

Target Data

Source Data Prediction

Feature
Extractor

Alignment
Component

(a) Training

Target Data
Perception
Network Prediction

Feature
Extractor

(b) Testing

Figure 4.5: Domain-Invariant Feature Learning: A feature extractor net-
work and an alignment component learn a domain-invariant
feature encoding (a). At test time (b), the domain-invariant fea-
ture extractor is applied to the target data. The figure is based
on [Triess et al. 2021a].

frame accumulation to address sensor-to-sensor domain shifts. In a
second step, the semantic segmentation model has to be re-trained
with geodesic correlation alignment to align second-order statistics
between source and target domains to generalize to a dataset-to-
dataset setting [Morerio et al. 2018; Wu et al. 2019].

Non-adversarial mapping techniques are usually simpler and
better controllable than adversarial mapping methods (cf. section 6.3).
Therefore, also the trend in domain mapping seems to move towards
non-adversarial methods.

4.2.3 Domain-Invariant Feature Learning

State-of-the-art methods in domain-invariant feature learning em-
ploy a training procedure that encourages the model to learn a
feature representation that is independent of the domain. This is
done by finding or constructing a common representation space
for the source and target domain. In contrast to domain-invariant
data representations, these approaches are not hand-crafted but use
learned features.

If the classifier model performs well on the source domain us-
ing a domain-invariant feature representation, then the classifier
may generalize well to the target domain. The basic principle is
depicted in fig. 4.5. Common approaches for domain-invariant fea-
ture learning can be categorized into divergence minimization and
discriminator-based approaches. The former minimizes a suitable
divergence measure, e.g. Euclidean Correlation Alignment (ECA) be-
tween the representation of the source and the target domain within
a DNN. Wu et al. [2019] adapt the work of Morerio et al. [2018] to
use a loss function based on the geodesic distance between the batch
statistics from both domains. Jaritz et al. [2020] use a cross-modal

4.2 methods 39

loss for an information exchange between 2D images and 3D point
clouds that benefits the overall performance in presence of a domain
shift. Discriminator-based methods use adversarial training to force
the feature encoder to learn only domain-invariant features [Jiang
and Saripalli 2020; Wang et al. 2019b; Zhao et al. 2019a]. Saltori et al.
[2020] present a different but interesting take on DA for LiDAR point
clouds, where they exploit temporal consistency in the detection to
generate pseudo-labels on the target domain. Following, they built a
model which does not rely on annotations from the source domain
by utilizing a variant of self-taught learning.

4.2.4 Normalization Statistics

The primary use of normalization techniques is to improve train-
ing convergence, speed, and performance. These advantages have
initially been verified on image datasets, image related tasks, and
their respective model architectures. On LiDAR data, normalization
techniques are used equally for improved feature extraction for a
variety of tasks [Wu et al. 2019; Zhou and Tuzel 2018; Lang et al.
2019; Qi et al. 2017a; Su et al. 2018]. On images, the properties of
normalization are used for explicit DA. A set of normalization statis-
tics per domain are expected to separate domain knowledge from
task knowledge. This encourages DNNs to learn style-invariant rep-
resentations of input data. Conversely, manipulating the distribution
of intermediate layer activations is explicitly used for image style
transfer. However, experimental studies that verify a strong similar-
ity between style normalization on camera images and sensor or
scene normalization on LiDAR are absent.

In DNNs, normalization layers improve training convergence by
aligning the distributions of training data and therefore controlling
internal covariate shift and the scale of the gradients. Distribution
alignment is implemented by a normalization of mean and variance
of activations over partitions of the batch-pixel-feature tensor. The
most prominent normalization technique is Batch Normalization
(BN) [Ioffe and Szegedy 2015]. Building on the same basic idea,
subsequent related normalization procedures [Wu and He 2018;
Nam and Kim 2018; Ulyanov et al. 2016] address issues with BN
related to implementation, network architectures, or certain data
domains.

Adaptive BN is a simple and straightforward DA method that
re-estimates the dataset statistics on the target domain as a natural
extension of the batch norm approach [Li et al. 2017]. However, this
normalization approach alone does not lead to a satisfactory object
detection performance in a LiDAR sensor-to-sensor DA setup [Rist
et al. 2019]. When training on multiple image data domains simul-
taneously, switching between per-domain statistics is used for DA

40 deep domain adaptation for lidar perception

on image tasks as the second stage of a two-stage approach [Chang
et al. 2019]. Initial pseudo-labels are iteratively refined using sep-
arate batch norm statistics for each domain. The effectiveness of
per-domain statistics on LiDAR domain gaps has not been verified
experimentally.

4.2.5 Other Methods

Recently, it is demonstrated that teacher-student knowledge distil-
lation can increase performance on a target domain in an unsuper-
vised DA setting on LiDAR [Caine et al. 2021]. A teacher network is
trained on the source domain and creates pseudo-labels on the tar-
get domain. The smaller student network is then trained on source
and target domains simultaneously. A setup to adapt to a domain
with different geometries is used as experimental evaluation. The
pseudo-label trained student networks show better generalization
capabilities on the target domain than the teacher networks. Practi-
tioners benefit from the simplicity of the approach and the option to
adhere to inference time budgets with small student networks. How-
ever, in practice the sensor setup itself might be different instead of
only the scene geometry. This yields a more difficult problem as the
networks need to work on both domains simultaneously.

4.3 discussion

This section discusses the main challenges that remain open in DA
for LiDAR perception after reviewing related literature They pose
interesting research directions for future works.

4.3.1 Comparability and Transfer from other Modalities

An essential part of research is the comparability between different
approaches to foster further research in promising directions. In
most papers, the success of the DA process is measured by the
performance of a downstream perception task. However, this has
two major drawbacks. First, it is assumed that the quality of the
domain adaptation process directly correlates with the performance
changes in the downstream perception. However, there is no proof
for this yet. Second, the methods are still not comparable, since
they all use different datasets, task settings, label sets, and report
different metrics. One reason might be that most of the advanced
DA approaches in LiDAR only emerged recently, therefore no metric
or baseline prevailed.

To mitigate the lack of a LiDAR-specific baseline, many of the pre-
sented works use image-based approaches as a baseline comparison
for their own work. However, these are usually unfair evaluations,

4.3 discussion 41

since the baseline methods are not optimized for LiDAR data. There-
fore, chapter 5 introduces a metric to judge the realism of LiDAR
data, which is then applied in chapter 6 to investigate the connection
between the data quality and the perception performance.

4.3.2 Discrepancies in Domain Gap Quality

The size of a domain gap can be measured in terms of model perfor-
mance on a given task if target labels are available. Consequently,
this measure of the apparent size of a domain gap is model-specific
and task-specific. Nevertheless, a change of the LiDAR sensor seems
to cause a greater impact on the final performance across several
tasks and models than changes in weather or location. It seems that
a sensor-to-sensor domain gap is not easily covered by learned and
implicit DA methods such as normalization statistics and adversarial
domain mapping that work well in the image domain. Hand-crafted
DA methods based on the explicit geometric properties of LiDAR
data and their representation are the only ones that yield reason-
able results on sensor-to-sensor domain shifts so far. The results in
chapter 6 and chapter 7 will support these observations.

4.3.3 Relevance of Cross-Sensor Adaptation

Various sensor types were developed in the past decade. Available
LiDAR sensors mainly vary in their design and functionality, i.e.
rotating and oscillating LiDARs [Li and Ibanez-Guzman 2020; Royo
and Ballesta-Garcia 2019]. Consequently, the scan-pattern and thus
the data representation differs considerably between the sensors.

Although the mechanical spinning LiDAR is mainly used for
perception in the autonomous driving research [Behley et al. 2019;
Caesar et al. 2020], all sensor types have their benefits. The publicly
available PandaSet dataset [Scale AI 2020] is one of the first datasets
to incorporate two different sensor types: a 360◦ covering spin-
ning LiDAR and an oscillating LiDAR with a snake scan-pattern.
Since it is unclear which type of sensor will prevail in the con-
text of autonomous driving in the future, it is crucial to advance
the development of sensor-invariant perception systems. The pre-
sented geometric and volumetric data representation approaches
(section 4.2.1) are valuable to fully benefit from the different sensor
types. Constructing a domain-invariant data representation in an
intermediate step makes it possible to re-use already trained DNNs
and apply them to new sensor setups. This is essential to lower
the research costs and to keep up with the sensor development.
However, methods that leverage the features of such an invariant
data representation, without the additional overhead of constructing

42 deep domain adaptation for lidar perception

such a canonical domain are better suited to be used in a real-time
application. This dissertation proposes such a method in chapter 7.

4.3.4 Adaptation in Different Weather Scenarios

LiDAR sensors are heavily impacted by adverse weather conditions,
such as rain or fog, which cause undesired measurements and leads
to perception errors. There exists some work on denoising LiDAR
perception [Heinzler et al. 2020], but the subject is not specifically
tackled in a DA setting. With the release of new datasets containing
adverse weather scenarios [Carballo et al. 2020; Bijelic et al. 2020], it
is possible to foster the research for weather-to-weather applications.
This dissertation does not cover weather-to-weather DA.

4.3.5 Generative Models for Domain Translation

The category of adversarial domain mapping techniques (sec-
tion 4.2.2) includes only four approaches, none of which is capable
to generate realistic LiDAR point clouds in 3D (they use top-view
projections of the point clouds) [Saleh et al. 2019; Sallab et al.
2019a,b]. This is surprising, since the same strategy is thriving in
the image world, where a lot of research is conducted to generate
realistic images. There are two possible explanations to it: either, it
is simply not necessary to use generative models to create realistic
point clouds, in the sense that other approaches are far more
powerful, or it is not possible to achieve the required high quality
of the generated data. Either way, up until now there exists no
study that either proves or contradicts any of these assumptions.
Chapter 6 provides deeper insights into this discussion.

4.3.6 Open-Partial Domain Adaptation

The majority of the presented approaches deal with dataset-to-dataset
applications, a manifold adaptation task, where both the sensor
type and the environment change. This makes the task particularly
difficult. However, another effect comes to light. Usually, datasets
have unique labeling strategies and include a different set of classes.
For example, SemanticKITTI has 28 semantic classes while nuScenes
divides into 32 classes. Since the domains have both common and
unique classes, this is called an Open-Partial DA problem [Toldo
et al. 2020].

However, none of the presented approaches directly tackles the
Open-Partial formulation, but rather performs a label mapping
strategy that allows them to address this as a Closed Set DA problem.
Some of the segmentation approaches do not focus on segmenting
the entire scenery from the start, but only perform foreground

4.3 discussion 43

segmentation, for example cars versus background [Yi et al. 2021]. A
common strategy when semantically segmenting entire scenes, is to
find a common minimal class mapping between the two datasets,
that discards all classes that cannot be matched [Alonso et al. 2020].
Some works even re-label one of the datasets to perfectly match the
label definitions of the other dataset [Langer et al. 2020].

In the image world, there are already works that deal with the
Open-Partial and Open-Set DA problems [Busto and Gall 2017; Saito
et al. 2018; Luo et al. 2020]. In the LiDAR world, this field still
holds a lot of potential for future research. A good strategy for these
questions can help to advance in scalable systems for automated
vehicles and can be regarded as part of the future work for this
dissertation.

5
A M E T R I C T O Q UA N T I F Y T H E R E A L I S M O F L I D A R
P O I N T C L O U D S

contents

5.1 Overview . 46

5.2 Related Work 48

5.2.1 GAN Evaluation Measures 48

5.2.2 Metric Learning 51

5.3 LiDAR Realism Metric 51

5.3.1 Objective and Properties 52

5.3.2 Architecture 53

5.4 Experimental Setup 56

5.5 Evaluation . 58

5.5.1 Balance between Accuracy and Fairness 58

5.5.2 Metric Results 59

5.5.3 Adversary Ablation 60

5.5.4 Feature Continuity 62

5.5.5 Anomaly Detection 63

5.5.6 Limitations 65

5.6 Conclusion . 65

When working with domain mapping methods (cf. section 4.2.2),
an integral part of the process is the creation of new data with
the mapping process. This data is then used to train a perception
model for the target domain. For this step to be successful, it is
necessary that the generated data is close to the target distribution.
In a GAN training, this is usually measured by the discriminator.
However, the discriminator does not provide an absolute measure,
but only indicates the relative realism of the generated data with
respect to the current state of the generator and its own training
status. Therefore, finding the optimal checkpoint during training is
complicated and requires an absolute metric, as often used in the
image domain. As discussed in section 4.3.1, such metrics are rare
in the LiDAR domain.

To this end, this chapter proposes a novel approach to quantify
the realism of LiDAR point clouds. Relevant features are learned
from real-world and synthetic point clouds. The resulting metric can
then assign a quality score to LiDAR samples without requiring any
task specific information. Experiments confirm the soundness of the
realism metric and show reliable interpolation capabilities between
data with varying degree of realism.

45

46 a metric to quantify the realism of lidar point clouds

Synthetic

Real

Misc

Figure 5.1: Proposed Approach: The realism measure has a tripartite un-
derstanding of the 3D-world (middle). The left and right image
show the color-coded metric scores for query points on two
example scenes. Both scenes are from the real-world dataset
KITTI (Real) and are augmented with dynamic objects from
the simulated CARLA dataset (Synthetic). The left image shows
inserted cars from CARLA (left) next to real KITTI cars (right).
The right image demonstrates the metric results for a synthetic
bicycle-and-person object in a KITTI scene. Additionally, the ter-
rain in the background is distorted with noise, which is detected
as Misc. The figure is based on [Triess et al. 2022b].

The chapter is based on [Triess et al. 2021b] and [Triess et al.
2022b] and contains verbatim quotes of these works. It starts with
the introduction in section 5.1 and the presentation of related quality
measures in section 5.2. Section 5.3 describes the properties and
design of the proposed realism metric. Subsequently, section 5.4
presents the experimental setup to validate the proposed approach.
Eventually, section 5.5 evaluates the proposed concept and section 5.6
discusses the observations. The proposed metric is used in chapter 6

to determine the quality of generated LiDAR point clouds.

5.1 overview

Simulations and generative models, such as GANs, are often used
to synthesize realistic training data samples to improve the perfor-
mance of perception networks [Park et al. 2019b; Xu et al. 2021;
Löhdefink and Fingscheidt 2022; Li et al. 2022]. Assessing the re-
alism of such synthesized samples is a crucial part of the process.
This is usually done by experts, a cumbersome and time consuming
approach. Though a lot of work has been conducted to determine the
quality of generated images [Goodfellow et al. 2014; Salimans et al.
2016; Theis et al. 2016; Heusel et al. 2017; Lehmann and Romano
2006], little work is published about how to quantify the realism
of point clouds [Shu et al. 2019; Triess et al. 2021b, 2022b]. Visual
inspection of such data is expensive and not reliable given that the
interpretation of 3D point data is rather unnatural for humans. Be-
cause of their subjective nature, it is difficult to compare generative

5.1 overview 47

approaches with a qualitative measure. This chapter closes this gap
and introduces a quantitative evaluation for LiDAR point clouds.

In recent years, a large amount of evaluation measures for GANs
emerged [Borji 2019]. Many of them are image-specific and cannot be
applied to point clouds. Existing work on generating realistic LiDAR
point clouds mostly relies on qualitative measures to evaluate the
generation quality [Saleh et al. 2019; Shan et al. 2020]. Alternatively,
some works apply annotation transfer [Sallab et al. 2019a] or use the
Earth Mover’s Distance (EMD) as an evaluation criterion [Caccia et al.
2019]. However, these methods require either annotations associated
with the data or a matching target sample, i.e. Ground Truth, for the
generated sample. Both are often not feasible when working with
large-scale data generation or transfer learning setups.

One main application of data generation is to train downstream
perception models, i.e. segmentation or detection models that make
use of the generated data. Here, it is crucial to reduce the domain
gap between generated data and target data on which the trained
perception model is applied [Triess et al. 2021a]. The correlation
between realism and perception performance becomes evident in
the next chapter (cf. fig. 6.3). Thus, the performance of the trained
perception model itself can be used as an indication for the realism
of the data. However, using this as a proper metric is impractical
since it requires to re-train the target network on multiple versions
of the data to evaluate their realism. A solution is a metric that
can determine the realism of the data already while training the
generative model.

To address this need, this chapter proposes a reliable metric that
gives a quantitative estimate about the realism of generated LiDAR
data. Fig. 5.1 shows the concept of the metric as a distance measure
in high-dimensional feature space. The metric is trained to learn
relevant features via a proxy classification task. Hierarchical feature
set learning is used to confine features locally in space to avoid
learning global scene context. An adversarial learning technique
is used to discourage the network from encoding dataset-specific
information which enables robust quantification of unseen data
distributions. The resulting metric does not require any additional
annotations.

The contributions of this chapter are:

• A novel way to learn a measure of realism in point clouds by
learning hierarchical point set features on a proxy classification
task.

• The adaptation of an adversarial technique from the fairness-in-
machine-learning domain in order to eliminate dataset-specific
information which allows the measure to be used on unseen
datasets.

48 a metric to quantify the realism of lidar point clouds

• A demonstration on how the fine-grained local realism score
can be used for anomaly detection in LiDAR scans.

5.2 related work

This section discusses GAN evaluation measures and their applica-
bility to generated LiDAR data in section 5.2.1. Since this chapter
introduces a novel learning-based LiDAR metric, section 5.2.2 gives
a brief overview on metric learning.

5.2.1 GAN Evaluation Measures

A considerable amount of literature deals with how to evaluate gen-
erative models and proposes various evaluation measures. The most
important ones are summarized in extensive survey papers [Lucic
et al. 2018; Borji 2019]. They can be divided into two major categories:
qualitative and quantitative measures.

5.2.1.1 Qualitative Evaluation

Qualitative evaluation [Goodfellow et al. 2014; Huang et al. 2017;
Zhang et al. 2017; Srivastava et al. 2017; Lin et al. 2018; Chen et al.
2016; Mathieu et al. 2016] uses visual inspection of a small collection
of examples by humans and is therefore of subjective nature. It is
a simple way to get an initial impression of the performance of a
generative model but cannot be performed in an automated fashion.
Previous work uses the Mean Opinion Score (MOS) testing to verify
the realism of generated LiDAR point clouds [Triess et al. 2019].
It was previously introduced in [Ledig et al. 2017] to provide a
qualitative measure for realism in Red-Green-Blue (RGB) images. In
contrast to [Ledig et al. 2017], where untrained people were asked
to determine the realism, Triess et al. [2019] require LiDAR experts
for the testing process to assure a high enough sensor domain
familiarity of the test persons. This makes the process even more
time-consuming and expensive. Furthermore, the subjective nature
of qualitative measures in general makes it difficult to compare
performances across different works, even when a large inspection
group, such as Mechanical Turk, is used. Therefore, quantitative
metrics are crucial.

5.2.1.2 Quantitative Evaluation

Quantitative evaluation is performed over a large collection of exam-
ples, often in an automated fashion. Table 5.1 categorizes a number
of quantitative GAN measures into six categories according to their
properties.

5.2 related work 49

Ta
bl

e
5
.1

:G
A

N
Ev

al
ua

ti
on

M
ea

su
re

s:
T

hi
s

ta
bl

e
ca

te
go

ri
ze

s
G

A
N

ev
al

u
at

io
n

m
ea

su
re

s
an

d
st

at
es

th
ei

r
m

os
t

im
p

or
ta

nt
p

ro
s

(⊕
)

an
d

co
ns

(
)

re
la

ti
ve

to
th

e
ap

pl
ic

at
io

n
of

ju
dg

in
g

Li
D

A
R

po
in

t
cl

ou
d

re
al

is
m

.T
hi

s
ta

bl
e

is
ba

se
d

on
[T

ri
es

s
et

al
.2

0
2
2
b]

.

C
at

eg
or

y
M

et
ri

c
Ex

am
pl

es
⊕

	

Fe
at

u
re

-
ba

se
d

IS
[S

al
im

an
s

et
al

.
2
0
1
6

],
M

od
ifi

ed
IS

[G
u

ru
-

m
ur

th
y

et
al

.2
0

1
7

],
M

od
e

Sc
or

e
[C

he
et

al
.2

0
1

7
],

A
M

Sc
or

e
[Z

ho
u

et
al

.2
0
1
8

],
FI

D
[H

eu
se

l
et

al
.

2
0
1
7

],
FP

D
[S

hu
et

al
.2

0
1
9

]

us
ed

in
m

an
y

pa
pe

rs
w

ith
pr

e-
tr

ai
ne

d
m

od
el

s
av

ai
la

bl
e

ba
se

d
on

fe
at

u
re

s
fr

om
no

n-
L

iD
A

R
d

at
as

et
s

(i
.e

.
Im

ag
eN

et
[D

en
g

et
al

.
2
0
0
9
]

an
d

Sh
ap

eN
et

[C
ha

ng
et

al
.

2
0
1
5
b]

)

D
is

tr
ib

ut
io

n-
ba

se
d

A
ve

ra
ge

Lo
g-

Li
ke

lih
oo

d
[G

oo
df

el
lo

w
et

al
.2

0
1
4

;
Th

ei
s

et
al

.2
0

1
6

],
C

ov
er

ag
e

[T
ol

st
ik

hi
n

et
al

.2
0

1
7

],
M

M
D

[G
re

tt
on

et
al

.2
0

1
2

;A
ch

lio
pt

as
et

al
.2

0
1

8
],

BP
T

[A
ro

ra
et

al
.

2
0
1
8
],

N
D

B
[R

ic
ha

rd
so

n
an

d
W

ei
ss

2
0
1
8

]

in
de

pe
nd

en
to

fd
at

a
m

od
al

ity
,c

ap
tu

re
sa

m
pl

e
di

ve
rs

it
y

an
d

m
od

e
co

lla
ps

e
m

an
u

al
ch

ec
kp

oi
nt

se
le

ct
io

n,
no

ab
-

so
lu

te
m

ea
su

re
,(

ad
d

it
io

na
lv

is
ua

li
n-

sp
ec

ti
on

)

C
la

ss
ifi

ca
tio

n
W

as
se

rs
te

in
C

ri
tic

[A
rj

ov
sk

y
et

al
.2

0
1

7
],

C
la

ss
ifi

-
ca

ti
on

P
er

fo
rm

an
ce

[R
ad

fo
rd

et
al

.
2
0
1
6
;

Is
ol

a
et

al
.

2
0
1
7

],
B

ou
nd

ar
y

D
is

to
rt

io
n

[S
an

tu
rk

ar
et

al
.2

0
1
8

],
C

2
ST

[L
eh

m
an

n
an

d
R

om
an

o
2
0
0
6

],
A

A
D

[Y
an

g
et

al
.2

0
1
7

]

in
de

pe
nd

en
t

of
da

ta
m

od
al

it
y

fr
es

hl
y

tr
ai

ne
d

di
sc

ri
m

in
at

or
s

fo
r

ea
ch

te
st

on
he

ld
-o

ut
da

ta
,n

o
ab

so
lu

te
m

ea
-

su
re

O
u

tp
u

t
C

om
pa

ri
so

n
IR

P
[W

an
g

et
al

.2
0
1
6
],

R
ec

on
st

ru
ct

io
n

Er
ro

r
[X

i-
an

g
an

d
Li

2
0
1
7

]
in

d
ep

en
d

en
t

of
d

at
a

m
od

al
it

y,
p

er
-

sa
m

pl
e

sc
or

e
hi

gh
ru

n-
ti

m
e

be
ca

u
se

of
ne

ar
es

t
ne

ig
hb

or
m

at
ch

in
g

M
od

el
C

om
-

pa
ri

so
n

G
A

M
[I

m
et

al
.2

0
1

6
],

TW
R

SR
[O

ls
so

n
et

al
.2

0
1

8
],

N
R

D
S

[Z
ha

ng
et

al
.2

0
1
8
]

co
m

p
ar

e
d

if
fe

re
nt

G
A

N
m

od
el

s
ag

ai
ns

t
ea

ch
ot

he
r

la
bo

r
in

te
ns

iv
e,

hi
gh

co
m

pl
ex

it
y

Pr
ec

is
io

n,
R

ec
al

l,
F1

Sc
or

e
si

m
pl

e
an

d
fa

st
to

co
m

pu
te

on
ly

re
la

tiv
e

pe
rf

or
m

an
ce

of
di

sc
ri

m
i-

na
to

r
to

ge
ne

ra
to

r

L
ow

-L
ev

el
St

at
is

ti
cs

SS
IM

[W
an

g
et

al
.2

0
0
4
],

PS
N

R
,s

ha
rp

ne
ss

,c
on

-
tr

as
t,

m
ea

n
po

w
er

sp
ec

tr
um

si
m

pl
e

an
d

fa
st

to
co

m
pu

te
sp

ec
ifi

c
fo

r
ca

m
er

a
im

ag
es

,n
o

hi
gh

er
-

le
ve

li
nf

or
m

at
io

n

50 a metric to quantify the realism of lidar point clouds

feature-based Feature-based metrics measure the quality of
the data by computing a distance in high-dimensional feature spaces.
The Inception Score (IS) [Salimans et al. 2016] and the Fréchet
Inception Distance (FID) [Heusel et al. 2017] are the two most popular
metrics and extract their features from the ImageNet dataset [Deng
et al. 2009]. This makes them exclusively applicable to camera image
data. The Fréchet Point Cloud Distance (FPD) [Shu et al. 2019] is appli-
cable to single-object point clouds, as it is based on features from the
ShapeNet dataset [Chang et al. 2015b]. In contrast to the proposed
method, these measures require labels on the target domain to train
the feature extractor, cannot handle variable sized point clouds, and
do not provide local scores. Further, it is only possible to compare a
sample to one particular distribution and therefore makes it difficult
to obtain a reliable measure on unseen data.

distribution-based Most distribution-based measures are in-
dependent of the data domain and thus can be used to evaluate
GANs operating on point clouds [Goodfellow et al. 2014; Theis et al.
2016; Tolstikhin et al. 2017; Gretton et al. 2012; Arora et al. 2018;
Richardson and Weiss 2018]. They successfully capture the sample
diversity and mode collapse of the model, but cannot determine the
realism of a single sample. Most approaches are labor intensive as
they require manual checkpoint selection and several runs over the
test data. Some even need additional visual inspection, such as the
Birthday Paradox Test [Arora et al. 2018].

classification-based Another common approach is to use
classification networks to assess the quality of GAN outputs [Ar-
jovsky et al. 2017; Radford et al. 2016; Isola et al. 2017; Santurkar
et al. 2018; Lehmann and Romano 2006; Yang et al. 2017]. Classifier
Two-Sample Test (C2ST), for example, assesses whether two sam-
ples are drawn from the same distribution [Lehmann and Romano
2006]. This requires freshly trained discriminators for each test on a
held-out subset of the data.

output comparison Among others, computing reconstruction
errors is one common method to assess generated data [Wang et al.
2016; Xiang and Li 2017]. For point clouds, Earth Mover’s Distance
(EMD) and Chamfer’s Distance (CD) are often used, as they can
operate in a permutation-invariant fashion. These metrics also serve
as a basis for some distribution-based measures, such as coverage or
Minimum Matching Distance (MMD) [Achlioptas et al. 2018]. Caccia
et al. [2019] use EMD and CD directly as a measure of reconstruction
quality on entire scenes captured with a LiDAR scanner. However,
this is only applicable to paired translation GANs or supervised
approaches, because it requires a known target to measure the
reconstruction error.

5.3 lidar realism metric 51

model comparison There exist two types of model comparison
techniques. The first includes very simple metrics to evaluate the
discriminator itself, namely precision and recall. These two are
helpful to be tracked in any GAN training and are capable to capture
the performance of the discriminator relative to the current state of
the generator. The other type focuses on the evaluation of sample
diversity and comparison between several GAN architectures, such
as the Tournament Win Rate and Skill Rating (TWRSR) [Olsson
et al. 2018]. However, these measures are labor intensive and of
high complexity as they require several network combinations and
trainings.

low-level statistics Computing low-level statistics of the
underlying data is easy and fast. Examples are Structural Similarity
Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), sharp-
ness, contrast, mean power spectrum. These are partially specific for
RGB images and are not capable to capture higher-level information.

This chapter aims at providing a practical quantitative metric to
determine the realism of individual generated samples via learned
features. Therefore, the proposed method is considered to be a
combination of the following categories: feature-based, distribution-
based, and output comparison. Revisiting this extensive collection
of related literature shows that none of the existing measures can
fulfill all the desired requirements presented in the next section
(section 5.3.1) and are therefore not suitable as a LiDAR metric.

5.2.2 Metric Learning

The metric proposed in this dissertation uses an adversarial training
technique to push features in a similar or dissimilar embedding.
The goal of deep metric learning is to learn a feature embedding,
such that similar data samples are projected close to each other
while dissimilar data samples are projected far away from each other
in the high-dimensional feature space. In explicit metric learning
setups, it is common to use siamese networks that are trained with
contrastive losses to distinguish between similar and dissimilar pairs
of samples [Chicco 2021]. Thereupon, triplet loss architectures train
multiple parallel networks with shared weights to achieve the feature
embedding [Hoffer and Ailon 2015; Dong and Shen 2018].

5.3 lidar realism metric

This section introduces the concept of the realism metric. Sec-
tion 5.3.1 identifies the most important objectives of the metric

52 a metric to quantify the realism of lidar point clouds

and derives the desired properties. Based on these properties, the
architecture is designed and presented in section 5.3.2.

5.3.1 Objective and Properties

The aim of the metric is to provide an estimate of the level of realism
for arbitrary LiDAR point clouds. The metric is designed to learn
relevant realism features directly from distributions of real-world
data. The output of the metric can then be interpreted as a distance
measure between the input and the learned distribution in a high-
dimensional space.

Based on the discussed aspects of existing point cloud quality
measures and GAN measures, a useful LiDAR point cloud metric is
expected to be:

quantitative The realism score is a quantitative measure that
determines the distance of the input sample to the internal represen-
tation of the learned realistic distribution. The score SReal has well
defined lower and upper bounds that reach from 0 (unrealistic) to 1
(realistic).

universal The metric has to be applicable to any LiDAR input
and therefore must be independent from any application or task.
This means no explicit ground truth information, such as class labels
or bounding boxes, is required.

transferable The metric must give a reliable and robust pre-
diction for all inputs, independent of whether the data distribution
of the input sample is known by the metric or not. This makes the
metric transferable to new and unseen data.

local The metric should be able to compute spatially local re-
alism scores for smaller regions within a point cloud. These scores
can then be combined with additional information, such as motion,
semantics, or distance to provide a detailed analysis of the data.
The metric is also expected to focus on identifying the realism of
the point cloud properties while ignoring global scene properties as
much as possible to reduce domain biases.

flexible Point clouds are usually sets of un-ordered points with
varying size. Therefore, it is crucial to have a processing that is
permutation-invariant and independent of the number of points to
process.

simple Easy applicability and a fast computation time allows
the metric to run in parallel to the training of a neural network for

5.3 lidar realism metric 53

for training and inference
only for training

point cloud [N, 3]
x

feature
extractor FθF

features [Q, UF]
z = F(x; θF)

level 1

level 2

level j

[Q j−
1
,U

j−
1
]

[Q j,
K j,

U j−
1
]

[Q j,
U j
]

sampling
& grouping PointNet

classifier CθC

classifier logits [Q, 3]
yC = C(z; θC)

metric scores pC

pReal
C pSynthetic

C
pMisc

C

adversary AMisc
θA

adversary ASyn
θA

adversary AReal
θA

adversary scores [Q, UA]
yA = A(z; θA)

L(ŷC, yC) λ · L(ŷA, yA)

min
θF ,θC ,θA

negative
gradient
−λ

δL(ŷA,yA)
δθA

Figure 5.2: Metric Architecture: The feature extractor FθF uses hierarchical
feature set learning from PointNet++ [Qi et al. 2017b] to encode
information about each of the Q query points and their K
nearest neighbors. The neighborhood features z are then passed
to the classifier CθC which outputs probability scores pC for
each category (Real, Synthetic, Misc). In training, z is fed to the
adversaries AθA , which output probability scores pA for each
dataset of their respective category. For the classifier and all
three adversaries a multi-class cross-entropy loss is minimized.
For C to perform as good as possible while A should perform as
bad as possible, the gradient is inverted between the adversarial
input and the feature extractor [Beutel et al. 2017; Raff and
Sylvester 2018]. λ is a factor that regulates the influence of the
adversarial loss, weighting the ratio of accuracy versus fairness.
The figure is based on [Triess et al. 2022b].

LiDAR data generation. This enables monitoring the realism of the
generated sample during the training time of the network.

The metric is implemented in such a way that the described
properties are fulfilled. To differentiate the metric from a GAN
discriminator, one has to note that a discriminator is not transferable
to unseen data, since it recognizes only one specific data distribution
to be realistic.

5.3.2 Architecture

Fig. 5.2 shows the architecture of the proposed approach. The fol-
lowing describes the components and presents how each part is
designed to contribute towards achieving the desired metric prop-
erties. The underlying idea of the metric design is to compute a
distance measure between different data distributions of realistic

54 a metric to quantify the realism of lidar point clouds

and unrealistic LiDAR point cloud compositions. The network learns
features indicating realism from data distributions by using a proxy
classification task. Specifically, the network is trained to classify
point clouds from different datasets into three categories: Real, Syn-
thetic, Misc. The premise is the possibility to divide the probability
space of LiDAR point clouds into those that derive from real-world
data (Real), those that derive from simulations (Synthetic), and all
the others (Misc), e.g. distorted or randomized data. Refer to fig. 5.1
for an impression. By acquiring the prior information about the
tripartite data distribution, the metric does not require any target
information or labels for inference.

The features are obtained with hierarchical feature set learning
(section 5.3.2.1) and are then classified into the three proposed cate-
gories (section 5.3.2.2). An adversarial learning technique is used to
obtain a transferable metric, the concept is explained in section 5.3.2.3.

5.3.2.1 Feature Extractor

The blue parts of fig. 5.2 visualize the PointNet++ [Qi et al. 2017b]
concept of the feature extractor FθF . It has two abstraction levels,
sampling Q1 = 2048 and Q2 = 256 query points with K1 = 20 and
K2=10 nearest neighbors (KNN), respectively. The KNN algorithm
uses the Euclidean distance between the points in 3D space. Keeping
the number of neighbors and abstraction levels low limits the net-
work to only encode information about local LiDAR-specific statistics
instead of global scenery information. On the other hand, the high
amount of query points helps to cover many different regions within
the point cloud and guarantees the local aspect of our method.

