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Abstract—The requirements for the security of the network
communication in critical infrastructures have been more focused
on the availability of the data rather than the integrity and
the confidentiality. The availability of communication in IEC
61850 substations can be hindered by Generic Object Oriented
Substation Event (GOOSE) poisoning attacks that might result
in threats such as Denial of Service (DoS) or flooding attacks.
In order to accurately detect similar attacks, a novel method
for the Early Detection of Attacks for GOOSE Network Traffic
(EDA4GNeT) is developed in the present work. The EDA4GNeT
method considers the dynamic behavior of network traffic in
electrical substations. A mathematical modeling of GOOSE
network traffic is adopted for the anomaly detection based on
statistical hypothesis testing. The developed mathematical model
of the communication traffic can also support the management
of the network architecture in IEC 61850 substations based
on appropriate performance studies. To test the novel anomaly
detection method and compare the obtained results with related
works found in the literature, a simulation of a DoS attack against
a 66/11 kV substation with several experiments is used as a case
study.

Index Terms—anomaly detection, communication network,
cyber-security, electrical substations, GOOSE, IDS, IEC 61850,
IEC 62351.

ACRONYMS

AD Anomaly Detection.
ARFIMA Auto-Regressive Fractionally Integrated Moving

Average.
ARIMA Auto-Regressive Integrated Moving Average.
CB Circuit Breaker.
CPS Cyber-Physical Security.
CUSUM cumulative sum.
DoS Denial of Service.
DR Detection Rate.
EM Expectation Maximization.
FA False Alarm.
FNR False Negative Rate.
FPR False Positive Rate.
GOOSE Generic Object Oriented Substation Event.
HMI Human-Machine Interface.
ICS Industrial Control System.
ICT Information and Communication Technology.
IDS Intrusion Detection System.
IEC International Electrotechnical Commission.
IED Intelligent Electronic Device.

IT Information Technology.
KF Kalman Filter.
LRD Long-Range Dependency.
MITM Man-In-The-Middle.
MLE Maximum Likelihood Estimator.
MMS Manufacturing Message Specification.
MU Merging Unit.
NRMSE Normalized Root Mean Square Error.
OT Operational Technologies.
PDF Probability Density Function.
ROC Receiver Operating Characteristic.
SCADA Supervisory Control And Data Acquisition.
SG Smart Grid.
SS-AR State-Space Autoregressive model.
SS State-Space.
SV Sampled Values.
TNR True Negative Rate.
TPR True Positive Rate.
TR Trace of a matrix.
VLAN Virtual Local Area Network.
VM Virtual Machine.
WGN White Gaussian Noise.

LIST OF SYMBOLS

ξ[k] The measurement disturbance vector.
ai An element of the A matrix.
A The state transition matrix ∈ Rn×n.
B The base rate representing the probability that there is an

intrusion in the observed data set.
C The ratio of the cost of an IDS failing to detect an intrusion

and its cost when it generates a false alarm.
C The measurement matrix ∈ Rg×n.
Cexp The expected cost metric.
CID The intrusion detection capability metric.
d The difference coefficient.
D A selection term for the measurement equation.
E Matrix used in the iterative computation of the parameter

A.
e[k] Value of the sequence {e[k]} at discrete-time k.
F Matrix used in the iterative computation of the parameter

Q.
g The CUSUM decision function.
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G(Θ) The estimated log-likelihood function.
H A selection matrix for the state equation.
H Hurst parameter.
J Gain matrix computed in the Kalman smoother.
k Discrete time index.
ka Time at which an attack occurs.
K The Kalman filter gain.
P The variance of the state vector.
N Size of a time-series.
Q A n× n covariance matrix of the states or process noise.
R The variance of the measurement or signal noise.
s[k] Log-likelihood ratio increment.
Si The standard deviation of a subset x calculated over the

interval [i, u].
S[k] The novel score function.
Wi,u The partial sum of a subset x calculated over the interval

[i, u].
x A stochastic time-series.
α[k] The state vector at sample k.
β The signature of additive change on the estimates.
Γ(.) The gamma (generalized factorial) function.
γ The threshold for the statistical detector.
η[k] A state disturbance vector ∈ Rg×1.
ϵ Model residuals.
Θ The parameter vector.
µ̂ Sample mean.
µ The conditional mean of the state vector.
σk Variance matrix of the innovations.
σ The conditional variance of the state vector.
σ2
e Variance of a white Gaussian noise process.

σ̂ Sample variance.

I. INTRODUCTION

TO ensure an optimal operation of the electrical grid,
security of the communication of this critical infrastruc-

ture is of a first concern. Work in the field of security in
modern smart grids has been getting increasing interest within
the research community. However, enhancing the security of
smart grids requires improvement in different parts such as, for
instance, the transmission and the distribution substations as
their communication structure was not developed with security
being a primary concern [1].

In fact, the increased interconnection of Information and
Communication Technology (ICT) in transmission and the
distribution substations increases their exposure to cyber-
attacks. Different works in the literature e.g. [2]–[4] have
shown the several vulnerabilities of smart grids.

Requirements including the time-critical operation of the
power grid as well as the high availability of the communi-
cation network shall be considered when designing defense
mechanisms against the aforementioned threats. Thus, several
aspects such as hardware with multiple performance require-
ments, a reliable and safe software for control systems [5], and
a secure communication network traffic are necessary to take
up the challenge of securing next-generation energy systems.

Smart grids are composed of a heterogeneous structure with
a high-level of integration between the physical and the IT

system. Thus, for combining Operational Technologies and
Information Technology cyber-security is necessary to ensure
a secure operation of SGs. In [6], a detailed description of the
network architecture in smart grids is presented including the
communication infrastructure within electrical substations. A
security analysis of the different attacks that target the smart
grid are also detailed in the referred publication.

When compared with integrity and confidentiality, the avail-
ability of the data transmitted within the communication
network of IEC 61850 substations is of a major concern [3]
as it was also highlighted in [6] where Distributed Denial of
Service (DDoS) attacks are thoroughly investigated.

