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Abstract
We uncover the extend-only directed posets (EDP) structure
as unification of recently discussed DAG-based Byzantine-
tolerant conflict-free replicated data types (CRDT). We also
derive an EDP-based key-value map, and give an outlook on
an EDP-based systemic access control CRDT as formalization
of the CRDT used in the Matrix messaging system.

CCS Concepts: • Security and privacy → Distributed
systems security; Access control; • Software and its engi-
neering→ Consistency.

Keywords: Conflict-Free ReplicatedData Types, Strong Even-
tual Consistency, Byzantine Fault Model, Matrix Event Graph
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1 Introduction
Recently, we noticed [7] that the conflict-free replicated
data type (CRDT) of the Matrix decentralized messaging
system [4] retains its CRDT property in environments with
Byzantine nodes, i.e., nodes that arbitrarily deviate from
the expected protocol. Kleppmann [8] showed that arbitrary
crash-fault tolerant CRDTs can be transformed to tolerate
arbitrary numbers of Byzantine nodes. These proposals have
in common that events are managed in a shared graph object:
events are independently generated (available under parti-
tion), but chained to previous events known to the replica.

The shared objects essentially show the following dynamic
behavior. All replicas start with the same genesis event as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PaPoC ’23, May 8, 2023, Rome, Italy
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0086-6/23/05. . . $15.00
https://doi.org/10.1145/3578358.3591333

DSN Research Group
KASTEL Institute

Graph

PaPoC 2023

𝑥⊥

𝑥2𝑥1

𝑥3 𝑥4
time replica 1 replica 2

𝑡4 {𝑥⊥, 𝑥1, 𝑥2, 𝑥3, 𝑥4}{𝑥⊥, 𝑥1, 𝑥2, 𝑥3, 𝑥4}

𝑡3 {𝑥⊥, 𝑥1, 𝑥3} {𝑥⊥, 𝑥1, 𝑥2, 𝑥4}

𝑡2 {𝑥⊥, 𝑥1, 𝑥3} {𝑥⊥, 𝑥1, 𝑥2}

𝑡1 {𝑥⊥, 𝑥1} {𝑥⊥, 𝑥2}

𝑡0 {𝑥⊥} {𝑥⊥}

𝑥𝑎 𝑥𝑏
event 𝑥𝑏 happened
after event 𝑥𝑎

DAG state 𝐺 at 𝑡4
on both replicas

Figure 1. Example graph state𝐺 at a point in time 𝑡4 as seen
by both replicas. First, the replicas send events 𝑥1 and 𝑥2
concurrently. When replica 2 sends 𝑥4, it has learned 𝑥1 and
therefore puts {𝑥1, 𝑥2} as happened-after parents. Replica 1
has not learned 𝑥2 yet, and thereby appends 𝑥3 only to 𝑥1.

initial state. Replicas append new events to all events without
learned descendants, i.e., the “most recent” events, without
coordinating with other replicas. Replicas then exchange
updates, to reach a consistent state again. When replicas
append events concurrently, branches occur, which leads to a
tree-like structure.When replicas learn of branches, they will
join them on their next event. Events consist of a payload and
hashes of previous events, which ensure integrity and strong
eventual consistency against Byzantine equivocation [5, 8].
An example evolution of such an object is illustrated in Fig. 1.

While in previous work, the corresponding objects were
described as directed acyclic graphs (DAGs), in this work-
in-progress paper we propose a more fundamental, unifying
CRDT formalization via directed partially-ordered sets (di-
rected posets), called Extend-only Directed Posets (EDPs),
that shows the following advantages:
a) The set-theoretic formalization captures the essence

of Byzantine-tolerant DAG CRDTs, revealing a state-based
EDP that does not require crypto elements, and a hash-based
operation-based construction as efficiency optimization. In
contrast to DAG-based variants, EDPs use standard mathe-
matical notions and fit the theory of CRDTs that is largely
formulated in terms of set theory [12]. Due to the close re-
lation of set and lattice theory to boolean algebra [11], we
believe EDPs facilitate formal verification in future work.
b) Based on the generic EDP, other types can be derived

and/or constructed by composition that can then more easily
be shown to have the CRDT property in Byzantine envi-
ronment. We present a derived map type, and an outlook
towards a composed CRDT for systemic access control as
formalization of the CRDT used in Matrix.
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Related work made use of sets instead of DAGs in Byzan-
tine environments, however, did not treat and generalize
them as CRDTs [3]. In the following sections, we will define
EDPs and indicate why they represent a solid basis for the
class of Byzantine-tolerant CRDTs discussed above.

2 Extend-only Directed Posets (EDPs)
2.1 Basics and Notations
The EDP CRDT is based on relational structures, for which
we now introduce mathematical basics and notation.

