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KURZFASSUNG

Entlang der Signalverarbeitungskette von Radar Detektionen bis zur Fahrzeugansteuerung,

diskutiert diese Arbeit eine semantischen Radar Segmentierung, einen darauf aufbauenden

Radar SLAM, sowie eine im Verbund realisierte autonome Parkfunktion. Die Radarsegmen-

tierung der (statischen) Umgebung wird durch ein Radar-spezifisches neuronales Netzw-

erk RadarNet erreicht. Diese Segmentierung ermöglicht die Entwicklung des semantischen

Radar Graph-SLAM SERALOC. Auf der Grundlage der semantischen Radar SLAM Karte wird

eine beispielhafte autonome Parkfunktionalität in einem realen Versuchsträger umgesetzt.

Entlang eines aufgezeichneten Referenzfades parkt die Funktion ausschließlich auf Basis der

Radar Wahrnehmung mit bisher unerreichter Positioniergenauigkeit.

Im ersten Schritt wird ein Datensatz von 8.2 ·106 punktweise semantisch gelabelten Radar-

punktwolken über eine Strecke von 2507.35m generiert. Es sind keine vergleichbaren Daten-

sätze dieser Annotationsebene und Radarspezifikation öffentlich verfügbar. Das überwachte

Training der semantischen Segmentierung RadarNet erreicht 28.97% mIoU auf sechs Klassen.

Außerdem wird ein automatisiertes Radar-Labeling-Framework SeRaLF vorgestellt, welches

das Radarlabeling multimodal mittels Referenzkameras und LiDAR unterstützt.

Für die kohärente Kartierung wird ein Radarsignal-Vorfilter auf der Grundlage einer Ak-

tivierungskarte entworfen, welcher Rauschen und andere dynamische Mehrwegreflektionen

unterdrückt. Ein speziell für Radar angepasstes Graph-SLAM-Frontend mit Radar-Odometrie

Kanten zwischen Teil-Karten und semantisch separater NDT Registrierung setzt die vorge-

filterten semantischen Radarscans zu einer konsistenten metrischen Karte zusammen. Die

Kartierungsgenauigkeit und die Datenassoziation werden somit erhöht und der erste seman-

tische Radar Graph-SLAM für beliebige statische Umgebungen realisiert.

Integriert in ein reales Testfahrzeug, wird das Zusammenspiel der live RadarNet Segmen-

tierung und des semantischen Radar Graph-SLAM anhand einer rein Radar-basierten au-

tonomen Parkfunktionalität evaluiert. Im Durchschnitt über 42 autonome Parkmanöver

(∅3.73 km
h ) bei durchschnittlicher Manöverlänge von ∅172.75m wird ein Median absoluter

Posenfehler von 0.235m und End-Posenfehler von 0.2443m erreicht, der vergleichbare

Radar-Lokalisierungsergebnisse um ≈ 50% übertrifft. Die Kartengenauigkeit von veränder-

lichen, neukartierten Orten über eine Kartierungsdistanz von ∅165m ergibt eine ≈ 56%-ige

Kartenkonsistenz bei einer Abweichung von ∅0.163m. Für das autonome Parken wurde ein

gegebener Trajektorienplaner und Regleransatz verwendet.
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ABSTRACT

This thesis covers the complete signal processing from raw radar perception to full au-

tonomous vehicle control with special focus on radar segmentation, SLAM and autonomous

parking. The semantic radar segmentation capability of the real-world (static) environment

is addressed by a radar specific neural network RadarNet. Achieving real-time semantic radar

segmentation, the output of RadarNet is applied to enrich a semantic radar graph-SLAM

SERALOC. The exemplary autonomous parking functionality parks a real-world vehicle along

a recorded reference path with unprecedented robust absolute pose accuracy, solely based

on radar data. This work achieves a novelty of semantic radar segmentation and localization

benchmark.

In the first step, a point cloud data set of 8.2 ·106 point-wise semantically labeled radar detec-

tions covering a length of 2507.35m is generated. There are no comparable publicly available

data set with this annotation-level and radar specifications. The supervised training of a

semantic segmentation approach RadarNet achieves 28.97% mIoU on six classes. An auto-

mated radar labeling framework SeRaLF is presented, involving multi-modal label generation

via reference cameras and LiDAR, to support the radar labeling.

For the coherent mapping, a radar signal pre-filter is designed on the basis of an activation

map to suppresses noise and other dynamic multi-path reflections. A specially radar-adapted

Graph-SLAM front-end with radar odometry edges between sub-maps and the semantically

seperated NDT registration assembles the pre-filtered semantic radar sensor measurements

to a consistent metric map. The mapping accuracy and data association are boosted by

the separated registration of semantic-radar sub-sets. Overall, the first real-time capable

semantic radar graph-SLAM is realized for arbitrary static environments.

Integrated into a real-world test vehicle, the interaction of the live RadarNet segmentation

and semantic radar graph-SLAM is evaluated, applied for a solely radar-based autonomous

parking functionality. Averaging 42 autonomous parkings (∅3.73 km
h ) over an average ma-

neuver length of 172.75m, an absolute pose error median of 0.235m and end position error

0.2443m is achieved, outperforming comparable radar-localization results by ≈ 50%.. The

map accuracy of changing re-visited places along ∅165m yields ≈ 56% map consistency at

a deviation of ∅0.163m. For the autonomous parking approach, a given trajectory planner

and controller approach is combined with the presented radar localization.
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1 INTRODUCTION AND MOTIVATION

1.1 Motivation

Digitalization and automation in the automotive industry focuses on automating driving in

order to support the driver in critical or monotonous situations. The Society of Automotive

Engineers (SAE) taxonomy of automated driving discriminates 5 driver assistance function-

ality levels starting from level 0, not-automated but full human supervision, to level 5, fully

autonomous driving at no human supervision. Level 1 covers driver assistance functions to

overtake a single task (e.g. braking for an ACC system). Advanced Driver Assistance Systems

(ADAS) functionalities cover level 2 or 2+ (if highly automated driving (HAD) is conditionally

available under human supervision). Level 3 of conditional automation allowing the system

to operate automated on in special conditions, e.g. a highway pilot. Level 4 and beyond

describe fully autonomous vehicle systems.

In passenger vehicle cars, the general motivation to solve the technical challenge of increasing

automation as driver support towards autonomous driving is found primarily in the safety

aspect:

-Decrease of vehicle casualties by automated safety warnings and actuating systems, e.g.

breaking systems, collision avoidance, human mis- or late-reaction and more.

-Second, to increase driver productivity, e.g. during a commuting situation on a highway, is

the secondary goal.

-Third, the core of automation yields relief to the driver to perform un-liked or non-satisfying

tasks, or even challenging tasks for humans e.g. parking or traffic jam assistance.

A measure for this are automated driving functionalities, which require first a relative localiza-

tion, to know where the vehicle is located at, with respect to a very precise reference map of

the environment. HD-maps are recorded with high precise reference sensors and provided as

offline generated maps by special map suppliers. Having a relative ego-location, the question

of path planning, where to go, needs to be solved.

Exemplary for the highway pilot level 3 system, the localization is based on live sensor data,

mainly Global Navigation Satellite System (GNSS) or Global Positioning Systems (GPS) sen-

sors, potentially paired with visual camera or LiDAR perception that is registered to precise

offline reference HD-maps. The areal application limitations is structural: A HD-map needs
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1 Introduction and motivation

to be available as reference, a satellite based localization is necessary, and the potential cam-

era or LiDAR vision requires good lighting or fair weather conditions respectively.

In this thesis, a solution solely relying on processing of on-board radar sensor data is re-

searched, enabling an HD-map-free, satellite- and camera- or LiDAR-independent autonomous

driving approach. The outcome of the radar-based localization, environment segmentation

coupled with the path-planning is applicable for autonomous vehicles and other applica-

tions. For the target use-case of this thesis, an automated parking functionality, similar to

the automated valet parking (AVP), but applicable to arbitrary environments is researched.

This sense of technical system autonomy is applied to automate a manual parking based on

a single manual maneuver execution as reference example. The conceptual independence of

HD-maps enables new automated parking operational domains, e.g. private property area

or any other environment for the automated parking functionality and the researched radar-

based principle. Additionally, a new generation of parking assistance systems is enabled,

parking a car along an arbitrary reference path (e.g. for 150m from a front-door of a house

to a garage complex) to a distant parking location, compared to the current parking systems

which maneuver into a beside parking gap.

1.2 State of the Art Parking Systems

Current parking assistance systems span from passive visual support (reversing camera or

360◦ top-view camera projection) to actively actuating systems as lateral control (park steer-

ing assistant, PSA) or full lateral-longitudinal control (park assistant, PA). The operational

domain of the PSA and PA are typically started in close proximity of a bypassed parking space,

assisting on the reversing maneuver into a parking space. The systems find closeby park-

ing lots by measuring gaps between obstacles during bypassing the scene and enables the

assisted maneuvering into this bypassed parking space. Typically perpendicular, parallel

parking spaces or fish-bone oriented parking lot patterns are found. The PSA overtakes steer-

ing, while the driver controls the longitudinal actuation of the car. PA overtakes both steering

and longitudinal actuation of the reversing park maneuver.

A new generation of mobile device connected parking assistance systems, are called remote

park assists (RPA). Coupled to a smartphone, the vehicle can be started in close proximity and

be maneuvered by inputs to the smartphone. Typically the most advanced field application is

yet limited to park out scenarios and visual obstacle avoidance [210], while straight reversing

or straight park in motion, is lately available to get a car remote assisted into or out of a

narrow parking space, requiring human supervision.

A further concept of parking automation is valet parking. Fully autonomous AVP concepts are

yet rarely realized. The taxonomy of AVP concepts divides approaches into two groups [3, 61],

AVP type 1 relies on independent vehicle on-board perception while AVP type 2 concepts rely

2



1.3 Problem Set and Research Question

on external infrastructure-centralized perception processing. For AVP type 2, the car park

infrastructure is equipped with perception sensors to detect and track vehicles and obstacles

by a centralized compute-platform, which technically remote controls the automated vehicle

to a free parking lot. The vehicle receives actuation signals of the infrastructure and follows

the externally processed path. This concept is under test in pilot-projects [73], [74]. The

external planning and actuation is a major difference of an automated system, compared to

an autonomous system which integrates these tasks also.

An AVP type 1 vehicle operates fully on-board with no infrastructure dependency. For AVP type

1, the whole perception, planning and actuation is processed on-board the vehicle, without

any dependency of infrastructure support but relying on the vehicle sensor-set. The sole

infrastructure information to be shared is potentially free parking lot locations.

For classical AVP type 1 concepts, the environment is therefore often equipped with markers

as unique landmarks (visual keys or e.g. pole-shaped landmarks) and mapped with reference

sensors to high-definition maps (HD-map) as precise environment reference landmark.

As differentiation to autonomous driving applications, the autonomous parking use-case

shares some same requirements and complex vehicle actuation but in a comparably save

environment. Since the parking speed allows safe stops all the time, not much traffic or dy-

namic obstacles are expected, while the application scene conditions are appreciable similar.

For example a highway pilot requires besides the localization and path following actuation

also further perception modules such as driveable space estimation, object detection, seman-

tic segmentation to recognize different objects and object types in a scene, lane detection

and lane change assist, cooperative behavioral planning with respect to traffic participants,

a safety redundancy for emergency cases and other sorts of special situation strategies that

add to the system complexity.

1.3 Problem Set and Research Question

User Story:

The target use-case of this thesis is to realize an autonomous parking functionality, follow-

ing the concept of AVP type 1 but independent of any HD reference maps, relying only on

on-board generated radar perception. Instead of being limited to standardized car-park sce-

narios with the AVP approach, or to generally localize to a HD-reference map, the target

system of this thesis extends the application to arbitrary environments.

With this new class, called trained parking assist (TPA), it is aimed to learn from a manual

reference drive to automatically re-drive the same path and maneuver, applicable to operate

in an arbitrary environment. As exemplary test scenarios along the system will be evaluated

3



1 Introduction and motivation

in Chapter 6, Figure 1.1 illustrates the tested use-case environments. For further details on

the scenarios, see Section 6.4.

Figure 1.1: Satellite images [78, 79] of TPA test scenarios of Section 6.4 as illustration of the aimed use-case.

During an initial manual drive, called training phase, the system maps the environment with

on-board radar sensors and saves the manual driven reference path. For the automated drive,

the vehicle is manually driven to the initial starting position of the training drive, and the

autonomous system performs the localization and takes over control to follow the reference

path to the parking position. In order to be applicable in series cars for e.g. car parks, private

underground parking or any arbitrary environment, the before introduced common assis-

tance concepts are not applicable. Neither HD-maps nor other reference maps are available

for private grounds, the system needs to be independent of lighting and weather conditions,

satellite positioning is impossible for underground garages and camera localization or LiDAR

sensors are denied due to volume applicability, low weather robustness and sensor cost.

The research questions focus to rely on the weather-robust and under-estimated radar sen-

sors of a vehicle to perform semantic radar perception, radar mapping, and radar localization

solely on-board.

Arbitrary environments deny HD-maps and GPS to be available and only a allow a marker-

free localization, due the lack of any standard landmark types in general. Therefore the

concept of semantic segmentation is chosen to be transferred to the radar domain to improve

data association. Semantic segmentation of point clouds (and images), is the perception

process to gain a contextual understanding and knowledge of the sensory input and segments

(specific point-sets or e.g. image pixels) thereof. In this thesis, point cloud data and images

are processed by semantic segmentation to leverage the sensory data to an understanding of

the sensed object types and the environmental context.

Goal of the Thesis:

As overall contribution, the design of a fully autonomous parking functionality, solely based

on radar, covering perception, planning and actuation, serves as proof of concept (POC) for

the development of next-generation autonomous parking systems, allowing larger parking
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1.3 Problem Set and Research Question

distances compared to parking in a parking space. In the exemplary test scenarios of Sec-

tion 6.4 and preempted in Figure 1.1, the developed parking system performance is evaluated,

see Section 6.5 for test details.

The parking system should uninterruptedly execute the parking maneuver to test the radar-

based automated driving without manual interruption, except for collision avoidance. Any

manual interruption yields an invalid attempt. The path deviation is tracked to check the

error along the driven path, to check the deviation progression in different scenarios, and

measure especially the end pose accuracy. As basis for a further development, the deviation

is required to deliver a ±30 cm end positioning error and to avoid collisions over a longer

path, see Section 6.5.1. Given the end-pose is reached automatically without collision, envi-

ronment dependent deviation limits may apply along the path for further optimization.

The coupling of the problem to assemble radar sensor data to an environment map and

simultaneously localize the sensor within the built map, is referred to as Simultaneous Lo-

calization and Mapping (SLAM). In this thesis, the SLAM problem is developed as radar-only

mapping and guiding system, constituting the core of the parking functionality. Secondly, the

radar SLAM is linked to the semantic radar segmentation on radar data to enable an accurate

registration of the radar data and precise semantic environment maps.

Research Motivation:

The general field of radar-based parking assistance systems, especially the application of

radar for static environment mapping is still uncommon. There exist a few works on radar

base ego-motion estimation [32, 33], some works on urban localization research on auto-

motive radar sensors for road or highway driving [151]. No specific works are covering the

problem set of low-speed mapping and relocalization for parking purposes, instead only

parking lot surveillance with radar sensors is known [109, 36].

From the pre-study of the presented radar mapping and data association in Section 5, the

registration accuracy is found essential. Figure 1.2 shows the benefit of registration accuracy

of sparse radar point clouds to accurate maps of the same environment.

Figure 1.2: Illustration of different registration algorithms for radar point cloud association in the same envi-
ronment. Radar point map colored in z-coordinate, registered poses from red to green nodes.
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1 Introduction and motivation

As novel approach on radar, the semantic radar attribute generation is motivated and re-

searched to be applied in the registration. This data attribute yields essential registration

improvements, see Section 5.3.4, allowing to build a radar parking functionality upon.

In addition, especially the focus on point cloud based approaches for the semantic radar

segmentation of a multi-sensor setup is new. There exist only few works on radar and camera

fusion for moving object detection [153], other works are looking into map-based segmenta-

tion of radar [226, 129]. But in general, the existance of open-souce radar datasets is the main

hurdle in this field to advance the research on radar, especially point-cloud based semantic

segmentation. The recent radar data set RadarScenes [194] is labeled per radar point and

contains vulnerable road users VRU’s. As major limitation of the semantic segmentation,

the RadarScenes data set labels only contain dynamic objects in several classes, no other

classification e.g. of the static environment is available. Also re-labeling of the missing static

labels is impossible, due to the lack of a reference sensor.

Besides, the various sensor-dependent specialties cause a lack of transferability from one

radar sensor or sensor-set to another setup.

Research Questions:

The research questions of this thesis are cross-linked to the specific sections of the thesis,

elaborating these questions in detail.

• Labeling, Section 3: How to generate point-wise semantic labels of radar point-cloud

in an efficient automated, cross-sensor labeling pipeline? How is it possible to auto-

generate labels for a point-wise labeled semantic segmentation data set of radar point-

clouds?

• Segmentation, Section 4: How can the current state of the art of point-cloud process-

ing help to solve the radar-based perception and mapping process in modern vehicles

by a semantic radar segmentation? Can the deep-learning approaches on LiDAR point

clouds be extended to the unknown level of sparse and noisy inputs a radar point-cloud

delivers, while still yielding good semantic segmentation results?

• Mapping, Section 5: How can radar-based localization with multiple on-board sensors

in an arbitrary static environment be solved? What mean mapping accuracy can be

reached with respect to moving and occluded objects how can this mapping accuracy

be measured? What mapping accuracy improvement arises in radar maps from novel

direct and live semantic radar segmentation?

• System, Section 6: To which extent might be a radar-based localization and mapping

be applicable to design and realize an autonomous parking functionality? Can the se-

mantic radar mapping process provide an accurate scene mapping for an autonomous

second passage of an automated vehicle in potentially dynamically changing situations

and environments?
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1.4 Structure of the Thesis

1.4 Structure of the Thesis

Organized in bottom-up sequence, Figure 1.3 illustrates the thesis’ four essential logical con-

secutive main Chapters 3-6. Per chapter, the specific existing work and research of the system

level is discussed, followed by an own contribution, and sectional summary.

Figure 1.3: Consecutive chapter structure of the thesis.

Chapter 1 motivates the thesis, followed by Chapter 2, introducing the State-of-the-Art. In

Chapter 3, a point-wise labeled radar data set is set up. Starting with an automated labeling

procedure based on LiDAR and camera data, the labeling pipeline is described, resulting in a

semantically labeled radar point-cloud data set. The subsequent Chapter 4 applies the radar

data-set to develop a novel semantic radar segmentation neural network. With this chapter,

an artificial neural network is available to directly perform semantic segmentation on radar

point clouds in real-time. Chapter 5 develops a radar-based semantic environment mapping

with on-board radar sensors and discusses different registration techniques of semantic radar

data. Integrated in a real-world test vehicle, Chapter 6 requires the essential real-time seman-

tic segmentation with semantic radar SLAM, re-localization, trajectory planner and vehicle

actuation to realize an autonomous parking functionality, solely running on the semantic

radar perception. The real-world test and summary of achieved positioning accuracy closes

the thesis. Finally, a general thesis conclusion and outlook is given in Chapter 7.

In a systematic overview, each chapters’ contribution forms an essential part of the integral

thesis’ radar parking functionality and the realized function performance, see Figure 1.4.
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Figure 1.4: Illustration of the parking functionality structure in a system level context.
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2 STATE OF THE ART

Three major topics are covered in the thesis, radar perception, semantic segmentation by

means of supervised machine learning and SLAM, applied on radar. The theoretical princi-

ples of each topic is presented.

2.1 Principles of Automotive FMCW-Radar

Frequency Modulated Continuous Wave (FMCW) radars are the type of radar sensors com-

monly used in automotive applications. The focus is on 77 G H z FMCW-radars. For further

details on other automotive radars, e.g. different bandwidths or other types of radars (e.g.

Synthetic Aperture Radars (SAR), or Multiple Input Multiple Output (MIMO) etc.), interested

readers are referred to specific works of Winner [225] and Skolnik [202].

A typical automotive radar sensor is depicted in Figure 2.1. The radar sensors are solid, robust

and comparably cheap sensors. Depending on the type and application of the radar sensor,

the processing of the radar echo information can deliver object detections in range and

azimuth coordinates. The most significant benefit of the processing of radar signal reflections

is the direct calculation of the radial relative velocity of the reflecting object [225]. With

this velocity measurement, applications in the automotive domain can combine accurate

position information of the detected object reflections with its relative velocity [114].

Figure 2.1: Image of an exemplary 77 G H z radar sensor, applied in the automotive context. Courtesy of Hella
GmbH & Co.KGaA [114].

As a benefit of the exemplary depicted radar sensor, the sensor design allows a small packag-

ing - which is in the automotive field an important factor. Besides the packaging advantage,

the sensors can additionally be integrated in the bumpers, covered by the outer shell. Hence,

the sensor setup is not visually interfering the design language of a car compared to an ex-

posed sensor integration e.g. for cameras.
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2 State of the Art

Radar as acronym describes the term radio detection and ranging [225], [46]. Originally

applied in aviation, nautics and in the military context, the measurement principle to emit

electromagnetic waves and receive a the reflected signal is adopted and transferred to multi-

ple other tasks [202].

Ranging from people counting sensors, e.g. applied in trains or at in- and outdoor public

places, to the modern application of object detection in vehicles, radar sensors are commonly

met in the everyday life.

The radar principle can be described as two-stage emit-receive procedure. In the first phase,

the sensor emits a short sequence of electromagnetic waves in a directed region, not uni-

formely. In the second phase, the sensors receives the back-scattered radiation echo signals

in the sensor field of view (FoV) with a receiving antenna and processes the received echo

signals on chip.

The Radar Equation 2.1, formulates the reflected signal power Pr depending on the range R

of the sensed object, object properties and sensor properties [202, p.15]:

Pr = PeGt Aeσ

(4π)2R4
= Pe︸︷︷︸

Emitted Power

· Gt

(4π)R2︸ ︷︷ ︸
Antenna

Emission Rate

· σ︸︷︷︸
RCS: Object

Reflection Rate

· Ae

(4π)R2︸ ︷︷ ︸
Antenna

Receiving Rate

(2.1)

The Radar Equation 2.1 is grouped in four factors for an illustrative explanation. The emitted

signal power Pe is quantified in the first term. As introduced before, radar beams are directed

to a cone, often called coil, instead of emitting in a uniform sphere shape. The theoretically

isotropic spread of the emitted signals over a sphere shape of radius R is formulated as de-

nominator in the second term. But, the antenna design results in a directed beam emission,

instead of a sphere-shaped emission. This beam direction design reduces the efficient de-

nominator of the second term, formulated by the transmitting antenna gain factor Gt as

nominator of the second term. The antenna design specifically influences the antenna gain

factor.

The emitted radar beam is potentially reflected by an object. The reflecting objects’ radar

properties are described by the radar cross-section (RCS), denoted as third term σ. Depend-

ing on the object material, texture and geometrical shape, σ describes the fraction of the

radar power to be back-scattered from the reflecting object with respect to the impinged

intercepted radar beam.

The fourth term describes how much of the reflected signal is sensed by the radar sensor. The

similar argumentation as for the emission applies. The objects’ radar reflection beam is back-

reflected, generally in an isotropic uniform sphere shape, therefore the same denominator

appears again as for the second factor. The receiving area of the receiver antenna Ae absorbs
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2.1 Principles of Automotive FMCW-Radar

the reflected signals. Hence, this nominator of the fourth factor describes the fraction of the

back-scattered reflection sphere.

The whole emit-receive process is repeated with high frequency, so that common automotive

sensors provide a measurement rate of 15-20 Hz [225, 114].

Signal Processing to a 3D Point Cloud: The fundamental principle of FMCW radars

deliver the range, azimuth and relative radial velocity of the reflecting objects. Additionally,

the new generation of radar sensor applied for this work compute the elevation angle of the

reflections. Hence, a full 3D representation of the radar reflections is possible, enabling the

radar data representation in form of a 3D point cloud.

The applied radar sensors offer an interface to output 3D point clouds of radar detections. No

specific information is available for the on-chip radar echo raw processing, the automotive

sensor is manufactured by a tier-1 supplier.

The focus of this thesis is on the perception use of this radar point cloud representation. The

required advanced radar reflection processing and algorithms to compute this representation

are out of scope. This section introduces the working principle of FMCW signal processing,

as depicted in Figure 2.2.

Figure 2.2: Exemplary block diagram of a typical automotive FMCW 77 G H z radar sensor.

The signal generator produces a continuous wave signal s(t ) of amplitude A, frequency f (t )

and zero phase angle φ0.

s(t ) = A cos( f (t )+φ0) (2.2)

Without modulation, the carrier frequency fc remains constant. Adding a linear modulation

term over time, the frequency results in the depicted resulting frequency f (t ), see Figure 2.2

and Figure 2.3.

Although other types of modulation are researched, a linear frequency modulation

f (t ) = fc + B

Tm
· t , (2.3)
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2 State of the Art

Figure 2.3: Exemplary linear modulation of an typical automotive FMCW 77 G H z radar emitted signal (black)
and reflected echo (blue dotted). Illustration according to Patole et al. [160].

is common to explain the working principle. The additive term increases the base frequency

linearly, to the maximum of fmax = fc +B . The parameter B is introduced as modulation

defining bandwidth, while the fraction of t
Tm

of Equation 2.3 defines the linear increasing

additional modulation component.

Reformulating the modulated frequency to the instantaneous phaseΦ(t ) [22, 192]

Φ(t ) = 2π
∫ t

0
f (t̃ )d t̃ = 2π

(
fb t + B

2Tm
t 2

)
+φ0 (2.4)

This modulated wave is sent by the directed sending antenna [192]

sT X (t ) = AT X cos(Φ(t )), (2.5)

while the corresponding radar echo sR X is received by the receiving antenna.

As a result of the signal travel time and meanwhile modulated frequency, the received signal

sR X deviates from the emitted signal in amplitude and phase [192].

sR X (t ) = AR X cos(Φ(t −τ)) (2.6)

The temporal shift of τ in the received instantaneous phase Φ(t −τ) in the received signal

echo results from two effects.

τ= 2(R + vr t )

c
(2.7)

The traveled distance 2R from sender antenna to the object and back to the receiver antenna

causes a time delay. Plus, the potential radial velocity vr of the reflecting object accounts

additionally for a phase shift. The denominator c in Equation 2.7 represents the speed of light

for radar traveling in air, generally representing the velocity of the emitted signal [192].
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2.1 Principles of Automotive FMCW-Radar

In the further processing steps of Figure 2.2, both emitted and received harmonic wave signals

are mixed. The mixer applies a mathematical multiplication of the two slightly differing

frequencies, resulting in a beat.

cos(Φ(t )) ·cos(Φ(t −τ))︸ ︷︷ ︸
frequency mixer

= 1

2

(
cos(Φ(t )+Φ(t −τ))︸ ︷︷ ︸

high frequency:
filtered out

+ cos (Φ(t )−Φ(t −τ))︸ ︷︷ ︸
low frequency:
beat frequency

)
(2.8)

The first term of Equation 2.8, represents a high-frequency component that is filtered out

in the subsequent high-pass filter. The relevant, low beat frequency fb of Equation 2.8 is

processed to a digital signal by an Analog-Digital converter.

Assuming a static object with vr = 0 causing the radar reflection, Equation 2.7 simplifies to

τ= 2R

c
. (2.9)

For this case, the beat frequency fb can be computed to a range estimate R for the radar

illuminated object. The triangular similarity between the bandwidth modulation B over the

modulation chirp time Tm and the beat frequency fb over the time delay τ, can be reformu-

lated to Schumann [192]

B

Tm
= fb

τ

Equation 2.9−−−−−−−−→ R = fbTc

B

c

2
. (2.10)

For general cases, the simplification of vr = 0 does not hold. Commonly, as shown in Fig-

ure 2.3, in automotive radar processing not only one chirp, but a periodic array of Nchirp

chirps are combined to compute the positional (range) information and relative velocity.

The Nchirp chirps are periodically repeated and form a radar scan. The chirps are processed

altogether and constitute one radar scan measurement.

The Nchirp repetitive chirps are applied to compare the phaseΦ. In subsequent chirps, station-

ary objects remain at the same range R, hence the corresponding phaseΦ remains constant.

In contrast, dynamic objects appear at a changing range coordinate R, yielding a changing

phaseΦ.

To identify the object reflections based on the range-frequency dependency, two subsequent

Fast Fourier Transformations (FFT) are applied of the digitized mixed frequency. First, the

radar echo interpretation in the (range-) FFT spectrum yields a peak per object at a certain

frequency, which yields the actual range of the object. The second FFT is performed over the

Nchirp chirps, combining the range information and the changing frequencies to compute

the relative velocity, also called Doppler-velocity, for the moving objects.

Further mathematical details of the radar FFT analysis theory are available by the works of

Suleymanov [207] and Winkler [224].
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2 State of the Art

Azimuthal Resolution: Figure 2.2 illustrates only a simplified single emitting and receiv-

ing antenna, but includes the basic principle of an angular reflection of the radar signal wave

front towards the receiving antenna. In detail, inside of each radar sensor a matrix-arranged

pattern of multiple receiving antennas is active to compute the azimuth angleψ. The antenna

array of Nar r independent antennas is generally oriented parallel to the sensor surface in a

equidistant spacing of dar r as square array or matrix. The spacing and matrix orientation of

(multiple) antenna arrays is a design parameter of the sensor. Every received radar reflection,

received under an azimuth angle of φ 6= 90◦, so off the sensor-normal, results in a measurable

phase shift between the independent antennas of the sensors’ antenna array

∆Φ(φ) = 2π

λ
dar r sinφ. (2.11)

Resulting from the equidistant arrangement, the phase differences between the independent

receiving antennas are integral multiples of Equation 2.11. Analogeous as for the range and

relative velocity, a Fourier transformation is applied. The FFT covers now the Nar r receiver

antennas to compute the azimuth angle φ.

To achieve an adequate azimuthal resolution for automotive applications, circa 1◦ angular

resolution is required. The number of sensor-inbuilt antennas is often limited by the sensor

ans circuit design, and consequently the accuracy is compromised. In contrast, advanced

techniques are applied, such as Multiple Input Multiple Output (MIMO) radars, proposed by

Li and Stoica [123]. Applying not only Nar r multiple receiver antennas but combining these

with independent, equidistant arranged Nem emitter antennas, the virtual field of NemxNar r

antennas increases the effective radar aperture Ae .

Target Detection: Depicted by the block diagram of Figure 2.2, the next processing stage

includes the target extraction. Among the computed FFT of the radar echo, the radar reflec-

tions of real objects need to be filtered from clutter and amplified noise content of the signal

processing. Remaining relevant radar reflections are commonly called targets and determine

the most probable reflections of the radar echo.

For this process, the Constant False Alarm Rate (CFAR) algorithm is commonly applied [174]

with sophisticated approaches to handle a variable noise level and determine significant

peaks in the 3D FFT. Since the sensor processing steps are unknown, no further details of the

applied radar raw signal processing can be given. Holder et al. [91] outline, that approaches

such as target tracking [124], multi-scan comparison [121, 63] or high frequency estimation

[55] are applied examples to mitigate shortcomings of aliasing ambiguities.

Besides the sensing ambiguities, the CFAR and target extraction can be confused by electro-

magnetic environment noise or signal disturbances by radar inference phenomena [9]. Espe-

cially weak reflection echos, causing a high noise floor level complicate a robust differenti-

ation between unwanted clutter or relevant reflections. Dedicated research of Buhren and
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2.1 Principles of Automotive FMCW-Radar

Bin [28] on clutter occurrence and simulation yields the finding that clutter occurs as Poisson

distribution. This distribution definition for clutter is later re-used in this work to model the

probability of detections.

Radar Ambiguities, Artifacts and Noise:

Figure 2.4: Exemplary multi-path reflection of radar detections, in horizontal view (left) and top-view (right).
Illustration according to Holder et al. [91].

False radar detections are source of multiple effects, such as ambiguities, multi-path reflec-

tions and measurement clutter. Holder et al. [91] define in their work an artifact definition

for this group of distorted and unwanted radar signals. The discrimination of real object

reflections and other unwanted, radar measurement principle specific artifacts is defined as

major difficulty in radar signal processing [91].

Multi-path reflections, or mirror reflections, result from a bouncing radar propagation, yield-

ing ambiguities in azimuthal or elevation position and velocity measurement, while resem-

bling to occur in the same range R.

The high frequency modulation of the emitted chirps, requires a high sampling frequency to

achieve an accurate frequency resolution. Shannon [199] defines the sampling theorem, that

a target frequency requires the double target frequency to be applied as sampling frequency.

According to Holder et al. [91], this criteria is not met for practical sensors but aliasing effects

are tolerated, causing ambiguities in angular and velocity measurements.

Similar to the formulations in Schumann [192], Holder et al. [91] outlines relative velocity

ambiguities to occur in the two FFT stages. Schumann [192] derives the mathematical for-

mulation of the errors and formulates the possible mitigations. The more chirps, the higher

carrier frequency fc or the longer the chirp duration Tm , the higher gets the Doppler velocity

resolution [192].

Besides the relative velocity measurement also the angular position resolution suffers from

a tight packaging of receiving antennas, resulting in a small aperture area Ae . According to

Holder et al. [91], aliasing effects result in angular position ambiguities [1], depending on
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the azimuthal detection angle φ and receiving antenna pattern [192]. Motivated from an

optimal antenna spacing, Schumann [192] describes the angular resolution to depend on

the physical antenna count. E.g. a double angular resolution can be achieved by a doubling

of the antennas, physically or in a MIMO setup.

These ambiguities result radar reflections but represent non-plausible objects. In this thesis,

these non-plausible, but measurement principle specific radar detections are interchange-

ably called clutter, noise or artifacts.

As a function of the utilized radar bandwidth, the number of FMWC chirps, the A/D sampling

frequency, the antenna count and effective radar aperture, the modulation bandwith B , the

radar propagation speed, the radar detection resolution is limited [202, 225, 46, 192, 91].

As a result, the separation of closeby detections or objects suffers, weak radar reflecting

objects might remain undetected, or multi-path reflections cause ghost objects that might

be interpreted as obstacles. Traversable paths might become blocked by a ground reflection

(e.g. a steel manhole cover) [91].

Downstream radar processing steps and applications need to take care of these phenomena.

2.2 Coordinate Systems and Sensor Synchronization

The different coordinate systems applied for sensor fusion are depicted based on their loca-

tion in Figure 2.5, while Figure 2.6 depicts the hierarchical connection.

All coordinate transformations between two coordinate systems A,B are implemented as ho-

mogeneous transformation matrix MA→B ∈R4x4. The expression as a homogeneous matrix

allows to chain coordinate transformations by a simple multiplication of homogeneous ma-

trices and to express reverse transformations as inverse matrix MB→A = M−1
A→B The general

4x4 isometry matrix M combines the rotation matrix R ∈R3x3 and translation matrix T ∈R3x1

M =


R T

0 0 0 1

=


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 . (2.12)

With R as rotation matrix, summarizing the Euler angle rotation matrices in roll Rx(φ), pitch

Ry (θ), yaw Rz(ψ) sequence

R = (
Rx ∗Ry ,Rz

)
. (2.13)

T as 3x1 translation matrix with components Tx in x-direction, Ty in y-direction and Tz in

z-direction describes linear translation components.
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Figure 2.5: Exemplary sensor coordinate systems Sxx
2of the applied radar sensor assembly with respect to the

central rear-axle vehicle coordinate system Sbase link. The mounting position and the resulting sensor
view angle is exemplary displayed in this figure.

Each independent radar sensor S, s ∈ [FL, FR, ML, MR, BL, BR] computes radar detections

i from its received echo, in relative spherical sensor coordinates (Rs,i ,φs,i ,θs,i ).1 Based on

extrinsic calibration parameters, the spherical sensor coordinates are transformed into Carte-

sian sensor coordinates, aligned with the vehicle coordinate system (xs,i , ys,i , zs,i ). Applying a

sensor mounting position specific translation, the radar detection coordinates of all sensors

can be expressed in Cartesian vehicle coordinates, e.g. (xbase link,s,i , ybase link,s,i , zbase link,s,i , ).

In accordance to ISO 8855 [102], the right-handed vehicle coordinate system is originated

at the vehicles’ rear axle center on ground level. Figure 2.5 illustrates the x-axis pointing in

forward driving direction, y-axis to the left hand side and z-coordinate pointing upwards.

This base coordinate system is assumed to remain horizontal, neglecting vehicle chassis roll

or pitch motion and is applied for all later sensor fusion.

To express the vehicle motion, a space-fixed reference coordinate system is applied. Sodom

serves as world-fixed odometry origin and orgin for all SLAM maps that are processed in

Chapter 5. Every vehicle motion is assumed to result in a planar motion in xodom − yodom

plane, not including lateral motion drift ẏ ≡ 0 in the considered low-speed scenarios. As a

result, the rotation components reduce to a yaw-rotation component Rz .

From the reference sensors, a differential GPS position is given at every time and signal avail-

ability. Therewith, the world-fixed coordinate system SGPS is defined to relate the odometry

origin into global world coordinates. This relative vector is essential for the evaluation of

the global positioning accuracy, in Chapter 6. The vectors
#                      »
SGPS,Sodom and

#                            »
SGPS,Sbase link are

1 Based on the extrinsic calibration parameters, the sensor interface delivers the azimuthal orientation of
each radar detection i for all sensors directly with respect to the vehicle coordinate system.

2 The subscript describes the sensor position as Back (B), Middle (M) and Front (F), plus Left (L) or Right (r)
vehicle side.
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2 State of the Art

applied to compare the mapped scenarios with the precise real-world position of the vehicle

in differential GPS coordinates.

Figure 2.6: Coordinate system relation. Parental coordinates on top of child coordinate systems, in the top-
down order World → Global → Vehicle → Sensor as consecutive coordinate system transforms.

Sensor Synchronization: To fuse the multiple radar sensor point clouds, besides coordi-

nate transformation, time synchronization is necessary. The S = 0..6 individual point clouds

Pradar are assembled to form a 360◦ point cloud, synchronized on their time stamp ts and

expressed in vehicle coordinates. Since the independent radar sensors are not commonly

triggered, the non-synchronous scans are required to be expressed with respect to a common

vehicle position, including a vehicle motion compensation for the sensing time gaps.

For each individual radar point cloud Pradar(ts) at time ts, the corresponding odometry vehi-

cle position is synchronized (xbase link, ybase link, zbase link)odom(ts). A filter module counts and

stores all six individual radar sensor point clouds with their synchronized odometry position

until all six radar point clouds are available within a time range of one average frame-rate.

The filter computes the ego-motion compensation for each point cloud individually and ex-

presses the radar detections for the most recent time tsynch = max(ts) and vehicle position

(xbase link, ybase link, zbase link)odom(tsynch).

2.3 Principles of Supervised Machine Learning

Machine learning is generally split in three types, supervised learning, unsupervised learn-

ing and reinforcement learning. These three types differ along the training data set, avail-

ability of ground truth training labels yi , and the applied learning scheme to relate the input

xi to an estimated output ŷi . The learning approaches have in common, that a learn-able

system is initialized, gets trained on data samples with different strategies, to be able in a

prediction phase to infere an estimated output ŷi based on a given input xi . All three types

are explained briefly, supervised learning is discussed in detail, since this method is applied.

Supervised Learning: This variant of machine learning requires a data set of q ∈N sam-

ples of a data tuple, input data xi and corresponding ground truth output labels yi . Two
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classes of problem sets are normally solved with learning approach, classification problems

and regression problems.

Classification problems3 are posed, if the input data is supposed to be assigned to a discrete

set L of NC individual labels or classes. NC describes the set of c classes. The output labels yi

decode in a one-hot encoding the correct class to a given input sample xi . For an exemplary

binary classification case with NC = 2, given a data set of q samples, the necessary data set

can be formalized as

Dcla =
{
(xi ,yi ) : i = 1, .., q ; xi ∈Rn ; yi ∈L

}
, (2.14)

without a limitation to extend the formulation to a mutual exclusive multi-class classification

problem with NC > 2.

For the second class of regression problems4 , the output yi describes a continuous value,

e.g. of a function to approximate. The problem set formulation differs for this type of ap-

proximation problems. For an exemplary 1-dimensional output problem, the data set can be

formalized to

Dreg =
{
(xi ,yi ) : i = 1, .., q ; xi ∈Rn ; yi ∈Rn}

. (2.15)

Un-Supervised Learning: As the name suggests, the unsupervised learning5 method

utilizes only a set of input samples xi , without any ground truth label yi information. The

data set formulation simplifies to

Duns =
{

xi : i = 1, .., q ; xi ∈Rn}
. (2.16)

Exemplary applications of unsupervised learning are clustering applications, which describes

a search and grouping of structural similar data-patterns in given data, or dimensionality

reduction. The major challenge for the unsupervised problem set are performance measures,

to measure and describe the quality of the learning approach. Further information on un-

supervised learning is found in Chollet [45], Goodfellow et al. [77], Ketkar [113].

Reinforcement Learning: This approach iteratively applies training and prediction as

alternating steps. In abstract words, the system tries different strategies, aiming to maximize

a positive feedback, formalizes as a reward. The learn-able system is called agent, which is

trained in an simulative training environment. The agent is able to interact with its training

environment, e.g. the agent executes motions or processes, which are called actions. With

a mathematical formulation of a reward function, each action of the agent is rated. A rated

action causes a reward (value) to be feed-backed to the agent. With this positive or negative

3 Subscript "cla".
4 Subscript "reg".
5 Subscript "uns".
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reward, the agent adjusts or learns its parameters, to maximize the reward. This process of

iteratively improve the parameter set, execute an action and adjust the parameter set based

on the reward, is continuously applied to optimize the agents’ strategy.

The main challenge of this approach is to formalize constraints of the explored parameter

space and formalize the systems’ target behaviour as reward function. Further information

on reinforcement learning is found in Chollet [45], Goodfellow et al. [77], Ketkar [113].

Goals of Supervised Learning: Based on training data tuples a general applicable mapping

of input to output is supposed to be achieved. The property of general applicability is named

generalization and describes the potential application of the learned system on unseen, not

in the training included input samples.

Depending on the training strategy, the learning parameters, and data set size, generaliza-

tion might not be achieved but instead reaching under adaption, named under-fitting, or

over-adaption (over-fitting). Under-fitting is commonly a result of too few training samples

on which the learning approach can adapt. Over-fitting is in contrast a memorizing effect,

that the learning system adapts ideally to the training data but loses the necessary model-

flexibility to generalize unseen inputs to a correct output.

The sample distribution of the training data set is suggested to cover the expected distribution

of inputs. As a result, under-represented training samples yields to a low generalization for

this specific sample class.

Random Sample Consensus: For a given set of data points, a parameter estimation or

model fitting can be mathematically formalized as quadratic optimization problem [11]. Mea-

surement noise, outliers or other artifacts of digital signal processing can cause mis-fitting of

simple quadratic optimization formulations. As mitigation, alternative formulations improve

outlier robustness, e.g. the maximum-likelihood estimators or M-Estimator by Huber [98].

Especially for outlier reduction of a given data set, the iterative Random Sample Consensus

(RANSAC) of Fischler and Bolles [66] is commonly applied. Based on iterative sub-sampling,

potential outliers are separated to a consensus set and model fitting is performed on the

remaining inlier data samples.

The steps are enumerated:

1. Random sub-sampling of the whole data set.

2. Model fitting on the sub-set of samples.

3. Detect samples of the whole data set which exceed a fixed modeling error threshold

and detect the number of the remaining supporting data samples.

4. Iterate over the steps 1)−3), find the model with the largest consensus set and perform

a classical quadratic model fitting on the largest consensus set.
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Goal of the sub-sampling is to remove the potential outliers from the samples set to which a

model can be fitted resulting for all samples in a below-threshold modeling error.

Based on the iterative quality and outlier detection, the RANSAC algorithm is computation-

ally expensive in complexity and runtime [66]. Nevertheless, the algorithm is commonly

applied in computer vision and data fitting, without real-time requirements. In chapter 3,

the RANSAC method is applied during the data set generation, finding ground plane param-

eters on LiDAR point clouds. Exemplary work of Schnabel et al. [188] on RANSAC methods,

discusses possible performance improvements.

k-Nearest Neighbor: In this work, often the problem is posed to find for an arbitrary

point p ∈Rn the closest local neighboring points from a set Q = {q1, ...,qm} of m points qi ∈Rn .

Formalizing the general distance of a point pair p,qi as Minkowski-Norm [11] with parameter

p ≥ 1

‖qi −p‖ =
(

n∑
k=1

|qi ,k −pk |p
)1/p

, (2.17)

the closest neighborhood point pneighbor is formulated by Shakhnarovich et al. [197] as

pneighbor = argmin
qi∈Q

(‖qi −p‖) . (2.18)

Most commonly, and also in this work the euclidean distance is applied as distance norm

(p = 2) between the 3-dimensional points.

For a query, searching a set of K ⊆Q of K ∈ {1, ...,m} nearest neighbors (k-NN), the following

mathematical conditions are required to apply [150, 146]

|K | = K ∧a ∈ K ,b ∈Q\K : ‖a−p‖ ≤ ‖b−p‖. (2.19)

The computational effort to iteratively query each distance, from p to all points in Q, ordering

these and finding the closest neighbors yields linear complexity [197]. Sub-linear complexity

is achieved by respecting the spatial distribution of the data. The search can efficiently be

limited to data structure parts of kd-trees [146, 197]. Practical and efficient implementations

are found in the libraries of Rusu and Cousins [178] or Zhou et al. [251]. The constraint

applies, that for large data sets Q of e.g. a densely populated point cloud region, the resolution

parametrization of the kd-tree affects the query efficiency.

Artificial Neural Networks: Inspired by the natural brain process of cognition in nervous

systems, of both human and animals, Artificial Neural Networks (ANNs) try to artificially

reproduce this working principle. The combination of single units, called "neurons" or "per-

ceptrons" serve as state compute entities and are inter-connected to a whole network. The

network setup or architecture typically combines multiple neurons, either arranged in paral-

lel, constituting a network layer, or in subsequent order, defining the depth of the network.

21



2 State of the Art

The first layer of the ANN is called input layer, whereas the last layer ic called output layer. All

remaining layers in between are referred to as "hidden layers", since often ANNs are imagined

as black boxes, with no possibility to comprehend their internal and intermediate status.

Based on different connection types, different ANN architectures are distinguishable. The

first major class of feed-forward architecture only applies feed-forward connections which

propagate the input state with each neuron layer straight through the network towards the

output layer. The depth of the network can be counted by number of hidden layers.

The second type of recurrent connections enable to back-propagate the state of a later neuron

layer to an earlier layer. The dynamic coupling of back-flowing state information prohibits

to define a certain depth of the network, since the information can indefinitely deep flow

in the recurrent connections. These network architectures are also called, deep-ANNs and

constitute the research field of deep-learning [45, 113].

