

Levels of carbohydrates in PM₁ particulate matter emitted during wintertime

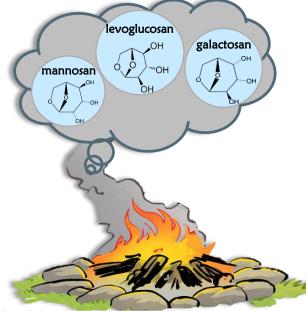
<u>Suzana Sopčić</u>, Ivana Jakovljević, Ranka Godec, Gordana Pehnec

Environmental hygiene Unit Institute for Medical Research and Occupational Health Zagreb, Croatia

UFP Conference 2022, 5-6 July 2022 Brussels, Belgium

Sources of carbohydrates in the air

Anhydrosugars


 \checkmark

Levoglucosan (1,6-anhydro-β-D-glucopyranose)


- **Mannosan** (1,6-anhydro- β -D-mannopyranose)
- Galactosan (1,6-anhydro-β-D-galactopyranose)

- ✤ dehydrated derivates of monosaccharides
- large quantities by anthropogenic activities

agricultural waste burning residential wood combustion forest fires

Sources of carbohydrates in air



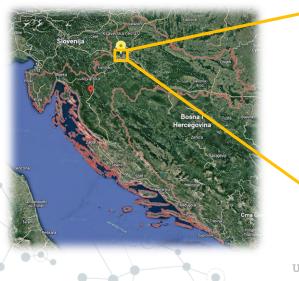
- reduced sugars
- components of plants, spores, bacteria, lichens, and lower plants
 - primary biological sources such as pollen, fungi, and bacteria
 breakdown products of polysaccharides
 direct volatilization of plant materials
 metabolic activity of various microorganisms
 thermal stripping of biomass burning

Sources of carbohydrates in air

 \checkmark

 continuous emissions from primary biological particles such as pollen, fungi, algae, growing leaves and decayed matter

biomass burning (cellulose - glucose, hemicellulose - galactose, and mannose)
 biologically active soil dust


Aim of the study

- to investigate the levels of carbohydrates in PM₁ particulate matter collected during wintertime in Zagreb City, Croatia
- to compare results with the analysis of carbohydrates in PM₁₀ particulate matter
- to determine the plausible source of carbohydrates
- to statistically compare carbohydrates and polycyclic aromatic hydrocarbons (PAHs)
 (Spearman correlation, Factor analysis, Principal Component Analysis (PCA))

Experimental

Sample collection

- fraction of PM₁ particulate matter
- urban background station
- sampling period: wintertime of 2020 (60 days)
- National Measuring Station for Continuous Air Quality Monitoring

SAMPLE COLLECTION

Quartz filters Tissuquartz 2500QAT-UP (Pall Life Sciences) (A = 1,5 cm²)

LVS3 Sven Leckel (55 m³/day)

SAMPLE TREATMENT GRAVIMETRY

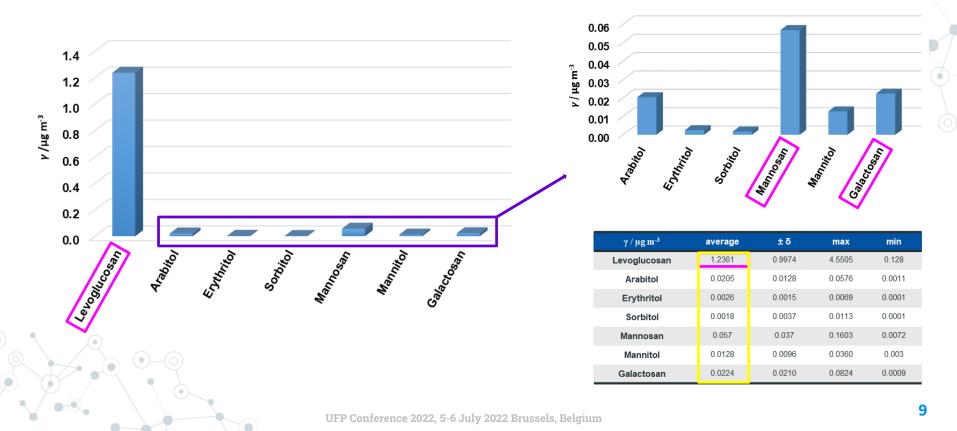
Sample condicioning : t = 24 h, 48 h RH = 50 ± 5 % T = 20 ± 1 °C