A relational structure 𝑆 = (𝑋, 𝑅) is a tuple of a ground
set 𝑋 and a relation 𝑅 ⊆ 𝑋 × 𝑋 . To facilitate notation, we
sometimes write 𝑆.𝑋 and 𝑆.𝑅 to denote set 𝑋 and relation 𝑅

of 𝑆 = (𝑋, 𝑅). A partially-ordered set (poset) is a relational
structure that is reflexive (∀𝑎 ∈ 𝑋 : (𝑎, 𝑎) ∈ 𝑅), transitive
(∀𝑎, 𝑏, 𝑐 ∈ 𝑋 : (𝑐, 𝑏) ∈ 𝑅 ∧ (𝑏, 𝑎) ∈ 𝑅 ⇒ (𝑐, 𝑎) ∈ 𝑅), and
antisymmetric (∀𝑎, 𝑏 ∈ 𝑋 : (𝑎, 𝑏) ∈ 𝑅 ∧ (𝑏, 𝑎) ∈ 𝑅) ⇒ 𝑎 = 𝑏).
While a ≤-like 𝑅 is usual in mathematics, we use a ≥-like
𝑅 in these definitions for consistency with the rest of the
paper. If 𝑆 is a poset, then 𝑅 is called a partial order relation,
or partial ordering. If 𝑆 is also strongly connected (∀𝑎, 𝑏 ∈
𝑋 : (𝑎, 𝑏) ∈ 𝑅 ∨ (𝑏, 𝑎) ∈ 𝑅), 𝑆 is called a linearly-ordered set.

A reflexive and transitive relational structure 𝑆 is called a
downward-directed set if for any two elements, the set con-
tains a lower bound, i.e., ∀𝑎, 𝑏 ∈ 𝑋 : ∃𝑥𝑙𝑏 ∈ 𝑋 s.t. (𝑎, 𝑥𝑙𝑏) ∈
𝑅 ∧ (𝑏, 𝑥𝑙𝑏) ∈ 𝑅. A finite, downward-directed poset is di-
rected towards its unique least element 𝑥⊥, also denoted
as 𝑆⊥, i.e., 𝑥⊥ ∈ 𝑋 and ∀𝑥 ∈ 𝑋 : (𝑥, 𝑥⊥) ∈ 𝑅. Conversely,
a finite upward-directed poset is directed towards its top
element 𝑆⊤ = 𝑥⊤ ∈ 𝑋 , i.e., ∀𝑥 ∈ 𝑋 : (𝑥⊤, 𝑥) ∈ 𝑅. A both
downward- and upward-directed finite poset is said to be a
poset bounded by 𝑥⊥ and 𝑥⊤. The set of maximal elements of
𝑆 is max(𝑆) = {𝑚 ∈ 𝑋 |∀𝑥 ∈ 𝑋 : (𝑥,𝑚) ∈ 𝑅 ⇒ (𝑚, 𝑥) ∈ 𝑅}.
Conversely, the set of minimal elements of 𝑆 is min(𝑆) =
{𝑚 ∈ 𝑋 |∀𝑥 ∈ 𝑋 : (𝑚, 𝑥) ∈ 𝑅 ⇒ (𝑥,𝑚) ∈ 𝑅}.
A relational structure 𝑆 ′ = (𝑋 ′, 𝑅′) is called an extension

of another relational structure 𝑆 if 𝑋 ⊆ 𝑋 ′ and 𝑅 = 𝑅′ |𝑋 ,
where the restriction 𝑅 |𝐴 is defined as usual as 𝑅 |𝐴 = 𝑅 ∩
(𝐴 × 𝐴). We call 𝑆 ′ an upward extension of a downward-
directed poset 𝑆 if additionally 𝑆 ′⊥ = 𝑆⊥. The downward
closure 𝑦↓𝑆 of an element 𝑦 ∈ 𝑆.𝑋 is defined as 𝑦↓𝑆 = {𝑐 ∈
𝑋 | (𝑦, 𝑐) ∈ 𝑅}. The downward closure 𝑌 ↓𝑆 of a subset 𝑌 ⊆ 𝑋

is generalized from the single-element downward closure as
𝑌 ↓𝑆 =

⋃
𝑦∈𝑌 𝑦

↓𝑆 . The upward closure of elements and subsets
of 𝑋 is defined correspondingly, 𝑦↑𝑆 = {𝑐 ∈ 𝑋 | (𝑐,𝑦) ∈ 𝑅}.
The set of maximal lower bounds of an element 𝑦 ∈ 𝑋 is
the set of maximal elements of the downward closure of 𝑦
without 𝑦 itself, mlb(𝑦) = max(𝑦↓𝑆 \ {𝑦}).