In contrast to PointNet++, KNN search is used instead of radius
search to find the neighboring points. PointNet++ was proposed for
point clouds from the ShapeNet dataset [Chang et al. 2015b], which
have uniformly sampled points on object surfaces. In LiDAR point
clouds, points are not uniformly distributed and with increasing
distance to the sensor, also the distance between neighboring points
increase. Therefore, KNN search was found to be more practical
to obtain meaningful neighborhoods in LiDAR scans compared to
radius search.

Each abstraction level uses a 3-layer MLP with filter sizes of
[64, 64, 128] and [128, 128, 256], respectively. This results in the neigh-
borhood features z=F(x, θF) of size [Q, UF] with UF =256 features
for each of the Q = 256 query points. The features z are then fed
to a densely connected classifier CθC (yellow block). It consists of a
hidden layer with 128 units, to which 50% dropout is applied during
training, and the output layer with UC units.

5.3 lidar realism metric 55

5.3.2.2 Classification

The yellow parts in fig. 5.2 show the classification parts of the
metric model. The classifier output is a probability vector pC,q =

softmax(yC) ∈ [0, 1]UC per query point q. The vector has UC =
3 entries, one for each of the categories Real, Synthetic and Misc.
The component pReal

C,q quantifies the degree of realism in each local

region q. The scores S= 1
Q ∑q pC,q for the entire scene are given by

the mean over all query positions. Here, SReal is a measure for the
degree of realism of the entire point cloud. A score of 0 indicates
low realism while 1 indicates high realism.

5.3.2.3 Adversarial Training

To obtain a transferable metric network, the metric leverages a con-
cept often used to design fair network architectures or domain
losses [Beutel et al. 2017; Raff and Sylvester 2018]. The idea is to
force the feature extractor to encode only information into the latent
representation z that is relevant for the realism estimation. This
means, the feature extractor is actively discouraged from encoding
information that is specific to the distribution of a single dataset. In
other words – using fair networks terminology [Beutel et al. 2017]
– the concrete dataset name is treated as a sensitive attribute. This
procedure can improve the generalization ability towards unknown
data.

To achieve this behavior, a second output path for adversarial
learning is added. It consists of one adversary AθA for each cate-
gory (see orange parts in fig. 5.2). Each of the adversaries predicts
classification probabilities for all the datasets in their respective cat-
egory, i.e. the probability that the sample stems from a particular
dataset within the category. For simplification, the following expla-
nation assumes that there is only one adversary. The architecture
of the adversary is identical to the one of the classifier, except for
the number of units in the output layer UA, which depends on the
number of training datasets for the respective category (in this case
UReal

A = 2, USynthetic
A = 2, and UMisc

A = 3). Following the designs
proposed in [Beutel et al. 2017; Raff and Sylvester 2018], all network
components are trained by minimizing the losses for both heads,
LC = L (yC, ŷC) and LA = L (yA, ŷA), but reversing the gradient in
the path between the adversary input and the feature extractor. A
reversed gradient is obtained by multiplying the gradient with −1.
The goal is for C to predict the category yC and for A to predict
the dataset yA as good as possible, but for F to make it hard for
A to predict yA. Training with the reversed gradient results in F

56 a metric to quantify the realism of lidar point clouds

encoding as little information as possible for predicting yA. The
training objective is formulated as

min
θF ,θC ,θA

L
(

C
(

F(x; θF); θC
)
, ŷC

)
+ L

(
A
(

Jλ[F(x; θF)]; θA
)
, ŷA

) (5.1)

with θ being the trainable variables and Jλ a special function 1

Jλ[F] = F but ∇Jλ[F] = −λ · ∇F (5.2)

such that the forward pass is an identity function while the gradient
is reversed in the backward pass while training (the minus before
the gradient). The factor λ determines the ratio of accuracy and
fairness.

In the applications of the related literature [Beutel et al. 2017;
Raff and Sylvester 2018], the sensitive attribute and the requested
attribute are often correlated but have no direct coupling. In the
presented case, this means that different data samples from the same
dataset can belong to multiple categories. But this is not the case,
instead samples from one dataset always belong to the same cate-
gory. Therefore, our sensitive attribute, the dataset, always directly
determines the requested attribute, the category. A single adver-
sary would now suppress all information of the sensitive attribute,
thus also suppresses important information to obtain the requested
attribute which then leads to unwanted decline in classifier perfor-
mance. A mathematical reasoning is provided in appendix A.2.2.
Therefore, a separate adversary for each category is needed, such
that only the sensitive information regarding the dataset is sup-
pressed, while keeping the requested information about the category
intact. The adversaries A : {AReal, ASynthetic, AMisc} have the trainable
variables θA : {θReal

A , θ
Synthetic
A , θMisc

A }. Each adversary outputs esti-
mates for only the datasets of their respective category. This forces
the feature extractor to encode only common features within one cat-
egory, while not removing important features from other categories.
The loss is now defined as LA = LAReal + LASynthetic + LAMisc .

5.4 experimental setup

Table 5.2 shows the datasets used for this work. They are divided
into two different groups: one that is used to train and evaluate the
metric while the other group is only used for evaluation. The strict
separation of training and evaluation datasets, additionally to the

1 The notation of the function is mathematically not correct, as the gradient of a
function is inherently defined by the function. However this notation is commonly
used in related literature [Beutel et al. 2017] and shows how the function is
implemented.

5.4 experimental setup 57

Table 5.2: Datasets: The table lists the datasets for each category. The two
rightmost columns show whether the dataset is used to train
or evaluate the metric model. The number of samples used for
testing is 1000 for all datasets. The number of training samples
is listed in the middle column. The table is based on [Triess et al.
2022b].

Dataset Samples Train. Eval.

R
ea

l KITTI [Geiger et al. 2013] 18,329 3 3

nuScenes [Caesar et al. 2020] 28,130 3 3

PandaSet [Scale AI 2020] - 7 3

Sy
nt

he
tic CARLA [Dosovitskiy et al. 2017] 106,503 3 3

GeometricSet 18,200 3 3

GTA-V LiDAR [Hurl et al. 2019] - 7 3

M
is

c Misc 1,2,3 ∞ 3 3

Misc 4 - 7 3

training and test splits, enables the demonstration that the proposed
method is a useful measure on unknown data distributions. In both
cases alike, the datasets stem from one of three categories: Real,
Synthetic, Misc.

Within the Real category, publicly available real-world datasets are
used for training (KITTI, nuScenes) and evaluation (PandaSet). For
Synthetic, the CARLA simulator is used with an implementation of
the sensor specifications of a Velodyne HDL-64 (HDL-64) sensor to
create ray-traced range measurements. GeometricSet is the second
dataset in this category. Here, simple geometric objects, such as
spheres and cubes are randomly scattered on a ground plane in three
dimensional space and ray-traced in a scan pattern. Additionally, the
synthetic data is augmented with little noise at training time, such
that they are not trivially distinguishable from the other categories.
For evaluation, the GTA-V LiDAR dataset is used [Hurl et al. 2019].
Its contains simulated LiDAR samples from the video game Grand
Theft Auto V (GTA V). It has a large detailed world with realistic
graphics, which provides a diverse data collection environment.

Finally, a third category is added, Misc, to allow the network
to represent meaningless data distributions, as they often occur
during GAN trainings or sensor failures. Therefore, Misc contains
randomized data that is generated at training time. Misc 1 and
Misc 2 are generated by linearly increasing the depth over the rows
or columns of a virtual LiDAR scanner, respectively. Misc 3 is a
simple Gaussian noise with varying standard deviations. Misc 4
is only used for evaluation and is created by setting patches of
varying height and width of the LiDAR depth projection to the

58 a metric to quantify the realism of lidar point clouds

same distance. Varying degrees of Gaussian noise are added to the
Euclidean distances of Misc {1,2,4}.

In addition to the training data listed in the tables, 1000 samples
from a different split of each dataset are used to obtain the evalua-
tion results. No annotations or additional information are required
to train or apply the metric, all operations are based on the xyz
coordinates of the point clouds.

5.5 evaluation

This section provides extensive evaluations to demonstrate the capa-
bility and applicability of the proposed method. Section 5.5.1 sets the
factor to achieve an optimal balance between accuracy and fairness.
Section 5.5.2 presents the classification performance on completely
unseen data distributions. Section 5.5.3 shows the feature embed-
ding capabilities of the fair training strategy in an ablation study.
Section 5.5.4 shows that the proposed metric is capable to interpo-
late the space between the training categories in a meaningful way.
As an important application, section 5.5.5 demonstrates how the
proposed method can be used for anomaly detection in point clouds.
In the end, section 5.5.6 elaborates on the limitations of the proposed
method. Additional visualizations and implementation details are
provided in appendix A.2. The application of the metric in domain
adaptation settings is shown in chapter 6.1.

5.5.1 Balance between Accuracy and Fairness

First, the metric has to be calibrated by choosing the correct factor λ
of the adversarial loss during training. This is an important property
which controls the ratio between accuracy and fairness. A well
chosen factor will maximize the difference between a high classifier
accuracy and a low adversary accuracy.

Fig. 5.3 shows the classifier accuracy in black and the adversary
accuracy in brown (weighted sum over the three category adver-
saries, shown as dashed lines). With increasing λ, the adversarial
accuracy decreases slowly, while the classification accuracy suddenly
drops. This happens because the classifier gradients are overruled by
the reversed gradients of the adversary, hindering it from training
properly. Interestingly, the adversarial part of the Real category is
significantly more influenced by λ than those of the other two. One
reason might be the Real datasets in themselves are already very
diverse, especially compared to the Synthetic or Misc datasets. The
number of different sceneries is higher, but the most variance is
caused by more diverse appearance of the same object types (e.g.
pedestrians) and the additional sensor noise, which is not present in
the Synthetic datasets. This makes it hard for the model to extract

5.5 evaluation 59

10−3 10−2 10−1 100 101
0

0.2
0.4
0.6
0.8

1

Adversary Loss Factor λ

A
cc

ur
ac

y

Adv. Real Adv. Misc
Adv. Synthetic Adversary
Classifier

Figure 5.3: Accuracy vs. Fairness: Shown are the accuracy values of clas-
sifier and adversaries over the loss factor λ. At small λ, the
classification accuracy is high which means good performance.
However, adversary accuracy is also quite high (at least for Real)
which means no fairness in this part. With increasing λ the net-
work gets fairer while maintaining its high level of classification
accuracy. At a certain point the network becomes unstable and
deteriorates into chance level performance in the classifier. The
figure is based on [Triess et al. 2021b, 2022b].

only realism relevant features in form of common information from
the Real datasets while not removing any other relevant information.
Thus, the model requires more pressure in form of higher λ to ac-
complish this challenging task for the Real category, compared to
Synthetic and Misc, where it is easier to extract common information
while not removing any other relevant information.

All presented experiments use a factor of λ = 0.3 (indicated by the
gray vertical line). Here, the classifier has a good performance (93%)
while the adversary operates slightly above chance level (50%).

5.5.2 Metric Results

The metric network is run on the evaluation datasets, as well as on
the test split of the training datasets. Fig. 5.4 shows the mean of the
metric scores S for each of the three categories. The known datasets
(lower part) clearly achieve well-separated scores and predict their
respective category, e.g. CARLA is classified with a high Synthetic
score.

The unknown datasets obtain notable results (upper part). Qual-
itative example frames are depicted in fig. 5.5. The Real dataset
PandaSet behaves similar to the two known Real datasets, KITTI and
nuScenes. This shows that the metric focused to encode realism rele-
vant features from KITTI and nuScenes, such that PandaSet is easily
categorized as such as well. The randomly generated Misc 4 dataset
is correctly located within the Misc category, however with higher

60 a metric to quantify the realism of lidar point clouds

Misc 4

GTAV

PandaSet

un
kn

ow
n

SReal SSynthetic SMisc

0 0.2 0.4 0.6 0.8 1
Misc 3

Misc 2

Misc 1

GeomSet
CARLA
nuScenes
KITTI

Mean Softmax Score S

kn
ow

n

Figure 5.4: Metric Results: The figure shows the metric output S (mark)
and the standard deviation (whisker) for Real, Synthetic, and
Misc on different datasets. The lower part shows the results
for the test split of the known datasets, while the upper part
depicts one unknown dataset from each category. The color of
the dataset name indicates the respective category. The figure is
based on [Triess et al. 2021b, 2022b].

deviations in the scores, leading to Misc scores around 70% and Real
scores around 20%. The deviations are caused by the high variance
that was used to generate this dataset, where some regions have
slightly higher Real or Synthetic scores.

The Synthetic dataset GTA-V LiDAR has a slightly different behav-
ior. Here, SSynthetic is around 60%, while the score for Real is around
35% and the deviation from those mean values is quite large. The
reason for these high deviations and therefore lower Synthetic scores
is a systematic behavior of the metric caused by the data distribution.
Fig. 5.5b shows that the high Real scores mainly stem from regions
containing vehicles. GTA-V LiDAR has more detailed car models
than CARLA which therefore appear almost like real vehicles in the
point cloud. This example clearly demonstrates the benefit of the
locality aspect of our metric which enables such detailed investiga-
tions.

5.5.3 Adversary Ablation

The proposed approach uses the adversarial loss to embed features
for Real, Synthetic, and Misc while at the same time omit dataset-
specific information as far as possible. To demonstrate the feature
encoding behavior, additional metric networks are trained with vary-
ing adversary configurations and the learned features are visualized
for the validation data.

5.5 evaluation 61

(a) PandaSet (b) GTAV (c) Misc 4

Figure 5.5: Qualitative Performance on Unknown Data: The figure shows
the metric results on three unknown datasets. (a) shows the
PandaSet dataset as an example for Real. (b) shows the GTA-
V LiDAR dataset for Synthetic. The main reason for the overall
high Real scores seem to be caused by regions that contain cars.
(c) shows an example for the Misc 4 dataset. The figure is based
on [Triess et al. 2022b].

Fig. 5.6 shows plots of the t-Distributed Stochastic Neighbor
Embedding (t-SNE) of the neighborhood features z. T-SNE is a
dimensionality reduction method that tries to map data from a high
dimension (z vector) to a low dimension (2D image) space while
minimizing information loss. Close points in the image have sim-
ilar representations in z. Each metric category is represented by a
different color, while the individual datasets are of different shades
of this color. The darkest colors belong to the unknown datasets
that were never seen by the metric network at training time, i.e. Pan-
daSet, GTA-V LiDAR, Misc 4. They are included for demonstration
purposes regarding the transferability to unseen data.

The two extreme cases of the configuration form fig. 5.6a and
fig. 5.6b. Fig. 5.6a represents the metric as a simple classifier with-
out an adversary, where each shade of each color forms their own
clusters with little overlap to others. This means the features of each
dataset are distinct and make it hard for the metric to estimate a
reasonable score for unseen datasets. Fig. 5.6b, on the other hand,
uses one common adversary which leads to decreased classifier
accuracy since features from all sources are forced into a common
representation. This can be observed by the mixed colors with no
clusters, not even between categories.

A useful metric requires a mix of the two versions above, where
features of one category are similar and features from different
categories are dissimilar. Therefore, the metric uses per-category
adversaries. In [Triess et al. 2021b], the adversary was only applied
for Real, as depicted in fig. 5.6c. In [Triess et al. 2022b], one adversary
for each category is used, as represented by fig. 5.6d. In both cases
the green colors of the Real datasets are clearly mixed, while at
the same time being sufficiently distinguishable from the blue or
gray clusters. However, the per-category approach (fig. 5.6d) also

62 a metric to quantify the realism of lidar point clouds

KITTI Carla Misc 1

nuScenes GeoSet Misc 2

Misc 3

PandaSet GTAV Misc 4

(a) No adversary (b) Common adver-
sary

(c) Real adversary (d) Individual ad-
versaries

Figure 5.6: Learned Feature Embedding: Shown are the t-SNE plots for
the feature embedding z of four versions of the adversary con-
figuration for the otherwise identical metric network. In (a) the
model is trained without an adversary. (b) shows the features
when a single adversary is used for training. (c) visualizes the
features of the previously proposed method that only used an
adversary for the Real category [Triess et al. 2021b]. (d) depicts
the proposed approach, where one adversary per category is
trained. The figure is based on [Triess et al. 2022b].

shows mixed features among the blue and gray points, whereas the
previous approach shows more distinct clusters. This is especially
visible for Misc, where fig. 5.6c has one cluster for each shade but
fig. 5.6d better combines them.

Further, the feature visualization shows that the unknown dataset
PandaSet is fully integrated into the Real cluster for the proposed
method, as opposed to when using no adversary. The clusters of
the unknown GTA-V LiDAR dataset mostly overlap with Synthetic,
but also partially with Real. This aligns with the metric results that
are shown previously for GTA-V LiDAR, where parts of the data
containing vehicles appear quite realistic.

The adversary ablation is conducted only qualitatively, because
it is not possible to compare the quantitative scores of the different
versions. A metric trained as in fig. 5.6b could have a different
allocation of scores in range [0, 1] than a metric as in fig. 5.6d.

5.5.4 Feature Continuity

Another important property of such a metric is the feature continuity.
This means that the metric must produce reasonable transitions in
the feature space between known data points, i.e. the support sets
used for training. The feature continuity is an important property
when applying the metric to data that does not belong to one of

5.5 evaluation 63

10−3 10−2 10−1 100 101
0

0.2

0.4

0.6

0.8

1

σ in meters

M
ea

n
M

et
ri

c
Sc

or
es

SReal SSynthetic SMisc

Figure 5.7: Point Cloud Distortion: Increasing levels of Gaussian noise
are applied to the distance measurements of CARLA point
clouds. For small additive noise levels of a few centimeters, the
synthetic CARLA data appears more realistic. For higher σ, the
noise is dominant, as indicated by decreasing Real and Synthetic
scores. The figure is based on [Triess et al. 2021b].

the chosen categories, but stem from a transition in between. One
example can be a point cloud that was recorded with a dirty sensor,
where parts of the point cloud are distorted due to false reflections.
Another example is a point cloud generated by a GAN that learns a
sim-to-real mapping, but does not yet work perfectly.

To make the experiments in this section understandable and for
the sake of simplicity, the CARLA test split is used and augmented
with different levels of noise added to the distance measurements of
the point clouds. This shall approximate the simulation of different
generative network states in a controllable manner. The noise is nor-
mally distributed with zero mean and varying standard deviation σ.

Fig. 5.7 shows the mean metric scores S over a wide range of addi-
tive noise levels applied to CARLA data. Notably, at low noise levels,
the Real score increases. This reflects the fact that ideal synthetic data
needs a certain level of range noise in order to appear more realistic.
On the other hand, at high noise levels, the data barely possesses
any structure, as indicated by high Misc and low Real and Synthetic
scores.

The smooth transitions between the states can be interpreted as an
indication for a disentangled latent representation within the metric
network. Further, it shows the necessity for all three support sets
when working with real-world and synthetic data.

5.5.5 Anomaly Detection

Given the locality aspect of our method, it is possible to find
anomalies or regions with differing appearance within a single scan.
Fig. 5.8 shows three examples where the proposed metric outputs

64 a metric to quantify the realism of lidar point clouds

pReal
C pSynthetic

C pMisc
C

(a) PandaSet (b) KITTI

(c) nuScenes (d) PandaSet with noise

Figure 5.8: Localization of Anomalies: Example scenes with low Real
scores. The colors represent interpolated pC scores which are
discrete values located at the query points (gray circles). In (a),
the purple area marks a road section with extreme elevation
changes. In the lower half of (b), the metric highlights seem-
ingly floating branches of a huge tree, that enter the LiDAR
field-of-view from above. (c) shows an unusual scene in a dead
end road with steep hills surrounding the car. (d) illustrates a
PandaSet sample where the region indicated by dashed lines
has been manually distorted with additive Gaussian noise. The
figure is based on [Triess et al. 2021b].

the lowest Real score within all test scans and one example where
a part of the horizontal field of view is distorted with noise. The
method can successfully identify anomalies within the support
sets, i.e. KITTI and nuScenes. To a lesser extent, the method is also
capable of identifying similar unusual constellations in completely
unseen data (PandaSet). Weird sensor effects, such as the region
altered with additive Gaussian noise in the PandaSet scan, are also
detected by the metric (purple areas).

Since anomaly and out-of-distribution detection are essential com-
ponents of automated driving systems, these results open a promis-
ing research direction. Extending the proposed metric to be used for
anomaly detection in a wider range is therefore left for future work.

5.6 conclusion 65

5.5.6 Limitations

LiDAR data is sparse and the proposed approach is dependent
on measurements. Wherever there is no measurement data, the
metric cannot give information about the data quality. This limits
the ability for reliable prediction of very sparse data, for example
at high distances (> 100 m) or when information is lost in advance
to metric score computation. On the other hand, this enables the
processing of point clouds that are not a full 360◦ scan of the world.

5.6 conclusion

This chapter presented a novel metric to quantify the degree of real-
ism of local regions in LiDAR point clouds. Extensive experiments
demonstrated the reliability and applicability of the proposed metric
on unseen data. Through adversarial learning, a feature encoding
is obtained that is able to adequately capture data realism instead
of focusing on dataset specifics. The approach provides reliable in-
terpolation capabilities between various levels of realism without
requiring annotations. The predictions of the method correlate well
with visual judgment, unlike reconstruction errors serving as a proxy
for realism. Additional experiments demonstrated that the local re-
alism score can be used to detect anomalies – further development
is left for future work.

The introduction of the realism metric now enables detailed in-
spection of LiDAR data and therefore provides a practical and quan-
titative method to train generative models for LiDAR generation.
The metric can be used to define a stopping criterion in GAN train-
ing and makes it easier to design domain mapping systems, as
proposed in the next chapter.

6
D O M A I N A D A P TAT I O N V I A D ATA G E N E R AT I O N
F O R D O M A I N M A P P I N G

contents

6.1 Up-sampling for Sensor Mapping 67

6.1.1 Related Work 68

6.1.2 Up-Sampling Network 69

6.1.3 Losses 70

6.1.4 Metrics 71

6.1.5 Evaluation 73

6.1.6 Summary 76

6.2 Mapping from Simulation to Real-World . . . 77

6.2.1 Sim-to-Real GAN 77

6.2.2 Experiments 81

6.2.3 Evaluation 82

6.2.4 Summary 83

6.3 Discussion and Conclusion 84

This chapter addresses the problem of domain mapping for two
applications. Section 6.1 addresses sensor-to-sensor adaptation by
up-sampling from low resolution to high-resolution sensor data.
Section 6.2 deals with sim-to-real adaptation, where simulated point
clouds from CARLA shall be transferred to the KITTI space. An
introduction to domain mapping and these domain gap applications
can be found in chapter 4.

6.1 up-sampling for sensor mapping

A common domain adaptation scenario is to bridge gaps between dif-
ferent sensors. LiDAR sensors considerably vary in many properties,
such as resolution, field of view, capture rate, or layer distribution.
All these properties can cause performance degradation when a per-
ception model trained on sensor A is applied to data from a sensor B.
In the past years the development of LiDAR sensors showed a trend
from low-resolution sensors, i.e. 16 or 32 layers, to higher-resolution
sensors, i.e. 64 or 128 layers. This section investigates the effect of
various LiDAR up-sampling techniques in the performance of down-
stream semantic segmentation to account for these development
cycles.

67

68 domain adaptation via data generation for domain mapping

This section is based on [Triess et al. 2019, 2022b] and contains
verbatim quotes of these works1. The contributions of this section
are:

• The comparison of five different up-sampling methods in terms
of reconstruction errors and realism metric.

• Extensive evaluation of the influence of data quality and the
effect on downstream semantic segmentation in the target
domain.

6.1.1 Related Work

The aim of up-sampling is to estimate the high-resolution visual
output of a corresponding low-resolution input. This section uses
cylindrical two dimensional projections of structured LiDAR point
clouds, therefore it is vital to also take into account analogous ap-
proaches on RGB images to solve this task. A sizable amount of lit-
erature exists on RGB image up-sampling. Yang et al. [2014] present
a comprehensive evaluation of prevailing RGB up-sampling tech-
niques prior to the adoption of CNNs. More advanced techniques,
such as SRCNN [Dong et al. 2016], outperform these traditional
methods. However, they cannot cope with data that features miss-
ing measurements, since dense input representations are required.
The traditional methods, on the other hand, can easily be applied
to cylindrical LiDAR projections. Due to their low computational
complexity they can be used for real-time applications. However,
the traditional re-sampling techniques are not able to restore the
high-frequency information, i.e. fine details in the resized input, due
to the low-pass behavior of the interpolation filters [Gavade and
Sane 2014].

Over the last years a wide variety of up-sampling techniques for
3D data emerged. A number of methods considers point cloud up-
sampling as a depth completion task by projecting the laser scans
into sparse depth maps [Dolson et al. 2010; Liu et al. 2013; Hui
et al. 2016; Uhrig et al. 2017] Here, the original structure of the
input point cloud is lost and transformed into a high-resolution
depth map at camera image resolution. Yu et al. [2018] proposed
PU-Net which learns multilevel features per point to reconstruct an
up-sampled unordered set of points, i.e. a generic point cloud. How-
ever, in some applications it is important to maintain the ordered
point cloud structure provided by LiDAR sensors. First, downstream
perceptual algorithms which have been designed for the structured

1 The up-sampling concept proposed in [Triess et al. 2019] is in part a contribution of
the Master’s thesis of Larissa Triess [Triess 2018] and is therefore no contribution
of this dissertation. It is contained here for completeness. All experiments, the
GAN setup, and the evaluations of this section are not contained in the Master’s
thesis and are therefore new contributions of this dissertation.

6.1 up-sampling for sensor mapping 69

dgt dlr dpred

9
×

9
C

on
v2

D
(6

4)

R
es

id
ua

lB
lo

ck

...

R
es

id
ua

lB
lo

ck

4
×

1
T

C
on

v2
D

(6
4)

9
×

9
C

on
v2

D
(1

)

Up-Sampling Network

Lo
ss

Figure 6.1: Up-sampling Network: The input to the network is a down-
sampled spherical LiDAR projection dlr of size (L/2×W) with
information about the missing measurements. The residual
up-sampling network outputs an up-sampled LiDAR projec-
tion dpred of size (L×W) with in-network up-scaling. The pre-
diction and the high-resolution target dgt with same size are
both inputs to the loss. The figure is based on [Triess et al. 2019].

low-resolution data can still be applied. Second, it is possible to re-
use valuable data recordings by up-sampling it to higher resolutions,
especially when new LiDAR sensors with more layers are introduced
to the market. Therefore, Triess et al. [2019] proposed a CNN-based
approach to up-sample LiDAR point clouds that achieves better
performance than traditional methods, but at the same time retains
the desired structure of the LiDAR scan. The following section intro-
duces the network proposed in [Triess et al. 2019] and extends the
approach with an adversarial loss in section 6.1.3.2.

6.1.2 Up-Sampling Network

Fig. 6.1 shows the up-sampling system which transforms a low-
resolution LiDAR scan into a corresponding high-resolution output.
The traditional approaches, i.e. nearest neighbor and bilinear inter-
polation, do not require any supervision. For the learning-based
approaches, the prediction is compared with the Ground Truth high-
resolution scan via a point-wise or adversarial loss function in order
to train the up-sampling network.

The model is a deep residual CNN [He et al. 2016]. It increases the
resolution of a LiDAR projection by a factor f = (fh, fw) to produce a
high-resolution output. Here, only the vertical resolution is increased,
such that the horizontal resolution stays the same (fw = 1). The
output can be understood as the equivalent of a recording from a
sensor with fh times as many layers with equivalent other settings,
such as FOV.

The design of the up-sampling network is inspired by the image
transformation network by Johnson et al. [2016]. Triess et al. [2019] in-
troduce the following modifications to the architecture. The network
consists of 16 residual blocks with no activation at the output layer

70 domain adaptation via data generation for domain mapping

(a) Original scan with 64 layers (b) Up-sampled scan with 128 layers

Figure 6.2: Up-sampled KITTI Scene: The left image shows an original
sensor recording from KITTI. The right image shows the same
scene, up-sampled to 128 layers with the L1-CNN. Since the
network is fully convolutional, it is able to up-sample from 64

to 128 layers, though it was trained on 32 layers. This figure is
adapted from [Triess et al. 2019].

and the kernel of the fractionally strided convolution, i.e. transposed
convolution, has a size of (4, 1). Following Johnson et al. [2016],
the convolutional layers within the residual blocks are followed
by spatial Batch Normalization and a Rectified Linear Unit (ReLU)
nonlinearity. The first and last layers use 9× 9 kernels while all
remaining convolutions have kernel sizes of 3× 3.

The input to the network is a LiDAR scan with H/ fh layers, rep-
resented by a two-dimensional projection of shape H/ fh ×W. With
up-sampling factors (fh, 1), the output is a high-resolution distance
image of shape H ×W. Since the network is fully-convolutional, it
can be applied to inputs of any resolution, cf. fig. 6.2.

6.1.3 Losses

Standard loss functions from the image domain need modifi-
cations to correctly process projected LiDAR scans because of
missing measurements in some locations of the data (cf. sec-
tion 2.1.1). The set of all valid measurements is defined
as V =

{
(i, j)|reflection at θi, ϕj received

}
, such that a two-

dimensional LiDAR distance image dij can then be constructed by
setting

dij =

rij (i, j) ∈ V

d∗ otherwise
(6.1)

with a proxy value d∗ = 0 for the missing measurements. The losses
will only be computed for the measurements contained in V .

6.1.3.1 Point-wise Loss

In a supervised setting, up-sampling is a regression problem where
a loss function L(dpred, dgt) compares the generated high-resolution

6.1 up-sampling for sensor mapping 71

distance image dpred = {dpred
ij } with its corresponding ground truth

counterpart dgt = {dgt
ij }. The most commonly used error functions

for this application are the L1 and L2 loss functions. In the case
of LiDAR distance images, these loss functions are modified to
mask the missing measurements which have been replaced by d∗.
Therefore, the modified point-wise loss functions are defined as

Lα =
1

α |V| ∑
(i,j)∈V

∣∣∣dgt
ij − dpred

ij

∣∣∣α α = 1, 2 (6.2)

where α = 1 describes the Mean Absolute Error (MAE) and α = 2
describes the Mean Squared Error (MSE).

6.1.3.2 Adversarial Loss

The point-wise loss encourages the network to predict high-
resolution LiDAR scans where each point is close to the Ground
Truth counterpart in a purely spatial sense. A perfect match would
be ideal in theory, but this approach can fail to output realistic
point clouds in practice. Note that a perfectly realistic point cloud
constructed from a slightly rotated Ground Truth point cloud would
lead to high loss values. Similarly, while an actual scan of a treetop
looks like a seemingly random collection of points, an Lα-guided
optimization will tend to produce smooth surfaces to decrease the
overall distance error. To circumvent this problem, an adversarial
loss can be used by constructing a GAN architecture.

The GAN discriminator D is adapted from [Ledig et al. 2017]. The
adversarial loss is defined as

min
θG

max
θD

{
log
[
DθD

(
dgt)]+ log

[
1− DθD

(
GθG

(
dlr
))]}

(6.3)

with the up-sampling model G. Further information on the architec-
ture are provided in appendix A.3.

6.1.4 Metrics

The quality of the up-sampled data is judged with three categories
of metrics: 1) reconstruction errors (section 6.1.4.1), 2) realism met-
ric (section 6.1.4.2), 3) downstream segmentation (section 6.1.4.3).

6.1.4.1 Reconstruction Errors

Reconstruction errors can serve as an indication of the generation
quality, but are usually not suitable as a metric for synthesized data,
since they require a target sample. In the case of up-sampling, this
target is the original high-resolution sample from which the low-
resolution sample is generated as input to the up-sampling network.

72 domain adaptation via data generation for domain mapping

Specifically, Chamfer’s Distance (CD), MAE, and MSE are computed
between the predicted point cloud Pp and the target Pt. For CD, the
point clouds are considered as un-ordered sets P = {p}, such that

dCD(Pp, Pt) =
1
|Pp| ∑

pp∈Pp
min
pt∈Pt
‖pp − pt‖2

+
1
|Pt| ∑

pt∈Pt

min
pp∈Pp

‖pt − pp‖2

(6.4)

while for MAE = ‖pt
ij − pp

ij‖1 and MSE = ‖pt
ij − pp

ij‖2, the point
clouds are arranged as projected images P = {pij} with the indices
i and j for the respective row and column of the projection. Typical
GAN evaluation measures for point cloud generation are Cover-
age [Tolstikhin et al. 2017] and MMD [Gretton et al. 2012]. Both are
based on finding the best match between the generated and the tar-
get point cloud. It can be assumed that the best match is always the
original high-resolution image of the same scene, thus the metrics
simplify to Cov ≈ 1.0 and MMD ≈ dCD due to the paired translation
task. Therefore, these metrics are not reported additionally to the
reconstruction errors in the evaluation.

6.1.4.2 Realism Metric

Please refer to chapter 5 for detailed information.

6.1.4.3 Downstream Segmentation

The aim of domain adaptation is to improve the perception perfor-
mance in the target domain. The main assumption of most metrics
that judge the quality of generated data is that better data leads to
better perception models. To investigate this claim, the following
evaluation includes an additional semantic segmentation task in
the target domain. The up-sampling methods are used to transform
data from the source (low-resolution) to the target (high-resolution)
domain. For each method a pseudo-dataset of different quality is
generated. These pseudo-datasets are then used to train semantic
segmentation models which are finally evaluated on the target do-
main. It is expected that if the realism metric ranks a generated
dataset higher than another one, training with this data also leads
to better segmentation performance on the target domain. This is
because the data is – per metric – more realistic, i.e. the domain gap
is smaller [Triess et al. 2021a].

SqueezeSegV2 [Wu et al. 2019] and DarkNet21 [Milioto et al.
2019] are used as segmentation models. Both use scan unfolding
as their data representation, as proposed in section 3.2.1.1. The
original label mapping is altered to predict nine classes instead of

6.1 up-sampling for sensor mapping 73

0 1 2 3
KITTI

L1-CNN
Bilinear
L2-CNN

GAN
Nearest

Reconstruction Error

CD[m] MAE[m] MSE[10m2]

0 0.2 0.4 0.6 0.8 1
Metric Scores

SMisc SReal SSynthetic

0.4 0.5 0.6
Segmentation mIoU

DarkNet21 SqueezeSegV2

Figure 6.3: Metric Scores for Up-Sampling Methods: The vertical axis
lists five methods to perform 4× LiDAR scan up-sampling and
the high-resolution target data (“KITTI”). The left plot shows
the reconstructions errors of different baseline measures. The
middle plot shows the three parts of our realism measure,
where SReal indicates the closeness to real-world data. The right
plot shows the semantic segmentation results on the original
KITTI dataset of a segmentation model trained with the data
generated from the respective row. The methods are ordered
from top to bottom by their respective human visual judgment
ratings. The figure is based on [Triess et al. 2022b].

the original 19. Details on the architecture and training can be found
in appendix A.3.