Multi-Layer Perceptron: As simple example of an ANN, the Multi-Layer Perceptron (MLP)

is introduced and explained. As one entity, Figure 2.7 illustrates a single neuron, while Fig-

ure 2.8 illustrates a MLP network. As the name specifies, a MLP is constituted from chained,

Figure 2.7: Exemplary illustration of a single artificial neural neuron.

fully connected perceptrons. The mathematical formulation of the state propagation is for-

malized. Given x ∈Rn as n−dimensional input of a neuron, the internal state of the neuron

z is computed as sum of the component wise multiplication with a the (n +1)−dimensional

weight vector a ∈Rn+1, of which a0 serves as additive bias to the sum [113]

z =
n∑

i=1
ai xi +a0. (2.20)

This internal state is subsequently applied as argument for a commonly non-linear activation

function f :R→R. Common, exemplary activation functions are formalized in Table 2.1 [113,

45].

y = f (z) = f

(
n∑

i=1
ai xi +a0

)
(2.21)

This composition formulates the non-linear mapping of a single neuron for a given n-

dimensional input x to a 1-dimensional output y . As ensemble of the fully connected,
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Activation Functions Formulation

Sigmoid σ= 1
1+e−x

Rectified Linear Unit (ReLU)

{
0 i f x ≤ 0

x i f x > 0

Hyperbolic Tangent (tanh) tanh(x) = ex−e−x

ex+e−x

Softmax σ(x) j = ex j∑N
i=1 exi

for i = 1, .., N

Table 2.1: Exemplary activation function formulations with the Softmax formulation.

multi-layer arranged non-linear perceptron mappings, the exemplary ANN architecture

in Figure 2.8 allows the mathematical approximation of any non-linear function.

Figure 2.8: Exemplary illustration of a ANN as fully connected MLP (left), besides a Convolutional Neural Net-
work (CNN) (right).

The application of ANNs for the discrete multi-class classification of NC classes requires

not only one single output neuron, but one output neuron per class to achieve a one-hot

encoded classification output. The output vector y ∈RNC delivers an estimated score ŷi per

class i ∈ 0, ..., NC −1. This most probable, estimated class ŷi calculated by a combination of a

class normalizing soft-max layer

σ(yi ) = e yi∑NC−1
j=0 e y j

(2.22)

and a subsequent arg-max layer arg max(σ(y)) to extract the most probable class.

The learn-able parameters of an ANN are constituted by all weight vectors a of the network.

Hence, the depth and layer count defines the trainable parameters.

Convolutional Neural Networks: The breakthrough of the application of ANNs is origi-

nally achieved in the image processing, by Convolutional Neural Networks (CNNs). Applying

feature extraction, convolutions and pooling operations in composition with MLP-layers on

image data, CNNs achieve unprecedented functionality.
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Figure 2.9: Exemplary illustration of a classical image classification CNN.

The working principle of a classification CNN is depicted in Figure 2.9. The image feature

extraction by learn-able kernel-based convolutions (Conv.) are applied to extract and process

local feature maps. Analogeous to the neuron state Equation 2.20, given an exemplary 2D

input X, the calculation of the feature map Z can be formulated as scalar product of the input

X with a filter mask A, whose properties are described as kernel. For a 2D input, this scalar

product yields a discrete sum

Zi , j = A∗X =∑
n

∑
m

An,mXi−n, j−m . (2.23)

Additionally, a non-linear activation function, mostly the ReLU activation is applied in the

convolution result, compare Figure 2.9.

As a result of the multi-dimensional tensors of size Height x Width x Channels, the variable

filter dimension HA xWA xCA, and two filter parameters stride sa and padding pa , affect the

convolutions’ output tensor size Hten xWten xCten . Stride sa describes the step-size of the

filter motion over the input map, mathematically expressed as increment of the sum indices

in Equation 2.23, see Figure 2.10 depicting a stride of sa = 2. Stride configurations of sa ≥ 2

downsample the input feature map. Padding as zero padding is depicted also in the same

image. With pa = 1 an empty zero-frame is applied around the original feature map. By

applying a padding frame of variable value, the filter operation can be applied in edge regions

of the feature map, preserving the feature map size after the convolution.

The convolutions result in an output feature map of size Hout xWout xCout , defined by the

number of applied filters per Channel Cout and for symmetric kernel sizes by

Hout = Hten +2pa −Ha

sa
+1.

Wout = Wten +2pa −Wa

sa
+1.

(2.24)
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In combination with feature condensation by Pooling operations, the local information can

be extracted by any arbitrary operation for further convolutional layers. Pooling operations

extract information from all channels C of the size of the pooling mask. Commonly the

maximum pooling is applied, but variants exist for mean or minimum pooling.

Architecture dependent feature processing can include variants of convolutions, up- or down-

sampling and other layers. Commonly in the context of the feature extraction, the perceptive

properties of CNN layers is interpreted as abstraction levels of features [243], ranging from

low-level detail information to high-level global properties.

For the classification, the 3D tensors are flattened and connected to fully connected layers.

The fully connected layer represents a convolution with a 1x1 kernel. Followed by a Soft-

max layer and potentially an arg-max operation, the feature processing yields a multi-class

classification [113, 45] result.

The kernel-parameters of W are subject to be learned [118] and affect the feature extraction,

see Figure 2.10.

Due to the feature summarizing convolutional kernel the trainable parameter count is re-

duced compared to fully connected layers.

Figure 2.10: Illustration of a 3x3 kernel-based convolution with stride length 2 (left), and a 3x3 Max-Pooling
operation (right) on the same image.

Figure 2.10 also illustrates the difference of Pooling compared to a Convolution. Pooling

enables to compress information from different channels, or image regions to an abstract

feature map, independent from local dependencies [118]. Hence, the pooling step improves

robust information extraction by summarizing the most relevant information from a local

feature map. Commonly, the extraction of the prominent information is performed by a

maximum-pooling operation [113, 45].
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The application of a CNN for classification tasks includes a flattening layer, and analogously

to the before introduced MLP architecture, a softmax-layer assigns the network output to a

class probability for each NC classes and output neurons.

Neural Network Training:

The procedure to adjust the total trainable parameters atrain of an exemplary ANN is called

training.

Basics: The general principle is based on gradient descent [11, 77]. First the input vector

x is forward processed through the network to an estimated output ŷ. By a comparison of ŷ

with the ground truth y, a loss function calculates an output error term, which is then (back-)

propagated through the network to iteratively adjust the trainable parameters .

The error term is computed between the forward calculated network prediction ŷ with re-

spect to the ground truth label y by a loss function L :Rm →R [77]. Several loss formulations

and variants are applicable to achieve a problem and task specific network adaption, e.g. to

consider edge-cases as in Aghdam and Heravi [5]. The selection of the loss-formulation af-

fects besides the optimization direction of the gradient-based network adaption also effects

of mis-classifications or outliers on the network convergence. The complexity of each spe-

cific problem, data set properties as class distribution, sample symmetry or other properties

prohibit the recommendation of a universal suitable loss function [104]. Two loss functions

are tested in the thesis and applied in combination.

1. Cross-Entropy Loss: The typical loss function for discrete multi-class classification

problems is the Cross-Entropy Loss [236]. The loss function calculates an error term

LC E based on the mutually exclusive multi-class softmax output of the network ŷ . A

loss term per class i is summed to a combined loss over all NC classes.

LC E =−
NC−1∑

i=0

1

wi
· yi · log ŷi (2.25)

The class weighing factor 1/wi is applied to realize a class-balancing of the overall

loss. The weights wi are selected as class-dependent reciprocal occurrence factors,

also referred to as α-weights [49]

wi = Samples of class i

All samples
. (2.26)

2. Lovasz-Softmax Loss: The second applied loss function is the Lovasz-Softmax Loss

of Berman et al. [20]. This loss is inspired to achieve a differentiable formulation of

the Intersection of a Union (IoU) metric, introduced later oin Equation 2.44. Since the

discrete definition of the IoU is not differentiable [103], the IoU performance metric

can not directly be applied as loss function. Alternatively, formulated by the means of
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the Lovasz extension∆JK , an average of a class-specific surrogate function is defined by

Berman et al. [20]. This loss formulation allows a class-averaged IoU, denoted as mean

IoU(mIoU), metric to be applied differentiable Lovasz-Softmax loss

LLS = 1

NC

NC−1∑
i=0

1

wi
·∆Ji (m(ŷi )). (2.27)

Comparable works on semantic segmentation and object detection proved that the

Lovasz-Softmax loss as additional term improves the detection of rare, fine separated

classes and improving the overall segmentation accuracy [20, 248, 48].

3. Combined Loss: In the thesis, the combination of the before introduced loss functions

is tested in variants, both neglecting class weights wi ,CE, wi ,LS 6= 1.0 and including the

class distribution wi < 1.0. The combined loss is applied as linear combination of both

loss functions

Lcombined = LC E (y, ŷ , wi ,CE)+LLS(y, ŷ , wi ,LS). (2.28)

Based on the forward calculated loss, the network optimization part of the training, to adjust

the learn-able network parameter vector a is computed. Commonly optimization algorithms

apply a generalized delta rule [177], to apply an iterative gradient descent to compute adapted

network parameter vectors

ak+1
train = ak

train −η ·∇L
(
ak

train

)
(2.29)

per iteration k.

For the application of back-propagation [177], the feed-forward architecture enables an effi-

cient computation of the loss gradient ∇L
(
ak

train

)
.

The direction, in which the parameter vector is adapted, is defined by the calculated gradient.

The exemplary adaption of a weight between neuron i and j can be formulated as

∆wi , j =−η ∂L

∂wi , j
=−η ∂L

∂z j

∂z j

∂wi , j
=−η ∂L

∂z j
yi . (2.30)

The partial derivative of the loss function L with respect to the activation function z j of

node j is similarly re-formulated to depend on the partial derivative of the neuron output y j .

Equation 2.30 illustrates the necessity of loss functions to be derive-able. This reformulation

of Equation 2.30 yields the derivative of the activation function f ′(z j ).

∂L

∂z j
= ∂L

∂y j

∂y j

∂z j
= ∂L

∂y j
f ′(z j ). (2.31)
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The network adaption speed, and thereby also the optimization convergence rate, is con-

trolled by the learning rate η ∈R+ step size which is commonly in the range of 0.02.

In order to improve robustness and network training speed, the training and adaption is

performed on a batch of input-output pairs. Hence, batch normalization is applied on the

input data [101] the gradient is averaged over the batch [25, 113, 45].

Variants of the back-propagation include robustifying measures to avoid too slow adaption

for low learning rates or to get stuck in local minima. Variants to avoid "vibrating" network

convergence can be achieved by dynamically adaptive, mostly decreasing learning rates.

Other optimization algorithms, e.g. stochastic gradient descent (SGD) apply a momentum

formulation of the learning rate, to include the latest gradient adaption also. Especially

the momentum formulation is expected to avoid network convergence in local minima. As

alternative state-of-the art optimizer, the ADAM optimizer [116] is applied in the thesis.

Regularization:

During the optimization of the networks’ generalization and performance, different measures

and modifications of the presented general learning process are applied.

• Data Set: Overall, the size of the data set is significant. The more samples the net-

work training is able to learn from, the better adaption is expected. But not only the

shear data set size is important, but also the prevalent data distribution. The sampling

distribution of heterogeneous examples of relevant sample events is important to en-

able the network to adapt to its whole operational domain. For the exemplary case of

multi-class classification problems, the class occurrence should ideally be balanced

over all classes either by re-sampling or cost-sensitive learning [49]. In general, deep

and advanced architectures with numerous parameters require an adequate number

samples to achieve convergence. A complex model with multiple degrees of freedom

tends to over-fit or remains unconverged without being trained on sufficient data, fail-

ing to learn a general mapping. As one popular mitigation to avoid non-convergence,

the amount of available training data can artificially be increased by creating realistic

training data variants, e.g. by coordinate flipping, rotation or additional noise, referred

to as data augmentation.

• Data Set Split: Not all available training data is applied for training the network. In-

stead a sub-set is applied for training, an other independent validation sub-set is ap-

plied to validate the training adaptions, and a third independent test set is not used

during training bur as data-pool to evaluate the generalization capability of the learn-

ing system. Therefore the available data set is split in a training data set (∼ 70%), a

validation data set (∼ 15%), and a test data set (∼ 15%).

• Early Stopping: The network adaption on the training data is validated throughout

the training on a unknown validation data set. Therefore, if the validation performance
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metrics do not improve, but only network performance on the training data set, the

training is stopped to avoid over-fitting [45].

• Dropout: The goal of an unbiased network adaption is to achieve an balanced level of

neuron influence on the output. Instead of a strong dependency by over-proportional

weight of single neurons, it is beneficial to achieve balanced weights. Otherwise, the

robust generalization on unseen data might not be reached. Hence, the influence

of single neurons is avoided by selecting one or multiple network layers, of which a

randomly selected fraction of neurons is deactivated during training [69]. As alterna-

tive, Ghiasi et al. [72] suggest drop-block, a method to apply the neuron dropout on

whole contiguous regions of the network.

• (Batch) Normalization:

Independent feature value scales complicate the gradient descent processing. The iter-

ative and step-wise adjustment of network parameters during the training is improved

with normalization as feature pre-processing.

Mean normalization to zero

x̄ j = 1

q

q∑
i=1

x j ,i , (2.32)

and standard deviation of one

σ2
x j

= 1

q

q∑
i=1

(
x j ,i − x̄ j ,i

)2 , (2.33)

is applied per component, with ε¿ 1 as stabilizing element [101],

x j ,i ,nor m = x j ,i − x̄ j ,i√
σ2

x j
+ε

. (2.34)

The normalization reduces the input data covariance shift [101] and can be considered

as regularization since the normalization is performed on noisy input data batches

containing measurement noise.

• Min-Max Normalization: For a normalization of relative doppler velocity values, a

min-max normalization is applied. Since the relative speed of a radar scan changes

with the occurrence of moving objects in the scene, a normalization to fixed potential

values result in a task dependent assumption. E.g. for parking, the estimated min-

max values vary drastically from the expected min-max values of a driving scene on

a highway with traffic. In order to remain generic, flexible, but intra-scan consistent,
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without a dependency of a static speed range, for each radar scan the min-max scaling

is applied with dynamic values.

x j ,i ,norm = x j ,i −mi n(x j ,i )

max(x j ,i )−min(x j ,i )
. (2.35)

Classification Metrics:

To evaluate the semantic radar segmentation, performance metrics are applied: Accuracy,

Confusion Matrices and Intersection of a Union serve as major evaluation metrics. Formulas

for Precision, Recall, and F1-Score are defined as well. Especially the interpretation of a

confusion matrix, to find inter-class confusion can be insightful.

• Performance Metrics: The task to segment point clouds is independently of the sensor

or data source posed as multi-class classification problem.

As evaluation measure of point cloud segmentation, commonly the Intersection of a

Union (IoU) is applied.

As basis of any classification problem with input data xm ,m ∈ 1, ..., M , the class-wise

interpretation of the learned system output estimation y(xm) compared to the true

system output y(xm) defines a foundation of other metrics.

For the discrete multi-class classification problem at hand, the class predictions are

mutually exclusive and can be evaluated in a confusion matrix. Consider for each

sample class Cc , if the networks prediction y(xm) segmentation class Cp matches the

examples’ true ground-truth class CGT . For the various combinations of true or false

predictions, the common terminology is commonly applied, according to Piewak [164]:

– True Positive (TP): The sample is correctly

classified, which is the considered class.

– False Positive (TN): The sample is cor-

rectly classified, but it is not the consid-

ered class.

– True Negative (FP): The sample is mis-

classified as the considered class.

– False Negative (FN): The sample is mis-

classified as any other class than the con-

sidered class.

Cp =CGT =Cc . (2.36)

Cp =CGT 6=Cc . (2.37)

Cp =Cc 6=CGT . (2.38)

Cp 6=Cc =CGT . (2.39)

With the definition of the T P,T N ,F P and F N sample bins, classification metrics can

be computed as different fractions of sample bins.
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• Accuracy: To measure the precision of a classification task for a specific class, the

quotient of correct classified samples over the tested samples is introduced as accuracy:

accuracy(Ci ) = correct classified samples

number of tested samples
= T PCi +T NCi

T PCi +T NCi +F PCi +F NCi

(2.40)

For an unbalanced multi-class classification data set, the accuracy metric can be mis-

leading. Correct testing of simpler, more frequent classes yields good accuracy results,

while especially rare relevant classes, even if they are classified incorrectly, are not sig-

nificantly captured by the metric. Instead of introducing a class-weighted accuracy

version, the confusion matrix is applied to interpret the accuracy.

• Precision: Precision measures which fraction of true positive samples are true.

precision(Ci ) = T PCi

T PCi +F PCi

(2.41)

• Recall: Recall measures which fraction of true positive samples are classified correctly

as true positives.

recall(Ci ) = T PCi

T PCi +F NCi

(2.42)

• F1-Score: As combination measure of Precision and Recall, the F1-Score or Dice Simi-

larity Coefficient (DSC) is defined as harmonic mean of both [54].

F1 = 2 · Precision ·Recall

Precision+Recall
= T P

T P + 1
2 (F P +F N )

(2.43)

• Confusion Matrix: To get an insight which classes the classification falsely classifies, a

confusion matrix can help to interpret the behavior. With the binary label of TP or FN,

an illustration of the classification distribution can be shown. The correctly classified

samples define the diagonal, whereas the minor diagonal entries indicate per class,

which class the classification yielded in the false predictions.

To normalize the confusion matrix, class sample independence is introduced by a nor-

malization to the number of overall samples counts per class. As a result, the confusion

matrix contains percentages instead of sample counts. A well tuned classificator yields

a high range on the diagonal, at a low number or fraction of minor diagonal entries.

The ideal confusion matrix is the identity matrix, without minor diagonal entries.

• Intersection of a Union: Using the introduced definitions, the Intersection of a Union

(IoU) can be formulated as most common segmentation metric. The IoU is also called
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Table 2.2: Exemplary confusion matrix evaluation of a classificator result. Illustration in reference to class 1
to denote the nomenclature of positive and negative samples. Predctions of class 2 and class 3 are
mis-classifications with respect to class 1, so negative.

Prediction

Class 1 Class 2 Class 3

Class 1 T PC1 F NC1 F NC1

Class 2 F PC1 T NC1 T NC1

Class 3 F PC1 T NC1 T NC1

Jaccard-Index or Jaccard-Coefficient, and generally describes a similarity measure of

predicted and true object boundaries or overlapping quantities [103, 45].

Originally defined for the image segmentation task, the IoU metric defines a measure

for segmentation evaluation. Its metric is best explained for the image classification

task. The idea is to check the fraction of the segmented image, an area of pixels of

the classification at test with the ground truth segmented image. The overlay fraction

of both segmentation areas is normalized and defined as IoU. The measure tests if

the classification area is overlapping and matches with the ground truth area, plus de-

scribes if the inferred class matches. In brief, the IoU describes the spatial 2D position

of the classification plus the classification result.

I oU (Ci ) = Overlap of prediction and ground-truth sample Ci

Union of the prediction and ground-truth sample Ci

= T PCi

T PCi +F PCi +F NCi

.
(2.44)

A score of 100% represents the total overlap and correct classification result of an ideal

prediction. This can only be reached of no FP or FN are classified.

The IoU metric is formulated for one considered class c ∈ Nc evaluation at a time. But

since the semantic segmentation problem is posed as multi-class segmentation with

Nc classes, averaging of the IoU scores over all classes yields a mean metric for the

multi-class segmentation, the mean IoU (mIoU).

mI oU = 1

Nc

Nc∑
Ci=1

IoU(Ci ). (2.45)

For point cloud segmentation, the mIoU is defined as performance metric and applied

similarly to image segmentation evaluation, see Equation 2.44. Since points don’t have

a spatial 2D or 3D extension, their area property can not be compared. Instead, the
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definition if the IoU for point clouds degrades to a measure describing per class if the

classification was true or not.

The resulting IoU for point clouds can be interpreted as a False Positive or True Positive

classification measure which can not be differentiated. As a result, the IoU can not be

directly applies as loss function.

2.4 Point Cloud Registration

The registration of two point clouds, defines the problem to find the corresponding arbitrary

spatial transformation maximizing the overlap of the source and target point cloud. In this

thesis, the scale is treated as fixed, allowing only rigid point cloud transformation, as rotation

or translation in 6D.

For the case of known correspondences between points, assuming Gaussian noise Ni per

point i [13], the analytic formulation of the transformation is given as

p ′
i = Rpi + t+Ni . (2.46)

As general formulation, applying the quadratic error as quality function, the registration can

be expressed as minimization of the target function

F (R,t) =
N∑
i
‖p ′

i −Rpi + t‖2, (2.47)

to yield the optimum Rotation matrix R∗ and translation t∗. Applying singular value decom-

position (SVD) on the minimization, the rotatation R∗ can be computed directly [11, 13]. The

remaining translation t∗ is then given as

t∗ = p ′−R∗p. (2.48)

The influence of outliers or false point-associations degrade the quadratic quality expression

according to Andersen [10]. In addition, start conditions or a-priori estimates are commonly

available, which can be applied for iterative procedures with k-NN approximation [162, 133].

One famous example is the Iterative-Closest Point (ICP) method [133]. According to the work

of Yang et al. [232], these procedures are sensitive to the initial transformation.

Normal Distribution Transform: Besides point-based approaches solving the target func-

tion iteratively, the Normal Distribution Transform (NDT) applies an abstract representation

of points for the matching. The abstraction yields increased robustness against outliers [92]

and suits the application of sparse, noisy radar point clouds [139] with unknown or erroneous
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associations. The presented theoretical formulation for a 2D space is given by the work of

Magnusson [137].

Given the source point clouds P and the target point cloud P̄ , the points of both point clouds

are discretisized into a grid Gi, i = 1, ..., NG , analogously Ḡ.

Per cell Gi the corresponding points are counted. If the point number |PGi | exceeds a mini-

mum threshold nmi n , these points are summarized by the mean vector µGi , the covariance

matrix ΣGi

µGi =
1

|PGi |
|PGi |∑

j=1
p j , (2.49)

ΣGi =
1

|PGi |−1

|PGi |∑
j=1

(
p j −µi

)(
p j −µi

)T . (2.50)

Empty or too sparse grid cells are left unconverted, since a sparse NDT can yield singularities

in the covariance matrix.

The adaption of Equation 2.47 to distances between the normal distributions instead of

points yields

FNDT(R,t) =
(|G|,|Ḡ|)∑

(k,l )
N̄ (µk,l ,Σk,l ), (2.51)

with mean µk,l and covariance Σk,l

µk,l = Rµk + tµl , (2.52)

Σk,l = RTΣk R+Σl . (2.53)

The normal distribution N̄ without the normalization factor is given by

N̄ = exp(−1

2
µT

k,lΣ
−1
k,lµk,l ). (2.54)

Compare Equation 2.56 for a full definition.

Based on the discretization in cells, the number of points per cell |Gi ||Ḡi | and therewith the

number of associations in Equation 2.51 is low. For an efficient search, based on an initial

guess, a k-NN search can be applied to reduce the matching to respect only a sub-set of the

best matching associations [137].
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2.5 Measurement Uncertainty

Measurements include stochastic deviations, which need to be considered as stochastic er-

rors. Especially important is the effects of the stochastic errors for the formulation of a

localization based on measurements [26].

Based on the central limit theorem, that the mean of a sample is distributed as normal distri-

bution, the most commonly applied error modeling is by Gaussian normal distribution. The

probability density of a 1D variable x can be formalized with respect to the population mean

µx and the populations’ standard deviation σx as general normal distribution

N (µx ,σx) = 1√
2πσ2

x

exp

(
− (x −µx)2

2σ2
x

)
. (2.55)

The probability density can be alternatively expressed in the information form, which simpli-

fies the formulation of optimization problems [131], see Section 5.

N µx ,σx = exp
(−1

2µ
TΩµ

)
(2π)

n
2
p

detΣ
exp

(
−1

2

(
xTΩx +xT ξ

))
(2.56)

Bases on the covariance matrix Σ = E[(x −µ)(x −µ)T ] the information matrix Ω = Σ−1 and

potential ξ = Σ−1µ is applied to formulate this multi-variate probability density, similar to

Arras [12].

Error Propagation: The use of stochastic system inputs generally affects the system

output [175]. Assuming a 1D case of a normal distributed system input x, the variance σ

describes the input uncertainty, and µx the population mean. Given a system output y

formulated as function y = f (x), assuming y to be normal distributed, the system output can

be approximated by a Taylor expansion (1st order) with respect to µx [12]

y ≈ f (µx)+ ∂ f

∂x

∣∣∣∣
x=µx

(x −µx). (2.57)

The output mean µy = f (µx) and variance σy = ∂ f
∂x

∣∣∣
x=µx

σx are given analogously.
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2.6 Graph-SLAM

Stachniss [205] claims the problem of vehicle self localization and environment mapping to

be tightly coupled. This coupled problem set is defined as Simultaneous Localization and

Mapping (SLAM) formulation [82]. A general SLAM formulation is applied and extended in

this thesis. Hence, the general fundamentals of graph-SLAM problems are explained accord-

ing to the detailed works of Thrun and Montemerlo [212] and Grisetti et al. [82].

The graph-SLAM formulation can be split in two parts. The front-end relates sensor measure-

ments and constructs a graph of poses or landmarks as nodes [155, 82, 212]. The nodes are

connected by edges, defining (measured) conditions to relate the two connected node posi-

tion. The SLAM back-end constitutes the second part of the SLAM formulation. The back-end

utilizes the graph-formulation to formulate an error function and optimizes the node posi-

tions with respect to the connecting conditions. The node positions xi , describing the vehicle

position (x, y) and orientation φ at time ti , are summarized in the SLAM context as trajectory

X = x1, ..., xk , ..., xn . The position and orientation is limited to a planar motion and can be

expressed as homogeneous transformation T . Given additional odometry measurements zi

between the vehicle positions xi , the measurements are summarized as Z = z1, ..., zk , ...zn .

Each measurement can be analogeously be expressed as homogeneous transformation, with

the sensor uncertainty properties as covariance matrix Σ and information matrixΩ.

The formulation of the optimization problem is expressed as maximization of the conditional

pose probability

X ∗ =argmax
X

p (X |Z )

=argmax
X

∏
k, j

p(zi , j |X )
∏

i
p(xk )

(2.58)

The ª Operator in Equation 2.59 denotes the pose distance T
x j
xi

= T−1
x j

Txi between node x j

and node xi .

Figure 2.11: Exemplary illustration of the error ei , j based on the measurement zi , j relating node xi to the node
x j . Illustration based on Grisetti et al. [82].
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Assuming of a normal distributed measurement error

p(zi , j ) ∼ exp

(
−1

2
‖zi , j − (x j ªxi )‖2

Ωi , j

)
, (2.59)

analogously the prior p(xk ) is also assumed as normal distribution. Defining the error terms

ei , j between nodes, illustrated in Figure 2.11, and an position error ek with respect to the

absolute position

ei , j = zi , j − (x j ªxi ), ek = zk −xk , (2.60)

the optimization of Equation 2.58 can be expressed as logarithmic expression and quadratic

minimization problem:

X ∗ =argmin
X

− ln p (X , |Z )

=argmin
X

F (X , Z ) =
∑
k, j

‖ei , j‖2
Ωi , j︸ ︷︷ ︸

:=Fi , j

+∑
k
‖ek‖2

Ωk . (2.61)

Neglecting the absolute positioning error ek , the remaining argument Fi , j in Equation 2.61

yields a local optimization function which can be solved by linearizing around an initial

solution X̃ [82]. The 1st order Taylor extension of the odometry error ei , j , with Jacobi matrix

Ji , j at X̃ is given by

ei , j (x̃i +∆xi , x̃ j +∆X j ) =ei , j (X̃ +∆X )

=ei , j + Ji , j∆X
(2.62)

and is inserted as error approximation in the local optimization function

Fi , j (X̃ +∆X ) ≈ (ei , j + Ji , j∆X )TΩi , j (ei , j + Ji , j∆X ). (2.63)

For the optimization step the measurement Z is constant and neglected in the argument

notation of Fi , j further on.

After multiplication of Equation 2.63, the terms are summarized

c =∑
eT

i , jΩi , j ei , j b =∑
eT

i , jΩi , j Ji , j H =∑
JT

i , jΩi , j Ji , j , (2.64)

yielding the final optimization formulation

F (X̃ +∆X ) = ∑
(i , j )

Fi , j (X̃ +∆X )

=c +2bT∆X +∆X T H∆X .
(2.65)
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The quadratic formulation of Equation 2.65 can be solved anlytically, yielding incremental

coordinates ∆X ∗ =−H−1b and original coordinates X ∗ = X̃ +∆X ∗.

The iterative optimization procedure can be solved e.g. by the Gauss-Newton algorithm [21].

The algorithm linearizes the problem in each step k around the optimization location, which

is the intermediate solution X ∗
k−1 of the iteration before. The Gauss-Newton algorithm re-

quires the parameter space X to be an Euclidean space [21], but due to the vehicle position

being included in the vehicle pose x as orientation φ, this assumtion does not hold. Conse-

quently, the optimization potentially results in sub-optimal results [212].

In order to approximate a local Euclidean space for the local variation ∆X ,Grisetti et al. [82]

suggest the Operator� to map the local variation ∆X from the Euclidean space onto a man-

ifold. The detailed definition of � is found in the work of Grisetti et al. [82] and applied

in this work without modification. General information about optimization on manifolds

is discussed in detail by Hertzberg [86]. According to Hu et al. [94], the local properties of

the manifold satisfy the Euclidean space requirements. To include the operator�, the error

definition ei , j of Equation 2.62, is reformulated to

êi , j (∆x̂i +∆x̂) =ei , j (x̃i �∆x̂i , x̃ j �∆x̂ j )

=ei , j (Xi , j �∆X̃ )

≈êi , j + Ĵ∆X̃

(2.66)

This modification also affects the definition of the Jacobi matrix and the target function F ,

which is discussed in detail in Grisetti et al. [82].

With the definition of�, the incremental adaption can be formulated as

∆X̃ =
∆T̃

∆q̃ ,

 (2.67)

with T as translation vector and q as rotation quaternion. Due to the general assumption of

rigid measurements, the quarternions’ scaling factor qw is neglected.

For further detailed description of other solving methods, especially covering the optimiza-

tion on Cartesian manifolds, interested readers are referred to the original works [212, 4, 82].
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2.7 Experimental Vehicle Setup for Rapid Prototyping

Figure 2.12: Sensor setup illustration in top view perspective with exemplary radar sensor FoV.

The test vehicle setup is an essential part of this thesis realization, due to the application of

real-world measurements. Specifically for this thesis, a test vehicle setup has been designed

and implemented. The general vehicle setup as automated vehicle and rapid prototyping

platform resembles works on ROS-based architecture [85] and series vehicle integration [112,

2]. The major advantage is the sensor set of 360◦ covering radar sensors, a LiDAR, multiple

cameras, and differential GPS. Compare Table 2.3 for similar autonomous vehicles according

to a survey of Yurtsever et al. [240].

Table 2.3: On board sensor set of automated vehicles according to Yurtsever et al. [240].

Platform
# 360◦ rotating

LiDARs

# stationary

LiDARs
# Radars # Cameras

Ours 1 - 6 (4)

Nagoya Univ [240] 1 - 6 (4)

Boss [216] 1 9 5 2

Junior [122] 1 3 6 4

BRAiVE [27] - 5 1 10

RobotCar [15] - 3 - 4

Google car (Prius) [83] 1 - 4 1

Uber car (XC90) [203] 1 - 10 7

Uber car (Fusion) [203] 1 7 7 20

Berta [253] - - 6 3

Appollo Auto [2] 1 3 2 2
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Table 2.4 describes the sensor details of the vehicle sensor set. The relevant sensors mounting

positions for this thesis are depicted in Figure 2.12. Figure 3.7 shows blind spot areas of the

camera and LiDAR field of view. The utilized series vehicle cameras are accessed as fisheye-

images and need to be pre-processed.

Sensor Technology Details fsample [Hz] Series

Surround View

Camera
CMOS Position: Front, Back, Mirrors 30 X

IMU Turning Rate, Signal from ESP-/ABS-ECU 16.7 X

Acceleration

LiDAR Time-of-Flight vertical: 40 Channels (+7◦to -16◦) 10 x

horizontal: 360◦ (Resolution: 0.2◦)

Range: 200 m

Position: Roof mounted

Radar FMCW (77 GHz) Position: 16.7 (X)

Front, Back, B-pillar (left/right)

vertical: ± 10◦

horizontal: 160◦

Range: 100 m

Gyroscope DGPS, Reference sensor 100 x

Turning Rate, Position accuracy: < 2 cm

Acceperation

Table 2.4: Sensor set details.

The radar sensors cover a 360◦ FoV and are mounted "invisible", inside the bumper shell, com-

pared to other setups of non-automotive radar sensors. This radar integration contributes

to the general effect of dynamic uncertainty. Depending on range, azimuth and Radar Cross

Section (RCS), the uncertainty of radar sensors vary. Figure 2.13 and Figure 2.14 depict the

measurement based standard deviation estimation of σ̂∗
ϕ and σ̂∗

r respectively. Significant

radar reflections cause higher RCS values and are detected with ease. In contrast, an increas-

ing range of detections yields increased uncertainty, corresponding to the theoretical findings

of the radar equation [202].
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For the rear range detections, especially the azimuthal position towards the periphery of the

FoV (φ= 0◦ or φ=φ◦
max) affects the uncertainty to increase also. As a result of the bumper-

covered integration and occasional interaction with near located metal parts, the radar an-

tenna resolution limit yields this error. Besides the azimuthal dependency, the uncertainty

in the near range can be treated constant in radial direction. This real-world set-top with par-

tially increased error characteristic complicates the statistic detection modeling and needs

to be treated in the signal pre-processing.
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Figure 2.13: Radar sensor uncertainty in the mid-range [30m,55m] for center based detections φ= 0.5φmax .
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Figure 2.14: Radar sensor uncertainty in the near-range [0m,25m] for a strong reflector of RC S = 10m2, at the
FoV margin φ= 0◦ and a center detection φ= 0.5 φmax .
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Car-PC and Robot Operating System: Following the principle to apply the open-source

environment ROS as rapid prototyping platform on a real-world test vehicle, the necessary

interfaces to enable a ROS communication and actuation are implemented for this thesis.

Figure 2.15 illustrates the system setup as block diagram.

Similar to the exemplary architecture in Kessler et al. [112], the core of the software integra-

tion is a CarPC, equipped with Docker and ROS melodic. The ROS platform reads vehicle

sensor information from CAN or proprietary interfaces, together with external sensors e.g.

from UDP-sockets. The implementation of the controller part is outsourced and deployed

on a real-time capable embedded platform. This Micro Auto Box 6 receives driving requests

via a private CAN connection from the ROS system and generates actuator signals that are

CAN-Mapped to actuate the vehicle.

Figure 2.15: Test vehicle setup as block diagram of the different hardware devices. Signal flow from sensors to
actuators shown as arrows.

The CarPC is Ubuntu 7 18.04 based, equipped with 2xIntel®Xeon®E5-2667 CPUs resulting in

32 kernels (3.20/3.6GHz), 16 GB RAM and a NVIDIA®Tesla V100 GPU.

6 Product information: https://www.dspace.com/de/gmb/home/products/hw/micautob/microautobox2.cfm
7 Product Information: https://releases.ubuntu.com/18.04/
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The introduction to supervised machine learning in Section 2.3 describes the requirement of

a ground truth data set with ground truth labels to train a supervised learning approach.This

section outlines the point-wise radar labeling pipeline and data set structure, which is later

applied in the next sections.

The task to apply machine learning is not only setting up learning architectures, but most

of the time, effort and knowledge needs to be spent for data preparation, data cleaning and

conversion in the appropriate form and representation format.

Numerous contributions on perception and localization nowadays rely on the availability of

visual data sets, on which algorithms and neural networks are tested and developed to mine

information [225, 65, 240]. Among publicly available data sets for research and academia in

the domain of autonomous driving, Schumann et al. [194] summarized the Table 3.1 as ex-

tract of the relevant data sets. This table overview is extended with the details of the especially

created data set of this thesis.

The visual data set availability results from the common sensor set of research and other au-

tonomous vehicles relying mainly on multiple cameras in mono- or stereo-setup and LiDAR

scanners. Since both visual sensor types, camera and LiDAR, provide rich measurements

of the environment and are comparably intuitive interpretable for labeling objects, there

exist multiple specific data sets and extensions for the multiple different special tasks (e.g.

for depth estimation [71, 237], for object detection, for semantic segmentation [18], for in-

stance segmentation, etc.). From visual data, context extraction and semantic processing, e.g.

semantic segmentation, is a common task [65].

Radar sensors are generally included in modern passenger vehicle setups as well, but until

recent, this sensor data is not necessarily applied in many functions. Since sparsity and

noise detections are sensor inherent, the difficult interpretation of cluttered radar data yields

until recent to an underestimation of the static environment perception capabilities [151].

Due to the point cloud learning, radar sensors are currently further researched and the next

generation of potentially imaging radars is considered as future trend in vehicle environment

sensing [151].

As a result, until recent there exists only a limited number of radar data sets, while each

existing data set is recorded with different sensors or with a solely unique sensor setup. As
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Data Set
Size

S-M-L
Radar Type

Alternative

Sensors

Sequential

Data

Doppler-

Velocity

Number of

Categories

Class

Balancing

Point

Annotations

Object

Annotations

Varying

Scenarios

Oxford Radar

RobotCar[15]
L

Mechanically

Scanning

Stereo Camera,

LiDAR
X x - N/A x +

MulRan[115] M
Mechanically

Scanning
LiDAR X x - N/A x +

RADIATE[201] L
Mechanically

Scanning
LiDAR, Camera X x 8 X 2D Boxes ++

nuScenes[30] L
Low Res.

Automotive
LiDAR, Camera X X 23 X 3D Boxes ++

Zendar[147] L

Low Res. Autom.

(High Res SAR)

LiDAR, Camera X X 1 N/A
2D Boxes

(2.5% Manual)
++

Astyx[142] S
Next Gen.

Automotive
LiDAR, Camera x X 7 - 3D Boxes -

NLOS-Radar[187] S
Next Gen.

Automotive
LiDAR X X 2 ++ Point-Wise -

CARRADA[156] S Automotive Camera X X 3 ++
Spectral

Annotations
-

CRUW[219] L Automotive Stereo Camera X x 3 +
Spectral Boxes

(Only 19%)
-

RadarScenes[194] L Automotive Docu Camera X X 11 +
Point-Wise for Objects

(no static env.)
++

Porsche

InnoCampus

(Ours)

M Automotive

LiDAR,

4x Camera

(Surround View)

X X 6 +
Point-Wise

(especially static)
3D Boxes ++

Table 3.1: Tabular overview of public radar data sets according to the RadarScenes publication [194]. The au-
thors compare radar data sets for machine learning purposes with special focus for dynamic objects,
referred as road users. Column scenario variations are considered as weather, traffic, or road types
variation. Sequential data describes if temporally subsequent radar scans are available. Our data set
contains as single data set point-wise labels for environment detections.

discussed in Section 2, there exist in the domain of radar sensors a variety of specific radar

sensors which deliver a different data representation and quality. In general common, they

deliver radar detections. But only some sensors allow the interpretation in the form of 2D

or 3D coordinates as a point cloud, while advantageous radar specific attributes, e.g. Signal

Power or Signal to Noise Ratio and relative velocity need to be reported as well.

The perception of modern radar sensors and their sensor-interfaces can vary from raw de-

tection point clouds, to on-sensor clustered and tracked object positions which are only

available as object lists. Designed for the requirements of the present radar-based automo-

tive applications, this interface type is adequate in industry to base functionalities on the

detected object lists, e.g. for a collision avoidance. But modern functionalities for advanced

signal processing demand raw data for an early data fusion of either multiple sensors or

comparable sensor perception data.

In addition to the specific attributes, available radar data sets can differ in the specific mount-

ing positions of the sensors or applied sensor assemblies, see Figure 3.1: For the Oxford data

set with a single roof-mounted sensor (left), with five sensors of the nuScenes setup (center),

or the NLOS data set with 4 sensors at the vehicle nose (right).
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Figure 3.1: Radar Sensors of different radar sensor sets: Oxford data set [15] (left), nuScenes sensor
set [30](center), and the NLOS sensor set [187](right).

Even other sensors are designed as rotating sensors [15], others are solid and smaller variants

with different opening angle. In brief, the existing radar data sets are not fully compara-

ble.Radar data is not sensor invariant as e.g. image data is.

Having radar data as 3D point cloud at hand, the labeling of radar data is a unprecedented

challenge. The common radar sensor-interfaces allow three generic annotation strategies in

ascending abstraction level, as Schumann et al. [194] suggest.

• Frequency Spectrum Annotation: As earliest possible label processing, during the cal-

culation of detection peaks, the frequency domain can be used to classify signals. This

data representation level is non-intuitive for human interpretation and a labeling ap-

proach on this level would result in complexity and require dedicated expert knowl-

edge.

• Point-wise Annotation: On the sole level of 2D or 3D points, each single radar detection

point is annotated with a describing label, defining its semantic information. This level

of information is well human-readable. In combination with a 3D visualization, the

recommended representation can be reviewed and interpreted in different 3D aspect

angles, helping to understand the reflecting object shapes. In this representation stage,

radar reflection points are called detections.

• Object-level Annotation: The relevant radar detections are further grouped and labeled

as abstract group of detections, e.g. one infolding 3D bounding box per object, consist-

ing of an arbitrary number of detections. This highest abstraction level is accompanied

with inherent information loss, due to the abstraction to un-quantized object labels

instead of detection labels.

Even on detection level, as human interpretable 3D detection point cloud, the precise and

thoroughly sound manual labeling of the noisy cloud points itself is a laborous and conse-

quently expensive process. To understand the radar signals and to determine their semantic

label, still expert know-how is obligatory necessary and manual labeling is absolute.
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Solely for this thesis, a quasi static radar data set was recorded of typical scenes for an auto-

mated parking scenario with varying environments and traffic conditions 1. To enrich the

recorded raw radar data with semantic labels by an efficient automated processing pipeline,

an automated semantic labeling pipeline is developed to generate a point-wise semantic

labeled radar data set.

Established state of the art semantic classes of Cityscapes [47] data set or the SemanticKITTI [18]

data set are too detailed for radar data segmentation, see Table 3.2, and therefore consoli-

dated to a radar applicable reduced label set ŷsem(pi ,t ) ∈ { person a , vehicle a , building a ,

vegetation a , pole a , artifact or unknown a }. This set of colors is consistently applied in

this work to visualize the semantic class of a radar detection-without distinction of static or

moving objects.

Table 3.2: Applied consolidation of the 22 SemanticKITTI [18] classes to six radar applicable classes.

Radar Classes points [%] SemanticKITTI Classes

a Vehicle 8.39 car, bicycle, motorcycle, truck, other-vehicle, bus

a Building 7.68 building, fence

a Vegetation 4.80 vegetation, trunk, terrain

a Poles 0.60 pole, traffic_sign, traffic_light

a Person 0.18 person, bicyclist, motorcyclist

a Artifacts 78.35 sky, road, parking, sidewalk, other-ground

Designed as cross-sensor labeling framework, both common visual perception sensors of

camera and LiDAR sensors are combined to systematically derive radar labels. In a two

step procedure, first artifacts and noise is detected and labeled by the Radar Artifact Label-

ing Framework (RALF) [SI1], then the remaining plausible detections are processed in the

second stage SeRALF [SI2] labeling step to specify point-wise the semantic radar labels. In

combination with a labeling policy for subsequent manual correction, the point labels are

improved to obtain a ground truth radar data set. Point-wise annotation with ground-truth

semantic labels y allows to train point-wisely classifying semantic segmentation networks in

supervised fashion, see Section 4.

In the supervised Master thesis of Marcel Schilling [MT2], the basis of the cross-sensor radar

labeling is tested. The refined labeling concept is documented in the two conference papers,

Radar Artifact Labeling Framework (RALF) [SI1] and Annotating Automotive Radar efficiently:

Semantic Radar Labeling Framework (SeRaLF) [SI2].

1 Varying weather is excluded fo the generation of the data set, due to the unknown degradation of the
automated labeling pipeline at harsh weather influences.
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3.1 Motivation for Static Environment Radar Labeling

The point-wise semantic segmentation of radar points is addressed in this thesis to be applied

in a quasi static scene environment with less moving objects. The test and data set scenes

contain moving objects e.g. cars, or pedestrians, but mainly focuses on the static environ-

ment detection. Instead of only focusing on dynamic object detection and classification, as

the exemplary RadarScenes [194] data set, the data set of this thesis is not intended to build

a dynamic object detector. Instead, the aim is to provide a data set which can be applied for

a more general application of classifying also static environment radar detection types and

typical potential dynamic road users (vehicles and persons), excluding traffic scenes.

Based on the current proceedings in point cloud processing also of sparse and noisy point

clouds, e.g. Rao et al. [171], Scheiner et al. [187], Schumann et al. [194], the point-wise anno-

tation level is selected as most promising approach.

Commonly radar data is processed on three representation levels: Radar spectrum data rep-

resents the raw sensor information, which is applied in Hügler et al. [99, 100], Patel et al.

[159]. In the second stage of radar signal processing significant peaks in the radar spectrum

are detected and expressed as spatial 3D point clouds. This point cloud level is not very

often utilized and labeled, as depicted in Table 3.5. Third level of radar data abstraction is

formed by tracked point clouds or tracked objects. This level is commonly applied for ACC-

assists [225] or other object level function. For further abstraction, the tracked objects are

reduced to 2D occupancy grids. Occupancy grids are mainly applied for mapping or early

SLAM applications [192, 129]

Beyond the detection of moving objects, this thesis aims to generate point-wise semantic

information directly from the raw radar detection point cloud, independent of the object mo-

tion. With the aim to classify mainly a quasi static environment by as 3D radar point clouds

scan, in direct fashion without further abstraction, the labeling of static radar detections is

primarily addressed. Including potentially moving objects, e.g. vehicles and pedestrians,

the approach aims to recognize these classes, independent if they are moving or static. The

semantic segmentation is assumed to be perspective and situation variant, not depending

on the relative velocity of an object.

Starting as data driven approach, the target application and use-case of an automated park-

ing functionality defines further assumptions and decisions. Based on the assumption and

vision to design a generalizing solution for a trained parking functionality in an arbitrary

environment, e.g. on home ground, in first place, a marker-less mapping and localization

approach seems inevitable. Private parking garages and home-ground do commonly not

provide any sort of standardized markers or general landmarks which could be applied for

radar mapping and localization. In order to provide a marker-less radar description of an

arbitrary scene, the raw radar signals are assumed to deliver an accurate scene description
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to apply a SLAM approach to map the scene. This radar mapping is aimed to be supported

and enriched by a point-wise semantic radar segmentation. Having 3D radar raw data as

semantic radar point clouds at hand during the mapping process, not only the determina-

tion of noise versus plausible can be enabled. Further, this thesis proves that the association

of potentially matching structures can be confirmed by both their spatial occurrence, and

additionally with respect to their semantic content. E.g. a sensed car might have a similar

spatial occurrence as a bush or hedge in the same size, but could directly be distinguished by

their semantic interpretation as either vehicle or vegetation. For more details of the matching

and mapping process, see Section 5.

48



3.2 Evaluation and Selection of existing Approaches: Point-Wise Labeling

3.2 Evaluation and Selection of existing Approaches: Point-Wise
Labeling

According to the overview in Table 3.1, there are three point-wise labeled data sets available:

NLOS [187], RadarScenes [194] and our Porsche InnoCampus radar data set. Information on

labeling of radar data on the before introduced Frequency Spectrum [159, 100] and Object-

level [185, 147, 142, 143, 28] abstraction level is out of this thesis’ focus.