2.2 Specification
To build an append-only CRDT (as sketched in the introduc-
tion) that tolerates an arbitrary number of Byzantine nodes,
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left is maximal lower
bound of right

left is lower or
equal to right

Figure 2.A BDP state 𝑆 and equivalent EDP state𝑈 based on
Fig. 1. An upward extension 𝑢𝑖 ∈ 𝑈 is the set of its enclosed
relations in 𝑆 , to represent the formation history of 𝑥𝑖 ∈ 𝑆 .

the key idea is to replace an event 𝑥 with its downward clo-
sure, i.e., adding all the relations to previous events. Thereby,
a byzantine node cannot create inconsistent relations any-
more — it can only create spam additions. The EDP RDT
will be defined, therefore, as ‘higher-order’ directed posets,
i.e., will represent directed posets of directed posets. The
resulting EDP RDT can then easily be shown to represent
a state-based CRDT, for which an operation-based version
can be constructed by using cryptographic hash functions
as order-guaranteeing mechanism. For clarity, we denote as
Basic Directed Posets (BDP) the directed posets that are used
as ‘base layer’ to construct the EDP RDT.
To fix a BDP, one selects a universe X of valid elements

and a universe R ⊆ P(X2) of valid relations. BDP states
are finite, downward-directed posets 𝑆 = (𝑋, 𝑅), 𝑋 ⊆ X,
𝑅 ∈ R, with a common bottom element 𝑆⊥ (to be interpreted
as the initial state of all correct replicas). As example, one
can think of the universe X as application-layer messages,
and the universe R ⊆ P(X2) as causal orders, and a specific
bootstrapping application-layer message as bottom element.
To define extend-only operations, we only want to allow

single-element upward extensions of a BDP state 𝑆 . We want
finality as required validity criterion for extensions: Adding a
new element to the BDP and adding the relations of the new
element needs to be a single, atomic upward extension, i.e.,
cannot be changed later. The required finality property can
be expressed as follows: when element 𝑥 is the single element
that has been added to gain state 𝑆 , for all upward extensions
𝑆 ′ of 𝑆 needs to hold1: 𝑥↓𝑆 ′ = 𝑥↓𝑆 and 𝑅′ |𝑥↓𝑆′ = 𝑅 |𝑥↓𝑆 .

To provide this finality notion, the obvious (but ineffi-
cient) approach is to bind a single-element upward exten-
sion, which extends 𝑆 = (𝑋, 𝑅) with an element 𝑥 ∈ X, to
1In contrast, the upward closure of an element and their relations might
be never final: 𝑥↑𝑆 ′ ⊇ 𝑥↑𝑆 and 𝑅′ |

𝑥↑𝑆′ ⊇ 𝑅 |
𝑥↑𝑆 . A new upper element can

always be in transit or purported to have been in transit.
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all single-element upward extensions for elements 𝑦 with
𝑥 ≥ 𝑦. This way, the history of extend-only operations is
fixed and serves as identity-forming information for the new
single-element upward extension. To express sets of ‘forma-
tion histories’ of BDP elements, one has to move to sets of
posets. Thus, for the EDP definition, we move ‘one level up’
and map those BDP posets to elements of the EDP as done in
the following two steps. An illustration of the BDP to EDP
state mapping based on the state in Fig. 1 is found in Fig. 2.
Step 1. Let the directed poset 𝑆 ′ = (𝑋 ′, 𝑅′) be the upward

extension with a single element 𝑥 ∈ X of a directed poset
𝑆 = (𝑋, 𝑅) of the BDP. The downward closure 𝑥↓𝑆 ′ with 𝑅′

restricted to 𝑥↓𝑆 ′ is a sub-poset (𝑥↓𝑆 ′ , 𝑅′ |𝑥↓𝑆′ ) ⊆ 𝑆 ′ bounded
by 𝑥⊥ and x. Let 𝑢𝑥 := 𝑅′ |𝑥↓𝑆′ denote this relation of such a
BDP upward extension with 𝑥 , and 𝑋 (𝑢𝑥 ) := {𝑦 ∈ X| (𝑦,𝑦) ∈
𝑢𝑥 } = 𝑥↓𝑆

′ the set of reflexive pairs in 𝑢𝑥 . We can derive
from 𝑢𝑥 the upward extension 𝑆 ′ of 𝑆 with 𝑥 as 𝑆 ′ = (𝑋 ∪
𝑋 (𝑢𝑥 ), 𝑅 ∪ 𝑢𝑥 ). Thereby, as shorthand notation, we call 𝑢𝑥
an upward extension as well. An upward extension𝑢𝑥 ∈ R is
valid if (𝑋 (𝑢𝑥 ), 𝑢𝑥 ) forms a BDP sub-poset of 𝑆 ′ bounded by
𝑥⊥ and 𝑥 . While we sometimes focus on the relation part of
such sub-posets only, a formulation based on corresponding
bounded sub-posets can be derived easily.