6.1.5 Evaluation

This section presents the experimental results of the up-sampling
task and discusses the relationship between the different metric
results.

Fig. 6.3 is divided into three parts horizontally that represent
the three categories of metrics, as introduced in section 6.1.4. The
leftmost plot shows the baseline metrics, the middle shows the
results of the proposed metric network, the rightmost plot shows
the segmentation performance. The vertical axis on the left lists five
different methods that generate the up-sampled versions of KITTI
data, as described in section 6.1.3. For all, the up-sampling factor is
set to f = (fh, fw) = (4, 1). For the displayed segmentation results,
different versions of the same model were trained with each of the
datasets and then evaluated on the original KITTI data.

The realism score for the original KITTI is displayed for reference
and has reconstruction errors of zero. The methods are ranked from
top to bottom by increasing realism as approximately perceived by
humans2. In general, the baseline metrics show a tendency but no
clear correlation to the degree of realism and struggle to produce
an unambiguous ordering of the methods. The realism score, on

2 It is not clear how to rank the nearest neighbor interpolation here, since its appearance
is completely different to the others. Therefore it is simply placed according to its
metric score.

74 domain adaptation via data generation for domain mapping

the other hand, sorts the up-sampling methods according to human
visual judgment. These results align with the ones in [Triess et al.
2019], which shows that a low reconstruction error does not nec-
essarily imply high realism in the generated outputs. This is the
main reason for the emergence of perceptual losses in recent years,
cf. [Johnson et al. 2016; Ledig et al. 2017].

The upper row of fig. 6.4 shows an example scene for all up-
sampling versions with their obtained scores. The L1-CNN produces
an almost perfect version of the original high-resolution data, only
with some noise at object boundaries. Bilinear interpolation works
very well on large surfaces, but produces single noise points espe-
cially in regions where the LiDAR usually receives no return, e.g.
windows. The L2-CNN can reconstruct the outlines of the scene, but
suffers from high noise throughout the entire point cloud. Similarly,
the up-sampling GAN suffers from high noise, but often is not able
to reconstruct the outlines of the scene and forms random point
clusters instead of clear objects. The nearest neighbor interpolation
causes vertically stretched objects, which works fine for walls, poles,
and other vertical objects, but fails for the ground.

These differences also cause different behavior in downstream
perception in the target domain when the generated data is used
for training. The rightmost plot in fig. 6.3 shows the overall results,
while table 6.1 shows class-wise results. Additionally, the bottom
row of fig. 6.4 visualizes segmented example point clouds produced
by the models trained with the respective data. Both segmentation
models, SqueezeSegV2 [Wu et al. 2019] and DarkNet21 [Milioto et al.
2019], show similar trends for the order of the up-sampling methods
as the realism metric. The slightly higher Real score for L1-CNN
than for the original KITTI data can also be seen in the segmentation
score of the SqueezeSegV2 model, but is neither significant nor does
it behave in the same way for DarkNet21. Also the SqueezeSegV2

behavior on the nearest neighbor up-sampling is not equal to those
of DarkNet21 and the metric. It can be assumed that two effects lead
to this different behavior: First, it is not clear how exactly the nearest
neighbor interpolation should be judged in terms of realism. Second,
SqueezeSegV2 exhibits almost no variance on its performance scores.
The combination of these two effects could cause the difference in
behavior, but it is not quite clear how and therefore needs further
investigation which is left for future work.

The class-wise results in table 6.1 show that the GAN achieves
quite good results for dynamic objects. At the same time, it is very
hard to tell which of the point clusters in the 3D visualization
of fig. 6.4 belong to these objects. This raises the question why train-
ing with this highly distorted data achieves such good performance
in the target domain. The question can be answered by looking at
the projected LiDAR scan. Here it becomes visible that even regions
that suffer from high noise can still be approximately detected by

6.1 up-sampling for sensor mapping 75

G
T

La
be

ls
K

IT
T

I
L

1-
C

N
N

Bi
lin

ea
r

L
2-

C
N

N
G

A
N

N
ea

re
st

Fi
gu

re
6

.4
:Q

ua
li

ta
ti

ve
U

p-
Sa

m
pl

in
g

an
d

Se
gm

en
ta

ti
on

R
es

ul
ts

:T
he

fir
st

ro
w

sh
ow

s
th

e
m

et
ri

c
re

su
lts

on
an

up
-s

am
pl

ed
K

IT
TI

sc
en

e.
Th

e
or

ig
in

al
sc

an
is

sh
ow

n
in

co
lu

m
n

“K
IT

T
I”

.
T

he
co

lo
rs

ar
e

so
ft

in
te

rp
ol

at
io

ns
of

R
ea

l
,

Sy
nt

he
ti

c
,

an
d

M
is

c
.

T
he

se
co

nd
ro

w
sh

ow
s

th
e

co
lo

r-
co

de
d

de
pt

h
pr

oj
ec

ti
on

of
th

e
po

in
t

cl
ou

d.
T

he
th

ir
d

ro
w

sh
ow

s
th

e
re

la
ti

ve
er

ro
r

be
tw

ee
n

th
e

ge
ne

ra
te

d
sa

m
pl

e
an

d
th

e
or

ig
in

al
hi

gh
re

so
lu

ti
on

sa
m

pl
e

fr
om

co
lu

m
n

“K
IT

TI
”.

A
pi

xe
li

s
gr

ee
n

if
th

e
er

ro
r

is
0

%
an

d
pi

nk
if

th
e

er
ro

r
is

hi
gh

er
th

an
1

0
%

,a
ll

va
lu

es
in

be
tw

ee
n

ar
e

lin
ea

rl
y

in
te

rp
ol

at
ed

.T
he

fo
u

rt
h

an
d

si
xt

h
ro

w
sh

ow
th

e
se

gm
en

ta
ti

on
re

su
lt

s
of

a
m

od
el

tr
ai

ne
d

on
th

e
re

sp
ec

ti
ve

up
-s

am
pl

ed
d

at
a.

A
le

ge
nd

of
th

e
se

m
an

ti
c

co
lo

rs
is

pr
ov

id
ed

in
ta

bl
e

6
.1

.T
he

gr
ou

nd
tr

ut
h

se
m

an
ti

c
la

be
ls

ar
e

sh
ow

n
in

th
e

le
ft

m
os

t
co

lu
m

n.
Fo

r
be

tt
er

co
m

p
ar

is
on

,
th

e
fi

ft
h

ro
w

sh
ow

s
co

rr
ec

tl
y

cl
as

si
fi

ed
p

ix
el

s
in

gr
ee

n
an

d
w

ro
ng

cl
as

si
fi

ca
ti

on
s

in
p

in
k

.
T

he
vi

su
al

iz
ed

sa
m

pl
e

is
fr

om
th

e
va

lid
at

io
n

sp
lit

an
d

w
as

ne
ith

er
us

ed
to

tr
ai

n
th

e
m

et
ri

c,
no

r
th

e
se

gm
en

ta
tio

n
ne

tw
or

k.
Th

e
fig

ur
e

is
ba

se
d

on
[T

ri
es

s
et

al
.2

0
2
2

b]
.

76 domain adaptation via data generation for domain mapping

Table 6.1: Semantic Segmentation Performance: The table lists the evalua-
tion results of the DarkNet21 model for point-wise semantic seg-
mentation. For each row, the model is trained on the respective
dataset which corresponds to a high-resolution KITTI variation
generated from low-resolution data. The evaluation results are
all reported on the validation split of the original KITTI data. The
IoU is reported per class and accuracy and mIoU are reported
over all classes. All numbers in the table are given in %. Best
results are shown in bold, second best are underlined.

KITTI Version ac
cu

ra
cy

m
ea

n
Io

U

pe
rs

on

tw
o-

w
he

el
er

la
rg

e-
ve

hi
cl

e

ve
hi

cl
e

ro
ad

si
de

w
al

k

te
rr

ai
n

co
ns

tr
uc

ti
on

ve
ge

ta
ti

on

Class frequency train
val

0.05
0.16

0.06
0.12

0.22
0.10

4.4
6.2

21.7
18.9

14.5
12.1

07.7
12.9

21.3
14.3

26.8
30.3

Nearest 76.0 41.5 13.7 3.3 0.5 89.0 78.6 47.6 24.5 56.9 71.8

GAN 81.1 47.2 16.5 9.3 0.2 88.0 86.5 71.1 62.5 69.1 79.5

L2-CNN 82.8 48.7 13.5 1.9 1.3 90.0 82.7 62.0 66.1 69.8 79.1
Bilinear 83.2 48.8 12.5 4.5 0.3 88.6 84.5 67.4 69.0 72.0 81.1

L1-CNN 83.5 49.1 10.9 2.1 0.2 86.2 84.7 68.1 65.4 71.3 79.5

Original 84.9 51.4 20.7 6.5 0.5 87.0 84.5 67.7 69.2 73.7 82.6

their edge outlines in the projection. The third row of fig. 6.4 shows
the point-wise relative error between the generated and the target
point cloud with the error being clipped to a maximum of 10%. Even
for the apparently noisy L2-CNN version, relative errors are quite
low and therefore outlines are clearly visible in the depth projection
(second row). This is an indication that the segmentation model is
not influenced by local noise perturbations, but rather learns a more
generalized appearance of the object shapes.

6.1.6 Summary

The experiments show a correlation between measured training data
realism and final perception performance. Qualitatively however, the
segmentation performance seems to be less affected by a reduced
point cloud quality than expected by judging from the 3D images.
This can be caused by the selected architectures of the up-sampling
and segmentation models. The segmentation networks operate on
the 2D projections of the point clouds which is similar to the projec-
tion space used for up-sampling. Even though objects are blurred
and unrecognizable when the GAN up-sampling is displayed as raw
3D data, objects shapes are still detectable on the 2D projections.
These observations lead to two considerations:

6.2 mapping from simulation to real-world 77

First, visual judgment is highly dependent on the chosen data
representation and their visualization. This is an important reason
to use a quantitative metric as proposed in chapter 5 on a large
amount of data. Second, the proposed metric might be more reliable
to estimate the performance of downstream tasks operating on 3D
space.

6.2 mapping from simulation to real-world

Supervised learning with deep models requires huge amounts of
data, which for some rare scenarios can be difficult or even impossi-
ble to obtain in real world data recordings. Simulation can help in
generating samples to train deep networks and to validate existing
perception and behavior algorithms before conducting field experi-
ments. While there exist a few simulation frameworks that can offer
a LiDAR model capable of providing geometrically realistic results,
none of the openly available models has a concept of measurement
noise. This is a huge drawback for research, as dealing with measure-
ment noise is an integral part of any perception algorithm. As seen
in section 6.1.5, the noise characteristics play an important role in the
realism of the data. In addition to the missing measurement noise,
simulated data has large appearance differences and simplified scene
compositions compared to the target domain. While the latter can
be compensated by putting in reasonably more effort into creating
more realistic scenes, the first two points are more complicated to
achieve. This section therefore proposes to use a GAN to transfer
the data from the simulated world into the real world in order to
compensate for the missing noise and varied appearance between
the two domains. Semantic segmentation is used for demonstration
purposes of the adaptation process.

6.2.1 Sim-to-Real GAN

Fig. 6.5 shows the overview of the proposed domain adaptation
GAN. The structure is related to commonly known domain adapta-
tion GANs, such as SPIGAN [Lee et al. 2019b] and CYCADA [Hoff-
man et al. 2018].

All data representations within the GAN are two-dimensional
cylindrical depth projections of three-dimensional point clouds, fur-
ther referred to as LiDAR images. The usage of these projections
allows similar network structures as for RGB images. However, miss-
ing measurements that can occur in the real-world require special
treatment to correctly use 2D convolutions on them. A simple fix is
to apply an interpolation technique, such as morphological closing,
on the images and assign pseudo measurement values where no real
measurement exists in the input images before feeding it as an input

78 domain adaptation via data generation for domain mapping

G

xr

xs

G(xs; θG)

D
D(xr; θD)

D(G(xs; θG); θD)

T
T(G(xs; θG); θT)

T(xs; θT)

Figure 6.5: Sim2Real Network: The generator G transforms the synthetic
input point cloud xs into the real-world domain. The output is
then fed to the discriminator D, which predicts the probability
of the sample originating from the real distribution. The discrim-
inator does the same for the real-world samples xr. Addition-
ally, the task predictor T receives the domain adapted G(xs; θG)
and the synthetic data xs as inputs and predicts their respec-
tive semantic label maps. The GAN is then trained as defined
in eq. (6.8).

to the generator. This leads to slightly better generation capabilities
and more stable training of the GAN.

The GAN consists of three network components and two losses.
A generator transforms a synthetic sample into the real-world. In
this step it is possible to use additional information, such as normals
or roughness, obtained from the simulation, as an additional input
to the generator to help generating a realistic output point cloud.
Subsequently, a discriminator decides to what degree a sample
originates from the synthetic or the real dataset. For the adversarial
loss a least-squares error is used

LGAN =Exr∼Pr

[
(D (xr; θD)− 1)2

]
+Exs∼Ps

[
D (G (ss; θG) ; θD)

2
] (6.5)

where Pr denotes the real-world and Ps the synthetic data represen-
tation.

In order to preserve high-level features of the simulated scenery,
a task network specialized on semantic segmentation is used. The
network predicts the semantic labels for both the synthetic point
cloud as well as their transformed equivalent. The predictions for
both version shall be equal to the ground truth labels obtained from
the simulation in order to ensure a semantics preserving generator.
To measure the total task error, the cross-entropy of both versions is
combined

LT = LCE (xs, ys) + LCE (G (xs; θG) , ys) (6.6)

LCE = − 1
WH

W,H

∑
u,v

C

∑
c=1

1[c=yu,v] log
(

T (x; θT)u,v

)
(6.7)

where 1[a=b] is the indicator function.

6.2 mapping from simulation to real-world 79

The total learning objective thus computes to

min
θGθT

max
θD

αLGAN + βLT (6.8)

where α and β are the weights for adversarial loss and task prediction
loss. All three networks are trained in an alternating fashion.

The following gives more detailed information on the structure of
the individual components.

6.2.1.1 Generator

The generator represents a function that performs the domain shift
between the worlds of CARLA and KITTI. The architecture uses a
Darknet53 backbone and possesses two output heads [Milioto et al.
2019; Redmon and Farhadi 2018]. One of the heads generates an
offset map that represents the point-wise domain shift of the sample.
Combined with the original sample from the simulator it forms the
new domain-adapted point cloud. The combination is represented
by an addition in the sensor-view space.

The second head provides a probability map p for each point in
sensor-view to represent a valid data representation. A sampling
strategy is used to generate the actual valid mask m

mi,j = θ
(
ki,j − pi,j

)
(6.9)

with ki,j ∼ U(0, 1) and the Heaviside function θ. This ensures a higher
diversity in the resulting map in areas where the network predicts
almost equal confidence for being a valid data point or not, while
maintaining a consistent map in areas with high confidence, as it
would using a normal threshold criteria. Nakashima and Kurazume
[2021] recently and independently proposed a similar framework to
drop points in synthesized LiDAR scans.

Further, the generator features a noise augmentation which gives
the network the possibility to increase variance in its predictions.
An additional noise channel is added after each ResNet block in the
decoder part of the network. The subsequent convolution is thus
able to apply more or less noise in the different feature maps.

6.2.1.2 Discriminator

The discriminator is a fully convolutional network following the
PatchGAN approach of Isola et al. [2017]. The output scores are given
for 2 × 32 sized patches of the 64 × 2000 input. Input to the network
is the distance channel and the corresponding point valid mask. The
network consists of five convolutional layers, each followed by batch
normalization and a leaky ReLU activation function. The output
layer is two-dimensional convolution with a sigmoid non-linearity.

80 domain adaptation via data generation for domain mapping

For real data, the point valid mask has discrete values of 0 and 1.
The output of the generator for the valid mask, however, contains
continuous values between 0 and 1. This could make it easy for the
discriminator to distinguish the two data samples Therefore, the
question arises whether it is necessary to adjust the distribution of
the mask values. Luc et al. [2016] investigate this issue in a small
ablation experiment and conclude that the overall GAN training does
not significantly depend on the chosen input mechanism. Therefore,
ignoring the distribution difference between the real and generated
maps and feeding them directly to the discriminator is a valid option.
However, their experiments are not directly comparable to the setup
shown in fig. 6.5, as they additionally use cross-entropy loss in their
adversarial path. The following introduces two mechanisms for the
proposed setup [Triess and Peter 2021].

smoothing The values of the point valid masks for the real data
are smoothed to not be discrete at 0 and 1 anymore. Implementation-
wise, values are sampled from −N to 0 for all missing measurements
and from 0 to +N for all actual measurements with N being a high
number. The values are squashed in a range between 0 and 1 with a
sigmoid function, with most values being either very close to 0 or 1,
depending on whether they do not or do belong to a measurement.
Values in between can be interpreted as label noise.

differentiable discretization The values of the point valid
masks for the generated data are discretized with a threshold. Since
the discretization is not differentiable, the logistic function is used
as a custom gradient, such that

f (x) =

0 if x < τ

1 if x ≥ τ
but

δ f (x)
δx

=
1

1 + e−k·(x−τ))
(6.10)

with the threshold τ and the steepness k. Other works make use of
the Gumbel-Softmax [Chris J. Maddison 2017; Eric Jang 2017], a con-
tinuous distribution that approximates samples from a categorical
distribution.

Experiments confirmed the results of Luc et al. [2016]. However,
they also showed that using the smoothing technique leads to slightly
more variation in the outputs which is caused by additional intro-
duced noise for the discriminator.

6.2.1.3 Task Predictor

Semantics are important high-level features that provide information
of the scanned environment. To construct a semantics preserving
generator in the domain adaptation GAN, the task predictor makes

6.2 mapping from simulation to real-world 81

use of the semantic labels retrieved from simulation. A network
with a LiLaNet backbone is used, consisting of five blocks with
(16, 32, 64, 64, 32) filters [Piewak et al. 2018]. The task predictor pro-
cesses cylindrical projections of the simulated and generated point
clouds in two separate steps. Probabilities for each of the classes are
predicted per point. These probabilities are matched against the true
labels with a cross-entropy loss in both cases. Enforcing the same
semantic output on both data types results in a semantics preserving
generator.

6.2.2 Experiments

6.2.2.1 Datasets

The synthetic data is obtained from CARLA [Dosovitskiy et al. 2017].
It consists of ∼120k frames and provides semantic label maps. The
real-world data is obtained from SemanticKITTI [Behley et al. 2019].
It provides point-wise semantic labels of consecutive point clouds
for 19 different classes. All results are reported on the validation
sequence of the SemanticKITTI dataset.

Both datasets represent data from a HDL-64 LiDAR sensor which
operates at a frame rate of 10Hz. The synthetic data is modeled as
close as possible to this sensor.

6.2.2.2 Downstream Perception

Large amounts of synthetic data with driving scenarios are often
used to improve the safety of vulnerable traffic participants. The first
aim towards this goal is the increased reliability of detecting these
participants. Therefore, the following investigates the performance
of a perception algorithm that is trained with and without additional
synthetic data. The main objective is to obtain better segmentation
performances for pedestrians and riders of bicycles and motorcycles.
These classes are typically underrepresented in common datasets
which leads to a low accuracy for those categories, however these
are the most vulnerable traffic participants.

All experiments are conducted with a RangeNet++ architec-
ture [Milioto et al. 2019]. The network predicts point-wise semantic
labels and operates on cylindrical depth projections. A label
mapping is established that is compatible with both the CARLA
and the SemanticKITTI dataset. For that reason it is not possible to
directly compare the results to the benchmark results published
with the architecture [Milioto et al. 2019]. However, a reference
experiment with the reduced label set serves as the baseline. The
label set contains a single ground class, combined two-wheeler and
rider classes for motorcycles and bicycles, as well as their riders,
respectively. The currently restricted semantic label set of CARLA is

82 domain adaptation via data generation for domain mapping

Table 6.2: Semantic Segmentation Performance: Mean IoU and class-wise
IoU given in percent [%]. The results are reported on the vali-
dation split of the KITTI dataset. The leftmost column indicates
on which data the network is trained. Best results are shown in
bold.

Training Data mIoU gr
ou

nd

ve
hi

cl
e

bi
ke

pe
de

st
ri

an

ri
de

r

bu
ild

in
g

fe
nc

e

ve
ge

ta
ti

on

po
le

tr
af

fic
-s

ig
n

KITTI (K) 73 96 94 73 37 66 95 71 87 62 48

CARLA (C) 35 88 62 5 9 10 56 12 50 34 25

CGauss 42 92 72 4 12 26 83 10 67 26 28

CBlenSor 38 83 67 2 11 4 82 19 56 29 33

CGAN 35 89 66 4 11 7 56 10 47 29 28

K+C 73 97 93 70 47 65 95 69 86 62 49

K+CGauss 75 96 94 69 49 75 95 69 86 63 39

K+CBlenSor 74 97 93 72 50 69 95 69 86 62 51

K+CGAN 76 96 93 76 47 75 95 71 87 65 50

not the only reason for the label set reduction. Experiments showed
that objects like ground, building, and car achieve IoU values close
to 100% which does not leave much room or need for improvement.
Therefore, the experiments rather focus on improving performance
on classes that obtain quite low IoU scores when solely trained with
SemanticKITTI data, e.g. pedestrians.

6.2.3 Evaluation

Table 6.2 shows the experimental results. The row with KITTI shows
the oracle results, where the network was trained directly on the
target domain. The row with CARLA shows the results when the
network was only trained on the source domain and then applied
to the target domain. The performance difference between these
two rows is high and shall be reduced. Three methods are used to
achieve this. First, simply apply Gaussian noise to the CARLA data.
Second, apply BlenSor noise, which is a distance dependent noise
that also drops points at the ground in far distance. This often occurs
in the real-world, when the angle at which the laser hits the ground
is too flat. Third, the GAN as proposed in the previous section is
used to transform the appearance from the CARLA world to the
KITTI world.

None of the three methods is able to increase the performance high
enough in order to reach the oracle performance. The performance
gap is especially large for bike, pedestrian, and rider. Interestingly,

6.2 mapping from simulation to real-world 83

the simplest adaptation method, applying Gaussian noise, achieves
the best results. It increases the baseline performance from 35% to
42%, which is still a large gap to 73% oracle performance. These
results show that the appearance gap is not the only issue here,
compared to the up-sampling experiments of section 6.1. Another
large component is the scene composition and included objects.
When training the GAN, it also tries to incorporate these variations
into its adaptation process. This leads to high distortions, similar
to the ones seen in section 6.1. However, the model is not able to
compensate for the scene variation, since it is designed to model
an appearance shift while maintaining the semantics of the scene.
As a result, the generated point clouds are less informative to the
semantics model in the target domain than simply applying noise to
the simulated data and is therefore not suitable as a reliable domain
adaptation approach.

Another series of experiments investigates the potential of addi-
tional training data to improve the performance of the target domain.
This is not an unsupervised domain adaptation setting as before,
since annotated data for the target domain is used. The results are
shown in the lower rows of table 6.2. The semantics model is pre-
trained with four versions of the synthetic CARLA data and then
fine-tuned with decreased learning rate on the target KITTI data.
Here, the GAN adapted data leads to a performance increase from
73% to 76%. All classes are slightly increased. The additional data
has the most effect on the pedestrian and rider classes. This is mainly
caused by many persons being spawned in the simulation process
of CARLA. There is no significant difference between the different
fine-tuning versions, therefore it can be concluded that additional
data augmented with some variation alone is already sufficient to
increase performance in the target domain.

6.2.4 Summary

The experiments show that the sim-to-real GAN is not effective in
generating a real-world pseudo dataset from CARLA that achieves
reasonable results on KITTI. On the contrary, simpler adaptation
mechanisms that solely rely on additive noise, seem to be more ef-
fective to solve parts of this task, while still being significantly worse
than the oracle. The adaptation process is complicated, because two
domain shifts have to be addressed at the same time: appearance
and scene composition. However, by design the GAN is not capable
to alter the scene composition.

84 domain adaptation via data generation for domain mapping

6.3 discussion and conclusion

This section presented two different domain adaptation scenarios,
low-resolution to high-resolution in section 6.1 and simulation to
real-world in section 6.2. For both tasks, a GAN setup and several
other adaptation methods have been introduced and investigated. In
both tasks, the mapping methods have to generate realistic LiDAR
scans in a target domain conditioned on a sample from a source
domain.

The experiments show that generating realistic LiDAR data with
GANs is complex. The proposed GAN setups are not capable to
generate truly realistic LiDAR data. In the literature there are also no
examples of generative models to be able to generate realistic LiDAR
point clouds. There exist only a few publications that attempt to do
so, however visual inspection of their data reveals similar distortion
effects, as visible in this work [Saleh et al. 2019; Sallab et al. 2019a,b].
Most commonly, objects such as vehicles are stretched along the
visual line into oval shapes and the entire point cloud is enclosed
into a maximum distance hull.

[Triess et al. 2022b] is first to investigate the effect between the
quality of the generated point clouds and the effect on the percep-
tion performance. It can be seen that there is a correlation, but the
influence of the quality on the perception is not strong. So even
seemingly uninformative data can still have a positive effect on the
perception performance. This effect is often seen in CycleGAN archi-
tectures [Zhu et al. 2017]. Future work might investigate whether and
how it is possible to make use of this property of neural networks.

In this two-stage process, where data has to be generated in order
to test on the target domain, the resulting perception performance
is highly dependent on the generated data, no matter how realistic
it appears. Therefore, many works apply a one-stage process that
learns domain-invariant features directly. To that extent, the next
section proposes a novel method that uses the underlying scene
geometry to learn such domain-invariant features.

7
D O M A I N A D A P TAT I O N V I A G E O M E T RY- B A S E D
D O M A I N - I N VA R I A N T F E AT U R E S

contents

7.1 Overview . 86

7.2 Semantic Scene Completion using Local Deep
Implicit Functions on LiDAR Data 87

7.3 Method . 89

7.3.1 Baseline Domain Transfer 89

7.3.2 Using Self-Supervised Target Geometry 89

7.3.3 Domain Losses for Domain Invariant
Features 90

7.4 Dataset Curation 91

7.5 Experiments 92

7.5.1 Baseline and Domain Gap 93

7.5.2 Using Self-Supervised Target Geometry 95

7.5.3 Domain Losses for Domain Invariant
Features 97

7.5.4 Summary 99

7.5.5 Comparison against State of the Art . 99

7.6 Discussion . 102

7.7 Conclusion . 103

The previous chapter showed that the performance of the domain
adaptation in two-stage processes are highly dependent on the data
generation capabilities of the domain mapper and are therefore not
easy to configure. To overcome this drawback, domain-invariant
features can be learned directly in a one-stage process. This chapter
proposes a novel method that exploits the underlying geometry of
a scene to learn domain-invariant features. If a system is capable
to reconstruct the scene geometry from a sparse sampling, it is
possible to become independent of the sampling mechanism, i.e. the
type of LiDAR sensor that is used for sampling. This is especially
useful in case of sensor-to-sensor adaptation. However, reconstructing
an entire scene to obtain semantics add additional computational
overhead. Therefore, this chapter leverages the geometry implicitly
by enforcing the latent representation of a semantic scene completion
network to be domain-invariant. The proposed method then achieves
state-of-the-art domain adaptation performance without requiring
to explicitly construct a canonical domain and thus operate in an
efficient one-stage process.

85

86 domain adaptation via geometry-based domain-invariant features

The idea to leverage a geometric completion task for implicit
domain adaptation is published in patents [Triess and Rist 2021] and
[Triess and Rist 2022] 1 .

7.1 overview

Domain invariant feature learning is one of the most popular tech-
niques for domain adaptation applications. Usually, a common rep-
resentation space for source and target domain is learned that makes
it less dependent of the domain. More details and an overview of
the related work is presented in section 4.2.3.

This chapter aims at leveraging the underlying scene geome-
try to become independent from sensor sampling patterns. The
assumption is that a given scene has the same properties and ge-
ometry, independent of the sensor that samples the scene. Yi et al.
[2021] model this property explicitly by running their semantic seg-
mentation network on a canonical domain that is generated by a
voxel completion network. The voxel completion network can be
trained in a self-supervised fashion and is specific to each domain.
The semantic labeling network is then applied to the completed
scene and is therefore shared over domains. Langer et al. [2020] use
a similar idea, however, they accumulate LiDAR frames from the
source domain and then sub-sample new single frame point clouds
with the scan pattern of the target domain. The sensor-to-sensor gap
is closed explicitly with this approach. An alignment of second or-
der batch statistics between synthetic and real batches of the data
enables generalization for dataset-to-dataset cases. This is achieved by
incorporating Geodesic Correlation Alignment (GCA) by extending
the focal loss with a geodesic loss.

In both works alike it is necessary to explicitly generate such a
canonical domain which creates additional computational overhead
during the inference in the target domain. This chapter therefore
proposes to use the underlying geometry implicitly, which requires
no need to explicitly construct the canonical domain. The semantic
scene completion network by Rist et al. [2021] is used to learn
features that encode both geometry and semantics to learn features
from a source domain and apply it to the target domain.

The contributions of this chapter are:

• Use a semantic scene completion network to learn domain-
invariant features based on an implicit aligned feature encoding
for scene geometry

1 The idea was initially proposed by Larissa Triess and then refined together with
Christoph Rist. Thus, concept and experimental setups are joint contributions.
The implementation and experiments are part of the Master’s thesis of Bjarne
Johannsen [Johannsen 2022], supervised by Larissa Triess.

7.2 semantic scene completion using local deep implicit functions on lidar data 87

(a) Input points (b) Accumulated
GT points

(c) Mesh of continu-
ous output

(d) Voxelized out-
put

Figure 7.1: Semantic Scene Completion: A semantic scene completion
model usually takes sparse points (a) as input and outputs a
dense representation, that can be continuous (c) or discrete (d).
The accumulated Ground Truth (GT) points (b) are used as a
basis for the training target. The images in this figure are taken
from [Rist et al. 2021].

• Apply different domain adaptation techniques, such as early-
stopping and domain losses.

• Experiments and ablations show the effectiveness and limi-
tations of the proposed method for both high-resolution to
low-resolution sensor adaptation and vice versa.

7.2 semantic scene completion using local deep im-
plicit functions on lidar data

This section gives an introduction to semantic scene completion and
introduces the approach by Rist et al. [2021], which serves as the
backbone for the proposed domain adaptation approach.

The goal of scene completion is to recover a dense representation
of a scene from a sparse observation. Semantic scene completion
is the combination of scene completion and semantic segmenta-
tion, such that the dense representation has additional semantic
information. Fig. 7.1 shows examples of such completed scenes.
Fig. 7.1a shows the sparse input representation in form of a single
LiDAR sweep. Many scene completion methods output the dense
representation in form of voxels (fig. 7.1d). Rist et al. [2021] learn
a continuous representation of the scene (fig. 7.1c). As a training
target, accumulated point clouds with Ground Truth semantics and a
point-target for free space are used (fig. 7.1b).

Fig. 7.2 shows the model architecture of the backbone network,
for detailed information refer to [Rist et al. 2021]. The model takes
a single LiDAR scan as an input and outputs the corresponding
scene completion function. Specifically, the output is a set of densely
sampled 3D coordinates with a classification probability vector. The
scene completion function maps every 3D position p within the
scene to a probability vector that defines the semantic class of the
position p. Positions that are not occupied by any object or other
surface are classified as free space, while positions with objects are
categorized into N semantic classes. Hence, the output describes the

88 domain adaptation via geometry-based domain-invariant features

Po
in

t
C

lo
ud

Fe
at

ur
es

Encoder

Se
le

ct
G

ri
d

C
el

ls

c1

c2

c3

Query Coordinate

Decoder

c1

c2

c3

Cell-relative coordinates

Classification

Figure 7.2: Backbone Network Architecture: The point cloud features are
created by a feature extractor (not shown) that applies a Point-
Net [Qi et al. 2017a] to a top-view grid of the input point cloud.
The CNN-encoder outputs feature maps at three different reso-
lutions (c{1,2,3}) that make up the latent representation of the 3D
scene. The decoder classifies individual coordinates within the
3D scene. Latent feature vectors and cell-relative coordinates are
processed by conditional batch normalization in the decoder.
The figure is inspired by [Rist et al. 2021].

geometric and semantic segmentation of space in a N + 1 classifica-
tion.

The function is built from many local functions that take two in-
puts: a query coordinate and a parametrization grid. Fig. 7.2 shows
the three parametrization grids c{1,2,3} that describe the scene at
three different resolutions. A convolutional encoder is used to gen-
erate the feature maps that make up the conditioning grids. The
query coordinates, which are simply sampled points in space, and
the parametrization grids are then processed with the help of condi-
tioned batch normalization in the decoder to produce the classifica-
tion output [de Vries et al. 2017].

The network is trained end-to-end with time accumulated and
semantically labeled point clouds as the primary training target. The
training objective consists of three loss parts: the semantic loss LS,
the geometric loss LG, and the consistency loss LC. The loss is
formulated as

L = λSLS + λGLG + λCLC (7.1)

with the individual loss weights λ{S,G,C}.
The semantic loss is defined as a multi-class cross-entropy loss

between the accumulated semantic targets and the semantic predic-
tions. The geometry loss is defined as the binary cross-entropy loss
between the occupied and free voxels of the accumulation targets
and the free-space prediction on all sampled points. The consistency
loss penalizes divergence between the grid cells for a given position

7.3 method 89

without the need of Ground Truth data. Detailed information on the
loss functions are given in [Rist et al. 2021].

7.3 method

The method proposed in this chapter is built on two assumptions:
First, the underlying geometric encoding of a scene is independent
of the sensor sampling pattern that constructs the sparse point cloud
representation of that scene [Langer et al. 2020; Yi et al. 2021]. Second,
scene geometry and semantics are related and therefore learning
features for one task also helps to solve the other task [Kendall
et al. 2018]. The backbone model (section 7.2) already learns a joint
function of geometry and semantics to solve the task of semantic
scene completion. For single frame semantic segmentation in a do-
main adaptation setup, the proposed method leverages this concept
by exploiting the implicit geometric feature representation that is
assumed to be domain invariant. In order to obtain single-frame
semantics in the inference, the points of the input frame are used
as query coordinates in the grid cell sampling step. During training,
the query coordinates are generated from a dense sampling scheme
over the entire 3D space of the scene extent.