Denial of Service (DoS) attacks resulting from GOOSE
poisoning attacks are a considerable threat to the availability
of the data [7]. To counter it, use of Intrusion Detection
System (IDS) is suggested in the IEC 62351 standard where
different recommendations to enhance the security of smart
grids including electrical substations, are presented.

Although extensive research work [8]–[14] has been re-
ported to develop IDS in Industrial Control System (ICS) and
SCADA systems, we will only focus on anomaly-based IDSs
for electrical systems. Contrarily to rule and specification-
based IDSs, anomaly-based methods are able to detect zero-
day attacks which make them more adapted to energy systems
where scarcity of available data makes it hard to establish a
satisfying set of rules.

Few of the available anomaly detection methods combine
a good detection performance together with accounting for
the specific features of IEC 61850 substations. A survey of
learning-based detection methods for IoT systems including
critical infrastructures such as electrical grids is presented in
[15]. A list of widely used datasets for attack detection is
also reported. However, the proposed list shows that available
datasets from the attacks in the energy domain are limited.
Thus, accurate simulation of the attacks in testbeds, as pre-
sented in this work, can overcome these limitations. The scal-
ability of the detection solutions is an additional requirement
lacking in available methods that is raised by the authors in
[15]. Again, the scalability problem can be overcome by using
an extensible model for the anomaly detection as developed
in EDA4GNeT.

In Table I, a comparison between the closest works to the
method developed in the present work is established. In fact,
the considered characteristics are focused on the detection of
DoS attacks, resulting from GOOSE poisoning attacks, while
accounting for the specific characteristics of the IEC 61850
network traffic and the variations in the communication traffic.

In the following, we present a summary of the major lim-
itations of available approaches. First, specific characteristics
of the network in IEC 61850 substations including the dif-
ferent types of communications is not considered in available
anomaly detection methods based on network telemetrics as in
[16], [17]. Second, most of the models of the network traffic
in the substations presented in the literature [12], [16]–[18]
and considered for the anomaly detection rely on simplified
assumptions for the representation of the substation network.
Third, to the best of our knowledge, none of the existing work
proposes an early anomaly detection approach of GOOSE
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attacks in IEC 61850 substations. In fact, the model in [7]
corresponds to an accurate representation of the network in
IEC 61850. However it cannot provide an early detection of
advanced DoS attacks since j-step ahead predictions cannot be
computed from the proposed model. Consequently, the early
detection feature is not supported in any of the previous works
as shown in Table I.

TABLE I
CHARACTERISTICS OF THE CLOSEST AVAILABLE IDS FOR IEC 61850

SUBSTATIONS

IDS Adaption Detection No need Accounting for Robustness Early
for 61850 of DOS for specifications characteristics to variations detection

[19] ✓ ✓ ✓ - ✓ -
[13] ✓ - - - - -
[17] ✓ ✓ ✓ ✓ ✓ -
[14] ✓ - - - - -
[7] ✓ ✓ ✓ ✓ - -
[20] ✓ ✓ - - ✓ -
[21] ✓ ✓ - - ✓ -

In order to overcome those limitations and efficiently tackle
threats such as DoS or flooding attacks caused by GOOSE
poisoning attacks, we have developed a well-adapted Early
Detection of Attacks for GOOSE Network (EDA4GNeT)
method.

The developed EDA4GNeT method includes the specific
characteristics of the network traffic in IEC 61850 substations
in the anomaly detection approach. In fact, one of the main
challenges tackled within the present work is to analyze the
communication besides its added complexity due to the focus
on the physical process as well as the use of several protocols
for the network in electrical substations. In the following, we
list the main contributions of the presented work:

• We have developed a mathematical model based on a State-
Space representation of an ARFIMA process, the structured
analysis of the communication network of GOOSE traffic
in IEC 61850 substations. Although the primary use of the
developed mathematical model is the anomaly detection in
EDA4GNeT, it can support design of the network architec-
ture of electrical substations and performance studies of the
communication.

• We have developed an early anomaly detection method
EDA4GNeT in order to detect DoS attacks coming from
the infamous GOOSE poisoning attacks. We have designed
and implemented an accurate early detection, using the
multi-step ahead prediction for the State-Space (SS) model.
The novel method is thoroughly explained using a block
diagram, enumerating the different steps and a pseudo-code
of the EDA4GNeT algorithm. Early detection of attacks
is essential to allow implementation of corrective actions
through response systems and enhance the overall security
of IEC 61850 substations.

• The novel EDA4GNeT method considers dynamic changes
in the traffic and our results show considerable rate decrease
of false alarms. EDA4GNeT also allows the detection of
multiple anomalies at unknown change times.

• We perform the evaluation of the performance of the novel
detection method EDA4GNeT through performance metrics
such as detection rate and False Alarm (FA) . The considered

Sec. II. Attacking the GOOSE network traffic
A. GOOSE DoS attacks
B. Modeling of the GOOSE network traffic
C. Estimation of the considered model

Sec. III. The anomaly detection method EDA4GNeT
A. General features of the EDA4GNeT method
B. Description of the EDA4GNeT method
C. Novel score function

Sec. IV. Use case
A. Description of use case
B. Performance metrics
C. Results and discussion

Sec. V: Conclusion

Fig. 1. Organization of the remainder of the paper

simulation includes DoS attack, resulting from a GOOSE
poisoning attack on a 66/11 kV substation. We perform
several experiments under different conditions.
The remainder of the paper is organized as shown in Fig. 1.

In Section II, we present the description of the substation
network traffic as an approximated ARFIMA state space
model. Furthermore, we explain necessary foundations for
the understanding of the modeling procedure as well the
estimation of the different parameters. Section III describes the
developed anomaly detection method EDA4GNeT including
its general features and details about the detection technique.
In Section IV, we evaluate EDA4GNeT using a case study and
compare its results with related works available in the litera-
ture. Our method shows a strong performance using different
performance criteria. Finally, we conclude and describe future
work in Section V.