Step 2.We now move ‘one level up’ and define the EDP by
using upward extensions 𝑢𝑥 as elements and subset relations
to form posets of those upward extensions. An EDP state
𝑈 ∈ P(R) is the set of single-element upward extensions
𝑈 = {𝑢⊥, 𝑢1, . . .}, i.e., the formation history of BDP state 𝑆 .
The initial EDP state is𝑈 = {𝑢⊥ = {(𝑥⊥, 𝑥⊥)}}, which is the
upward extension of the empty set with the bottom element.
An EDP state𝑈 ∈ P(R) is valid if (𝑈 , ⊇ |𝑈 ) is a 𝑢⊥-directed
poset and∀𝑢 ∈ 𝑈 : mlb(𝑢) ⊊ 𝑈∧|𝑋 (𝑢) | = |{𝑋 (⋃mlb(𝑢)) |+
1, i.e., every upward extension in 𝑈 also has its maximal
lower bounds in𝑈 , and extends the BDP state with exactly
one element that is not present in any of its maximal lower
bounds. Fig. 3 provides an illustration of applying an upward
extension, derived from the graph of Fig. 1. An EDP state
𝑈 can be transformed back to a directed poset 𝑆 (𝑈 ) on the
underlying BDP via 𝑆 (𝑈 ) = (𝑋 (⋃𝑈 ),⋃𝑈 ). The above EDP
definition leads to a state-based CRDT with state space P(R)
and set union𝑈1 ∪𝑈2 as join:

Theorem 1. Assuming a connected component of all correct
replicas and eventual communication within the component,
the state-based EDP is a Conflict-free Replicated Data Type
even in face of an arbitrary number of Byzantine replicas.

Proof Sketch. For the state space P(R), set union 𝑈1 ∪𝑈2 is
the least upper bound of𝑈1,𝑈2 ∈ P(R), whereby P(R) and
set union form a join-semilattice. Via periodic state gossip-
ing, eventual delivery is fulfilled. Together with termination
from the purely mathematical state join, the state-based EDP
is a CRDT [14]. As updates only consist of a semilattice ele-
ment, there is no metadata to forge, and Byzantine replicas
are restricted in their actions: Invalid Byzantine updates are
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max(𝑈) = {𝑢3, 𝑢4}

𝑈⊥ = 𝑢⊥
𝑢⊥ 𝑢⊥

𝑢1

𝑢5

mlb 𝑢5
= {𝑢4}

𝑈 U′

upward extension 
of 𝑈 to 𝑈′ via 𝑢5

𝑢𝑎 𝑢𝑏 𝑢𝑎 ∈ mlb(𝑢𝑏)

𝑢𝑎 𝑢𝑏 𝑢𝑏 , 𝑢𝑎 ∈ ⊇

𝑢3 𝑢4

𝑢2𝑢2𝑢1

𝑢4𝑢3

Figure 3. Example of a replica state𝑈 of an EDP, and state
𝑈 ′ that results from an upward extension of𝑈 with 𝑢5.

rejected as not part of the semilattice, and due to the full for-
mation history protecting the integrity of valid updates, any
Byzantine attempt to alter history, equivocate, or otherwise
harm consistency, simply results in additional valid updates
which were just not successfully sent to all replicas [5]. □

While modeling as directed posets might introduce some
formalism, it uncovers the simple set-theoretic fundamen-
tals, i.e., the state-based structure, of Byzantine-tolerant DAG
CRDTs. Based on this set-theoretic view, Theorem 1 is easily
shown without needing cryptographic building blocks like
hash functions. However, from a practical point of view, a
state-based EDP is highly inefficient: replicas continuously
gossip their full state𝑈 , which will only increase in size. To
reach the efficiency of DAGs with EDPs, we work up our way
from the state-based formulation to an efficient operation-
based EDP CRDT formulation that makes use of crypto-
graphic hashes for integrity protection. The construction
follows [7, 8], its purpose here is to clarify the relationship
between operation-based and state-based formalizations. We
need two optimizations for which we give an intuition now,
and a formalization next. As first optimization, an upward ex-
tension 𝑢𝑦 represents a sub-poset of 𝑆 ′ bounded by 𝑥⊥ and 𝑦,
thus, sending only the relations of that sub-poset instead of
the state𝑈 ′ is sufficient. For the operation-based formulation,
we then compress the subset, reducing worst-case update
size from ‘depth’ to ‘width’ of 𝑈 ′: We define an operation 𝑜
consisting of 𝑦 and the set of hashed maximal lower bounds
of 𝑢𝑦 in𝑈 ′. As mlb(𝑢𝑦) ⊆ 𝑈 , 𝑢𝑦 can be reconstructed based
on operation 𝑜 and existing state𝑈 .
To chain 𝑦 to its maximal lower bounds, a preimage and