7.3.1 Baseline Domain Transfer

The baseline experiments measure the size of the domain gap to
which the backbone network is exposed. The model is trained on
the source domain and is then - without adaptation - applied to
the target domain. As a training objective, the original loss formu-
lation from eq. (7.1) is used. In the following, these experiments
are indicated with the name “Backbone”. The results can be found
in section 7.5.1.

There are two variations for the training with nuScenes: One uses
all frames with semantic annotations from the dataset as accumu-
lated training targets. The other additionally uses all remaining
frames that do not have semantic annotations. This causes some
of the target voxels to have an occupied / free-space label, but no
semantic information. These locations cannot compute the semantic
loss, but still give feedback about the underlying geometry of the
scene which helps to reduce the domain gap.

7.3.2 Using Self-Supervised Target Geometry

The baseline does not learn anything from the target domain prior
to being exposed to it and therefore exhibits large domain gaps.
Since this is an unsupervised domain adaptation setting, no seman-
tic annotations are available in the target domain. However, the

90 domain adaptation via geometry-based domain-invariant features

geometric information of the target domain can be obtained in a
self-supervised fashion.

When using the full information (i.e. geometry and semantics)
from the source domain, the training objective is formulated as

Lsource = λS ∑
p
Lsource

S + λG ∑
p
Lsource

G + λC ∑
p
Lsource

C (7.2)

which is equal to the original loss, as defined in eq. (7.1). All network
weights are updated. When training with the target domain infor-
mation (where only the geometry is available), the training objective
is formulated as

Ltarget = λG ∑
p
Ltarget

G + λC ∑
p
Ltarget

C (7.3)

which then only updates the weights in the encoder, since the de-
coder also requires semantic information to be trained properly.

This training formulation assumes - to a certain degree - that it
is possible to locate the majority of the semantic information in the
decoder, while the geometric information is held in the encoder.
The experimental results are discussed in section 7.5.2. For a more
general investigation of using the target geometry, two different
training variants are tested:

fine-tuned The encoder of a pre-trained source domain model
is fine-tuned on the target geometry, as defined in eq. (7.3), while
the decoder weights are frozen.

joint training The model is trained simultaneously on the
source and target domain. All weights are updated with eq. (7.2)
when a source sample is propagated, while only the encoder weights
are updated according to eq. (7.3) when a target sample is passed
through.

7.3.3 Domain Losses for Domain Invariant Features

As discussed in section 4.2.3, many of the domain-invariant feature
learning methods use domain losses to align the feature of the do-
mains. In this section a joint learning strategy is used in combination
with a domain loss. The joint learning, as discussed in the previous
section, is an implicit alignment of features by the introduction of
the target geometry information. The domain loss instead is an ex-
plicit alignment of the latent feature grid by aligning second order
statistics [Morerio et al. 2018; Wu et al. 2019].

In two separate experiments, Euclidean Correlation Alignment
(ECA) and Geodesic Correlation Alignment (GCA) are applied to
the latent feature grids c{1,2,3} [Morerio et al. 2018]. Samples from

7.4 dataset curation 91

each domain are fed to the model and the geodesic loss is then
computed with the covariance matrices Csource and Ctarget of each
latent feature grid. These are obtained by reducing the spatial di-
mension of the latent feature grids to a single axis. The covariance
matrices are diagonalized via single-value decomposition to obtain
the eigenvalues Dsource and Dtarget and the respective eigenvectors U
and V. The loss for the feature grid ci is then defined as the geodesic
log-Euclidean distance

LGCA,ci =
1

4d2

∥∥∥U log (Dsource)UT −V log (Dtarget)VT
∥∥∥2

F
(7.4)

in terms of the (squared) Frobenius norm ‖·‖F with the number of
dimensions d = 3 representing the x, y, z coordinates.

The combined training objective is then defined as

L = λS ∑
p
Lsource

S + λG ∑
p
Lsource

G + λC ∑
p
Lsource

C

+ λG ∑
p
Ltarget

G + λC ∑
p
Ltarget

C

+ λGCA,c1LGCA,c1 + λGCA,c2LGCA,c2 + λGCA,c3LGCA,c3

(7.5)

with the loss weights λGCA,ci for the domain losses. The results are
presented in section 7.5.3.

7.4 dataset curation

This chapter uses the SemanticKITTI [Geiger et al. 2013; Behley et al.
2019] and the nuScenes [Caesar et al. 2020] datasets. Besides the
different recording locations (Karlsruhe vs. Singapore/Boston), the
main difference between the two datasets consists in the sensor setup.
The KITTI dataset uses a HDL-64 with 64 vertical layers and a vertical
FOV of 26.33° that spins at 10Hz, which results in approximately
64× 2000 points per 360° scan. The nuScenes dataset uses a Velodyne
VLP-32 (VLP-32) with 32 vertical layers and a vertical FOV of 41.34°
that spins at 20Hz, which results in approximately 32× 1000 points
per 360° scan. This means a single nuScenes point cloud only has one
fourth of the points compared to a KITTI point cloud. Furthermore,
the nuScenes dataset provides semantic labels only for key frames
(every tenth frame), therefore only 10% of the listed frames posses
semantic Ground Truth annotations.

Another major difference between the datasets are the annotation
rules. Since this chapter focuses on closed set domain adaptation,
a modified label mapping that matches both datasets is proposed.
Table 7.1 lists the classes predicted in this work and their mapping
to the original classes of the two datasets. Some classes are merged if
a semantically meaningful mapping can be established. Very seldom

92 domain adaptation via geometry-based domain-invariant features

Table 7.1: Label Mapping: The proposed mapping of the classes from the
SemanticKITTI and the nuScenes dataset. All remaining classes
are treated as unlabeled, e.g. wheelchair, stroller.

SemanticKITTI mapped nuScenes

person, bicyclist, mo-
torcyclist

» person « adult, child, con-
struction worker,
police officer

road, lane-marking,
parking

» road « drivable surface

sidewalk » sidewalk « sidewalk

terrain » terrain « terrain

other-ground » other ground « other flat

car » car « car

bicycle » bicycle « bicycle

motorcycle » motorcycle « motorcycle

truck, on-rails, other
vehicle, bus

» other vehicle « truck, trailer, con-
struction vehicle,
bus

vegetation, trunk » vegetation « vegetation

building, fence,
traffic-sign, pole

» infrastructure « man-made, barrier,
traffic-cone

or not well defined classes, such as wheelchairs, are removed from
the mapping and are treated as unlabeled.

Both datasets alike require a few pre-processing steps to generate
free-space voxels as training targets. To do so, the point clouds are
accumulated over time and then voxelized. Dynamic objects are
filtered out in this step to ensure clean accumulation. For generating
the target for a specific frame, the dynamic objects of that particular
frame are re-inserted into the accumulated scene. More information
can be found in [Rist et al. 2021]. The handling of the nuScenes
dataset requires additional pre-processing steps, to compensate for
the partial annotations and missing dynamic flags. Details on the
pre-processing of nuScenes are given in appendix A.4.

7.5 experiments

The following experiments compare the performances of different
versions of the proposed method. The results show an increased

7.5 experiments 93

target performance compared to existing methods. First, section 7.5.1
presents the baseline performances. Section 7.5.2 and section 7.5.3
present the results of two versions of the proposed method and
the results are summarized in section 7.5.4. Finally, section 7.5.5
provides comparisons to state of the art and shows the advantages
of the proposed approach.

7.5.1 Baseline and Domain Gap

Table 7.2 shows the single-frame semantic segmentation performance
of the backbone model. It achieves 54.4% mIoU for KITTI and 58.7%
mIoU for nuScenes when trained and evaluated on the same domain.
When the model is applied to the other domain at test time, the
performance drops by 27.8 percent-points and 42.5 percent-points,
respectively. These numbers can be interpreted as a measure for the
domain gap. The domain gap of training on KITTI and testing on
nuScenes (K→ N) is significantly lower than the other way around
(N→ K). Reasons for this behavior could be the reduced amount of
labeled nuScenes data, since only every tenth key frame is labeled,
or the lower resolution of the nuScenes data caused by the sensor
specifications.

Therefore, an additional experiment, shown in the two right
columns of table 7.2, is conducted that also uses the unlabeled
frames of nuScenes for the geometry target during training. It can be
observed that the in-domain segmentation performance decreases
from 58.7% to 47.4%, however, the performance on the target domain
increases from 16.2% to 19.8%. The in-domain performance decrease
for segmentation is caused by the higher relative weighting of the
geometry loss over the complete training dataset. In order to prevent
even stronger tendencies in this direction, the factor that weights
the semantic and geometry losses is modified from 1.0 to 0.1 to
address the effect caused by the ten-fold amount of the geometry
information. However, the additional geometry information helps to
understand semantic features of the target domain and can therefore
be used as an essential component in a domain adaptation setting.

The class-wise results of table 7.2 show that the nuScenes-trained
model performs poorly for the ground classes on the KITTI data.
Usually, the ground classes are easy to learn due to its structure
and the amount of available datapoints, therefore it has such a
great impact on the domain gap here. One reason is the limited
range of the ground measurements for nuScenes. For the class “car”,
both directions perform quite similar, while additional geometry
information almost completely removes the domain gap for “car”
in the N → K case. Classes with smaller and fewer objects, such
as “person”, “bicycle”, and “motorcycle”, already exhibit decreased

94 domain adaptation via geometry-based domain-invariant features

Table 7.2: Semantic Segmentation Baseline: Shown are the single-frame
semantic segmentation results of the backbone model [Rist et al.
2021] with the proposed label mapping. Additionally, the domain
gap is evaluated by naively testing the source-trained model on
the target domain. “K” stands for KITTI and “N” stands for
nuScenes.

Approach Backbone Backbone Backbone∗

source→target K→K K→N N→N N→K N→N N→K

mean IoU [%] 54.4 26.6 58.7 16.2 47.4 19.8
size of domain gap -27.8 -42.5 -27.6

person 52.1 1.8 44.1 4.0 10.5 5.0
car 91.6 53.3 74.1 48.5 70.0 71.1
bicycle 10.6 0.0 0.0 0.0 0.0 0.0
motorcycle 10.8 1.5 42.5 0.2 3.0 0.0
other-vehicle 12.8 10.0 57.8 3.2 22.2 2.5
infrastructure 86.8 45.2 76.0 45.5 68.2 50.0
road 92.9 77.6 94.2 3.6 90.3 3.0
sidewalk 80.6 28.9 64.0 0.2 61.8 0.4
other-ground 0.0 4.7 53.0 0.0 57.4 0.0
terrain 75.6 7.9 67.0 25.8 61.7 28.4
vegetation 84.3 31.3 72.9 47.1 59.0 57.4

∗The unlabeled nuScenes data is used in addition to the annotated data to
compute the geometry loss.

7.5 experiments 95

in-domain performance and therefore also suffer greatly under the
domain switch.

One factor to take into account when using models across domains,
is the training state of the model. Additional evaluations show that
early stopping decreases the in-domain performance, but at the
same time improves the inter-domain performance. Early-stopping
is a strategy to not train a model until convergence. Specifically,
the training is stopped as soon as it starts to converge, therefore
the model is not fitted perfectly to the domain during the long
tail of the training convergence. This means a simple early stopping
strategy that prevents in-domain over-fitting can be used as a domain
regularization strategy and is therefore a simple viable step towards
domain generalization.

7.5.2 Using Self-Supervised Target Geometry

The approach presented in this section uses self-supervised target
geometry in addition to the complete source information to train the
model encoder. Two different training mechanisms are investigated:
The first one uses as a pre-trained source domain model from sec-
tion 7.5.1 and then fine-tunes the encoder on the target geometry,
while the decoder weights are frozen. The second mechanism is
employed as a joint training strategy, where one training step con-
sists of two parts: firstly, the complete network is trained on source
semantics and geometry and secondly the encoder is trained only
on the target geometry. The detailed description of the setup can be
found in section 7.3.2.

Table 7.3 shows the quantitative results of the experiments. Both
the fine-tuning of the encoder and the joint training with self-
supervised target geometry results in a significant performance
increase for N→ K compared to the baseline. The highest increase
can be observed for the “road” class. However, for the opposite
direction, i.e. K → N, the performance decreases compared to the
baseline. This effect is stronger for the joint training than for the
fine-tuning. This means that using self-supervised geometry is only
beneficial if the geometry information has a higher resolution than
the source geometry information. Since KITTI has a higher resolution
than nuScenes, fine-tuning or joint training with KITTI is beneficial,
while doing the same with nuScenes even impairs the performance.
Overall, the fine-tuning achieves better results than the joint training.
It has the additional advantage, that pre-trained source domain mod-
els can be used and don’t need to be trained from scratch, which is
needed for the joint training

Fig. 7.3 shows qualitative results of the oracle (in-domain per-
formance), baseline, and the encoder fine-tuning experiments. The
error image shows that the baseline fails to segment the road sur-

96 domain adaptation via geometry-based domain-invariant features

Table 7.3: Influence of Target Geometry Information on Segmentation
Performance: Shown are the segmentation performances when
the encoder of the model is trained with additional geometry in-
formation of the target domain. The column “Fine-Tuned” lever-
ages fine-tuning, while “Joint Train.” shows the results for the
joint training of target geometry and source semantics. The ora-
cle and the baseline are listed as reference to judge the domain
gap and the improvement of the proposed method. “K” stands
for KITTI and “N” stands for nuScenes.

Approach O
ra

cl
e

Ba
se

lin
e

Fi
ne

-T
un

ed

Jo
in

t
Tr

ai
n.

O
ra

cl
e

Ba
se

lin
e

Fi
ne

-T
un

ed

Jo
in

t
Tr

ai
n.

N K→N K N→K

mean IoU [%] 58.7 32.2 28.9 26.7 54.4 24.2 29.2 28.4

person 44.1 5.1 2.7 0.0 52.1 1.3 0.0 0.0
car 74.1 67.2 61.3 55.3 91.6 72.2 82.4 50.1
bicycle 0.0 0.0 0.0 0.0 10.6 0.0 0.0 0.0
motorcycle 42.5 0.5 1.7 0.0 10.8 0.0 0.0 0.0
other-vehicle 57.8 36.9 19.1 23.8 12.8 3.1 3.9 2.8
infrastructure 76.0 64.7 60.2 62.7 86.8 71.9 71.2 65.8
road 94.2 80.7 80.0 70.1 92.9 15.1 56.5 54.1
sidewalk 64.0 33.2 29.1 5.6 80.6 0.1 9.3 25.6
other-ground 53.0 3.7 5.2 0.0 0.0 0.0 0.0 0.0
terrain 67.0 4.8 9.2 18.7 75.6 31.5 20.3 48.3
vegetation 72.9 57.0 49.5 57.4 84.3 71.5 77.1 66.3

7.5 experiments 97

(a) Oracle (N→N) (b) Baseline with early
stopping (K→N)

(c) Encoder fine-tuned on
geometry (K→N)

(d) Oracle (K→K) (e) Baseline with early
stopping (N→K)

(f) Encoder fine-tuned on
geometry (N→K)

Figure 7.3: Qualitative Segmentation Results: Shown are the semantic
segmentation results (top) and the prediction errors (bottom).
Green means, the correct class was predicted and red means,
the wrong class was predicted for that measurement. White
and black are missing or unlabeled positions. The colors of the
semantic classes are listed in the result tables throughout the
chapter.

face correctly in the N→ K case, while performing reasonably for
K→ N. When fine-tuning on the target geometry, the segmentation
of the road surface significantly improves for N→ K, but still shows
more incorrectly classified regions compared to K→ N and the ora-
cle. However, the segmentation quality on geometrically prominent
scene content is now classified in a semantically meaningful way
by correctly separating geometric edges, such as curb stones. For
K→ N, no significant performance change can be observed visually.

7.5.3 Domain Losses for Domain Invariant Features

This section investigates the effect of using additional domain losses
to align the second order statistics of the latent features of both
source and target domain. Detailed information on the setup can be
found in section 7.3.3.

Table 7.4 gives an overview on the domain loss results. Overall,
it can be observed that using additional domain losses does not
improve the performance compared to using the target geometry
information. On the contrary, introducing additional domain losses
even impairs the segmentation performance on the target domain.
This means that the pure geometric information is better suited for
the model to learn a domain invariant feature representation for
semantic segmentation compared to GCA and ECA.

98 domain adaptation via geometry-based domain-invariant features

Table 7.4: Influence of Domain Losses on Segmentation Performance:
Shown are the segmentation performances for the model with
different combinations of the source and target geometry losses
in combination with Geodesic Correlation Alignment (GCA)
and Euclidean Correlation Alignment (ECA). The oracle and the
baseline are listed as reference to judge the domain gap and the
improvement of the proposed method. “K” stands for KITTI and
“N” stands for nuScenes.

Domain N K→N K N→K
Early Stopping X X X X X X X

Target geometry X X X X

GCA X X X

ECA X

mean IoU [%] 58.7 32.2 32.2 54.4 24.2 26.0 33.1 28.5 30.2

person 44.1 5.1 0.4 52.1 1.3 0.0 0.1 0.5 8.7
car 74.1 67.2 61.7 91.6 72.2 56.7 65.8 51.8 77.4
bicycle 0.0 0.0 0.0 10.6 0.0 0.0 0.0 0.0 0.0
motorcycle 42.5 0.5 2.6 10.8 0.0 0.0 0.0 0.0 0.0
other-vehicle 57.8 36.9 15.6 12.8 3.1 0.0 42.9 0.1 0.0
infrastructure 76.0 64.7 65.1 86.8 71.9 37.3 61.8 58.3 43.3
road 94.2 80.7 83.8 92.9 15.1 50.6 77.8 65.3 55.5
sidewalk 64.0 33.2 36.2 80.6 0.1 8.0 20.6 7.7 2.1
other-ground 53.0 3.7 0.0 0.0 0.0 0.0 2.1 0.0 0.0
terrain 67.0 4.8 26.7 75.6 31.5 32.9 32.0 57.4 38.0
vegetation 72.9 57.0 62.2 84.3 71.5 74.0 61.2 72.6 76.4

7.5 experiments 99

7.5.4 Summary

The experiments show, that early stopping is a simple yet effective
method for regularizing cross-domain segmentation. Leveraging ad-
ditional geometric information from the target domain is especially
useful when the target domain has a higher resolution than the
source domain. Such, additional information and more details on
the geometry of the target domain can be obtained. If the source
domain has a higher resolution than the target domain, no signif-
icant improvement can be observed if the lower resolution target
geometry information is used for training. However, adapting from
low to high resolution is harder to solve, as points cannot simply
be dropped during inference to obtain the same resolution, and is
therefore often not addressed by related work. The proposed method
has a big advantage in this field. Comparisons to related work are
provided in the next section.

7.5.5 Comparison against State of the Art

This section compares the proposed method against works proposed
by Langer et al. [2020] and Yi et al. [2021], as introduced in sec-
tion 7.1. Both works use a different label mapping than the one
proposed in table 7.1. In order to make the results comparable, addi-
tional experiments with the modified label mapping are conducted.
Therefore, numbers are not comparable to the ones presented in the
sections above or between the two methods. The label mappings for
both experiments are listed in appendix A.4.

7.5.5.1 Comparison against Langer et al. [2020]

The domain adaptation method proposed by Langer et al. [2020]
accumulates LiDAR frames from the source domain and then sub-
samples new single frame point clouds with the scan pattern of the
target domain. Afterwards, they use this data to train their segmen-
tation model in conjunction with a GCA to align the second order
statistics of the features. Because of this sub-sampling approach
in combination with how the remission information is generated,
Langer et al. [2020] state that their method is only applicable to
high-to-low resolution domain adaptation, therefore this section
only reports results for KITTI → nuScenes adaptation. The valida-
tion set used by Langer et al. [2020] significantly deviates from the
one used in the previous experiments. The authors re-labeled an
entire nuScenes sequence with the same label mapping as used in
the SemanticKITTI dataset and dropped all unknown classes. This
reduces the domain gap introduced by the label mapping and forms
a closed set domain adaptation problem.

100 domain adaptation via geometry-based domain-invariant features

Table 7.5: Segmentation Comparison to Langer et al. [2020]: Shown are
the results for semantic segmentation on the nuScenes dataset in
a KITTI to nuScenes domain adaptation setting. The left columns
show three versions of [Langer et al. 2020], while the right
columns show three versions of the proposed approach.

[Langer et al. 2020] Proposed Approach
Ba

se
lin

e

M
B

C
P

+
G

C
A

Ea
rl

y
St

op
pi

ng

Ta
rg

et
G

eo
m

et
ry

G
eo

m
et

ry
+

G
C

A

mean IoU [%] 12.3 30.0 35.9 36.4 30.7 34.7

person 0.1 14.1 18.6 0.0 0.0 0.0
car 26.4 56.7 70.8 79.6 68.3 73.5
bicycle 0.0 0.1 8.8 0.0 0.0 0.0
other-vehicle 2.6 10.6 6.4 0.0 0.0 0.0
building 42.2 77.2 80.9 88.7 77.7 89.9
fence 2.8 35.8 43.0 24.0 34.0 45.4
pole 8.0 33.7 35.3 50.0 35.6 48.2
traffic-sign 4.1 11.6 16.3 23.8 6.3 13.6
trunk 0.5 2.7 3.4 7.3 0.0 0.2
road 68.1 85.8 88.5 89.9 87.5 88.5
sidewalk 0.1 26.4 53.0 55.9 47.6 47.8
terrain 0.1 2.1 0.8 8.8 6.1 4.4
vegetation 4.9 32.8 41.6 45.0 36.6 40.0

7.5 experiments 101

Ground Truth CP+GCA [Langer et al.
2020]

Proposed Method

K
IT

T
I

nu
Sc

en
es

Figure 7.4: Segmentation Comparison to Langer et al. [2020]: Shown are
the qualitative semantic segmentation results on KITTI (top)
and nuScenes (bottom). The left column shows the Ground Truth
annotations, the middle column the results with the domain
adaptation method by Langer et al. [2020], and the right col-
umn shows the results of the proposed method with geometry
information from the target domain.

Table 7.5 shows that the variants of the proposed approach per-
forms on par with the variants of Langer et al. [2020]. Their approach
performs significantly better on geometrically inconsistent classes,
such as bicycles or persons. The proposed approach, on the other
hand, achieves significantly better results for geometrically distinc-
tive classes, such as poles and traffic-signs.

Fig. 7.4 shows qualitative results on both nuScenes and KITTI. The
proposed method and the method by Langer et al. [2020] show dif-
ferent failure cases in the segmentation. Langer et al. [2020] method
mostly fails for single points and therefore appears noisy or random.
When the proposed approach fails, it usually fails to estimate the
right semantic class for the entire object while producing sharp and
correct object or instance boundaries. This is caused by the network
learning geometric segmentation in addition to the semantics, which
is a key attribute of the backbone model [Rist et al. 2021].

7.5.5.2 Comparison against Yi et al. [2021]

Complete & Label by Yi et al. [2021] creates a canonical domain
that is generated by a voxel completion network. A semantic seg-
mentation network is then applied to the target domain voxel sam-
ples generated by the surface completion. As a backbone, they use
MinkowskiNet [Choy et al. 2019]. Table 7.6 shows the performance
of the backbone model MinkowskiNet compared to the performance
of the backbone model of the proposed approach [Rist et al. 2021].
For both datasets, MinkowskiNet performs significantly better. The
reasons is, that [Rist et al. 2021] is a model for semantic scene com-
pletion, solving two tasks at once, while [Choy et al. 2019] can
completely focus on the semantic segmentation problem.

102 domain adaptation via geometry-based domain-invariant features

Table 7.6: Segmentation Comparison to Yi et al. [2021] and other Base-
lines: Shown is the mean semantic segmentation IoU. Considered
are all the 10 overlapping categories between the KITTI (K) and
the nuScenes (N) dataset: car, bicycle, motorcycle, truck, other ve-
hicle, pedestrian, drivable surface, sidewalk, terrain, and vegeta-
tion. Best results are shown in bold, second best are underlined.

Base Model Description K N

MinkowskiNet baseline by Yi et al. [2021] 50.2 54.4
SCSSNet backbone by Rist et al. [2021] 41.9 45.3

Base Model DA Approach K→N N→K

MinkowskiNet FeaDA [Chen et al. 2017b] 27.2 21.4
MinkowskiNet OutDA [Tsai et al. 2018] 26.5 22.7
MinkowskiNet SWD [Lee et al. 2019a] 27.7 24.5
MinkowskiNet SQSGV2 [Wu et al. 2019] 10.1 13.4
MinkowskiNet 3DGCA [Yi et al. 2021] 27.4 23.9
MinkowskiNet Complete & Label [Yi et al. 2021] 31.6 33.7
SCSSNet Early Stopping (Baseline) 30.0 14.1
SCSSNet Target Geometry + GCA 30.8 27.1

Nevertheless, table 7.6 shows that the proposed DA method still
achieves comparable results on the target domain, though the back-
bone network itself seems to be weaker. For K→ N, the proposed
method performs better than all previous approaches and performs
only slightly worse than [Yi et al. 2021]. For N→ K, it is necessary
to use target geometry and GCA to achieve reasonable performance,
while for K → N even the early stopping is enough to achieve
comparable performance. This shows that the method holds great
potential and improving the backbone model itself may already
help the domain adaptation capabilities. Further, it has to be noted,
that the proposed method does not introduce any overhead during
inference and runs at real-time compared to the computationally
heavy two-step approach of Yi et al. [2021].

7.6 discussion

The experiments show that the domain adaptation from low-to-high
resolution is more challenging than the other way around. This
might be the reason, why most related work, except for [Yi et al.
2021], only deal with the high-to-low resolution case. The most
significant failure case of the proposed method in the low-to-high
resolution case, seems to be the segmentation of the ground plane.
Other objects, such as cars show high quality semantics.

7.7 conclusion 103

Another interesting point is to discuss the assumption made at the
beginning of this chapter. The proposed method is built around the
assumption that geometric information, which can be obtained in a
self-supervised manner, can help to learn semantic information. The
qualitative results showed that the semantic and scene geometry are
not closely related but share common features that benefit the other
task. In contrast to other methods, the proposed approach suffered
less from random segmentation errors, but usually segmented the
scene perfectly on the object outlines, while sometimes deciding for
the wrong semantic class.

Future work might involve further improvements on using ad-
ditional domain losses. In the presented experiments, the domain
losses did not improve the performance significantly. However, one
method to improve the feature alignment is a different sampling
strategy in training. It could be beneficial to sample exactly the same
spatial points across domains to create domain query points which
are then used for the domain losses. Further improvements might
involve a transformer-based decoder architecture in the backbone to
leverage attention mechanisms for improved segmentation.

7.7 conclusion

This chapter proposed a novel method of unsupervised domain
adaptation for LiDAR semantic segmentation. The proposed ap-
proach uses the underlying scene geometry of both the source and
the target domain to transfer semantic cues from the source to the
target domain. A variety of experiments show that the joint learn-
ing of source and target scene geometry creates a domain-invariant
feature representation. In most cases, feature extraction with local
functions over the parameterization grids have shown to be more
effective in learning domain-invariant features than explicit feature
alignment. Using the learned representation greatly decreases the
domain gap in both high-to-low and low-to-high resolution cases.
While the method is more effective for high-to-low adaptation, the
approach greatly profits from the higher resolution target geometry
in the low-to-high case.

Comparison to state of the art shows, that the proposed approach
achieves comparable performance to Complete & Label by Yi et al.
[2021], without introducing any additional overhead in the inference.
This is achieved by encoding implicit geometry in feature space
instead of constructing an explicit canonical domain. Further, the
proposed approach outperforms the work by Langer et al. [2020]
in terms of semantic segmentation performance measured in mean
IoU. In contrast to that work, the proposed approach cannot only
cover the high-to-low resolution case, but also the more difficult
low-to-high resolution adaption. These features make the proposed

104 domain adaptation via geometry-based domain-invariant features

approach an important asset for domain adaptation applications
that need to handle evolving sensor specifications and real-time
constraints.

8
P O I N T C L O U D G E N E R AT I O N W I T H C O N T I N U O U S
C O N D I T I O N I N G

contents

8.1 Overview . 106

8.2 Related Work 108

8.2.1 3D Generative Models 108

8.2.2 Conditional Generation 109

8.2.3 Continuous Conditioning 109

8.2.4 3D Conditional Generation 110

8.3 Using TreeGAN as the Backbone Model . . . 110

8.4 Method . 110

8.4.1 Continuous Parameters 111

8.4.2 Label Sampling for Training 111

8.4.3 Model 112

8.4.4 Losses 113

8.5 Experiments 113

8.5.1 Dataset and Metrics 114

8.5.2 Implementation Details 114

8.5.3 Baselines 114

8.5.4 Distribution Sampling 116

8.6 Results . 116

8.6.1 Quantitative Results 116

8.6.2 Label and Region Sampling Ablations 117

8.6.3 Continuous Parameter Interpolation . 117

8.6.4 Out-of-Distribution Generation 120

8.6.5 Diversity and Novelty 120

8.6.6 Latent Interpolation 121

8.7 Discussion . 122

8.8 Conclusion . 122

A general aim when developing perception algorithms is to im-
prove their performance. In practice it is more desirable to have good
and robust performance on certain important objects instead of the
entire scene. These usually include vulnerable road users, such as
pedestrians or cyclists, other vehicles, and objects that are located
on the road. Unfortunately, measurements on these objects are often
the least represented in the data. LiDAR points that belong to cars
only make up 4.08% of the KITTI dataset compared to 19.87% road
points (sidewalk and other surfaces not included), while pedestrians
are only present in 0.01% of the measured points. This causes most

105

106 point cloud generation with continuous conditioning

of the known perception models to perform worse on the lesser
represented classes, which can also be observed throughout the
experiments in this dissertation.

One well known method to counteract this issue in the field of
LiDAR perception is to use object augmentation [Yan et al. 2018;
Lang et al. 2019; Baur et al. 2019]. Specifically, additional objects
are placed into the scene at training time to compensate for the
class imbalance. Additionally, specific underrepresented scenarios
can be created with object augmentation, for example critical driv-
ing scenarios. This can greatly improve the performance for the
underrepresented classes and scenarios.

Typical augmentation approaches select existing objects from the
database and re-insert them into the scenes. This procedure lim-
its the selection to the size and diversity of the provided object
database. However, it is important that these inserted objects are of
high quality and diversity and therefore it is favorable to have an
unlimited number of objects at ones disposal. Generative models
are already used to synthesize numerous 3D objects of high quality
and diversity [Shu et al. 2019]. However, there is typically no control
over properties of generated objects and therefore it is not possible
to parameterize scene compositions.

This chapter proposes a novel GAN setup that generates 3D point
cloud shapes conditioned on a continuous parameter. This parameter
guides the generative process to create a custom-fit object with a
desired 3D shape. Having control over the properties of the object
enables customizable scene configurations. At the time of writing, no
other work used continuous interpretable descriptions to generate
3D objects. This chapter is based on [Triess et al. 2022a] and contains
verbatim quotes of that work1.

8.1 overview

Generative models, such as GANs [Goodfellow et al. 2014] or
VAEs [Kingma and Welling 2014], are often used to generate
completely new samples with high quality and diversity. These
approaches have been initially introduced for image generation, but
lately a number of approaches for 3D generation in general [Sun
et al. 2020; Yang et al. 2019; Luo and Hu 2021] and point cloud
generation [Achlioptas et al. 2018; Valsesia et al. 2019; Shu et al.
2019] in particular have emerged. However, none of these methods
is capable of actively influencing specific properties of the generated

1 The work [Triess et al. 2022a] partially evolved from the Master’s thesis of Andre
Bühler [Bühler 2021], which was supervised by Larissa Triess. The problem
formulation, initial concept, overall GAN setup design, evaluation concept, and
application are contributions by Larissa Triess. The choice of the backbone model,
the implementation details, and the metric selection are contributions by Andre
Bühler.

8.1 overview 107

width0.30 0.45 0.60 0.75 0.90

height

0.30

0.45

0.60

0.75

0.90

Figure 8.1: Generated Objects conditioned on different Dimensions: The
proposed method can generate a diverse set of object shapes
conditioned on object dimensions (values on the axes). The
figure shows objects generated from the same latent vector z,
but with different continuous conditioning parameters y. The
generated objects are realistic and semantically meaningful. Our
method generalizes to out-of-distribution dimensions (outside
of dotted shape). This figure is based on [Triess et al. 2022a].

object, such as the height and width (see fig. 8.1). For point clouds it
would be easy to generate shapes with the aforementioned methods
and then simply re-scale their dimensions to obtain parameterizable
object generation. However, there is a correlation between the shape
of an object and its dimensions. For example, simply scaling down
an SUV looks unrealistic since vehicles with smaller dimensions
are usually small passenger cars. Therefore, the aim is to design a
conditioned generative process that creates custom-fit shapes with a
correct semantic meaning of the object.

This chapter proposes a method to use descriptions in form of
continuous conditional parameters within a GAN to generate objects
with desired properties. These properties can, for example, describe
the dimensions of the object, such that the GAN generates a custom-
fit shape while maintaining generation quality and diversity. Using
continuous conditions requires new training setups as most of the

108 point cloud generation with continuous conditioning

class-conditioning solutions are not transferable to the domain of
continuous labels [Ding et al. 2021]. The challenges arise from an
infinitely large set of parameters and conditioning regions where no
training data samples exist.

The contributions of this chapter are as follows:

• The proposed method is first to use continuous parameters
for point cloud generation. The continuous conditioning is
formulated as a multi-task problem by adapting the concept of
auxiliary classifier GANs [Odena et al. 2017].

• A Kernel Density Estimation (KDE) is used to sample the gen-
erator conditioning input from the parameter distribution for
training. A specifically designed experimental setup shows
that this sampling strategy leads to a significant performance
increase in regions with few samples and improves the genera-
tion quality.

• Qualitative evaluations show that explicit control over the ob-
ject dimensions is gained while maintaining generation quality
and diversity.

8.2 related work

Generative models and condition methods are the key components
of this chapter. The following sections give an overview on related
works in this area.