The NLOS data set [187] is labeled based on a reference-positioning sensor and mainly fo-

cuses on the detection of moving objects from a clutter background. The work of Schumann

[192] on radar segmentation is based on the RadarScenes data set [194] and comparable

to the data at hand. The RadarScenes data set realizes point-wise labeling on subsequent,

spatio-temporally accumulated radar point clouds of 100ms windows. The purely manual

labeling step requires ≈ 2min per window, is supported by a visual inspection camera of the

scene and supported by a visualization of different radar attributes. The authors describe

their radar labeling to be dedicated for object detection and semantic segmentation of road

users, but a separate distinction of static classes is not included.

To the best of the authors’ knowledge, there is no automated labeling process, or an automatic

pre-labeling support for a data set of sparse radar point clouds known. This task is discussed

and inspired from the automated labeling of LiDAR point cloud data.

The general task to label a point cloud manually at scale requires vast amounts of human

labor and effort. Since the 3-dimensional interpretation is necessary, occlusions can oc-

cur and the aspect angle is crucial, point cloud labeling effort and complexity exceeds the

common camera image annotation by far. The advantage of modern LiDAR point clouds is

their density, enabling a relatively quick and intuitive human understanding of the dense

3-dimensional scene. Problematic remains the interpretation of the sparse and noisy far-

end reflections, to determine their true semantic class. The sensor sparsity and scattering of

subsequent scans complicates the scene perception and labeling consistency drastically.

Exemplary automated semantic labeling procedures dedicated on LiDAR labeling apply a

registered reference camera to transfer a high-quality image-based semantic segmentation

to the point cloud [165]. Piewak [163] combines this automated label generation to generate

a point-wise semantic LiDAR data set. Inspired from this automated labeling the following

section extends the automated labeling complexity to LiDAR as second reference sensor to

suggest semantic radar labels.
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3.3 Data set Generation and Multi-modal Labeling Automation

Visual perception based on camera images and LiDAR point clouds are common and state

of the art. As radar is often neglected in data sets, or only a sub-set of radar detections is

only labeled manually [194], this thesis presents an automatic labeling process on image and

LiDAR data, to yield novel semantic radar segmentation labels.

As generic method, radar detections can be interpreted and labeled by the means of common

visual (LiDAR, camera) on-board sensors. Semantic labels of LiDAR point clouds Piewak

[164], serve as one input for the cross-sensor labeling. The radar labeling strategy proposed

in Figure 3.2, combines an independent processing of camera-based and LiDAR-based labels,

to transfer labels from the visual perception. Along the elements of Figure 3.2, this section

describes the developed labeling process.

Figure 3.2: Labeling concept for the proposed automated semantic radar labeling based on reference LiDAR
point clouds and camera images with subsequent data preparation steps for machine learning.

The task to label radar point can be seen as two subsequent steps which involve visual per-

ception and spatio-temporal tracking. As first step, the determination of a radar point as

plausible or implausible is performed, describing in the latter case clutter or noise. Details
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are found in Section 3.3.3 for the image processing, in Section 3.3.2 for LiDAR. The spatio-

temporal tracking of Section 3.3.4 produces tracking plausibility estimates which are alto-

gether prioritized in a plausibility selection in Section 3.3.5. This overall plausibility labeling

is described in an earlier publication as Radar Artifact Labeling Framework (RALF) [SI1]. As

a result of this first processing step, implausible detections are neglected and only plausible

detections remain.

In the second step, the "remaining" point cloud is further evaluated and split up into different

semantic classes. This second semantic annotation step of the plausible detections pi ,t by

a semantic class label ysem(pi ,t ) is referred to as SeRaLF [SI2]. Its’ concept is to process the

visual perception of camera, see Section 3.3.7 , and LiDAR, see Section 3.3.6, independently,

each with a semantic segmentation CNN, and select from their matched semantic labels the

best matching in Section 3.3.8.

In combination with a temporal signal analysis of the spatial occurrence of detections in

consecutive frames, the detection of clutter and other noise detections is supported. Other

than manual labeling, the proposed automated processing allows an efficient, unbiased,

and consistent labeling pipeline. Consistent labeling of detection plausibility is the basis for

further semantic labeling.

The labeling process can be considered as data enrichment, since the corresponding seman-

tic class is stored as extra information, as additional attribute, to the original 3D point, similar

to its other attributes. Section 3.3.9 describes a final refacturing of the data structures.

3.3.1 Multimodal Automatization Strategy

For each radar sensing cycle at time t , the sensed radar point cloud can be formalized as a

feature tuple Pradar,t =
{
(pr,1,t ,xr,1,t ), . . . , (pr,N ,t ,xr,N ,t )

}
of N radar detections at time t . As

part of the feature vector xradar,i ,t , the spatial coordinates (x, y, z) describe the spatial distribu-

tion of the points. As additional feature components of xr,i ,t , point attributes are stored in the

feature tuple, namely Signal Power Pr , Signal to Noise Ration SN Rr , etc. Point-wise semantic

labeling adds for each radar detection pr,i ,t = pr,i ,t a label attribute w(pr,i ,t ) to the feature

list, namely plausibility w(pr,i ,t ) ∈ [0,1]. The binary plausibility score w(pr,i ,t ) indicates if

the detection is plausible, so representing an existing object (y(pr,i ,t ) = 1), or if it is rates as

implausible and thereby rated as noise or artifact (y(pr,i ,t ) = 0).

The remainder of the section describes the modular perception steps of Figure 3.2 to realize

the automated annotation with semantic labels. In a first stage, a plausibility score per radar

detection is computed, Sections 3.3.3-3.3.5, then the plausible radar detections are intro-

duced to the second stage. In this second stage further classification of plausible detections

into semantic radar classes is performed, see Sections 3.3.7-3.3.8.
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Instead of aiming to achieve an 100% accurate solution, an automatic labeling pipeline, which

delivers the best possible but not necessary the optimal estimates of semantic labels for radar

point clouds is developed. The estimates are inspected and corrected to ground truth quality

in a subsequent obligatory final manual correction step. The sheer number of noisy and

hardly interpret-able radar data, requires an initial guess to serve as starting level which

subsequently can be further improved. Hence, it is a major labeling improvement to gener-

ate educated semantic label estimates in an automated, systematic and reliable procedure,

instead of labeling from scratch.

3.3.2 LiDAR Plausibility Label Generation

LiDAR sensors also provide the sensed data in the form of point clouds P lidar,t , but delivers

only few additional point attributes besides the spatial location. Consequently, the neighbor-

hood association between radar point cloud Pradar,t and LiDAR point cloud P lidar,t can be

solved in 3D space, based on a point-to-point distance measure. Depicted as k-NN block of

the LiDAR-wing in Figure 3.2.

LiDAR sensors are commonly taken as reliable reference sensor for perception [240], localiza-

tion [246, 42], since its range measurement and dense environment perception specifications

is accurate and reliable. The high resolution and rule-of-thumb range-accuracy specification

of circa 0.5−10mm of laser scanners, qualifies LiDAR to be treated as ground-truth reference.

For the ideal hypothesis of overlapping radar and LiDAR reflections originating from the

same objects, both point clouds can be compared by a distance measure per point. Without

a relaxation of the matching distance, the matching does not yield reliable results due to

differing sensor resolution and precision. Compared to LiDAR, radar signals are reflected

not solely at the outer object shell of an object. Due to its’ wave-length, radar reflections can

occur from a partial or also total penetration of an object, reflecting at an occluded object.

Whereas laser reflections occur on the direct line of sight at the first impinged surface.

With an approximately 10 times lower radar accuracy in range resolution, plausible radar

detections occur in the near range of LiDAR reflections but must not necessarily match with

those accurately. Further some assumptions are necessary for a comparison:

• No sensor degradation due to weather influences are allowed for a data set generation.

In detail, no rain fog, dust or other visual degradation is allowed.

• Only planar scenes are applicable, excluding ramps, hilly environment or non-planar

territories. The planar requirement allows a simplified extraction of floor-detections

for floor-related radar noise detection.
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Generally, automotive radar sensors should not detect reflections of the ground surface, since

these reflections often occur below the general noise level of other objects. Common auto-

motive radar sensors are specifically designed to detect significant static or dynamic objects.

Ground plane radar detections can occur by chance, but are not reliable. In contrast, Li-

DAR reflections occur on roads and any sort of light reflecting planes also. These points

are recommended to be excluded from the LiDAR point set, before LiDAR-radar point cloud

comparison.

On the LiDAR point clouds, a RANSAC [66] ground estimation is performed to extract the

ground plane LiDAR detections. With the ground-plane corresponding LiDAR point set, the

radar point cloud is checked for radar detections in close proximity of the estimated plane.

The corresponding radar detections are directly labeled as implausible y(pr,i ,t ) = 0.

The remaining plausible radar points and the ground-plane reduced LiDAR point set are

compared to find corresponding neighbors. To find and identify matching radar detections,

a k-Nearest-Neighbor (k-NN) clustering implementation [251, 178], which is denoted in Al-

gorithm 1, is applied.

Algorithm 1 Proposed LiDAR matching by Isele et Al. [SI1].

Require: Pradar,t ,P lidar,t

Ensure: wlm(pr,i ,t )
1: for i t = 1, . . . Nradar,t do
2: q ← K-NN(P lidar,t , pi ,t , K )
3: d ← 0
4: for l = 1, . . .K do
5: px,l ,t , py,l ,t , pz,l ,t ←P lidar,t .get_point(q [l ])
6: rl ,t ,ϕl ,t ,ϑl ,t ←P lidar,t .get_features(q [l ])
7: σd ,i ,l ← MODEL(rr,i ,t ,ϕr,i ,t ,ϑr,i ,t ,rl ,t ,ϕl ,t ,ϑl ,t )

8: d ← d +
√
∆p2

x,t+∆p2
y,t+∆p2

z,t

σ2
d ,i ,l+ε

9: end for
10: wlm(pr,i ,t ) ← exp(−βlm

d
K )

11: end for

By the k-NN clustering, for each radar detection pradar,i ,t an associated set of K nearest neigh-

bors of the LiDAR scan P lidar,t is found. Due to the higher resolution of LiDAR scans, the

associated K LiDAR neighbors indicate for increasing K > 1, the robustness of a radar detec-

tion.

Radar (rradar,i ,ϕradar,i ,ϑradar,i ) and LiDAR detections (rlidar,ϕlidar,ϑlidar) are measured in sen-

sor specific local sphere coordinates but are expressed in a standard vehicle reference coordi-

nate system, see Section 2.7.
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To express the uncertainty based on the L2 norm d , and to propagate an error measure on the

spatial coordinates of the radar and LiDAR detections, a measurement model is formulated

in Cartesian coordinates:

hx =rradar,i cosϑradar,i cosϕradar,i + vxradar − (rlidar cosϑlidar cosϕlidar + vxlidar),

hy =rradar,i cosϑradar,i sinϕradar,i + v yradar − (rlidar cosϑlidar sinϕlidar + v ylidar),

hz =rradar,i sinϑradar,i + vzradar − (rlidar sinϑlidar + vzlidar).

(3.1)

The assumption of uncorrelated and independent measurement accuracy of different sensors

allows to formulate an error propagation model in Equation 3.2. Radar detection coordinate

uncertainties are denoted σr,radar,σϕ,radar,σϕ,radar, LiDAR Time-of-Flight uncertainty is de-

noted as σr,lidar.

σ2
d ,i ,l =

( ∂d

∂rr,i

)2
σ2

r,radar +
( ∂d

∂ϕr,i

)2
σ2
ϕ,radar +

( ∂d

∂ϑr,i

)2
σ2
ϑ,radar +

( ∂d

∂rl

)2
σ2

r,lidar (3.2)

In Algorithm 1 denoted as MODEL, this error propagation of error in Equation 3.2 relates the ob-

tained neighbor distance to its uncertainty measure. The partial derivatives of the euclidean

L2 distance d between corresponding neighbors, with respect to the radar range r , azimuth

angle φ, elevation angle ρ, and the LiDAR range allows to relate the neighbor distance to the

uncertainty measure. By this, the k-NN matching and distance measure incorporates the

sensor specific accuracies to find corresponding LiDAR radar pair.

The modeling of plausibility y(pr,i ,t ) of radar detections based on the distance to neighboring

LiDAR points is reached by an exponential decay function for increasing distance d .

pradar,i ,t =wlm(pradar,i ,t )

= exp(−βlm
d

K
)

(3.3)

First to notice, a higher number K of neighbors increases plausibility score. At low distances

d , close to an intersection of LiDAR and radar detections, the plausibility score is high but

decreases by the exponential decay factor βlm ∈R+ with increasing k-NN matching distances

d .
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3.3.3 Camera Plausibility Label Generation

The processing steps are depicted in the Camera-wing of Figure 3.2. To integrate the en-

vironment perception of the series-vehicle fish-eye cameras, the raw camera images are

un-distorted, perspective transformed and processed with an depth-estimation CNN, allow-

ing to express the camera image as 3D point cloud, see Figure 3.3. A depth estimating CNN

delivers a relative depth image or depth map as output. This depth map needs to be re-

scaled to a metric depth map by LiDAR sampling points as reference. Finally, a continuous

camera-based depth estimation can be compared to the radar point cloud by applying a

k-NN clustering. Similar to the procedure for the LiDAR plausibility check in Algorithm 1,

also a L2 Euclidean distance measure is applied to indicate radar detections in larger dis-

tance of the depth estimation as implausible outliers or noise. Depicted as k-NN block of the

Camera-wing in Figure 3.2, here the parameter βcm replaces the LiDAR specific βlm.

Hence, as secondary visual sensor, the series cameras of the vehicle are applied to determine

plausible from implausible radar detections. The application of series camera sensors is

chosen to showcase the rich capability of already integrated vehicle senors and reduce the

effort of a physical integration of alternative reference cameras. But obviously, to successfully

apply pre-trained (open-source) image processing modules, to the real-worlds image data,

the lower the domain shift between data-set and raw fish-eye sensor-image, the better perfor-

mance can be achieved. Open-source works and data sets for fish-eye image processing as

Woodscapes [238] or the artificial CARLA Simulator [57] generated data sets exist, but most

existing image works are based on regular rectified, horizontally pointing camera data sets.

In this thesis, it is aimed to integrate off-the-shelf solutions, originally designed for rectified

images.

The cameras applied for series vehicles deliver a top-view perspective of the vehicle periphery

as auxiliary driver information and proximity surveillance. Their downwards FOV covers

parts of the ego-vehicle and parts of the close environment, compare Figure 3.3.
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Figure 3.3: Illustration of the top-view camera image processing steps. Raw fish-eye images (left), rectified
(center) and perspective transformed image (right), with exemplary frame (red) of the effective
image region. Camera images from [MT2], figure modified.

Besides the informative top-view scene surveillance, the raw images of the mono cameras

deliver fish-eye images of the environment. For the driver assistance functionality of the

top-view projection, only fractions of the fish-eye images is used to project the top-view.

The image range of visually detected space around the vehicle, covers large parts of the

environment, but heavily distorted by the fish-eye optics.

After pre-processing the fish-eye image as illustrated in Figure 3.3,the processed image re-

sembles a common regular, rectified camera image view, with a horizontally pointing camera

perspective - not anymore ground-oriented as the initial raw image. In order to process this

pre-processed image as if it originates of a regular camera, the original fish-eye camera-matrix

Afish−eye ∈ R3×3 was modified to be available for the rectified and perspective transformed

image At ∈ R3×3. For the un-distortion, the camera modeling of OcamCalib of Scaramuzza

et al. [182] is applied.

With the knowledge of the camera intrinsics parameters At and their mounting position as

extrinsic parameters Et, the 3D radar detections pr,i ,t can be projected onto the image plane.

Similar to the previous section, the range information from the visual reference sensor, now

camera-based, is taken as measure to determine closeby plausible radar detections from

noisy radar detections. For a comparison of mono-camera depth perception, described as
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image-based pixel maps, with a 3D radar detection point cloud, a continuous image pixel

representation of the estimated depth needs to be processed of the same metric scale.

The reconstruction of a scene from mono camera images is the research field of Structure-

from-Motion (SfM) approaches, of e.g. Schönberger and Frahm [190]. Based on extracted

image features in subsequent frames, an estimated relative motion of the camera can be

detected. Based on this motion estimation, a scenes’ features can be arranged in 3D space,

according to their reconstructed location of the 3D scene perception. In low speed scenarios,

e.g. in narrow parking situations, but also for feature-less camera image perspectives, e.g.

close to a feature-poor wall, the environment reconstruction quality degrades due to close

perspective and less context, potentially yielding failure and SfM results in a warped or erro-

neous environment reconstruction, according to own experimental findings. In general, the

reconstructed scene only consists of the 3D arranged image features, which might not neces-

sarily correspond with radar detections. Consequently, the comparison of radar detections

with the reconstructed scene anchor points is impractical.

As alternative scene recognition, a continuous depth estimation can directly be processed of

an input image by a pre-trained depth-estimation CNN. For the generalization of the depth

estimation CNNs, especially for other views or other applications, the training data set limits

the transferablity. Whereas most automotive image data sets exclusively contain a single front

facing camera perspective view, every network solely trained on this perspective degrades

substantially for the application on imaged of other view directions.

Figure 3.4 illustrates the four camera perspectives of the test vehicle. Each perspective, front-

facing, left-, right- and back-facing cameras are integrated and need to be processed to gen-

erate a depth-estimation image.
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Figure 3.4: Illustration of rectified top-view camera images and exemplary KITTI Benchmark[71] images, ap-
plied for depth prediction with a selection of mono-camera depth estimation CNNs [120, 75, 217,
237]. Estimated relative depth difference in the images are decoded as brightness. Results of [MT2],
figure modified.

To determine the best suitable, open-source available mono-image depth estimation CNN,

a couple of tests are performed to evaluate their performance on real camera images of the

vehicle setup. Figure 3.4 illustrates the advantage of a diverse dataset over the common

front facing views: The exemplary four mono-camera depth estimation CNNs, SfM-Net [217],

Monodepth2 [75], BTS [120] and DiverseDepth [237] trained on common data sets of deep-

learning tasks in an automotive context e.g. KITTI [71] are outperformed by a general purpose

depth estimation CNN DiverseDepth [237], measured visually by detail-richer and sharper

depth-maps in all four top-view camera perspectives. Even if the independent front-view

results might be promising, side-view depth maps under-perform. The objective to apply

the same depth estimation CNN on all four cameras, in order to consistently estimate depth

values for all views, yields DiverseDepth [237] as best performing CNN.

With the consistent and dense depth map representation for all four mono cameras of the

test-vehicle, the relative depth maps need to be scaled to true, real-world metric scale. Since

LiDAR is considered in the thesis as delivering ground truth range information, the LiDAR

point cloud is referencing a scaling factor slidar. To derive the scaling factor slidar, again point

cloud projection is applied. The LiDAR points are projected onto the depth estimation image.

In the overlapping sensor FoV regions of cameras and LiDAR, the LiDAR points with their met-

ric range attribute rlidar, can directly be compared to the image-based depth value rcam,depth .

By this comparison, the LiDAR points serve as sparse scaling factor sampling points of the

metric real-world depth.
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Experimental results yield multiple local scaling factors sloc, lidar to outperform a single global

scaling factor slidar per depth map, as a systematic cause of the decreasing resolution towards

image edges of rectified and perspective transformed fish-eye images. Robust parameter

estimation by a RANSAC estimation [66] is applied to find the best suitable global scaling

factor slidar. Local scaling factors sloc, lidar allow to compensate remaining fish-eye artifacts.

The local scaling factor procedure yields more accurate metric-scaled depth maps.

Due to the ordered structure of the LiDAR point cloud, the projection of LiDAR points into

the depth image results in equidistant projection locations. Applying an ordered distribution

of sampling points, an equidistant grid of depth pixel locations is selected to find for each of

these image pixels the closest LiDAR neighbor point. The closest LiDAR neighbors are found

by common k-NN clustering.

The local image depth map is locally rescaled to the near LiDAR projection depth value, as

Equation 3.4 describes

dlidar = dscaled = sloc, lidar ·ddepth map (3.4)

Applying the local scaling factors, the depth estimation map is ready to project the camera

image into a 3D pixel point cloud. In this representation as projected 3D pixel point cloud,

the camera depth map results in a dense 3D point cloud, similar to the LiDAR point cloud.

Hence, the radar detections can be compared with this camera-based 3D point cloud to

determine camera-based, which radar detection is plausible and which radar detection is

rated implausible. Following the explanation in Section 3.3.2, Algorithm 1 is analogously

applied, but with the error propagation MODEL in Cartesian coordinates expressed for the

depth estimation uncertainty.

3.3.4 Spatio-Temporal Radar Detection Tracking

With an approximate cycle time of 50ms, subsequent radar scans are sensed. From the anal-

ysis of ego-motion compensated radar point clouds, the context inspection of subsequent

independent measurements allows to identify noise. Accumulating independent measure-

ments of a moving vehicle by the motion-compensated measurement positions, it is found,

that noisy radar detections can be identified as outliers of the resulting spatio-temporally

accumulated point cloud. The exemplary spatio-temporal accumulation of 3 subsequent

raw, unfiltered radar scans is applied in this thesis and illustrated in Figure 3.5. This process

is depicted as Assembly and Tracking blocks in Figure 3.2.
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Figure 3.5: Illustration of 3 accumulated, subsequent 360° radar point cloud assemblies (3 sensing cycles),
covering approximately 150 ms and a 45x45m grid: Top-view perspective (left), side view (middle)
and horizontal view (left) are colored according to the points’ z-coordinate ∈ [−0.5m,5m]. Please
note the interpretation difficulty of even accumulated radar scans.

In contrast, plausible radar reflections accumulate at the same areas, resulting in densely pop-

ulated regions. This thesis assumes clutter and noise to occur mostly as randomly distributed

outliers, but plausible detections are assumed to be modeled as Poisson Noise [28].

As Figure 3.6 illustrates, an accumulated inspection over multiple measurement cycles (ap-

proximately 100 scans accumulated in standstill) helps to identify noisy real detections from

clutter and multi-path reflections. Based on the spatial re-occurrence of radar detections, a

discrimination can be formulated.

Figure 3.6: Illustration of approximately 100 accumulated clouds on a 45x45m grid. Colors according to z-
coordinate ∈ [−0.5,5]: Top-view (left), side-view (middle), and horizontal-view (right).

In the pipeline of the data set generation, labeling nevertheless is a post-processing step.

Hence, at each inspection of a radar point cloud Pradar,tk of timestamp tk , its previous point

cloud Pradar,tk−1 at tk−1 and following point clouds Pradar,tk+1 at tk+1 can be included for

the inspection. This idea, to check the spatial re-occurrence, specially accounts for static

environment reflections, whereas dynamic objects might not hold the assumptions. Instead,

dynamic moving objects occur in the accumulated point cloud as spread clusters and might

be treated thereof as implausible if their location changes substantially over subsequent

radar measurement cycles. Since the focus of this labeling is on a labeling of the quasi-static

environment, the effect of mistreating dynamic objects is neglectable for the automated
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labeling. The manual correction step allows to correct potential shortcomings on spread

dynamic object clusters to be labeled correctly in a frame-by-frame inspection.

For the point accumulation not only a single leading and subsequent timestamps is com-

pared, but a set of nb ∈ N sensor cycles earlier and later than the reference timestamp tk

is considered. For the inspection of a driving scene, the spatial accumulation needs to be

ego-motion compensated. In this thesis, the relevant scenes cover low or medium speed, driv-

ing in planar scenes without much maneuvering at standstill, allowing to apply a kinematic

single-track motion model based on wheel odometry [223].

The motion model gets ego-vehicle sensor data as input. The ego yaw-rate ψ̇ measurements

from on-board vehicle sensors, as well as the longitudinal vehicle velocity v , are available

from the vehicle CAN network. In order to integrate the velocity during the radar measure-

ment cycle, e.g. k to k +1, the motion model requires the time stamp difference ∆t of the

CAN messages.
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zv

ψ


k+1

=


xv

yv

zv
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k
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v cosψ

v sinψ

0
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k

(3.5)

Assuming a planar motion, neglecting roll and pitch movement, the rotational vehicle motion

can be expressed as yaw rotation matrix Rz(ψ) with rotation angle ψ.

Rz(ψ) =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 (3.6)

The resulting ego-motion compensation for each accumulated radar point is given as

p̃radar,i ,tk+ j =R−1
z,ψk

((
xv, yv, zv

)>
k+ j −

(
xv, yv, zv

)>
k

)
+ Rz,ψk+ j−ψk pr,i ,tk+ j .

(3.7)

So that for the batch of the additional (2 · nb) radar point clouds Pradar,tk+ j for every j ∈
{−nb, . . . ,−1, 1, . . . ,nb}, every radar detection can be spatially expressed with respect to the

reference point cloud at time tk .

The tuning of the parameter nb, should be selected in regard of the scene to be tested. As

mentioned before, in quasi static environments a larger nb can be selected. For dynamic
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object detection, the accumulation batch size should be decreased. Otherwise, moving ob-

jects do not result in denser regions, indicating plausible detections, but produce tail-shaped

sparsely distributed clusters per object which are difficult to interpret and require frame-

by-frame inspection. Inspecting multiple consecutive frames, only moving dynamic objects

produce tail-shaped accumulations along their motion path. This view enables to determine

and follow the global motion path of moving objects along these tails.

As found by Schumann [192], to detect or label moving objects in a time accumulated rep-

resentation, the Doppler-Velocity of the detections needs to be considered in Equation 3.7

and visualized for the detection plot as well. Schumann [192] applies a visualization of the

dynamic moving direction to consistently identify detections of moving objects.

Taking the error propagation in the spatial radar measurement equations into account, see

Equation 3.2, the evaluation of the accumulated point clouds results in a batch of distance

measures d j per point.

A simple strategy to combine the distance measures for each point would be averaging. In

edge-cases of short radar sequences of only a few sensing cycles, if a low parameter nb is

selected, potentially relevant detections might remain undetected in the environment of

noisy detections. Instead, sorting the nb distances d j in ascending order is performed. As

the closest distances contributes with a higher probability to the interpretation of a radar

detection to be plausible, an exponential decaying weighting factor βtr is applied on the

ascending distance list y(pradar,i ,t ) = exp(−βtr ∗d j ). As a result, rated with a larger weight,

accumulated radar detections in close distance to the reference scan, increase the plausibility

score y(pradar,i ,t ) of each radar point. Accumulated points with neighbors only at a higher

distance get automatically de-rated towards an unplausible score y(pradar,i ,t ) = 0.

3.3.5 Plausibility Label Selection

In the previous sections, the three parallel modules have been introduced: First the LiDAR

branch, Second a camera branch, Third a spatio-temporal tracking module, as depicted in

Figure 3.2. These three modules are combined to yield a single plausibility label y(pradar,i ,t )

in the blocks Blind Spot Combination and Denoising of Figure 3.2. In the first step, the plau-

sibility label of both camera and LiDAR perception branch, is selected based on the sensor

FoVs. The resulting perception-based plausibility scores wl m(pradar,i ,t ) and wcm(pradar,i ,t ) are

then compared to a spatio-temporal tracking module value wtr (pradar,i ,t ).

Field of View Sensor Selection: For the sensor FoV based plausibility selection, a selection

scheme is applied. The sensor mounting position and each specific sensor FoV is respected

in the label fusion process. For areas of only single sensor coverage, the available plausibility

labels are applied directly. E.g. the blind spot area of the LiDAR Vbs,lidar, see grey areas in

Figure 3.7, yields only camera and tracking plausibility as input.
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Figure 3.7: Exemplary LiDAR and camera blind spot regions from roof mounted position and rectification.

As Figure 3.7 illustrates for a schematic mounting positions (xlidar > 0, ylidar = 0, zlidar > 0), the

near proximity of the car is not covered by the roof mounted LiDAR reflections, depicted as

grey area. The floor can not be detected in a straight line of sight with the schematic LiDAR

opening angle of αlidar > 0.

Vbs,lidar =
{

pi =
(
pradar,x,i , pradar,y,i , pradar,z,i

)> ∈R3 | pradar,z,i ∈ [0, zlidar]∧√
(pradar,x,i −xlidar)2 +p2

radar,y,i ≤
zlidar −pradar,z,i

tanαlidar

} (3.8)

Close to the car only the camera plausibility is available, so the camera-based rating is ap-

plied, as Equation 3.9 describes, the subscripts cm, lm denote "camera matching" and "lidar

matching".

wopt(pradar,i ,t ) =
wcm(pradar,i ,t ) if pradar,i ,t ∈Vbs,lidar

wlm(pradar,i ,t ) otherwise.
(3.9)

Equation 3.9 describes further, that at the far range LiDAR plausibility is preferred over the

camera rating. The far range of an image-based depth estimation degrades in accuracy with

increasing range, the LiDAR based plausibility rating remains the reliable source of radar

detection plausibility. For intermediate ranges with overlapping sensor FoV’s camera and

LiDAR based ratings are available, but LiDAR plausibility is experimentally found superior.

In brief, cameras deliver the plausibility rating in close vehicle proximity, excluded the very

close yellow region of Figure 3.7.

In the overlapping area, the result of both parallel independent visual processing branches

(camera and LiDAR) are compared and checked for congruent plausibility labels. Both in-

dependent branches ideally deliver the same plausibility rating for each radar point cloud.

Fusing both channels’ ratings in case of different ratings, was experimentally found to de-

grade the overall accuracy of the plausibility labeling. It was found, based on the tested image

depth estimation CNNs, that wherever a LiDAR rating is available, it is trustworthy to rely

on LiDAR. In perspective of further developments of mono-depth estimation networks, this
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statement could be relaxed. But for the tested setup, especially towards the image edges,

depth estimation CNNs degrades and the statement to prefer LiDAR is found valid.

Finally, it should be noted that relying on LiDAR or camera data, processed by independent

CNNs, their potential failure and potential erroneous results need to be detected. By checking

for inconsistent ratings for the overlapping sensor FoVs, or significant deviations of radar

ratings in the overlapping range, failure modes can be detected and flagged for later manual

inspection.

Visual Perception and Spatio-Temporal Tracking Selection: A method to decide, if the

visual perception or the tracking module needs to be prioritized to determine the plausibility

of a radar detection, is applied.

For the radar sensors of the vehicle, their specific mounting position in covered packaging

positions behind the bumper shell, is responsible for specific deflections and multi-path re-

flections. The denominator and sensor reliability factor γs(ϕradar,i ,t ) in Equation 3.10 models

the sensor accuracy for each radar sensor, exemplary illustrated in Figure 3.8.

ŷ(pradar,i ,t ) =H
(
w(pradar,i ,t )−w0

)
=H

(
α ·wopt(pradar,i ,t )+ (1−α) wtr(pradar,i ,t )

γs(ϕradar,i ,t )
−w0

)
,

(3.10)

The sensor reliability curve of Figure 3.8, is uniquely available for every single radar sensor.

Due to the specific mounting position and structural effects of the close-by packaging, az-

imuthal sectors of potential radar inaccuracies can be seen as peaks, hence increasing the

denominator of Equation 3.10, promoting a radar detection to be rated as implausible. For ev-

ery radar detection, Equation 3.10 outputs a binary final artifact labeling (y = 0) or a plausible

detection artifacts (y = 1).

ϕmin ϕmax

1

1.25

1.5

1.75

2

ϕ

γ s
(ϕ
)

Figure 3.8: Exemplary radar reliability factor γs over the azimuth angle ϕ with affected sensor regions (right).
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This decision formulation prioritizes between tracking and perception result and can be

tuned by the weighting parameter α ∈ [0,1]. The selection is formalized in Equation 3.10 as a

parameterized Heaviside function H :R→ {0,1}. The parametrization is reached by the term

w(pradar,i ,t ), understanding w0 ∈ [0,1] as a threshold value.

The flexible parametrization of α in Equation 3.10 balances the selection of which the visual

branch a plausibility label is preferred. With α = 1, radar detections are only plausible if

supported by a nearby visual detection from LiDAR or camera. With this parametrization,

the influence of the tracking branch is respected but only the visual rating remains active.

The other extreme, α= 0 suppresses the visually generated plausibility ratings, resulting in

an tracking-only plausibility rating. Such a filter helps to detect static detections which are

occluded by foreground objects. E.g. the radar reflections behind a vehicle could be detected

as static detections of a building for example.

With this parametrization possibility, the case of a quasi-static scene labeling is addressed.

For a quasi static scene, the tracking of stable and stationary objects is essential. In a localiza-

tion context, the radar signature is an advantageous feature compared to visual localization.

While visual sensors percieve only the outer shell of objects, radar sensors generate a radar

signature also from the inner structures of a detected object or building.

With α= 1, the radar signature would be cut to only return the reflections of the outer object

shell.

The described plausiblity rating based on visual perception and tracking can be fine-tuned

by the parameter set α,βlm,βcm,βtr,nb and K .

Based on experimental results and manual tuning, the following values have been applied:

Table 3.3: Parameter set applied for the labeling pipeline.

α βlm βcm βtr nb K

0.8 0.7 0.009 2.3 3 2

For a large scale automated labeling, the labeling evaluation metrics help to fine-tune the

process parameters in Table 3.3. With a scene specific, or even labeling policy specific pa-

rameter set, the outlined plausibility labeling procedure can detect relevant from noisy radar

detections.

In the next steps, the remaining plausible detections are subject to further labeling. Quali-

fied as plausible, subsequent processing steps assign a specific semantic class to each radar

detection to further describe its semantic meaning.
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3.3.6 LiDAR Semantic Label Generation

Jumping back to the LiDAR branch of Figure 3.2, the semantic label generation is added.

The LiDAR point cloud of the reference sensor is processed with a pre-trained CNN to

achieve semantic labels, depicted in the process chart of Figure 3.9. The pre-trained CNN

RangeNet++ [145] is trained to semantically segment the LiDAR point of the SemanticKITTI [18]

automotive scene data set. The generalization of RangeNet++ for similar driving scenes of

this thesis is assumed.

Converting the LiDAR point cloud P lidar,t into a range image Ilidar,t , the organized point

cloud is expressed as image data. Advantageous for such an representation is the common

property of LiDAR to deliver the same number of points in an ordered consistent fashion.

Based on this ordered structure, each single point can be converted to a specific image pixel.

Figure 3.9: Exemplary LiDAR semantic segmentation pipeline. Data conversion to a range-image and infered
semantic classes on the range image.

The CNN inference step delivers semantic labels for each image pixel, which gets remapped

to the corresponding point in 3D coordinates. Hence, each LiDAR point gets annotated by a

semantic label ŷsem,lidar(pradar,i ,t ).

The remapping into 3D coordinates is skipped for the semantic radar point cloud labeling.

Instead, the intermediate semantic range image representation of the CNN output is used as

semantic label map, onto which the radar point cloud is projected.

Based on the sensor extrinsics, the same mapping from 3D points to the 2D image plane is

applied for the plausible rated radar detection points.

With the sensor FoV and extrinsic parameters for both sensor types, first the FoV compar-

ison is performed. Plausible radar detections in the LiDAR FoV, are considered only. The

remaining radar detections, e.g. close to the car in the LiDAR blind spot of Figure 3.7, or radar
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detections that are labeled as im-plausible, are generally assigned with the semantic label

unknown. The semantic label unknown, depicted by the color a in further semantic point

cloud illustrations, is applied e.g. for background radar detections that occur behind other

e.g. LiDAR matched plausible radar detections with y(pradar,i ,t ) = 1. Hence, the background

radar detection is not visible or occluded for the visual sensor and cross-sensor labeling is

infeasible for these radar points.

For the projected radar points in the FoV of the LiDAR, the image location onto which the

radar detection is projected, delivers a label mapping from the segmented LiDAR range-

image to each single radar detection.

3.3.7 Camera Semantic Label Generation

The pre-processing of the fish-eye camera in the Camera branch of Figure 3.2 delivers an

un-distorted, rectified and perspective transformed image of the scene. The semantic image

segmentation in the Camera branch of Figure 3.2, is implemented parallel to the depth-

estimation module. The semantic image segmentation of the pre-processed image is per-

formed by the open-source available CNN HarDNet [35]. The semantic labeling process is

not limited to this specific network architecture, any other semantic sementation tool can

easily be integrated. The comparison and consistency of the inferred semantic image labels

with the semantic labels of the LiDAR semantic segmentation CNN is important. Since most

semantic segmentation tasks include the 19 classes of the KITTI [71] data set, the only re-

quirement to apply an other segmentation tool is to deliver the same semantic classes. Any

network which delivers a suited semantic segmentation image can be applied alternatively.

In order to reduce the domain shift of this image based semantic segmentation task, a pre-

trained CNN on typical automotive scenes is selected. Being trained on the Cityscapes data

set [47], the HarDNet [35] CNN generalizes well on the pre-processed camera images for the

application in parking scenarios and on-street scenes.

The semantic segmented image pixels serve as reference for the radar point labels. With

respect to the camera mounting position as extrinsic parameter and the intrinsic camera

matrix of the transformed perspective At ∈R3×3, a projection of radar points onto the image

is applied. Depending to which FfV of the cameras each radar point pradar,i ,t suits best, the

radar point gets projected onto the camera image. To which camera each point is projected

is decided by a distance measure of the projected point to the corresponding image center.

The closest distance to the image center is selected as projection target image. This voting

takes care, that radar detections in the overlapping camera images are projected to the better

available image of both camera perspectives. It is important to mention, that the un-distorted
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images might still contain a little distortion towards the image borders, so a radar point

projection onto image margins, potentially might include an image projection error.2

Independent of the semantic labels which are relevant for the radar segmentation, the Hard-

Net++ CNN [35] discriminates 19 semantic classes on which it is trained on. With the radar

points projected onto the image, each radar point gets the semantic label ŷsem,camera(pradar,i ,t )

of its corresponding image pixel assigned.

The only image label that is excluded from the radar label assignment is the image label for

sky a . Since radar reflections describe reflective object surfaces, the sky will never occur as

radar reflection. All radar points projected to sky labeled pixel areas are re-mapped to the

semantic label unknown a .

3.3.8 Visual Semantic Label Fusion

Fusing the two visual semantic perception branches stands for voting either for the LiDAR se-

mantic ŷsem,lidar(pradar,i ,t ), or to prefer the camera semantic ŷsem,camera(pradar,i ,t ). The Fusion

and Labeling block of the labeling process Figure 3.2 finalizes the automated labeling of the

radar point cloud.

Since both CNNs of image semantic segmentation and LiDAR semantic segmentation do

not deliver confidences or other quality measures directly, the result of the CNNs is further

probed to deliver reliable labels.

As the data set generation is an offline process, the data is present and can be processed

runtime independently. Similar to the batch-accumulation of radar point clouds for the

spatio-temporal tracking, this idea to compare multiple time-steps is transferred to the image

processing.

In order to increase robustness of a CNN, generalization measures are applied, e.g. L2-

regularization to regulate weights from growing or a dropout os introduced as regularization

measure for the training. Similar to the generalization by dropout, Kendall and Gal [111] and

Loquercio et al. [132] suggest the Monte Carlo Dropout (MCD) on the inference.

Requiring M multiple inference steps, the MCD application defines an uncertainty measure.

This type of uncertainty describes how well the CNN models perform. This model uncertainty

depends on the systematic model-induced errors and is called epistemic uncertainty [111].

With having the epistemic uncertainty, comparing M multiple inference results, model fail-

ures on an image sample can be detected. For each image and LiDAR point cloud, the seg-

mentation CNNs are processed for a set of M inferences. Comparing the output images

2 This error can not be reduced, due to the camera optics.
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with respect to semantic consistency, a reliability score per pixel is calculated. Consistent

areas indicate a reliable segmentation, whereas uncertain image pixels might be segmented

inconsistently over the M processings.

This reliablity score is calculated by the MCD and can be visualized as binary black (unreli-

able) and white (reliable) mask of each processed image, or respective range-image in the

LiDAR case.

For the semantic label fusion, each camera pixel with its corresponding reliability score as

pixel map is compared to the corresponding LiDAR label with its’ reliability score. A rule-

based decision is applied:

• For consistent semantic labels of both sensors, this semantic label is applied.

• In case of conflicting, contra-dictionary semantic labels delivered by both sensors, the

reliability mask is applied as decision score. The semantic label with higher reliability

score overrules the other sensors’ semantic label.

• If conflicting semantic labels with same reliability score appear, an indifferent semantic

label unknown a is applied.

With this decision, for each radar point pradar,i ,t , the introduced labeling pipeline defined if

is an im-plausible detection ŷ(pradar,i ,t ) = 0, or a relevant plausible detection ŷ(pradar,i ,t ) = 1

and which semantic label this plausible radar detection most probably represents.

The subsequent steps towards an automated labeled data set includes manual correction

and a data format conversion.

3.3.9 Data Preparation for Machine Learning

In the steps described before, the additional semantic information from the labeling pipeline

is attached to each radar point as new point attribute. To process the attributes to apply pat-

tern recognition on the generated data set, the data format of each point cloud is converted

into binary files. The grey blocks in Figure 3.2 illustrate the refacturing process of the labeled

radar point clouds.

Data set Format Conversion: According to idea to train a semantic segmentation network

on the generated semantic labels, the refactoring of point cloud segmentation models is

enabled by a data-structure conversion workflow. Instead of customizing a radar specific

data set structure, the existing SemanticKITTI [18] data structure is extended to be applicable

for the radar data.

As a result, existing semantic network architectures, which have proven to work for LiDAR

point clouds, can simply be reused on the radar data. The input tensor sizes of the model

69



3 Semantic Radar Labeling

Figure 3.10: Data set format inspired by Behley et al. [18], with extension for radar specific channels Signal
Power, Signal to Noise Ratio and Doppler Velocity in additional binary files per channel.

data-loaders are adjusted for a flexible radar attribute extension. Point based operations are

specifically adjusted for each network modification, resulting in minor changes. Yielding a

reduced subset of classes, the potential network architectures can also be streamlined to a

reduced set of output neurons or classes.

The native ROS measurements as ".bag"-files are saved as individual point clouds ".pcd"-files

per measurement cycle by the labeling pipeline. This labeling output is converted in the

SemanticKITTI Converter of Figure 3.2 into the more generic binary data format of binary

(".bin"-) files enables the real-world measurements to be converted into the generic data

set format of SemanticKITTI [18]. As baseline of the modified process serves the common

Kitti2Ros converter, which is extended to be applicable on the radar specific point clouds.

For this conversion process, the six separate radar point clouds of the test vehicle are ego-

motion compensated and assembled to a single synchronized 360◦ point cloud and time-

stamp. This 360◦ cloud is then converted into binary representation and stored as .bin file.

Instead of processing each 360◦ scan independently, each two consecutive 360◦ scans are

again ego-motion compensated and concatenated to one dense point cloud. The underlying

assumption is a low ego-motion drift in a short sequence and an outbalancing advantage

of denser point clouds instead of sparse 360◦ radar point clouds. Due to the concatenation,

the resulting data set frame-rate is reduced to half the original sensing frame-rate. This

concatenation increases the density of the point clouds, enabling local feature extraction

over a reduced frame-rate. For the semantic segmentation approach, which relies on point
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neighborhood relations, the disadvantages are rated as non-essential. Depending on the

application in scope, the drawbacks of an accumulation approach need to be discussed

separately.

The binary files of a point cloud efficiently only store the spatial information of x, y, z coor-

dinates. Each relevant other radar point attribute from the ".pcd"-file is converted into an

additional binary file and saved independently. See SemanticKITTI Converter of Figure 3.2,

each point label attribute is extracted as binary ".label" file, encoding each points’ class label.

Per radar point cloud of a sample sequence, the files are named with an unique identifier

code. With this structure, the data-loader in a machine learning pipeline is able to efficiently

load only the relevant signals or attributes from specific files by the unique identifier code, or

is able to shuffle the data during training. As such, the required memory of the network and

data set is kept to a minimum, at the highest flexibility to include or exclude certain radar

attributes during the network design.

Manual Correction Tool: Beneficial of the SemanticKITTI data set structure are the com-

mon evaluation methods e.g. the SemanticKITTI-API or especially the point labeler [18].

Post auto-labeling processing and binarization, the consolidated semantic labels of Table 3.2

are manually checked by a visualization tool, extending the point labeler, to reach ground

truth quality level. This step is illustrated as Manual Correction block in Figure 3.2. Hereby,

all labels beside the automatically determined clutter are corrected by manual inspection

and re-labeling. The conclusion of valid clutter labels is drawn from the requirement of the

spatio-temporal tracking filter in the automated labeling pipeline. This filter stage indicates

non-stationary objects to be noise. Hence, most multi-path reflections etc. are filtered to

noise and do not need to be revisited by manual labeling.

The labeling and visualization tool is enriched to visualize the radar points with their seman-

tic class as color-code of Table 3.2 with the LiDAR point cloud as grey value reference sensor

data. Either in single radar scan overlay, or for a sequence of radar scans being projected

together along the odometry-based trajectory, the semantic labeling of the radar points is

facilitated, see Figures 3.11-3.13. With the chance to check the projected radar labels for

sensed objects over a sequence, especially spatio-temporal semantic consistency is ensured.
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Figure 3.11: Exemplary sample of trees (green) and poles (yellow), depicted as dense grey LiDAR scan assembly
(left) and manually corrected sparse radar point cloud (right) without noise.

Figure 3.12: Exemplary sample of a hedge (green), poles (yellow), and cars (blue), depicted as dense grey LiDAR
scan assembly (left) and manually corrected sparse radar point cloud (right) without noise.

Figure 3.13: Exemplary sample of a hedge (green) and wall structure (yellow), depicted as dense grey LiDAR
scan assembly (left) and manually corrected sparse radar point cloud (right) without noise.

For small objects, similar to poles or persons, this is essential. Besides the above mentioned

spatio-temporal inspection scan by scan, scenes containing moving objects need special

manual inspection to label the moving objects correctly. From the LiDAR sequence projec-

tion, the moving object paths are visible as tailing tracks. Indicating the path of an object is

helpful for the manual labeling per scan. Hence, each radar scan needs to be labeled inde-

pendently, with scene comprehension which of the potential automatically as clutter labeled

detections might be resulting of the considered moving object.
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In order to realize a consistent manual labeling, a labeling policy is set based on which the

LiDAR point cloud helps to correct the semantic radar label.

1. Labeling of outer building structures only: Internal building structures are labeled as

clutter.

2. Radar detections inside a car are all labeled as vehicle and not excluded.

3. Any sort of fences or barriers are non-driveable and are labeled as building.

4. Flat vegetation (e.g. grass) is not labeled (normally not reflecting), but bushes, hedges

as trees.

5. Dynamic objects are labeled in frame-by-frame manner.
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3.4 Data Set Evaluation

The data set is generated on 20 different driving sequences which resemble typical parking

or suburban driving scenarios, recorded at low ego-vehicle speed. Based on the low ego-

motion, subsequent sensor readings (radar, camera and LiDAR) overlap by a large fraction.

Overlaying subsequent sensor scans facilitate the context-aware label cross-check and ensure

a spatio-temporal consistent semantic labeling.

In the intermediate first step of the automated labeling, all radar points are reduced by 80%

to the plausible detections. Figure 3.14 illustrates implausible red detections in overlay with

the blue plausible radar detections, in comparison to the exclusive subset of blue plausible

radar detections. The LiDAR point cloud (grey) serves as reference context background. The

removed 80% are classified as radar artifacts (red) and not further labeled.