collision resistant hash function ℎ(𝑎, 𝑏) is used that returns
the hash of its chained arguments. We recursively define
the set of hashes of a set of maximal lower bounds𝑈 ′mlb as
𝐻 (𝑈 ′mlb) := {ℎ(max(𝑋 (𝑢)), 𝐻 (mlb(𝑢)) ) |𝑢 ∈ 𝑈 ′mlb}. To de-
fine the hash of the set of hashes in the second argument
of ℎ, one can concatenate its linearization gained by lex-
icographical sorting. An operation 𝑜 := (𝑦, 𝐻mlb) is then
defined as compression of upward extension 𝑢 via 𝑜 (𝑢) :=
(max(𝑋 (𝑢)), 𝐻 (mlb(𝑢)) ). The hashedmaximal lower bound
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set recursively protects the integrity of the directed sub-
poset down to the bottom element 𝑢⊥ against Byzantine
nodes. To reconstruct upward extension 𝑢 from operation 𝑜
based on knowledge of current state 𝑈 , we need the set
of relations of all of 𝑜.𝑦’s predecessors 𝑃 := (⋃𝑈 ′mlb ⊆
𝑈 |𝐻 (𝑈 ′mlb) = 𝑜.𝐻𝑚𝑙𝑏). Then, the upward extension is the
union of the reflexive relation of 𝑦, the relation of 𝑦 to its
predecessor elements𝑋 (𝑃), and its transitive relation, i.e., its
predecessor relations 𝑃 . We formalize this reconstruction as
𝑢 (𝑦, 𝑃) := {𝑦}2∪{𝑦}×𝑋 (𝑃)∪𝑃 . An operation 𝑜 can be locally
applied as soon as all maximal lower bounds are part of the
replica state, i.e., 𝑜.𝐻mlb ⊆ 𝐻 (𝑈 ). An operation 𝑜 is applied
to state 𝑈 by 𝑈 ′ = 𝑈 ∪ 𝑢 (𝑜.𝑦, 𝑃), inheriting commutativity
from set union, which makes for an operation-based CRDT
with state space P(R). Update size is now bound to the max-
imum size of a maximal lower bound set of any element in
the downward closure, instead of overall state size.
The operation-based EDP is given in Algorithm 1. En-

countering an unsatisfied assertion, the algorithm stops pro-
cessing the function and returns an error. Encountering an
unsatisfied await, the algorithm interrupts to await its poten-
tial future satisfaction, without blocking subsequent function
calls. The extend function is used to extend the current state
𝑈 with a new upward extension 𝑢 ∈ R. The side-effect-free
generate function generates update operation 𝑜 and broad-
cast it to all replicas, including itself. Received broadcasts are
processed by the effect function, which awaits all maximal
lower bounds to be part of the current state before applying
the operation. Byzantine tolerance is sketched in Section 2.4,
and requires a weak resilient broadcast outlined next.

2.3 Resilient Broadcast of Operation-Based Updates
The operation-based EDP formulation does not need the
strong guarantees of a crash-/Byzantine-fault reliable broad-
cast. As explained in [8], mere eventual delivery of updates
is sufficient for such Byzantine Sybil-resistant CRDTs, as
long as correct replicas form a connected component. Due to
the shared bottom element and relation directedness, broad-
casting the set of maximal elements is sufficient, as missing
elements can be iteratively queried from other replicas and
integrity-verified via the hash chain. An optimized broad-
casting approach in this spirit is found in [8].

When the set of maximal upward extensions𝑈 = max(𝑈 )
of the replicas’ current state 𝑈 (or their space-efficient op-
eration equivalents) is gossiped regularly, the broadcast is
a state-based CRDT itself: The state space forms a join-
semilattice with join of𝑈1 and𝑈2 being max(𝑈1∪𝑈2). While
update size is close to EDP size in worst case, if all replicas are
correct, update size converges quickly to approximately the
number of involved replicas [7]. Byzantine replicas can send
a large set of made-up extensions, but as the resulting state-
based broadcast is a Byzantine Sybil-resistant CRDT [5], they
can only attack performance but not correctness.

Algorithm 1 Op-Based EDP CRDT for BDP (𝑋 ⊆ X, 𝑅 ∈ R)
Require: universe of valid BDP elements X
Require: universe of valid BDP relations R ⊆ P(X2)
state set of upward extensions𝑈 ∈ P(R)
initial𝑈 ← {𝑢⊥ = {(𝑥⊥, 𝑥⊥)}}
query bot () : 𝑢⊥ = 𝑈 ⊥ ∈ 𝑈
query max () :𝑈max = max(𝑈 ) ⊆ 𝑈

query mlb (𝑢 ∈ 𝑈 ) :𝑈mlb = mlb(𝑢) ⊊ 𝑈

query S () : directed poset 𝑆 = (𝑋 ⊆ X, 𝑅 ∈ R)
𝑆 ← (𝑋 (⋃𝑈 },⋃𝑈 )

update extend (𝑢 ∈ R)
generate (𝑢 ∈ R)

assert ∅ ≠ 𝑢 ∉ 𝑈

assert ∅ ≠ mlb(𝑢) ⊊ 𝑈

𝑜 ← (max(𝑋 (𝑢)), 𝐻 (mlb(𝑢)) )
effect (𝑜 = (𝑦 ∈ X, 𝐻mlb))

await 𝐻mlb ⊆ 𝐻 (𝑈 ) ⊲ await effect of updates ⊊ 𝑢

assert 𝐻mlb ≠ ∅
𝑃 ← ⋃(𝑈 ′mlb ⊆ 𝑈 |𝐻 (𝑈 ′mlb) = 𝐻𝑚𝑙𝑏)
𝑈 ← 𝑈 ∪ ({𝑦}2 ∪ {𝑦} × 𝑋 (𝑃) ∪ 𝑃)