II. ATTACKING THE GOOSE NETWORK TRAFFIC

A. GOOSE DoS attacks

Normal operation in electrical substations might be affected
by disturbances or malicious actions, thus in the following
the considered threat model is described. In modern electrical
substations, HMIs are equipped with monitoring and control
interfaces that are remotely accessible. Attackers are assumed
to be able to compromise entry points in HMIs through
monitoring and control interfaces that are remotely accessible,
using for instance social engineering in order to connect to
IEDs.

The exploitation of protocols used in IEC 61850 substations
is described in [22]. The resulting DoS attacks are thoroughly
explained with a focus on their impact on the substation.
The different developed case studies are simulated using an
OPNET model and the resulting consequences of the imple-
mented attacks are presented. Accurate network telemetrics
including Ethernet delay and link utilization are analyzed in
order to investigate the system performance under attacks.

In fact, impact of loosing availability in communication
networks of critical infrastructures can be much more severe
than, for instance, in commercial systems. An attack script and
a traffic attack replay tool such as Tcpreplay [23] are used
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to synthetically generate an attack from a normal operation
scenario by injecting malicious GOOSE packets.

In the present work, we assume implementations of security
recommendations such as demilitarized zone (DMZ) to isolate
internal networks, reduce and control access to the substations
LANs. However, we consider that several security breaches to
DMZ can be exploited by attackers to access the substation
network and inject malicious packets. Most common security
breaches in critical infrastructures include phishing, compro-
mising a domain controller or session hijacking or MITM.

Assuming that the attacker is able to exploit security
breaches in the network, the attack model is based on com-
promising the GOOSE communication by spoofing the trans-
mitted messages and masquerading a legitimate IED to inject
maliciously crafted GOOSE messages. One of the ways to
perpetrate a GOOSE DOS attack is to flood the network with
bogus frames. More details about the generation framework
of the different attack and attack-free scenarios can be found
in [24].

By masquerading a legitimate IED, maliciously crafted
GOOSE messages with a higher StNum than the legitimate
packets, would result in a DoS attack. The injection of a
maliciously crafted packet is only possible when the attack
flooding rate is higher than the legitimate transmission rate.
When the sending advantage of the attacker of packets with
a higher StNum over the legitimate GOOSE publisher is
reached, the poisoning attack can start. In the present case
study, it is assumed that the attacker has acquired knowledge
about the legitimate GOOSE frame rate in previous reconnais-
sance steps. In fact, from a defender perspective, the worst
case scenario is when an attacker able to launch a successful
poisoning attack with a small injection rate which would be
hardly distinguished from the normal traffic. In the present
threat model, this worst case scenario is assumed in order
to demonstrate the capabilities of the EDA4GNET detection
method. It is worth noting that further analysis of the success
rate of poisoning attacks, required to cause a DoS attack
shall be conducted, which is however, out of the scope of
the present work. In summary, the DoS resulting from the
GOOSE poisoning attack refers to a service that can not be
correctly executed. In fact, the DoS is not a volumetric attack
that creates flooding messages, but rather disables the service
from being correctly executed since the state sequence number
is changed. Interested reader can find further details in [2],
[25], [26].

B. Modeling of the GOOSE network traffic

In order to detect DoS attacks resulting from GOOSE
poisoning attacks described in Section II-A, the use of an
adapted anomaly detection system can address the problem
as discussed in Section I. In fact, anomaly-based detection is
a class of IDSs that is based on characterizing the normal
behavior of a system, in our case, the GOOSE network traffic.
An anomaly is, thus, referred to as a deviation from the normal
behavior.

To thoroughly describe the characteristics of the GOOSE
network traffic, an ARFIMA model is presented in [7]. The

ARFIMA model is a generalization of the integer order in an
autoregressive integral moving average (ARIMA) model. The
use of fractional difference operator rather than an integer one
as in ARIMA models, was suggested in [27] in the context of
hydrology in order to represent the Long-Range Dependency
(LRD). Using a state-space representation of the ARFIMA
model offers several advantages including an efficient com-
putational implementation of the model estimates as well as
a general expression for a multivariate data. Additionally, for
the early detection feature of EDA4GNeT, the j-step ahead
prediction can be obtained using the Kalman Filter (KF) as
explained in Section III-C.

Use of State-Space models for description of processes
with LRD has been presented in several works [28]–[30].
As introduced by Chan and Palma in [30], ARFIMA models
with long-memory determined by the parameter d can be
approximated using State-Space representation.

The general representation of a state-space model includes
two equations. The first expression, namely the transition
equation and the second one being measurement equation
which describes the relation between the time series x[k] ∈ Rg

and the state vector α[k]. The first equation, namely the
transition equation, defines the evolution of the state vector
α[k] and is described by Eq. (1):

α[k + 1] = Aα[k] +Hη[k], η[k] ∼ N (0,Q) (1)

where A ∈ Rn×n is the state transition matrix and H ∈ Rn×g

is the selection matrix and η[k] is a g × 1 disturbance vector.
Q is the g × g covariance matrix.

The second equation representing the time series x[k] is
defined as follows according to [28]:

x[k] = Cα[k] +Dξ[k], ξ[k] ∼ N (0,R) (2)

where C ∈ Rg×n is the measurement matrix and α[k] ∈ Rn

is the state vector. D ∈ Rg×n is a selection matrix and ξ[k] is
an n× 1 vector.

According to [30], the previously presented State-Space
system can be written as an autoregressive model AR(∞) for
long-memory models. Choosing a long enough truncation lag
m allows the evaluation of an approximation of the likelihood
function. Thus, according to [28] the AR(m) model can be
represented in State-Space form as described in Appendix A.