SAMPLE PREPARATION

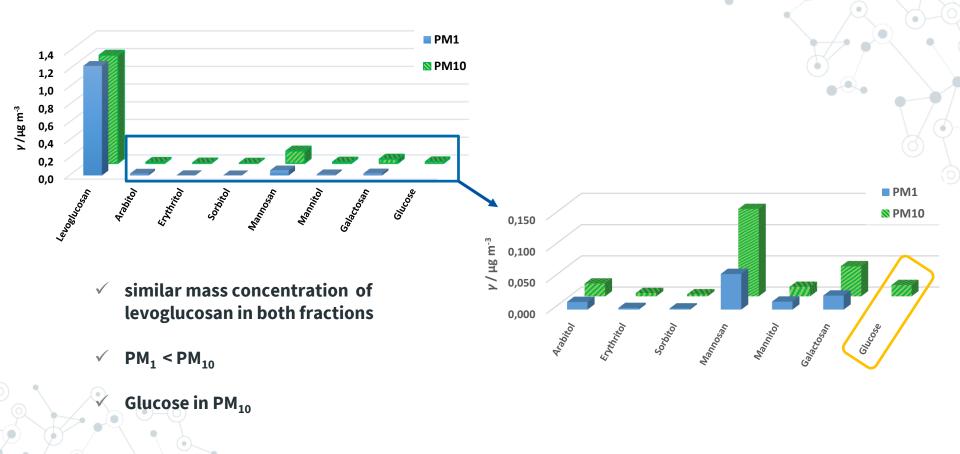
- ultrasonic extraction in ultra-pure water
- centrifugation

SAMPLE ANALYSIS

HIGH PERFORMANCE ANION-EXCHANGE CHROMATOGRAPHY WITH PULSED AMPEROMETRIC DETECTION

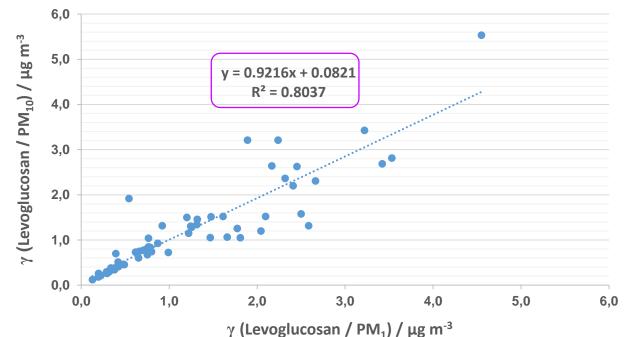


Eluent: NaOH, 0,4 ml/min


Separation column: CarboPack MA1, Thermo Fischer Scientific

Results

Average mass concentrations of carbohydrates in PM₁ fraction


Comparison of mass concentration in PM₁ and PM₁₀ fraction

Correlation of levoglucosan in PM_1 and PM_{10} fraction

11

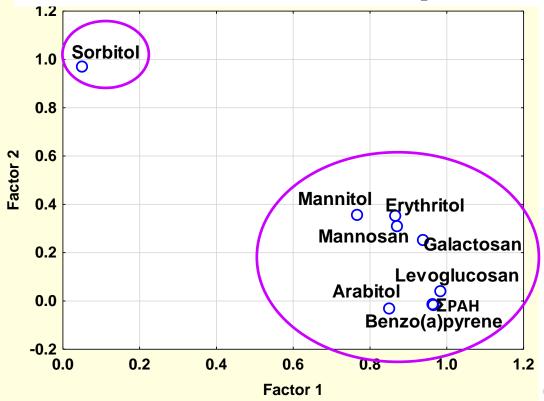
➢ 92.2 % of levoglucosan in PM₁₀ fraction is bounded to PM₁ fraction