2.4 Op-based Byzantine Strong Eventual Consistency
To show Byzantine strong eventual consistency of the op-
based EDP RDT, we use the strong eventual consistency
(SEC) notion as defined in [9] consisting of three properties:
a) Self-update, i.e., iff a correct replica generates an update,
it applies that update to its own state; b) Eventual update,
i.e., for any update applied by a correct replica, all correct
replicas will eventually apply that update; and c) Strong
Convergence, i.e., any two correct replicas that have applied
the same set of updates are in the same state.

Lemma 1. Let𝑈 ∈ P(R) be a directed poset corresponding
to 𝑆 = (𝑋 ⊆ X, 𝑅 ∈ R), and 𝑈 ′ (𝑆 ′ resp.) the resulting state
after applying the update 𝑜 = (𝑦, 𝐻mlb) for upward extension
𝑢. Then𝑈 ′ (𝑆 ′ resp.) are a partially-ordered extensions of𝑈 (𝑆
resp.) directed towards the same element𝑈 ⊥ (𝑆⊥ resp.).

Proof Sketch. Invalid upward extensions are discarded via
assertions and the hash function’s preimage resistance, and
then 𝑈 ′ = 𝑈 . Valid upward extensions only add a single
element 𝑦 to 𝑆 . Due to 𝑃 being the union of 𝑢⊥-directed sub-
posets and {𝑦} × 𝑋 (𝑃) ⊊ 𝑢, 𝑈 ′⊥ = 𝑈 ⊥ and also 𝑆 ′⊥ = 𝑆⊥,
i.e., ⊥-directedness is kept. Due to the same argument, the
partial-order properties also still hold for both𝑈 ′ and 𝑆 ′. □

Theorem 2. Assuming a connected component of all correct
replicas and eventual communication within the component,
the operation-based EDP is a Conflict-free Replicated Data Type
even in face of an arbitrary number of Byzantine replicas.

Proof Sketch. Self-update: With a broadcast as described
in Section 2.3, the broadcasting replica receives the update
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without waiting for any acknowledgment. The generate
function creates an update for which the await precondition
in effect is immediately satisfied, which means that the
effect function directly updates the replica’s own state.
Byzantine nodes have no attack vector to interfere with this
process. Eventual update: Using a broadcast as described in
Section 2.3, as soon as one correct replica receives an update,
eventually every correct replica will receive the update. Due
to eventual communication within the connected component
of correct replicas, Byzantine nodes have no attack vector to
interfere with eventual delivery of correct updates among
correct replicas. Through the hash-chained maximal lower
bounds, replicas can verify the integrity and completeness of
the directed sub-poset of the downward closure up until the
bottom element on every new update, without a Byzantine
node being able to interfere. As soon as one correct replica
can satisfy the await precondition for applying an update,
i.e., has received the necessary downward closure for the
element to add, it will eventually share the downward closure
with all correct replicas, for which the delivery precondition
is then also fulfilled eventually so that they can proceed with
the effect function as well. Strong convergence: Due to
Lemma 1 and commutativity of set union, all valid updates
commute. Due to the effect function’s assertions, only valid
updates are applied. Due to an operation consisting of both
its payload as well as the hashes of its maximal lower bounds,
the integrity of the directed poset of the downward closure
of an element is integrity-protected through hash chaining.
Thereby, a Byzantine node that tries to attack consistency via
equivocation with two operations (𝑦𝑎, 𝐻𝑎

mlb) and (𝑦𝑏, 𝐻
𝑏
mlb)

where either 𝑦𝑎 = 𝑦𝑏 or 𝐻𝑎
mlb = 𝐻𝑏

mlb is not successful, as all
correct replicas will reject neither update as already received,
but treat them as separate updates. As validity checks are
deterministic and the same on all replicas, and the hash
function is collision resistant, Byzantine replicas cannot get
an update applied on only a proper subset of correct replicas.

□

With eventual communication among correct replicas,
neither the operation-based nor the state-based EDP require
knowledge of the sending replica of updates to provide SEC.
As their update functions do not depend on the identity of
replicas that created an update, a forged but valid update
is just another valid update. However, digital signatures are
required as soon as the application requires set elements to
contain an identifier for the sending replica, e.g., for access
control, which we will discuss in Section 3.2.