Calculation of the maximum likelihood estimation of sta-
tionary generalized LRD models using parametric approaches
can require high computational resources. Authors in [31]
develop a Bayesian sampling algorithm for a bi-variate pro-
cess with a stationary long-memory component. A sampling
schema for stationary generalized long-memory models with
one or more latent ARFIMA components was proposed to
compute the maximum likelihood estimator in [32]. It was
shown in [31] that the numerical computation of the estimation
increases when more than two latent components are used. In
the next sections, a State-Space model using an AR description
is considered to represent the ARFIMA model according to
[30].
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C. Estimation of the considered model

Analysis of the GOOSE network traffic using relevant
invariants of the communication network presented in [33]
shows presence of Long-Range Dependency (LRD) character-
istics [7] that can modeled using a state-space representation of
an ARFIMA model as presented in Section II-B. In the present
section, estimation of the parameter vector of the considered
model is tackled. Subspace methods can be considered for
parameter estimation of state-space models for long-range
fractionally integrated models as they can be practically im-
plemented as described in [34]. Subspace procedures are based
on a model reduction applied to an initial high-order vector
autoregression estimate. Some of their main advantages are
on one hand the possibility of handling problems of missing
values or demeaning and de-trending [34] and on the other
hand the efficiency of their numerical implementation.

Considering the specific representation of the State-Space
model introduced in Eq. (9), an alternative estimation method
needs to be adopted since there are constraints associated to
the estimation problem. Parameter estimation of models as in
Eq. (9) can be retrieved using the expectation maximization
(EM) algorithm which is shown to be a robust solution as
described in [35]. In the following, we present the definitions
of conditional mean µ and variance Σ of the state vector,
respectively:

α[k|k − 1] = E (α[k]|x[k − 1]) = µ, (3a)
P[k|k − 1] = Var (α[k]|x[k − 1]) = Σ (3b)

According to [35], an iterative maximum likelihood estima-
tor of the parameters of the State-Space model is derived from
the following log-likelihood:

logL =− 1

2
log|Σ|−1

2
(α− µ)TΣ−1(α− µ)

− N

2
log|Q|

− 1

2

N∑
k=1

(α[k]−Aα[k − 1])
T
Q−1(α[k]−Aα[k − 1])

− N

2
log|R|

− 1

2

N∑
k=1

(x[k]−Cα[k])TR−1(x[k]−Cα[k])

(4)
The observations {x[0], . . . ,x[N − 1]} are accessible but

some hidden states are unknown. Thus, only the estimated
log likelihood is available and calculated as in Appendix B.

In order to analyze the convergence properties of the
Expectation Maximization (EM) algorithm, an introductory
example of an ARFIMA(1, d, 1) model reported in [28] is
considered. Fig. 2 shows the data of an experiment using
this exemplary process. The simulation data representing an
experiment is depicted in the top part of Fig. 2 which is used
for parameter estimation. The parameters of the State-Space
(SS-AR) approximation of the ARFIMA model, are estimated
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]
Fig. 2. Data from an experiment using and ARFIMA(1,d,1)

using the EM algorithm. The bottom part of Fig. 2 shows the
validation dataset (black) and the model predictions x̂ [k].

A total of 25 experiments with different WGN realizations
is performed on the introductory example and the results of the
maximization of the log-likelihood function in the estimation
algorithm are shown in Fig. 3 for each experiment. For the
considered use case, the log-likelihood function converges
after approximately 20 iterations as depicted in Fig. 3.

The average value of the model parameters computed on
the total number of experiments are the following:

A =

0.33 0.21 0.24
1 0 0
0 1 0

 , (5a)

C =
(
1, 0, . . . , 0

)
, (5b)

D = 0, (5c)

Q =

0.47 0 0
0 1.73
0 0 0.16

 (5d)

R = 1.02 (5e)

Estimation and convergence properties of he log-likelihood
function of the SS-AR model representing the GOOSE net-
work traffic, are discussed in the following. The different
values of the estimated parameters ai of the matrix A of
the obtained SS-AR are shown respectively in Fig. 4. For
each experiment, the parameters converge after some iterations
which is consistent with the results shown in Fig. 3. However,
the parameter a2 ranges over a larger span of values in the first
iterations in comparison with the other parameters. The cost
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Fig. 3. Maximization of the log-likelihood function

function in the expectation-maximization (EM) algorithm is
minimized for different combination of the parameters shown
in Fig. 4. The convergence properties are similar to Fig. 3.
The expectation-maximization algorithm can be adjusted by
fixing the value of some parameters, i.e initial values, and
computing the remaining ones in an iterative procedure. Thus,
knowledge about the signal under analysis is required since the
initial values of the parameters should be assigned based on the
experience of the user. The estimation method is implemented
numerically and the convergence can be improved by adjusting
the choice of initial values.

III. THE ANOMALY DETECTION METHOD EDA4GNET

A. General features of EDA4GNeT

The network traffic in industrial control and in energy
systems is commonly assumed to be at steady-state [36].
However, as result of changes in the operating conditions of
the industrial system or the grid, the network traffic might
exhibit time-varying characteristics according to [20], [36].
Thus, one of the main features of the developed method is
to account for the aforementioned fluctuations which allows
its adaptability to the dynamics of the system. This guarantees
that the test statistics are not affected by fluctuations in normal
operation and remain within the expected range which reduces
considerably the rate of false alarms and enhance the overall
performance of our ED4GNeT detection method.

A second property that is taken in account for the design
of our novel detection method is a recursive implementation.
A similar property is required for the adaption of the network
traffic model in real-time application such as the transmission
of some particular GOOSE messages within IEC 61850 sub-
stations.

The adoption of a recursive implementation avoids unnec-
essary computational complexity and memory problems as the
computation at k are based at values on k−1. Thus, appending
a new each collected sample of the network traffic to the
training set at each iteration is avoided. The predictions of
the state-space AR model developed in the present work are
calculated recursively i.e. the prediction at the current sample
is estimated using only previous samples circumventing the
aforementioned limitations.
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Fig. 4. Convergence of the first parameter a1 of the A matrix in the SS-AR
model

In addition to the previously described properties, the detec-
tion time is considered as a design requirement in EDA4GNeT
method contrarily to available IDS where the detection delay
is only considered as a performance metric. In fact, the
detection delay corresponds to the time difference between
the occurrence of an alarm and the actual time of an attack.