Figure 3.14: Exemplary data set sequences 00-07 with grey LiDAR reference points, of Isele et Al. [SI1]. All noise
radar points (red) and plausible radar points (blue) in the top figures (a), while the bottom images
(b) show the same sequence, showing exclusively the remaining plausible radar detections.

In the second step, the remaining plausible radar labels are specified into six meaningful

semantic radar labels, compare Table 3.2 for the details of the semantic radar classes. An
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examplary scene illustration of the semantic labeling of plausible radar detections is found

in Figure 3.15.

Figure 3.15: Exemplary scenes with resulting semantic radar labeling of plausible radar detections, illustrated
without noise, class-wise colors according to Table 3.2. Figure of Isele et Al. [SI3].

Cars and other vehicles are mainly stationary. Vegetation in form of bushes, hedges and other

trees is present. The third major object class is buildings and other man-made structures,

which are consolidated to one class. Walls, fences or other non-through-passing man-made

structures are commonly labeled as building. In this class, the radar detections can still vary

broadly: Reaching from a steel- or metal made fence to a wooden fence to even all various

types of walls, boards or cemented house artifacts, the class is set to building.

Figure 3.16 illustrates the data set content as generic scenes with less road traffic.

Figure 3.16: Exemplary scenes of the data set with ego-vehicle and its park-in motion as solid (park-out as
dotted) grey line in typical environment structures. Black blocks represent buildings, black circles
represent poles, white vehicles are either parked or their path is indicated as white arrow.
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3.4.1 Data Set Overview

Details of the 20 driving scenes are found in Table 3.4. The data set is comprised of 8405 radar

scans, resulting in ≈ 8.2 ·106 radar detections, covering a driven path of 2507.35m at ≈ 15 km
h .

Overall, the data set consists of ≈ 600 seconds of radar recordings.3

Table 3.4: Data set overview of semantically labeled radar data.

Name Description Path Length [m] Radar Scans

Sequence 00 urban residential area 58.74 245

Sequence 01 perpendicular parking 31.66 290

Sequence 02 sub-urban residential area 20.34 101

Sequence 03 sub-urban parking lot 80.65 400

Sequence 04 garage parking 51.92 332

Sequence 05 urban residential area 29.78 163

Sequence 06 perpendicular parking 25.71 170

Sequence 07 sub-urban parking lot 77.92 442

Sequence 08 urban residential area 62.19 256

Sequence 09 sub-urban residential area 17.81 82

Sequence 10 sub-urban residential area 27.83 232

Sequence 11 sub-urban parking lot 92.92 474

Sequence 12 parallel parking 31.06 243

Sequence 13 sub-urban residential area 14.98 215

Sequence 14 sub-urban area 16.15 45

Sequence 15 sub-urban residential area (loop) 480.66 969

Sequence 16 sub-urban residential area (double loop) 613.60 1452

Sequence 17 sub-urban residential area (loop) 410.65 1203

Sequence 18 sub-urban residential area (loop) 362.69 1082

3.4.2 Scene Evaluation

The sequences are an exemplary collection of typical objects and average scenarios to be

met in real-world. This collection of sequences is recorded in typical parking scenarios in

different settings and environments, to generate a real-world based data basis for the research

in this thesis. Systematically radar data delivers an un-balanced data set, considering the total

number of detections per class. Without claim of completeness, the data set represents an

exemplary, general collection of real-world radar samples of e.g. poles or person occuring

with lower regularity, compared to exemplary vehicle radar detections. The specific overall

class distribution over all classes is illustrated in Figure 3.17. A complementary occurrence

rate or definition of relevant objects is hereby not implicitly formulated.

Table 3.5 shows the radar point count of the binary classification into im-plausible ŷ(pradar,i ,t ) =
0 and plausible ŷ(pradar,i ,t ) = 1 radar detections.

3 As requirement for the automated labeling pipeline, the corresponding 4x30H z camera data, CAN-Data,
and 20H z LiDAR point clouds need to be recorded and processed. The overall recording and post-processed
data exceeds 5−10TB.
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Figure 3.17: Data set label distribution as pie chart, visualizing semantic radar classes in the colors according
to Table 3.2, clutter excluded.

Table 3.5: Data set details for the 00-10 sub-set, as in Isele et Al. [SI1].

y = 1 y = 0

ŷ = 1 2 432 440 268 869

ŷ = 0 157 076 430 418

The remaining plausible detections are split in the six semantic classes. As visualized in the

pie-charts before, the number of detections per class are not balanced. But also the spatial

occurrence of the detections is of interest. The overall detection range of 90 m is visualized

in Figure 3.18, showing a heatmap of all detections with respect to the vehicle.
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3 Semantic Radar Labeling

Figure 3.18: Heatmap of spatial occurrence count of all radar detections in a 90 m radius around the vehicle
independent of their semantic class.

From the overall visualization in Figure 3.18, the covered areas are spread and no distinct

concentration can be found. Therefore, the same spatial occurrence heatmap is illustrated

but isolated per semantic label in Figure 3.19. This illustrates the different spatial occurrence

of radar detections per semantic class as summary over all recorded sequences of Table 3.4.

For the following discussion of semantic labels, only detections in the range of 50 m are de-

picted and discussed. Only detections in this range will be consequently utilized in the later

segmentation in Section 4, mapping in Section 5 and parking system in Section 6. From

the class-wise spatial occurrence heatmaps in Figure 3.19, straight passages of cars and

streets stand out. Similar to other data set distributions, e.g. SemanticKITTI [18], the for-

ward passage of scenes is recorded. For a generalization to other use-cases or other raw

data-distributions, e.g. specificially crossing traffic at intersections, the data set does not

contain such scenes without augmentation. For the training of the semantic segmentation

network, data augmentation is applied to achieve independence of the spatial occurrence of

the data, see Section 4.4.
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Figure 3.19: Heatmaps of the spatial occurrence of radar detections per semantic class in a 50 m radius: Clutter,
building, vehicle, vegetation, pole and person.

3.4.3 Labeling Process Evaluation

The two-stage process of labeling plausible detections and further split these detections

into semantic classes can be evaluated per step. First, the plausibility labeling result of Sec-

tion 3.3.5 is discussed, then the overall semantic labeling result of the process, see Figure 3.2

and Section 3.3.8 is evaluated.
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Table 3.6: Tested plausibility label data set of M = 11 sequences with bold marking of min. and max. metric
scores.

ID ∅N ∅Acc ∅Precision ∅Recall F1 plausible ∅IoU IoU plausible IoU artifact

Σ 2704 0.873 0.826 0.779 0.675 0.682 0.510 0.854

00 245 0.848 0.833 0.793 0.722 0.687 0.565 0.810

01 290 0.883 0.796 0.781 0.646 0.673 0.477 0.869

02 101 0.878 0.839 0.822 0.740 0.720 0.588 0.852

03 400 0.885 0.706 0.761 0.622 0.662 0.451 0.873

04 334 0.927 0.863 0.859 0.765 0.768 0.620 0.917

05 163 0.910 0.869 0.845 0.757 0.752 0.609 0.895

06 170 0.776 0.771 0.678 0.537 0.554 0.367 0.742

07 422 0.860 0.808 0.739 0.616 0.644 0.445 0.824

08 265 0.850 0.759 0.771 0.622 0.640 0.451 0.829

09 82 0.845 0.813 0.776 0.684 0.667 0.520 0.814

10 232 0.874 0.844 0.798 0.715 0.703 0.556 0.850

Stage 1 -Plausibility: To determine a qualitative measure for the accuracy of the plausible

detections, the data set is manually inspected and corrected. For the manual correction of

individual detections, the labeling tool presented in Section 3.3.9 is applied. The evaluation

of the automated labeling is performed on the sequences 00-10 of the data set, the remaining

sequences are not evaluated.

As Classification Metrics in Section 2.3, Accuracy, Precision, Recall, F1 score, and IoU are

defined and applied for the data set labeling evaluation. Table 3.6 presents the metrics score

for the sequences 00-10.

Based on the Accuracy, a mean error of only 12.95% is achieved. With this pre-filter, most of

the noisy and transient detections can be filtered out. This first step of labeling is overesti-

mating the plausibility on purpose.

It is found beneficial for the subsequent semantic labeling, to have a precise region infor-

mation where the detections labeled as plausible occur. The overestimation of the relevant

region allows the subsequent semantic labeling steps, both the automated and manual in-

spection step, to refine this region and detections herein.

The automated process yields an overall average Precision of 82.6% with average Recall of

77.9%. Hence, the detections to label semantically is successfully reduced to the most prob-

able plausible ones by the automated labeling process. The semantic labeling step further

refines the semantic information of these detections.
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3.4 Data Set Evaluation

The 11 different scenes in Table 3.6 showcase the range of labeling difficulty. To mention

Sequence 06 explicitly as the lowest Accuracy and lowest average IoU, the difficulty of this

scene is found in the narrow passage of a garage in the beginning of the scene. Obviously,

the depth estimation fails e.g for a very close wall where the LiDAR reference shows basically

no overlap with the depth image. Compare the field of view in Figure 3.7. This example

showcases that too close walls or too narrow passages are difficult to label.

Stage 2 - Semantic Labeling: The comparison of the labeling result is performed after

manual correction of the sequences 00-10.

The labeling accuracy determines how precise the semantic labels are automatically anno-

tated to the plausible radar detections. Best measured is this by inspecting the confusion

matrix of Figure 3.20, taken from Isele et Al. [SI2]. According to its’ introduction as Classifi-

cation Metric in Section 2.3, the confusion matrix shows correct segmentation results on its

diagonal. The percentage of hits and the corresponding number of samples is given for each

tile.

Clutter Vehicle Building Vegetation Pole Person
Prediction

Cl
ut

te
r

Ve
hi

cle
Bu

ild
in

g
Ve

ge
ta

tio
n

Po
le

Pe
rs

on
Gr

ou
nd

 T
ru

th

88.0%
151506

2.97%
5165

6.0%
10330

2.97%
5165

0.0%
0

0.0%
0

40.0%
4876

54.46%
6705

2.0%
243

1.98%
243

1.0%
121

1.0%
121

40.0%
6778

7.92%
1355

49.0%
8303

2.97%
508

0.0%
0

0.0%
0

36.0%
3667

4.95%
509

8.0%
815

31.68%
3260

1.0%
101

19.0%
1935

37.0%
1212

6.93%
229

4.0%
131

6.93%
229

33.0%
1081

12.0%
393

68.0%
102

0.0%
0

16.0%
24

15.84%
24

0.0%
0

0.0%
0

Confusion Matrix of radar-adapted PolarNet Architecture

0

10

20

30

40

50

60

70

80

Figure 3.20: Confusion matrix of automated semantic labeling vs. manually corrected semantic labels.

Mentioned before, an over-estimating region of plausible detections allows a refinement by

the semantic labeling step [SI1, SI2]. The manual inspection and refinement is facilitated by

refining the object boundaries, instead of increasing an underestimated shape. As a matter

of over-estimation, the confusion of all classes with clutter can be explained.

Approximately 10 persons and circa 100 poles of different material, size and diameter occur

in the data set, compare the number of hits and total samples per class. The rare semantic

classes pole or person, see Table 3.7, are semantically hard to label because of the structurally
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less detections per object. A human reflects with circa 4-10 radar detections per sequence,

pole reflections are denser but vary with their material and diameter. In this perspective,

the data set lacks examples of radar detections of persons and poles in different ranges and

aspect ratios. A mis-classification, either by over-estimation or by mis-perception causes a

hard decrease in percentage of accuracy and percentage of the confusion matrix. The mis-

classification of the rare classes, also includes the shape-variant vegetation class. Especially

persons are mis-classified as dense vegetation, similar to a hedge, mainly explainable by simi-

lar sparsity and radar reflection properties. A larger data set of reference examples, especially

for persons, poles and different kinds of vegetation is expected to drastically improve the

detection performance of these classes, but remains open for future work.

The corresponding table of average semantic label Accuracy, Precision, Recall and F1 score is

found in Table 3.7.

Table 3.7: Dataset evaluation of the automated semantic labeling, according to Isele et Al. [SI2].

Class [%] ∅Acc ∅Precision ∅Recall F1 ∅IoU

Average - 0.861 0.618 0.501 0.542 0.406

Artifact 78.35 - 0.899 0.940 0.920 0.850

Vehicle 8.39 - 0.682 0.482 0.565 0.394

Building 7.68 - 0.676 0.643 0.659 0.491

Vegetation 4.80 - 0.648 0.315 0.424 0.269

Pole 0.60 - 0.313 0.139 0.192 0.106

Person 0.18 - 0.490 0.488 0.489 0.324

Having introduced the spatial spread of classes in the heatmaps of Figure 3.19, the spatial

occurrence is evaluated with respect to the IoU over detection range. Figure 3.21 illustrates

the IoU curves. In combination with Figure 3.19, the IoU drop of all classes to 0% IoU except

noise in the range beyond 40m, is explained by the absence of detections in this range -

compare with Figure 3.19 The same explanation mechanism accounts for the increase in the

near-field. With a quasi stable mean IoU of approximately 38% and noise IoU beyond 80%,

the automatic semantic labels serve as well educated, consistent guess.

Labor Savings: As last conclusion, the facilitation of manual inspection and correction

step is shortly discussed. Extensive manual labeling from scratch requires expert knowledge,

a solid capacity to think in three dimension, plus having a feeling and expertise in radar

sensor details. The labour effort that is saved by the automated semantic pre-processing is

rated to reduce the manual effort by a significant factor (estimated: 4-8) of intensive 3D point

cloud inspection time. Additionally, the invaluable and immeasurable effect of consistent

semantic labeling, what the automated pipeline guarantees, is a major advantage of the
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Figure 3.21: SeRaLF Results of Isele et Al. [SI2]: IoU over distance to the sensor.

automated radar labeling pipeline. Compared to other works, Schumann et al. [194] discuss

the effects of manual labeling to be significant.

3.4.3.1 Failure Potential

The presented automated labeling delivers an estimated guess of the semantic radar labels

with the help of reference sensor interpretation. Hence, reference sensor data artifacts can

cause erroneous label suggestions, as the two most important are discussed here.

Monocular Depth Estimation: Image-based perception generally can be compromised

from a variety of camera and lens effects in real-world conditions. Illumination, shadows,

lens flare, dust and mist, or rain and snow are generally causing camera images to contain

exceptional effects. These effects should not be neglected for a general evaluation. Never-

theless, they are out of scope for this thesis. Actively avoiding such conditions, the potential

effect on the scenes at hand are rated as neglectable. No bad weather conditions, nor a

blinding illumination are recorded.

Resulting from the LiDAR FoV blind spots, see Figure 3.7, not all of the radar detections can

be compared to the LiDAR point cloud. Instead, a possibility to apply monocular depth esti-

mation on the series fish-eye cameras is implemented. The key to facilitate the plausibility

labeling based on image depth estimation, is to apply an adequate image pre-processing.

Since pre-trained CNNs are trained on rectified rectangular images, the domain gap between

original training samples and the pre-processed real-world fish-eye images need to be re-

duced to a minimum. This image pre-processing remains a potential error source, e.g. from

un-distortion, perspective transformation or 3D point cloud projection onto the image.

Furthermore, indeterminable if and to which extent, as a direct result of the image pre-

processing or as independent systematic depth estimation error, the depth estimation can

yield erroneous results. These shortcomings can elegantly be reduced by an overlap with the

LiDAR FoV, allowing the local scaling of the depth estimation image to metric scale.
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Experimentally it is found that objects of low or medium height objects below ≈ 30 cm suffer

in the depth estimation to be detected as outstanding shape. The overview of the differ-

ent depth estimation results in Figure 3.4 illustrates the different depth estimation CNNs to

under-perform at the small pole-like structure.

Planar Scene Violation Assuming a planar motion, the single-track model degrades in

non-planar motion. As a result, the ego-motion compensations is compromised.

Furthermore, on the LiDAR point cloud, a RANSAC floor plane estimation is applied to extract

the LiDAR ground points. Including ascents or other ramps, independent of their inclina-

tion if positive or negative, the plane estimation can result in artifacts. Not fully removed

LiDAR ground points result in radar detections near the ground to be rated plausible. As

a consequence, there remain a higher fraction of plausible radar detections to be labeled

semantically. In such cases, e.g. flat regions with lawn areas or low bushes, are estimated

as plausible and relevant detections - in contrast to general radar detections of the ground

being implausible in this labeling approach.

3.5 Section Conclusion

The section describes the Semantic Radar Labeling Framework (SeRaLF) [SI2] as an auto-

mated semantic labeling process for radar point cloud data based on reference sensors, with

subsequent manual inspection and data refactoring. A process-chart of the subsequent steps

is found in Figure 3.2, which summarizes the labeling research questions of Section 1.3 how

to generate and automate a radar labeling pipeline. Based on real world hardware measure-

ments, the presented labeling pipeline of Figure 3.2 processes available image data from

surround-view cameras and a reference LiDAR sensor to fuse both sensor modalities. Two

parallel optical multi-sensor pipelines of optical semantic image segmentation and LiDAR

point cloud semantic segmentation are combined to compare and fuse point-wise semantic

labels for radar point cloud. The general procedure is covered by two patents [Pat3] [Pat4].

Designed for a general application, the use-case is a point-wise labeling of a quasi static

environment perception by radar point clouds. The resulting data set of semantically labeled

radar point clouds consists of a set of 19 sequences, see Table 3.4. Recordings from sub-

urban areas, to rural village scenes, to environments in typical parking scenarios are labeled

as Figure 3.15 illustrates and Figure 3.16 categorizes. Designed especially for the purpose

to train neural networks for semantic radar segmentation, the presented dataset provides

≈ 8.2 ·106 radar detection points in total.

The semantic annotation of radar detections requires a radar-compliant label set. Inspired

from the general semantic classes of CityScapes [47] and SemanticKITTI [18], only a subset

of classes only is applicable for radar classification, see Table 3.2. This radar-applicable

84



3.6 Section Outlook

semantic classes are labeled in the data set: Artifact, vehicle, building , vegetation, pole and

person. There is no distinction between static and dynamic instances of a class.

The precision of the manually corrected semantic radar labels, including unavoidable erro-

neous labels, is expected to bound the upper limit of the achievable mIoU of a semantic

classificator. The immeasurable impact of different labeling accuracy of multiple manual

labelers cause a systematic difference of especially noise labels, far range detections or the

labeling of sparse and scattered detections. Especially for geometrically small objects, result-

ing in rare radar detections, e.g. person or pole, or highly scattered reflecting objects such as

vegetation, even a few label deviations of the manual labeling can cause difficulties to train a

generalizing classifier. The lower the count of examples set per class, the higher the potential

inconsistent labeling and harder classification task.

This availability of this semantic radar attributes plays a major role in this thesis. Considering

the bottom-up system components of Figure 1.4, the semantic attributes provide the basis

system level to constitute a feature level semantic data set. The following steps to generate a

live segmentation on function level applies this feature level data set.

3.6 Section Outlook

The presented method serves as initial semantic radar data set generator and basis for the

following section. Utilizing this data set as basis to train an semantic segmentation network

in the following Section 4, this network could be utilized in return as additional semantic

radar labeling channel to leverage the quality of the automated labeling process to refine the

semantic radar data set, and scale its size. In such an approach the data set size and e.g. a

trained segmentation network performance is expected to grow in parallel.

With the utilized visual modules of camera segmentation, mono depth-estimation, and Li-

DAR segmentation as interchangeable tools, any further improvement of these tools yield an

improved labeling framework. But still, manual supervision of the results is expected to be

required.

Due to the modular framework, also the extension other classes or e.g. dynamic objects

and instances can be integrated by the application of available segmentation tools for the

reference sensors. A labeling of dynamic objects is expected as useful further extension of this

labeling framework. In order to develop a direct radar segmentation, dedicated to dynamic

object segmentation, this extension might be necessary.

The application of the labeling framework on a large data basis is implemented as sequential

processing of the different channels, but parallelization yields further shorter processing time

but requires parallel GPU capacity and a parallel read-write data container.
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NETWORKS

The preceding Section 3 introduced point-wise semantic radar labels. These semantic labels

form the basis to train a learning approach for point-wise semantic radar segmentation. This

section of the thesis aims to fill the gap between raw radar detections and a live semantic

radar segmentation perception in an arbitrary structured environment. Therefore, first radar

appropriate learning frameworks are presented, secondly a selected approach is extended,

applied, and evaluated on the presented radar data. The section is closed by a discussion

of the approaches’ potential in the automotive domain, and challenges of the discussed

frameworks and networks.

Commonly applied for dynamic object clustering [186, 225] or radar ego-motion estima-

tion [32, 33, 8], radar sensors are underestimated for the static environment description. New

approaches utilize radar maps for localization [73], but not for semantic segmentation. For

a live semantic segmentation of radar sensor data, including dynamic and static vehicles

or environment objects, no algorithmic solution is yet available. Most of the existing radar

classificators are specificially designed to focus on dynamic object detection [186]. Never-

theless, the increase of automatization level in robotics and automation requires rich and

redundant from live object segmentation to semantic mapping functionalities. Therefore,

the noisy radar data can be enriched by a semantic classification to be interpreted and poten-

tially arranged in space as interpretable environment representation. With known semantic

classes, the semantic segmentation of radar detections solves a classification problem. As

specific target use-case of the developed semantic radar segmentation, the data association

in exemplary radar graph-SLAM mapping or radar point cloud scan matching in general,

applying enriched sensor data with additional semantic attributes is addressed.

Figure 4.1: Illustration of segmented LiDAR point clouds of street scenes, assembled by a SLAM approach from
the KITTI Vision Benchmark [71], published as the semanticKITTI data set of Behley et al. [18] with
class-wise colors of the semanticKITTI data set.
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A generic semantic radar segmentation for live and real-time application is not presented

in literature for automotive radar sensors. Only few works touch this capability of direct

sensor data classification, but focus on dynamic object detection and classification, e.g.

RadarScenes of Schumann et al. [194]. Generic live semantic radar segmentation approaches,

covering dynamic and static environment classification are not known. The closest compara-

ble semantic radar segmentation is an offline classification of an environment map.

In comparison, applied research in the LiDAR sensor domain has proven live point cloud seg-

mentation to be applicable for any kind of static or congested environments, e.g. Suma++ [39].

These LiDAR approaches include the fine-grained but generic 22 SemanticKITTI [18] classes,

illustrated exemplary in Figure 4.1.

In this section, a method is derived to achieve real-time capable semantic segmentation in

generic structured environments. According to the system modeling and dependencies in

Figure 1.4, the segmentation is required to be real-time capable and achieve good semantic

labels to be further applied as iput generator for an exemplary target use-case functionality

of semantic radar SLAM, see Chapter 5.

In perspective to achieve at a similar semantic segmentation on radars, Chapter 3 introduced

a radar label generation and class consolidation, see Table 3.2. Applied on these radar labels,

this section describes the transfer of selected promising and comparable deep learning point

cloud segmentation CNN approaches to the radar domain. Training different neural network

architectures in a supervised fashion on real-world radar data, allows to select and fine-tune

a deep learning architecture for the specific semantic segmentation of radar point clouds.

The different segmentation architectures are implemented by the supervised Master thesis

of M.Sc. Fabian Klein [MT3]. Partial content of the architectural comparison in this section

can also be found in the conference paper, Learning Semantics on Radar Point Clouds of Isele

et Al. [SI3]. Further research on alternative segmentation architectures beyond RadarNet can

be found in the supervised Master thesis of Daniel Rotärmel [MT7].

4.1 Motivation for Direct Deep-Learning Radar Segmentation

The environmental perception on 3D point clouds - ranging from LiDAR sensors, over

Radar sensors, to other sensing modalities, find their application in autonomous system

pipelines [225, 240]. To boost the information content and functional usage of this rich raw

radar data, additional radar perception strategies are required. The more data attributes

are perceived from the raw radar sensor data, the better downstream data analysis modules

or a situation interpretation is able to assemble a consistent scene and context perception.

Redundancy across different sensing modalities increases system safety and reduces mis-

perception.
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As radar sensors are able to provide 3D coordinates (x, y, z) of reflections directly with a

reference velocity of the reflection, called Doppler Velocity (vD ), this data provides a rich

information content. Nowadays, such automotive radar data is referred to as 4D radar sens-

ing [142, 136]. In combination with other radar specific measured variables namely Signal

Noise Ratio (SN R), or Signal Power(PSig), the interpretation of radar data can be extended to

six dimensions (6D). Leveraging higher order dimensional interpretation beyond rule-based

classification suggests to apply learning methods. Deep learning based supervised learning

promises to yield a live, real-time capable semantic segmentation solution by a neural net-

work. Therefore, the previous Chapter 3 introduced the dedicated labeling of the data set

which serves as training data set in this Chapter 4.

The high dimensionality of radar sensor data is challenging to interpret due to two systematic

but significant sensing characteristics: A characteristic low density of the radar detection

point clouds in the sense of scattered data with only a few neighboring points [65]. Depen-

dent on the environment the radar detections, a characteristic sparsity is found in radar

point clouds. In addition to the lo low overall number of detections per scan, the count of

detections in subsequent scans is dynamically changing. In addition, the reflections contain

noise, clutter from multi-path reflection or general radar reflection artifacts [91]. Detailed

Figure 4.2: Semantic map building with 360 deg. automotive radar SLAM; mirror camera images (left/ right) for
visual scene inspection. Figure of Isele et Al. [SI4], color encoding according to Table 3.2.
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information on radar typical noise and clutter types are discussed in the work of Holder et al.

[91].

As a result, local point neighborhood interpretation, which is common for dense point cloud

processing, e.g. point set normal-vector calculation for plane detection or other local feature

descriptors [179, 181], are impossible or deprecate for sparse radar point clouds. The multi-

path reflections and specifically the remaining artifacts of multi-path reflections introduce

the requirement to denoise the perceived point cloud before processing.

In order to cope with these challenges to find systematic solution the development of learning

based solutions in this thesis is performed based on the existing and established reference

data set framework SemanticKITTI [18]. This framework is set up as comparative data set for

LiDAR based point cloud perception, e.g. segmentation, pan-optic segmentation and other

point cloud based challenges, solved by different artificial neural networks or other machine

learning techniques.

The SemanticKITTI reference data set framework established a data set structure which

adopted in this thesis for the development of semantic radar segmentation, see Section 3.3.9.

With the radar training data set structured in the same form of the SemanticKITTI bench-

mark data set, semantic segmentation network architectures for originally LiDAR semantic

segmentation can be transferred with ease to the radar domain and be tested for applicability

on real-world radar data.

The problem definition of point-wise semantic radar segmentation is formulated as multi-

class classification problem. A raw radar point cloud P , consists of N ∈Rni×6 points pradar,i

and is described by a label vector yi ∈Zni . Each point pi is a data tuple of six attributes: Three

spatial coordinates (xi , yi , zi ) and three radar specific measurands (SNRi ,Psig,i , vD,i ).

The describing label yi ∈Zni is a semantic segmentation label for each point pradar,i of P .

Given the input point cloud P , the semantic segmentation function f (·, wtrainable, wfixed) pre-

dicts a semantic point-wise label ŷi for each point in the given input cloud P . The trainable

parameters wtrainable in the semantic segmentation are learned to minimize a formalized

difference between ŷi and yi .

Existing solutions for this problem definition are found in a different sensor domain of dense,

4D LiDAR data. Classically, LiDAR delivers 3D spatial coordinates (x, y, z) and a fourth reflec-

tivity or remission value. The transfer of LiDAR architectures to radar requires an adequate

semantically labeled data set and two substantial architecture adaptions:

1) Radar Attributes: Specific network architecture adaptions are required to encode the

additional radar specific input dimensions in the data loader structures as additional feature

channels. Utilizing the informative quality of the specific radar attributes, the additional
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dimensionality, from 3D LiDAR to 6D for radar point clouds, plays a major role in the network

architecture transfer and applicability test. The additional channel data is read from extra

binary files, normalized and applied as point attribute: Signal Power Psi g , Signal Noise Ratio

SN R, and Doppler Velcity vD .

2) Radar Applicable Classes: Based on the coherent and consistently reliable evaluation

data set, SemanticKITTI serves as generic data structure to train and evaluate point-based

segmentation models.

But as the SemanticKITTI benchmark data set utilizes 22 semantic classes, the radar applica-

ble set of specifically radar-applicable classes needs to be consolidated. The remaining radar

specific and radar detectable subset of six remaining classes serves as minimal class set of

generic semantic radar classes. A detailed definition of this consolidation process is found in

Table 3.2. The label-map is modified to yield for all semantic radar segmentation networks

only the six radar applicable classes, encoded per one hot encoding per point. This network

configuration addresses the final layer of the segmentation backbone, which compresses to

the number of NC classes to NC output neurons. A visualization is found in Figure 4.14.

After establishing the two architectural adaptions and the class consolidation, the radar-

consoliated six semantic classes pose a multi-class classification problem. Both two classes

building and pole share static structural man-made elements, which could be interpreted

interchangeably, but are preferably labeled as pole. In the application of mapping, poles are

specifically relevant since they provide well determinable fix-points or so called landmarks.

Further information to radar typical noise and clutter types can be found in the work of

Holder et al. [91].

With the adaptions realized, a quick transfer and check of approved LiDAR segmentation

models and network architectures for the semantic radar segmentation can be achieved.

To avoid a domain shift, the networks are trained from scratch on a dedicated real-world

semantic radar data set, no pre-trained weights have been tested to avoid the domain shift.1

With this Section of the work, these contributions are addressed:

1. A first model transfer of point cloud based generic (static & dynamic) semantic segmen-

tation from LiDAR sensor domain into semantic radar segmentation domain.

2. Data structure transfer between sensors to unify a common point cloud data standard,

instead of non-comparable, domain specific model adaption and data-loaders.

3. A systematic comparison of semantic segmentation models on radar point cloud data.

1 An overview of currently available public radar data sets is found in Section 3.1. The above mentioned radar
signal attributes are not consistent with the available automotive radar data sets. Also, the applied radar
sensors differ from the data sets in their mounting position and point cloud density.
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4.2 Evaluation and Selection of existing Approaches: Radar
Segmentation

For semantic segmentation tasks, multiple approaches have been applied until recent. As

first introduction to this task, an overview of general semantic segmentation methods is

presented in the remainder of this section.

There exist four general network input modalities, as Schumann [192] describes: 2D Images,

3D Point Clouds, 3D Voxels or a Graph-based input. Each input modality is presented briefly

in the Sections 4.2.1-4.2.4, plus their appropriateness and required conversion is evaluated

from a radar point cloud perspective for each modality. With the selection of the most promis-

ing modality, Section 4.3 derives a structural architecture from reference examples, which is

further optimized in Section 4.4 and evaluated in Section 4.5.

4.2.1 2D Image Segmentation Approaches

For point cloud applications, image-based architectures are referred to as indirect point cloud

approaches since a conversion into an image is necessary.

The field of image based semantic segmentation is based on the progress of CNNs. With

the transfer of CNN based approaches from images to other grid-represented sensor data of

e.g. camera, based on data projection to images, the CNN application also for non-imaging

sensor data advanced.

Image retrieval from point clouds involves projection of multi-dimensional data to a 2D im-

age grid, encoding a third dimension in the rgb- or gray-scale image pixel values. Classical

image processing steps, e.g. CNN approaches, can be applied after the point cloud projection

as 2D image. Sheeny et al. [200] suggest to represent the radar data as grey-scale image, in

order to apply image processing by CNNs. This approach yields a 35% success rate for a singe

object, being tested in ideal conditions. Aerial radar data of Synthetic Aperture Radar (SAR)

images, is processed as image with classic CNNs [97]. And Ouaknine et al. [157] utilizes mul-

tiple radar histogram representations in a multi-input CNN with encoder-decoder structure

architecture to detect three dynamic classes (car, cyclist, pedestrian, background).

In top view projections of the radar data, the spatial distribution of points in x-y coordinates is

discretized to a fixed resolution image grid. The pixel resolution of the image representation

defines the spatial discretization.

With a spatial top-down projection yielding an image pixel location, the remaining third

dimension of the image pixel value remains open to be defined. There exist approaches of

multi-view heat maps representing a radar spectrum as image data [157] , or also (normalized)

density probability functions [125].
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If such radar images are generated and accumulated as map-images, besides the classifica-

tion of objects, the environmental properties can be distinguished. Lombacher et al. [129] is

the first work, researching static object detection in automotive radar data and identifies 17

static object classes. The authors propose to benefit of the static properties by accumulating

the radar detections over time and motion in order to represent the radar data as grid map.

The classification is suggested to be applied on radar grid map patches, being classified by a

CNN architecture, but does not yield experiments on the total suggested set of static object

classes. In a later work, Lombacher et al. [130] classify the static classes car, other and un-

labeled with the same CNN per grid approach, but the authors suggest to extend the set of

classes due to promising classification results.

Werber et al. [222] refines the work on radar grid map processing, achieving suitable maps

based on radar cross section and occupancy for radar self-localization tasks. Lombacher et al.

[130] applies the mentioned radar grid maps, containing accumulated static radar detections,

to be cell-wise classified semantically by means of a CNN architecture. The static classes car,

other and unlabeled are distinguished in this work, but the authors suggest to extend the set

of classes due to promising classification results.

Extending this approach, Prophet et al. [168] implement the idea of a clustering free direct

radar classification by the means of modified image segmentation CNNs to predict semantic

grid maps. Tested on static real-world grid maps, the proposed network classifies 5 static

classes ( Background, Street, Barrier, Car and Small Obstacle). The authors claim the method

to require more training data to be further improved.

Schumann et al. [193] suggests a seperated processing of dynamic and static radar detec-

tions. Combining the grid map accumulation for the static objects, grid patches of the radar

grid map are classified and the corresponding 3D points annotated. In parallel, the dynamic

branch processed the radar point cloud directly to a neural network for semantic segmenta-

tion. Fusing both dynamic and static points together, the combined point cloud is semanti-

cally separated.

An alternative projection method is applied for e.g. circular LiDAR sensor data. A sensor field-

of-view specific projection of (x, y, z)-coordinates yields for a 360◦ sensing circular point

cloud a cylindrical panoramic image. This projected images commonly encode the range of

the 3D detection coordinate as brightness value of a pixel. This result is alternatively named

cylindrical range image. As bidirectionally unique projection, the mapping benefits from

static (x, z) vector for each discrete azimuthal sensing. The fixed resolution grid-structure in

(x, z) dimension is inherently given by rotational axis z, resulting in no overlapping points at

a 360◦ revolution.

Exemplary the RangeNet++ [145] architecture, which is applied for LiDAR processing in Sec-

tion 3.3.6, generates a cylindrical range image from the point cloud data and further processes
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Figure 4.3: Exemplary conversion example of the same 3D point cloud in top view with spatial attributes (top
left) or with semantic attributes (top right), to the corresponding spatial 2D range images (top land-
scape image) and semantic 2D range image (bottom landscape image.) The 3D spatial point cloud
and the projected 2D range image depicts the range as rgb value. The semantic 3D point cloud and
the 2D semantic range image color the semantic class as rgb-channel according to Table 3.2.

this image with a CNN. Applications of this approach are commonly applied for dense LiDAR

point clouds, e.g. RangeNet++ [145], SalsaNext [48], RandLA [95], etc.

Image-based Radar Segmentation Examples:

Evaluation for Radar Segmentation: Dense point clouds allow a reasonable, dense image

representation, which is beneficial to process local context image features by pixel convolu-

tions. From an information-theoretical point of view, an image or heat map based represen-

tation structurally includes an information loss. The information dimension of a 2D image is

inferior to the arbitrary general 3D representation of its multi-dimensional attribute vector.

With the sensor setup of this thesis, described in Section 2.7, the assembly of six radar sensors

delivers theoretically up to 6×600 points per cycle, compared to a centuple number of points
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per LiDAR scan. But under real-world conditions, the sensor assembly delivers less detec-

tions of approximately 1200 points per cycle. The pixel-wise projection is yet not a run-time

limiting factor in terms of computational overhead, since the projection effort is low. But the

general projective overhead of a potential image representation remains.

Radar point cloud sensings are a data form of unordered points. The ray-tracing projection

approach for the line of sight is not bidirectionally unique for radar point clouds or radar

range images. Points can be overlapping due to multi-path reflections and be accumulated in

space or range, resulting in un-determinable pixel clusters. From an inspection of the images,

radar range images are empirically estimated to be inappropriate. An exemplary illustration

is found in Figure 4.3.

4.2.2 3D Point Cloud Segmentation Approaches

Point-based direct point cloud learning architectures directly apply the 2D or 3D data of

the point set as input. From the given set of multi-dimensional input attributes, a feature

vector representation is computed which is applied for futher processing. Compared to

an indirect representation as images, by skipping the necessary 2D projection, the limited

input dimensionality of 2D (rgb- or grayscale-) images can be overcome to an unlimited-

dimensional input. Each 3D position is flexibly equipped by an additional description vector

containing an unlimited count of point attributes. Compare this to an image pixel of only

two pixel coordinates (u, v), with maximum three potential signals per rgb-channel. Hence,

the input form of images is generally limited to 5-dimensional inputs if not applied as Tensor.

Applicable to any form of point clouds, direct point cloud processing also allows sparse and

multi-dimensional point attributes of point clouds to be utilized and processed in the feature

extraction. From point clouds, the 3D point structure, shape and relative local neighborhood

information is directly processed to express feature vectors or input tensors for a neural

network architecture. A flat image can hardly encode a 3D shape at all.

The poineering PointNet of Qi et al. [169] introduced a method to extract features from the

unordered local neighborhood of 2D or 3D points and aggregate a feature representation

of a point cloud in a fixed-size vector. Capable to deal with unordered data of arbitrary

order, extracting information from the local spatial relative context of points, while extracting

features independent of the input point cloud orientation, this work delivers a robust basis

for feature extraction.

In subsequent works Qi et al. [170], suggest PointNet++, which enriches the feature extraction

of PointNet to respect hierarchical levels of point features. The idea of generating hierarchical

point sub-sets and encode the local set in representative features is pioneered in this work.

PointCNN [126] and other architectures apply a 2D or 3D convolution on extracted feature

tensors in order to capture the general local consistency [220, 62].
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Since the perception of images implicitly depends on the pixel location of an image feature,

the generalization to other image pixel locations is not given in general and requires fur-

ther steps, e.g. data augmentation. In contrast, the feature extraction of a point cloud, is

rotation and orientation invariant, if the local point context is extracted as feature, e.g. by

PointNet [169].

Mainly focusing on improving the spatial relative context of local structures in the point cloud

in an encoding, the feature extraction step is discussed in a variety of works.

Direct Point Cloud Strategies: Scheiner et al. [185] and Scheiner et al. [186] detect six dy-

namic classes (Pedestrian (+Group), Bike, Car, Truck, Garbage), not including any type of

static objects, as vulnerable road users (VRUs), from the sparse radar data. The authors

suggest a classifier ensemble, applying in each classifier a recurrent neural network which

learned a set of 98 features from a labeled data set, to recognize these features in a radar scan,

yielding a clustering and two-stage clustering respectively of "known" scan content to VRUs.

Wöhler et al. [226] extends the work of Scheiner et al. [185], by comparing a random forest

classifier to a long-short term memory (LSTM) neural network to classify the six classes of

VRUs. The findings indicate the sparsity of radar data as drawback of direct classification.

Hence, the random forrest classifier is trained with feature vectors over a sliding window,

whereas the LSTM is trained on a sequence length of 8 consecutive radar scans. Overall, the

LSTM achieves slightly better classification results.

Danzer et al. [50] suggests to apply a PointNet [169, 170] to generate 2D bounding box hy-

potheses from the sparse radar data, but projected onto a top-view 2D plane. The method is

trained to distinguish between cars and clutter, given a 4D input vector of point coordinates

(x, y), Doppler velocity vD and radar cross section RCS of one single radar scan. Cennamo

et al. [34] suggests the RadarPCNN network for the similar task.

Dreher et al. [58] achieves significant run-time improvements with a YOLOv3 [173] inspired

grid-based CNN. Therefore the sparse radar point cloud is transformed into a grid struc-

ture. Moreover the grid-based approach achieves real-time inference times, whereas direct

point cloud methods based on PointNet achieve higher classification accuracy on five classes

(Pedestrian, Object, Two-Wheeler, Car, Truck).

The work of Schumann et al. [193] introduces a direct processing of radar point cloud with

a fully connected neural network, but only for the dynamic object detection, excluding the

static environment.

Evaluation for Radar Segmentation: Sparsity and missing or occluded parts of a point

cloud is often taken as degradation example of an ordered point cloud, LiDAR sensed objects

as well as other point representations [76]. In contrast, radar detections in the form of detec-

tion point clouds deliver only sparse data and are hard to interpret. As such, the radar point

cloud processing is expected to be challenging even under ideal radar sensing conditions.
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In Addition, compared to LiDAR sensors, the radar detection point number is variable in

subsequent scans. With this, the representation of a radar scan as ordered structure e.g. a

range-image results in a significantly changing input for a semantic segmentation module, if

there is no e.g. normalizing or padding module for missing or few detections in the feature

extraction.

Secondary, even if the radar scans are sampled with a low time delay (50 ms per scan), the

spatial distribution of detections can vary significantly. To cope with the spatial noise in

subsequent scans, the dynamically changing number of detections and e.g. multi-path re-

flections of the sensor data, an abstract but constant input for the segmentation is necessary.

A fixed-size feature vector of the point cloud feature extraction delivers this property.

4.2.3 Voxel Segmentation Approaches

Binning points by their 3D coordinates into a 3D grid cells, voxelation describes to organize

the unordered point cloud into smaller sub-sets per volume. Splitting the whole point cloud

in smaller volumes results in a 3D grid discretization of voxels. Voxel approaches follow the

divide and conquer approach, to contain the local point cloud context per voxel. The idea

to sub-divide a point cloud into neighborhoods of a voxel which can be treated indepen-

dently, assumes dense point clouds, stable spatial neighborhoods and distinctive point sets

per object. For the whole volume, a unique representation is calculated per volume represen-

tation, not for individual point value representation. The regular 3D structure of the voxel

grid subsequently allows to apply 3D convolutions on the feature vectors per voxel.

Evaluation for Radar Segmentation: Considering a sensor with potentially high sensing

range, the major drawback gets obvious. Depending on the scene and sensed objects, numer-

ous voxels remain empty for an open environment scene. The drawback to process empty or

sparsely occupied voxels causes computational inefficiency [227].

Second shortcoming is the necessity to discretize the sensed volume. VoxelNet [252] applies

a object detection directly per voxel. The selection of a voxel resolution is non-trivial and

requires intense application tuning or dense point samples in the respective RoI to detect

and segment the point cloud adequately. As an alternative approach, Kd-networks [117]

share transformations in the local the Kd-tree structure instead of a formalized grid structure,

but are not commonly applied. Exemplary 3DContextNet [245] applies this approach for

segmentation and classification.

Summarizing, the sparsity of radar point cloud prohibits to apply a voxelization approach.

The diversity of object shapes and object sizes is too sparse to fine-tune a volume discretiza-

tion but still contain sufficient neighborhood information in each voxel.
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4.2.4 Graph-based Segmentation Approaches

Originating from the knowledge representation of graph-similar structures [183], graph neu-

ral networks (GNNs) model the node connecting edges as dependencies between nodes and

e.g. predict a label of a node. Preserving the context information modeled by edges, the con-

text representation is similarly applicable to point cloud data. TGNet Li et al. [127] suggests

a geometric Graph CNN, which exploits a graph pyramid of hierarchically grouped points

convolutions. A Gaussian weighted Taylor Kernels and a pooling layer is applied to extract

the features of the point graph representation.

Chen et al. [37] find their suggested local information and hierarchical information preserving

hierarchical attentive pooling graph network HAPGN superior to other common classifica-

tion methods and networks. Especially interesting for a potential radar application is the

methods’ superior robustness against missing point data and gaussian noise, compared to

a classical PointNet-based segmentation. But, the drawback of the presented method is its’

non real-time capable run-time compared to PointNet or PointNet++.

Also considering point attention in an GNN, AGNet [105] proposes an attention approach to

increase the topological information of the extracted point features. Especially interesting

is the test on decreasing input point density, yielding decreasing classification accuracy. A

similar significant deprecation is expected for a sparse radar point cloud, since the AGNet is

only tested on synthetic dense point cloud objects.

Similar, RMGnet [67] represents the local point context in a graph representation, but based

on handcrafted 3D shape features of multiple scales. Achieving rotation invariant point cloud

segmentation results, the intermediate representation in a graph enables graph-convolutions

and graph-downsamling to extract also multiple-scale information. But, the method is only

tested for synthetic point-sets.

Also tested on synthetic data, the HyNet [198] applies a given mesh instead of points to be

converted to a hybrid graph. The nodes in the proposed graph describe the geometrical mesh-

face properties in 8 dimensions. Hence, the method suffers from sparse input point-sets or

mesh. With attention layers and an MLP classifier, the network processes the graph repre-

sented mesh features to the segmentation. Generally, also other mesh based approaches[209]

do not transfer to the sparsity of e.g. radar point clouds.

Zhang et al. [247] propose to combine the voxel feature extraction of a sparse 3D-convolution

U-Net, with a direct point feature processing in a joint GNN network. Both feature extraction

branches are supposed to extract different local point context information, which the authors

process in a final conditional random field. The total inference time of the overall process is

by far not real-time capable.
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Zhao et al. [249] suggest multi-scale supervoxels which are connected to an inverse node

graph. The graph is divided into parts according to the edge connections and processed by

a conditional random field. This segmentation is processed with a random forest classifier

and refined in a second higher-order conditional random field processing. Despite good

segmentation results, the method is not designed as online real-time segmentation, but as

offline segmentation.

Designed for instance segmentation of a given point cloud with a describing query sentence,

Huang et al. [96] apply a text-guided GNN not for the feature extraction but for the segmen-

tation reasoning. Extracted semantic masks from a 3D U-Net feature extractor and a gated

recurrent unit output of the query sentence, are processed jointly with an text-guided GNN to

predict the instance positions. Different from the other approaches, the GNN is not applied

for feature extraction but for the final reasoning step, as segmentation head.

Instead of relying on radar point clouds as graph, Meyer et al. [144] represent the earlier radar

processing stage of the radar spectrum tensor as graph. Combining the GNN as local con-

text extraction, a subsequent 2D Pyramid ResNet is applied as backbone model to generate

3D bounding boxes. Hence, the focus of this supposed architecture addresses specifically

dynamic objects and yields an improvement over classical CNN architectures.

Evaluation for Radar Segmentation: As conclusion of GNN approaches, the most meth-

ods involve a graph representation of the input point cloud which is treated with graph-

convolutions. Similar to the range image projection overhead, GNN methods require the

graph-representation as feature extraction step, and therewith a longer processing time com-

pared to a direct point cloud feature extractions. Also, the sparsity of radar point clouds

complicates this information representation as graph, e.g. due to sparse geometrical data,

but the only work on radar finds an improvement compared to classical CNNs [144]. But, the

approaches applying a graph as hierarchical point-feature connecting element is assumed to

be similar effective as classical attention-aware point operations.

Table 4.1: Evaluation of different semantic segmentation approaches, rating the applicability to perform on
sparse radar point clouds.