2.5 Causal Extend-Only Directed Poset (CEDPs)
We denote the subtype of Extend-only Directed Posets with
temporal events as set items together with their causal rela-
tion, in form of their happened-after-equal relation, as Causal
Extend-only Directed Posets (CEDPs). As an EDP subtype,
Theorem 2 also applies. Hash chaining can represent any

upward-extend-only partial ordering, but inherently proves
that the image happened-after the preimage, and thereby the
happened-after relation in a Byzantine-tolerant way.

CEDPs are a set-based version, i.e., the reflexive-transitive
closure, of causal Event DAG approaches like the Matrix
Event Graph (MEG) [4]. A specific proof that the MEG is a
Byzantine-tolerant CRDT is found in [7]. In [9], an Event
DAG approach is used as transport layer to make arbitrary
CRDTs Byzantine-tolerant. Their arguments for Byzantine
tolerance and broadcast requirements also apply to CEDPs.
While the causal set approach to discrete, logical time is

well-known in quantum physics [1], in distributed systems,
the happened-before relation as defined by Lamport [10] is
common. The happened-after-equal relation is the converse
of the reflexive closure of the happened-before relation, and
thereby the relations are interchangeable. The happened-
after-equal relation however represents the direction of hash
chaining and an ordering-based notion of equality. In Physics,
an event is defined as a point in space-time. An operation
𝑜 = (𝑥, 𝐻mlb) can be read as “event 𝑥 happened at discrete
logical time coordinate 𝐻mlb and discrete space coordinate
of the (implicit) replica identifier”. The happened-after order
is a superset of the causal order, i.e., the order in which
events causally depend on each other. Either the application
provides new events and their maximal lower bounds in
causal order, or we use the happened-after order via max(𝑈 )
as maximal lower bounds, which then covers causal order.

3 Replicated Data Types Derived from EDPs
3.1 EDP-based Maps (EPMs)
3.1.1 EPM Specification. Based on the EDP replicated
data type, we derive a map replicated data type we call EPM.
Essentially, the universe X now represents key-value pairs,
and as before, the relation R defines how update operations
are ordered. The EPM has a ‘largest-element-wins’ semantics
with respect to an ordering of update operations based on R.

Formally, we defineM ⊆ X as the set of valid key-value
pairs of the form (𝑘 ↦→ 𝑣), and a map 𝑀 ⊆ M as ‘injective’
subset of all valid key-value pairs, i.e., a given key only has
one unique associated value. We define the square bracket
operator to query keys for map 𝑀 as (𝑘 ↦→ 𝑣) ∈ 𝑀 ⇔
𝑀 [𝑘] = 𝑣 and a map update operator ⊎ for single-element
upward extensions 𝑢 that keeps injectiveness of𝑀 :

∀𝑢 ∈ R, 𝑥 = max(𝑋 (𝑢)) :

𝑀 ⊎ 𝑢 :=

{
𝑀 \ {𝑘 ↦→ _} ∪ {𝑘 ↦→ 𝑣} if 𝑥 = (𝑘 ↦→ 𝑣) ∈ M
𝑀 if 𝑥 ∈ X \M

The functions of the EPM replicated data type are given
in Algorithm 2. The core of the algorithm is the linearize
function, which linearizes a set 𝑇 ⊆ 𝑈 partially-ordered
by ⊆ to a sequence 𝑇𝑛 . We define a relation 𝑅∥ of all pairs
of upward extensions (𝑢1, 𝑢2) ∈ 𝑇 2 that are ‘parallel’, i.e.,
cannot be compared using ⊆, and are also minimal in the
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sense that no elements smaller than 𝑢1 exist that cannot be
compared to 𝑢2, and vice-versa for 𝑢2. Using a preimage and
collision resistant cryptographic hash function ℎ, we define
a strict linear order relation 𝑅ℎ = {(𝑢1, 𝑢2) ∈ R2 |ℎ(𝑢1) <
ℎ(𝑢2)}. The relation 𝑅∥ ∩ 𝑅ℎ then contains the necessary
tie-breakings for the partial ordering ⊆ to gain the linear
ordering 𝑅𝑙 = (⊆ ∪(𝑅∥ ∩ 𝑅ℎ))+. Hashes allow to resolve ties
without Byzantine nodes being able to compromise results by
choosing order (preimages) or breaking linearity (collisions).
Note that Matrix also provides maps based on the CEDP

similar to Section 3.1 to assign additional attributes to repli-
cas and replicated objects, and uses them to provide access
control, which we will discuss in Section 3.2.

3.1.2 Byzantine Eventual Consistency Verification.

Theorem 3. Assuming a connected component of all correct
replicas and eventual communication within the component,
an EPM is an operation-based Conflict-free Replicated Data
Type even in face of an arbitrary number of Byzantine replicas.