8.2.1 3D Generative Models

In recent years, a variety of methods emerged to synthesize realistic
data. These generative methods are based on two major concepts:
VAEs [Kingma and Welling 2014] and GANs [Goodfellow et al. 2014].
Initially proposed to generate realistic 2D images, these concepts
have widely been adapted to fulfill a variety of tasks [Song et al.
2018; Chen et al. 2019a; Karras et al. 2019] on different modalities.
Wu et al. [2016] were first to propose an unsupervised deep genera-
tive approach for 3D data generation from probabilistic input. Their
voxel-based GAN allows to directly adapt concepts from image-
based setups, but is limited in resolution due to computational inef-
ficiency. Therefore, subsequent works focus on surface [Mescheder
et al. 2019; Chen and Zhang 2019; Michalkiewicz et al. 2019; Park
et al. 2019a] or point cloud [Qi et al. 2017a,b; Fan et al. 2017] rep-
resentations instead. Achlioptas et al. [2018] propose architectures
for both VAEs and GANs to generate point cloud objects. The use
of relative simple models based on fully connected layers combined
with PointNet layers limits the ability to produce more realistic ob-
jects. The method in [Valsesia et al. 2019] exploits local topology

8.2 related work 109

by using a computationally heavy k-nearest neighbor technique to
produce geometrically accurate point clouds. TreeGAN [Shu et al.
2019] aims to improve the expressiveness of the generative models
by introducing convolution-like layers and up-sampling techniques
to the generator. Wang et al. [2020] deal with the choice of suitable
discriminator architectures for 3D generation and show that models
perform better when focusing on overall object shapes as well as
sampling quality.

8.2.2 Conditional Generation

In many cases additional conditioning parameters are desired to
generate specific object categories or styles. The most prominent
example, conditional GAN [Mirza and Osindero 2014], uses explicit
conditioning and forms the basis of many other approaches [Zhu
et al. 2017; Taigman et al. 2017; Hoffman et al. 2018]. AcGAN [Odena
et al. 2017] refines this concept of class conditioning by using an
additional auxiliary classifier in the discriminator to ensure class
specific content. In order to condition the output on arbitrary combi-
nations of discrete attributes, some works use annotated images as
input to the GAN [He et al. 2019; Perarnau et al. 2016]. StyleGAN
and others investigate how to enhance desirable properties in GAN
latent spaces to influence the characteristics of generated images
selectively [Karras et al. 2019, 2020; Härkönen et al. 2020].

8.2.3 Continuous Conditioning

Many of the aforementioned concepts use discrete label condition-
ing. However, attributes like rotation in angles or age in years are
by definition continuous. Using continuous conditions is a mathe-
matically different problem than solving categorical conditioning
problems, such as classification [Ding et al. 2021]. First, there may
be few or no real samples for some regression labels and second,
conventional label input methods, i.e. one-hot encoding, are not
possible for an infinite number of regression labels. The Continuous
conditional Generative Adversarial Network (CcGAN) [Ding et al.
2021] is first to solve the aforementioned problems by introducing a
new GAN loss and a novel way to input the labels based on label pro-
jection [Miyato and Koyama 2018]. Shoshan et al. [2021] propose to
use attribute specific pre-trained classifiers to enhance desired prop-
erties on the generative behavior. A subsequent training of mapping
networks allows to generate noise vectors which produce explicit
continuous attributes. Their method produces convincing results
but requires an extensive amount of labeling and well pre-trained
classifiers for each attribute.

110 point cloud generation with continuous conditioning

8.2.4 3D Conditional Generation

The aforementioned conditioning strategies have all been proposed
for image synthesis. There are some works that use text-based con-
ditioning to generate 3D scenes [Chang et al. 2015a, 2014; Chen et al.
2018] with focus on database composition. Other approaches use
symbolic part-tree descriptions to generate 3D objects with prede-
fined compositions [Mo et al. 2020] or use occupancy networks for
image based generation and coloring of 3D objects [Mescheder et al.
2019]. Although being related, our method focuses on conditioning
point cloud generation using continuous physical parameters.

8.3 using treegan as the backbone model

This section gives a short introduction to the backbone network. The
proposed method builds upon TreeGAN [Shu et al. 2019], a state-
of-the-art GAN architecture that can generate point cloud objects
with high quality and diversity. The generator consists of stacked
tree graph convolution layers (TreeGCN). It receives a random noise
vector z ∈ R96 as input and outputs a point cloud xgen = G(z) ∈
R2048×3. The loss setup follows that of a Wasserstein-GAN [Gulrajani
et al. 2017]. Thus, the loss function of the generator G is defined as

LG,adv = −Ez∼Z
[
D
(
xgen

)]
, (8.1)

where D denotes the discriminator. The latent code distribution Z
is sampled from a Normal distribution z ∈ N (0, I).

The discriminator follows a PointNet architecture [Qi et al. 2017a].
It either receives a real (xreal) or a generated (xgen) point cloud x ∈
R2048×3 as input and outputs a single scalar D(x). The output esti-
mates whether the sample originates from the distribution of the
real or generated samples. The loss function of the discriminator D
is defined as

LD,adv =Ez∼Z
[
D
(
xgen

)]
−Ex∼R [D(xreal)]

+ λgp ·Ex̂

[
(‖∆x̂D(x̂)‖2 − 1)2

]
,

(8.2)

where x̂ is sampled from line segments between real and fake point
clouds and λgp is the weighting parameter for the gradient penalty
term [Gulrajani et al. 2017].

8.4 method

Fig. 8.2 presents the GAN setup of the proposed continuous condi-
tioning architecture. The concept of the continuous parameters is
introduced in section 8.4.1 while section 8.4.2 explains the required

8.4 method 111

x

condition

ycond

noise

z
G

xgen

xreal

yreal

da
ta

se
t

D
D(x) Ladv

ŷ(x) Lreg

y

Figure 8.2: Architecture: The generator G generates a point cloud xgen
from a random vector z and a continuous parameter ycond.
In alternation with a real point cloud xreal, xgen is fed to the
discriminator, which predicts the probability of the sample
originating from the real distribution D(x) and an estimate of
the continuous parameter ŷ(x). With these two outputs, the
adversarial Ladv and regression Lreg losses are computed. This
figure is based on [Triess et al. 2022a].

sampling strategy. Section 8.4.3 describes the model architecture by
introducing the changes made to the backbone network to incorpo-
rate the continuous conditioning. The adapted training losses are
introduced in section 8.4.4.

8.4.1 Continuous Parameters

With the help of the continuous parameters, the generation process
is extended from a purely stochastic to a guided process. The aim
is to control the outer dimensions of the generated object while
maintaining diversity regarding the type and shape of the object.
The object is defined as a vector of points x ∈ RN×3 with N = 2048
number of points and the dimensions [x, y, z]. The parameter y ∈ R3

defines the extent of the object in each dimension y = (∆x, ∆y, ∆z) ∈
[0, 1]3. Therefore, the parameters yreal for the training data xreal can
easily be computed from the data itself with yreal = ‖max (xreal)−
min (xreal)‖.

8.4.2 Label Sampling for Training

At training time, parameters ycond have to be sampled as a second
input to the generator G. The easiest method is to sample randomly
in [0, 1]. However, this can lead to a description of unsuitable object

112 point cloud generation with continuous conditioning

ycond

z

co
nc

at Tree
GCN

xgen

(a) Generator

x
Point
Net

M
LP

M
LP

FC
FC

ŷ(x)

D(x)

(b) Discriminator

Figure 8.3: Model Details: (a) shows the label input mechanism of the
generator. A simple concatenation is used and the result is
then fed to the tree graph convolution network (TreeGCN).
The discriminator model is depicted in (b). After a common
feature extractor (PointNet), the model splits in two identical
parts, where D(x) is the adversarial feedback and ŷ(x) is the
prediction of the continuous object description. This figure is
based on [Triess et al. 2022a].

dimensions. To circumvent this issue, it is possible to sample the
dimensions from the training dataset. This ensures that only actu-
ally possible conditioning parameters are sampled. However, this
limits the generator training to a fixed number of input conditions.
Therefore, this work proposes to sample the dimensions from the
distribution of the dimensions within the training dataset. A KDE
is computed over the whole dataset prior to training. This again
assures that only suitable dimensions are drawn, but it does not
limit them to be present in the dataset. In all cases, the aim of the
generator is to generate point clouds that have dimensions which
are close to the conditioned dimensions ycond.

8.4.3 Model

This section only describes the changes made to the TreeGAN back-
bone architecture (section 8.3). Fig. 8.3 shows how the label condi-
tioning is incorporated into the generator and discriminator models.
For the generator (fig. 8.3a), the architecture is extended to receive an
additional input, the conditioning vector ycond. This vector is simply
concatenated to the noise vector z, extending the input to R96+3. The
result is then fed to the otherwise unmodified TreeGCN [Shu et al.
2019] which outputs the point cloud xgen = G(ycond, z). The discrim-
inator input x is either a point cloud from the dataset xreal or a gen-
erated point cloud from the generator xgen (fig. 8.3b). The network
has two outputs, one for the standard adversarial feedback D(x)
and one to estimate the continuous parameter conditioning of the
presented data ŷ = ŷ(x). This concept is adapted from the Auxiliary
classifier Generative Adversarial Network (AcGAN) [Odena et al.
2017; Atienza 2019]. The idea is to leverage potential synergies be-

8.5 experiments 113

tween the two tasks within the shared discriminator layers. Previous
work showed that such multi-task synergies can improve the perfor-
mance of the sub tasks [Standley et al. 2020].

8.4.4 Losses

The training objective is composed of two parts, the adversarial
loss Ladv and the regression loss Lreg for the continuous parameter.
Just like TreeGAN, the proposed model utilizes the Wasserstein
objective function with gradient penalty for the adversarial loss [Ar-
jovsky et al. 2017; Gulrajani et al. 2017]. For the parameter regression,
an L2-norm is used

Lreg (y, ŷ) = ‖y− ŷ‖2 (8.3)

with the predicted label ŷ and its target label y.
The adversarial part of the generator loss LG,adv is defined in

eq. (8.1) with a slight change to the definition of the generated point
cloud xgen. It is now also dependent on the input conditioning and
is therefore defined as G(ycond, z) (instead of the unconditioned
version G(z)). For the generator regression, the Lreg is computed be-
tween the discriminator prediction for the condition parameter of the
generated sample ŷgen and the actually requested parameter ycond.
This results in the overall generator loss

LG = λadv · LG,adv + λreg · Lreg
(
ycond, ŷgen

)
(8.4)

with the loss weighting factors λadv and λreg.
Eq. (8.2) defines the adversarial loss of the discriminator. The

regression loss is defined as the error between the parameter of the
real data yreal and its corresponding prediction ŷreal. Analogously
to the generator, this leads to the discriminator loss

LD = λadv · LD,adv + λreg · Lreg (yreal, ŷreal) (8.5)

with the loss weights λadv and λreg as in eq. (8.4). The parame-
ters of the generated samples are not considered in the regression
loss, because for many use cases the actual parameter ygen of the
generated point cloud xgen is unknown, i.e. cannot be trivially re-
trieved from xgen. Details and additional loss variations can be found
in appendix A.5.2.

8.5 experiments

This section gives an overview on the experimental setups and
resources. Further details are provided in appendix A.5. The results
of the experiments are presented in section 8.6.

114 point cloud generation with continuous conditioning

8.5.1 Dataset and Metrics

The ShapeNetPart [Yi et al. 2016] dataset is used for the experiments.
It is a dataset with part annotations of more than 30,000 3D shapes
in 16 object categories from ShapeNetCore [Chang et al. 2015b]. To
compare the results in terms of generation quality, a pre-trained
version of the original FPD [Shu et al. 2019] is used. The adherence
to the conditioning properties is evaluated by calculating the MSE
for each dimension extent (∆x, ∆y, ∆z) of the generated object xgen
versus the desired input parametrization ycond. These are the two
most important metrics, but we also report Coverage (COV), MMD,
and Jensen-Shannon Divergence (JSD) [Achlioptas et al. 2018] to make
our work comparable to existing methods.

JSD is a coarse metric that measures the degree to which axis
aligned real point clouds tend to occupy similar locations as those of
the generated point clouds. The diversity of the samples is measured
with COV which estimates how well the generator can cover the real
data distribution. Orthogonally, MMD measures how similar the
generated samples are to the real ones. This means that a generator
that simply repeats samples from the dataset receives a better score
than a generator that synthesizes more diverse objects. Therefore,
the main focus of this evaluation is on the qualitative results which
show the advantages of the proposed method.

8.5.2 Implementation Details

The model is built upon the existing implementation of Tree-
GAN [Shu et al. 2019] that is further referred to as the backbone
model. The training parameters are also identical. Only the changes
introduced in section 8.4 are applied to keep the method directly
comparable to the backbone and no further mechanisms to enhance
generation quality are incorporated.

The loss weights λadv and λreg from eq. (8.4) and eq. (8.5) are
variable and learned together with the rest of the model parameters,
as proposed by Kendall et al. [2018].

All networks are trained for 3000 epochs and then the checkpoint
with the lowest combined metric score is selected. The combined
metric is defined as the product of FPD and MSE. This ensures
fidelity as well as correctness and considers differing value ranges.

8.5.3 Baselines

The proposed method is compared to two baselines. These baselines
represent possible design choices to achieve the desired aim of
generating point clouds of specific dimensions, as no other methods
for comparison exists.

8.5 experiments 115

1σ 2σ 3σ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Object Width (∆y)

O
bj

ec
t

H
ei

gh
t

(∆
z)

Figure 8.4: Region-classified Dimension Distribution: The plot shows all
samples (marks) of the chair class for the entire training dataset
in terms of their dimension extent in height ∆z and width ∆y.
The three colors represent the resulting regions from a KNN
classifier with k=20 based on a KDE. The regions correspond to
1σ ≈ 68% (green), 2σ ≈ 27% (orange), and 3σ = 5% (blue) of
the entire data distribution. This figure is based on [Triess et al.
2022a].

b1 – backbone with re-sampling A simple method to gener-
ate shapes of desired dimensions with an existing model, such as
the backbone, is to generate point clouds from multiple sampled
z vectors and then choose the one that has the dimensions that are
closest to the ones requested. The advantage is that it is expected
that the fidelity of the samples with this variation is similar to the
one of the backbone network itself. However, the sampling process is
time consuming and the dimensions might not fit exactly, especially
if these dimensions are not well reflected in the training dataset. For
the experiments, 10 versions per object are sampled and then the
one with the smallest MSE is selected.

b2 – backbone with scaling Another variant is to add a
subsequent scaling block that squashes the generated point cloud
into the desired dimensions. In contrast to B1, it is expected that the
regression error on the dimensions is zero. However, the generation
fidelity can be severely impacted. For example, objects are no longer
semantically meaningful if their shapes are stretched along an axis,
such that the shapes no longer represent objects as they could appear
in the real world.

116 point cloud generation with continuous conditioning

8.5.4 Distribution Sampling

A key aspect of the proposed method is that it is possible to actively
sample from different regions of the conditioning vector distribution.
Therefore, the evaluation section specifically investigates the gener-
ation capabilities within different regions of the data distribution.
Fig. 8.4 shows the distribution of the object dimensions of the train-
ing dataset for the chair class. The distribution is divided into three
sections, indicated by the coloring, that represent the quantiles of a
Normal distribution. The sections are classified into regions where
1σ ≈ 68%, 2σ ≈ 27%, and 3σ ≈ 5%, of the data lies, computed
with a KDE. In additional experiments, 1000 samples are generated
for each region and then FPD and MSE are compared to show the
effectiveness of the proposed method.

8.6 results

This section presents and discusses the results of the experiments
explained in section 8.5.

8.6.1 Quantitative Results

Table 8.1 contains quantitative comparisons in terms of typical met-
rics used to evaluate the quality of generated point cloud objects.
The rows for the backbone are included for reference but cannot be
used for comparison, as they do not have the conditioning ability.
B1 and B2 each symbolize the two corner cases. On the one hand,
B1 obtains the lowest FPD but the highest MSE. This is the result
of exploiting the good generation quality of the backbone and com-
bining it with a sampling mechanism to obtain objects of desired
dimensions. However, it becomes clear that it is hard to obtain the
desired shape configuration in an acceptable inference time, while
the inference time depends on how many samples have to be drawn
for one inference step. On the other hand, there is B2 which obtains
an MSE of zero by construction. It simply scales the object to the
desired size. However, this comes at the cost of realism, as evident
by the increase in FPD. The proposed approach lies in between B1

and B2 regarding FPD and obtains a very low MSE of only 0.28%
for “Chair”. The other metrics show relatively similar performance
for all methods.

The experiments indicate that the proposed method is capable
of ensuring desired dimensions while maintaining high quality.
However, it has to be noted that the full potential of the method is
better visible in the following qualitative results.

It is important to note that these baselines are only applicable
since it is possible to easily compute the dimension parameter from

8.6 results 117

the data itself. For many other applications this is not the case and
the proposed method offers a suitable solution (see also section 8.7).

Additional evaluations of the label incorporation of the tradi-
tional cGAN [Mirza and Osindero 2014] and CcGAN [Ding et al.
2021] combined with the backbone network did not show satisfying
results (appendix A.5.2). In the case of cGAN, the conditioning pa-
rameter was simply ignored by generator, while training of CcGAN
was very unstable and did not converge.

8.6.2 Label and Region Sampling Ablations

Fig. 8.5 shows the results of our distribution sampling experiments
on the chair class (explained in section 8.5.4). The results are re-
ported for three differently trained versions of the proposed model.
They differ in the way the conditioning parameter ycond is sampled
at training time (see section 8.4.2). The green dots correspond to
random sampling in [0, 1], while orange means that only parame-
ters existing in the training dataset are being used, i.e. the marks
of fig. 8.4. The proposed version (purple) uses all possible real num-
bers sampled from a KDE of the training distribution, i.e. the entire
region in fig. 8.4.

It can be observed that naturally MSE and FPD increase when
moving away from the distribution center of gravity, i.e. increase 1σ
to 2σ and 3σ. For random sampling, significantly worse performance
can be observed in all three sampling categories compared to the
other two methods. For 1σ and 2σ the two other sampling methods
perform almost equally well. However, the proposed sampling strat-
egy introduces a significant performance improvement in the most
sparsely populated region where only 5% of all training data lies.
This shows the advantage of the distribution-based training over a
data-based training, especially for higher σ. Further results can be
found in appendix A.5.3.

8.6.3 Continuous Parameter Interpolation

A decisive advantage of the proposed method is that the object
dimensions can be influenced actively and directly. Fig. 8.6 shows
several examples of generated chairs where the continuous param-
eter for the object height is changed. For different latent vectors
(rows), the network generates different shapes of good quality and
diversity. When moving away from the main distribution (outermost
samples) quality declines but still results in semantically meaningful
objects. Another example is depicted in fig. 8.7 where tables with
different widths are being generated. Again, while the baseline sim-
ply stretches the object, the model learns that wider tables have four
legs at each corner instead of only one in the middle.

118 point cloud generation with continuous conditioning

Table 8.1: Quantitative Comparison: Reported are results for the five
largest classes of the ShapeNetPart dataset in terms of the metrics
used by Shu et al. [2019] and Achlioptas et al. [2018]. Addition-
ally, the regression error (MSE) is reported for the introduced
task. A freshly trained TreeGAN [Shu et al. 2019] serves as the
backbone network for which the results are reported for ref-
erence. The baselines B1 and B2 are described in section 8.5.3.
Baseline 1 is the backbone network where ten versions per object
are sampled and the one with the best matching dimensions is
chosen. Baseline 2 uses the backbone and then scales the object
to the desired dimensions. All evaluations are conducted on a
hold-out validation split. Shu et al. [2019] use the entire dataset
for training, therefore values might vary slightly. This table is
based on [Triess et al. 2022a].

Shape Model FPD (↓) MSE MMD (↓) COV (↑) JSD (↓)
[%] (↓) CD EMD CD EMD

Table

Backbone 4.5245 – 0.0023 0.0863 0.4750 0.3750 0.1671

Baseline 1 3.3009 52.88 0.0026 0.0912 0.4875 0.3500 0.1423

Baseline 2 4.2851 0.00 0.0028 0.0920 0.5375 0.3125 0.1661

Proposed 3.0692 0.16 0.0019 0.1073 0.4875 0.3000 0.1313

Chair

Backbone 0.9525 – 0.0020 0.1027 0.4875 0.2500 0.1082

Baseline 1 1.3674 26.07 0.0023 0.1013 0.4750 0.2625 0.1123

Baseline 2 1.9259 0.00 0.0021 0.1003 0.4875 0.2625 0.1068

Proposed 1.5290 0.28 0.0022 0.1059 0.4625 0.3125 0.1434

Airplane

Backbone 1.2947 – 0.0002 0.0805 0.4375 0.1375 0.1887

Baseline 1 1.0209 15.08 0.0003 0.0812 0.4500 0.1125 0.1819

Baseline 2 1.6613 0.00 0.0003 0.0783 0.5250 0.1375 0.1834

Proposed 0.8691 0.30 0.0003 0.0724 0.5000 0.1250 0.1291

Car

Backbone 1.0816 – 0.0009 0.0656 0.4250 0.2375 0.0692

Baseline 1 2.6293 5.15 0.0009 0.0651 0.4500 0.2000 0.0743

Baseline 2 2.2045 0.00 0.0009 0.0634 0.4375 0.2750 0.0670

Proposed 1.7129 0.69 0.0010 0.0708 0.4125 0.1250 0.0714

Lamp

Backbone 2.9954 – 0.0037 0.1630 0.4500 0.2750 0.2642

Baseline 1 3.4737 79.65 0.0029 0.1614 0.4500 0.2125 0.2569

Baseline 2 36.5025 0.00 0.0041 0.1606 0.4500 0.2250 0.2653

Proposed 7.5012 0.77 0.0038 0.1917 0.4375 0.1750 0.2576

Total

Backbone 2.1697 – 0.0018 0.0996 0.4550 0.2550 0.1595

Baseline 1 2.3584 35.77 0.0018 0.1000 0.4625 0.2275 0.1535

Baseline 2 9.3159 0.00 0.0020 0.0989 0.4875 0.2425 0.1577

Proposed 2.9363 0.44 0.0018 0.1096 0.4200 0.2075 0.1466

8.6 results 119

1σ 2σ 3σ

10−4

10−2

Sampling region

M
SE

1σ 2σ 3σ

101

102

Sampling region

FP
D

Random Real Proposed

Figure 8.5: Distribution Sampling Performance: The figure shows perfor-
mances for three sampling regions of the data distribution for
the proposed architecture trained with three different label
sampling strategies. The regions correspond to the labels on
the x-axis, as defined in fig. 8.4. For each region, 1000 samples
are generated. The left plot shows the MSE of the dimension
regression. On the right, the FPD of the generated samples is
presented. This figure is based on [Triess et al. 2022a].

height

O
ur

s
B2

Figure 8.6: Manipulation of Chair Height: Each row of objects is gener-
ated from a different latent vector while the length and width
of the object is kept the same. From left to right, we increase
the object height from 0.4 to 0.9. The upper three rows show
chairs generated with our method, while the bottom row shows
the backbone network with scaling to the requested height (B2).
This figure is based on [Triess et al. 2022a].

120 point cloud generation with continuous conditioning

width

O
ur

s
B2

Figure 8.7: Manipulation of Table Width: The object width is increased
from left (0.4) to right (0.9) while keeping length and height con-
stant. The upper row shows tables generated with the proposed
method, while the bottom row shows the backbone network
with scaling to the requested width (B2). The baseline simply
stretches the table, while the proposed method generates seman-
tically meaningful object shapes. This figure is based on [Triess
et al. 2022a].

8.6.4 Out-of-Distribution Generation

Fig. 8.1 shows a larger span of width and height conditioning, where
only the samples enclosed in the dotted shape are conditioned on
parameters sampled from within the distribution. The dataset does
not contain any chairs with heights or widths that are larger or
smaller than the gray dots indicate (refer to fig. 8.4). The generated
shapes for extreme low or high height or width do not necessarily
resemble realistic objects, but the generator still maintains the ap-
proximate object configuration and even adjusts the shape to this
unusual configuration. All generated objects show smooth transi-
tions between the configurations, even when out-of-distribution, and
do not collapse in shape. Fig. 8.1 also shows that the model learns
a semantic meaning associated with the dimensions. For example,
an office chair is usually not narrow and high, as these are usually
dinner table chairs, but office chairs are also not very wide and low,
as these are usually arm chairs or sofas.

8.6.5 Diversity and Novelty

Fig. 8.8 shows five generated examples and five examples from the
dataset that have the same dimensions. The generated shapes are
diverse and considerably distinct from the dataset samples. This
shows two things: First, the proposed method does not simply gen-
erate the same object for a given set of dimensions when changing
the latent vector. Second, it also does not learn a simple lookup
by reproducing the samples from the dataset that lie close to the
desired dimensions.

8.6 results 121

Ours

5-NN

Figure 8.8: Generation Diversity: The upper row shows examples gen-
erated from five different latent vectors at a fixed dimen-
sion y = [0.45, 0.42, 0.70]. The lower row shows the k = 5
nearest neighbors from the training dataset in terms of being
closest to y. This shows that our method can generate a variety
of shapes for the same dimension and does not perform a sim-
ple lookup from the dataset. This figure is based on [Triess et al.
2022a].

interpolation over latent z

C
ha

ir
Ta

bl
e

A
ir

pl
an

e

Figure 8.9: Latent Interpolation: Interpolation between two random latent
vectors z at constant dimension vector ycond. This figure is
based on [Triess et al. 2022a].

8.6.6 Latent Interpolation

Another important aspect of generative processes are disentangled la-
tent representations and smooth representations within the network
parameters. Similar to related work, this property is demonstrated
by interpolating between two latent vectors. Fig. 8.9 shows that
the proposed model generates smooth transitions from left to right
for different object shapes. This property was already included in
the backbone network, but this experiment shows that this prop-
erty was not compromised by the introduction of the continuous
conditioning.

122 point cloud generation with continuous conditioning

Figure 8.10: Setting Percentage of Object Parts: The left column shows
two part-annotated examples from the dataset with the air-
plane body in red, wings in blue, and the remaining parts
in yellow. In the upper row we use the proposed method to
increase the ratio of wing points within the object, while the
lower row increases the percentage of the body part from
left to right. Our method constructs semantically meaningful
shapes according to the continuous parameter for a fixed latent
vector. This figure is based on [Triess et al. 2022a].

8.7 discussion

Influencing object dimensions is only one application out of many
for explicit continuous conditioning. Fig. 8.10 demonstrates how the
proposed method can be used to influence the percentage of points
in certain object parts compared to the entire shape. In contrast
to the object dimensions it is not trivially possible to retrieve this
parameter from the generated shape (it is possible to use an extra
part segmentation model). Therefore, the use of the discriminator
regression is vital, since a naive regression loss by computing the
parameter from the generated shape is not applicable.

Next steps for this work include the adaptation to real-world
data and the automotive domain. Objects scanned with a laser, e.g.
LiDAR, are often only seen from a certain viewpoint in contrast to
the objects used in this work. This viewpoint can be modeled by us-
ing an additional continuous parameter that defines the angle from
which the object was observed. Regarding the proposed application
for augmentation of autonomous driving LiDAR scenes, it is then
possible to define the size and position of a 3D bounding box for
which the GAN then generates a custom-fit object. A challenge will
be to adapt the backbone architecture to generate a variable number
of points, as common for real-world data.

8.8 conclusion

This chapter presented a novel GAN setup for 3D shape generation
that uses continuous conditional parameters to actively influence the
dimensions of the generated shapes. Extensive experiments showed
that the proposed method is capable of generating custom-fit objects

8.8 conclusion 123

that adhere to the desired configuration while maintaining good
generation quality and diversity. The distribution label sampling
proofed to be superior to sampling existing parameters from the
training dataset. The chapter also demonstrated the capability of the
network to generate samples from outside the distribution and gave
a preview on potential other applications. Future work involves the
adaptation to real world data, such as LiDAR scans.

9
C O N C L U S I O N

contents

9.1 Discussion . 126

9.2 Future Work 128

This dissertation presented a framework for domain adaptation
and semantic segmentation of LiDAR point clouds in the context of
autonomous driving. Among others, the framework includes data
generation with generative models, monitored with a reliable real-
ism metric which shows the correlation between data realism and
semantic segmentation performance. Chapter 3 introduced a number
of improvements to existing architectures and data representations
that increase the final segmentation performance. The proposed scan
unfolding combined with cyclic padding increases the segmenta-
tion performance and is used in all experiments throughout this
dissertation. Next, chapter 4 discussed existing approaches and open
research questions in the field of domain adaptation for LiDAR per-
ception. The questions raised in the discussion are answered in the
domain adaptation chapters of this dissertation. As an important
component, chapter 5 proposed a novel quantitative metric to esti-
mate the realism of LiDAR point clouds based on learned features.
This metric also allows exciting applications in the field of anomaly
detection. Additionally, the metric is used in chapter 6 to evaluate
the quality of generated data in a domain adaptation application.
The experiments showed that there is a correlation between the
quality of the data and the final perception performance. However,
the proposed GAN setups struggle to generate truly realistic LiDAR
data while seemingly uninformative data can still have a positive
effect on the perception performance. In order to be less dependent
on the generated data, chapter 7 proposed a novel method that uses
the underlying scene geometry to learn domain-invariant features
directly. The geometric information greatly improves the domain
adaptation capabilities of the segmentation model and outperforms
existing state of the art methods. As an additional application, chap-
ter 8 presented a novel method to generate semantically meaningful
single object point cloud shapes from continuous descriptions.

The following section explicitly addresses the research questions
initially posed in section 1.2 and summarizes the lessons learned in
section 9.1. Section 9.2 concludes this dissertation with an outlook
on possible future work.

125

126 conclusion

9.1 discussion

human interpretable training data A significant fraction
of this dissertation dealt with generating realistic LiDAR data, deter-
mining the realism of the data, and investigating whether this has
an influence on the perception performance. In chapter 6, human
inspection and the proposed realism metric showed that existing and
proposed LiDAR point cloud generators struggle to generate realis-
tic LiDAR point clouds. Investigations on the relationship between
the estimated realism and the resulting perception performance
showed a clear correlation between the two. However, from a human
perspective this is hard to relate to, since seemingly uninformative
data can also have a positive effect on the performance. Therefore,
it is vital to have a data-driven realism estimation, as proposed
in chapter 5, that extracts and interprets features that are important
for the downstream perception module. Furthermore, the lack of
human interpretability of the data and its impacts makes it hard to
model a mapping-based domain adaptation setup for safety critical
applications, as automated driving. In current regulations, inter-
pretability and determinism are of high importance. However, the
shown results raise the question whether it is even desirable to en-
force interpretable intermediate data. Instead of trying to create a
human interpretable, seemingly realistic dataset, the domain map-
ping pipeline could be treated as a black-box system, such that only
the final performance is relevant. This is similar to the concept in
domain-invariant feature learning (chapter 7) which does not rely
on interpretable intermediate data representations and has attracted
more attention in the research community recently. More generally
speaking, the trend in many works on perception and prediction
for automated driving also goes towards end-to-end like structures,
such as early sensor fusion or agent prediction directly from sensor
inputs.

geometry as a domain generalizer At the beginning of
this dissertation, the question was raised whether geometric informa-
tion can help to learn semantics for other domains. The experiments
in chapter 7 show promising results. To use geometric information
from the target domain is especially useful if the target domain
has a higher resolution than the source domain. This property of
the proposed approach is particularly welcome, since most of the
literature deals with high-to-low resolution adaptation, as the other
way around is more challenging and often not feasible with their
proposed methods. The failure cases of the proposed method show
geometrically correct edges in the segmentation maps, even if the
predicted class is not correct, in contrast to other methods which
have random segmentation errors. This behavior can be beneficial
if combined for example with a hierarchical label mapping. When-

9.1 discussion 127

ever the network is unsure about the actual class of the correctly
segmented object, it could select a parent class with higher certainty.
For example, instead of distinguishing between passenger car and
van, it could select vehicle. This combination can model uncertain-
ties within the network and detect out-of-distribution objects while
improving segmentation performance, since geometric outlines are
correct with high probability.

factors for successful lidar perception Throughout
this dissertation, the goal was to perform a semantic segmentation
on a LiDAR point cloud. By reviewing this task from multiple an-
gles, this dissertation presented a number of factors that influence
the final segmentation performance. Chapter 6 showed that data
does not need to be human-interpretable, rather it is important what
kind of features can be extracted in the encoding phase, as shown
in chapter 7. However, the data representation and the quality of
the labels have a significant impact on the performance, as it can
be observed with the scan unfolding and cyclic padding proposed
in chapter 3. For example, a segmentation model with 50% runtime
and 25% capacity of the baseline can be combined with these mea-
sures and can easily obtain the same segmentation performance.
In general it is important to define what a successful perception
means for the required application. In academic benchmarks, the
performance on the test set is often the most important factor. There-
fore, aspects like runtime or over-fitting are often neglected in the
publications, though these are important values for real-time ap-
plications, especially when they operate in an open world setting,
such as automated vehicles. Another important factor that gained
more importance over the last years, is the successful combination of
data from multiple sensors. To obtain a detailed vision around the
vehicle, often multiple LiDAR and other sensors are used. A recent
trend goes towards using Bird’s-Eye View (BEV) transformers to
fuse multiple sensor inputs in a BEV feature space.

domain adaptation for open-world applications Hav-
ing an open-world setting is the main motivation to address the
problem of domain adaptation in the context of automated driving.
The driving systems need to be robust and reliable in a variety of
situations that might not be foreseeable. If a human driver is con-
fronted with such a situation and has enough time to react, they
can easily assess what would be an adequate way to behave. This
is because humans are capable to transfer knowledge from other
domains. For example, if there is an elephant on the road, the human
might never have seen an elephant on the road, but since they know
that this is an elephant, they will slow down the vehicle. A neural
network might not even recognize the elephant as an object on the
road and even if it does, it might not respond properly. Chapter 4

128 conclusion

introduced domain adaptation as a kind of transfer learning with
many different aspects as they have been discussed throughout this
dissertation. From a research perspective all these areas are inter-
esting in terms of solving highly complex and relevant problems.
However, from an application point of view, the methods need to be
practical and efficient. From what was presented in this dissertation,
transferring data from one domain to another is a highly complex
task which requires multiple steps that might not even result in
the desired behavior. Therefore this technique is probably better
suited for non-safety-critical applications, such as style transfer for
art, deep fakes, and virtual avatars. For safety-critical applications,
techniques with more general transfer learning capabilities are nec-
essary. One example is proposed in chapter 7, where knowledge
from both the source and the target domain is used to solve a task
for both domains, while annotations are only available for the source
domain.