Approach Dimension > 2D Order Independent Input Adaption Bijective

2D Image x x 2D Projective Overhead not for radar

3D Point X X - X

3D Voxel X X Volume Discretization x

Graph-based X - Graph Association (X)
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4.3 Direct Point Cloud based Radar Segmentation

Based on the Sections 4.2.1-4.2.4, a network architecture from the summarizing Table 4.1 is

selected and summarized in the following. The native data structure of sparse radar point

clouds are unordered point clouds. This data structure results from two effects. First, the

dynamic number of reflection points that a radar sensor samples each sensing cycle. Second,

compared to LiDAR sensors perceiving point clouds as ordered structure, the radar sensing

does not perceive points along a static sampling pattern. Radar point clouds arrive as un-

ordered data structure with a variable number of points and variable point distribution for

each scan. Instead of images or discretized voxels, the direct processing of point cloud data

as individual 3D points is chosen to be evaluated and tested in this thesis, avoiding any input

representation pre-processing.

Inspired from the LiDAR semantic segmentation on 3D point basis, the sparse radar point

classification addresses the long tail of sparse, noisy and multi-dimensional point cloud

processing. As sensor systematic challenge, for the sparse radar data at hand a dense spatial

context of dense 3D point clouds is not available. The additional multi-dimensional radar

specific attributes are assumed to balance this drawback. The aim is to achieve a new level of

data segmentation and semantic classification performance for radar, directly processing the

sparse spatial radar point cloud, boosted by including the multi-dimensional radar specific

attributes.

A point-based approach is selected to be investigated in this thesis, based on the advan-

tages of the direct and point-wise semantic segmentation. Further focus is on classification

accuracy and approach appropriateness of this selection in the context of radar data.

The overview of radar segmentation examples in Section 4.2 reveals, besides the multitude

of radar-based approaches, the lack of a point-based direct classification of the static envi-

ronment. Besides the work of Schumann et al. [193], which provides point-wise semantic

radar labels, no general applicable semantic segmentation approach comparable to a LiDAR

semantic segmentation, e.g. RangeNet++[145], is known. The limited static object detec-

tion approaches lack detailed classes and more-over a labeled point-wise annotated data

set. Since the publication of the RadarScenes [194] data set, focusing on dynamic object and

instance detection, the research on this problem increased significantly [128], but leaving the

static segmentation often unconsidered.

A selection of three LiDAR solutions is presented in the next sections and tested on the data

set of Chapter 3. Among a set of three selected architectures PolarNet, Cylinder3D, and ASAP-

Net, introduced in Section 4.3.2, Section 4.3.3, and Section 4.3.4 respectively, a radar-adaption

is for these architectures is described in Section 4.3.5. The basis of the further steps is the se-

mantic radar data set of Chapter 3. The data set in the format of SemanticKITTI allows a quick

architecture adaption to radar-specific feature-channels, pre-processing, training methods
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and the application of the same benchmark performance evaluation methods. Consequently,

the adaptions and architectures’ segmentation performance is tested in Section 4.3.6. Find-

ing the most promising setup, based on the segmentation performance, a single architecture

is selected to be further optimized. Finally, the selected network architecture is further fine-

tuned and hyper-parameters adjusted in Section 4.4.

Network Selection: To archieve an independent model architecture, applicable for general

application, the tested network architectures are selected to be single-frame approaches. For

a robust behaviour, single-frame approaches offer the most flexibility, not being limited to

a specific data fusion or collection pipeline. Directly processing the raw point cloud data

promises the most flexible application, also run-time wise, if the semantic classification

is required to be real-time applicable since the output is further processed in perception

modules.

The semantic segmentation network is supposed to run in live-operation, integrated in the

test vehicle setup. Hence, on-board live inference requires a high inference rate and disqual-

ifies slow architectures in advance. With the selection of direct 3D point approaches, the

processing of the few sparse points ensures a low processing time, plus a potentially larger

projective overhead e.g. for image-based approaches is systematically avoided.

At the time of network approach selection, the semanticKITTI leader-board was considered as

approach selection catalogue, providing a fair evaluation of promising and available semantic

segmentation architectures. Table 4.2 provides a non-necessarily completive overview of the

available network performances. 2

2 Developed performance advantages of other architectures in the meantime are not considered in this table.
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AF2S3Net [43] 2021 X x X 69.7 78.3

Cylinder3D [250] 2020 X x X 67.8 77.9

SPVNAS [208] 2020 X x X 66.4 77.4

JS3C-Net [230] 2020 X x X 66.0 -

SalsaNext [48] 2020 x X x 59.5 -

KPConv [211] 2019 X x x 58.8 -

SqueezeSegV3 [229] 2020 x X x 55.9 -

PolarNet [248] 2020 X x x 54.3 69.4

RandLA-Net [95] 2020 X x x 53.9 -

RangeNet++ [145] 2019 x X x 52.2 -

ASAP-Net (Backbone: PointNet++) [31] 2020 X x x 35.3 -

Table 4.2: Overview of public semantic segmentation networks on the SemanticKITTI leaderboard with public
implementation. Selection based on performance on SemanticKITTI [18] and nuScenes [30] data.

For a systematic comparison of structural elements as feature extraction and segmentation

heads, the non comprehensive selection of tested network architectures include three struc-

turally similar architectures. As comparison, Figure 4.4 illustrates the structural setup of the

selected architectures.

Figure 4.4: Evaluated models architectural network comparison: PolarNet[248], Cylinder3D [250], and ASAP-
Net [31]. The authors of these works apply a PointNet-inspired feature extractor, mainly imple-
mented as fully-connected MLP layers.

Based on their architectural similarity and good performance on the SemanticKITTI semantic

segmentation challenge data set, see Table 4.2, three point-based, single-shot approaches

are selected: PolarNet [248], the Cylinder3D [250] Network, and the ASAP-Net [31] with local
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feature extraction and temporal feature aggregation. These three architectures are introduced

in the Sections 4.3.2/ 4.3.3/ 4.3.4 respectively. The selected architectures gradually vary in

their feature extraction and feature processing steps, allowing a comparison of effectiveness

on sparse radar data.

To cope with the sparse nature of radar point clouds, the feature extraction needs to be ef-

ficient but also robust for radar-typical noise in subsequent scans. As established feature

extraction method in general point cloud applications, specifically PointNet-based applica-

tions, has been tested and applied in comparable radar learning works [192]. Nevertheless,

an extensive test on real-time segmentation of sparse 360◦ radar point clouds has not been

tested yet.

PolarNet [31] serves as basis model and constitutes the first concept architecture. KP-

Conv [211], RandLA-Net [95] and PolarNet [248] are also point-based, but rely on Cartesian

coordinates, whereas PolarNet discretizises the input points in polar coordinates. The benefit

of polar coordinates is rated to yield beneficial results for sparse radar data, compared to

superior mIoU of KPConv.

Cylinder3D [250] extends the 2D polar discretization of PolarNet with a z-coordinate to a 3D

approach. Similar to SPVNAS [208], JS3C-Net [231], Cylinder3D is based on Sparse 3D Con-

volutions, allowing a 3D CNN to be applied as backbone model. Compliant to the PolarNet

baseline model, also polar grid discretization is applied, which seems suitable for radar data.

Cylinder3D network also outperforms the other variants and is selected as second model to

be tested.

Third, the ASAP-Net [31] architecture incorporates temporal consistency by a concatenated

feature map of previously processed frames. Technically remaining a single-frame network

with a memory of the previous feature-map the ASAP-Net is tested for comparison. ASAP-Net

applies different backbones in their publication. For a consistent comparison, the PointNet++

backbone is selected.

Architecturally similar structures of feature extraction of 3D points in the form of PointNet++

variants, provide an abstract and radar point-count independent input tensor per radar input

cloud. Feature processing in the Form of 2D or 3D U-Net [176] backbone network with multi-

scale convolution and bypasses, extract context features for the segmentation backbone

and feature embedding. Per approach different segmentation heads result in the different

semantic segmentation performances of the three network architectures to be compared.

With the selection of these three architectures, a systematic comparison of the networks’

suitable transfer to radar is tested.
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Figure 4.5: Illustration of the PointNet architectural principle, illustration from Qi et al. [169].

4.3.1 PointNet and PointNet++

PointNet: Qi et al. [169] proposed a network architecture which inputs a set of points

and computes a fixed size feature vector based on the 3D information of (x, y, z) coordinates.

To select informative points of an unordered input, a symmetric max-pooling extracts only

the maximum activated point per kernel convolution. With subsequent fully-connected

layers, the pooled data is processed to a global descriptor of the input point cloud. The

symmetric max-pooling allows to remain independent of the order, but rely only on the

activation magnitude, expressing local information.

The general idea of PointNet is to learn representative feature vectors from multiple local

spatial regions in the point cloud, and further process these local feature vectors to a global

point cloud signature.

One major advantage of this architecture is the capability of variable number of inputs

points. This technical advantage facilitates to vary the input, independently of the sub-

sequent output-processing modules. Not even for the number of points, but also for the

number of features per point. Originally designed to only process (x, y, z) coordinates, the

processed channels can be adapted to process also additional channels per point.

PointNet++: PointNet++ [170] improves the local spatial structure encoding. Based on

recursively applied PointNet feature extractions on convoluted input grouping stages, the

feature extraction is achieved on multiple scales of the point cloud. Contextual information

is herby extracted in close neighborhood, processed and grouped so that also the larger scale

of the scene context is represented.

In PointNet, max-pooling operations achieve the aggregation of local features to a global

point cloud features. Drawback of the pooling operation, significant local attributes are

not detected by the maximum selection. Especially to improve the local feature content,
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Figure 4.6: Illustration of the PointNet++ architectural principle of hierarchical feature extraction for 2D points,
illustration from Qi et al. [170].

PointNet++ introduces the step-wise hierarchical grouping and new feature extraction on a

new grouped set of elements. This procedure can operationally be expressed in three steps.

• Sampling: The set of input points is clustered to local centroids.

• Grouping: The local neighborhood of each centroid is constructed as local point set.

• Feature Extraction: The local point sets are computed by a PointNet to a local feature

vector per centroid.

One drawback remains, the explicit neighborhood search in the grouping step needs to be

performed. This neighborhood search is rated time-consuming since it resembles a compu-

tationally expensive k-NN search [197, 150].

4.3.2 PolarNet

Based on a polar grid with range ρ and azimuth angleθ, the input 3D point cloud discretiza-

tion (x, y, z) yields a 2D description ()ρ,θ), but independent of the points’ z-coordinates. Polar

grids are well suited for circular point clouds e.g. LiDAR point clouds, due to the quasi-native

representation of signals in azimuth-angle and range coordinates. Other than in Cartesian

grid representation, the polar grid cells reduce the amount of empty cells [248].
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Figure 4.7: Illustration of a Cartesian grid discretization and a polar grid discretization of an exemplary point
cloud Pradar. Compared to the static cell area of an cartesian grid, the polar grid yields area-wise
increasing regions with increasing radius. Hence, less polar grid cells remain empty compared to a
regular cartesian grid.

By the radius increasing grid cell area, an improved homogeneous distribution of radar points

over the grid cells is achieved. Contrary, Cartesian grids of fixed size would result in higher

point counts near the sensor and sparse and empty cells in the far distance. For input tensors

for neural networks, padding or zero fields can lead to biases. Ideally normal distributed data

is preferred, hence the more homogeneously distributed data in grid cells is beneficial.

Per cell of the polar grid, the discretized points are processed to feature vectors by a PointNet

inspired feature extracting MLP. Since the vectors contain a NC dimensional feature vector,

for the classification of NC classes, max-pooling is applied to extract the dominant feature

per class in each cell feature vector. This max-pooling allows a nearest neighbor free, or-

der independent feature extraction. The cell resolution specifically influences the potential

segmentation resolution, if multiple points fall into the same 3D grid volume.

Figure 4.8: Illustration of the PolarNet architectural principle, illustration of Zhang et al. [248]. The depicted
MLP block is inspired from the PointNet [169] architecture but simplified to a fully connected
MLP. The ring convolutions are applied in a not depicted U-Net [176] CNN backbone with skip-
connections.

106



4.3 Direct Point Cloud based Radar Segmentation

The resulting maximum features per cell are subsequently processed by a convolution layer,

which is adapted as convolution, according to the polar grid, in ring form. The convolu-

tion kernel propagates the information in azimuthal direction, allowing neighboring cells

to propagate a gradient information in azimuthal direction. Originally designed for circular

properties of LiDAR point clouds, this ring convolution emphasizes the technical principle

of radial point neighborhoods.

Subsequently, the classification head in form of a U-Net [176] architecture block is fed. The

scale-independent feature down-sampling, skip-connections and re-concatenation in U-Net

is applied to further extract connections of local attributes of the max pooled feature vectors

and relate it to a global context of the point cloud.

A final fully connected layer and soft-max operation delivers a label of the available NC classes

per cell. Projecting the cell’ label to the corresponding 3D original input points, the segmen-

tation attribute is attached and related to the points per cell.

4.3.3 Cylinder3D

Zhang et al. [248] propose to further enable spatial information extraction in real 3D coor-

dinates. This architecture complements the idea of a 2D polar discretization in (ρ,θ) with

additional z -coordinate to a 3D grid. Similar to the PolarNet, per cell a feature extraction

to a fixed-size feature vector is performed by the application of a PointNet variant as 4 layer

MLP with BatchNorm and ReLu. Details can be found in the orginal publication of Zhou et al.

[250].

Working with a 3D grid, a special form of sparse 3D convolutions [80] is applied to utilize

a 3D kernel, parameterized with Stride = 2. Special property of the applied convolution is

the asymmetric residual block. Originally designed for automotive application with LiDAR

data, with special interest to detect the asymmetric shapes of vehicles and cut computational

efforts, the authors motivate this residual block.

The spatial context of the down- and up-sampled features is futher processed in a dedicated

Dimension-Decomposition based Context Modeling (DDCM) block. Since arbitrary objects

yield different shapes 3D LiDAR point clouds, the authors suggest a low-rank context to be

computed from the high-rank context based on height, width and depth properties. With

low-rank convolutions, the contextual information is aimed to be processed with at higher

computational efficiency, while the context information is extracted with respect to the local

object shape. As segmentation head, the authors propose a light-weight 3D convolution layer

with a 3×3×3 kernel.
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Figure 4.9: Illustration of the Cylinder3D architectural principle as presented by Zhou et al. [250]. The 3D input
discretization is processed with sparse 3D convolutions in a 3D U-Net backbone, followed by a
Dimension-Decomposition based Context Modeling (DDCM) block and a segmentation head.

The Cylinder3D architecture works similarly to PolarNets’ feature extraction, applies a similar

feature backbone, but performing feature downsampling and upsampling by 3D sparse con-

volutions. The segmentation includes a special dimension decomposition block but similar

segmentation head. A combination of Lovasz-softmax loss [20] and cross-entropy is applied

with class weights.

4.3.4 ASAP-Net

Different from PolarNet and Cylinder3D, the ASAP-Net not only processes one single point

cloud scan at a time, but includes additional attention and temporal context.

Concurrent to PolarNet and Cylinder3D, the feature extraction step of single 3D input point

clouds is performed with a PointNet++ variant. The authors address this as backbone block.

Alternatively the authors propose SqueezeSegV2 [228] as backbone variant, which results in

a spherical grid projection and convolutions of 3D feature vectors.

For the input cloud, the centroid points of the extracted feature vectors is found. The authors

propose to store this representation to be available for the comparison with subsequent input

feature maps.
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Figure 4.10: Illustration of the ASAP-Net architecture from original publication of Cao et al. [31]. The concate-
nation of multiple single-scan feature maps is realized by the ASAP block. With a PointNet feature
extractor and backbone, the network segments the point cloud with improved spatio-temporal
correlation.

For an available set of NAS AP input feature maps of NAS AP subsequent scans, the authors

propose to associate the feature maps. The proposed association method is based on the

centroid points of the first frame from farthest-point sampling. This sampling is applied only

once for one point cloud, and kept static to associate the remaining NAS AP feature maps

based on this spatial information.

Denoted from the authors as Attentive Temporal Embedding (ATE), the individual point

clouds are related to contain temporal and spatial information in twp steps. First by concate-

nating the associated centroids and propagating the centroids by a MLP to a new centriod

map, the spatial information is incorporated.

Second, an attention mapping is applied to add temporal information. Therefore two asso-

ciated features are concatenated, and compressed in a MLP. The softmax output thereof is

considered as attention scalar. Hence, applying this scalar factor on both of the associated

features and summing both components, the final feature map is updated by this weighted

attention.

The output of the ATE block yields an updated feature position and an attention weighted fea-

ture map. This feature map is upsampled to the point clouds’ original dimension, processed

with the backbone model as segmentation head, resulting in the semantic segmentation per

point.

But especially for radar, the changing number of detection points in subsequent scans com-

plicate a robust association.
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Table 4.3: Data set overview of for the architecture test of LiDAR segmentation networks on radar data. Se-
quences 00-10 used for training, while Sequence 05 exclusively applies as test sequence for evalua-
tion.

A
rc

h
it

ec
tu

re
Te

st
in

g

Name #Scans Length[m] Description

Sequence 00 245 58.74 urban residential area

Sequence 01 290 31.66 perpendicular parking

Sequence 02 101 20.34 sub-urban residential area

Sequence 03 400 80.65 sub-urban parking lot

Sequence 04 332 51.92 garage parking

Sequence 05 163 29.78 urban residential area

Sequence 06 170 25.71 perpendicular parking

Sequence 07 422 77.92 sub-urban parking lot

Sequence 08 265 62.19 urban residential area

Sequence 09 82 17.81 sub-urban residential area

Sequence 10 232 27.83 sub-urban residential area

4.3.5 Architecture Transfer form LiDAR Domain

The selected LiDAR architectures of PolarNet, Cylinder3D and ASAP-Net are structurally

adapted for radar attributes and trained on semantic radar data.

Network Training: The selected architectures are trained as the native benchmark data

set semanticKITTI suggests, splitting the data set of 2732 radar scans into a training sub-set

(90,3%, Sequences 00-10), excluding unseen data (9.7%, Section 08) as test section. Table4.3

depicts the data set on which the architectures are compared. This preliminary test is to

compare general applicability of the architectures on sparse radar data, not for a detailed

network optimization. Based on the results of the different architectures, the best performing

architecture is selected for further radar-specific adaption and fine-tuning.

For the architecture comparison, the models are trained on the same 10 sequences of the

data set, excluding sequence 08, which is used for test, validation. Little parameter tuning

is performed to achieve convergence of the network training, but the best settings from the

original publications are applied.

Testing the models as live inference modules is omitted for this initial architecture com-

parison, since the comparison and selection of the general structure is in the focus of the

performance evaluation on validation data. The testing is performed on unseen sequence

data.

In the following, the radar specific network adaptions to comply with radar specifics are

discussed. First the input discretization and second their feature embedding.
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Input Discretization: For PolarNet, the input point cloud discretization remains in 2D

space, independent of the points’ z-coordinates or respect the 3D distribution along the

height axis. Polar grids are generally well suited to radar point clouds, due to the quasi-native

representation in range ρ and azimuth-angle θ.

Figure 4.11: Illustration of a the Cartesian grid discretization (left) versus a polar grid discretization (right). The
selection of a Cartesian resolution is non-trivial, whereas the polar discretization matches the radar
point distribution of the exemplary radar point cloud better. Figure of Isele et Al. [SI3]

With increasing radius, grid cell areas grow and yield an improved homogeneous distribution

of radar points over the grid. Contrary, Cartesian grids with a fixed cell size result in increased

point population per cell near the sensor while only sparsely populated or empty cells in the

far distance. For input tensors of neural networks, padding or zero fields can lead to biases

and inefficient computational effort for empty cell convolutions. Ideally, normal distributed

point count per cell is preferred. As relaxation of this requirement, an improvement towards

homogeneously distributed data by polar grid cells is beneficial.

In Table 4.4, the effect of varying grid sized is depicted for a PolarNet variant. The grid sizes

for Cylinder3D and ASAP-Net are not varied, since their convergence was not sufficiently

achieved for a detailed grid-size study. Instead, Cylinder3D and ASAP-Net are trained with a

fixed grid discretization of [75,75,32].

With the polar coordinates, the input discretization directly complies with the LiDAR specific

ring-form of sensor readings. Explicitly designed for concentric LiDAR rings, PolarNet [248]

introduces ring-convolutions from which the radar sensor benefits as well. Radar detections

tend to blur azimuthal along concentric rings, rather than blurring in range coordinate. Tech-

nically, the blurry sensor tails are a beneficial property considering a ring-shaped blur per

object.
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Radar Feature Channels: Other than for LiDAR point clouds, the radar point clouds

consist of variable number of points, only a maximum of 600 detections per sensor cycle is

defined. After a feature extraction step, the networks feed their fixed size dimensional feature

vector to different backbones, sampling blocks, and segmentation heads.

The compared network architectures in this thesis rely on a similar feature extraction method,

namely a PointNet inspired MLP, which enables a fixed-size input feature. Due to a max-

pooling operation on the extracted features, yielding a constant dimension output vector, the

sparse and dynamic radar points density does not require architectural network changes.

Specifically adapted for all tested networks in this thesis, the feature extraction is extended

to include also the relevant radar attributes Signal Power Psig, Signal to Noise Ratio SN R and

Doppler Velocity vD besides the classical (x, y, z)-coordinates. Since the adaptions only cover

the feature extraction, the gross of the network architecture to remains unchanged. The radar

specific attributes Signal Power Psig, Signal to Noise Ratio SN R and Doppler Velocity vD are

included and tested in different combinations. In order to provide normalized values, Signal

Power Psig and Signal to Noise Ratio SN R are linearly normalized to a maximum value of 1.

The Doppler velocity vD is min-max normalized by constant values vDmin =−140 m
s , vDmax =

140 m
s .

For the additional radar channels, their signal value is plotted in the histograms of Figure 4.12,

after normalization to [0,1].

0.0 0.2 0.4 0.6 0.8 1.00

100k

200k

300k

400k

Signal Power

0.0 0.2 0.4 0.6 0.8 1.00

100k

200k

300k

400k
Signal to Noise Ratio

0.0 0.2 0.4 0.6 0.8 1.00

1000k

2000k

3000k

4000k

Speed

Figure 4.12: Histogram of Signal Power Psig (left), Signal to Noise Ratio SN R (center), and Doppler Velocity vD

(right).

The effect of additional specific radar channels and different channel combinations on the

overall average network performance is found in Table 4.4 and discussed.

Signal Correlation: In order to check the relevance and discrimination content of the

available data, a correlation study was performed beforehand, to find the most relevant

attributes on a data-driven basis.
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The radar Equation 4.1 is repeated here again, to compare the correlation findings.

Psig = Precieved = 10−2kr ·RC S ·λ2G2 Psend

(4π)3R4
(4.1)

Correlations are tested based on the Spearman correlation coefficient [204]. As similar mea-

sure for correlations, often the Pearson correlation [161] is tested. Compared to Pearson [161],

Spearmans’ theory is also applicable for non-linear, monotonous correlation, but with the

prerequisite of strict monotony. Assuming monotony, the tested correlations are found:

• Radar Signal Power Psig and Signal to Noise Ratio SN R are naturally strongly correlated.

See the radar Equation 4.1, proving the assumption formalized, as the recieved signal

obviously linearly depend on the sent signal power Psend.

• The 4-th power of range R as denominator in Equation 4.1 shows a significant radius

dependency of signal power Psig. Based on the expected strong correlation and im-

portance for classification, the expected classification information of Psig decreases

dramatically with increasing range. Consequently, the classification accuracy for detec-

tions at higher range coordinate is expected to decrease similarly.

• The Doppler velocity vD is found to be not correlated to other signals, displaying an

independent and essential information content.

4.3.6 Results of Architecture Comparison

The baseline network architecture comparison is performed with suggested original LiDAR

settings. The training procedure for all variants is limited to 30 epochs to avoid over-fitting.

Feature Ablation Study: By a variation over different configurations of input attribute

combinations, Signal Power Psig, Signal to Noise Ratio SN R, and Doppler Velocity vD , an

ablation study is performed to evaluate the effective result on the overall segmentation per-

formance under same training conditions. From the signal correlation check, the three most

potential and uncorrelated radar information channels are chosen to be varied.: With this for-

ward feature engineering, the effective input channels for an improved output performance is

tested to select the output-optimal feature combination for further fine-tuning. It is aimed to

find a beneficial radar-specific feature channel combination and feature extraction to make

up the structural drawback of radar sparsity in order to learn to distinguish clutter and noise

from semantic classes.

As common 4D input tensor, the models are fed with common (x, y, z)-coordinates, substi-

tuting the fourth LiDAR reflectivity channel with the radar channel signal power Psig. Varying

combinations were tested analogously, substituting the 4th channel or extending the feature
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extraction model to a 5D- or 6D-tensor including the Doppler velocity vD or the signal to

noise ratio SN R.

Model Var. 1 Var. 2 Var. 3 Var. 4 Var. 5

Psig Psig +SN R Psig +SN R + vD vD vD +Psig

PolarNet 49.47 49.18 49.49 46.90 -

Cylinder3D 39.42 42.83 41.27 - 43.35

ASAP-Net 35.16 35.06 35.05 - -

Table 4.4: Ablation study over test IoU [%] of the three classes clutter, building and vehicle. The other classes’
IoU are not included in the reported average IoU since they often remain unrecognized at 0.0%3and
do not occur in the exclusive test sequence 05.

Unsurprisingly, the model performances’ on radar data under-perform compared to the na-

tive LiDAR application, especially for the rare classes, see Figure 4.13. With manifold reasons,

the performance drop can be explained: Effects of noise in the radar compared to LiDAR, a

very long-tailed class distribution, manual annotation inaccuracies, similar classification on

neighbor classes, and mainly a small data set with very high class imbalance.

Across the tested 4D, 5D or 6D input variants, the significance of additional radar specific

input channels are not significant compared to the baseline 4D model. The channel specific

IoU gains or IoU degradation is inconsistent across model architectures. In contrast, Table 4.4

illustrated the performance differences of the architecture transfer on the radar data set.

Both, PolarNet and Cylinder3D achieve convergence over all input variants. Noteworthy, the

Cylinder3D network needed more of parameter testing to achieve convergence. Even if the

sparse 3D convolution is designed for sparse grids, the absence of points seems relevant.

Only variants with coarse grid size achieve the reported results.

For the ASAP-Net and Cylinder3D, convergence can only be achieved for a coarse grid dis-

cretization of [75,75,32] for a 50m range point cloud, but not for all channel combinations

the convergence is achieved. The required coarse grid seems a natural finding, since the

sparsity of point clouds complicates the ATE block to find consistent weights. With dedicated

fine-tuning of the ASAP-Net, the attention resolution could be modified to cope with the spar-

sity and spatial changes of subsequent scans. Testing the Doppler velocity as 4th dimension

channel on the Cylinder3D architecture does not converge also. Potentially, the networks

are confused by the velocity in general. Considering the 4D PolarNet variant with Doppler

velocity points at the same finding.

3 Compare Tables 4.6-4.8 to find the excluded classes unrecognized.
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Comparing the overall best performing architecture variant of Table 4.4, the 6D input tensor

PolarNet configuration is found the overall best network variant.4 Although the other archi-

tectures promise theoretical advantages of the feature extraction, the PolarNet was found the

most robust, but simple Network architecture, even outperforming the other variants. The

ablation study over channel variation did not yield a specific superior combination, besides

the relevance of Signal Power Psig.

In detail, the configuration with the 6D radar attributes, the network inference is performed

on spatial coordinates in (x, y, z), Signal power Psig, Signal to Noise Ratio SN R and Doppler

velocity vD .

For the best PolarNet variant, the corresponding Confusion Matrix is displayed in Figure 4.13.

As expected from the data set balance, the rare classes pose the hard cases to be determined

correctly. For all classes it is found, that the main confusion is with the most occurring class

of clutter or noise.
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Figure 4.13: Illustration of the confusion matrix for the best PolarNet variant.

z-Coordinate: Differences of 2D Grid based PolarNet architecture and 3D based Cylin-

der3D is found in the grid indices and maximum pooling over the cells. For PolarNet, the

2D Grid is sub-sampled in unique (x, y)-cell coordinates, describing in which cells points

occur. As input tensor, the PolarNet ingests (x, y, z) coordinates as polar coordinates (ρ,θ,φ),

4 For the evaluation of all networks, the architecture evaluation is based on their classification performance on
the offline data set. They are not all tested systematically in real-live performance. Due to good performance
on the data set, only PolarNet is selected to be implemented as live inference network.
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the unique cell indices (u1,u2) and the radar specific additional radar attribute channels

(Psig,SN R, vD ). Every single point, described by a 11-dimensional input vector, is processed

by an MLP to a feature vector of size 512.This per point feature vector is processed similarly as

the PointNet feature extraction. As a result, per occupied unique cell index multiple feature

vectors can occur, each representing original point measurements. Along this 3rd axis of

the grid size discretization, a convolution layer compresses the point feature vectors from

512 into the dimension of 32. Per unique cell in 2D, the PolarNet architecture processes this

"feature compression" layer with maximum pooling layer to represent multi-occupied cells

by a single PointNet feature vector of size 32. The resulting feature vector per unique cell and

its combination with all other pooled feature vectors in the grid represents the feature map of

the input point cloud. This feature map has a 3D grid size before it gets processed in a U-Net.

Hence, for the PolarNet architecture the height attributes of the points are encoded in the

z-coordinate grid discretization. It is not respected by the feature extraction of PointNet, but

respected in the 2D maximum pooling layer and ring-convolution layer.

The theoretical advantage of Cylinder3D to include the z-coordinate in the sparse 3D convo-

lution, and thereby include the elevation explicitly in the feature vector, does not materialize

in a superior overall IoU. Compared to Figure 3.6, the z-coordinate is limited by the FoV of the

sensor according to Figure 2.12. Consequently, the network can not expect the same spatial

z-information over the whole sensor range.

Segmentation Heads: PolarNet suggests only ring convolutions as segmentation head.

Cylinder3D applies 3D convolutions as segmentation head to extract data with unsymmet-

rical residual blocks. According to the authors, the unsymmetrical residual blocks improve

the detection of (large) vehicles. It is questionable, if the sparse radar data sufficiently detects

medium-far object regions dense enough to deploy the residual blocks on the radar detec-

tions. The radar detections occur scattered and sparse in single scans, so an interpretation

based on the shape is comparably harder as for dense LiDAR. Additionally, Cylinder3D in-

tegrates a dimension decomposition for context modeling and a convolution with a 3x3x3

kernel. The FoV of a radar sensor in elevation opening limits the range in which objects can

be sensed to a point set with reasonable spread in z-coordinate. For very close detections

to the sensor, the FoV of the sensors do not allow a significant z-coordinate, but received

detections occur on a flat plane. Hence, near radar detections could be miscalculated by the

3D convolution with empty cells.

The segmentation head of the ASAP-Net is similar to the feature extraction a PointNet++

backbone. This segmentation backbone is estimated not to deprecate at radar data, but the

grouping stages can yield instabilities.

Temporal Consistency: ASAP-Net extends the pre-mentioned network architectures by

the temporal dimension. Aiming to track the past feature map and align the current features
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with the knowledge over the feature maps seen in the past, ASAP-Net introduces an Atten-

tion Temporal Embedding (ATE) block to extract temporally consistent features. This block

orchestrates different feature maps to be inter-frame associated by concatenation and fusion.

The suggested ATE block systematically decouples the spatial consistency and the temporal

consistency as independent feature embedding, independent from the applied segmentation

backbone.

The feature maps of subsequent scans are processed temporally and spatially decoupled in

the extraction step. By concatenation, the subsequent ATE block recombines the PointNet++

features from the current forward pass with subsequent older measurements, which are

available from a buffer. The network applies a buffer so save a number of these feature maps

for previous point cloud.

This attention map is applied to a second MLP layer with a pre-defined number of sensor

scans. In brief, the aggregated points describe the spatial context. The feature fusion of

subsequent scans by the means of the attention map covers the temporal information.

Technically fusing multiple sensor scans by the ATE block in the feature embedding, ASAP-

Net is theoretically able to systematically integrate temporal information in an overall similar

structure as a single scan approach.

Major drawback of this attempt is the dependency of previous scans. Hence, similar to the

idea of a memory block as in LSTM5 networks, the current network performance depends

on former states. This can cause instability, if the concatenated adjacent feature maps vary

much.

As shown in Table 4.4, some variants of the ASAP-Net would not converge for certain sets of

input channels. Especially the 4-dimensional Doppler Speed vD variants do not converge.

As explanation attempt, vD values of subsequent frames introduce a noisy feature map per

frame in the ATE block. Concatenating this feature maps causes unstable attention weights

and thereby also diverging gradients of subsequent training steps in the network training.

Grid-Cell Discretization: Since the model formulation addresses a multi-class classifica-

tion problem, a final arg-max layer finds the most likely predicted label per grid cell yielding

a classification label per cell. As a result of the voxel based arg-max classification, there is a

trade-off between label accuracy and label discretization of closeby neighbor classes.

For Cylinder3D, the grid resolution of [75,75,32] for the 50m ranging sensor signals is tested.

Model convergence of Cylinder3D is only achieved with this coarse discretization. A too

fine discretization of the input cloud, leaving neighboring cells empty, is found to introduce

problematic convergence behaviour with the sparse radar point cloud input. Empty 3D voxels

5 Long-Short Term Memory networks are introduced by Hochreiter and Schmidhuber [89], and mainly ap-
plied for time-series application.
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of sparse point clouds in combination with 3D context modules, which explicitly search

neighborhood context, are empirically found to degrade in model convergence. Similar to

the findings of PolarNet, that coarse grid discretization technically prohibits to accurately

distinguish closeby or neighboring objects, the context modeling of Cylinder3D is found

inappropriate for sparse point clouds, too.

Architecture Evaluation: The performance of the compared network architectures does

not correspond to the expectations. Expecting PolarNet to yield baseline results, while both

other architectures suggest to yield superior results due to their context modulation blocks.

In contrast, Table 4.4 shows the inverse performance ranking of the tested architectures. The

hypothesis of superior context extraction based on 3D convolutions in Cylinder3D, or the

spatio-temporal attention map from ASAP-Net to improve the performance, does not hold.

Instead, the 2D PolarNet architecture yields best results.

A possible explanation can be found in the sparsity of the data. Instead of incorporating the

height information directly in 3D convolutions, it might be beneficial to have a 2D convolu-

tion in PolarNet to describe the neighborhood of feature vectors in the feature space.

Besides the detection of larger objects, the classification of rare classes does not achieve good

result. This phenomena is directly coupled to the occurrence of these rare classes. The data

set is heavily imbalanced, and the few samples are to less to allow the network an adaption

to classify those and not treat them as outliers which vanish in the sheer point-mass.

Consistent and substantial speed-up of the classification time is reached by polar discretiza-

tion over a cartesian grid discretization, see Table 4.6. The tested PolarNet architecture yields

real-time capability compared to the sensor sensing rate. As the other approaches fall behind

in classification performance, their inference-time is not tested.

Further can be concluded from the empirical architecture evaluation, that a 6D radar at-

tribute configuration outperforms 4D or 5D approaches.

As final evaluation, Table 4.5, depicts a summary of the findings of the architecture compari-

son of this section, e.g. the weighted IoUs of Table 4.4 or inference time.

Table 4.5: Architecture comparision, rating from positive (++) to negative (- -), with weighted wIoU: Considering
only clutter, building, and vehicles.

Model wIoU Speed Robustness Radar Spatial Temporal

Context Context

best PolarNet 49.49 12.6[ms] ++ + N/A

best Cylinder3D 43.35 N/A - - - N/A

best ASAP-Net 35.16 N/A - - - - (+)
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4.4 RadarNet: Semantic Radar Segmentation Network

Figure 4.14: Illustration of the RadarNet architecture: Additional radar feature channels and reduced output
dimensionality.

4.4 RadarNet: Semantic Radar Segmentation Network

Outperforming other architectures in the pre-test of Section 4.3.6, the PolarNet architecture

is chosen to be fine-tuned for a radar domain live inference application on sparse radar data.

This radar-adapted and fine-tuned architecture is referred to as RadarNet in this work.6 This

section reports the specific radar adaptions and architecture optimization. The next section

reports the results of the network training and the best performing RadarNet.

6 The RadarNet architecture is tuned and implemented as live inference module for direct deployment. As
ROS module, it subscribes to the live or replayed sensor data of the test vehicle and publishes the data
semantically annotated.
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4 Semantic Radar Segmentation

Architecture Adaption: Originally designed for a LiDAR point cloud as input, the best

performing PolarNet variant is modified to take an 11 dimensional input, including three

additional radar channels for Signal Power Psig, Signal to Noise Ratio, SN R and Doppler

velocity vD .. According to the class consolidation Table 3.2, the final softmax layer is also

adapted. According to Table 3.2, only the relevant NC = 6 classes as predicted by NC output

neurons, instead of the original 22 SemanticKITTI classes.

Figure 4.14 illustrates the layer structure of the proposed radar segmentation network.

Hyper-Parameter Optimization: Found in the sections before, the experimental results

proves the architecture of PolarNet to cope comparably well to the sparse radar data. This

section describes how this architecture is refined, retrained and the adaptions discussed in

detail. For point-based networks, the features and hyper-parameter optimization require

fine-tuning. Common things such as feature normalization, batch-size, batch normalization,

learning-rate, dropout or weight regularization are considered. Momentum is not considered

since the optimizer SGD and Adam are being challenged with different settings. Early stop-

ping is manually checked from the training results. For a sub-set of hyper-parameters, their

effect on the network performance is displayed and discussed.7

The fine-tuning of the semantic radar segmentation is performed without special depen-

dence of a utilizing system, e.g. an application of automated parking, but with the following

range limitation. From an application point of view, the region of interest (ROI) of the radar

point cloud is limited to a range of 50 meters of an planar environment. With respect to the

quasi static sensor mounting position on the vehicle, the network is trained in fixed volume

mode. Excluding the potential further detections, this mode limits the maximum range of

input points and limits also the z-coordinate of the points. For the parking application, the

relevant and reliable sensor range limit is assumed to 50 m at a z-coordinate limitation to the

range between zmi n = −0.5 m and zmax = 3.0 m. Hence, the semantic segmentation radar

input is cut to this ROI window.

Grid Size: For the fixed volume to be classified in 50 m range and relevant z-coordinate

z ∈ [−0.5 m,3.0 m], the tested extreme grid resolutions are [240,180,16] as coarse discretiza-

tion to the finest resolution [480,360,32]. Variation of the polar grid to a resolution which

represents a coarse grid cell discretization of 0.2 m in radial distance to a fine radial cell dis-

cretization of 0.1 m. According to the estimated double standard deviation 2σ of the radar

sensing accuracy, illustrated in Figure 5.4, the lateral uncertainty d̂y,2σ = 0.28 m and radial un-

certainty d̂r,2σ = 0.06 m of detections at 40m range are estimated from Equation 5.7. Hence,

the radial grid discretization of the 50 m range is sampled between 460 cells (0.104 m) to

7 Not included as hyper-parameter is the accumulation of point clouds. In the labeling process, the necessary
density is only reached by accumulating three radar point clouds. The accumulation parameter is out of
variation and set fixed for the training.
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4.4 RadarNet: Semantic Radar Segmentation Network

Table 4.6: Model study of PolarNet with variations in discretization, features and network architecture.
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PolarNet Cartesian:[200,200,32] 40k 33.6 0.486 0.362 0.000 0.822 0.273 0.000 0.015

PolarNet polar: [150,150,32] 22.5k 11.7 0.457 0.313 0.000 0.802 0.256 0.002 0.076

PolarNet polar: [240,200,32] 48k 12.5 0.500 0.366 0.000 0.817 0.317 0.000 0.000

PolarNet polar: [300,300,32] 90k 16.6 0.504 0.372 0.000 0.824 0.315 0.000 0.017

PolarNet polar: [480,360,32] 172k 26.2 0.516 0.389 0.000 0.826 0.334 0.025 0.025

PolarNet polar: [250,250,32] 62k 13.5 0.520 0.408 0.000 0.824 0.327 0.002 0.040

PolarNet polar: [200,200,32] 40k 12.2 0.523 0.437 0.000 0.823 0.305 0.000 0.043

4D PolarNet:

(x, y, z)+SNR
polar:[200,200,32] 40k 12.3 0.502 0.389 0.000 0.830 0.287 0.000 0.067

4D PolarNet:

(x, y, z)+Psig
polar: [200,200,32] 40k 12.2 0.548 0.460 0.002 0.835 0.350 0.004 0.007

comply with one standard deviation (
d̂y,2σ

2 ) to 150 cells, resulting in 0.33 m radial cell size.The

angular polar grid resolution is sampled from 150 cells per revolution (2.4◦ resolution) to the

originally proposed fine 1◦ resolution of 360 radial cells per ring.

The visualization of different discretization performance can be found in Table 4.6. Fig-

ure 4.15 plots the grid size variation influence on the network inference time and segmenta-

tion performance.

Figure 4.15: Illustration of the PolarNet variant with additional radar feature channels. Blue: 19 class, 6D Polar-
Net variant from architecture comparison.
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4 Semantic Radar Segmentation

Table 4.7: Repetition of Table 3.4, now as data set split overview of training data for RadarNet training, validation
(light grey marked) and testing (dark grey).
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Name Scans Length [m] Description

Sequence 00 245 58.74 urban residential area

Sequence 01 290 31.66 perpendicular parking

Sequence 02 101 20.34 sub-urban residential area

Sequence 03 400 80.65 sub-urban parking lot

Sequence 04 332 51.92 garage parking

Sequence 05 163 29.78 urban residential area

Sequence 06 170 25.71 perpendicular parking

Sequence 07 422 77.92 sub-urban parking lot

Sequence 08 265 62.19 urban residential area

Sequence 09 82 17.81 sub-urban residential area

Sequence 10 232 27.83 sub-urban residential area

Sequence 11 437 92.92 sub-urban parking lot

Sequence 12 243 31.06 parallel parking

Sequence 13 215 14.98 sub-urban residential area

Sequence 14 45 16.15 sub-urban area

Sequence 15 969 480.66 sub-urban residential area (loop)

Sequence 16 1452 613.60 sub-urban residential area (double loop)

Sequence 17 1103 410.65 sub-urban residential area (loop)

Sequence 18 1082 362.69 sub-urban residential area (loop)

Data Set Extension: For the pre-tests and general architecture comparison, only se-

quences 00-10 have been applied. At the time of the RadarNet optimization, a larger data set

was available as fully semantically labeled data set extension. For the fine-tuning and training

of the RadarNet, a larger data set of additional 8 sequences, sequences 11-18, are applied,

see Table 4.7. The data set size of sequences 00-10 (≈ 3.28 ·106 points, covering a length of

484.64m) is augmented by 250% to an overall count of ≈ 8.2 ·106 radar points and a length of

2507.35m in all sequences 00-18, enabling an improved training for better generalization.

The training data and class balance is found in Figure 4.16, including the clutter detections

and in Figure 4.17. The latter shows the clutter-removed pie-charts of the class content per

sequence of Table 4.7, in order to check the class distribution over the sequences besides the

dominant portion of clutter.
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4.4 RadarNet: Semantic Radar Segmentation Network

Seq. 0: 328,750 detections Seq. 1: 275,245 detections Seq. 2: 136,575 detections Seq. 3: 486,140 detections Seq. 4: 370,945 detections

Seq. 5: 214,920 detections Seq. 6: 194,320 detections Seq. 7: 515,960 detections Seq. 8: 387,760 detections Seq. 9: 97,040 detections

Seq. 10: 281,175 detections Seq. 11: 555,320 detections Seq. 12: 268,055 detections Seq. 13: 246,710 detections Seq. 14: 69,780 detections

Seq. 15: 1,188,870 detections Seq. 16: 662,380 detections Seq. 17: 603,925 detections Seq. 18: 672,425 detections Seq. 19: 703,660 detections

Figure 4.16: Illustration of semantic class balance in the data set sequences including clutter a , visualized as
pie charts. Color encoding: building a , vehicle a , vegetation a , person a , and pole a .
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Figure 4.17: Illustration of data set and distribution of radar semantic classes without clutter, visualized as pie
charts with class-specific counts per label. Color encoding: building a , vehicle a , vegetation a ,
person a , and pole a .
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Data Augmentation: To increase the amount of available training data and zo achieve

rotation invariance and order independent network training, data augmentation is applied.

Data augmentation describes to increase the data set artificially, by creating realistic data

variants, e.g. by flipping, rotation or additional noise. In this work, the training data is shuffled

across training sequences and arbitrary rotated. Also to a percentage of 25%, a random

coordinate flip on the (x, y, z) axis are applied, similar to the rotation invariance of LiDAR

data in PolarNet [248], the rotation invariance of radar detections is legitimate. It is avoided

to add e.g. Gaussian Noise as measurement noise on the data, due to the inherent radar

noise. Besides the value normalization of input features, the model is trained in fixed-volume

mode, clipping the input point cloud to a maximum range of 50m with z ∈ [−0.5m,3m]. By

clipping, also scale-invariance is achieved [248].

Figure 4.18: Illustration of data augmentation result for the total of all spatial locations. Original heat map (left)
compared to the spatial distribution with data augmentation (right).

The resulting training data is visualized in the heat-map for all classes summarized. Detailed

plots per class are found in the Appendix, section A.2. The beneficial effects of the data

augmentation can be impressively visualized in the even distributions of Figure 4.18.

Loss Function: The IoU or Jaccard index, is commonly applied for semantic segmenta-

tion problems to express the fraction of correctly predicted labels, compared to the objects

surface area. For point cloud semantic segmentation, the IoU measure distinguishes a seg-

mentation classification only as false or true. The original PolarNet architecture of Zhang

et al. [248] is trained with Cross-Entropy as loss function. In contrast ASAP-Net generalizes

better on also rare classes, which is estimated also as a result of the application of the Lovasz-

softmax loss [20]. This loss is alternatively applied for segmentation tasks, allowing a direct

optimization of the Jaccard index by a surrogate formulation of the discrete IoU formulation.

Lovasz-softmax loss commonly achieves a fine-tuning compared to cross-entropy loss. In
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4.4 RadarNet: Semantic Radar Segmentation Network

order to respect the data set class imbalance, individual class weights w are implemented

and applied on the loss function.

Cross-entropy Loss: For a multi-class classification problem with mutually exclusive classes

NC > 2, the separately calculated loss per class gets summarized to an overall measure. For

the semantic segmentation in this thesis, set NC = 6. The ground truth label yo,C is binary

and defines the true class of point o as one-hot encoding.

LwC E = wC E ,C · 1

NC

NC∑
C=1

yo,C log(
1

ŷo,C
) (4.2)

The formulation uses a binary status y , if the observed point o was correctly classified as class

C . The network prediction ŷo,C is the output of the networks’ final soft-max layer, describing

the predicted probability of point o to be of class C according to Yessou et al. [234].

The optional static weight wC E per class C is defined by Equation 4.5 to balance the data

set as proposed by Cui et al. [49] and applied in Pihur et al. [166] or Ho and Wookey [88].

In the general case of ideally balanced data, no weighing is applied and wC E ,C = 1, this is

referenced as LC E Loss. Based on the high class-imbalance for a multi-class classification

problem, introducing a weighing factor is beneficial to penalize mis-classifications of rare

classes by higher consideration. Hence, the loss-based optimization recognizes rare classes

better, see WCE-Loss in Table 4.8.