Early detection of GOOSE attacks in IEC 61850 substation
network is possible with EDA4GNeT since it is based on a
robust forecasting algorithm. This additional feature, that has
not been considered in any of the previously available for IEC
61850 networks, is central in helping prevent power failure
and revenues due to possible consequences of cyber-attacks
on the grid such as fatigue damage or resonance attacks [3].

B. Description of EDA4GNeT

A graphical description in the form of a block diagram
is depicted in Fig. 5 to represent the EDA4GNeT method.

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2023.3272749

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

The analyzed network traffic is represented using an adequate
mathematical model as shown in Fig. 5. The parameter of the
chosen model are estimated in a further step. The modeling
procedure is completed whenever a satisfactory model is
obtained through the validation step represented by the fourth
block in Fig. 5. The early detection is based on the multi-step
ahead prediction vector stemming from the fifth block. The
different steps as well as the parameters used for the modeling,
prediction and detection, depicted in Fig. 5, are thoroughly
explained in the following.

1) Analysis and modeling of the network traffic: Analysis
of the characteristics of the network traffic in IEC 61850
substations show presence of Long-Range Dependency (LRD)
properties that can be described by an ARFIMA model [7]
to represent the network xest[k]. An ARFIMA model is an
extension of the autoregressive fractionally integrated moving
average (ARIMA) model that allows use of non-integer values
of the differencing parameter d. More details can be found in
the pioneer works of [37] and [38].

A state-space approximation of the ARFIMA model using
an SS AR model introduced in [30] and explained in Sec-
tion II-B, is selected to describe the communication in the
modeling step.

2) Estimation of the parameter vector: The network traffic
xest[k] is used for the estimation of the parameter vector Θ̂
that includes the parameters of the state-space model (A, Q,
R) defined in Eq. (9).

Due to the specific form of the matrices A and C, an
adapted version of the Expectation Maximization (EM) al-
gorithm is developed which is one of the contributions of
the present work. The values resulting from the estimation
algorithm are used for further computations of the prediction
values.

In order to guarantee the adaptability to the dynamics of the
network traffic, use of KF with suitable initial values allows to
efficiently fit the dynamics of the traffic and guarantee a good
performance of EDA4GNeT. In fact, the KF guarantee optimal
estimates in case of linear models with White Gaussian Noise
(WGN) and its use is adapted for the estimation of the system
state by minimizing the mean squared error.

The Expectation Maximization (EM) algorithm offers a
good performance as a fast convergence is achieved after few
iterations [35]. A discussion about the convergence of the EM
algorithm is introduced in Section II-C.

The predictions of the GOOSE network traffic denoted by
x̂[k] are further computed using the parameter vector Θ̂.

3) Validation of the model: Within the validation step, the
model and residuals analysis are the considered criteria. In
the validation step, the Normalized Root Mean Square Error
(NRMSE) as well as the distribution of the residuals εval[k]
resulting from the difference between the real signal xval[k]
and the predicted one x̂[k] are used to assess the quality of
the model.

The accuracy of the obtained model is subject to repeating
the computation of the EM algorithm within the estimation
step until acceptable results are obtained. Whenever a satisfac-
tory model is achieved after the validation step, the parameter

vector Θ̂ can be further used for the recursive computations
of the predictions.

4) Multi-step ahead prediction: The “multi-step prediction”
stage takes as input Θ̂ and includes the computation of the KF
equations to calculate the j step-ahead prediction x̂[k + j|k].
For the value j = 1, x̂ represents the commonly known
one-step ahead predictor. Further details are presented in
Section III-C

The EDA4GNeT method can be used with one-step ahead
predictor and a Cumulative Sum (CUSUM) test for the attack
detection based on the residuals εval[k]. In fact, an anomaly
observed in the measurement or in the transition equations can
also be detected in the residuals [39].

For the early detection feature, the detector for EDA4GNeT
is based on a novel score function based on the j-step ahead
prediction, with j chosen as j > 1, instead of the residuals.
More details about the score function used for the detection
test is described in Section III-C.

C. Novel score function

One of the main advantages of an early detection of DoS
attacks is to reduce operational costs by avoiding loss of
availability of the network in substations.

The novel EDA4GNeT method offers an early detection
feature with the help of a novel score function based on the
j-step ahead prediction x̂[k + j|k].

The model predictions are computed based on the estimation
of the state described in Appendix C.

In the present part, we provide a detailed description of the
detection step within the EDA4GNeT method including the
novel score function.

The considered detection problem can be formulated as an
early change point detection where the anomalies occur at un-
known times resulting in changes in the statistical properties of
the network traffic. The main challenge of the early detection
is to ensure a satisfactory performance together with a reduced
False Alarm (FA) rate.

The early detection in EDA4GNeT is based on a new
score function, inspired by [40]. Indeed, the concept developed
in [40] is extended for an early detection and a parametric
approach with the test statistic g[k + j] computed as follows:

kalarm = min{k : g[k + j] ≥ γ}
with g[k + j] = max(0, g[k + j − 1] + S[k + j])

(6)

The novel score function S[k] is based on the predictions
of x̂[k + j|k] and defined by

S(x̂[k + j|k]) = a1x̂[k + j|k] + a2x̂2
[k + j|k]− a0 (7)

The representation of the score function in a linear-quadratic
form enables the positive design parameters. The design pa-
rameters a0, a1 and a2 used in in the linear quadratic form of
the score function, help account for changes in the mean and
in the variance representing an anomaly.