9.2 future work

This section goes beyond the scope of this dissertation and discusses
potential future work that could be conducted based on the findings
in this dissertation. Potential shortcomings of this dissertation are
explicitly addressed and open questions are raised that should be
answered through future research.

object generation for real-world data Object augmen-
tation at training time is a currently used and quite simple method
to improve detection of desired objects at inference time. Chap-
ter 8 proposed a novel concept to adversarially generate such objects.
Future work could involve the adaptation to real-world automotive
LiDAR data. To this extend, the viewpoint and distance to the object
must be modeled additionally to the proposed properties of object
size and aspect ratios. Sequences of driving scenes can be used to
obtain training data for multiple viewpoints and distances of the
same object, which can then also be modeled with the continuous
parameter. A challenge will be to design an architecture that can
generate a variable amount of points, as common for LiDAR point
clouds. To generate new viewpoints of the same object, methods like
neural radiance fields could be adapted for LiDAR data [Mildenhall
et al. 2020]. In the end, a configurable and diverse augmentation
technique is highly beneficial to model various driving situations,
corner cases, and safety critical scenarios for training and testing.

multi-modality and time consistency This dissertation
focused on single-frame LiDAR perception as an integral part of au-
tomated driving systems and filled research gaps in some areas, for

9.2 future work 129

example LiDAR domain mapping in chapter 6 and the introduction
of a proper quantitative realism metric for LiDAR in chapter 5. A
driving force in human perception is the combination of sensory in-
puts from multiple sources over a longer period of time to establish
a detailed understanding of the current and possible upcoming situ-
ations. Such multi-cue information also renders beneficial in LiDAR
perception, such as object detection and tracking [Emmerichs et al.
2021]. However, in the research area of transfer learning, the usage
of multi-modal time-series information should be extended. Often
multi-modal information is only used at the training phase to obtain
depth Ground Truth from the LiDAR sensor for many detection and
classification tasks in the camera domain. However, using multi-
modal information also at inference time is beneficial, especially in
domain transfer applications. Jaritz et al. [2020] design a specific
cross-modal loss to combine camera and LiDAR to facilitate an in-
formation exchange between the two modalities which benefits the
overall performance in presence of a domain gap. Combining this
with a timely aspect can exploit temporal consistencies which can
greatly help in adverse weather or other scenarios that exhibit do-
main gaps. Up until now, only Saltori et al. [2020] exploit temporal
information for domain adaptation applications. However they use it
in an offline fashion to generate pseudo-labels on the target domain
for self-taught learning. Future work should include using multi-
modal and time-series information in an online-fashion to mitigate
a large amount of domain gaps. These mainly include the following
cases: day-to-night, sensor-to-sensor, weather-to-weather. For these do-
main gaps, often one sensor type is more affected than another or
disturbances can be mitigated with temporal consistency [Jaritz et al.
2020; Saltori et al. 2020].

knowledge transfer from other domains All measures
discussed before aim at providing methods to make perception sys-
tems more robust to domain shifts. However, the task of domain
adaptation is currently only an intermediate step towards robust
and reliable autonomous systems. The actual aim is so train neural
networks in such a way that automated vehicles can always be de-
ployed anywhere and anytime on earth (cf. SAE level 5 in fig. 1.1).
This requires good transfer learning capabilities and includes solv-
ing open set problems (cf. fig. 4.2). Most camera perception systems
initialize their models with pre-trained weights from the ImageNet
dataset. This leads to better performance and generalization capabil-
ities. Another area of research covers the field of natural language
image captioning, where a model needs to describe the contents
of a scene with words. This requires the model to learn hierarchi-
cal dependencies over large areas in an image. Both methods are
commonly not applied to LiDAR-based perception systems which
can mainly be attributed to the lack of openly available datasets for

130 conclusion

these tasks. Independent of the sensor modality however, this com-
bination of transfer learning and context understanding could be a
solution towards more general perception for open-world problems,
such as automated driving. Specifically, future work should consider
leveraging language models that are trained on tremendous amount
of data and learned highly complex object dependencies to initialize
the neural networks in the automated driving system. Thus, exten-
sive knowledge from other domains could be incorporated into the
system and can then be fit onto the context of automated driving.
This is similar to how humans would approach unusual encounters
while driving. Often similar objects or scenarios have been observed
in another context and therefore a human can adequately respond
to the situation. The strategy is to move closer to general artificial
intelligence and thus enable autonomous driving at human level
and above.

A
A P P E N D I X

contents

a.1 Scan-based Semantic Segmentation 131

a.2 A Metric to Quantify the Realism of LiDAR
Point Clouds 132

a.2.1 Implementation Details and Hyperpa-
rameters 133

a.2.2 Theoretical Lower Bound 135

a.2.3 Qualitative Results 135

a.3 Domain Adaptation via Data Generation for
Domain Mapping 136

a.3.1 Up-sampling Details 136

a.4 Domain Invariant Feature Learning 139

a.4.1 Pre-processing of the nuScenes dataset 139

a.4.2 Label Mapping for State of the Art
Comparisons 143

a.5 Point Cloud Generation with Continuous
Conditioning 144

a.5.1 Implementation Details 144

a.5.2 Additional Analysis 148

a.5.3 Additional Results 153

a.1 scan-based semantic segmentation

This section holds additional information about the scan unfolding
algorithm proposed in chapter 3.

The scan unfolding method is designed to be a proxy represen-
tation of the original raw sensor data with reduced mutual point
occlusions. The conducted back-projection is only necessary since the
dataset does not provide the direct sensor output or an index-map
for simple back-projection. When working in an actual autonomous
driving stack, the preprocessing needed for the scan unfolding can
be omitted, as the LiDAR scanner directly provides the depth-image
format.

The following provides algorithm 1 that exploits the distinct data
representation of the KITTI dataset to generate the desired scan pat-
tern. The algorithm is applied to the uncorrected scan data (without
ego-motion compensation), which is accessible via the raw data of
KITTI. The KITTI raw format lists LiDAR points of an accumulated

131

132 appendix

360 degree scan in order of their vertical index of the associated
sensor scan line. However, the crossovers between two consecutive
scan lines happen at the cut to the rear of the vehicle and are not
indicated in the provided data. Thus the task of detecting these
positions to assign each point to its vertical index remains and is
addressed by algorithm 1.

Algorithm 1: Scan Unfolding on KITTI: threshold is chosen
to be larger than the horizontal resolution (KITTI: threshold =
0.3°). The algorithm is published in [Triess et al. 2020].
Data: An array points of size N × 3, a tuple (H, W)
Result: projection of points with shape H ×W

depth←−
√

points2
x + points2

y + points2
z

rows←− GetRows(points)
columns←− GetColumns(points)
sort columns, rows and depth by decreasing depth
projection←− array of shape H ×W
projection[columns, rows] = depth

Function GetRows(points):
φ←− atan2(pointsy, pointsx)

jump←− |φ[1 :]− φ[: −1]| > threshold
jump←− [0] + jump
rows←− cumulative sum over jump
return rows

Function GetColumns(points):
φ←− atan2(pointsy, pointsx)

columns←−W · (π − φ)/(2π)
return columns

a.2 a metric to quantify the realism of lidar point

clouds

This section contains supplementary material for chapter 5 and cov-
ers details of the DNN architectures, hyperparameters, evaluation,
and additional qualitative results. Section A.2.1 contains detailed
listings of the hyperparameters of the metric network and an anal-
ysis of the training as additional information to the architecture
in section 5.3.2. Section A.2.3 provides additional qualitative results.

A.2 a metric to quantify the realism of lidar point clouds 133

a.2.1 Implementation Details and Hyperparameters

Table A.1 lists all layers, inputs, and operations of the proposed
DNN architecture. TensorFlow is used to implement online data
processing, neural network weight optimization, and network in-
ference. The implementation is oriented on the original PointNet++
implementation [Qi et al. 2017b]1. The Adam optimizer is used for
optimization. The learning rate is initially set to 1e−3 with exponen-
tial warm-up and decay.

Table A.1: Network Architecture: Detailed network architecture and input
format definition. The ID of each row is used to reference the
output of the row. ↑ indicates that the layer directly above is
an input. N denotes the number of LiDAR measurements. Qi
are the number of query points at abstraction level i. Ki are the
number of nearest neighbors to search at abstraction level i. UC
and UA are the number of output units of the classifier and
adversary, respectively. The table is based on [Triess et al. 2021b].

ID Inputs Operation Output Shape Description

1 LiDAR x, y, z [N × 3] Position of each
point relative to
sensor origin

Feature Extractor: Abstraction Module 1

2 ↑, Q1 Farthest point
sampling

[2048] Indices of Q1
query points

3 1, ↑ Group [2048× 3] Grouped sam-
pled points

4 1, 2, K1 Nearest neigh-
bor search

[2048× 10] Indices of the K1
nearest neigbors
per query

5 1, 2, ↑ Group [2048× 10× 3] Grouped neigh-
borhoods

6 ↑ Neighborhood
normalization

[2048× 10× 3] Translation
normalization
towards query
point

7 ↑ (Conv+Leaky
Rectified Linear
Unit (LReLU))
×2

[2048× 10× 64] Kernel 1 × 1,
stride 1

8 ↑ Conv+LReLU [2048× 10× 128] Kernel 1 × 1,
stride 1

1 PointNet++ code https://github.com/charlesq34/pointnet2

https://github.com/charlesq34/pointnet2

134 appendix

9 ↑ ReduceMax [2048× 128] Maximum over
neighborhood
features

Feature Extractor: Abstraction Module 2

10 3, Q2 Farthest point
sampling

[256] Indices of Q2
query points

11 3, 10, K2 Nearest neigh-
bor search

[256× 10] Indices of the
K2 nearest
neighbors per
query

12 3, 10, ↑ Group [256× 10× 3] Grouped neigh-
borhoods

13 ↑ Neighborhood
normalization

[256× 10× 3] Translation
normalization
towards query
point

14 9, 11 Group [256× 10× 128] Grouped fea-
tures

15 13, ↑ Concat features [256× 10× 131] Grouped fea-
tures with
xyz

16 ↑ (Conv+LReLU)
×2

[256× 10× 128] Kernel 1 × 1,
stride 1

17 ↑ Conv+LReLU [256× 10× 256] Kernel 1 × 1,
stride 1

18 ↑ ReduceMax [256× 256] Maximum over
neighborhood
features →
latent represen-
tation z

Classifier / Adversary

19 ↑ Dense+LReLU [256× 128]

20 ↑ Dropout [256× 128] Dropout ratio
50%

21 ↑ Dense [256×UC,A] Output logits
vector yC,A

22 ↑ Softmax [256×UC,A] Output prob-
ability vector
pC,A

In contrast to PointNet++, a KNN search is used instead of radius
search. PointNet++ operates on point clouds from the ShapeNet
dataset, which contains uniformly sampled points on object surfaces.
In LiDAR point clouds, points are not uniformly distributed and
with increasing distance to the sensor, also the distance between

A.2 a metric to quantify the realism of lidar point clouds 135

neighboring points increase. This work found KNN search more
practical to obtain meaningful neighborhoods in LiDAR point clouds
compared to radius search.

The outputs of the classifier C and adversary A have UC and UA
channels, respectively. The classifier outputs the scores for each of
the UC = 3 categories, namely Real, Synthetic, Misc. In the adversary,
the output has UA = 7 channels, one for each of the support sets.
However, fig. 5.2 only shows outputs for the two support sets from
the Real category. For simplicity, the details of the implementation are
not visualized in the respective figure and are indicated by the filter
triangle in the path between the feature extractor and the adversary.
The filter is implemented as a class weighting when computing the
loss from the adversary output. The class weights w for each dataset
d are set to

wd =

1, if d ∈ Real

0, otherwise
. (A.1)

This was found to be the easiest and most stable way to implement
the desired behavior in TensorFlow graph mode.

a.2.2 Theoretical Lower Bound

Generally, classification accuracy ACC is defined in range [0, 1].
However, the lower bound is actually 1

U with U being the number
of classes. The classes in the presented fair learning setup are set to
UC = 3 and UA = UReal

A + USynthetic
A + UMisc

A = 2 + 2 + 3 = 7. There-
fore, one would assume that if the network has the best possible
performance and the best possible fairness, the accuracy result to
ACCC ≈ 1 and ACCA ≈ 1

UA
= 1

7 . Due to the direct correspondence
between categories and datasets this is not the case for the adver-
sary. The resulting confusion matrices are schematically illustrated
in fig. A.1. The pseudo-diagonal for the adversary is caused by the
perfect classification capabilities of the classifier, which prevents a
perfect confusion in the adversary. The new lower bound of the
adversary accuracy in this state can now be formulated as

ACCA ≈
UC
UA

=
3
7
≈ 42.9% (A.2)

which is considerably higher than ACCA ≈ 1
UA

= 1
7 ≈ 14.3%.

a.2.3 Qualitative Results

This section provides additional visualizations. Fig. A.2 shows the
qualitative results of the realism metric when being applied to one
CARLA sample with varying additive noise. The quantitative results

136 appendix

R̃ S̃ M̃

R

S

M

1 0 0

0 1 0

0 0 1

R̃1 R̃2 S̃1 S̃2 M̃1 M̃2 M̃3

R1

R2

S1

S2

M1

M2

M3

1
2

1
2 0 0 0 0 0

1
2

1
2 0 0 0 0 0

1
2

1
20 0 0 0 0

1
2

1
20 0 0 0 0

0 0 0 0 1
3

1
3

1
3

0 0 0 0 1
3

1
3

1
3

0 0 0 0 1
3

1
3

1
3

R̃ S̃ M̃

R

S

M

Figure A.1: Lower Bound Confusion Matrix: The figure shows schematic
confusion matrices for the classifier (left) and the adversary
(right). Here, the classifier has UC = 3 categories (R, S, M) and
the adversary has UA = 7 output channels for the respective
datasets of the categories. If the network is trained with maxi-
mum accuracy (100%), the classifier confusion matrix is a diag-
onal matrix, as shown on the left. Assuming the adversary is
maximally confused in this state, a pseudo-diagonal confusion
emerges, increasing the theoretical lower bound of adversary
accuracy from 1

UA
to UC

UA
. The figure is based on [Triess et al.

2021b].

over the whole test split are presented in section 5.5.4. Fig. A.3 il-
lustrates the example scenes from section 5.5.5 in 3D for better
visualization of the detected anomalies.

a.3 domain adaptation via data generation for do-
main mapping

In this section additional information for the domain mapping ex-
periments in chapter 6 are provided.

a.3.1 Up-sampling Details

This section gives additional details on the up-sampling exper-
iments of section 6.1.5. The up-sampling process is based on
cylindrical depth projections of the LiDAR point clouds. Only
the vertical resolution of the LiDAR images is enhanced. The
bilinear interpolation is a traditional approach for which the
resize method from TensorFlow (tf.image.resize(images, size,

method=ResizeMethod.BILINEAR)) is used. For all other experi-
ments, the generator from the SRGAN architecture Ledig et al.
[2017] is used and for the GAN experiments, also the discriminator
architecture.

A.3 domain adaptation via data generation for domain mapping 137

0.04, 0.96, 0.00 0.15, 0.64, 0.21 0.27, 0.56, 0.21 0.30, 0.49, 0.21

(a) No noise (b) σ = 0.01 (c) σ = 0.03 (d) σ = 0.07

0.33, 0.44, 0.23 0.35, 0.38, 0.27 0.26, 0.42, 0.32 0.24, 0.44, 0.32

(e) σ = 0.1 (f) σ = 0.3 (g) σ = 0.7 (h) σ = 1.0

0.12, 0.38, 0.49 0.03, 0.27, 0.70 0.02, 0.20, 0.78

(i) σ = 3.0 (j) σ = 7.0 (k) σ = 10.0

Real
Synthetic
Misc

Figure A.2: CARLA Sample with Gaussian Noise: Example image series
of a single CARLA sample with additive Gaussian noise of
varying standard deviation σ. The colors show the probabilities
for each category at each local region. The numbers above each
image show the mean score per category for the entire scene.
When adding noise with small σ, the sample appears more
realistic but when the noise gets too strong, the data does not
contain any structuring anymore. The figure is based on [Triess
et al. 2021b].

138 appendix

(a) PandaSet (b) KITTI (c) nuScenes

Figure A.3: Localization of Anomalies: Shown are the same example
scenes from the main paper with low Real scores. The upper
images show the color-coded metric results, the lower images
are 3D visualization of the same scene for better understanding
of the scene contents. In (a), the metric marks a road section
with extreme elevation changes. The street is covered with
bumps. Additionally, there is a steep elevation gain in the rear
of the ego-vehicle (left side). In the lower half of (b), the metric
highlights seemingly floating branches of two trees that enter
the LiDAR field-of-view from above. The height-encoded color
shows the red branch clusters floating above the cyan road
surface. (c) shows an unusual scene in a dead end road with
steep hills surrounding the car. The figure is based on [Triess
et al. 2021b].

A.4 domain invariant feature learning 139

a.3.1.1 Implementation Details

Table A.2 lists all layers, inputs, and operations of the SRGAN
generator architecture. In the L{1,2}-CNN trainings, a weighted Lα

loss is minimized. The objective is formulated as

min
θG
Lα = min

θG

1
α|γ| ∑

(i,j)∈γ

∣∣∣rgt
i,j − rhr

i,j

∣∣∣ (A.3)

with the set of measured points γ, and rgt being the high-resolution
Ground Truth and rhr the prediction

rhr = GθG

(
rlr
)

(A.4)

from the low-resolution input rlr.
Table A.3 lists all layers, inputs, and operations of the SRGAN

discriminator architecture. Here, an adversarial loss, defined as

min
θG

max
θD

{
log
[
DθD

(
rgt)]+ log

[
1− DθD

(
GθG

(
rlr
))]}

(A.5)

is minimized. The Adam optimizer is used for optimization with an
initial learning rate of 1e−3.

a.3.1.2 Additional Experimental Results

Section 6.1.5 shows the realism metric results on up-sampled KITTI
data, while the original KITTI was also used to train the metric
model. Fig. A.4 shows three additional scenes that are up-sampled
with the same methods, but the original data is taken from the
PandaSet dataset, which a completely unknown dataset. A similar
behavior over the different up-sampling methods as to the KITTI
dataset can be observed.

a.4 domain invariant feature learning

This section is the appendix for chapter 7. Section A.4.1 explains
the pre-processing of the nuScenes dataset and section A.4.2 lists the
label mappings for the two state of the art comparision experiments.

a.4.1 Pre-processing of the nuScenes dataset

The nuScenes dataset requires additional pre-processing compared
to KITTI to be used in this work. Since moving objects are cap-
tured multiple times at different positions when accumulating point
clouds, it is essential to filter them out. nuScenes does not provide
such a dynamic flag, therefore the Ground Truth bounding boxes

140 appendix

Table A.2: SRGAN Generator Architecture: Detailed network architecture
and input format definition of the SRGAN generator [Ledig
et al. 2017]. The ID of each row is used to reference the output of
the row. ↑ indicates that the layer directly above is an input. N
denotes the number of measured LiDAR points. H denotes the
number of layers in the LiDAR sensor and W are the number
of layer pulses fired per 360◦ revolution. The cylindrical depth
projection is either retrieved directly from the raw image of the
sensor or with a back-projection by computing (r, ϕ, θ) from
(x, y, z). Missing measurements are set to a constant distance in
the dense projection and are masked in the loss computation.
The table is based on [Triess et al. 2021b].

ID Inputs Operation Output Shape Description

Input features from LiDAR scan

1 LiDAR x, y, z [N × 3] Position of each
point relative to
sensor origin

2 ↑ Projection
(x, y, z)→ (r, ϕ, θ)

[H, W, 1] Cylindrical
depth projec-
tion r with θ
over H and ϕ
over W

Residual blocks

3 ↑ Conv+PReLU [H, W, 64] Kernel 9 × 9,
stride 1

4 ↑ Conv+BN+PReLU [H, W, 64] Kernel 3 × 3,
stride 1

5 ↑ Conv+BN [H, W, 64] Kernel 3 × 3,
stride 1

6 ↑, 3 Add [H, W, 64] Element-wise
addition

7 ↑ Repeat (4-6) [H, W, 64] ×16 repetition of
residual blocks

8 ↑ Conv+BN [H, W, 64] Kernel 3 × 3,
stride 1

9 ↑, 3 Add [H, W, 64] Element-wise
addition

Super-resolution blocks

10 ↑ Conv [H, W, 256] Kernel 3 × 3,
stride 1

11 ↑ SubpixelShuffle [2 · H, W, 128] Reshape by
moving values
from the chan-
nel to the spatial
dimension

12 ↑ PReLU [2 · H, W, 128]
13 ↑ Repeat (10-12)

[
fup · H, W, 128

]
×log2 fup repeti-
tion with fup as
the desired up-
sampling factor

14 ↑ Conv
[

fup · H, W, 1
]

Kernel 9 × 9,
stride 1

A.4 domain invariant feature learning 141

Table A.3: SRGAN Discriminator Architecture: Detailed network archi-
tecture and input format definition of the SRGAN discrimina-
tor [Ledig et al. 2017]. The input to the network is either the
ground truth rgt or the prediction from the generator rhr. The
table is based on [Triess et al. 2021b].

ID Inputs Operation Output Shape Description

1 LiDAR rgt or rhr [
fup · H, W, 1

]
High-resolution
cylindrical
depth projection

Conv blocks

2 ↑ Conv+LReLU
[

fup · H, W, 64
]

Kernel size 3×3,
stride 1

3 ↑ Conv+BN+LReLU
[

fup
2 H, 1

4W, 64
]

Kernel 5 × 5,
strides 2×4

4 ↑ Conv+BN+LReLU
[

fup
2 H, 1

4W, 128
]

Kernel 3 × 3,
stride 1

5 ↑ Conv+BN+LReLU
[

fup
4 H, 1

8W, 128
]

Kernel 3 × 3,
stride 2

6 ↑ Conv+BN+LReLU
[

fup
4 H, 1

8W, 256
]

Kernel 3 × 3,
stride 1

7 ↑ Conv+BN+LReLU
[

fup
4 H, 1

16W, 256
]

Kernel 3 × 3,
strides 1×2

8 ↑ Conv+BN+LReLU
[

fup
4 H, 1

16W, 512
]

Kernel 3 × 3,
stride 1

9 ↑ Conv+BN+LReLU
[

fup
8 H, 1

32W, 512
]

Kernel 3 × 3,
stride 2

Reduction

10 ↑ Flatten
[

fup
2 · H ·W

]
11 ↑ Dense+LReLU [1024]
12 ↑ Dense [1]

142 appendix

Scene 1 Scene 2 Scene 3
G

ro
un

d
Tr

ut
h

L
1-

C
N

N
Bi

lin
ea

r
L

2-
C

N
N

G
A

N

Figure A.4: PandaSet Up-Sampling: Shown are three example scenes from
the PandaSet test split. The first row shows the high-resolution
Ground Truth, i.e. target. The four rows below show the cor-
responding reconstructions of different techniques for 4× up-
sampling. Note that the query points are sampled at different
locations for each image, leading to varying score computation
for similar regions, and that the height above ground of the
query points is not encoded in this visualization. The figure is
based on [Triess et al. 2021b]. (Real, Synthetic, Misc)

A.4 domain invariant feature learning 143

(a) Accumulated key frames with se-
mantics

(b) Voxelized accumulated key frames

(c) Accumulated unlabeled frames (d) Voxelized combined data

Figure A.5: Visualization of nuScenes pre-processing: The accumulated
semantic data from nuScenes (a) is too sparse to serve as a
proper training target, since many voxels would be marked as
free-space, though they actually contain objects (b). Therefore,
the additional unlabeled data (c) is used to create dense geom-
etry with sparse semantic information as a training target (d).

with dynamic properties of the object detection benchmark are used
to generate the missing dynamic labels.

Since nuScenes is quite sparse, even when accumulated, the addi-
tional 90% unlabeled frames are also used for the geometry target.
For these frames, no Ground Truth bounding boxes exist to recover
the dynamic flag from. Therefore, the kinematic properties of all
dynamic objects are estimated for the unlabeled frames and used to
automatically label the dynamic objects.

One other drawback of the nuScenes dataset is the simplification
of the ego-pose, which re-sets the vertical position to zero for each
frame. This results in surface errors in distance when the vehicle
drives on hilly ground. Using Iterative Closest Point (ICP) algorithm
could improve the target data generation and potentially further
improve the achieved results.

a.4.2 Label Mapping for State of the Art Comparisons

Section 7.5.5.2 compares the performance of the proposed method
to [Yi et al. 2021]. Fig. A.4 lists the class mapping, proposed by Yi
et al. [2021], as used for the experiments in that section.

Section 7.5.5.1 compares the performance of the proposed method
to [Langer et al. 2020]. In their work, the nuScenes dataset is re-
labeled with the same classes as SemanticKITTI. Therefore, no extra

144 appendix

label mapping is needed. The labels are published together with the
paper.

a.5 point cloud generation with continuous condi-
tioning

This section contains supplementary material for chapter 8 and cov-
ers details of the DNN architectures, hyperparameters, evaluation,
and additional results. Section A.5.1 gives all the training details of
our proposed approach. For the sake of completeness, section A.5.2
discusses further experiments that are indicated in the main paper.
Section A.5.3 presents further qualitative and quantitative results to
complement the results section of the main paper.

a.5.1 Implementation Details

a.5.1.1 Architecture

Table A.5 lists all layers, inputs, and operations of the DNN architec-
ture for the generator model. The code2 from the original PyTorch
implementation of TreeGAN [Shu et al. 2019] is used. Except for
the input layers, the configuration is equal to the one of TreeGAN.
Table A.6 lists all layers, inputs, and operations of the discriminator
DNN architecture. Here, the PointNet [Qi et al. 2017a] contained in
the TreeGAN code was used as a basis. The split of the network for
the auxiliary classifier mode is located directly after the PointNet
feature extractor layers. It is followed by two identical sequences of
linear operations, where the adversarial head outputs a vector of
size 1, while the regression head outputs a vector of size d as the
continuous conditioning parameter.

a.5.1.2 Training

Two Adam optimizers are used for optimization, one for the pa-
rameters of the generator and one for the discriminator. For both,
the learning rate is set to 10−4. Additionally, the two weighting
factors λadv and λreg for the losses are optimized. The losses for the
generator and discriminator are formulated as

L = λadv · Ladv + λreg · Lreg

with the adversarial loss Ladv and the regression loss Lreg. In order
to avoid simply learning weighting factors of zero and to ensure
stable training convergence at the same time, the loss is implemented
as

L = Ladv · evadv + vadv + Lreg · evreg + vreg

2 TreeGAN code: https://github.com/seowok/TreeGAN

https://github.com/seowok/TreeGAN

A.5 point cloud generation with continuous conditioning 145

Table A.4: Label Mapping for [Yi et al. 2021]: Mapping of the classes from
the SemanticKITTI and the nuScenes dataset, as used by Yi et al.
[2021].

SemanticKITTI mapped nuScenes

person » person « adult, child, con-
struction worker,
police officer, per-
sonal mobility

road, lane-marking,
parking

» road « drivable surface

sidewalk » sidewalk « sidewalk

terrain » terrain « terrain

car » car « car

bicycle » bicycle « bicycle

motorcycle » motorcycle « motorcycle

bus, other vehicle » other vehicle « trailer, construction
vehicle, emergency
vehicle, bus

truck » truck « truck

vegetation, trunk » vegetation « vegetation

unlabeled, outlier,
on-rails, bicy-
clist, motorcyclist,
other-ground,
building, fence,
other-structure,
pole, traffic-sign,
other-object

» noise « noise, animal,
stroller, wheelchair,
barrier, debris,
pushable/pullable,
traffic-cone, bicycle
rack, manmade, ego
vehicle

146 appendix

Table A.5: Generator Architecture: Detailed network architecture and in-
put format definition. The ID of each row is used to reference
the output of the row. ↑ indicates that the layer directly above
is an input. d is the number of dimensions of the conditioning
parameter. In case of the dimensions extent d = 3, while for the
influence of the object part percentage d = 1. This table is based
on [Triess et al. 2022a].

ID Inputs Operation Output Shape

1 z Sample latent vector z ∼ Z = N (0, I) [96]
2 ycond Sample continuous parameter ycond ∼

KDE(yreal)
[d]

Label Handling

3 1 Linear Layer [64]
4 2 Linear Layer [32]
5 3, 4 Concatenate [1× 96]

Tree Graph Convolution (TreeGC) Network

6 ↑ Tree Graph Convolution+LReLU [1× 256]
7 ↑ Branching [2× 256]
8 ↑ Tree Graph Convolution+LReLU [2× 256]
9 ↑ Branching [4× 256]

10 ↑ Tree Graph Convolution+LReLU [4× 256]
11 ↑ Branching [8× 256]
12 ↑ Tree Graph Convolution+LReLU [8× 128]
13 ↑ Branching [16× 128]
14 ↑ Tree Graph Convolution+LReLU [16× 128]
15 ↑ Branching [32× 128]
16 ↑ Tree Graph Convolution+LReLU [32× 128]
17 ↑ Branching [2048× 128]
18 ↑ Tree Graph Convolution [2048× 3]

A.5 point cloud generation with continuous conditioning 147

Table A.6: Discriminator Architecture: Detailed network architecture and
input format definition. The ID of each row is used to reference
the output of the row. ↑ indicates that the layer directly above
is an input. d is the number of dimensions of the conditioning
parameter. In case of the dimensions extent d = 3, while for the
influence of the object part percentage d = 1. This table is based
on [Triess et al. 2022a].

ID Inputs Operation Output Shape Description

1 point
cloud x

x, y, z [2048× 3] Input point
cloud
x = xreal
for real data
and x = xgen
for generated
data.

PointNet Feature Extractor

2 ↑ Conv1D+LReLU [2048× 64] Kernel size
1× 1, stride 1

3 ↑ Conv1D+LReLU [2048× 128] Kernel size
1× 1, stride 1

4 ↑ Conv1D+LReLU [2048× 256] Kernel size
1× 1, stride 1

5 ↑ Conv1D+LReLU [2048× 512] Kernel size
1× 1, stride 1

6 ↑ Conv1D+LReLU [2048× 1024] Kernel size
1× 1, stride 1

7 ↑ MaxPool [1024] Global fea-
tures

Adversarial Output Head

8 ↑ Linear Layer+LReLU [1024]
9 ↑ Linear Layer+LReLU [512]

10 ↑ Linear Layer+LReLU [512]
11 ↑ Linear Layer [1] Output vector

D(x)

Regression Output Head

12 7 Linear Layer+LReLU [1024]
13 ↑ Linear Layer+LReLU [512]
14 ↑ Linear Layer+LReLU [512]
15 ↑ Linear Layer [d] Output vector

ŷ(x)

148 appendix

with vadv and vreg being the trainable variables. Both variables are
initialized to v = 0 at the beginning of the training, such that both
loss parts are equally weighted.

a.5.2 Additional Analysis

a.5.2.1 Loss Variations

Both the generator and the discriminator loss consist of an adver-
sarial part and a regression part. The generator regression loss
computes the error between the requested parameter ycond and the
corresponding discriminator prediction, while the discriminator re-
gression is defined as the error between the parameter of the real
data yreal and its corresponding prediction ŷreal, such that

LG,reg = Lreg
(
ycond, ŷgen

)
and

LD,reg = Lreg (yreal, ŷreal) .

It is notable that LD,reg is only computed for the real samples
and not for the generated samples and that LG,reg uses the dis-
criminator prediction ŷgen instead of the configuration of the actu-
ally generated object ygen. These design choices can be attributed
to the fact that in many cases the actual parameter ygen of the
generated point cloud xgen is unknown, i.e. cannot be trivially re-
trieved from xgen. Since the application of influencing object di-
mensions offers the possibility to simply compute ygen from xgen
with ygen = ‖max(xgen) −min(xgen)‖, additional loss variations
that exploit this property are investigated.

First, the generator and discriminator regression losses are defined
as

LG,reg = Lreg
(
ycond, ygen

)
and

LD,reg =
1
2

[
Lreg (yreal, ŷreal) + Lreg

(
ygen, ŷgen

)]
,

respectively. The experiments showed that this leads to slightly better
training convergence, but not to significant performance gains in the
final model in terms of FPD or MSE. Therefore, it can be concluded
that the proposed losses of chapter 8 are a good mechanism to train
the model when ygen is otherwise unknown, as for most applications.

Second, another loss configuration is investigated. As for the
discriminator, the proposed method skips the generated part of the

A.5 point cloud generation with continuous conditioning 149

loss entirely. However, it is also possible to formulate the losses as
follows

LG,reg = Lreg
(
ycond, ŷgen

)
and

LD,reg =
1
2

[
Lreg (yreal, ŷreal) + Lreg

(
ycond, ŷgen

)]
,

where ygen from above is replaced with ŷreal in the generator and
ycond in the discriminator. However, experiments showed that this
leads to unstable training and results in a significantly worse model
performance. This can be attributed to false feedback for the discrim-
inator, especially in the beginning of the training. At that time, the
generator is not yet well enough trained to output shapes that are
close to the requested parameters (ygen 6= ŷgen). Therefore, it is best
to not include the generated path for the discriminator regression at
all.

a.5.2.2 Other Conditioning Concepts

Additionally to the proposed method, other configurations for the
continuous conditioning of point cloud generation are investigated.
These methods either do not yield promising results or are limited
in applicability. Therefore, they are not included in chapter 8. For
the sake of completeness and reproducibility, all relevant imple-
mentation details are included here and the overall results of the
experiments are stated.

cgan with continuous parameters The concepts of cGAN
(refer to fig. A.6) and CcGAN [Ding et al. 2021] are adapted to
work with TreeGAN [Shu et al. 2019] as the backbone network. In
contrast to the proposed approach, this is referred to as an implicit
conditioning scheme, since there is no explicit excitation that forces
the model to use the conditioning input explicitly. The discriminator
receives both the point cloud and the conditioning parameter as an
input. The loss function of the generator G is defined as

LG = −Ez∼Z [D (ycond, G(ycond, z))]

where Z represents the latent code distribution which follows a
Normal distribution, such that z ∈ N (0, 1). The loss function of the
discriminator is defined as

LD =Ez∼Z [D (ycond, G(ycond, z))]
−Ex∼R [D (yreal, x)] + Lgp

with the gradient penalty Lgp as defined in chapter 8.
As a first variant, the traditional label incorporation introduced by

cGAN is used [Mirza and Osindero 2014]. This is referred to as the

150 appendix

condition

ycond

noise

z
G

xgen

xreal

yreal

da
ta

se
t

D
D(x)

Ladv

Figure A.6: cGAN with Continuous Parameters: The generator G gener-
ates a point cloud xgen from a random vector z and a con-
tinuous parameter y. The discriminator receives a set of a
point cloud and a parameter either from the real {yreal, xreal}
or the generated distribution {ycond, xgen}. It then outputs an
estimate whether the set is real or generated with which the ad-
versarial loss Ladv is computed. This figure is based on [Triess
et al. 2022a].

ycond

z

co
nc

at Tree
GCN

xgen

(a) Vanilla Generator

Point
Net

y

x

co
nc

at

FC D(x)

(b) Vanilla Discriminator

ycond

z

FC
FC

Tree
GCN

xgen

(c) Projection Generator

Point
Net

FC

y

x

FC

D(x)

(d) Projection Discriminator

Figure A.7: Parameter Handling Details: The figure shows the generator
and discriminator input handling for Vanilla and Projection
cGAN. This figure is based on [Triess et al. 2022a].