Proof Sketch. By reduction to the Byzantine strong eventual
consistency of the underlying operation-based EDP. In a cor-
rect replica, the key-value pair is put in context through the
set of maximal elements max(𝑈 ) asmaximal lower bounds of
(𝑘 ↦→ 𝑣), which satisfies the await-precondition and keeps
the Self-Update property. Nothing has changed in the
broadcasting and application of updates, and the linearize
function does not interact with other replicas but takes all
updates applied in the EDP into account, which keeps Even-
tual Delivery. The get and linearize functions as well
as the map update operator ⊎ are deterministic and ignore
invalid updates, so given the same downward-directed poset
(𝑈 , ⊇), i.e. the same state of the EDP, they return the same
map𝑀 , maintaining Strong convergence. □

Algorithm 2 Operation-Based EPM Replicated Data Type
state set of upward extensions𝑈 ∈ P(R)
initial𝑈 ← {𝑢⊥ = {(𝑥⊥, 𝑥⊥)}}

update put ((𝑘 ↦→ 𝑣) ∈ M)
𝑦 ← (𝑘 ↦→ 𝑣)
extend (𝑢 (𝑦,⋃max(𝑈 )) ) ⊲ function of Algorithm 1

function linearize (𝑇 ⊆ 𝑈 ) : 𝑇𝑛 ∈ R𝑛
𝑅∥ ← {(𝑢1, 𝑢2) ∈ 𝑇 2 |𝑢1 ⊈ 𝑢2 ∧ 𝑢2 ⊈ 𝑢1

∧ ∀𝑢 ⊊ 𝑢1 : 𝑢 ⊊ 𝑢2 ∧ ∀𝑢 ⊊ 𝑢2 : 𝑢 ⊊ 𝑢1}
𝑅𝑙 ← (⊆ ∪(𝑅∥ ∩ 𝑅ℎ))+ ⊲ order 𝑅∥ via 𝑅ℎ ,

⊲ + denotes the reflexive-transitive closure
𝑇𝑛 ← enumerate(𝑇, 𝑅𝑙 ) ⊲ set 𝑇 → sequence 𝑇𝑛

query get (𝑇 ⊆ 𝑈 ) :𝑀 ∈ M
𝑇𝑛 ← linearize(𝑇 ↓𝑈 )
𝑀 ← 𝑇0 ⊎𝑇1 ⊎ . . . ⊎𝑇𝑛

3.2 Outlook on Systemic Access Control
Access control is usually enforced by a centralized entity in a
strongly consistent way. In a distributed, weakly-consistent
setting, we have to embrace that time is only a partial order-
ing, events and administrative changes happen concurrently,
and there is no such thing as consensus on a linear order of
events or on which policies are in in effect ‘now’ [15].

Previous works on access control for CRDTs mainly focus
on filesystem-like cryptographically-enforceable access con-
trol in closed groups [13, 17], while our outlook is inspired by
the granular authorizations and administrative permissions
of Matrix [4] and similar systems [2].

The idea is to provide systemic access control, i.e., storing
attributes needed for policies as well as policies itself in the
types, thereby allowing integration of access decisions in the
CRDT functions and gaining a decentralized enforcement. In
contrast with the bare EDP formalizations from Section 2.2,
decentralized enforcement requires that a replica can prove
to another replica that a third replica was responsible for
an update, and thereby requires transferable authentication
through digital signatures for the update creator. Such a
systemic access control can be constructed by a composition
of a CEDP – to gain a concept of logical time through the
happened-after relation – and multiple EPMs.
The main challenge is to treat concurrent administra-

tive changes securely. To deal with concurrent, conflicting
changes, the key idea is that a concurrent update is never
rejected if it was authorized for its downward closure, it just
might be ignored on linearization if another change wins. A
prototype model of such a composed data type is defined and
discussed in the appendix (supplemental material), together
with a proof sketch of the CRDT property.

4 Conclusion & Future Work
Based on a formalization using partially-ordered sets, we pre-
sented Extend-only Directed Posets (EDPs) as unifying gener-
alization of ideas around DAG CRDTs in Byzantine environ-
ments. The state-based formalization shows the essence of
these CRDTs, while the operation-based formalizationmakes
the optimization for efficiency explicit. Based on EDPs, one
can derive modular building blocks and compose complex
Byzantine-tolerant CRDTs with ease, as exemplified by the
map data type and indicated by the use case for systemic de-
centralized access control. Using composition of these build-
ing blocks, a formalization of the access-control-included
CRDT of the popular Matrix messaging system can be gained.
We outline corresponding models and proofs in the supple-
mental material of this paper. This work-in-progress paper,
therefore, serves as a step towards formal verification of
strong eventual consistency in Byzantine environments of
both EDP-based system designs as well as corresponding
implementations (like Matrix), including security properties
of decentralized access control.
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