Lovasz Loss: Alternatively to the cross-entropy loss, the Lovasz-softmax loss LwLS is applied

for multi-class C ∈ NC segmentation networks. For a detailed derivation refer to the original

paper of Berman et al. [20]. This loss function directly optimizes the mIoU value during

training by a differentiable loss surrogate function ∆JC (m(C )) of the Jaccard index ∆JC , using

the hinge loss vector m.

In combination or as alternative to class-weights, the Lovasz-softmax Loss significantly in-

creases the classification performance of rare classes and can also be weighted with class

weights wLovasz,C .

LwLS = wLovasz,C · 1

Nc

NC∑
C=1

∆JC (m(C )). (4.3)

In the general case of ideally balanced data, no weighing is applied and wLovasz,C = 1, this is

referenced as LLS Loss.

Combined Loss: Both Lovasz and Cross-Entropy (CE) loss are tested and applied for the

network training. As the authors of the Lovasz-Loss [20] state, the optimization of the mean

IoU (mIoU) for a data-set depends on the number of classes and the training batch-size.

Practical applications suggest to pre-train a segmentation network with cross-entropy loss

and fine-tune with the Lovasz-softmax Loss.
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The most promising approach for RadarNet is to train the network with a combination of

both loss functions

Lcombined =LwLS +LwC E

=wC E ,C · 1

NC

NC∑
C=1

yo,C log(ŷo,C )+wLovasz,C · 1

NC

NC∑
C=1

∆JC (m(C )).
(4.4)

Both loss terms of Equation 4.4 could further be weighted to define an importance for each

term, but it is found impractical to weight the Lovasz-softmax.8

Table 4.8 displays the behaviour of a PolarNet variant, trained with different loss functions,

yielding different classification IoU results. The most improvement potential is found for the

rare classes, which is the most difficult problem to generalize over the very few data samples.

Based on this findings, measured by the IoU values, a rating of loss effectiveness to the radar

segmentation is possible.

Most interestingly, the combination of two losses yield the best classification of artifact-

labels, achieving the best de-noising quality, but rare classes are found best by the Lovasz-

Softmax loss. The combined loss formulation improves sensitivity to classify rare classes,

while keeping the effective Cross-Entropy loss for training convergence. Further, class

weights applied on Cross-Entropy contributes to improve the rare class recognition.

Table 4.8: PolarNet architecture radar variants as comparison of different Loss-functions for semantic segmen-
tation: Network variant 4D PolarNet with radar channel signal power Psig and grid size [200,200,32],
trained on Sequences 00-10.
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PolarNet (LC E ) 12.4 0.243 0.831 0.402 0.244 0.000 0.000 0.000

PolarNet (LwC E ) 12.4 0.275 0.670 0.420 0.350 0.097 0.099 0.016

PolarNet (LLS) 12.4 0.289 0.702 0.448 0.327 0.106 0.125 0.025

PolarNet (Lcombined) 12.2 0.276 0.835 0.460 0.350 0.004 0.007 0.002

Class Weights: Given the sparsity of a radar point cloud, smaller objects are systematically

detected by a lower number of radar reflections. Hence, tall but narrow structures such as

poles and also humans are systematically under-represented by only a small fraction of a

8 Future work is open, to test a dynamic loss weight in later training stages. E.g. dependent on the gradient
size to fade the fine-tuning capabilities of the Lovasz-Loss.
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Table 4.9: Proposed class weights wi per class C to balance rare classes in a reduced data set for architecture
tests (sequences 00-10) and for the RadarNet training on the full data set (sequences 00-18).

Architecture Tests RadarNet Training

Radar Class Percentage [%] Weight Percentage [%] weight

a Vehicle 8.39 14.17 6.54 15.28

a Building 7.68 12.96 7.77 12.87

a Vegetation 4.80 20.89 4.75 21.04

a Poles 0.60 133.42 0.34 282.63

a Person 0.18 750.23 0.13 774.22

a Artifact 78.35 1.19 80.42 1.24

datasets overall detections. Given this example, its obvious that a real world data set is cov-

ering larger structures more frequently compared to the detection count per smaller objects.

This applies here to buildings, or larger objects such as vehicles, compared to a lower number

of detections per person, per pole and per vegetation.

Solving a multi-class classification problem, the detection of a rare class can be supported by

class weights per loss term. Knowing the expected detection probability, a-priori class weights

are a measure to artificially balance the data set during training [49, 88]. By multiplying the

individual semantic class weights on the class-corresponding loss, the network learns to

penalize the rare, but equally important wrong classifications of under-repesented classes

similarly to a wrong classification of a more frequent class.

For the given radar data set, the class imbalance is translated into loss class weights by the

reciprocal occurrence, resulting in the class weights of Table 4.9. As weights, the number of

detections per class over overall detection count is defined [49], see Equation 4.5

wi = ni
Ntot

for all classes i ∈C . (4.5)

For the hyper-parameter optimization, these weights are applied on both loss terms of Cross-

Entropy of Equation 4.2 and the Lovasz-softmax loss of Equation 4.3. It is experimentally

found beneficial to apply weighs only on the Cross-Entropy, leaving the Lovasz-softmax loss

unweighted.

127



4 Semantic Radar Segmentation

Batch Size: Based on the architecture plot in Figure 4.14, batch normalization (BN) is

applied in multiple layers, normalizing to standard deviation of 1.0 and zero mean per batch,

see Section 2.3 and Equation 2.34.

The tested RadarNet models are also trained with different batch sizes, in order to test for

robustifying generalization or increasing IoU. Batch sizes with increasing or decreasing seg-

mentation performance effects are not found. The training is performed on a Tesla-V100

GPU, allowing to test large batch sizes also. But memory limitation was only achieved for

batch sizes beyond 64, resulting in larger memory allocation as 32 GB VRAM. Training with

larger batch sizes achieve an efficient training procedure of approximately 6 hours per 30

Epochs of the whole data set.

Learning Rate: Decaying the learning rate is found to stabilize the validation loss, but too

low learning rates prevent any further network adaption. The training and validation loss,

remain constant in that case, while the network accuracy stagnates.

Training at a fixed or high learning rate η= 0.01, ..,0.02 yields significantly increasing cross-

validation loss after a dip at approximately 30-50 epochs, depicted in Figure 4.22. Counter-

intuitively, the network accuracy further increases especially for the detection of clutter,

whereas the vegetation detection decreases. In contrast, the IoU scores of the other classes

saturate, see Figure 4.23-4.24. For a further discussion, refer to Section 4.5-paragraph Over-

fitting.

Dropout Regularization: Instead of applying Dropout [69] at specific layers, RadarNet

is trained with drop-blocks [72] which are found to significantly increase generalization for

deep networks with numerous parameters. The drop-blocks in the CNN part of the U-Net is

applied on regions, to dropout these in the skip connections of the network. The dropblock

parameter is applied to 0.5.

Initialization Seed: In order to achieve reproducible results for varying training runs, the

same initialization seed is applied to train RadarNet from scratch. Four models are trained in

the same configuration and with the same initialization seed to be evaluated in Section 4.5.

With this averaging possibility over multiple independent model trainings, the model plots

in Section 4.5 reveal a stable training and stable training results toward a global optimum.

Over-fitting is unlikely to result in so similar results.

Optimizer: As alternative optimizer beyond the common Adam Optimizer [116], Stochas-

tic Gradient Decent (SGD) [77, 45] is applied to optimize the gradients. The optimizer mo-

mentum is set to 0.9 with the above described decaying learning rate.

From the comparison of the hyper-parameter tests with both mentioned optimizers only

marginal differences emerge. SGD results in marginally higher accuracy.
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Training, Validation and Test Split: In order to report robust and reproducible results,

the data set split into exclusive sub-sets for independent network evaluation is essential, as

explained in Section 2.3 The markings in Table 4.7 illustrate the exclusive training (unmarked),

validation (light grey), and third test (dark grey) sub-set. For unevenly balanced data sets, all

data splits should reflect the original class balance of the training data. But especially the

validation split is of interest, since mostly this performance is considered if a model over-fits

during training.

For the problem at hand, balancing of class examples is not trivial, as a manual constitution

of a validation set would require to hand-pick radar point clouds to be excluded from the

training data which satisfy the training data class balance. Instead, the cross-fold validation

scheme is applied. The left plot of Figure 4.19 illustrates the training loss of a model zoo of the

20-fold cross-validation. In comparison, the right plot of Figure 4.19 depicts the validation

loss for the same models. In consideration with the class balance of the different sequences,

the network performance can be discussed.

In the Figures 4.19-4.20, the result of a 19-fold cross-validation training is shown. 19 Models

are trained for 50 epochs, with one sequence (00-18) excluded from the training, but ap-

plied as validation sequence. Figure 4.20 (left) shows the mIoU on the different validation

sequences of the same network. The right plot of Figure 4.20 shows the corresponding ac-

curacy curve. Comparing different cross-validation sequences along their IoU, the training

sequence differences are obvious. Scenes with apparently higher IoUs indicate similar data

set compared to the training data, especially in terms of class balance. Other models, yield

low IoU curves and accuracy scores, indicating more difficult scenes of different class bal-

ance or difficult scene content, e.g. a larger dynamic content or increased vegetation. Hence,

according to the definition of Meyer et al. [144], there exist a variety of hard to simple radar

classification samples.
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Figure 4.19: Training loss (left) versus validation loss (right) for every possible cross-validation sequence variant
from independent training runs for 50 epochs with same network configuration.
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Figure 4.20: Validation mIoU (left) versus valdation accuracy (right) for every possible cross-validation se-
quence variant from independent training runs for 50 epochs with same network configuration.

The differences of the specific scene validation mIoU can be explained by the ground truth

data. Besides the physical scene differences, see Section 3.4.1, the occurrence of each label

type is uniquely distributed per sequence. Hence, the validation of the network is impossible

without a special selection of a training-resembling validation data set.

As mitigation and to avoid cherry-picked results, the cross-validation sequences for the model

optimization are chosen specifically to contain a different label proportion and check for an

average performance on different validation sequences. The selected validation sequence

set (05,08,09,12) reflects approximately the same class distribution compared to the overall

training data split. As test sequence, Sequence 06 is chosen, due to the occurrence of all

classes in a similar count, compare Figure 4.17.
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4.5 RadarNet Segmentation Evaluation

As a result of the parameter optimization and radar-specific adjustments, the best performing

RadarNet variant is found. The model variant yields reproducible performance, trained from

scratch with the same initialization seed. The remainder of the evaluation is dedicated to

generalization testing on unseen data in live-operation on a test vehicle.

In order to reproduce the model performance, four independent models with the same ini-

tialization seed have been trained independently for 200 epochs, to check the model con-

vergence robustness. Based on the comparable result of the independent parallel models,

their performance is discussed. Over-fitting is discussed as well, due to the increasing com-

bined validation loss curve in Figure 4.22. The combined validation loss curve, left plot of

Figure 4.22, shows the combination of the Lovasz-softmax loss and Cross-Entropy loss which

needs to be discussed independently, as depicted as single component plots in the right of

the same figure.

Utilized training parameters for the best performing RadarNet variant: Learning rate l r = 0.01,

decaying by 25% every 10 epochs, training from scratch without pre-trained weights but same

initialization seed,α-class weights for the Cross-Entropy loss but not for the Lovasz-loss, SGD

optimizer and validation steps every 5 epochs.

The qualitative evaluation of the network segmentation performance is measured with the

mean IoU over all classes. The Figure 4.21 displays the adaption of the network performance

over the training steps.
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Figure 4.21: Overall validation mIoU (classes: Artifact, Building, Vehicle, Vegetation, Pole, Person) of the best
RadarNet variant. These four independently trained model runs are compared.

Seemingly, all four independent network variants seem to achieve a similar mIoU between

45% and 50%, averaged to 47.6%.
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How the optimization of the network parameters with respect to the loss function evolves

during the training is depicted by the training loss and validation loss in Figure 4.22.
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Figure 4.22: Training loss and validation loss of best RadarNet variants of four independent models (left) in
comparison to the averaged loss components (right): Robustly decreasing validation Lovasz-Loss
(top) versus increasing Cross-Entropy validation loss (bottom).

As expected, the Cross-Entropy loss supports the training to converge by a decrease of approx-

imately 20%. But as special behaviour9, the Cross-Entropy loss continues to increase after

this dip, in a nearly linear ascent, whereas the additional Lovasz-softmax loss term continues

to first decrease, then remains saturated. In case of over-fitting, the Lovasz-Loss would be

required to increase similarly. Consistent to the expectation to stabilize rare class segmen-

tation, the decreasing and saturating Lovasz-softmax Loss component as sum over the six

classes is capable to further optimize the mIoU of the network. This network adaption can

be tracked by the consideration of the class-wise IoUs, especially of the clutter improvement

in Figure 4.23 and the increase of the person class in Figure 4.24 to the cost of the vegetation

class in the same figure.

9 This behaviour resembles an over-fitting tendency, but can be explained from unspecific examples of rare
and non-trivial semantic class labels instead, compare with Figure 4.23-4.24.
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Both Figures depict the increasing mIoU curves per class and reveal the saturation of all

classes, except for the clutter and the vegetation class, seemingly as protagonist and antago-

nist respectively.

With the data set class split, the first three classes clutter, vehicle and building are repre-

sented with more samples, expect-ably yielding better segmentation results for this sub-set

of classes.

0 50 100 150 200
Epoch

70

71

72

73

74

75

76

Io
U 

Ar
tif

ac
t [

%
]

IoU Clutter

0 50 100 150 200
Epoch

30

40

50

60

70
Io

U 
Ve

hi
cle

 [%
]

IoU Vehicle

0 50 100 150 200
Epoch

10

20

30

40

Io
U 

Bu
ild

in
g 

[%
]

IoU Building

Figure 4.23: IoU of classes clutter (left), vehicle (center), and class building (right).

With the class-weights and the Lovasz-softmax loss, the remaining three rare classes vegeta-

tion, person and pole also yield fair results, despite the high data set imbalance, see Table 4.9.

For a very low number of detections which the training could learn from, but enforced by

class-weights and a class-sensitive loss term for the combined loss, RadarNet is able to gen-

eralize for these rare classes. As the architecture comparison reveals, and the theoretical

findings of the authors of the Lovasz-Loss [20] claim, the Lovasz-softmax Loss significantly

improves the mIoU, especially for the rare class samples.
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Figure 4.24: IoU of classes vegetation (left), person (center), and class pole (right).

Over-fitting: In Figure 4.22, the combined validation loss of Lovasz-softmax loss and Cross-

entropy loss dips at approximately 30-50 epochs and increases with further training.

It is indetermineable if this behavior results from over-fitting or a result of rare or inconsis-

tencis of the manually corrected labels. Motivated by the loss definition, cross-entropy loss

increases for predictions with lower activation margin in the soft-max function. First, with

the data being manually labeled, the manual correction step might introduce label incon-

sistencies. In the labeling process, only plausible detections are further split into semantic
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classes. Based on the assumption of a correct implausible labeling, it is rated not beneficial -

from a labeling perspective - to further inspect the implausible labels also. This assumption is

bypassed for the vehicle class. Vehicles are treated as a detection accumulation, independent

if detections occur inside or only from the outer shell. With this assumption, the detection

robustness of this class is increased by re-labeling the implausible detections inside a vehicle

to the vehicle class.

Secondary effects might result from the sensor itself. Based on the noisy sensor properties, it

can not be guaranteed to have 100% accurate labels - noise and random clutter are systematic.

There is a high chance of ambiguous classes or detections seemingly of a class, but being

actually clutter. As a result, with such labels the network learns to be predict classes at a lower

certainty margin due to the semantic classes being not fully seperatable clusters. Especially

for the highly-scattered vegetation detections, the decreasing IoU supports this finding.

While the validation Cross-Entropy loss decreases in Figure 4.22 only until 25k samples, the

Lovasz-softmax loss still continues to decrease. Comparing the IoU gain of the rare classes,

the remaining training results in approximately 5%−10% IoU gain per class, which the cross-

entropy would leave un-optimized.

A test run of a very long training for 2000 epochs, continues the IoU saturation per class,

achieving a final mean IoU of approximately 67%. Testing this models and intermediate

models still achieve a generalization on completely new and unseen data. Hence, the slight

model over-fit is specificially true for the clutter and vegetation prediction, the other classes

are generalized sufficiently, compare Figure 4.27 for a generalization example.

The confusion matrix in Figure 4.25 results illustrate the similarity and confusion of the rare

classes person and pole with the vehicle class. Revising the data set reveals the few person-

samples to mainly occur besides vehicles - so the confusion with vehicles is traceable to this

data set characteristic. To trace the confusion of poles with vegetation could either indicate

trees, while the confusion with vehicles might originate from a similarity of metallic street

signs and metallic reflections of a vehicle.

But more important, the confusion matrix also reveals clutter to be confused with vegeta-

tion. The confusion between these two classes results in the decreasing IoU and broader

jitter-band of vegetation of Figure 4.24 (≈−4% from epoch 30-200), while the clutter IoU of

Figure 4.23 increases (≈+2% from epoch 30-200). As weak indication, both IoU curves also

reveal a similar jitter-band pattern. See also Figure 5.24 for an example of confused labels on

a scene or Figure 5.25 on a larger scenario (plot c) versus plot d)).

Based in the confusion of little and rare classes, the motivation of an attention-based ap-

proach can be derived, to achieve increased context awareness of small objects. From the

few examples, the network should predict static poles with respect to their always constant
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Doppler velocity. In contrast, persons obviously resemble a pole shape, but are mostly mov-

ing in the data set instead of standing still.

Based on the spatial data distribution of the training data after coordinate flipping and ro-

tation augmentation, no general spatial dependency can be learned by RadarNet. Conse-

quently, the semantic segmentation performance is expected to generalize to the 360◦ sensed

environment.
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Figure 4.25: Illustration of the RadarNet confusion matrix at 52 epochs (left) and at 180 epochs (right).

Range Accuracy versus Near Field Inference: The class-prediction is also evaluated with

respect to the sensed range of the object in Figure 4.26. For a subsequent mapping module,

matching subsequent radar point clouds based on the semantic classes, it is important to

evaluate in which spatial region the semantic prediction achieves accurate results.10 Espe-

cially for a moving platform, the classification result over the range yields important findings

when point clouds of the same environment are sensed from different ranges, but need to be

compared and matched.

From the spatial occurrence of classes, with increasing range also density of the classes de-

crease. Congruently, it was assumed that classification accuracy decreased with range due to

a lower number of detections per object, and the decaying signal power Psi g with the fourth

power of the range. Hence, the decaying IoU per class in Figure 4.26 behaves as expected.

The clutter IoU increases with range due to the spatial and mostly exclusive occurrence in

the far-range. As a result, the segmentation performance of e.g. vehicles and other classes de-

pend on the spatial range of the corresponding radar detections. Radar detections in medium

10 RadarNet is trained in fixed volume mode, clipping detections beyond a 50 meter range from the training
and inference. This configuration is chosen with respect to the use-case of trained parking, limiting the
relevant sensor range to a 50m radius.
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detection range yield a correct semantic segmentation whereas far-range and closeby detec-

tions might be mis-classified. Either with more training data, distributed uniformly over the

spatial range, or with increased sensory detection per object in the far-range, the perception

performance can be increased. But no network modification can mitigate this data set and

sensor resolution shortcoming.

The only potential network adaption would be an adaptive grid cell refinement, similar to a

kd-tree refining the grid where it is populated. As such, the arg-max function in the feature

extraction process would no neglect smaller or multiple objects at far range in polar-grid

dependent large cell areas.
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Figure 4.26: Illustration of the IoU per class over range for the same RadarNet model but at alternative training
epochs evaluated in 2m range steps for R ∈ [2,50]. The early epoch model (trained for 52 epochs) is
depicted on top, with the same model, but trained for additional 128 epochs (180 epochs in total),
in the bottom plot.
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Segmentation Result Evaluation: Since the automatic labeling process generates labels

which were manually corrected to ground truth labels, perfect labeling accuracy can not be

guaranteed. The sensor noise yields in difficult labeling situations, also for manual correction

by an experienced labeler. Technically, remaining noise in the data set results in an overall

sub-optimal network adaption to a non-optimal certainty of predictions. This non-optimal

certainty is found in the Cross-Entropy loss plot over the training epochs. First decreasing

to a global minimum at circa 30-50 epochs, the validation loss increases while the network

IoU and validation IoU continues to increase also. This is not rated as over-fitting but rather

expresses the certainty margin of the Cross-Entropy loss to increase due to noisy labels. The

reported results of the RadarNet are selected to be most reliable for the early model results,

trained for approximately 50 Epochs.

The presented semantic segmentation network is aimed to be applied in a system architec-

ture with a spatio-temporal filter module to achieve temporal consistent semantic segmenta-

tions, which are subsequently semantically matched in a SLAM module to a semantic radar

map. Hence, a perfect segmentation is not necessarily required, but a better RadarNet per-

formance yields a more accurate semantic radar scene map. In the context of this system

performance, discussed in the next chapters, the achieved RadarNet generalization is proven

sufficient to yield a new state-of-the art.
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RadarNet Deployment : The online direct inference of the RadarNet on unseen data is

tested as live implementation in the test vehicle. Implemented as module, subscribing to

live sensor data, a direct inference and further application of the segmented data is realized.

It is important to mention the required real-time capability of the network, since the sig-

nal routing and framing implementation of the required pre-processing requires additional

computation time.

Compared to a validation scene in Figure 4.27, the inference of live data can not be com-

pared to ground truth data. Visual inspection is the only possible measure and proves the

generalization capability of RadarNet, similar as in Figure 4.27.

Figure 4.27: Top-View Illustration of the RadarNet deployment on the test data set: Raw radar point clouds
(left), the semantic predictions of the best performing RadarNet (center) variant, compared to
semantically labeled ground-truth radar detections (right).

Radar Scan Assembly: The assembly and accumulation of the radar clouds is an essential

pre-processing step. The multiple independent sensor readings are assembled to a single

360◦ point cloud. As introduced for the data set labeling, a subsequent number of Nacc = 3

360◦ radar scans are accumulated and treated as processed as single sensor reading.
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4.6 Section Conclusion

This section covers the comparison of three state-of-the art semantic segmentation network

architectures, PolarNet [248], Cylinder3D [250] and ASAP-Net [31], which are originally de-

signed and developed for dense 3D LiDAR point clouds, but are transferred to the sparse

radar point cloud domain. The network architectures are adapted to radar data input, trained

and evaluated on an own labeled and recorded real-world semantic radar data set covering

8.2 · 106 radar detections over a length of 2507.35m, which is organized in semanticKITTI

benchmark data set structure. Applying common performance metrics for LiDAR semantic

segmentation on the radar data inference, the comparison of architectures, input channels

and radar specific network adaptions is discussed. The potentially most radar-suitable ar-

chitecture PolarNet is selected to be fine-tuned. Based on the PolarNet architecture, radar

specific adaptions and extensive hyper-parameter tuning is applied and yields the direct

radar point cloud segmentation network RadarNet. With this study, the radar point cloud

segmentation and radar deep-learning potential of the segmentation research questions of

Section 1.3 are answered.

Achieving 28.97% mIoU a new benchmark for semantic radar point cloud segmentation after

training for 52 epochs, RadarNet is able to denoise and classify in real-time raw radar point

clouds in six semantic classes including the static environment (Clutter 71.91%, building

35.47%, vehicle 32.25%, vegetation 16.01%, pole 11.26% and person 6.89%). Yielding a new

level of data enrichment for automotive radar, an orchestrated sensor set of synchronized

radar sensors can be processed in real-time with RadarNet to improve the environment

perception.

The described findings address specifically a live semantic segmentation application for park-

ing applications in low speed of an arbitrary structured, local environment.

As contribution of this chapter can be formulated:

• Structured architecture comparison and evaluation of measures for sparse point cloud

feature extraction and semantic segmentation.

• Design of an independent real-time capable semantic segmentation network for radar

point cloud segmentation.

• Deployment of the proposed segmentation network on a test vehicle and testing under

arbitrary real-world conditions.

In the systematic context of Figure 1.4, the developed function RadarNet constitutes the

indispensable basis of the semantic SLAM of Section 5 as system level block.
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4.7 Section Outlook

The outlook covers a data set increase, potential feature improvements of the network archi-

tecture and am object-based labeling.

Data Set Extension: Foremost, the data set size applied for training RadarNet could be

extended with specific samples of the rare classes (person and pole), to mitigate the high class

imbalance. As other works on radar classification state [144], there occur harder and easier

samples. Hence, the enrichment of the data set to additional situations and a plenty of data

is key to improve generalization.

Attention-based local Feature Extraction: An attention-based approach is expected to

improve inter-label consistency especially for rare classes as pole, person, and for the scat-

tered vegetation. An attention based approach, extracting convolutional information from

neighboring cells is expected to increase class discrimination. Applying the convolutional

extraction in 3D coordinates with 3D convolutions, the advantages of the PolarNet 2D grid

representation is expected to be boosted for the semantic segmentation.

Derived from the attention idea, also an attention-based label morphing step is suggested to

compare labels in their local occurrence of a point cloud. Similar to the multi-scale interpre-

tation of U-Net, it is suggested to formulate a grid or spatial consistency loss term to penalize

mis-predictions in impossible cases, e.g. mixing a person label into a point cluster of an other

structure, e.g. building or vehicle.

Panoptic Segmentation and Labeling: According to similar works on radar object detec-

tion, the course of clusters over time improves the temporal consistency [192]. With the above

mentioned extension of the data set, also the count of dynamic objects samples should be

increased, so that the combination of object detection and semantic segmentation towards

panoptic segmentation can be tested.

The utilized data set can be labeled as extension to this thesis with additional instance labels

for static objects and moving clusters. By this, a new benchmark for radar data sets and

direct point cloud segmentation can be established and separation of neighbor clusters can

be trained to be improved. The loss function could include an other penalty term for mixed

or missed instances. Especially the mixed-class region or space is expected as beneficial,

since the IoU or Cross-Entropy only considers each single point of a point cloud without a

context or neighborhood consideration. E.g. every single detection of a person or a vegetation

inside a vehicle cluster is rated with the same loss penalty as a mis-classification else-where.

Including a greater context or a spatial loss-averaging and multi-scale comparison could

further reduce semantic mis-classifications to a greater label consistency.
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AND MAPPING (SLAM)

This semantic registration formulation to enrich the radar SLAM to respect semantic features

is developed in collaboration during the supervision of the master thesis of Fabian Haas-

Fickinger [MT5]. As summary of this development, fractions of this chapter are published

in the conference paper SeRaLoc: SLAM on semantically annotated radar point clouds [SI4],

showcasing the essential accuracy gain of the resulting environment map. This chapter gives

a detailed overview of the developed semantic radar SLAM, a signal filter, the front-end

construction and the semantic radar registration method.

5.1 Motivation

Specifically in the environment mapping context for automotive applications, Radar is not

commonly applied. But static detections of multiple radar sensors, be assembled to a driving

vehicle, can be combined and assembled over time. The driven path enables to build a radar

map of the driving scene. With advantageous combination of robust sensing properties,

independence of outer lighting or weather conditions, paired with the direct measurement

of relative velocity makes radar sensors inevitable as future mapping sensor. This section

covers the general mapping problem setup, also known as Simultaneous Localization and

Mapping (SLAM), and its formulation as graph problem to a graph SLAM. Furthermore, the

graph SLAM front-end is improved by the use of additional specific radar information and

constraints for the special radar application are integrated.

Online on-board mapping of the static environment, based on live radar detections, allows

a new dimension of scene interpretation. Relating the current scene with an initial position

guess, the ego-position can be matched and refined by a registration with a pre-recorded map.

Typically, radar sensors provide information in a mid-range of up to 60m [114, 160, 225]. For

automated systems, having a online radar reference map at hand, such a sensor range can be

useful to determine the possible path to drive and orientate the ego-vehicle with respect to

the environment.

The radar layer bridges between short range information of ultrasonic sensors or short range

cameras on the short end, to the gps-based localization in the coarse driving context. Having

a local radar map of the mid-range environment, automated parking functionalities and
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potentially other driving functions can be developed and deployed based on this on-board

sensors and perception. As final result of this chapter, an accurate and metric radar map of

an arbitrary environment is available.

5.2 Evaluation and Selection of existing Approaches: Localization
and Radar SLAM

In this section, first the fundamental topic of localization research is introduced. Secondly,

localization and mapping in the focus of radar applications is presented.

5.2.1 Localization

The research on localization can generally be tailored for different applications and various

sensor types. E.g. 3D visual information of RGB-D, stereo or monocular cameras [148] or clas-

sical LiDAR point cloud SLAM [246, 218] is common state-of-the-art. With this thesis focusing

specifically on the benefits of radar point cloud processing, and this section discussing the lo-

calization problem with radar, the current radar-specific research or transferable approaches

are introduced and compared to their potential radar localization application.

In the context of this thesis, the radar-based localization is required to work robustly for

an autonomous parking use-case in static environments, without prior knowledge of the

environment features, objects, or overall geometry. In order to yield a general applicable

solution, discussing radar localization along three potential scales of radar processing from

descriptors, over objects to the whole scene geometry, the localization state-of-the-art is

discussed and related to the problem at hand. This overview helps to understand the basic

problems, the subsection of radar-SLAM state-of-the-art needs to cope with.

Radar Descriptors: Radar descriptors can be considered as landmarks, based on which

localization can be performed. To find correspondences or associations between different

data-patterns e.g. for localization relative to a specific pattern, a distinctive and characteristic

description of the pattern is classically applied. Such descriptors for point clouds can be

hand-crafted, based on a manually defined rule-set or algorithm, but can alternatively be

subject to learning approaches.

As descriptor, local characteristics of the data is abstracted. A classical measure are his-

tograms, representing a set of local characteristics. Examples are point-feature histograms [179]

and the rotation invariant extension of the SHOT descriptor [181], which rely on the local

surface. The RoPS approach of Guo et al. [84], applies rotation projection statistics of the

local environment of a point cloud to generate a histogram-based descriptor. Similar, the
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work of Scheiner et al. [184] describes the combination of the Cumulative Binary Occupancy

(CBO) grid with a convex hull area for moving radar object detection.

Enriching the manual descriptors with a learned, data-driven extension based on a grid

discretization of the point cloud, Zeng et al. [244] achieve robust descriptors, but at the price

of long processing times.

The most prominent and efficient learning approaches of descriptors of point clouds are

based on the feature processing of PointNet[169] and PointNet++ [170], discussed in Sec-

tion 4.3.1 as feature extraction step for the semantic segmentation. But in the context lo-

calization and environment descriptors, missing local geometric relation are a drawback,

since convolutions are not included. Further deep learning approaches are presented in Sec-

tions 4.2 - 4.2, but with no special focus on landmarks or descriptors, as the following works

focus on.

Building on PointNet, in the works PPFNet of Deng et al. [53] and PPF-FoldNet of Deng et al.

[52], the local context is included in the feature extraction. Multiple independent feature

extraction PointNets are applied on local point cloud patches, which are re-combined by a

max-pooling and concatenation of the extracted local PointNet-features to a global point

cloud feature set.

For 3DSmoothNet, the authors Gojcic et al. [76] suggest a learned feature extraction and ro-

bust point cloud matching by a siamese deep leraning CNN. The authors propose as feature

extraction a voxelization of the input point cloud to a normalized single value decompo-

sition(SVD) 3D voxel grid, serving as input to a proposed CNN, the two given point cloud

segments are matched. This approach states well performance on sparse LiDAR data (tested

until 12.5% density), but also states a systematic deprecation the sparser the data gets.

In general, manual descriptors rely on the properties of the local neighborhood and depre-

cate significantly for sparse point clouds, geometrical as well as statistical. Especially for the

radar data at hand, e.g. surface planes or even surface normals can not be processed du to

the lack of radar detection density. Learned descriptors are generally more robust to spar-

sity, since their local context is computed by convolutions or concatenation. Nevertheless,

due to the variable sparsity of the radar point cloud in real-world conditions, the descriptor

distinctiveness is unknown. As a result, it is assumed not to rely on descriptors for a robust

localization.

Radar Object Detection: Instead of relying on point cloud descriptors for a robust local-

ization, the larger context of the point clouds is considered. Aiming to recognize a landmark,

either in the context of localization, or more generally to recognize an object in raw sensor

data, there exist a variety of approaches beyond simple descriptors. Ranging from sensor

data to be represented in a grid structure or image introduced in Section 4.2.1, to the other

end of direct processing of the sensor data by deep-learning methods in Section 4.2.2, the
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solutions, mainly applied for radar-based object detection are diverse and might even be

combined with other raw data processing steps.

Considered in the context of the localization problem, the limited static object detection

approaches lack detailed classes and lack real-time capability to be applied for the static

radar environment perception and localization. Hence, the object scale of radar perception

cannot fulfill the requirements for a radar-based localization.

Point Cloud Scan Matching: Instead of recognizing specific objects, the whole point

cloud can be considered for localization. The state-of-the-art point cloud matching ranges

from classical mathematical distance formulations to learning systems, similar to the already

mentioned 3DSmoothNet [76].

As classical standard solution, the Iterative Closest Point Algorithm (ICP) is commonly ap-

plied in the context of SLAM, e.g. in ORB-SLAM [59] or Suma++ [39]. With an initial guess,

the most overlap of two point clouds is calculated by an iterative quadratic distance error

minimization. This registration process relies directly on points to be associated. The ICP is

simple to implement, quick, but tends to yield sub-optimal registration results at presence of

noise or outliers. The quadratic error formulation might yield convergence to local minima

in such cases.

Global optimal convergence is achieved by Go-ICP [233], independent of the initial position.

By searching the whole parameter space by an Branch-and-Bound procedure, the optimal

solution can be found even for noisy data. Drawback of the Go-ICP is the non-real-time

run-time, arising from solving iteratively multiple registration processes for sub-sets of the

point clouds.

In to improve the data association, the related work of Chen and Medioni [41] suggests point

abstractions to add robustness to the data association. A form of abstraction is the representa-

tion as a distribution. Magnusson [137] suggest the Normal Distribution Transform Matching

(NDT) as alternative registration class and utilizes the procedure to register loops [138]. Dis-

cretizing the target point cloud in a 3D voxel or 2D grid, the core idea is to represent the

points per grid cell as normal-distribution and match this target distribution with the source

point cloud by a k-NN search. With the mathematical formulation of normal distributions as

representation of the point set, the effect of outliers and noise is systematically reduced.

Hong and Lee [92] extends the normal distribution discretization to the source point cloud,

yielding a Model-to-Model matching of two normal distributions, achieving improved ro-

bustness against outliers.

Similar to the problems of sparse neighborhoods for descriptor processing, sparsity in point

clouds yields problematic normal distribution representations. The more points per cell are

available, the more precise the normal distribution is describing the set. Schulz and Zell [191]

adapt the NDT to sparse LiDAR point clouds of an occupancy grid. Jun et al. [107] avoid
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empty or over-populated cells, geometric representation of whole objects, and improve run-

time performance by proposing dynamic voxel sizes, depending on the sensed geometry in

the point clouds. This method is tested on RGB-D and LiDAR point clouds.

As radar-specific related work on distribution matching, the efficient multi-resolution Correl-

ative Scan Matching (CSM) [154] is modified by Li et al. [125] to be applied in a radar SLAM

context, matching the radar scan to a radar grid map. As Scan-to-Map procedure, the sug-

gested work applies a mapping of subsequent radar scans to a map, in order to compare this

dense map as distribution with the radar scan. The suggested method is applied on a single

front-facing radar.

Similar to the 3DSmoothNets’ registration CNN and applicable to the extracted features pro-

posed by 3DSmoothNet, the Teaser++ [232] registration algorithm outperforms the registra-

tion of 3D point clouds with Go-ICP. Formulated as Truncated Least Squares (TLS) problem,

the graph-theoretic formulation decouples the estimation of scale, rotation, and translation.

Achieving real-time applicable run-time, significant outlier robustness of assumed corre-

spondences, the necessary of correspondences disqualifies the methods from sparse radar

scans which pose the previous problem to define a feature extraction from radar scans.

Learnable approaches such as the Deep-ICP [134] work on this gap, combine feature extrac-

tion based on PointNet with the ICP registration with SVD. The hard feature correspondences

are weighted based on a saliency map in order to emphasize strong correspondences. Besides

achieving an improved overall registration error compared to ICP and Go-ICP, the registration

precision of the end-to-end trainable Deep-ICP decreases at an overall increased run-time.

Yew and Lee [235] propose RPMNet to improve the problems of local ICP convergence due

to the effect of noise, outliers on hard correspondences. RPMNet applies one network to

find soft correspondences in form of a correspondence matrix from geometric and local in-

formation, and proposes a second network to estimate annealing parameters. The method

increases a robust initialization, handles missing correspondences and copes well with oc-

cluded point clouds at reasonable run-time. Applying hybrid features, the RPMNet architec-

ture utilizes handcrafted features 4D point pair features (PPF) [179, 51] as additional input

to the PointNet feature extraction of the point cloud. These handcrafted features are again

sources of severe instability, based on the radar point cloud sparsity.

OverlapNet of Chen et al. [38] works with dense LiDAR point clouds in a SLAM context which

typically involves subsequent scans, typically overlapping by a large fraction. Achieving fair

registration results on dense and accurate LiDAR data, especilly for loop closures [40], the ap-

plication to low-density point clouds is questionable. OverlapNet applies RangeNet++ [145],

which relies on a cylindrical projection of the point cloud as range image. Similar to the

semantic segmentation in Section 4.2.1, this representation is unsuitable for sparse radar

data.
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The presented state-of-the-art registration procedures reveal the problematic transfer of

these methods to an application relying only on sparse radar point clouds. Providing ro-

bustness to radar noise and radar outliers, being independent of point cloud sparsity in the

local neighborhood, the NDT registration promises the best applicability.

Learn-able registration algorithms have the potential to add robustness to the registration

procedure but are not yet tested for sparse or noisy data. Especially a real-time capable

feature extraction of normal distributions and additional radar attributes such as radar cross

section, semantic segmentation labels, or others appear to be promising future research.

5.2.2 Radar Simultaneous Localization and Mapping

With the before introduced radar features and registration schemes, the single radar scans

can be spatially related in order to form a radar map of the environment. With the focus

on radar, the general foundation of SLAM state-of-the-art is not presented in the section,

but instead exclusively specific difficulties of radar SLAM is discussed. Interested readers

on SLAM basics are referred to Thrun et al. [213], Grisetti et al. [82], while Cadena et al.

[29] summarizes the past of SLAM developments. Specific radar SLAM approaches will be

presented in this section, but also general SLAM extensions to respect semantic information

in the SLAM context.

Marck et al. [140] implements a landmark indoor localization radar SLAM, based on a Grid

Mapping Particle Filter (GMPF) [81], as one of the first radar SLAM works. The authors prove

the general applicability of radar SLAM, using one rotating FMCW radar sensor. Converting

the radar data to a 2D image, the ICP registration is coupled with a particle filter to refine the

ego-motion estimates.

Extending the sensor-set to four FMCW radar sensors mounted on a real-world vehicle,

Schoen et al. [189] combine the 360◦ 2D point cloud and construct an occupancy grid map

as environment representation. Achieving high positioning accuracy of 1.12m over an "8"-

shaped 400m test track with loop closures, at real-time capability, this approach serves as

successful real-world test.

Schuster et al. [195] develops a first BASD [172] descriptor landmark-based radar graph-

SLAM on similar data as Schoen et al. [189]. The achieved mapping performance is rated

as succesful, while the localization performance yields comparable results of a mean error

of 1.0m over an "8"-shaped 400m test track with loop closures, but fails to reconstruct the

scene partially.

Hong et al. [93] test the radar SLAM capabilities under harsh weather conditions, such as

heavy rain and snow. The applied high resolution, rotating radar data is applied from the

Oxford RobotCar Radar Data Set [15] and MULRAN [115] data set and represented as 2D
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radar image data. Image feature extraction based on BLOB-features is paired with graph-

based outlier-detection to detect and exclude dynamic objects. An ICP is applied to register

these features and to detect loop-closures from radar image-derived histogram descriptors.

The method is compared to state-of-the-art LiDAR approaches as SuMa++ [17], and achieves

comparable results of averaged ≈ 2m per a 100m segment.

Data association based on power-range spectrum defined landmarks and geometric inter-

landmark properties, respected in the matching by Cen and Newman [32]. In order to esti-

mate the ego-motion, the radar detections of a rotary radar sensor are assembled according

to the inverse estimated ego-motion. The subsequent works of Cen and Newman [33],Aldera

et al. [8] and Barnes and Posner [14] estimate the radar odometry as well, based on gra-

dient radar image key-point feature matching. Further works address the radar-odometry

estimation by weakly-supervised attention learning [7].

Mainly focused on imagery radar-based place recognition are radar-image based CNNs, e.g.

the NetVLAD [180] or the radar image sequence-based fully connected network of Gadd et al.

[68].

The PhaRaO framework [158] suggest also to represent the radar data as 2D image and esti-

mates the radar odometry. But instead of feature extraction, the image is further converted

into the frequency domain. Applying a Fourier-Mellin-Transformation on subsequent radar

images, the rotation and translation estimation is decoupled. Achieving real-time run-time,

the achieved positioning error yields ≈ 13m over a 2000m test track. The procedure depends

on a dense radar point cloud, in order to generate a significant Fourier domain image and

estimate a robust radar motion estimate.

Holder et al. [90] is the first landmark-free formulation of a radar graph-SLAM. Besides the

radar point cloud based ICP registration, also the wheel-based odometry estimate is included

for the graph construction to guess the vehicle motion. Also, the radar point cloud sparsity

is overcome by a windowing approach to accumulate subsequent radar point clouds to a

sub-map. Similar to the finding of Li et al. [125], the authors find that radar sparsity causing

erroneous registration can be improved by matching of accumulated sections or sub-maps,

achieving higher registration accuracy. Moreover, Holder et al. [90] combines the radar image

transformation to extract GLARE-features [87], similar to the radar SLAM of Hong et al. [93].

The authors have tested a single front-facing radar in a real-world scenario, mapping the

environment to a point cloud map. To focus on specific radar features is questioned by the

authors. Due to the variety of radar reflections, the model-free, landmark-free SLAM solution

is emphasized.

Narula et al. [151] proposes an automotive radar-only localization with respect to a given

urban radar environment map and achieves a localization error below 0.5m. The point cloud
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registration is based on batching subsequent radar scans and apply correlation-maximization

to yield globally-optimal registration even for automotive radar noise and clutter.

Among these state-of-the-art SLAM works, none includes semantic information of radar.

Semantic Simultaneous Localization and Mapping (SLAM): Besides the 2D/3D spatial

sensor data, additional data dimensions e.g. semantic labels, are a valuable environment

description for SLAM systems.

Early works represent the environment geometry as semantic quadrics in a graph-SLAM

formulation [152], but do leave the semantic information as future constraint of higher order

geometric constraints on matching quadrics.

Bowman et al. [23] includes the association of semantic landmarks as expectation maximiza-

tion problem, coupled to the second problem of a classical SLAM optimization. The semantic

key-point information of a camera image is incorporated as semantic feature dimension into

the existing visual GTSAM graph-SLAM framework. The extension work of Bowman et al. [24],

further researches multiple semantic key-point features per objects and general environment.

The authors prove that the additional semantic feature dimension does not add SLAM com-

plexity on the underlying factor graph-formulation, but improved the overall positioning

accuracy.

Doherty [56] combine the before mentioned works with a marginalization of the SLAM graph,

yielding a practical semantic SLAM evaluation based on visual data.

Other visual SLAM approaches e.g. DS-SLAM [239] are mainly based on semantic key-point

features and extend the works of the ORB-SLAM [149] family.

As discussed earlier, key-point similar radar-descriptors or radar features are instable due to

the radar point cloud sparsity.

The works of SuMa [17] and SuMa++ [39], incorporate the semantic information fundamen-

tally different and are developed on LiDAR point clouds. Instead of considering the semantic

information as condition, the authors apply a semantic weighting directly on the ICP registra-

tion. In the ICP registration, the point-correspondences are weighted directly, based on their

semantic class. Hence, no abstract descriptor is necessary, but the point cloud with semantic

labels from RangeNet [145] itself can be applied.

Similar to the semantic weighting, the work of Zaganidis et al. [241] and Zaganidis et al. [242],

both suggest to support the registration process by an inclusion of semantic attributes in the

NDT registration. Additionally, the potential application of a semantic histogram descriptor

as loop-closure indicator is applied, similar to the loop-closure detection by a histogram

feature of Holder et al. [90].
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Approach Evaluation: The advances in radar data processing include a first semantic

segmentation, which enables to combine the radar point cloud SLAM with this semantic

information as next step. To the authors best knowledge, the combination on a multi-radar

sensor set delivering 3D radar detections with the direct semantic segmentation of e.g. Radar-

Net is a comparably new research field. The transfer of classical SLAM approaches e.g. from

LiDAR, to solve a radar SLAM are not trivial, due to the severe differences of the sparse radar

data. Radar descriptors, radar features or radar object detection are not applicable or depre-

cate due to the low radar density.

Expecting the noisy and low density radar point clouds to be efficiently represented by nor-

mal distributions, the NDT approach is selected to be paired with the semantic segmentation

labels of the radar. Selecting at a model-free, generally applicable radar SLAM approach by a

combination of a semantic NDT registration, wheel-based odometry estimation, combined

in a pose-graph SLAM formulation, a robust and semantically consistent data-association is

assumed. By a radar specific extension of the mapped regions, the idea of sub-map match-

ing is aimed to improve the SLAM loop closure and avoid local wheel-odometry induced

SLAM drift. As further contribution, the applicability of the semantic weighing or a semantic

seperation of the NDT-based radar registration are discussed.
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5.3 Semantic Radar SLAM Method

In this section SLAM modifications are introduced, which are evaluated along experiments in

Section 5.4: The radar raw signal filtering cascade is designed as three stage pre-processing.

For the integration of the live semantic segmentation inference discussed in Chapter 4, Sec-

tion 5.3.1 introduces a radar sensor accumulation to be applied before the segmentation

network enriches this ego-motion compensated radar point cloud with point-wise semantic

labels.

The subsequent regional pre-filter of Section 5.3.2, defines a general region of interest (ROI) in

which the mapping-relevant radar detections are located. This pre-filter is designed as pass-

through filter, including e.g. a threshold of SN R, and its effects are found in the experiments,

Section 5.4.1. Furthermore, a second spatio-temporal filter module of Section 5.3.3 reduces

remaining clutter, contained multi-path reflections and other artifacts to a minimum as

Section 5.4.2 shows. Filtering spatially unstable detections builds the basis for a robust static

environment mapping. With the semantic labels available, this filter step also considers the

semantic consistency to remove semantically inconsistent radar detections.

Section 5.3.5 explains the construction of the graph SLAM formulation of different edges,

partly evaluated in Section 5.4.3, followed by the discussion of two semantic NDT registra-

tion schemes in Section 5.3.4. Two registration schemes to weight or separate the semantic

classes in the NDT registration, see Section 5.3.4.2 or Section 5.3.4.1 respectively, are tested

in Section 5.4.4.

An overall evaluation of the developed semantic radar SLAM is found in section 5.4.5.