A.5 point cloud generation with continuous conditioning 151

Vanilla cGAN. The generator details are depicted in fig. A.7a and
the discriminator details are shown in fig. A.7b. The generator label
incorporation simply concatenates the latent and the label vector
prior to feeding it to the Graph Convolution Network (GCN). In
the discriminator, the point cloud is processed by PointNet which
outputs a feature vector to which the label vector is concatenated
before being processed by a final set of linear layers.

For the second variant, the label input configuration proposed by
CcGAN [Ding et al. 2021] is used to handle continuous parameters.
Their approach is inspired by the method of label projection [Miyato
and Koyama 2018], which is why this chapter refers to this variant
as Projection cGAN. Details for the generator and discriminator are
shown in fig. A.7c and fig. A.7d, respectively. In contrast to Vanilla
cGAN, both the latent and the label vectors are passed through a
linear layer first, after which both are added together element-wise.
For the discriminator, the label vector is propagated through a linear
layer after which the inner product with the features from PointNet
is calculated. The features are passed through the final set of linear
layers after which the result is added to the result of the inner
product.

As mentioned in chapter 8, both variants did not achieve satisfying
results. The Vanilla variant ignored the conditioning entirely which
led to very high MSE values (about four magnitudes higher than our
proposed method). The performance in terms of FPD is close to the
backbone. For the Projection variant, very unstable training courses
were observed that often led to a collapse of the training with the
model performing significantly worse in all metrics compared to all
other models.

cgan with regression The ability of influencing the dimen-
sions of an object has the major advantage that it is possible to
directly compute the dimensions from the generated object to check
whether the generator worked properly. This can also be used as a
training signal. Fig. A.8 shows an alternative approach for the pro-
posed architecture, where a standard unconditioned discriminator is
combined with an additional regression component. The generation
of the desired dimensions is explicitly enforced with the regression
loss, therefore this variant is referred to as the Regression cGAN.
The generator loss is defined as

LG = −Ez∼Z [D (G(ycond, z))] + λreg · Lreg
(
ycond, ygen

)
where ygen are the actual dimensions calculated from the generated
point cloud, and λreg is the weighting factor for the regression loss.
The generator loss is solely responsible to enforce the adherence
to the dimension conditioning since the discriminator is not condi-

152 appendix

x

condition

ycond

noise

z
G

xgen

extract from

ygen

Lreg

ycond

xreal

yreal

da
ta

se
t

D
D(x)

Ladv

Figure A.8: cGAN with Additional Regression: The generator G gener-
ates a point cloud xgen from a random vector z and a regres-
sion label y. The discriminator either receives a real or a gen-
erated point cloud and predicts the probability of the sample
originating from the real distribution. Additionally, the dimen-
sions ygen of the generated point cloud are extracted which are
then used to compute the regression error Lreg. This figure is
based on [Triess et al. 2022a].

Table A.7: Quantitative Comparison to Regression cGAN: Results are re-
ported for the classes “Chair” and “Airplane”. All evaluations
are conducted on a hold-out validation split. For both FPD and
MSE smaller values indicate a better performance. MSE is given
in % relative to the size of a unit cube. This table is based
on [Triess et al. 2022a].

Model Chair Airplane
FPD MSE FPD MSE

Reg. cGAN 1.4420 1.85 0.8802 20.19

Ours 1.5290 0.28 0.8691 0.30

tioned on the label input. The discriminator only judges from which
distribution a sample originates from. Its loss function is defined as

LD = Ez∼Z [D (G(ycond, z))]−Ex∼R [D(xreal)] + Lgp.

The training behavior of the Regression cGAN is fundamentally
different to the one of the proposed method. It can be observed that
FPD is optimized first, hitting a minimum value at a quite early
point during training where MSE is still quite high. The results for
this checkpoint are listed in table A.7. From this point onward MSE
is further minimized at the expense of FPD performance. In contrast
to the proposed method, Regression cGAN aims at minimizing MSE
down to zero while accepting FPD values that are magnitudes higher

A.5 point cloud generation with continuous conditioning 153

than for the proposed method. This means no realistic object shapes
are being generated.

Considering these results and the fact that Regression cGAN
can only be used for specific applications where ygen can easily
be retrieved from the generated data, it can be concluded that the
proposed method is superior to Regression cGAN. The proposed
method offers a much easier and more stable handling of training
while resulting in a very good performing model that is applicable
to many scenarios.

a.5.3 Additional Results

Table A.8 gives details on the region-based performance of the five
largest classes of the ShapeNetPart dataset. The class distribution of
the dataset is shown in fig. A.9. For the experiments, classes with
less than 1, 000 object shapes are not considered. The quantitative
results, especially when comparing the proposed method to the
chosen baselines, also depend on the distribution of the influencing
parameter. For comparison, fig. A.10 shows the distribution of the
five largest classes in terms of their extent in object height and width.
While some classes, like “Table”, have a wide distribution, others are
more densely packed, like “Car”. Especially for the “Lamp” class,
the stretching baseline (B2) achieves bad performance in terms of
FPD, which can be attributed to its unique distribution.

Fig. A.11 gives an overview on the quality and the diversity of the
generated samples for the five different shapes.

154 appendix

Table A.8: Region-based Performance: The table shows performances for
three sampling regions (σ1, σ2, σ3) of the data distribution for the
proposed architecture. The model is trained with two different
sampling strategies each: the proposed version where labels are
sampled from the KDE of the distributions (areas of fig. 8.4),
and the default version where labels are sampled from the
list of labels contained in the dataset (marks of fig. 8.4). For
each σ-region, 1000 samples are generated. Reported are the
MSE of the dimension regression and the FPD of the generated
samples. Especially for less densely populated regions, i.e.σ3, the
proposed sampling strategy achieves better results. This table is
based on [Triess et al. 2022a].

Shape Label Sampling FPD (↓) MSE [%] (↓)
σ1 σ2 σ3 σ1 σ2 σ3

Table proposed distr. sampling 4.7881 11.1556 83.1944 0.14 0.27 17.49
from dataset samples 5.5063 23.1117 153.7859 0.25 1.15 52.01

Chair proposed distr. sampling 3.1137 2.4310 18.3729 0.22 0.26 6.51
from dataset samples 2.5915 3.8257 138.0703 0.13 0.41 25.30

Airplane proposed distr. sampling 2.8487 1.6660 22.4949 0.20 0.36 7.62

from dataset samples 2.5138 2.0912 42.4436 0.17 0.39 5.17

Car proposed distr. sampling 4.7105 11.8133 32.1120 0.61 0.89 3.74
from dataset samples 3.7981 8.1593 60.2905 0.77 1.13 4.13

Lamp proposed distr. sampling 5.7873 20.2216 111.7557 0.44 1.84 11.50
from dataset samples 4.4660 26.0117 290.8956 1.36 8.16 69.97

A.5 point cloud generation with continuous conditioning 155

Ta
ble

Chair

Airp
lan

e
Car

Lam
p

Guita
r

Lap
to

p
Knife

Pist
ol

M
oto

rb
ike

M
ug

Sk
ate

boar
d

Bag

Ear
phone

Rock
etCap

0

1,000

2,000

3,000

4,000

5,000

6,000

5,
26

6
3,

74
6

2,
69

0
1,

82
4

1,
54

6
78

7
44

5
39

2
27

5
20

2
18

4
15

2
76 69 66 55

N
um

be
r

of
Sa

m
pl

es

Figure A.9: Dataset Class Distribution: Shown is the class distribution of
the ShapeNetPart dataset [Yi et al. 2016]. The five largest classes
are used for the experiments: “Table”, “Chair”, “Airplane”,
“Car”, and “Lamp”. This figure is based on [Triess et al. 2022a].

156 appendix

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Object Width (∆y)

O
bj

ec
t

H
ei

gh
t

(∆
z)

(a) Table

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Object Width (∆y)

O
bj

ec
t

H
ei

gh
t

(∆
z)

(b) Chair

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Object Width (∆y)

O
bj

ec
t

H
ei

gh
t

(∆
z)

(c) Airplane

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Object Width (∆y)

O
bj

ec
t

H
ei

gh
t

(∆
z)

(d) Car

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Object Width (∆y)

O
bj

ec
t

H
ei

gh
t

(∆
z)

(e) Lamp

Figure A.10: Region-classified Dimension Distribution: Shown are the
sample distributions of five different object classes according
to their extent in height ∆z and width ∆y. The length ∆x
of the object is not considered in this visualization. Each
mark corresponds to one shape in the dataset. The three
colors represent the resulting regions from KNN classifier
with k=20 based on a KDE. The regions correspond to 1σ ≈
68% (green), 2σ ≈ 27% (orange), and 3σ = 5% (blue) of the
entire data distribution. (Best viewed in color.) This figure is
based on [Triess et al. 2022a].

A.5 point cloud generation with continuous conditioning 157

Ta
bl

e
C

ha
ir

A
ir

pl
an

e
C

ar
La

m
p

Figure A.11: Example Showcase: The figure shows shapes generated with
the proposed method from randomly sampled latent and
conditioning parameters. The conditioning parameters are
sampled from the KDE of the real data distribution, therefore
only shapes for realistic dimensions are shown here. This
figure is based on [Triess et al. 2022a].

L I S T O F F I G U R E S

Figure 1.1 SAE J3016 Levels of Driving Automation . . . 2

Figure 1.2 Example for Environment Perception 3

Figure 1.3 Structure of Dissertation 6

Figure 2.1 LiDAR Measurement Principle 10

Figure 2.2 LiDAR Scene Scanning 10

Figure 2.3 LiDAR Scanning Pattern 11

Figure 2.4 Example Scene with Task Annotations 12

Figure 2.5 Generative Adversarial Network 15

Figure 2.6 Conditional Generative Adversarial Network 16

Figure 3.1 Cylindrical Point Cloud Projection 19

Figure 3.2 Overfitting . 23

Figure 3.3 Semi Local Convolution 26

Figure 4.1 Overview of Transfer Learning 32

Figure 4.2 Intersections between Source and Target Do-
mains . 33

Figure 4.3 Domain-Invariant Data Representation 36

Figure 4.4 Domain Mapping 37

Figure 4.5 Domain-Invariant Feature Learning 38

Figure 5.1 Proposed Approach 46

Figure 5.2 Metric Architecture 53

Figure 5.3 Accuracy vs. Fairness 59

Figure 5.4 Metric Results 60

Figure 5.5 Qualitative Performance on Unknown Data . 61

Figure 5.6 Learned Feature Embedding 62

Figure 5.7 Point Cloud Distortion 63

Figure 5.8 Localization of Anomalies 64

Figure 6.1 Up-sampling Network 69

Figure 6.2 Up-sampled KITTI Scene 70

Figure 6.3 Metric Scores for Up-Sampling Methods . . . 73

Figure 6.4 Qualitative Up-Sampling and Segmentation
Results . 75

Figure 6.5 Sim2Real Network 78

Figure 7.1 Semantic Scene Completion 87

Figure 7.2 Backbone Network Architecture 88

Figure 7.3 Qualitative Segmentation Results 97

Figure 7.4 Segmentation Comparison to Langer et al. [2020]101

Figure 8.1 Generated Objects conditioned on different
Dimensions . 107

Figure 8.2 Architecture 111

Figure 8.3 Model Details 112

Figure 8.4 Region-classified Dimension Distribution . . 115

Figure 8.5 Distribution Sampling Performance 119

159

Figure 8.6 Manipulation of Chair Height 119

Figure 8.7 Manipulation of Table Width 120

Figure 8.8 Generation Diversity 121

Figure 8.9 Latent Interpolation 121

Figure 8.10 Setting Percentage of Object Parts 122

Figure A.1 Lower Bound Confusion Matrix 136

Figure A.2 CARLA Sample with Gaussian Noise 137

Figure A.3 Localization of Anomalies 138

Figure A.4 PandaSet Up-Sampling 142

Figure A.5 Visualization of nuScenes pre-processing . . . 143

Figure A.6 cGAN with Continuous Parameters 150

Figure A.7 Parameter Handling Details 150

Figure A.8 cGAN with Additional Regression 152

Figure A.9 Dataset Class Distribution 155

Figure A.10 Region-classified Dimension Distribution . . 156

Figure A.11 Example Showcase 157

L I S T O F TA B L E S

Table 3.1 Semantic segmentation performance 22

Table 3.2 Performance for different network sizes . . . 23

Table 3.3 Overall Results 27

Table 3.4 Scaled Network Performance 28

Table 5.1 GAN Evaluation Measures 49

Table 5.2 Datasets . 57

Table 6.1 Semantic Segmentation Performance 76

Table 6.2 Semantic Segmentation Performance 82

Table 7.1 Label Mapping 92

Table 7.2 Semantic Segmentation Baseline 94

Table 7.3 Influence of Target Geometry Information on
Segmentation Performance 96

Table 7.4 Influence of Domain Losses on Segmentation
Performance 98

Table 7.5 Segmentation Comparison to Langer et al. [2020]100

Table 7.6 Segmentation Comparison to Yi et al. [2021]
and other Baselines 102

Table 8.1 Quantitative Comparison 118

Table A.1 Network Architecture 133

Table A.2 SRGAN Generator Architecture 140

Table A.3 SRGAN Discriminator Architecture 141

Table A.4 Label Mapping for [Yi et al. 2021] 145

Table A.5 Generator Architecture 146

Table A.6 Discriminator Architecture 147

160

list of tables 161

Table A.7 Quantitative Comparison to Regression cGAN 152

Table A.8 Region-based Performance 154

B I B L I O G R A P H Y

P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas. Learning
Representations and Generative Models for 3D Point Clouds. In
Proc. of the International Conf. on Machine learning (ICML), 2018.
(Cited on pages 49, 50, 106, 108, 114, and 118.)

C. Agia, R. Cheng, Y. Ren, and B. Liu. S3CNet: A Sparse Semantic
Scene Completion Network for LiDAR Point Clouds. In Proc.
Conf. on Robot Learning (CoRL), pages 2148–2161, 2020. (Cited on
page 13.)

I. Alonso, L. Riazuelo, L. Montesano, and A. C. Murillo. Domain
Adaptation in LiDAR Semantic Segmentation. arXiv.org, 2020.
(Cited on pages 36, 37, and 43.)

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. arXiv.org,
2017. (Cited on pages 49, 50, and 113.)

S. Arora, A. Risteski, and Y. Zhang. Do GANs learn the distribution?
Some Theory and Empirics. In Proc. of the International Conf. on
Learning Representations (ICLR), 2018. (Cited on pages 49 and 50.)

R. Atienza. A Conditional Generative Adversarial Network for
Rendering Point Clouds. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2019. (Cited on page 112.)

V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A Deep Con-
volutional Encoder-Decoder Architecture for Image Segmentation.
In IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI),
pages 2481–2495, 2017. (Cited on page 14.)

S. A. Baur, F. Moosmann, S. Wirges, and C. B. Rist. Real-time 3D
LiDAR Flow for Autonomous Vehicles. In Proc. IEEE Intelligent Ve-
hicles Symposium (IV), pages 1288–1295, 2019. (Cited on page 106.)

J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss,
and J. Gall. SemanticKITTI: A Dataset for Semantic Scene Under-
standing of LiDAR Sequences. In Proc. of the IEEE International
Conf. on Computer Vision (ICCV), pages 9296–9306, 2019. (Cited on
pages 11, 14, 17, 18, 26, 41, 81, and 91.)

S. Benaim and L. Wolf. One-Sided Unsupervised Domain Mapping.
In Advances in Neural Information Processing Systems (NeurIPS), 2017.
(Cited on page 37.)

C. F. Benz. Fahrzeug mit Gasmotorenbetrieb, 1886. Publication Date:
1886/01/29. DE. Patent 37435. (Cited on page 1.)

163

164 bibliography

A. Beutel, J. Chen, Z. Zhao, and E. H. Chi. Data Decisions and
Theoretical Implications when Adversarially Learning Fair Repre-
sentations. In Workshop on Fairness, Accountability, and Transparency
in Machine Learning, 2017. (Cited on pages 53, 55, and 56.)

M. Bijelic, T. Gruber, F. Mannan, F. Kraus, W. Ritter, K. Dietmayer,
and F. Heide. Seeing Through Fog Without Seeing Fog: Deep
Multimodal Sensor Fusion in Unseen Adverse Weather. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 11679–11689, 2020. (Cited on page 42.)

A. Borji. Pros and cons of GAN evaluation measures. Computer
Vision and Image Understanding (CVIU), pages 41–65, 2019. (Cited
on pages 47 and 48.)

A. Boulch, B. L. Saux, and N. Audebert. Unstructured Point Cloud
Semantic Labeling Using Deep Segmentation Networks. In Pro-
ceedings of the Eurographics Workshop on 3D Object Retrieval, 2017.
(Cited on page 13.)

A. Bühler. GAN-based Synthesis of 3D Point Clouds conditioned
on Continuous Object Dimensions. Master’s thesis, University of
Stuttgart, 2021. (Cited on page 106.)

P. P. Busto and J. Gall. Open Set Domain Adaptation. In Proc. of the
IEEE International Conf. on Computer Vision (ICCV), pages 754–763,
2017. (Cited on page 43.)

L. Caccia, H. van Hoof, A. Courville, and J. Pineau. Deep Generative
Modeling of LiDAR Data. In Proc. IEEE International Conf. on
Intelligent Robots and Systems (IROS), pages 5034–5040, 2019. (Cited
on pages 37, 47, and 50.)

H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krish-
nan, Y. Pan, G. Baldan, and O. Beijbom. nuScenes: A Multimodal
Dataset for Autonomous Driving. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 11618–11628, 2020.
(Cited on pages 3, 11, 20, 41, 57, and 91.)

B. Caine, R. Roelofs, V. Vasudevan, J. Ngiam, Y. Chai, Z. Chen,
and J. Shlens. Pseudo-labeling for Scalable 3D Object Detection.
arXiv.org, 2021. (Cited on page 40.)

A. Carballo, J. Lambert, A. Monrroy, D. Wong, P. Narksri, Y. Kit-
sukawa, E. Takeuchi, S. Kato, and K. Takeda. LIBRE: The Multiple
3D LiDAR Dataset. In Proc. IEEE Intelligent Vehicles Symposium
(IV), pages 1094–1101, 2020. (Cited on page 42.)

A. Chang, M. Savva, and C. D. Manning. Learning Spatial Knowl-
edge for Text to 3D Scene Generation. In Proc. of the Conf. on

bibliography 165

Empirical Methods in Natural Language Processing (EMNLP), pages
2028–2038, 2014. (Cited on page 110.)

A. Chang, W. Monroe, M. Savva, C. Potts, and C. D. Manning. Text
to 3D Scene Generation with Rich Lexical Grounding. In Proc. of
the International Joint Conf. on Natural Language Processing (IJCNLP),
pages 53–62, 2015a. (Cited on page 110.)

A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu.
ShapeNet: An Information-Rich 3D Model Repository. arXiv.org,
2015b. (Cited on pages 49, 50, 54, and 114.)

W.-G. Chang, T. You, S. Seo, S. Kwak, and B. Han. Domain-Specific
Batch Normalization for Unsupervised Domain Adaptation. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 7346–7354, 2019. (Cited on page 40.)

T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li. Mode Regularized
Generative Adversarial Networks. In Proc. of the International Conf.
on Learning Representations (ICLR), 2017. (Cited on page 49.)

K. Chen, C. B. Choy, M. Savva, A. X. Chang, T. Funkhouser, and
S. Savarese. Text2Shape: Generating Shapes from Natural Lan-
guage by Learning Joint Embeddings. In Proc. of the Asian Conf. on
Computer Vision (ACCV), pages 100–116, 2018. (Cited on page 110.)

L. Chen, L. Wu, Z. Hu, and M. Wang. Quality-Aware Unpaired
Image-to-Image Translation. In IEEE Trans. on Multimedia (TMM),
pages 2664–2674, 2019a. (Cited on page 108.)

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking
Atrous Convolution for Semantic Image Segmentation. arXiv.org,
2017a. (Cited on page 14.)

M. Chen, H. Xue, and D. Cai. Domain Adaptation for Semantic
Segmentation With Maximum Squares Loss. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), pages 2090–2099,
2019b. (Cited on page 34.)

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel. InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets. In Advances
in Neural Information Processing Systems (NeurIPS), pages 2180–2188,
2016. (Cited on page 48.)

Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. F. Wang, and
M. Sun. No More Discrimination: Cross City Adaptation of Road
Scene Segmenters. In Proc. of the IEEE International Conf. on Com-
puter Vision (ICCV), pages 2011–2020, 2017b. (Cited on pages 35

and 102.)

166 bibliography

Z. Chen and H. Zhang. Learning Implicit Fields for Generative
Shape Modeling. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 5932–5941, 2019. (Cited on page 108.)

D. Chicco. Siamese Neural Networks: An Overview. Artificial Neural
Networks, pages 73–94, 2021. (Cited on page 51.)

Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. StarGAN:
Unified Generative Adversarial Networks for Multi-domain Image-
to-Image Translation. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 8789–8797, 2018. (Cited on
page 37.)

C. Choy, J. Gwak, and S. Savarese. 4D Spatio-Temporal ConvNets:
Minkowski Convolutional Neural Networks. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 3075–3084,
2019. (Cited on page 101.)

Y. W. T. Chris J. Maddison, Andriy Mnih. The Concrete Distribution:
A Continuous Relaxation of Discrete Random Variables. In Proc.
of the International Conf. on Learning Representations (ICLR), 2017.
(Cited on page 80.)

H. de Vries, F. Strub, J. Mary, H. Larochelle, O. Pietquin, and A. C.
Courville. Modulating early visual processing by language. In
Advances in Neural Information Processing Systems (NeurIPS), vol-
ume 30, 2017. (Cited on page 88.)

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A large-scale hierarchical image database. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 248–255,
2009. (Cited on pages 49 and 50.)

P. Dhariwal and A. Q. Nichol. Diffusion Models Beat GANs on
Image Synthesis. In Advances in Neural Information Processing
Systems (NeurIPS), 2021. (Cited on page 14.)

L. R. Dice. Measures of the Amount of Ecologic Association Between
Species. Ecology, pages 297–302, 1945. (Cited on page 21.)

X. Ding, Y. Wang, Z. Xu, W. J. Welch, and Z. J. Wang. CcGAN:
Continuous Conditional Generative Adversarial Networks for
Image Generation. In Proc. of the International Conf. on Learning
Representations (ICLR), 2021. (Cited on pages 108, 109, 117, 149,
and 151.)

J. Dolson, J. Baek, C. Plagemann, and S. Thrun. Upsampling range
data in dynamic environments. In Proc. IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), pages 1141–1148, 2010. (Cited
on page 68.)

bibliography 167

C. Dong, C. C. Loy, K. He, and X. Tang. Image Super-Resolution Us-
ing Deep Convolutional Networks. IEEE Trans. on Pattern Analysis
and Machine Intelligence (PAMI), pages 295–307, 2016. (Cited on
page 68.)

X. Dong and J. Shen. Triplet Loss in Siamese Network for Object
Tracking. In Proc. of the European Conf. on Computer Vision (ECCV),
pages 472–488, 2018. (Cited on page 51.)

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun.
CARLA: An Open Urban Driving Simulator. In Proc. Conf. on
Robot Learning (CoRL), 2017. (Cited on pages 57 and 81.)

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby. An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale. In Proc. of the Inter-
national Conf. on Learning Representations (ICLR), 2021. (Cited on
page 18.)

A. Elhadidy, M. Afifi, M. Hassoubah, Y. Ali, and M. ElHelw.
Improved Semantic Segmentation of Low-Resolution 3D Point
Clouds Using Supervised Domain Adaptation. In Novel Intelligent
and Leading Emerging Sciences Conference (NILES), pages 588–593,
2020. (Cited on page 36.)

D. Emmerichs, P. Pinggera, and B. Ommer. VelocityNet: Motion-
Driven Feature Aggregation for 3D Object Detection in Point
Cloud Sequences. In Proc. IEEE International Conf. on Robotics and
Automation (ICRA), pages 13279–13285, 2021. (Cited on page 129.)

B. P. Eric Jang, Shixiang Gu. Categorical Reparameterization with
Gumbel-Softmax. In Proc. of the International Conf. on Learning
Representations (ICLR), 2017. (Cited on page 80.)

H. Fan, H. Su, and L. Guibas. A Point Set Generation Network
for 3D Object Reconstruction from a Single Image. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages
2463–2471, 2017. (Cited on page 108.)

Y. Ganin and V. Lempitsky. Unsupervised Domain Adaptation by
Backpropagation. In Proceedings of the International Conference on
Machine Learning, pages 1180–1189, 2015. (Cited on page 32.)

A. Gavade and P. Sane. Super Resolution Image Reconstruction By
Using Bicubic Interpolation. In National Conference on Advanced
Technologies in Electrical and Electronic Systems, 2014. (Cited on
page 68.)

168 bibliography

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 3354–3361,
2012. (Cited on pages 10 and 17.)

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets Robotics:
The KITTI Dataset. International Journal of Robotics Research (IJRR),
pages 1231–1237, 2013. (Cited on pages 20, 57, and 91.)

I. J. Good. Some terminology and notation in information theory.
Proceedings of the IEE - Part C: Monographs, pages 200–204, 1956.
(Cited on page 20.)

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative Adversarial Nets.
In Advances in Neural Information Processing Systems (NeurIPS), 2014.
(Cited on pages 14, 15, 46, 48, 49, 50, 106, and 108.)

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. (Cited on pages 9 and 13.)

B. Graham, M. Engelcke, and L. van der Maaten. 3D Semantic
Segmentation with Submanifold Sparse Convolutional Networks.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 9224–9232, 2018. (Cited on page 13.)

K. Gregor and Y. LeCun. Emergence of Complex-Like Cells in a
Temporal Product Network with Local Receptive Fields. arXiv.org,
2010. (Cited on page 25.)

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola.
A Kernel Two-Sample Test. Journal of Machine Learning Research
(JMLR), pages 1–51, 2012. (Cited on pages 49, 50, and 72.)

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville. Improved Training of Wasserstein GANs. In Advances in
Neural Information Processing Systems (NeurIPS), pages 5769–5779,
2017. (Cited on pages 110 and 113.)

Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun. Deep
Learning for 3D Point Clouds: A Survey. IEEE Trans. on Pattern
Analysis and Machine Intelligence (PAMI), pages 4338–4364, 2021.
(Cited on page 13.)

S. Gurumurthy, R. K. Sarvadevabhatla, and V. B. Radhakrishnan.
DeLiGAN: Generative Adversarial Networks for Diverse and Lim-
ited Data. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 4941–4949, 2017. (Cited on page 49.)

bibliography 169

E. Härkönen, A. Hertzmann, J. Lehtinen, and S. Paris. GANSpace:
Discovering Interpretable GAN Controls. In Advances in Neural
Information Processing Systems (NeurIPS), pages 9841–9850, 2020.
(Cited on page 109.)

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Im-
age Recognition. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. (Cited on page 69.)

Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen. AttGAN: Facial
Attribute Editing by Only Changing What You Want. In IEEE
Trans. on Image Processing (TIP), pages 5464–5478, 2019. (Cited on
page 109.)

R. Heinzler, F. Piewak, P. Schindler, and W. Stork. CNN-Based Lidar
Point Cloud De-Noising in Adverse Weather. In IEEE Robotics
and Automation Letters (RA-L), pages 2514–2521, 2020. (Cited on
page 42.)

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
iter. GANs Trained by a Two Time-Scale Update Rule Converge
to a Local Nash Equilibrium. In Advances in Neural Information
Processing Systems (NeurIPS), pages 6629–6640, 2017. (Cited on
pages 46, 49, and 50.)

E. Hoffer and N. Ailon. Deep Metric Learning using Triplet Network.
In Similarity-Based Pattern Recognition (SIMBAD), pages 84–92, 2015.
(Cited on page 51.)

J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. A.
Efros, and T. Darrell. CyCADA: Cycle Consistent Adversarial
Domain Adaptation. In Proc. of the International Conf. on Machine
learning (ICML), pages 1989–1998, 2018. (Cited on pages 16, 34, 77,
and 109.)

B.-S. Hua, M.-K. Tran, and S.-K. Yeung. Pointwise Convolutional
Neural Networks. In Proc. IEEE Conf. on Computer Vision and Pat-
tern Recognition (CVPR), pages 984–993, 2018. (Cited on page 13.)

G. B. Huang, H. Lee, and E. Learned-Miller. Learning hierarchical
representations for face verification with convolutional deep be-
lief networks. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 2518–2525, 2012. (Cited on page 25.)

X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, and S. Belongie. Stacked
Generative Adversarial Networks. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pages 1866–1875, 2017.
(Cited on page 48.)

170 bibliography

T.-W. Hui, C. C. Loy, and X. Tang. Depth Map Super-Resolution
by Deep Multi-Scale Guidance. In Proc. of the European Conf. on
Computer Vision (ECCV), pages 353–369, 2016. (Cited on page 68.)

B. Hurl, K. Czarnecki, and S. L. Waslander. Precise Synthetic Image
and LiDAR (PreSIL) Dataset for Autonomous Vehicle Perception.
Proc. IEEE Intelligent Vehicles Symposium (IV), pages 2522–2529,
2019. (Cited on page 57.)

D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic. Generating images
with recurrent adversarial networks. arXiv.org, 2016. (Cited on
page 49.)

S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In Proc. of
the International Conf. on Machine learning (ICML), pages 448–456,
2015. (Cited on page 39.)

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-Image Transla-
tion with Conditional Adversarial Networks. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 5967–5976,
2017. (Cited on pages 16, 49, 50, and 79.)

P. Jaccard. Etude de la distribution florale dans une portion des
Alpes et du Jura. Bulletin de la Societe Vaudoise des Sciences Naturelles,
pages 547–579, 1901. (Cited on page 20.)

M. Jaritz, T.-H. Vu, R. de Charette, E. Wirbel, and P. Pérez. xMUDA:
Cross-Modal Unsupervised Domain Adaptation for 3D Semantic
Segmentation. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 12602–12611, 2020. (Cited on pages 38

and 129.)

P. Jiang and S. Saripalli. LiDARNet: A Boundary-Aware Domain
Adaptation Model for Lidar Point Cloud Semantic. In Proc. IEEE
International Conf. on Robotics and Automation (ICRA), pages 2457–
2464, 2020. (Cited on page 39.)

B. Johannsen. Domain Invariant Feature Learning for Cross-Sensor
Semantic Segmentation of LiDAR Point Clouds by Leveraging
the underlying Scene Geometry. Master’s thesis, University of
Stuttgart, 2022. (Cited on page 86.)

J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual Losses for Real-
Time Style Transfer and Super-Resolution. In Proc. of the European
Conf. on Computer Vision (ECCV), pages 694–711, 2016. (Cited on
pages 69, 70, and 74.)

T. Karras, S. Laine, and T. Aila. A Style-Based Generator Architec-
ture for Generative Adversarial Networks. In Proc. IEEE Conf. on

bibliography 171

Computer Vision and Pattern Recognition (CVPR), pages 4217–4228,
2019. (Cited on pages 108 and 109.)

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila.
Analyzing and Improving the Image Quality of StyleGAN. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 8107–8116, 2020. (Cited on page 109.)

O. S. Kayhan and J. C. van Gemert. On Translation Invariance in
CNNs: Convolutional Layers Can Exploit Absolute Spatial Loca-
tion. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 14262–14273, 2020. (Cited on page 28.)

A. Kendall, Y. Gal, and R. Cipolla. Multi-Task Learning Using
Uncertainty to Weigh Losses for Scene Geometry and Semantics.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 7482–7491, 2018. (Cited on pages 89 and 114.)

D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In
Proc. of the International Conf. on Learning Representations (ICLR),
2014. (Cited on pages 14, 106, and 108.)

P. Krähenbühl and V. Koltun. Efficient Inference in Fully Connected
CRFs with Gaussian Edge Potentials. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2011. (Cited on page 14.)

L. Landrieu and M. Simonovsky. Large-Scale Point Cloud Semantic
Segmentation with Superpoint Graphs. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 4558–4567,
2018. (Cited on page 13.)

A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. Point-
Pillars: Fast Encoders for Object Detection From Point Clouds. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 12689–12697, 2019. (Cited on pages 3, 13, 39, and 106.)

F. Langer, A. Milioto, A. Haag, J. Behley, and C. Stachniss. Do-
main Transfer for Semantic Segmentation of LiDAR Data using
Deep Neural Networks. In Proc. IEEE International Conf. on Intelli-
gent Robots and Systems (IROS), pages 8263–8270, 2020. (Cited on
pages 37, 43, 86, 89, 99, 100, 101, 103, 143, 159, and 160.)

F. J. Lawin, M. Danelljan, P. Tosteberg, G. Bhat, F. S. Khan, and
M. Felsberg. Deep Projective 3D Semantic Segmentation. In Proc.
of the International Conf. on Computer Analysis of Images and Patterns
(CAIP), pages 95–107, 2017. (Cited on page 13.)

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-Realistic
Single Image Super-Resolution Using a Generative Adversarial

172 bibliography

Network. In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), pages 105–114, 2017. (Cited on pages 48, 71, 74, 136,
140, and 141.)

C.-Y. Lee, T. Batra, M. H. Baig, and D. Ulbricht. Sliced Wasserstein
Discrepancy for Unsupervised Domain Adaptation. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages
10277–10287, 2019a. (Cited on page 102.)

K.-H. Lee, G. Ros, J. Li, and A. Gaidon. SPIGAN: Privileged Adver-
sarial Learning from Simulation. In Proc. of the International Conf.
on Learning Representations (ICLR), 2019b. (Cited on page 77.)

E. L. Lehmann and J. P. Romano. Testing Statistical Hypotheses.
Springer Science & Business Media, 2006. (Cited on pages 46,
49, and 50.)

D. Li, H. Ling, S. W. Kim, K. Kreis, A. Barriuso, S. Fidler, and
A. Torralba. BigDatasetGAN: Synthesizing ImageNet with Pixel-
wise Annotations. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2022. (Cited on page 46.)