The previously described steps are included in the
EDA4GNeT algorithm as shown in Fig. 6. The different equa-
tions described in Section II to Section III-C are summarized
as a pseudo-code in Fig. 6.
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Fig. 5. Block diagram of the EDA4GNeT method

Algorithm 1: EDA4GNeT for early detection of GOOSE

poisoning attacks

Input: Network traffic data {xest[k]}, order of the SS-AR model am,

initialization values for EM algorithm A0

Output: Early detection time for possible DoS attacks, kalarm
Data: Network traffic, xN = {x [0], x [1], . . . , x [N − 1]}
Initialization: g [i] = s[i] = 0, i = 0, 1, . . . , k − 1
Estimation: Apply the EM-Algorithm as described by equations (6) to

(10)

while True do
Compute state vector at k + j by

α[k + j] = Aj−1α[k + 1] +w[k] (12a)

w[k] = Aj−1Hη[k] + Aj−2Hη[k + 1] + · · ·+Hη[k + j − 1]
(12b)

Compute the j-step ahead prediction using (12) as follows

x̂[k + j|k] = CAjα̂[k|k] (15)

The novel score function S[k] is obtained by

S(x̂[k + j|k]) = a1x̂[k + j|k] + a2x̂
2[k + j|k]− a0 (18)

The test statistic is computed as

g[k + j] = max(0, g[k − 1 + j] + S(x̂[k + j|k])) (17)

if g [k + j] > γ then

kalarm ← k + j /* possible anomaly early detected */

else

k = k + 1 /* continue searching for anomalies */

Fig. 6. The algorithm of the EDA4GNeT method

The considered threat model consists in a DoS attack result-
ing from a GOOSE poisoning attack. This attack is possible
through masquerading a legitimate IED to send malicious
packets as decribed in Section II-A.

IV. USE CASE

A. Description of the use case

A synthesized dataset generated by the Advanced Digital
Sciences Center (ADSC) [24] is adopted in the present work.

The simulated testbed, shown in Fig. 7 describes the oper-
ation of a 66/11 kV electrical substation model established
according to recommendations described in IEC 61850. In
fact, protocols from IEC 61850 standard are used including
a Generic Object Oriented Substation Event (GOOSE) and
Sampled Values (SV) communication via Ethernet VLAN
between current transformers, voltage transformers and In-
telligent Electronic Devices (IEDs). The MMS protocol at
the station level is used for the connection between Human-
Machine Interfaces (HMIs) and IEDs. A total of 18 IEDs,
shown in Fig. 7, are included within the same multicast group.

Some of the datasets proposed in [24] consist of normal
operation scenarios in substations that include disturbances
such as a breaker failure or a busbar protection which are
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Fig. 7. The single-line diagram of a 66/11 kV substation [24]
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Fig. 8. Simulated GOOSE network traffic with several changes

particularly relevant for our study as they include presence of
specific GOOSE messages which are sent to address distur-
bance event changes.

The normal operation in an electrical substation might also
include disturbances such as a breaker failure or a busbar
protection where specific GOOSE messages are sent to address
such event changes.

In order to thoroughly test the detection performance of the
EDA4GNeT method, several experiments with different noise
realizations are performed. The considered case study includes
several DoS attacks with different characteristics including the
duration and the amplitude of the changes. The aforementioned
use case is depicted in Fig. 8.

A normal GOOSE network traffic is simulated based on
the modeling procedure described in Section II. Each attack
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TABLE II
COMPARISON OF DETECTION RESULTS USING EDA4GNET

Change Earliness of Detection*
Basic Composite

FPR [%] FNR [%] Cexp CID

[19] [17] EDA4GNeT [19] [17] EDA4GNeT [19] [17] EDA4GNeT [19] [17] EDA4GNeT [19] [17] EDA4GNeT

1 – – −29.51 0.7810 2.4796 0.4430 0.2983 0.9471 0.1692 0.1023 0.1013 0.0970 0.2985 0.1802 0.3034
2 – – −30.24 1.3017 1.5143 1.0970 0.4972 0.5784 0.4190 0.1025 0.1032 0.0970 0.2995 0.1805 0.3212
3 – – −30.88 1.5130 1.9984 0.9752 0.5779 0.7633 0.3725 0.1023 0.1029 0.0980 0.2890 0.1825 0.3102
4 – – −30.52 0.7917 0.7029 0.7072 0.3024 0.2685 0.2701 0.1022 0.1030 0.0980 0.2890 0.1900 0.3211
5 – – −30.43 0.9635 1.0282 0.6253 0.3680 0.3927 0.2389 0.1023 0.1050 0.0970 0.2901 0.1769 0.3103
6 – – −29.97 0.9886 0.7047 0.4576 0.3776 0.2692 0.1748 0.1021 0.1052 0.0973 0.2973 0.1675 0.3051

consists of two changing levels and consequently six changes
are represented in Fig. 8. While the first attack starts at k =
198 and lasts 215 samples, the second one starts at k = 413
and can hardly be distinguished from the normal traffic. The
third and last attack starts at k = 1024 and finishes at k =
1215. It is worth noting that although the changes representing
some of the attacks can be perceived in Fig. 8, it is difficult
to guess with the naked eye the starting time. It can be also
remarked that a change in the dynamics of the system was
introduced from the sample k = 809. In electrical substations,
such changes can occur in case of modification in the physical
system that require adaption of the operating conditions.

B. Performance metrics

In the present section, common as well as advanced perfor-
mance criteria are introduced.

If H1, the hypothesis indicating the presence of an anomaly,
is selected by the anomaly detection method when H0, indi-
cating the absence of an anomaly, is true, a False Alarm (FA)
or a false positive (FP) are raised. A false negative (FN) (i.e.
miss) indicates that H0 is selected by the detection mechanism
when the hypothesis H1 is true.

True positives (TPs) or a hit refer to the fact that the detector
decides correctly for H1 whereas a true negative (TN) (i.e.
correct rejection) indicates that H1 is correctly discarded.