UFP Conference 2022, 5-6 July 2022 Brussels, Belgium

Spearman correlation between carbohydrates and polycyclic aromatic hydrocarbons in PM_1 fraction

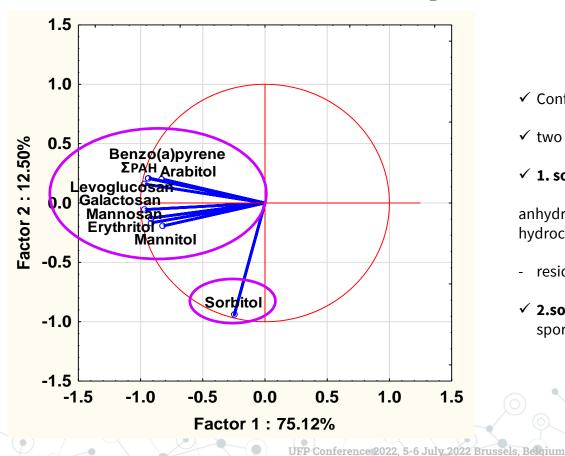
p < 0.05

	Levoglucosan	Arabitol	Erythritol	Sorbitol	Mannosan	Mannitol
Arabitol	0.94					
Erythritol	0.82	0.82				
Sorbitol	0.09	0.13	0.31			
Mannosan	0.91	0.85	0.87	0.23		
Mannitol	0.72	0.70	0.76	0.29	0.74	
Galactosan	0.91	0.86	0.88	0.25	0.94	0.82


	Levoglucosan	Arabitol	Erythritol	Sorbitol	Mannosan	Mannitol	Galactosan
Benzo[a]pyrene	0.96	0.87	0.76	0.05	0.86	0.70	0.89
ΣΡΑΗ	0.96	0.87	0.75	0.05	0.86	0.70	0.88

✓ **carbohydrates** : very strong (ρ > 0.8) and strong (ρ > 0.6) correlation — except for sorbitol

✓ PAHs and carbohydrates: very strong ($\rho > 0.8$) and strong ($\rho > 0.6$) correlation — except for sorbitol


✓ **sorbitol:** insignificant correlation — different source ??

Factor anaysis between carbohydrates and polycyclic aromatic hydrocarbons in PM₁ fraction

- ✓ confirmation of Spearman correlation
- ✓ separates two factors that may indicate two different pollution sources
- ✓ Factor 1. includes anhydrosugars, sugar alcohols, and polycyclic aromatic hydrocarbons
- ✓ Factor 2. sorbitol

PCA analysis between carbohydrates and polycyclic aromatic hydrocarbons in PM_1 fraction

- ✓ Confirmation of factor analysis
- ✓ two possible pollution sources
- ✓ 1. source related to biomass burning

anhydrosugars, sugar alcohols, and polycyclic aromatic hydrocarbons

- residential heating during wintertime
- ✓ 2.source probably related to biogenic acitivity (fungal spores, microorganisms)

Conclusions

- ✓ During wintertime in PM₁ fraction of particulate matter sampled in the urban background station in Zagreb City, anhydrosugars and sugar alcohols are detected
- ✓ Most dominant compound in the PM₁ fraction of particulate matter was levoglucosan
- ✓ More than 90 % of levoglucosan in the PM₁₀ fraction is bound to the PM₁ fraction
- ✓ Spearman correlation showed a very strong and strong correlation among all of the detected carbohydrates and PAHs except for one sugar alcohol (sorbitol)
- ✓ Factor analysis confirmed the assumption of different sources of analyzed compounds; two factors were found
- ✓ PCA analysis confirmed the factor analysis; two pollution sources
 - 1. biomass burning from residential heating
 - 2. biogenic activity
- ✓ Further research will be focused on the seasonal variations and more input parameters (related analytes, meteorology) that would give more precise source identification of pollutants

Thank you for your attention!