Y. Li and J. Ibanez-Guzman. LiDAR for Autonomous Driving: The
Principles, Challenges and Trends for Automotive LiDAR and
Perception Systems. In Signal Processing Magazine, pages 50–61,
2020. (Cited on page 41.)

Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou. Revisiting Batch Normaliza-
tion for Practical Domain Adaptation. In Proc. of the International
Conf. on Learning Representations (ICLR) Workshops, 2017. (Cited on
page 39.)

G. Lin, F. Liu, A. Milan, C. Shen, and I. Reid. RefineNet: Multi-Path
Refinement Networks for Dense Prediction. In IEEE Trans. on
Pattern Analysis and Machine Intelligence (PAMI), pages 1228–1242,
2020. (Cited on page 14.)

Z. Lin, A. Khetan, G. Fanti, and S. Oh. PacGAN: The power of two
samples in generative adversarial networks. In Advances in Neural
Information Processing Systems (NeurIPS), pages 1505–1514, 2018.
(Cited on page 48.)

M.-Y. Liu, O. Tuzel, and Y. Taguchi. Joint Geodesic Upsampling of
Depth Images. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 169–176, 2013. (Cited on page 68.)

X. Liu, C. R. Qi, and L. J. Guibas. FlowNet3D: Learning Scene
Flow in 3D Point Clouds. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 529–537, 2019. (Cited on
page 13.)

bibliography 173

J. Löhdefink and T. Fingscheidt. Improving Performance of Seman-
tic Segmentation CycleGANs by Noise Injection into the Latent
Segmentation Space. arXiv.org, 2022. (Cited on page 46.)

P. Luc, C. Couprie, S. Chintala, and J. Verbeek. Semantic Segmenta-
tion using Adversarial Networks. In Advances in Neural Information
Processing Systems (NeurIPS) Workshops, 2016. (Cited on page 80.)

M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. Are
GANs Created Equal? A Large-Scale Study. In Advances in Neu-
ral Information Processing Systems (NeurIPS), pages 698–707, 2018.
(Cited on page 48.)

S. Luo and W. Hu. Diffusion Probabilistic Models for 3D Point
Cloud Generation. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 2836–2844, 2021. (Cited on
page 106.)

Y. Luo, Z. Wang, Z. Huang, and M. Baktashmotlagh. Progressive
Graph Learning for Open-Set Domain Adaptation. In Proc. of the
International Conf. on Machine learning (ICML), pages 6468–6478,
2020. (Cited on page 43.)

M. F. Mathieu, J. J. Zhao, J. Zhao, A. Ramesh, P. Sprechmann, and
Y. LeCun. Disentangling factors of variation in deep representa-
tion using adversarial training. In Advances in Neural Information
Processing Systems (NeurIPS), pages 5047–5055, 2016. (Cited on
page 48.)

H.-Y. Meng, L. Gao, Y. Lai, and D. Manocha. VV-Net: Voxel VAE Net
with Group Convolutions for Point Cloud Segmentation. In Proc.
of the IEEE International Conf. on Computer Vision (ICCV), pages
8499–8507, 2019. (Cited on page 13.)

Mercedes-Benz Group AG. First internationally valid
system approval for conditionally automated driv-
ing, 2021. URL https://group.mercedes-benz.com/
innovation/product-innovation/autonomous-driving/
system-approval-for-conditionally-automated-driving.html.
Accessed 2022/07/07. (Cited on page 2.)

L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger.
Occupancy Networks: Learning 3D Reconstruction in Function
Space. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 4455–4465, 2019. (Cited on pages 108 and 110.)

M. Michalkiewicz, J. K. Pontes, D. Jack, M. Baktashmotlagh, and
A. Eriksson. Deep Level Sets: Implicit Surface Representations
for 3D Shape Inference. In Proc. of the IEEE International Conf. on
Computer Vision (ICCV), 2019. (Cited on page 108.)

https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/system-approval-for-conditionally-automated-driving.html
https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/system-approval-for-conditionally-automated-driving.html
https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/system-approval-for-conditionally-automated-driving.html

174 bibliography

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In Proc. of the European Conf. on Computer
Vision (ECCV), pages 405–421, 2020. (Cited on page 128.)

A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. RangeNet++: Fast
and Accurate LiDAR Semantic Segmentation. In Proc. IEEE In-
ternational Conf. on Intelligent Robots and Systems (IROS), pages
4213–4220, 2019. (Cited on pages 3, 13, 19, 20, 21, 22, 26, 27, 28, 72,
74, 79, and 81.)

M. Mirza and S. Osindero. Conditional Generative Adversarial Nets.
arXiv.org, 2014. (Cited on pages 15, 16, 37, 109, 117, and 149.)

T. Miyato and M. Koyama. cGANs with Projection Discriminator.
In Proc. of the International Conf. on Learning Representations (ICLR),
2018. (Cited on pages 109 and 151.)

K. Mo, H. Wang, X. Yan, and L. Guibas. PT2PC: Learning to Generate
3D Point Cloud Shapes from Part Tree Conditions. In Proc. of the
European Conf. on Computer Vision (ECCV), pages 683–701, 2020.
(Cited on page 110.)

P. Morerio, J. Cavazza, and V. Murino. Minimal-Entropy Correlation
Alignment for Unsupervised Deep Domain Adaptation. In Proc.
of the International Conf. on Learning Representations (ICLR), 2018.
(Cited on pages 34, 38, and 90.)

K. Nakashima and R. Kurazume. Learning to Drop Points for LiDAR
Scan Synthesis. In Proc. IEEE International Conf. on Intelligent Robots
and Systems (IROS), pages 222–229, 2021. (Cited on pages 37

and 79.)

H. Nam and H.-E. Kim. Batch-Instance Normalization for Adaptively
Style-Invariant Neural Networks. In Advances in Neural Information
Processing Systems (NeurIPS), pages 2563–2572, 2018. (Cited on
page 39.)

A. Ng and M. Jordan. On Discriminative vs. Generative Classifiers:
A comparison of logistic regression and naive Bayes. In Advances
in Neural Information Processing Systems (NeurIPS), 2001. (Cited on
page 14.)

A. Odena, C. Olah, and J. Shlens. Conditional Image Synthesis
with Auxiliary Classifier GANs. In Proceedings of the International
Conference on Machine Learning, pages 2642–2651, 2017. (Cited on
pages 108, 109, and 112.)

C. Olsson, S. Bhupatiraju, T. Brown, A. Odena, and I. Goodfellow.
Skill Rating for Generative Models. arXiv.org, 2018. (Cited on
pages 49 and 51.)

bibliography 175

S. J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Trans-
actions on Knowledge and Data Engineering, pages 1345–1359, 2010.
(Cited on page 33.)

J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove.
DeepSDF: Learning Continuous Signed Distance Functions for
Shape Representation. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 165–174, 2019a. (Cited on
page 108.)

T. Park, M. Liu, T. Wang, and J. Zhu. Semantic Image Synthesis
with Spatially-Adaptive Normalization. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 2332–2341,
2019b. (Cited on page 46.)

G. Perarnau, J. van de Weijer, B. Raducanu, and J. M. Álvarez. Invert-
ible Conditional GANs for image editing. In Advances in Neural
Information Processing Systems (NeurIPS) Workshops, 2016. (Cited
on page 109.)

F. Piewak, P. Pinggera, M. Schäfer, D. Peter, B. Schwarz, N. Schneider,
D. Pfeiffer, M. Enzweiler, and M. Zöllner. Boosting LiDAR-based
Semantic Labeling by Cross-Modal Training Data Generation. In
Proc. of the European Conf. on Computer Vision (ECCV) Workshops,
pages 497–513, 2018. (Cited on pages 14, 17, and 81.)

F. Piewak, P. Pinggera, and M. Zöllner. Analyzing the Cross-Sensor
Portability of Neural Network Architectures for LiDAR-based
Semantic Labeling. In Proc. IEEE Conf. on Intelligent Transportation
Systems (ITSC), pages 3419–3426, 2019. (Cited on page 36.)

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep Learning on
Point Sets for 3D Classification and Segmentation. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages
77–85, 2017a. (Cited on pages 13, 39, 88, 108, 110, and 144.)

C. R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space. In Advances in
Neural Information Processing Systems (NeurIPS), pages 5105–5114,
2017b. (Cited on pages 13, 53, 54, 108, and 133.)

A. Radford, L. Metz, and S. Chintala. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial
Networks. arXiv.org, 2016. (Cited on pages 49 and 50.)

E. Raff and J. Sylvester. Gradient Reversal against Discrimination: A
Fair Neural Network Learning Approach. In Proc. IEEE Interna-
tional Conf. on Data Science and Advanced Analytics (DSAA), pages
189–198, 2018. (Cited on pages 53, 55, and 56.)

176 bibliography

J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement.
arXiv.org, 2018. (Cited on page 79.)

D. Rethage, J. Wald, J. Sturm, N. Navab, and F. Tombari. Fully-
Convolutional Point Networks for Large-Scale Point Clouds. In
Proc. of the European Conf. on Computer Vision (ECCV), pages 625–
640, 2018. (Cited on page 13.)

E. Richardson and Y. Weiss. On GANs and GMMs. In Advances in
Neural Information Processing Systems (NeurIPS), pages 5852–5863,
2018. (Cited on pages 49 and 50.)

C. B. Rist, M. Enzweiler, and D. M. Gavrila. Cross-Sensor Deep
Domain Adaptation for LiDAR Detection and Segmentation. In
Proc. IEEE Intelligent Vehicles Symposium (IV), pages 1535–1542,
2019. (Cited on pages 36 and 39.)

C. B. Rist, D. Schmidt, M. Enzweiler, and D. M. Gavrila. SCSSnet:
Learning Spatially-Conditioned Scene Segmentation on LiDAR
Point Clouds. In Proc. IEEE Intelligent Vehicles Symposium (IV),
pages 1086–1093, 2020. (Cited on page 13.)

C. B. Rist, D. Emmerichs, M. Enzweiler, and D. M. Gavrila. Semantic
Scene Completion using Local Deep Implicit Functions on Li-
DAR Data. IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI), pages 1–1, 2021. (Cited on pages 86, 87, 88, 89, 92, 94, 101,
and 102.)

A. Royer, K. Bousmalis, S. Gouws, F. Bertsch, I. Mosseri, F. Cole,
and K. Murphy. XGAN: Unsupervised Image-to-Image Transla-
tion for Many-to-Many Mappings. Domain Adaptation for Visual
Understanding, pages 33–49, 2020. (Cited on page 37.)

S. Royo and M. Ballesta-Garcia. An Overview of Lidar Imaging
Systems for Autonomous Vehicles. Applied Sciences, 2019. (Cited
on page 41.)

SAE International. SAE Levels of Driving Automation Refined for
Clarity and International Audience, 2021. URL https://www.
sae.org/blog/sae-j3016-update. Accessed 2022/06/13. (Cited on
page 2.)

K. Saito, S. Yamamoto, Y. Ushiku, and T. Harada. Open Set Domain
Adaptation by Backpropagation. In Proc. of the European Conf. on
Computer Vision (ECCV), pages 156–171, 2018. (Cited on page 43.)

K. Saleh, A. Abobakr, M. Attia, J. Iskander, D. Nahavandi, and
M. Hossny. Domain Adaptation for Vehicle Detection from Bird’s
Eye View LiDAR Point Cloud Data. In Proc. of the IEEE Interna-
tional Conf. on Computer Vision (ICCV) Workshops, 2019. (Cited on
pages 37, 42, 47, and 84.)

https://www.sae.org/blog/sae-j3016-update
https://www.sae.org/blog/sae-j3016-update

bibliography 177

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
X. Chen, and X. Chen. Improved Techniques for Training GANs.
In Advances in Neural Information Processing Systems (NeurIPS),
pages 2234–2242, 2016. (Cited on pages 46, 49, and 50.)

A. E. Sallab, I. Sobh, M. Zahran, and N. Essam. LiDAR Sensor
modeling and Data augmentation with GANs for Autonomous
driving. In Proc. of the International Conf. on Machine learning (ICML)
Workshops, 2019a. (Cited on pages 37, 42, 47, and 84.)

A. E. Sallab, I. Sobh, M. Zahran, and M. Shawky. Unsupervised Neu-
ral Sensor Models for Synthetic LiDAR Data Augmentation. In
Advances in Neural Information Processing Systems (NeurIPS) Work-
shops, 2019b. (Cited on pages 37, 42, and 84.)

C. Saltori, S. Lathuiliére, N. Sebe, E. Ricci, and F. Galasso. SF-UDA3D:
Source-Free Unsupervised Domain Adaptation for LiDAR-Based
3D Object Detection. In Proc. of the International Conf. on 3D Vision
(3DV), 2020. (Cited on pages 39 and 129.)

S. Santurkar, L. Schmidt, and A. Madry. A Classification-Based
Study of Covariate Shift in GAN Distributions. In Proc. of the
International Conf. on Machine learning (ICML), pages 4480–4489,
2018. (Cited on pages 49 and 50.)

Scale AI. PandaSet, 2020. https://pandaset.org. (Cited on pages 41

and 57.)

T. Shan, J. Wang, F. Chen, P. Szenher, and B. Englot. Simulation-
based Lidar Super-resolution for Ground Vehicles. Robotics and
Autonomous Systems (RAS), page 103647, 2020. (Cited on pages 36

and 47.)

E. Shelhamer, J. Long, and T. Darrell. Fully Convolutional Net-
works for Semantic Segmentation. IEEE Trans. on Pattern Analysis
and Machine Intelligence (PAMI), pages 640–651, 2017. (Cited on
page 13.)

A. Shoshan, N. Bhonker, I. Kviatkovsky, and G. Medioni. GAN-
Control: Explicitly Controllable GANs. In Proc. of the IEEE Inter-
national Conf. on Computer Vision (ICCV), pages 14083–14093, 2021.
(Cited on page 109.)

D. W. Shu, S. W. Park, and J. Kwon. 3D Point Cloud Generative Ad-
versarial Network Based on Tree Structured Graph Convolutions.
In Proc. of the IEEE International Conf. on Computer Vision (ICCV),
pages 3858–3867, 2019. (Cited on pages 46, 49, 50, 106, 109, 110,
112, 114, 118, 144, and 149.)

https://pandaset.org

178 bibliography

K. Sirohi, R. Mohan, D. Büscher, W. Burgard, and A. Valada. Effi-
cientLPS: Efficient LiDAR Panoptic Segmentation. IEEE Trans. on
Robotics, pages 1894–1914, 2022. (Cited on pages 3 and 13.)

Y. Song, C. Yang, Z. Lin, X. Liu, Q. Huang, H. Li, and C.-C. J. Kuo.
Contextual-Based Image Inpainting: Infer, Match, and Translate.
In Proc. of the European Conf. on Computer Vision (ECCV), pages
3–18, 2018. (Cited on page 108.)

T. Sorensen. A Method of Establishing Groups of Equal Amplitude in
Plant Sociology Based on Similarity of Species and Its Application
to Analyses of the Vegetation on Danish Commons. Biologiske
Skrifter, 1948. (Cited on page 21.)

A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sut-
ton. VEEGAN: Reducing Mode Collapse in GANs using Implicit
Variational Learning. In Advances in Neural Information Processing
Systems (NeurIPS), pages 3310–3320, 2017. (Cited on page 48.)

T. Standley, A. R. Zamir, D. Chen, L. Guibas, J. Malik, and S. Savarese.
Which Tasks Should Be Learned Together in Multi-task Learning?
In Proc. of the International Conf. on Machine learning (ICML), pages
9120–9132, 2020. (Cited on page 113.)

Statistisches Bundesamt. Trend in the number of persons killed
in road traffic accidents, 2020. URL https://www.destatis.de/
EN/Press/2020/02/PE20_061_46241.html. Accessed 2022/06/13.
(Cited on page 1.)

H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H. Yang, and
J. Kautz. SPLATNet: Sparse Lattice Networks for Point Cloud
Processing. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 2530–2539, 2018. (Cited on page 39.)

Y. Sun, Y. Wang, Z. Liu, J. E. Siegel, and S. E. Sarma. Point-
Grow: Autoregressively Learned Point Cloud Generation with
Self-Attention. In Proc. of the IEEE Winter Conference on Applications
of Computer Vision (WACV), pages 61–70, 2020. (Cited on page 106.)

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing
the Gap to Human-Level Performance in Face Verification. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 1701–1708, 2014. (Cited on pages 18 and 25.)

Y. Taigman, A. Polyak, and L. Wolf. Unsupervised Cross-Domain
Image Generation. In Proc. of the International Conf. on Learning
Representations (ICLR), 2017. (Cited on pages 37 and 109.)

L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation
of generative models. In Proc. of the International Conf. on Learning

https://www.destatis.de/EN/Press/2020/02/PE20_061_46241.html
https://www.destatis.de/EN/Press/2020/02/PE20_061_46241.html

bibliography 179

Representations (ICLR), pages 1–10, 2016. (Cited on pages 46, 49,
and 50.)

H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and
L. J. Guibas. KPConv: Flexible and Deformable Convolution for
Point Clouds. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 6410–6419, 2019. (Cited on page 13.)

M. Toldo, A. Maracani, U. Michieli, and P. Zanuttigh. Unsuper-
vised Domain Adaptation in Semantic Segmentation: A Review.
Technologies, 2020. (Cited on page 42.)

I. O. Tolstikhin, S. Gelly, O. Bousquet, C.-J. Simon-Gabriel, and
B. Schölkopf. AdaGAN: Boosting Generative Models. In Advances
in Neural Information Processing Systems (NeurIPS), pages 5430–5439,
2017. (Cited on pages 49, 50, and 72.)

L. T. Triess. Synthesizing realistic high-resolution LiDAR point
clouds by upsampling with neural networks. Master’s thesis,
University of Stuttgart, 2018. Partially published in [Triess et al.
2019]. (Cited on page 68.)

L. T. Triess and D. Peter. Verfahren zur Generierung realistischer
Karten von Strahlausfällen in simulierten LiDAR-Daten, 2021.
Publication Date: 2021/07/08. DE. Patent DE102021002559 (A1).
(Cited on page 80.)

L. T. Triess and C. B. Rist. Verfahren zum semantischen Segmen-
tieren von ersten Sensordaten eines ersten Sensortyps, 2021. Filed:
2021/05/21. DE. Patent DE102021002684 (A1). Patent pending.
(Cited on page 86.)

L. T. Triess and C. B. Rist. Computer-implementiertes Verfahren
zum semantischen Segmentieren und computerimplementiertes
Verfahren zum Trainieren eines computer-implementierten Algo-
rithmus zur Bestimmung einer Szenensegmentierung, 2022. Filed:
2022/06/28. DE. Patent DE102022002324 (A1). Patent pending.
(Cited on page 86.)

L. T. Triess, D. Peter, C. B. Rist, M. Enzweiler, and J. M. Zöllner.
CNN-based synthesis of realistic high-resolution LiDAR data. In
Proc. IEEE Intelligent Vehicles Symposium (IV), pages 1512–1519,
2019. (Cited on pages 36, 48, 68, 69, 70, 74, and 179.)

L. T. Triess, D. Peter, C. B. Rist, and J. M. Zöllner. Scan-based
Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study. In Proc. IEEE Intelligent Vehicles Symposium (IV), pages
1116–1121, 2020. (Cited on pages 17, 19, 22, 23, 25, 26, and 132.)

180 bibliography

L. T. Triess, M. Dreissig, C. B. Rist, and J. M. Zöllner. A Survey on
Deep Domain Adaptation for LiDAR Perception. In Proc. IEEE
Intelligent Vehicles Symposium (IV) Workshops, pages 350–357, 2021a.
(Cited on pages 32, 33, 34, 36, 37, 38, 47, and 72.)

L. T. Triess, D. Peter, S. A. Baur, and J. M. Zöllner. Quantifying point
cloud realism through adversarially learned latent representations.
In Proc. of the German Conference on Pattern Recognition (GCPR),
pages 681–696, 2021b. (Cited on pages 46, 59, 60, 61, 62, 63, 64,
133, 136, 137, 138, 140, 141, and 142.)

L. T. Triess, D. Peter, and J. M. Zöllner. Semi-Local Convolutions
for LiDAR Scan Processing. In Advances in Neural Information
Processing Systems (NeurIPS) Workshops, 2021c. (Cited on pages 17,
27, and 28.)

L. T. Triess, A. Bühler, D. Peter, F. B. Flohr, and J. M. Zöllner. Point
Cloud Generation with Continuous Conditioning. In Conference
on Artificial Intelligence and Statistics (AISTATS), pages 4462–4481,
2022a. (Cited on pages 106, 107, 111, 112, 115, 118, 119, 120, 121,
122, 146, 147, 150, 152, 154, 155, 156, and 157.)

L. T. Triess, C. B. Rist, D. Peter, and J. M. Zöllner. A Realism Metric for
Generated LiDAR Point Clouds. International Journal of Computer
Vision (IJCV), 2022b. (Cited on pages 46, 49, 53, 57, 59, 60, 61, 62,
68, 73, 75, and 84.)

Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and
M. Chandraker. Learning to Adapt Structured Output Space
for Semantic Segmentation. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 7472–7481, 2018. (Cited on
pages 35 and 102.)

J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger.
Sparsity Invariant CNNs. In Proc. of the International Conf. on 3D
Vision (3DV), pages 11–20, 2017. (Cited on page 68.)

D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance Normalization:
The Missing Ingredient for Fast Stylization. arXiv.org, 2016. (Cited
on page 39.)

D. Valsesia, G. Fracastoro, and E. Magli. Learning Localized Genera-
tive Models for 3D Point Clouds via Graph Convolution. In Proc.
of the International Conf. on Learning Representations (ICLR), 2019.
(Cited on pages 106 and 108.)

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,
L. Kaiser, and I. Polosukhin. Attention is All you Need. In Advances
in Neural Information Processing Systems (NeurIPS), 2017. (Cited on
page 18.)

bibliography 181

T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Pérez. ADVENT: Adver-
sarial Entropy Minimization for Domain Adaptation in Semantic
Segmentation. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 2512–2521, 2019. (Cited on page 34.)

H. Wang, Z. Jiang, L. Yi, K. Mo, H. Su, and L. J. Guibas. Rethinking
Sampling in 3D Point Cloud Generative Adversarial Networks.
arXiv.org, 2020. (Cited on page 109.)

L. Wang, Y. Huang, Y. Hou, S. Zhang, and J. Shan. Graph Attention
Convolution for Point Cloud Semantic Segmentation. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 10288–10297, 2019a. (Cited on page 13.)

S. Wang, S. Suo, W.-C. Ma, A. Pokrovsky, and R. Urtasun. Deep
Parametric Continuous Convolutional Neural Networks. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 2589–2597, 2018. (Cited on page 13.)

Y. Wang, L. Zhang, and J. van de Weijer. Ensembles of Generative
Adversarial Networks. In Advances in Neural Information Processing
Systems (NeurIPS) Workshops, 2016. (Cited on pages 49 and 50.)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
quality assessment: from error visibility to structural similarity.
IEEE Trans. on Image Processing (TIP), pages 600–612, 2004. (Cited
on page 49.)

Z. Wang, S. Ding, Y. Li, M. Zhao, S. Roychowdhury, A. Wallin,
G. Sapiro, and Q. Qiu. Range Adaptation for 3D Object Detection
in LiDAR. In Proc. of the IEEE International Conf. on Computer Vision
(ICCV) Workshops, pages 2320–2328, 2019b. (Cited on page 39.)

G. Wilson and D. J. Cook. A Survey of Unsupervised Deep Domain
Adaptation. ACM Trans. on Intelligent System Technology, pages
51:1–51:46, 2020. (Cited on pages 33 and 34.)

B. Wu, A. Wan, X. Yue, and K. Keutzer. SqueezeSeg: Convolutional
Neural Nets with Recurrent CRF for Real-Time Road-Object Seg-
mentation from 3D LiDAR Point Cloud. In Proc. IEEE International
Conf. on Robotics and Automation (ICRA), pages 1887–1893, 2018.
(Cited on pages 13, 14, and 17.)

B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer. SqueezeSegV2:
Improved Model Structure and Unsupervised Domain Adaptation
for Road-Object Segmentation from a LiDAR Point Cloud. In Proc.
IEEE International Conf. on Robotics and Automation (ICRA), pages
4376–4382, 2019. (Cited on pages 13, 27, 38, 39, 72, 74, 90, and 102.)

182 bibliography

J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum. Learning
a Probabilistic Latent Space of Object Shapes via 3D Generative-
Adversarial Modeling. In Advances in Neural Information Processing
Systems (NeurIPS), 2016. (Cited on page 108.)

Y. Wu and K. He. Group Normalization. In Proc. of the European Conf.
on Computer Vision (ECCV), pages 3–19, 2018. (Cited on page 39.)

S. Xiang and H. Li. On the Effects of Batch and Weight Normalization
in Generative Adversarial Networks. arXiv.org, 2017. (Cited on
pages 49 and 50.)

C. Xu, B. Wu, Z. Wang, W. Zhan, P. Vajda, K. Keutzer, and
M. Tomizuka. SqueezeSegV3: Spatially-Adaptive Convolution
for Efficient Point-Cloud Segmentation. In Proc. of the European
Conf. on Computer Vision (ECCV), pages 1–19, 2020. (Cited on
page 13.)

Y. Xu, F. He, B. Du, L. Zhang, and D. Tao. Self-Ensembling GAN for
Cross-Domain Semantic Segmentation. arXiv.org, 2021. (Cited on
page 46.)

Y. Yan, Y. Mao, and B. Li. SECOND: Sparsely Embedded Convolu-
tional Detection. Sensors, 2018. (Cited on page 106.)

C.-Y. Yang, C. Ma, and M.-H. Yang. Single-Image Super-Resolution:
A Benchmark. In Proc. of the European Conf. on Computer Vision
(ECCV), pages 372–386, 2014. (Cited on page 68.)

G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and B. Hariharan.
PointFlow: 3D Point Cloud Generation with Continuous Normal-
izing Flows. In Proc. of the IEEE International Conf. on Computer
Vision (ICCV), pages 4540–4549, 2019. (Cited on page 106.)

J. Yang, A. Kannan, D. Batra, and D. Parikh. LR-GAN: Layered
Recursive Generative Adversarial Networks for Image Generation.
In Proc. of the International Conf. on Learning Representations (ICLR),
2017. (Cited on pages 49 and 50.)

L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu,
Q. Huang, A. Sheffer, and L. Guibas. A Scalable Active Framework
for Region Annotation in 3D Shape Collections. In ACM Trans. on
Graphics, pages 1–12, 2016. (Cited on pages 114 and 155.)

L. Yi, B. Gong, and T. Funkhouser. Complete & Label: A Domain
Adaptation Approach to Semantic Segmentation of LiDAR Point
Clouds. In Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), pages 15358–15368, 2021. (Cited on pages 36, 43, 86,
89, 99, 101, 102, 103, 143, 145, and 160.)

bibliography 183

F. Yu and V. Koltun. Multi-Scale Context Aggregation by Dilated
Convolutions. In Proc. of the International Conf. on Learning Repre-
sentations (ICLR), 2016. (Cited on page 14.)

L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. PU-Net: Point
Cloud Upsampling Network. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 2790–2799, 2018. (Cited on
page 68.)

H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. Metaxas.
StackGAN: Text to Photo-Realistic Image Synthesis with Stacked
Generative Adversarial Networks. In Proc. of the IEEE International
Conf. on Computer Vision (ICCV), pages 5908–5916, 2017. (Cited on
page 48.)

Z. Zhang, Y. Song, and H. Qi. Decoupled Learning for Conditional
Adversarial Networks. arXiv.org, 2018. (Cited on page 49.)

H. Zhao, R. T. D. Combes, K. Zhang, and G. Gordon. On Learning
Invariant Representations for Domain Adaptation. In Proceedings
of the International Conference on Machine Learning, pages 7523–7532,
2019a. (Cited on page 39.)

H. Zhao, L. Jiang, C.-W. Fu, and J. Jia. PointWeb: Enhancing Local
Neighborhood Features for Point Cloud Processing. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages
5560–5568, 2019b. (Cited on page 13.)

S. Zhao, Y. Wang, B. Li, B. Wu, Y. Gao, P. Xu, T. Darrell, and
K. Keutzer. ePointDA: An End-to-End Simulation-to-Real Domain
Adaptation Framework for LiDAR Point Cloud Segmentation. In
Proc. of the Conf. on Artificial Intelligence (AAAI), pages 3500–3509,
2021. (Cited on page 37.)

Y. Zhou and O. Tuzel. VoxelNet: End-to-End Learning for Point
Cloud Based 3D Object Detection. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pages 4490–4499, 2018.
(Cited on pages 3, 13, and 39.)

Z. Zhou, H. Cai, S. Rong, Y. Song, K. Ren, W. Zhang, J. Wang, and
Y. Yu. Activation Maximization Generative Adversarial Nets. In
Proc. of the International Conf. on Learning Representations (ICLR),
2018. (Cited on page 49.)

J.-Y. Zhu, T. Park, P. Isola, and A. Efros. Unpaired Image-to-Image
Translation using Cycle-Consistent Adversarial Networks. In Proc.
of the IEEE International Conf. on Computer Vision (ICCV), pages
2242–2251, 2017. (Cited on pages 16, 34, 37, 84, and 109.)

	Abstract
	Zusammenfassung
	Acknowledgments
	Publications
	Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Dissertation Goals
	1.3 Dissertation Outline
	1.4 Contributions

	2 Preliminaries in 3D Point Cloud Processing and Deep Learning
	2.1 LiDAR Sensors
	2.1.1 Measurement Principle
	2.1.2 Rotating LiDAR Systems

	2.2 Deep Learning for LiDAR Perception
	2.2.1 Data Representation
	2.2.2 Semantic Segmentation

	2.3 Deep Generative Models
	2.3.1 Generative Adversarial Networks
	2.3.2 Conditional GANs

	3 Scan-based Semantic Segmentation
	3.1 Overview
	3.2 Efficient Network Configuration
	3.2.1 Method
	3.2.2 Evaluation
	3.2.3 Summary

	3.3 Semi Local Convolution
	3.3.1 Weight Sharing in Convolution Layers
	3.3.2 Method
	3.3.3 Evaluation
	3.3.4 Discussion

	3.4 Conclusion

	4 Deep Domain Adaptation for LiDAR Perception
	4.1 Background
	4.1.1 Domain Adaptation
	4.1.2 Baselines
	4.1.3 Applications and Use-Cases

	4.2 Methods
	4.2.1 Domain-Invariant Data Representation
	4.2.2 Domain Mapping
	4.2.3 Domain-Invariant Feature Learning
	4.2.4 Normalization Statistics
	4.2.5 Other Methods

	4.3 Discussion
	4.3.1 Comparability and Transfer from other Modalities
	4.3.2 Discrepancies in Domain Gap Quality
	4.3.3 Relevance of Cross-Sensor Adaptation
	4.3.4 Adaptation in Different Weather Scenarios
	4.3.5 Generative Models for Domain Translation
	4.3.6 Open-Partial Domain Adaptation

	5 A Metric to Quantify the Realism of LiDAR Point Clouds
	5.1 Overview
	5.2 Related Work
	5.2.1 GAN Evaluation Measures
	5.2.2 Metric Learning

	5.3 LiDAR Realism Metric
	5.3.1 Objective and Properties
	5.3.2 Architecture

	5.4 Experimental Setup
	5.5 Evaluation
	5.5.1 Balance between Accuracy and Fairness
	5.5.2 Metric Results
	5.5.3 Adversary Ablation
	5.5.4 Feature Continuity
	5.5.5 Anomaly Detection
	5.5.6 Limitations

	5.6 Conclusion

	6 Domain Adaptation via Data Generation for Domain Mapping
	6.1 Up-sampling for Sensor Mapping
	6.1.1 Related Work
	6.1.2 Up-Sampling Network
	6.1.3 Losses
	6.1.4 Metrics
	6.1.5 Evaluation
	6.1.6 Summary

	6.2 Mapping from Simulation to Real-World
	6.2.1 Sim-to-Real GAN
	6.2.2 Experiments
	6.2.3 Evaluation
	6.2.4 Summary

	6.3 Discussion and Conclusion

	7 Domain Adaptation via Geometry-based Domain-Invariant Features
	7.1 Overview
	7.2 Semantic Scene Completion using Local Deep Implicit Functions on LiDAR Data
	7.3 Method
	7.3.1 Baseline Domain Transfer
	7.3.2 Using Self-Supervised Target Geometry
	7.3.3 Domain Losses for Domain Invariant Features

	7.4 Dataset Curation
	7.5 Experiments
	7.5.1 Baseline and Domain Gap
	7.5.2 Using Self-Supervised Target Geometry
	7.5.3 Domain Losses for Domain Invariant Features
	7.5.4 Summary
	7.5.5 Comparison against State of the Art

	7.6 Discussion
	7.7 Conclusion

	8 Point Cloud Generation with Continuous Conditioning
	8.1 Overview
	8.2 Related Work
	8.2.1 3D Generative Models
	8.2.2 Conditional Generation
	8.2.3 Continuous Conditioning
	8.2.4 3D Conditional Generation

	8.3 Using TreeGAN as the Backbone Model
	8.4 Method
	8.4.1 Continuous Parameters
	8.4.2 Label Sampling for Training
	8.4.3 Model
	8.4.4 Losses

	8.5 Experiments
	8.5.1 Dataset and Metrics
	8.5.2 Implementation Details
	8.5.3 Baselines
	8.5.4 Distribution Sampling

	8.6 Results
	8.6.1 Quantitative Results
	8.6.2 Label and Region Sampling Ablations
	8.6.3 Continuous Parameter Interpolation
	8.6.4 Out-of-Distribution Generation
	8.6.5 Diversity and Novelty
	8.6.6 Latent Interpolation

	8.7 Discussion
	8.8 Conclusion

	9 Conclusion
	9.1 Discussion
	9.2 Future Work

	A Appendix
	A.1 Scan-based Semantic Segmentation
	A.2 A Metric to Quantify the Realism of LiDAR Point Clouds
	A.2.1 Implementation Details and Hyperparameters
	A.2.2 Theoretical Lower Bound
	A.2.3 Qualitative Results

	A.3 Domain Adaptation via Data Generation for Domain Mapping
	A.3.1 Up-sampling Details

	A.4 Domain Invariant Feature Learning
	A.4.1 Pre-processing of the nuScenes dataset
	A.4.2 Label Mapping for State of the Art Comparisons

	A.5 Point Cloud Generation with Continuous Conditioning
	A.5.1 Implementation Details
	A.5.2 Additional Analysis
	A.5.3 Additional Results

	 List of Figures
	 List of Tables
	 Bibliography