The following basic performance assessment metrics are
defined based on the aforementioned concepts:

When considering a case where the cost of FNs is high, the
TPR also called DR or recall, helps give additional information
about the detection. The TNR, also called specificity represents
the proportion of correctly classified normal samples by the
total number of samples of the entire dataset. The FPR
represents the rate of FAs which is also referred to as type I
errors in statistics. FNR or miss rate represents the proportion
of type II error, i.e the hypothesis H0 is chosen when H1 is
true.

The previously introduced metrics can be combined with
other criteria to deduce advanced performance measures.

Combining basic metrics with additional criteria allow ob-
taining composite detection metrics [41] that can give an ad-
vanced evaluation of the performance of IDSs. It is, however,
worth noting that the composite metrics do not replace the
basic ones [42].

The first advanced metric Cexp is defined as follows:

Cexp = min(C · FNR ·B, TNR · (1−B))

+min(C · TPR ·B, TPR · (1−B))
(8)

Where C is a user-defined parameter representing the ratio
of the cost of a misdetected intrusion by the cost of an IDS
generating an alert when an intrusion has not occurred.

The base rate B represents the probability that there is an
intrusion in the considered dataset. For our experiments, a base
rate of B = 0.1 is assumed whereas the value of C is set to
be equal to 10 following [41]. Indeed, a misdetection of an
anomaly within the communication of an electrical substation
might result in an increased damage to the overall grid. Thus,
the cost of a False Negative Rate (FNR) is considered to be
much higher than the cost of False Positive Rate (FPR) as
represented by C.

According to [41], a low value Cexp indicates a better per-
formance of the IDS which provides a practical way to relate
the different basic detection metrics. It is, nevertheless, worth
mentioning that this performance metric depends on the value
of C which is a subjective measure that can be challenging
to set as it might depend on different factors including for
instance the size and the location of the substation.

The second composite metric considered in the present
work, namely the intrusion detection capability CID, was
originally introduced in [42]. The CID metric can provide
a more objective evaluation of IDSs as it presents the ratio
of the mutual information between the IDS input and output
to the entropy of the input. Its main purpose is to have less
uncertainty with respect to the input given the Intrusion De-
tection System (IDS) output. The CID represents the fraction
of correct guesses of an IDS and it is computed as the ratio
between the correct guesses of alerts generated by the IDS
by the total number of required binary guesses. In order to
compare the performance of IDSs, the maximum value of
intrusion capabilities CID obtained for each method shall be
compared between them.

C. Results and discussion

The hardware setup for the performed experiments includes
a computer equipped with an Intel processor i7-2.00 GHz and
32GB RAM. A total number of 25 Monte-Carlo simulations
are performed for each threshold and under different realiza-
tions of WGN for each experiment.

In order to test the performance of the novel EDA4GNeT
method, it is compared to the closest works on anomaly
detection for IEC 61850 substations available in the literature
based on Table I. In fact, methods in [7], [17], [19] are
anomaly detection methods that meet at most the predefined
requisites namely the inclusion of the specific features of the
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network traffic, the robustness against network variations and
the detection of DOS attacks in the GOOSE as shown in
Table I. As the novel method is based on a previous work
developed in [7], the two closest counterparts to which we
will compare our method are [19] and [17]. Additionally, the
ARFIMA model proposed in [7] corresponds to an accurate
representation of the network in IEC 61850, however it cannot
provide an early detection of advanced DoS attacks since j-
step ahead predictions cannot be computed from the proposed
model. Consequently, to the best of our knowledge and as
shown in Table I, none of the currently available anomaly
detection methods based on a mathematical model accounting
for the dynamics of the network traffic, are able to offer
an early detection of DoS attacks resulting from GOOSE
poisoning attacks.

In [19] and [17], statistical anomaly detection methods
against attacks in IEC 61850 substations, are developed. The
authors in [19], present a statistical detection based on a
comparison of the residuals with a variance-based threshold
while assuming that the network traffic in electrical substations
can be represented as a DC level in white Gaussian noise
model. In contrast to [19], where the residuals are obtained
from a DC level embedded in WGN, a modified version with
the residuals computed from the appropriate mathematical
model developed in Section II-C are considered instead.

The approach presented in [17] is based on an anomaly
score resulting from the comparison of the network traffic
with a minimum and a maximum value extracted from real
measurements. No details were provided in [17] for the choice
of the user-defined parameters necessary for the anomaly de-
tection score. Thus, empirically adapted values are chosen that
would allow a high detection performance for the considered
use case. Both approaches are implemented for comparison
with EDA4GNeT method.

To validate the performance of the EDA4GNeT method, an
average of the results of the different Monte-Carlo experiments
is presented in Table II. The EDA4GNeT method offers an
early detection of attacks of an average of 30 samples ahead
according to Table II.

As shown in Table II, on average the False Positive Rate
(FPR) of EDA4GNeT is less than 1% for most of the changes.
The False Positive Rate (FPR) of the detection algorithm
presented in [17] and [19] are, in general, higher than our
method.

The values of the FNR range between 0.17% and 0.42%
for EDA4GNET. The developed method outperforms both
counterparts in almost all the changes with the exception of
the forth case which might be due to numerical precision.
Due to the limitations of the model proposed in [19] for the
considered case study, high FPR and FNR are obtained.

In Table II, the lowest values of Cexp are depicted in bold
and according to [41], the detection method with the lowest
cost metric has the best performance. In fact, the results of the
composite metrics Cexp and CID, are consistent with the basic
metrics as, for instance, they also reflect a slightly smaller cost
Cexp for the EDA4GNeT method.

As shown in bold in Table II for the method developed in
[17], the lowest value of Cexp is equal to 0.1013, whereas

for EDA4GNeT it corresponds to 0.097. The values of the
intrusion capability CID of all the changes are higher for
EDA4GNeT than for both counterparts.

The reason of the better detection performance of
EDA4GNeT can be explained by the adequacy of the selected
model for the description of the network traffic in IEC 61850
substations as well as the accuracy of our detector introduced
in Section III-C.