5.3.1 Accumulation

In order to reduce point cloud sparsity in a scan, the vehicle odometry is applied as ego-

motion compensation to spatially concatenate multiple temporally subsequent radar scan

sequences. For the independent i = 1...6 radar sensors delivering per sensing cycle at time ti

a radar point cloud Pradar,i (ti ) in sensor coordinate system Si , ego motion compensation is

applied to assemble the single sensor point clouds Pradar,i (ti ), with respect to the ego-vehicle

motion. Based on wheel odometry, a pose transformation of the radar scans to a reference

frame Vref

TSi (ti ) = TV (tref)
−1 TV (ti ) TSi , (5.1)

is applied for each single radar sensor point cloud. Then, the point cloud is shifted by this

transformation

Pradar,i ,Vr e f = TSi (ti ) Pradar,i ,Si . (5.2)
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For the accumulation, the latest of all i = 6 radar scans is chosen as reference scan which

defines tr e f = max(ti ) for i = 1, ..,6.

With this reference projection, the resulting assembled point cloud is formalized as

Pradar,i ,Vref =
⋃

i
Pradar,i ,Vref . (5.3)

In order to apply the wheel-based ego-motion compensation, a local consistency of the

wheel-based odometry is assumed. Based on Werling [223], this assumption is valid at a

sampling frequency at 10 H z and ego velocity below 15kmh.

5.3.2 Pre-Filter

The first filter stage is rule based. Motivated from a sensor integration simulation of the

bumper-integrated sensors, systematic deflections in very close proximity of each sensor

occurs, see Section 2.1. Hence, filtering too close detections and detections out of a reason-

able range removes systematic misleading detections. For a mapping of the environment,

especially considering parking scenarios, the range is limited to 40m to map the near-range

of the vehicle first, before increasing the scene range.

Summarized in Table 5.1, the applied parameters are combined as logical AND to define a ROI

for the mapping.

Table 5.1: Rule based pre-filter parameters.

Attribute Minimum Maximum

Radius r 0.2m 40m

Height z −0.1m 3m

SNR 20 -

The result of the rule-based pre-filter is shown in the experiments section of this chapter, see

Figure 5.15.

5.3.3 Spatio-Temporal Filter

Core of the filtering is based on the assumption of static radar detections in global space

over temporal subsequent scans, based on sensor motion compensation. As filter core idea,

the spatial occurrence of static detections is addressed. Considering subsequent ego-motion

compensated sensor scans, the global position of the areas in which radar detections occur,

gain probability to describe a real object with each nearby subsequent detection. Similar to
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the plausibility label in the automated labeling Section 3.3.2, a threshold based point-wise

binary qualifier ŷfilter = 1 allows a spatio-temporal stable radar detection to pass the filter. As

distinguishing characteristic, multi-path reflections or clutter occurs scattered in spatial and

temporal dimension and gets filtered.

Figure 5.1: Spatio-temporal filter principle with binary label ŷfilter, j to determine static, stable radar detections
and filter instable detections.

Three modules comprise the filter implementation. First, the detection model discretizes the

radar point cloud Pradar in a Cartesian grid representation. For each grid cell a detection

probability pd (Gi , t ) is defined, based on the points per grid cell Gi .

The second activation model defines a memory functionality to memorize active areas. The

detection probability pd (Gi , t ) per cell is processed to an activation probability pa(Gi , t ) per

cell.

As final stage, the perception model compares the radar point cloud Pradar to the percep-

tion probability function per cell pp (t ,Gi ). If the detection probability pd (t ,Gi ) exceeds a

threshold, the binary qualifier ŷfilter = 1 is granted to pass the filter finally.

1. Detection Model: The 3D radar point cloud coordinates (x, y, z) are discretized into a

2D grid in the Cartesian coordinate system V f to (x f , y f ) with k semantic layers, see Figure 5.1.

The goal of this grid discretizatiation is to calculate per point cloud Pradar a grid G with a

detection probability pd (Gi ,k , t ) per grid cell Gi of semantic class k. The 2D Cartesian grid
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origin of V f is fixed to the moving vehicle reference coordinate system "base link". The grid

origin of V f is moving with the vehicle odometry, but its orientation remains globally fixed

with respect to the global coordinate system "odom".

In order to enable a later separation of the radar point cloud into its semantic components,

each grid cell Gi of the grid G, contains six semantic dimensions k ∈ [0,5]. According to

its semantic class k, each radar point is associated with its corresponding grid index i and

semantic dimension k, see Figure 5.2.

Figure 5.2: 2D cell discretization of the 3D radar detection points with processing steps to the calculation of the
detection probability pd (Gi ,k , t ). Colors according to the semantic radar classes of Table 3.2.

Over all radar points pradar(Gi ,k , t ) per cell Gi ,k (t ), the summarized signal power sGi (t ) can be

calculated as

sGi (t ) = ∑
pradar(Gi ,k ,t )∈Pradar(t )

Psig(pradar(Gi ,k , t )). (5.4)

As the signal power is correlated according to Equation 4.1, the summarized signal power

sGi (t ) can be interpreted as reflectivity indicator per grid cell Gi .

To yield a normalized value per cell, this normalization to the interval [0.5,1.0] is introduced

s̄Gi ,k =


smin for sGi ,k < smin

sGi ,C f for smin ≤ sGi ,k < smax

smax for smax ≤ sGi ,k .

(5.5)

With the normalized signal power per cell, the detection probability pd (Gi ,k , t ) is defined.

In order to yield interpretable values in the interval [0.5,1.0], Equation 5.6 is applied. The

selection of this interval is motivated by the definition of an activation model.

pd (Gi ,k , t ) = 0.5+0.5
s̄Gi ,k − smin

smax − smin
(5.6)

With pd (Gi ,k , t ), at time t a formal definition of a detection probability per cell Gi for each

semantic class k is given. A minimum of pd (Gi ,k , t ) = 0.5 represents the highest uncertainty if

the detection in this cell are plausible or artifacts. With pd (Gi ,k , t ) = 1.0, the highest detection
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Figure 5.4: Position uncertainty illustration of the lateral d̂y and radial d̂r uncertainty components. Exemplary
plot of a point detection, based on the sensor error of Figures 2.13 and 2.14.

probability is reached, defining plausible detections per cell. An exemplary illustration of the

normalization and limitation of the detection model can be found in Figure 5.3.
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Figure 5.3: Illustration of the perception probability pd (Gi ,k ) per cell-wise accumulated signal power sGi ,k , plot-
ted for an exemplary discretized filter cell Gi ,k , with smin = 40, smax = 220.

The definition of Equation 5.5 depends on the limit values of smi n , smax and the grid size dx of

the cells Gi ,k . Deriving a probability measure of a detection, the sensor specific measurement

uncertainty is taken as reference. The maximum azimuth angle σ̂φ,max deviation is specified

as 1.5◦.

Assuming normal distributed measurement errors, a double standard deviation yields±2σ̂φ,max = ±3.0◦

while still covering 95% of all detections. Based on these assumptions, for the maximum de-

tection range of rmax = 40m for the SLAM, a maximum lateral uncertainty d̂y = 0.28m is

calculated:

d̂y = 2 · t an
(
σ̂φ,max

)
rmax. (5.7)
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Analogeously, the uncertainty in radial distance σ̂r = 0.03m at rmax = 40m yields a value of

d̂r = 0.06m. As a result, a plausible and spatially stable radar detection needs to comply with

the following Equation:

d̂x > max(d̂r , d̂y ) = max(0.06m,0.28m) . (5.8)

This evaluation defines the grid cells to be discretized to dx = 0.3m.
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Figure 5.5: Probabilty of Signal Power s intensity (blue) and accumulated curve (orange) of all detections of
a typical recorded scene. smin at pcum = 5%, smax at pkum = 90% cumulative frequency. Figure
extended from [MT5].

In similar fashion, the signal power normalization values are derived. Figure 5.5 illustrates

the signal power range over all received radar point clouds in an exemplary driving scene.

From the relative occurrence of the signal power values, the lower 5%-quantile defines smin =
20, whereas the 90%-quantile defines the maximum signal power at smax = 270. Based on

the plausibility detection method of Gamba [70], the higher saturation of the upper-end

formalizes a higher detection plausibility of densely populated and strong reflective cells.

2. Activation Model: This module receives the detection plausibility and removes tempo-

rally instable detections. Based on the assumption that stable detections occur potentially

in the same region as in the previous scans, so called active areas are tracked. The activation

probability pa(Gi ,k , t ) formalizes the a-priori knowledge from previous scans.

The grid discretization of the detection model is re-used and extended to an activation di-

mension. In each cell, the temporal course of the resulting detection probability pd (Gi ,k , t ) is

tracked over subsequent radar scans. Hence, temporally consistent high detection probabili-

ties increase the activation score of a cell, whereas absent radar detections in a cell, detection
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probability of pd (Gi ,k , t ) = 0.5, continuously decreases the activation score per cell. For each

missing detection, and decreasing activation score of a cell, the expectation to receive plausi-

ble detections in this cell decreases. Equation 5.9 formalizes the behaviour.

pa(Gi ,k , t ) = min

(
K d

t ·K d ,s
Gi

·pa(Gi ,k , t −1) + log
pd (Gi ,k , t )

1−pd (Gi ,k , t )
, 1

)
. (5.9)

As Logit of the detection probability, the second term contains the filter input [16]. For each

time step t with a high detection probability pd (Gi , t ), the activation probability pa(Gi , t )

increases.

The first term describes the dynamic decay of the activation probability. This decay formal-

izes two independent mechanisms which arise with the temporal decay and the semantic

segmentation of the radar detections.

The temporal decay factor K d ∈ (0,1) is consistently applied for all cells with pa(Gi , t ) > 0 per

time step. Whereas semantic incontinuities between the the current radar scan and previous

activation grid are tracked. Inconsistencies per cell are punished with the additional dynamic

decay factor K d ,s ∈ (0,1]. If in a cell Gi all radar detections are consistently labeled as class

C , the semantic decay remains inactive K d ,s = 1.0. In the case of multiple different semantic

detections are counted per cell, the decay factor K d ,s < 1.0 is set for this cell. Equation 5.10

formalizes the penalty factor.

K d ,s(Gi , t ) =
 K d ,s for

∑CN
k=1

∣∣{pa(Gi , t ,k) > 0
}∣∣> 1

1 else .
(5.10)

As a result, for all not perceived classes in a cell Gi the decay factor is increased. If radar detec-

tions with different semantic label occur at the same cell overt time, the formulation of decay

yields a decreasing activation probability. The additional semantic radar information allows

to add a semantic check to the spatial consistency, both considered with time dependency.

Figure 5.6: Temporal activation model depicted as modular blocks: Input-, Delay- and Dynamics-Component
as illustrated in [MT5].
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This formulation, visualized in Figure 5.6, causes a delay. Hence, the output of the activation

model delivers an activation probability pa(Gi , t −1) for the time step t −1. This activation

map serves as a-priori input for the subsequent perception module.

The delay results from the ego-vehicle motion and a necessary grid cell shift according to the

vehicle motion. With the selection of a vehicle-fixed, but global orientation constant Carte-

sian coordinate system, an unambiguous association for each cells is possible. According to

the vehicle motion model in 2D coordinates and equal tile sizes, the overlap and association

of shifted cells results in a pure translation. Equation 5.11 describes the resulting translatory

motion ta , discretized by the grid cell size d x, based on the continuous vehicle translation

components tV .

ta =


1 0 0

0 1 0

0 0 1

 tV (t )− tV (t −1)

d x
(5.11)

A discretization in polar coordinates would result in unambiguous association due to e.g.

different cell sizes. Similar, if the grid orientation would move also with the vehicle motion,

the rotated cells would result in a similar unambiguity of overlaps and cell association.

3. Perception Model: As final stage of the spatio-temporal filter, the perception model

processes the detection probability pd (Gi ,k , t ) with the activation probability pa(Gi ,k , t ) to a

perception probability pp (Gi ,k , t )

pp (Gi ,k , t ) = pa(Gi ,k , t −1) ·pd (Gi ,k , t ). (5.12)

This perception probability is projected back to each individual radar point j in the point

cloud Pradar(t ), yielding a binary filter score ŷfilter, j (t ). As constant threshold value pp,th = 0.5,

the perception filter per point j , in a cell Gi , for the semantic class k, can be formalized:

ŷfilter, j (t ) =
 1 for pp (Gi ,k , t ) ≥ pp,th ,

0 else.
(5.13)

In case of a high detection probability, the case pp (Gi ,k , t ) = 1 results in a filter bypass. This

bypass allows highly reflective areas, cells with high cumulated signal power, to pass directly.

These grid tile are probable to contain according to the detection model a physical object.

The qualification by a saturated value ss , allows to bypass the temporal delay characteristic

of the spatio-temporal filter.
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The resulting temporal equalization yields a filter interpretation as a discrete PT-element as

in control theory. With pa(Gi ,k ) being limited, and both factors K d
t ,K d ,s in Equation 5.9 to

decay asymptotically, the filter is temporally stable [46].

5.3.4 Semantic NDT Radar Scan Matching

As basis for graph based SLAM problems, an estimation of the relative motion between two

subsequent poses is necessary. Independent from which sensor the relative transformation

and rotation is derived, a robust and accurate SLAM input is desired. In the world of point

cloud based motion estimation or pose estimation, the relative transformation between two

corresponding rigid scans is registered [137, 138, 139]. This registration of point clouds is

mainly based on a distance measure, describing the necessary spatial translation or rotation

of the source point cloud to match the target point cloud. Rigid point cloud registration is

mainly applied for dense LiDAR point clouds or other sensor data, describing environmental

objects with a very high accuracy and low noise [137, 138, 139]. In contrast, the described

radar sensor specifics (e.g. noise, clutter, ...) complicates a robust and precise radar point

cloud registration. Hence, the registration of the defective radar point clouds yields sub-

optimal results and local minima, instead of reaching the global registration minimum. As a

result, the potential registration results yield a non-conforming vehicle motion.

Figure 5.7: Comparison of translational and rotational error of commonly applied point cloud registration
procedures ( ICP [133], GICP [196], NDT [137], and RPM [235]) for an exemplary radar point cloud
registration.

Figure 5.7 illustrates a comparison of spatial error measures for commonly applied point

cloud registration methods (ICP [133], GICP [196], NDT [137], RPM [235]). For the test setup,

the initial guess of the relative translation sampled with stochastic deviation of significant

3σ around the true relative translation. The NDT registration outperforms other methods on

real-world noisy and sparse radar point clouds [137, 138, 139]. Based on these findings, the

NDT registration is selected to be applied in this work.
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To improve the data association of the registration step, Suma++ of [39] proposes the in-

clusion of the point cloud’ semantic information content in the registration of associated

point pairs. Specifically developed for dense LiDAR point clouds, the applied point cloud

registration procedure is not applicable to sparse radar point clouds [139]. Nevertheless, the

general idea can be transferred and gets in this work applied on radar point clouds. Based

on a semantic segmentation of a point cloud, each point contains a semantic label property

which is used to find corresponding points of the same label. The semantic label association

is independent from the initial relative transformation guess or optimization step.

Figure 5.8: Illustration of the classical spatial radar point cloud registration and exemplary results.

Figure 5.9 displays how semantic labels help to find corresponding structures in a refer-

ence point cloud, compared to the pure spatial registration concept of Figure 5.8. With this

example, also an example is given for a misleading registration based only on spatial infor-

mation. Especially repetitive structures might be sensed as a resembling, confusable and

not assignable subset in point clouds. Registering based on a distance measure, resembling

shapes might be mistakenly associated.

Figure 5.9: Illustration of the effectiveness of the semantic radar registration, yielding a semantically compli-
ant environment map, compared to Figure 5.8. Colors according to the semantic radar classes of
Table 3.2.
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The NDT registration is discussed with two potential semantic SLAM extensions to respect

the semantic radar labels.

5.3.4.1 Weighted Semantic Classes

The NDT registration procedure aims to minimize a target function, consisting of associated

normal distributions of the source and target point cloud, see Equation 2.51. Based on the

assumption of a rough initial guess and a euclidean distance limitation for associations,

practical implementations are defined [137, 92]. Hence, most implementations find the links

Li of the source scan Gi ,k with the target scan in the direct neighborhood normal distributions

of Ĝ of the target scan, resulting in a k-NN normal distribution search:

Li = k-NN(Gi ,k ,Ĝ) (5.14)

With semantic information as additional dimension for the data association, the NDT target

function FN DT of Equation 2.51 can be modified. Including only associations with matching

semantic label Ci , Equation 5.15 results

Fsem(R,t) = ∑
Gi∈G

∑
G̃k∈Cn

Ñ (µi ,k ,Σi ,k ). (5.15)

Equations 5.14-5.15 suggest to utilize the semantic labels to select relevant points in the

neighborhood. With a distance based selection, the metric is required to incorporate spatial

and label information. With k-NN methods, often attributes are combined by a weighted

method. But to define a label-specific weighting scheme is not applicable in general.

In contrast, applying a weighing scheme based on the semantic labels for spatially associated

points or point sets, e.g. semantic consistency, can be leveraged. With this approach, data

associations are checked for semantic consistency and therewith the pure spatial concept of

k-NN based association selection gets improved. Not only checking closest neighbors but

nearby detections of the same class enables a semantic association reasoning. As a result, in

Equation 5.16 the additional label-weighting wi ,k is introduced as wi ,k = 1 for the case of an

equal label:

Fsem,w (R,t) = ∑
Gi∈G

∑
G̃k∈Ci

wi ,kÑ (µi ,k ,Σi ,k ). (5.16)

Per cell Gi the ideal semantic label CGi corresponds to the inlier point cloud sub set PGi and

is given by the function SEG (·),
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CGi = SEG (PGi ). (5.17)

With an approximating classification module, the absolute consistency of points in a cell

can not be granted. In addition, labeling of clutter as semantic unknown=Cu can occur or

remain in the point clouds to match even after the spatio-temporal filtering. In general, a cell

Gi might contain points pr ad ar,Gi of multiple classes c ∈ Nc , so a majority class is counted,

excluding the unknown labels Cu .

SEG (PGi ) = argmax
c∈Nc \Cu

∣∣{pr ad ar,Gi ,c
}∣∣ (5.18)

It is assumed that all close by labels, excluding unknown labels Cu , sufficiently describe the

semantic label of the environment. Nevertheless, the spatial information of points with un-

known label Cu are considered for the discretization of the point clouds’ normal distribution.

As a result, for two associated cells, the weighting factor wi , j depends now on their relevant

majority of semantic labels:

wi , j (CGi ,CG j ) =
 CGi f or CGi =CG j

1−CGi f or CGi 6=CG j

(5.19)

Outlook: The weighing factors wi , j are useful for a loop-closure in an area which has

undergone changes in the meantime, e.g. a vehicle was moved. Dynamic objects in question

can change their location in a scene over time. The weighing factors as defined above indicate

which parts of the scene are still both spatially and semantically matching. Low weights

indicate a change in the environment and the semantic label of a cell, hence these regions are

not relevant for the registration of the changed scene. Further, such cells with a low weighing

in the source scan can be deleted in the target scan to compare only the consistent scene

structure. If the weight wi , j falls below a threshold of wupd ate , the points of the source point

cloud are being deleted:

P̃Gi =;. (5.20)

The data-association is formulated as Gauss-Newton problem, further references are found

in the fundamentals textbook of Jr. and Schnabel [106]. Since associations are made under

uncertainty, no analytical solution can be formulated, but the following iterative formulation

for the general problem set. Vector p describes the incremental transformation in rotation

angles around each axis (α,γ,ψ) and translation components in each coordinate (tx , ty , tz)

p =
[
α γ ψ tx ty tz

]T
. (5.21)
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With the Hessian matrix H, and gradient g defined for the target function FN DT of Equa-

tion 5.15,

gm = ∂FN DT

∂pm
(5.22)

Hm,n = ∂FN DT

∂pm∂pn
, (5.23)

the linear equation system to solve p can be formulated as

Hm,n∆p = gm . (5.24)

Incrementally solving this equation yields a solution p∗

p∗ ← p ← p +∆p. (5.25)

The mathematical deduction of the Hessian matrix and gradient can be found in Peter and

Wolfgang [162].

With the introduction of the weighing factor wi , j an additional variable is introduced, yielding

into a necessary adaption of the Hessian matrix and gradient formulation.
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The summation in both the semantic target function Fsem and the weighted target function

Fsem,w can be split into a sub terms Fi ,k and Fw,i ,k respectively.

Fsem,w (R,t) = ∑
Gi∈G

∑
G̃k∈Cn

wi ,k Ñ (µi ,k ,Σi ,k )︸ ︷︷ ︸
Fw,i ,k

(5.26)

Fsem,w (R,t) = ∑
Gi∈G

∑
G̃k∈Cn

Ñ (µi ,k ,Σi ,k )︸ ︷︷ ︸
Fi ,k

(5.27)

The derivative of the semantic target function Fi ,k is given as

gsem,m = ∂Fsem

∂pm
= ∑

Gi∈G

∑
G̃k∈Cn

∂Fi ,k

∂pm
, (5.28)

Hsem,m,n = ∂Fsem

∂pm∂pn
= ∑

Gi∈G

∑
G̃k∈Cn

∂Fi ,k

∂pm∂pn
. (5.29)

As the semantic based label weight wi ,k does not depend on the parameter vector p, the

derivative of the weighted semantic target function Fw,i ,k is computed analogously to the

Equations 5.28-5.29. Only the weighing factor wi , j needs to be applied on both equation

arguments:
∂Fsem,w

∂pm
= wi ,k

∂Fsem

∂pm
, (5.30)

∂Fsem,w

∂pm∂pn
= wi ,k

∂Fsem

∂pm∂pn
. (5.31)

This formulation is applied and compared to an alternative version to incorporate the seman-

tic label in the registration process, explained in the following section.

5.3.4.2 Semantic Separation

Besides the section above, explaining how to emphasize semantically corresponding data

associations by a weighting factor, this section introduces an alternative. Instead of matching

the spatial distribution of all label points at once, this section elaborates a matching of seman-

tic sub sets per individual semantic label. In order to consider each semantic class as separate

point set, the registration can be treated in parallel, for each semantic class independently.

Source point cloud P̃ and target point cloud P are split in semantic label point sets according

to the point labels. Function SE(·) returns the semantic class per point

P̃G̃i ,Ck
= {

P̃Gi |SE(P̃G̃i
) =Ck

}
, (5.32)

PGi ,Ck =
{
PGi |SE(PGi ) =Ck

}
. (5.33)
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For each semantic grid, the sub-set of points are now also discretized separately as NDT. The

resulting parallel channels of each semantic label to be registered yields an adaption of the

target function in Equation 5.15 to the separated semantic target function Fs . The summation

needs to be adapted to sum all correspondences per class:

Fs(R, t) =
|Nc |∑
k=1

∑
i∈Gk

∑
l∈Li ,k

N̄ (µi ,k ,Σi ,k ) (5.34)

Index i ,k defines the registration of the i−th normal distribution of the source scan with the

k−th semantic normal distribution of the target scan.

With the semantic separation, only neighborhoods of the same semantic class k is searched

for corresponding links Li ,k

Li ,k = k-NN(Gi ,k ,G̃k ). (5.35)

With this formulation, the points labeled as unknown are not ignored or treated seperately,

but are treated as any other semantic class.

Unfortunately, based on the radar sensor specification, the uncertainty of points is a function

of perception distance. I n the test vehicle setup, not only far range detections but also very

close detections in sensor proximity yields increased range-uncertainty. Similar to the per-

ception with other sensors, the same scene but from a different perspective points e.g. during

a narrow passage and how it looks from a distance, can yield different semantic labels. With

different semantic labels the association would not be possible in the semantic separation

case.

For the implementation of the Hessian Hs and gradient gs , the same Equations 5.29 for H

and Equations 5.28 for g hold, with factor wi , j = 1 for the derivatives in Equations 5.31-5.30.

5.3.5 Graph Front-End: Graph Construction

The section before presents the developed methodology to register semantic radar point

clouds. In order to relate single relative registrations to a whole scene or environment de-

scription, the SLAM problem needs to be defined for the semantic radar point clouds. This

section focuses on a graph-SLAM front end, specifically designed to comply with radar spe-

cific characteristics. The described front-end builds a SLAM graph, enables the utilization

of different odometry sources and describes the loop detection. Together with the SLAM

back-end, applying nonlinear optimization with g2o [119], an optimization of the graph-

formulation is achieved.

The presented SLAM is designed to be applicable in general urban or sub-urban environ-

ments and is free of specific features or model based landmarks. As only input, the radar
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characteristic point clouds of two vehicle poses are registered, these registration and the

point clouds are saved as graph-nodes. Additionally, the wheel based ego-vehicle motion

delivers an a-priori information of the estimated relative motion.

This basic and modular SLAM formulation can easily be extended for further sensor inputs,

e.g. visual odometry estimates from camera images, since the only input requirement is to

deliver a relative pose estimation and the corresponding covariances.

Figure 5.10 illustrates the graph-SLAM specific front-end modular blocks. First, the pre-

filtered radar point cloud is synchronized with the wheel-based odometry pose, to check

in the motion gate if the vehicle is moving (vveh > 0). Only in motion, the radar scans are

synchronized to a vehicle odometry position and constitute a new input point cloud P t

to the graph-SLAM front-end. During stand-still the received radar point clouds are not

accumulated in the SLAM map.

Figure 5.10: Illustration of the pose graph-SLAM front end with different node queues and edges.

If a radar-point cloud is synchronized with a vehicle odometry position, this tuple results in

a graph node xk . The resulting relative transformation Txk
xk−1

between the latest xk−1 and the

new node xk , together with the corresponding covariance matrix, describes the graph edge

between the two nodes.

Working with queues to express the graph structure dynamically, each new incoming pre-

filtered radar point cloud gets saved as new graph node tuple (Pk , xk ) in the node queue.

This total queue describes describes the whole mapped scene as global map. Besides, a sub-

set of nodes is saved in special queues, describing loop-closure sub-map assemblies PLC and

a queue for odometry estimation based on radar maps PRO . Both of these special queues,

contain sub-maps of different sizes which are linked also with relative transformations, for-

malizes as graph edges z, for both the loop-closure queue and for the radar odometry queue.

The sub-maps are registered with the same procedure as single radar scans, but with the
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difference of larger point cloud maps. Figure 5.10 displays an exemplary loop closure be-

tween node xn and node xl , yielding the relative transformation Txl
xn . The radar odometry

registration is analogeously displayed by xk , xk−5 and Txk
xk−5

The entity of all edges and nodes describes the constructed graph SLAM formulation. How

the edges are defined in this work, specifically between which nodes and sub maps, is a major

structural adaption compared to other SLAM structures. Figure 5.11 illustrates the different

edge types and their span.

Figure 5.11: Pose graph-SLAM structure to illustrate different edge types: Adjacent wheel-based odometry
edges(black), radar odometry, skip edges (pink), and far-reaching loop-closure edges (blue). Colors
according to the semantic radar classes of Table 3.2. Figure modified from [SI4].

Wheel-Odometry (zodom): This subsequent pose chain is considered the SLAM backbone.

Sequentially registered nodes are chained with the node-to-node odometry edges to a pose-

chain. As the synchronized point clouds and odometry estimates are available to a high

frequency (ca. 18-20 Hz), the nodes are defined to have a maximum distance of 0.4m. The

wheel-based odometry estimation yields adequately precise motion estimates in a local con-

text to relate and register the synchronized radar point clouds precisely. The registration for

these point clouds yields low translation and rotation components, due to the high sensor

frequency and consequently low relative motion between subsequent nodes.

Radar-Odometry (zRO): Alternatively addressed as skip-edges or open-loop edges, these

edges connect non-adjacent nodes with a minimum node distance between the connected

nodes. Based on the relevant radar sensing range of circa 50m, even radar point clouds of

non adjacent nodes overlap and can be registered. By the required node distance, these edges

span and constrain a larger region to comply with the metric radar point clouds. For suffi-

cient distances, the potential drift from the odometry-estimation is hereby corrected. Since a

wheel-based odometry estimation technically accumulates incremental drift errors per inte-

gration step, locally correct estimates might contain estimation errors over larger distances.

The correction of this incremental drift is realized by the constraint of zRO , which registers

not single radar scans, but sub-maps of multiple combined nodes. The more accurate the
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registration of the sub-maps, performs the lower a potential drift might be mapped in the

graph.

Loop-Closure (zLC ): Typically SLAM formulations recognize places which have already been

mapped and compare the mapped scene with the current perception of the same scene. If

a consistency is found, additional loop-closure edges further reduce the localization error,

reducing drift and improving overall SLAM map accuracy to the metric scale of the envi-

ronment. Therefore, fixed to the latest node in the graph SLAM, its region is searched in a

pre-defined region for graph nodes in the loop search radius RLC . If nodes are located inside

of RLC , a local sub-map around both node locations are registered to confirm a potential

place to be revisited. Each confirmed place revisit yields an additional loop-closure edge

between the graph nodes which are registered and match.

Mathematically, the resulting graph SLAM problem minimizes a quality function χ which is

formulated by the edges established in the graph construction step. With the before intro-

duced edge types, the modified target function χ∗ yields

χ∗ = argminX

∑
k, j

∥∥∥zodom
i , j

∥∥∥2

Ωi , j
+∑

k, j

∥∥zRO
m,n

∥∥2

Ωm,n
+∑

k, j

∥∥zLC
r,s

∥∥2

Ωr,s
. (5.36)

The different edge types are further described by a covariance, to estimate each edges’ stabil-

ity, similar to a weight or stiffness of the constraint. The following sections discuss for each

edge its covariance estimation and translation and rotation definition.

5.3.5.1 Odometry Edges

Major sensitivity of every SLAM problem is the incremental motion or odometry estima-

tion [221, 64]. In this thesis, a standard model for wheel-based motion estimation is applied.

Instead of fine-tuning this model to yield SLAM accuracy improvement, the secondary sensi-

tivity of the SLAM problem, to especially tune the SLAM for noisy radar data, is addressed.

For the applied wheel-based bicycle odometry model, see Section 3.3.4 or Werling [223].

Resulting from the motion between two subsequent nodes xk , xk+1, the relative translation

and rotation components are formulated as homogeneous transformations TV ,k and TV ,k+1.

Hence, the relative transformation between the two nodes, the information which a graph

edge contains, is given as

Txk+1
xk

= T−1
V ,k+1TV ,k . (5.37)

Together with this transformation, the SLAM benefits from an uncertainty measure for this

constraint. The vehicle which is utilized in this thesis, delivers empirically defined standard

deviation measures σv and σψ̇ for the motion model parameters speed v and yaw rate ψ̇.

Compliant to the assumptions of the general graph-SLAM formulation [82],
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assuming uncorrelated error components, the covariance matrix of the system input equa-

tion u can be defined

Σu,k =
 σv 0

0 σψ̇

 . (5.38)

With x̂ as system state,

x̂ =
[

x y ψT
k+1

]T

k+1
(5.39)

the Jacobi matrix of the odometry model Jx̂ ,Ju for the state u = 0 and x̂ = 0 is calculated.

Hence, the input uncertainty1 can be approximated from the non-linear system equation by

a multidimensional Taylor approximation

Σx̂,k+1 = Jx̂Σx̂,k JT
x̂ + JuΣu,k JT

u . (5.40)

Substituting the motion model, Equation 5.40 yields

Σx̂,k+1 =


∆t 2 ·σv 0 0

0 0 0

0 0 ∆t 2 ·σψ̇

 . (5.41)

The uncertainty estimation is expressed as relative uncertainty for each motion step indepen-

dently, so only a single step of the motion model from one node xk to the next node xk+1 is

considered. Consequently, the matrix Σx̂,k is set to 0.

As a result of the linearization of the non-linear system in Equation 5.40, the uncertainty ofσψ̇
is not anymore capable to directly influence a lateral deviation in the y−coordinate. Hence,

measurement certainty for the y−component is suggested. This simplification needs to be

reconsidered if the formulation is applied for other use-cases than slow parking maneuvers.

For the current use-case of slow parking v ≤ 15 km
h , the wheel-odometry signals are available

at a rate of 16H z. In this case, an uncertainty estimation scheme is derived from a two step

consideration. According to the before derived assumptions of a constant yaw angle ψ, after

the first propagation step from xk to xk+1 also a second step to xk+2 is considered. The input

uncertainty is assumed equal over both propagation steps, assuming the yaw angle change

neglectable. Hence, for the inoperative state x̂
′

the linearization yields

x̂
′ =

[
xk+1 yk+1 0

]T
. (5.42)

1 The input uncertainty was introduced for the 1-d case in Section 2.1.
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The linearized systems’ attributes are applied for the estimation of a single update step. In

order to estimate an uncertainty estimation for only one step from k to k +1, the time step

∆t is not substituted for two, but only for one time step ∆̃t = 0.5 ·∆t applies. Hence, the

linearized system equation is given as

Σx̂,k+2 = Jx̂ ′Σx̂ ′ ,k+1JT
x̂ ′ + JuΣu,k JT

u . (5.43)

Substituting the motion model with the modified step size ∆̃t , Equation 5.43 yields an explicit

formulation of the covariance matrix

Σ
′
x̂,k+1 =


2∆̃t 2 ·σv 0 0

0 ∆̃t 4 · v2
k ∆̃t 3 ·σψ̇ · vk

0 ∆̃t 3 ·σψ̇ · vk 2∆̃t 2 ·σψ̇

 . (5.44)

To be applicable in the 3D graph SLAM formulation as edge, the 2D formulation Σ
′
x̂,k+1 needs

to extended for a 3D formulation Σ
′′
x̂,k+1. Since the applied vehicle motion model is formu-

lated in 2D, the undefined dimensions in z− coordinate, roll angle φ and pitch angle θ are

substituted by a constant σmi n .

Σ
′′
x̂,k+1 =



2∆̃t 2 ·σv 0 0 0 0 0

0 ∆̃t 4 · v2
k 0 0 0 ∆̃t 3 ·σψ̇ · vk

0 0 σmi n 0 0 0

0 0 0 σmi n 0 0

0 0 0 σmi n 0

0 ∆̃t 3 ·σψ̇ · vk 0 0 0 2∆̃t 2 ·σψ̇


. (5.45)

With Σ
′
x̂,k+1 defined as 2D formulation (in x, y coordinates), and rotation angle φ, the covari-

ance is not defined in an euclidean space. As a result, the incremental optimization if the

SLAM problem approximates on a local manifold which approximates an euclidean space,

see Section 2.6. To apply the covariance matrix Σ
′
x̂,k+1 correctly for the SLAM problem on the

manifold, the Σ
′
x̂,k+1 needs to be projected onto the manifold, as described in Grisetti et al.

[82]. In this reference work, the transformation� is defined in detail.

Following the suggested transformation� of Grisetti et al. [82], an incremental optimization

step of the SLAM target function χ̄ ∈R6x6 yields a translation and rotation component in local

coordinates. Compare Equation 2.67, with rotation represented as Quaternion.
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The 6 degrees of freedom (DOF) are combined in the parameter vector r

r =
[

tx ty tz α γ ψ
]T

. (5.46)

The rotation components of r can be reformulated as quaternion components, applying the

substitution angle φ=√
φ2 +θ2 +ψ2:

q(r ) =


qx

qy

qz

=


α

sin φ
2

φ

γ
sin φ

2
φ

ψ
sin φ

2
φ

 (5.47)

With the parameter vector r , the final transformation formulation of the SLAM optimization

step ∆χ̃ can be formalized as f∆χ̃

f∆χ̃(r ) =



tx

ty

tz

qx

qy

qz


=


tx

ty

tz

q(r )

 (5.48)

The function f∆χ̃(r ) as update function of the incremental SLAM solution can be treated

similar to Equation 5.43 to calculate an uncertainty propagation. First, the partial derivative

for each component of the parameter vector r is defined

∂q(r )i

∂rk
=

 r 2
i

[ 1
2φ2 cos φ2 − 1

φ3 sin φ
2

]+ sin φ
2

φ for i = k

,ri rk
[ 1

2φ2 cos φ2 − 1
φ3 sin φ

2

]
else.

(5.49)

As final formulation, the resulting covariance matrix ∆Σ�k,k+1 defines the wheel based odom-

etry uncertainty estimation between node k and k +1 for the wheel-odometry edge zodom .

∆Σodom
k,i =∆Σ�k,k+1 = J f∆,χ̃Σ

′′
x̂,k+1JT

f∆χ̃
(5.50)
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5.3.5.2 Radar Odometry Skip Edges

To utilize the radar’s medium range sensing properties, a significant overlap of point clouds

with a relative distance yields well point cloud registration. For this type of edges, the compar-

ison of single nodes is extended to a summary of nodes, constituting a sub-map. A sub-map

PRO,k consists of a set of NSM wheel-odometry edges arranged graph-nodes. Hence, the

relative transformation Txk
xi

based on the wheel odometry, delivers an initial relative posi-

tion guess. The two sub-maps to be compared are denoted as PRO,k and PRO,k+∆ with ∆ as

discrete distance measure between nodes and initial translation guess Txk
xi

.

Figure 5.12: Illustration of sub-map assembly of exemplary k = 1 adjacent radar scans for node xk . Colors
according to the semantic radar classes of Table 3.2.

Registering the sub-maps is analogeously defined as the single point cloud registration and

performed with the same registration algorithm, yielding a relative transformation between

the sub-maps

Txi
RO,xk

= Registration
(
PRO,k ,PRO,k+∆,Txk

xi

)
. (5.51)

The relative transformation of the sub-maps might vary to the wheel-odometry based trans-

formation estimation. Comparing an assembly of point clouds along the graph arranged

nodes, the compared regions gain stability and diminish the potentially registered noise

between adjacent point clouds.

Similar to the edge definition of simple odometry edges, an uncertainty measure for this

radar odometry edge is derived. As approximation of the covariance matrix, the definition of
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the Hessian matrix of the registration function can be applied, according to Bengtsson and

Baerveldt [19]

∆ΣRO
k,i ≈ F (R∗,T∗)

|G|−3

[
1

2
H

]−1

R∗,T∗
. (5.52)

The node assembly to constitute sub maps and register the sub maps is defined to comply

the following requirements:

• Sensor Range: Essential to register two corresponding map areas in point cloud rep-

resentation PRO,k ,PRO,k+∆, both point clouds need to overlap sufficiently. Hence, the

maximum sensing range Rmax defines an upper distance threshold for ∆.

• ∆Distance Selection: Aiming to correct a potential drift from adjacent node registra-

tion based on the wheel-odometry edges, a greater distance ∆ between the registered

point clouds PRO,k ,PRO,k+∆ provides improved registration stability and drift correc-

tion potential. This functional idea of the skip-edges defines the lower bound for ∆,

requiring the registration precision to exceed the erroneous registration noise of adja-

cent node registrations.

Illustrated in Figure 5.13, sub-maps are defined around each selected node of the registration

pair, constructed from a number of adjacent kRO
M ap , denoted as function Submap in Algo-

rithm 2. Since the point cloud assembly is defined with the reference node xi as center node,

the adjacent node point clouds are transformed into the reference system. A sub-map is

defined as union of the node point cloud sets:

Submap
(
xi ,kRO

M ap

)
=

i+
[

1
2 kRO

M ap

]⋃
m=i−

[
1
2 kRO

M ap

]T−1
xi

Txm Pxm (5.53)

Figure 5.13: Generic illustration of sub map assembly and registration strategy with relative transformation
output. Sub-map registration principle applied e.g. for radar odometry edges and for loop-closure
sub-map matching. Colors according to the semantic radar classes of Table 3.2.
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The selection of the-sub map reference nodes follows Algorithm 2, visualized in Figure 5.13.

For node xk , which must not be a loop-closure node, in a fixed sensing range rSM,max the far-

thest node xi is found. From the constant sensor perception range Rmax > rSM,max a sufficient

point cloud overlap is guaranteed. Translating the relative distance into the corresponding

node index by findex, the farthest node xi is found. In iterative steps, the registration is per-

formed for the node pair xk , xi , yielding a relative transformation and registration score si .

The registration score si is a distance-based metric to evaluate the registration, comparing

the suggested transformed point cloud P̃RO,k = Txi
RO,xk

PRO,k to the reference PRO,i

si = Score
(
PRO,i ,P̃RO,k

)= |PRO,i |∑
j=1

∥∥P j −k-NN(P j ,P̃RO,k )
∥∥ . (5.54)

The score, or distance measure, si represents a metric describing the match of the registered

and transformed point clouds. According to Magnusson [137], this metric can be applied for

registration quality rating. Hence, if in Algorithm 2 the registration for node xi was successful,

set a radar odometry node, set k = i , restart the algorithmic while and reduce i until imin = n

at the current vehicle position xn to find a new odometry edge.

Together with the above derived covariance matrix ∆ΣRO
k,i , the radar odometry edge zRO

k,i is

fully defined.

Algorithm 2 Radar odometry node selection for sub map construction.
Input:k,Graph X ,rmax,smin

Output:Txi
xk

procedure RADAR ODOMETRY NODE SELECTION

i = k + fNode Distance(rmax)

imin = k + fNode Distance(smin)

PRO,k = Submap(xk )
while i ≥ imin do

PRO,i = Submap(xi )
Txi

RO,xk
= REG(PRO,k ,PRO,i ,Txk

xi
)

P̃RO,k = Txi
RO,xk

PRO,k

si = Score(PRO,i ,P̃RO,k )
if si < smin then

return Txi
RO,xk

else if i = i −1 then
return False

end if
end while

end procedure

173



5 (Semantic)Radar SLAM with Semantic Information

5.3.5.3 Loop Closure Edges

As third and last edge type, the loop closure edges zLC
k,n is defined. This type of edges are

reserved to indicate revisited places which are registered also as sub maps, but specifically

defining loops of a driven path in the SLAM. This type of edges contains most potential to

eradicate accumulated odometry drift and error components [82]. With the advantage to

have already mapped a larger region as basis for the regional comparison, the perceptive

field for this edge type is increased and radar detection density is reduced. Especially the

increased density is important to recognize the already visited and mapped regions. From a

larger overlap and larger sub-map regions to be compared, also the registration stability and

accuracy benefits and yields superior accuracy compared to single node comparison.

Analogeous to the presented procedure to register radar odometry edges, for the loop clo-

sure sub-map regions as point cloud assemblies of adjacent nodes is registered. The same

registration algorithm is applied with different node distance parameters.

The selection of loop closure candidates originates from the latest SLAM graph node xn .

Neighboring nodes of the SLAM map which are located in a fixed and pre-defined euclidean

distance RLC = 15m, are considered as potential loop closure candidates.

U =
{

xk ∈ (X |RLC ) > ∥∥T−1
xn

Txk

∥∥
t

}
(5.55)

The formulation ‖·‖t defines the euclidean distance as norm of the translational part of the

homogeneous pose T.

As improvement, alternatively to a fixed distance selection, a dynamically adaptive threshold

formulation RLC (σ) based on the ego motion uncertaintyσ can be applied. The marginalized

pose estimation of xn allows an uncertainty estimation [141]. Drawback of this dynamic

formulation is the increasing number of potential candidates U . Without pre-selection, too

many registrations remain open to be tested for loop closures during run-time, causing delays

and preventing real-time capability. Hence, from the proposed candidates U only a subset in

a fixed distance to xn is tested.

For a potential loop-closure candidate, a sub-map is assembled of kLC ,k
map nodes

PLC ,k = Submap(xk ,kLC ,k
map ). (5.56)
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5.3 Semantic Radar SLAM Method

Figure 5.14: Loop-Closure with Sub-Map Assembly for kLC ,n
sub = kLC ,k

sub = 3. Colors according to the semantic radar
classes of Table 3.2.

The corresponding sub-map at the current vehicle position node xn is defined differently. xn

can not be applied as center node, but only as end node. Neighboring nodes of the latest

node xn are assembled as in Equation 5.57.

PLC ,n =
n⋃

m=n−kLC ,n
map

T−1
xn

Txm Pxm . (5.57)
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5.4 Experiments

The parts of this section refer each to a method-introducing subsection of Section 5.3. First,

the experimental results of the before described functional semantic SLAM components in

Sections 5.3.1- 5.3.4 are described on the Sections 5.4.1- 5.4.4. Second, in Section 5.4.5 the

semantic radar SLAM functionality is evaluated and tested in different real-world scenarios.

5.4.1 Signal Pre-Processing

The individual sensor raw point clouds are assembled to a unified point cloud and filtered by

the pre-filter attributes of Table 5.1. The remaining radar detections lie in the relevant region

for the SLAM application.

Figure 5.15: A qualitative comparison of the pre-filter effects on the same scene, radar detections accumulated
over 25 seconds. Radar detections accumulated without a filter (left) vs. the filtered version (right).

With the reduction of the point cloud to the relevant RoI for the SLAM, mis-associations are

reduced. With this step, approximately 34% of the radar point cloud is filtered out.

5.4.2 Semantic Spatio-Temoral Filter

The spatio-temporal filter of Section 5.3.3 follows the pre-filtering to the SLAM-relevant RoI.

The effects of the spatio-temporal filter can be measured by its effects on the registration

accuracy. Since the filter aims to remove the unstable registration-irrelevant radar detections,

the registration accuracy yields a measure to evaluate the filter effectiveness.

Figure 5.16 illustrates the registration error as histogram for three filter variants, the spatial

filter only, the spatio-temporal part of the filter, and the full semantic spatio-temporal filter

configuration. Based on the translation and rotation error of the registration, the semantic

spatio-temporal filter is found to reduce the point cloud to the relevant points the most

beneficial. The semantic spatio-temporal filter increases the percentage of especially lower

translation errors in the left plot of Figure 5.16, while reducing also the amount of medium

translation errors. Considering the rotation errors in the right plot of Figure 5.16, the semantic

information improves the registration, achieving a much higher registration below 1◦ rotation
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Figure 5.16: Histogram of the relative occurrence of translational εt (left) and rotatory εψ registration error
(right) of spatial, spatio-temporal and semantic spatio-temporal filter.

error. The improvement by the suggested semantic spatio-temporal pre-filtering can be

found in the higher cumulative frequency curve, especially for the high registration accuracy

at low error values. The achieved translation error mainly achieves registration accuracy

below 1m, whereas the rotation error occurs to rise significantly for less than 1◦ rotation

error.

5.4.3 Sub-Map Assembly

As introduced in Section 5.3.5.2, based on a noise averaging sense of assembled single scans

to sub-maps, a parametrizeable number of radar scans is map-matched in order to robustify

the map matching regions.
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Figure 5.17: Histrogram of the relative occurrence of translational εt (left) and rotational εψ registration error
(right) for different sub-map configurations k.
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Figure 5.18: Translational εt and rotational εψ registration error over initialization position of initial transla-
tional εi ni t

tr ans and initial rotational error εi ni t
ψ for two different sub map configurations, k = 1 (left)

and k = 5 (right). Registration result of [MT5], figure modified.

Comparing to the ground truth registration, the achievable registration accuracy is measured

for various sub-map sizes. The illustration of the translational errors εt and rotational error

components εψ of a set of registrations in Figure 5.17, indicate larger sub-maps k ≥ 5 to

converge more accurately to lower registration errors. Especially a translation error lower

than 1m and a rotational error below 1◦ can be achieved.

For the translation error a suitable sub-map size it is found to significantly improve the

accuracy of precise registrations, below 0.1m translation error. Among coarse registration
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results >1.0 m of translational error, larger sub-maps decrease the registration result only by

a little amount, the major contribution is the increase of the precise registrations.