In Table II, the earliness of detection represents the number
of discrete time samples after which the anomaly is detected.
Regardless of the amplitude and duration of the change i.e.
the start or the end of the attack, EDA4GNeT is able to detect
them in average 30 samples in advance with an approximate
detection rate of 99%. Compared with its counterparts [17],
[19], EDA4GNeT offers a good compromise between the early
detection feature and other detection performance statistics. It
is worth mentioning that the performance of the EDA4GNeT
method is evaluated considering the GOOSE protocol’s timing
requirements as the main focus is to develop a detection
method able to deliver time-ahead alarms with satisfactory
detection performance. However, considerations about network
latency and packet losses as presented in [14], that might
impact the performance of the EDA4GNeT method, will be
considered for future work to yield an even more robust
detection method.

V. CONCLUSION

The security of critical infrastructures including electrical
substations is a major concern that has been gaining increasing
interest within the research community. In the present work,
we tackle the challenge of enhancing the availability of the
data in networks of IEC 61850 substations. Thus, the Early De-
tection of Attacks for GOOSE Network Traffic (EDA4GNeT)
method is developed in order to detect DoS resulting from
GOOSE poisoning attacks.

The novel anomaly detection system EDA4GNeT addresses
limitations of available methods and achieves remarkable
results in terms of a balance between the detection perfor-
mance and earliness of detection. On one hand, its recursive
implementation helps account for dynamic changes in the
traffic and on the other hand, a robust statistical method based
on a novel detection test introduced in Section III-C allows
accurate detection of attacks.

To validate the performance of EDA4GNeT, we analyze a
use case of the network in a 66/11 kV substations including
the simulation of different attacks and we use basic and com-
posite performance metrics are used for the evaluation of the
method. Comparing the early detection method EDA4GNeT
to the related works shows a superior detection performance
with a detection rate of more than 99% and a false positive
rate of no more than around 1.1% together with an average
early detection of 30 samples ahead.
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APPENDIX A
AR STATE-SPACE APPROXIMATION

The AR(m) approximation can be presented as follows:

A =


a1 a2 · · · am
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 1 0

 , (9a)

C = (1, 0, . . . , 0), (9b)
D = 0, (9c)

H = (1 0 · · · 0)T (9d)

where the parameters ai for j = 1, ...,m are computed
according to [28]. Thus, expressing an ARFIMA (p, d, q)
model using a truncated infinite AR expansion yields

x[k] =
∞∑
j=1

ajx[k − j] + e[k] (10)

APPENDIX B
ESTIMATION OF THE LOG-LIKELIHOOD

The estimated log-likelihood is expressed by:

G(Θ) =E (logL|x[1], . . . ,x[N ])

=− 1

2
log|Σ|

−1

2
Tr

[
Σ−1(P[0|N ] + (α[0|N ]− µ)(α[0|N ]− µ)T)

]
−N

2
log|Q| − 1

2
Tr

[
Q−1(F−EAT −AET +ADAT)

]
−N

2
log|R| − 1

2
Tr

[
R−1

N∑
k=1

((x[k]−Cα[k|N ])

(x[k]−Cα[k|N ])T +CP[k|N ]CT
)]

(11)
The maximization of G(Θ) is obtained with the following

computations:

Ar+1 = ED−1 (12a)

Qr+1 =
1

N

(
F−ED−1ET

)
(12b)

Rr+1 =
1

N

N∑
k=1

(
(x[k]−Cα[k|N ])(x[k]−Cα[k|N ])T

+ CP[k|N ]CT
)

(12c)

where,

D =

N∑
k=1

(
P[k − 1|N ] +α[k − 1|N ]α[k − 1|N ]T

)
(13a)

E =

N∑
k=1

(
P[k|N ] +α[k|N ]α[k − 1|N ]T

)
(13b)

F =

N∑
k=1

(
P[k|N ] +α[k|N ]α[k|N ]T

)
(13c)

The quantities required in Eq. (13) are computed using the
Kalman smoother. The Kalman smoother allows a recursive
state estimation to compute the posterior distribution over the
latent states of a linear state space model given some observed
data. The Kalman smoother is proposed for state estimation
based on the values of the signal x [k]. The equations for the
Kalman smoother are expressed as following for k = n, n −
1, . . . , 1:

J[k − 1] = P[k − 1|k − 1]AT(P[k|k − 1])−1 (14a)
α[k − 1|n] = α[k − 1|k − 1]

+ J[k − 1](α[k|n]−Aα[k − 1|k − 1])
(14b)

P[k − 1|n] = P[k − 1|k − 1] + J[k − 1]

(P[k|n]−P[k|k − 1])J[k − 1]T (14c)

The initial values for the smoother are the final estimates of
the filter. At each iteration, the rules in Eq. (12) are computed
using Eq. (13).

APPENDIX C
COMPUTATION OF THE J-STEP AHEAD PREDICTION

The state vector at k + j can be written as follows [43]:

α[k + j] = Aj−1α[k + 1] +w[k] (15a)

w[k] = Aj−1Hη[k] +Aj−2Hη[k + 1] + · · ·
+Hη[k + j − 1] (15b)

The general expression of the j-step ahead forecast with
j > 1 of the state vector α̂[k + j|k] is expressed from the
conditional expectation of Eq. (15)

α̂[k + j|k] = Aj−1α̂[k + 1|k] (16)

The error of the forecast of the state vector can be calculated
as follows:

α[k + j]− α̂[k + j|k] = α[k + j]−Ajα̂[k|k] (17)

The previously introduced equation Eq. (16) can be used to
describe the j-step ahead forecasts of the observation vector
x [k + j].

x̂[k + j|k] = CAjα̂[k|k] (18)

The error of the forecast calculated in Eq. (18) is:

x[k + j]− x̂[k + j|k] = x[k + j]−CAjα̂[k|k] (19)
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