As indication of the registration robustness, a perturbation based on 4σ variation is tested.

Figure 5.18 displays the registration result of 4σ perturbations as comparison of translational

error and rotational error at two exemplary sub-map configurations k = 1 and k = 5.

The registration result heat map in Figure 5.19 displays for the larger sub-map size of k = 5

increased convergence stability. This is derived and based on a detailed analysis:

• Remaining values on the diagonal of the heat map represent a registration non-convergence.

The initial transformation perturbation yields the same after registration. Hence, no

better registration is found.

• A globally lower translation error is achieved. The density of the final error values is

significantly reduced from the non-converging diagonal and improved to the range

[0,1]. Worth notice is that a registration convergence, e.g. below 0.5 m, is only achieved

for the sub-maps with initial translation offset below 2 m.

• A globally lower rotation error is achieved. For the rotational parts, the convergence is

significantly improved to a range below 2◦, even if a initial perturbation is set to high

deviation. As a result, the non-convergence diagonal is definitively reduced.

Besides, the registration result is also rated in Algorithm 2 by a registration score. The mean-

ing and scale of this score value s is visualized in Figure 5.19. With the sub-map configuration

k = 5, it is found that the registration score does not scale with increasing sub-map size k.

Hence, a qualitative consideration or rating of a registration can not be assessed or com-

pared based on the registration score metric s. The radar specific variable count of detections

deprecates the score measure s as registration accuracy comparison metric.
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t for different sub map configurations

ks,d (left), and resulting registration error εt with sub map configuration k = 5.
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5.4.4 Semantic Registration

As registration focus of this thesis, the benefit of the NDT-registration, as introduced in Sec-

tion 5.3.4, is tested different parametrization. Spatially sparse regions cause difficulties for

the normal distribution registration. For cells with low occupancy, the sparsity and few detec-

tions causes imprecise covariance matrices. The visualization of the normal distribution as

input is found in Figure 5.20. Hence, sparse regions are partially not represented as normal

distributions and are not respected in the subsequent scan-to-scan or sub-map to sub-map

registration. This adds robustness to the semantic normal distributions and precise registra-

tion in the semantic radar SLAM concept can be achieved with noisy radar point clouds.

Figure 5.20: Illustration of the covariance of the semantic labeled normal distributions (center) compared to
the corresponding point cloud (right). Color coding according to the semantic color convention of
Table 3.2. Distribution illustration of [MT5], figure modified.

Depicted as registration error histogram in Figure 5.21, the comparison of three NDT regis-

tration algorithms, a regular NDT, the weighted semantic NDT (gSNDT) and the separative

semantic NDT (sSNDT) is presented. As expected, both weighed and separated semantic

NDT methods (gSNDT&sSNDT) increase the registration precision, yielding a translational

error εt < 0.5m and a rotational error εψ < 1.5◦. With this improved semantic radar registra-

tion the basis for a semantic radar SLAM is quantitatively given.
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Figure 5.21: Histogram of the occurrence of translational εt (left) and rotatational εψ registration error (right)
for regular NDT, weighted semantic NDT (gSNDT) and semantically separated NDT (sSNDT) regis-
tration.
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Besides the improved accuracy, the plots in Figure 5.21 also show the significantly increased

robustness of the semantic radar registration. Especially the fraction of non-converging

registrations, found on the diagonal of the heat map, is significantly reduced. A large majority

of the registrations converge to εt < 0.5m even for initial translational offsets εi ni t
t > 1m−6m.

Similar findings apply in same distinctiveness for the registration convergence towards low

final rotational errors εψ < 1.5◦.
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Figure 5.22: Translational εt and rotatational εψ registration error over the initial position translational εi ni t
tr ans

and rotatational error εi ni t
ψ of the initialization possition for the registration, for conventional NDT

(left) and semantically separating NDT (right). Registration result of [MT5], figure modified.
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5.4.5 Semantic Radar SLAM Evaluation

As core focus of this thesis, the benefit of semantic radar labels in combination with the de-

veloped semantically separative NDT-registration (sSNDT) as introduced in Section 5.3.4 is

experimentally proven in the following. The core of the semantic radar SLAM evaluation is

based on the evaluation of achieved radar SLAM accuracy with the semantic information

being utilized. Designed as model-free, feature-free and generic solution, the designed se-

mantic radar SLAM aims to be applicable for arbitrary environments, especially for parking

scenarios. Table 5.2 gives an overview to compare five different parameterized variants (A)-

(E) of the SLAM functionality, on four test scenarios (I)-(IV), see Figure 5.25, to evaluate the

semantic radar SLAM performance. The test scenarios of Figure 5.25 are comprised of multi-

ple scenes (e.g. turning, stopping or other driving maneuvers) but consequently result in a

scenario-specific parking test, following the scenario definition of Ulbrich et al. [214]. In or-

der to test different environments, different locations serve as test-tracks in which the driven

scenarios are tested.

Loop Closure (e.g. N=10)

Open-loop Edges (e.g. N=5)

Single Node (N=1)

pre-processing: 
- accumulation
- spatio-temporal 
  filtering
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point
cloud Ref. Path

Storage

Figure 5.23: Illustration of the SLAM system architecture from perception modules to map storage.

As a result, the evaluation of the semantic radar SLAM accuracy is based on the comparison of

the resulting SLAM trajectory with a differential GPS (dGPS) signal of a reference sensor. With

the information of a synchronously available reference trajectory and reference position,

for SLAM evaluations of the two trajectories, the Umeyamas’ matching algorithm [215] is

applied. The quantitative evaluation of the absolute pose error (APE) and relative pose error

(RPE) yields typical SLAM metrics, reported with mean and maximum values in Table 5.3 and

Table 5.4, to be compared. 2

2 Due to the generic environment applicability, not the environment map itself can be evaluated due to the
lack of a reference radar map.
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Parameter
SLAM Variant

E D C B A

Scan Accumulation [−] 4 4 4 4 4

Pre-Filtering SST SST ST ST GEO

Sub map Configuration k [−] 5 5 5 5 5

Registration Method gSNDT sSNDT NDT NDT NDT

Table 5.2: Overview of the evaluated SLAM configurations with different registration methods ( NDT,gSNDT:
weighted semantic NDT, and sSNDT: semantically separating NDT) and pre-filters (SST: semantic
spatio-temporal, ST: spatio-temporal, GEO: spatial.

SLAM Evaluation Scenarios: For the evaluation of the SLAM functionality, four different

scenarios are selected of which two are from the same track, but processed with different

semantic label quality. One of this equal scenarios is tested with automatically generated

semantic radar labels from the automatic labeling in Section 3, while the other scenario

is manually corrected to contain semantic ground truth labels. The automatically labeled

scenarios contain an additional class Road a , which is an artifact of the automatic labeling.

This label is not explicitly considered for the semantic NDT registration, but forms a sub-

sort of artifacts and is treated as Artifact,Unknown a . Hence, even in the SLAM map a low

number of these labels can be found.

The comparison of Figure 5.24 also matches the findings of the confusion matrix in Fig-

ure 4.25, discussed in Section 4.5. Person a is mainly confused with vegetation a , while

vehicles a are confused with clutter a .

Figure 5.24: Exemplary comparison of the same scene of the scenarios with automatically generated semantic
labels (left) versus the same scenario with manually corrected ground-truth semantic labels (right).
Colors according to Table 3.2 with additional road a and unknown a .

The test scenarios are driven manually to record all sensor data. For the evaluation of the

different SLAM variants, they are applied on a sensor data replay, off-board the vehicle to
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5 (Semantic)Radar SLAM with Semantic Information

guarantee the same input data. With this workflow, the whole SLAM functionality is devel-

oped and tested first offline, while the software is integrated in the test vehicle for the real

world testing of the automated drive in the next chapter. The test scenarios contain longer

parts with turns, loop-closures after a longer open part without loop-closure. It is empha-

sized, not to revisit locations or scenes of the scenario at larger scale, in order to avoid the

opportunity to increase accuracy by loop-closures or denser mapping.

Figure 5.25 a)-d) illustrate the resulting semantically segmented radar SLAM maps. The maps

illustrate the output of SLAM version (D), with automatically labeled radar data (I-III) and

manually corrected semantic ground truth labels (IV).

a) Semantic Radar Map,
Scenario I of 317m.

b) Semantic Radar Map,
Scenario III of 624m.

c) Semantic Radar Map,
Scenario II of 489m.

d) Semantic Radar Map,
Scenario IV of 489m.

Figure 5.25: Driven ego-trajectory plotted as black dots, resulting radar map of the (sSNDT) SLAM. Semantic
coloring according to Table 3.2: Building a , Vehicle a , Vegetation a , Person a , Pole a , but with
Road a , and Unknown a . All plots overtaken from Isele et Al. [SI4].
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The evaluated test scenarios yield the following results. APE and RPE error measures are

found in the Tables 5.3-5.4. Over all sequences, the achieved relative pose error consis-

Sc
en

ar
io

(E) (D) (C) (B) (A)

max. mean max. mean max. mean max. mean max. mean

I 0.71 0.35 0.53 0.32 0.93 0.37 0.74 0.39 1.32 0.41

II 1.02 0.64 0.96 0.64 2.44 1.40 2.34 1.37 2.70 1.46

III 0.71 0.42 0.66 0.40 0.78 0.42 0.77 0.42 1.12 0.63

IV 1.05 0.59 0.96 0.56 2.44 1.40 2.34 1.37 2.70 1.46

Table 5.3: Comparison of the Absolute Pose Error (APE) [m] of the SLAM variant (A-E) in test scenarios I-IV.

Sc
en

ar
io

(E) (D) (C) (B) (A)

max. mean max. mean max. mean max. mean max. mean

I 0.29 0.13 0.25 0.11 0.32 0.12 0.29 0.13 0.45 0.14

II 0.56 0.1 0.52 0.1 0.45 0.1 0.46 0.1 0.23 0.09

III 0.28 0.11 0.27 0.11 0.27 0.11 0.27 0.11 0.22 0.1

IV 0.56 0.1 0.52 0.1 0.45 0.1 0.46 0.1 0.23 0.09

Table 5.4: Comparison of the Relative Pose Error (RPE) [ m
10m ] of the SLAM variant (A-E) in the test scenarios I-IV.

tently yields an approximate error of 0.11 m
10m . This achievement can be interpreted as local

trajectory consistency, consequently yielding also a global radar map consistency as the loop-

closure proves.

The maximum and mean value of the RPE shows low variation over the tested SLAM vari-

ants. Due to the SLAM construction including the wheel-based odometry estimation with a

comparably high covariance, the odometry is most influential on local trajectory scale and

the relative pose error. Other graph edge types, e.g. the radar odometry, have comparably

lower influence due to their lower defined covariance certainty. Hence trajectory dependent

odometry errors occur as influence of RPE differences between the scenarios.

Due to a higher number of loop-closures, both scenarios I, III are consistently more accurate

than the difficult scenarios II, IV. The long passage of the mid-section in III and the loop-

closure after a full round trip in scenario I allows more loop closures. In both scenarios

II and IV, the place is revisited from an other direction, maneuvering is included, but the

overlapping map sections of the revisited area are smaller and of difficile vegetation.
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5 (Semantic)Radar SLAM with Semantic Information

SLAM Result Visualization: Based on the error tables, the quantitative error can be eval-

uated and compared. With the visualization of the mapped scenarios, the radar data associ-

ations of the SLAM map can be inspected visually. Figure 5.25 illustrates the whole map to

gain an insight into the general scenario and object perception along the track. Especially the

effect of the semantic labels supports the consistent association of corresponding parts of the

environment. Even if the automated semantic labeling is applied, it is impressively proven

by Figure 5.26, that the additional information yields highly beneficial association support.

The concept of semantic radar point cloud registration yields the presented semantic radar

SLAM maps, which are intuitive to visually interpret, inspect and reuse for other applications.

Compare Figure 5.27, how mighty the semantic labels enable an accurate data association to

yield a unprecedented opportunity to build semantic radar maps.

Figure 5.26: Comparison of the spatial radar SLAM (left), utilizing only spatial radar information, and seman-
tically separated (sSNDT) SLAM result (right), both variants display the same revisited part of test
scenario III. SLAM nodes visualized as black circles, connected by black odometry edges, loop-
closure edges visualized in blue, radar odometry edges are colored in magenta. SLAM map differ-
ences highlighted in red ellipses. Colors according the semantic classes of Table 3.2. Figure of Isele
et Al. [SI4].

Figure 5.27: Comparison of the spatial radar SLAM (left), utilizing only spatial radar information, and semanti-
cally seperated (sSNDT) SLAM results (right), both variants display the same revisited part of the
test scenario II, including a parking maneuver to illustrate the loop closure over a long drive. SLAM
nodes visualized as black circles, connected by black odometry edges, loop-closure edges visual-
ized in blue, radar odometry edges are colored in magenta. SLAM map differences highlighted in
red ellipses. Colors according the semantic classes of Table 3.2. Figure of Isele et Al. [SI4].
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5.5 Section Conclusion

5.5 Section Conclusion

The capabilities of the presented semantic radar SLAM affirms to the original expectation,

that semantic label information substantially improves the SLAM process. Averaged over four

real-world test scenarios of comparable complexity and length of 317 m−624 m, a mean APE

of 0.48 m is achieved at an average RPE of 0.11 m for the best SLAM variant.

Answering the mapping research questions of Section 1.3, this section contributes four di-

mensions of improvements from the semantic radar labels and semantic radar point cloud

SLAM compared to a classical point cloud SLAM:

A cheap and common automotive radar sensor set can be fused from a multi-sensor setup,

even at sub-shell integration as localization and mapping sensor. As the additional seman-

tic information can directly be processed without type conversion or projection, avoiding

algorithmic complexity or run-time issues, an intermediary system integration is possible.

Second, the semantically separated NDT (sSNDT) scan-matching is consistently improved to

achieve registration convergence in a large range: Translational initial errors of approximately

5 m −7 m, whereas rotational initial offsets of up to 5◦ still achieve registration convergence

below 0.5 m registration offset. The sSNDT scan-matching performs robustly and yields

the similar accuracy when applied with automatically generated semantic labels, containing

erroneous semantic labels. The radar SLAM benefits of accurate semantic radar labels but

does not necessarily require perfect error-free semantic radar segmentation.

Third, the sSNDT data association enables a radar SLAM map generation, allows loop-closure

on complicated tracks and scenarios and under real-world odometry drift over a test loop

of approximately 165 m. The parametrization of the NDT grid size 0.2 m is found to be

sensitive to the spatio-temporal pre-filter and the de-noising capability of the RadarNet. With

increasing clutter content in the radar point cloud, the NDT convergence degenerates even

with semantic registration.

Fourth, the resulting semantic radar maps of the sSNDT radar SLAM open new opportunities

for post-processing in terms of drive-able space estimation, object instance segmentation,

or online/ offline map-fusion, map-assembly, or map-updates of large scale radar maps, etc.

The realization of this accurate radar mapping, even accumulated and based on the sparse

radar sensor data, enables a whole new field of developments to be tested on semantic radar

data, which constitutes a new research field.

The presented semantic radar SLAM is the first successful and real-world applicable semantic

radar SLAM and is also tested under real-world conditions in a vehicle, independent of a

limited data set. The semantic radar environment mapping is subject of multiple patented

applications: Parking environment meta-information utilization [Pat1], parking collision

detection [Pat2] or scene reconstruction [Pat5].
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5 (Semantic)Radar SLAM with Semantic Information

As Figure 1.4 illustrates, the semantic radar SLAM on system level builds on the already

discussed function and feature contributions, see Chapters 3&4, and is the basis of the aimed

parking functionality on vehicle level. Section 6 discusses the integral functionality of the

compounded system level contributions of the previous sections.

5.6 Section Outlook

SLAM Mapping - Visual Constraints: In order to futher robustify the SLAM, future work

is open towards the integration of camera images and visual place recognition. Synchronized

camera images, preferably of a typical surround-view camera belt of modern vehicles, can

be stored with the semantic radar graph SLAM nodes. The visual detection of ego-vehicle

motion and orientation from subsequent camera images can be included similarly as radar

graph edges with relatively low effort. Including the visual sensors affects the graph SLAM

front-end and is expected to add further robustness, especially in resembling environments

of repetitive structures.

SLAM Mapping - Optimization Effort: A further optimization of the SLAM system ad-

dresses the performance at scale beyond the development compute platform. At each op-

timization step of the presented graph SLAM, the whole graph is optimized, yielding an

increasing compute effort for growing maps. To provide a SLAM solution to be applicable

at large scale, the optimization might be constrained to a certain graph region, in order to

guarantee a deterministic maximum computational effort.

SLAM Mapping - 3D Path Mapping: Motivated from a multi-story parking garage use-

case, the requirement to be able to map and drive over multiple story garages evolves. By

now, the radar mapping process does not account for any z-elevation since the radar point

cloud registration does not reliably detect elevation changes. Hence, the application is limited

to a quasi-flat area. The above proposed SLAM extension to include camera- based visual

odometry constraining edges might deliver a robust z-coordinate.

SLAM Mapping - Map Fusion and Updates: Passages of the same scenario result in an

increased representation and knowledge of a track and environment. As the visited environ-

ment might contain changed or adapted regions along with static or unchanged parts, one

could think of a update or fusion of the underlying map or specific map regions to increase the

map-precision iteratively. In perspective of a vehicle fleet application, the task to align, main-

tain the multiple maps, and potentially couple the separate but overlapping graph problems

in a back-end. With such a coupling of fleet-based sensor data and graph-representations

of the changing environment, future research might address the task of self-updating maps

based on a graph-formulation.
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6 PRETRAINED AUTOMATED PARKING

In this final section, the before introduced software modules of live semantic radar Segmen-

tation RadarNet of Chapter 4 and the semantic Radar SLAM of Chapter 5 are combined to

an exemplary use-case of an automated parking functionality, called trained parking (TPA).

Based on the vision to realize autonomous and automated parking on arbitrary home ground

or as general parking pilot, the basic interplay of the developed software modules is empiri-

cally tested and performance evaluated under real-world conditions. The achieved semantic

radar mapping capacity and re-positioning accuracy of this Proof of Concept (POC) formu-

lates an upper bound realize-able precision of this functional concept.

The section first explains the combined systems’ design and interplay, then the experimental

results are presented and evaluated. The map content metrics are developed during the

Master thesis supervision of Avinash Shankar Bhat [MT6].

6.1 Evaluation and Selection of existing Approaches: Radar-based
automated and autonomous Parking Systems

As discussed in the introduction, modern automated parking functionalities in the ADAS

space require the passage of an empty parking space, being either framed by nearby objects

(e.g. parked cars), or visually indicated by ground parking lines. The parking functionality

measures with distance sensors (e.g. ultra-sonic sensors) the ego-position with respect to the

free parking space and its objects, then performs the parking maneuver based on this local

obstacle perception. In the visual case, the parking lines deliver the framed target position.

Narula et al. [151] is the only work, relying on radar sensors to re-localize in an urban environ-

ment. Other works [6, 108, 135, 168, 167] showcase the potential to detect parked cars and

free parking spaces in radar data. Works on SLAM or automated driving setups of Table 2.3

are based on HD-maps, LiDAR or other reliable target paths and environment maps [240].

To the authors best knowledge, there is no radar-only based automated or autonomous driv-

ing example yet reported in literature. Therefore, this section combines the before discussed

RadarNet Segmentation together with the semantic radar SLAM, and a radar map relocaliza-

tion, to realize an actively actuating autonomous parking functionality.
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6.2 System Overview

In order to evaluate the practicality of the developed semantic radar SLAM application in real

vehicle conditions, a solely radar-based automated parking functionality use-case is built

and tested in this section.

Automated Parking: In the first stage, the solely radar-based trained parking function-

ality maps an the environment and records the driven path of a manually driven sample

parking maneuver in an arbitrary environment. In the second stage, the automated driv-

ing stage, the trained parking functionality re-localizes itself in the radar map and starts an

automated drive along the reference path to the manually trained parking position. Both

stages involve the developed semantic radar segmentation and semantic radar SLAM as core

functionality.

A very general system description of the use-cases’ software modules is depicted in Figure 6.1,

whereas figure 6.2 is a detailed extension of the generic vehicle setup of Figure 2.15 of Sec-

tion 2.7. The system in Figure 6.1 processes individual sensor data in four, orange marked

exemplary processing steps: The perception creates a meaningful environment interpreta-

tion thereof (A), yielding an environment map (B), in which the vehicle is localized. Based on

the location comprehension (C), the vehicle plans its further motion and sends drive controls

(D) to drive in the environment in fully automated operation.

Figure 6.1: Illustration of a general robot control system cycle, from perception modules to vehicle actuators of
which the thesis addresses the perception and mapping specifically for radar.

Perception: The semantic radar segmentation enriches the raw radar signal information

content to a new semantic domain. Subsequent filter modules pass-through specific signal

ranges to a spatio-temporal filter, reducing further noise in the radar signals.

Mapping: The subsequent semantic radar SLAM makes use of the semantic information

dimension to apply a semantic and spatial registration to associate subsequent radar scans to

each other. The resulting semantic radar map and reference path of the initial environment

passage are depicted as stored entities in the right part of the top block in Figure 6.2.
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6.3 Design of Experiments

Instead, of relying on Global Navigation Satellite System (GNSS), for the use-case of trained

parking, re-localization is performed by map-matching semantic radar maps, analogeously

applying the semantic NDT registration.

Planning: Having a reference path from the initial SLAM mapping to be followed as target

position path, the planner module computes an optimal trajectory to drive from the current

ego-position onto the reference path and along.1 Its input is the current vehicle position

based on odometry signals (xego, yego) and the reference path xref = x0...xi , y0, ...yi , i ∈R1×Npath

to be followed. Both inputs are given in global coordinates and assume planar motion in (x, y)

coordinates.

Motion Control:2 The output of the planner module are two actuation requests for lat-

eral motion mlat and longitudinal motion mlong, which the motion controller translates into

vehicle actuator manipulation.

The perception and planning stack in ROS is connected via a private CAN to a real-time

platform on which the Matlab Simulink based controller is running, which again is CAN

communicating with the vehicle actuators. According to Figure 6.1, the update cascade

follows from slow map-matching updates (≈ 8 H z) with a reference path projection update,

updating the quick planner (≈ 15 H z) conditions of the update to calculating the underlying

motion controller outputs at ≈ 30 H z.

Further details on the system integration, initialization and map-matching are found in the

Appendix Section A.

6.3 Design of Experiments

The driving tests of the trained parking functionality is fully automated with no manual

interference, except the function initialization and final end-position confirmation. The

automated functionality test setup ensures comparable experimental results under changing

real-world conditions. For the experiments, a safety driver is required to supervise the system

and is only allowed to intervene, if the automated functionality fails during execution due to

erroneous re-localization, in cases of potential collisions, or other failures. Furthermore, the

system is tested with respect to a changing environment and weather, also including minor

natural changing vegetation during the tested time and different initialization positions on

different test days.

1 It is assumed that the drive-space is free, without interference of blocking obstacles, persons, of other traffic.
2 The deployed trajectory planner is designed by Lukas Köhrer from Forschungszentrum Informatik FZI 3.

As part of joint supervision of the Master thesis of Fabian Bischoff [MT4], the planner and the actuation
controller are integrated in the test vehicle and treated in this work as given modules.
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Figure 6.2: Illustration of the overall system architecture from perception modules to vehicle actuators as more
detailed variant of te generic system Figure 2.15. The blue top section depicts the system operation
in manual training mode, whereas the bottom orange section illustrates the system operation in
automated parking mode. Detail information of the computation modules are found in Chapter 4
for the semantic radar segmentation and the semantic radar SLAM is discussed in Chapter 5.

Reference Map and Path: Per test environment a single initially mapped or parking ma-

neuver serves as reference map and reference path for all subsequent executions and evalua-

tions of the automated trained parking runs.

Fully automated Function: First, the test vehicle is set to the start position, the systems

are started and the initialization drive is manually triggered. The vehicle automatically starts

an initialization drive into the red square of Figure 6.3 and stops. From the position inside

the red recangle, the relocalization module performs the initial registration and displays the

map registration guess. The safety driver confirms the re-localization and reference path

projection to start the autonomous parking functionality.

Visual Supervision and Confirmation: During the execution of the autonomous park-

ing, the safety driver inspects a surveillance registration projection, see Figure 6.3. In this

registration surveillance screen, the updating re-localization and map-matching is shown in

top-view perspective.
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6.3 Design of Experiments

Figure 6.3: Registration surveillance (left) with red reference map and live built semantic SLAM-map (right) of
test scenario A and B, see Section 6.4 and Figures 6.5- 6.7. Projected reference path in yellow, driven
SLAM path in black with a 7 m red loop-closure search range. The red rectangle shows the start
position of the automated drive, equivalent to the end-position of the init-drive.

In a second, surveillance camera projection of Figure 6.4, the reference path is projected into

a front-facing camera image, including the projected reference map and the current SLAM

map detections. The radar target positions can be checked in vehicle perspective during the

drive for potential collisions.

Figure 6.4: Camera perspective of surround view cameras with projected reference map (red) and live semantic
radar SLAM-map of test scenario B, compare Figure 6.7. Projected reference path in yellow, red boxes
are radar detections of the reference map, compare Figure 6.3 (left) in overlay to the live semantic
radar SLAM-map as colored boxes according to the color code in Table 3.2.
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6 Pretrained automated Parking

6.4 Test Scenarios

Tested under different weather conditions, the test scenarios are recorded on three differ-

ent autumn days to test in rain, with fog and during sunshine. Four different test scenarios

are initially mapped and consequently driven automatically to evaluate the system’ preci-

sion. The test sequences are depicted as scene images or in top-view perspective in Fig-

ures 6.5, 6.7, 6.9, 6.11.

The first three of the scenarios A-C are open-sky scenarios, which allow differential GPS

reference position to be recorded and evaluated for the accuracy of the automated parking.

For the fourth scenario D, the multi-story car park blocks the differential GPS data to be

recorded. Based on the d-GPS, a trajectory-based evaluation of the semantic radar SLAM

system positioning accuracy can be performed.

Including minor environment changes, the effect of changing maps is compared by a second

measure based on semantic voxel distance of a map to map comparison measure. With this

measure, the robust radar segmentation and map stability is quantified to check the semantic

and structural semantic radar map consistency besides the changing objects.

The first two scenarios to be tested include urban scenarios with garages and buildings. Both

start at the same location, surpassing partly the same environment but following different

path ends. Sequence A, shown in Figure 6.5 contains a potential loop-closure. Test sequence

B, shown in Figure 6.7, is a longer open-loop drive around a block of garages with flanking

vegetation, cars and a wooden shelter building.

As third scenario C a public parking lot with large proportion of vegetation such as hedges,

bushes and with a loop-closure ensures a vegetation-framed test scenario with changing

parking lot occupancy, see Figure 6.9.

As last test scenario D, a multi-story parking garage is entered from outside, following a

path through parked cars to an end-position. This final test scenario is chosen to test the

robustness against map changes. Including a larger count of changing vehicles, the moving

and static vehicles provide significant environment changes. As drawback, the multi-story

building blocks the differential GPS reference sensors. Consequently, no absolute positioning

accuracy can be measured for this test scenario and track.

Each of the test scenarios is presented in detail in the following.
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Figure 6.5: TPA scenario A as satellite image [79] and scene images around garages as open loop drive.

Figure 6.6: Illustration of the test scenario A as resulting semantic radar SLAM map (see Section 5.4.5), with
sSNDT registration of Section 5.3.4 and Section 5.3.4.2, applied on the live inference of RadarNet
of Section 4.5. Colors according the semantic classes in Table 3.2.

The open-loop runs through the garage block, not reversing directly to the start area, but pass-

ing through a vegetation4 covered hump-framed path around a wooden building. Framed by

arbitrary objects, the latter of this path is semantically identified as vehicles or buildings.

4 From the top-view perspective of the radar map, it is not visible that the potential mis-classification of
vegetation (left top-corner) is interpreted misleadingly, as the underlying humps or hillocks are mainly
sensed. Hence, the visual top-view inspections does not comply with the expectation to find vegetation-
classification in the map.
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6 Pretrained automated Parking

Figure 6.7: TPA scenario B as satellite image [79] and scene images with loop-closure.

Figure 6.8: Illustration of the test scenario B as resulting semantic radar SLAM map (see Section 5.4.5), with
sSNDT registration of Section 5.3.4 and Section 5.3.4.2, applied on the live inference of RadarNet
of Section 4.5. Colors according the semantic classes in Table 3.2.
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6.4 Test Scenarios

The loop-closure trajectory leads the vehicle a second time through the starting area, allowing

a SLAM loop-closure to occur, before parking around a vegetation-isle in front of a metal wire

fence.

Figure 6.9: TPA scenario C as satellite image [78] and scene images of the public parking lot with loop closure.

Figure 6.10: Illustration of the test scenario C as resulting semantic radar SLAM map (see Section 5.4.5), with
sSNDT registration of Section 5.3.4 and Section 5.3.4.2, applied on the live inference of RadarNet
of Section 4.5. Colors according the semantic classes in Table 3.2.

As third test scenario, a public parking lot is chosen, depicted in Figure 6.9. In this scenario,

the reference path is framed by vegetation (dense hedges and bushes are supposed to reflect

radar randomly), containing flower beds and parked cars perpendicular to the driving path.

The final parking position is located besides a flower bed. This scenario includes a loop

closure in order to increase the traveled distance and to check if the semantically-assisted

loop-closure is achieved with a large map proportion of vegetation samples. The reference
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6 Pretrained automated Parking

radar map is shown in Figure 6.10. 5 From the scene photos, the non-planarity of the scenario

can be seen. The parking arms are connected by a ramp, which is separated by a little trench

in between. Traffic lights and trunks of trees can be found as circular pole clusters in the radar

map.

Figure 6.11: TPA scenario D as scene images of the car park at floor level as open loop drive.

Figure 6.12: Illustration of the test scenario D as resulting semantic radar SLAM map (see Section 5.4.5), with
sSNDT registration of Section 5.3.4 and Section 5.3.4.2, applied on the live inference of RadarNet
of Section 4.5. Colors according the semantic classes in Table 3.2.

5 The map structure in the lower part and on the right hand side of the map represent reflections of dense
vegetation hedges, but these are consistently semantically interpreted as building. The map structure at the
top of the image, describes a stone-wall and is correctly classified as building.
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The fourth scenario completes the potential parking scenarios with a multi-story car park

scenario as a difficult radar scenario due to multi-path and clutter reflections of the steel

construction. The scenario is illustrated in Figure 6.11 and the corresponding radar map is

found in Figure 6.12. Starting outside, the trajectory covers an open-loop drive on the floor

level, following a longer passage in an alley of parked vehicles and a parallel return. This

scenario is chosen as example of significant environment changes by a changing count of

parked vehicles. In the map evaluation later in this section, the static environment map is

compared after exclusion of the potentially dynamic vehicle radar detections. Also vegetation

and circular pole clusters are perceived and correctly classified at the start of the reference

path.
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6 Pretrained automated Parking

6.5 Results of automated Parking Experiments

In the context of automated parking, the evaluation measures specifically emphasize the

positioning accuracy. Besides the realization of a generally applicable radar-based automated

parking functionality, the main evaluation focus is not to measure driving performance KPIs

or driving comfort criteria for passengers. Of special interest is the positioning accuracy

during the automated drive with respect to a reference path and the end-position accuracy in

order to measure the semantic radar SLAM. Both accuracies describe the capabilities a solely

radar-based autonomous parking functionality is able to realize.

As reference data, the vehicle position is recorded with on-board differential GPS sensors.

Similar to the SLAM mapping comparison in Section 5, the wheel odometry and the SLAM

trajectory can be compared with the differential GPS position by their time-stamp. This is

referred to intra-drive measures. The odometry drift versus SLAM trajectory can be measured

against the synchronized time-stamp position of the d-GPS signals of the same drive.

Table 6.1: Automated parking test drives (A-D) with test details (X.1 /X.2 /X.3) driven at 19./ 22./ 25.11.2021
different length, environmental content and respective ∆z of 0.82 m, 0.79 m, 1.3 m, and 0.0 m.
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3xDrive A.3 15.89 18.66 14.33 20.57 184.25 3.53 26569 2.10 15.62 72.1 3.91 6.27 0.00

B - Mapping - - - - 165.66 13.5 21993 2.26 10.37 78.89 3.31 5.12 0.05

4xDrive B.1 34.36 36.55 31.78 25.78 167.79 3.78 24286 2.73 9.95 78.60 4.34 4.7 0.04

3xDrive B.2 47.47 28.75 21.72 23.7 164.73 4.02 19163 3.00 11.04 76.68 3.73 5.53 0.02

4xDrive B.3 20.21 32.34 20.89 32.82 167.73 3.8 26468 2.19 9.07 79.38 4.51 4.78 0.07

C - Mapping - - - - 168.14 14.2 13774 4.69 14.12 57.72 12.86 10.61 0.0

4xDrive C.1 18.2 32.71 26.83 22.95 168.25 3.90 14319 5.04 15.0 52.53 16.63 10.72 0.08

4xDrive C.2 26.18 29.71 27.48 20.15 167.65 3.71 13987 5.88 16.95 48.54 15.68 12.84 0.11

5xDrive C.3 28.45 34.97 33.6 22.5 168.64 3.71 14623 4.29 27.39 42.42 15.48 10.41 0.01

AVERAGE 24.43 28.83 23.5 23.22 172.75 3.73
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6.5 Results of automated Parking Experiments

Different from the evaluation of the SLAM mapping, for the trained parking evaluation a com-

parison of multiple different driving experiments of the same autonomous parking maneuver

is necessary. Referred to as inter-drive comparison, the comparison between different runs

of the parking is addressed. The first manually driven maneuver serves as reference to be

compared to subsequent automatically driven parking maneuvers.

Since the automated function does not replay driver inputs or drive specifics, e.g. ego-velocity

during the mapping process, but performs an own planning and velocity actuation, the driv-

ing performance is not comparable between manual and automated parking. Also the ma-

neuver time can not be compared due to a limited vehicle speed of 5km/h. In this case, the

accuracy of multiple automated drives is measured against the differential GPS coordinates

of the manual reference drive. The trained parking follows a projected reference path, so the

d-GPS position of the automated drive can be measured against the reference d-GPS path.

Comparing both d-GPS tracks from mapping and the automated driving delivers an upper

limit estimation of the achievable accuracy. The resulting positioning system error εpos, System

results from the combination of all system modules which are combined to the overall system

εpos, System = εpos, SLAM +εpos, Map-Matching +εpos, Planner. (6.1)

Since not all trained parking function modules, e.g. the planner and actuation module, are

optimized for the overall system evaluation but still contribute to the positioning error terms,

the achieved system error delivers an upper bound of the possible system accuracy. The path

planner and motion controller are tested in open-loop without re-localization to achieve

nearly ground truth quality and contribute low induced error component.

6.5.1 Vehicle Positioning Accuracy

The evaluation is based on the comparison of reference d-GPS tracks with the d-GPS tracks

of the automatically driven trajectory of independent autonomous parking maneuvers. First,

the general position deviation of the automated parking maneuvers is depicted in the top-

view plots of Figure 6.13.
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Figure 6.13: Top-view trajectories of the initialization (orange) from different start positions and the full auto-
mated drive of the test scenario A (left), scenario B (middle) and car park scenario C (right).
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6 Pretrained automated Parking

Starting from different start positions and vehicle orientation, the plots show the success to

autonomously plan a path onto and to automatically follow the reference path to the final

parking position. As the APE measure describes the metric deviation of the ego-vehicle to the

reference path, a minimum deviation is aimed to be achieved. Starting from an initialization

position, the automated maneuver manages to realize maximum position error of 1.5 m as

rare peak deviation in the APE measures of Figure 6.14. The driving functionality reduces this

peak-error and realizes an average position deviation below 0.5 m near 0.25 m, as depicted

in the course of the APE in Figures 6.14- 6.17 and summarized as Average in Table 6.1.

The individual drives in Figure 6.14 reveal isolated APE peaks in some runs, throughout the

automated maneuver. This de-positioning peaks result from a temporary deviation of the

regular map-matching, resulting in a temporary erroneous-projection of the reference path

to follow.

Considering Equation 6.1, the remaining source of error can be found in the SLAM term

εpos, SLAM. With a projected reference path from map-matching, the automated function fol-

lows potential projection errors. Hence, if this path to follow is projected with slight position

or orientation deviation to the current environment, the resulting d-GPS position of the ve-

hicle following this projected path deviates from the reference path coordinates - the APE

increases. Inspecting Figure 6.14, before and after corner turns of the reference path, the

realized APE tends to peak. This finding indicates a weakness of the large map-matching,

converging to a map-registration which potentially includes slight orientation errors.

The peaking APE errors mainly occur close to turns and are reduced subsequently again on

straighter parts of the trajectory. Considering the perceived environment during the auto-

mated drive, the mapping of turns add significant structural information to the structure

of the maps. The map-registration architecture in Figure A.10 includes an area-based sub-

sampling of the reference map before registration with the current map. Especially before

turns scenes of the scenarios, the current perceived environment structure is not fully recog-

nized, compare situations close before and after turns in Figure A.13 and Figure A.14. As a

result, the sub-sampled reference map contains a complete environment structure, while the

current map contains less structure, or only very sparse structures around corners. The effect

of sensor sparsity and aspect ratio of the scenario also increases this effect. Only a fraction of

the radar sensors see already around the corner, based on their FoV.

Being a distance based optimization, the map-registration fits the two map-point clouds

and converges including a remaining orientation error. This potential orientation error is

responsible for the re-projection of the reference path and a peaking APE, which is corrected

after the turn yielding a reduction of the APE.

202



6.5 Results of automated Parking Experiments
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Figure 6.14: Illustration of the test scenario A (left) and test scenario B (right) with reference d-GPS paths (red),
initialization drives (orange), and APE error (grey) of the independent automated drives. The APE
error is displayed to check the amount of error along the reference path, not the real deviation
coordinates of the automated maneuver.
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Figure 6.15: Illustration of the individual APE to the closest d-GPS reference of all automated drives (top) versus
the averaged APE error (middle) and the error bar plots of independent automated drives (bottom)
of test scenario A (left) and test scenario B (right).
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6 Pretrained automated Parking

Finding the disadvantages of the environment mapping in corner regions, the same corner

regions are responsible to define the environment structure. After the passage of a turn, per-

ceiving the turn with all sensors during the passage, the map-matching quality increases

due to the significant structure of the environment corner area. This effect helps to reduce

peaking accumulated errors of before mis-registered maps, yielding a more accurate refer-

ence path projection to follow after turns. This trade-off is responsible for the pre-turn APE

peaks and the subsequent reduction of APE after the turns. The box-plots reveal the average

APE value of single runs to be comparable over multiple runs, but the APE peaks to occur

independently from run to run.
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Figure 6.16: Illustration of the individual APE to the
closest d-GPS reference of all automated
drives (top) versus the averaged APE error
(center) of the test scenario C. Error bar
plots of 13 independent individual auto-
mated drives of the scenario C (bottom)
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Figure 6.17: Illustration of the test scenario C with
reference d-GPS paths (red), initializa-
tion drive (orange), and realized APE er-
ror (grey) as z-coordinate of the indepen-
dent automated drives in two perspec-
tives. The APE error is displayed to check
the amount of error along the reference
path, not the real deviation coordinates of
the automated maneuver.
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6.5 Results of automated Parking Experiments

Initialization Position: The test maneuver is initialized at different starting positions but

similar vehicle orientation. In order to test a realistic initialization, the automated parking

maneuver is initialized at approximately the same starting position with orientation variation.

See Figure 6.18, showing the straight initialization drive (orange) from different starting orien-

tation with respect to the original reference (red). The realized automated parking maneuver

path is depicted as gray path.
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Figure 6.18: Illustration of the initialization and start position od the automated initialization drive of the test
scenario A (left), scenario B (middle) and car park scenario C (right).

Final Park Position: The achieved end-position accuracy of the individual autonomous

parking maneuvers is found in Figure 6.19, at the end of the APE curves. Over the tested

scenarios, the average lateral end-position error compared to the red colored ground-truth

reference trajectory in Figure 6.19 yields ∅0.15cm for test scenario A, ∅34.45cm for test sce-

nario B and ∅24.28cm for test scenario C. Due to an structural planner deviation considering

the parking maneuver end-position, the comparison of the lateral APE is chosen to be con-

sidered for the end position evaluation. The orientation error of the end position vanishes.

The resulting orientation error of the test scenario C in Figure 6.19 results from the planner-

dependent early stopping before the reference trajectory ends, explained in the following.

0.0 0.25 0.50 0.75 1.00 1.25 1.50
x [m]

0.0

0.25

0.50

0.75

1.00

1.25

1.50

y 
[m

]

0.0 0.25 0.50 0.75 1.00 1.25 1.50
x [m]

0.0

0.25

0.50

0.75

1.00

1.25

1.50

y 
[m

]

0.0 0.25 0.50 0.75 1.00 1.25 1.50
x [m]

0.0

0.25

0.50

0.75

1.00

1.25

1.50

y 
[m

]

Figure 6.19: Illustration of the final position of the automated drive of the test scenario A (left), scenario B
(middle) and car park scenario C (right). The red path represents the manual reference dGPS path,
whereas the grey paths are fom each different test drives.
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6 Pretrained automated Parking

Planner Dependency: Equation 6.1 of the overall positioning error contains the term

εpos, Planner to describe both error terms of the planner as well as a re-localization error. The

planner-dependent early stopping before reaching the reference trajectory end yields from a

non-optimal parametrization of a lateral safety margin at the reference paths end. Figure 6.19

illustrates this safety margin as distance between the red reference path to follow and the

grey realized paths, stopping consistently before reaching the end of the reference path. For

the end position, this planner policy prevents to follow to the total end of the reference

path. The parametrization results in an artificial stop within ≈ 64cm to hold a lateral safety

margin. As a result, the last remaining ≈ 64cm of the reference path are not driven, derived

from ideal simulation conditions to re-simulate the planner. To compare the resulting end

position, this planner-induced lateral default distance is compensated for the automated

parking maneuver error in Table6.1. During the drive, the planner influence is neglectable,

Figure 6.13 illustrates the global path following potential along the path.

Map-Registration Dependency: During initialization and subsequent relocalization only

a smaller current radar map is perceived but map-matched with a much larger reference

map. Resulting from growing current maps with increasing map details, the map-registration

is found to be non-sensitive to rotational errors. Hence, based on this map-registration

the reference path projection can shift or rotate, and therewith vehicle follow an erroneous

reference path. Especially the rotational map-registration updates cause path deviations

- visible as significant orientation changes in Figure 6.18 or similar path variations along

the path in Figure 6.13. Depending on the planner and actuator parameter application, the

vehicle is following a comparably drastic planner policy to laterally drive onto to the projected

reference path. This agressive tuning depends on the planner parametrization and is found

to result in slight overshoots of the ego-vehicle position with respect to the reference position.

Consequently, especially for long and curvy automated parking maneuvers, especially the

rotational map-registration accuracy is found to be critical.

6.5.2 Map Reproducibility Evaluation

Besides the position accuracy evaluation of d-GPS tracks, the resulting semantic radar en-

vironment maps can be evaluated to rate the mapping quality of the test environments as

second semantic radar SLAM evaluation method. The following section describes an offline

map-evaluation process to evaluate the radar mapping reliability and reproducibility of the

static environment over independent runs. Since no ground-truth semantic radar map is

available for general test scenarios, the semantic radar maps of the automated drives of all

sequences (scenarios A - D) are compared to their corresponding reference map from the

manual drive.
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6.5 Results of automated Parking Experiments

The radar detections of the semantic classes person and vehicle detections are excluded from

the map comparison, in order to concentrate on the static stable environment and not mea-

sure dynamic objects. Hence, the remaining semantic radar SLAM map content for the

following evaluation is reduced to building, pole and vegetation detections.

Evaluation Procedure: Since the semantic radar maps are model-free and do not contain

any featured landmarks, the comparison of mapped parts of the global map is based on

associated radar points of compared maps. A grid discretization is applied to calculate the

distance per cell-centroid in order to avoid the map comparison metric to depend on the

number of radar detections in associated grid areas. The association includes both, the

spatial matching of radar detections and semantic correspondence of associated map-cells.

Figure 6.20 depicts the map pre-processing as Static Map Extraction step as first of the process

steps. The semantic classes are neglected in this visualization and in Figure 6.21. Also, a

radius outlier filter (minimum 5 neighbors in a range of 0.5m) is applied to compare only

significant structural radar map-regions.

Figure 6.20: Architecture of the offline map evaluation to derive metrics describing the radar mapping quality.

After the map pre-processing, a first global matching is applied to achieve a general global

map alignment. Given the global map registration, the overlapping map regions not neces-

sarily match precisely as the non-overlapping parts of Figure 6.21 show. It is found in the

nature of scattered radar detections, to yield especially rotational errors for map margins of

widespread maps.
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6 Pretrained automated Parking

Figure 6.21: Illustration of global matching (left) of reference map (orange) with current map (black) compared
to the local matching result(left) the test scenario D. Both maps are filtered by the radius outlier
filter after registration. Figure overtaken of [MT6].

As mitigation of the global map-registration step, a divide and conquer approach helps to

separate the global map into local tiles and compare these. Based on the first global align-

ment, both reference and current map are rasterized in local tiles of same size [30m ×30m]

and registered again as second local tile matching. Figure 6.21 shows exemplary results of the

local tile matching. Figure 6.22 illustrates a process chart, Figure 6.23 shows a map example

to a local tile map. This local tiles registration refines the global-matching, resulting in a

better map-overlay. With the local overlap, the map consistency regions and completeness

regions can be quantified.

Figure 6.22: Illustration of local semantic matching for a precise map comparison.

The resulting static well registered points, a map fusion yields a possibility to improve map

density and map completeness by overlying static and registered points to a combined map.

Map Evaluation Metrics: Comparing the distribution of the radar points as evaluation

measure does neither indicate a mis-matching content of the mapped environment, nor

emphasizes robust and significant map structures. Similarly impractical is the distance-

based map registration fitness-score of a matching algorithm to compare a point cloud map
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6.5 Results of automated Parking Experiments

content or the representation of structures. Defined as a distance measure between reference

and source points, the dependency of specifically associated point pairs and the point-count

dependency is structural. A difference in the number of points or a higher count of false

associations with outliers can drastically effect the fitness-score measure.

In contrast, a L2-distance norm as measure of spatially and semantically corresponding

voxels is applied, avoiding any point-count or feature dependencies. Instead of relying on

point-based distances, the 3D map-tiles are further discretized to smaller 3D entities of 50 cm

voxel cubes. Corresponding to Equation 5.7, assuming a maximum range of 40 m the radar

detection in each tile, the 2σ standard deviation yields a lateral deviation of 0.28 m, which is

doubled to include also scattered detections along environment shapes robustly. Assuming

the relevant environment shape to be captured in a 0.5 m cubic volume of scattered radar

detections, the goal is to capture shapes of the environment objects in a voxel volume. A

finer voxel size yields uninterpretable environment fragments, yielding potentially higher

resolution of smaller environment details, but are less robust to associate between maps.

Voxels are considered as empty or non-occupied with equal or less than 3 radar detections.

Hence, in the map comparison, the general environment shape comparison is prioritized

over a fine-grained detail comparison. Figure 6.23 visualizes the exemplary discretization

scheme in of map tiles and voxel grid.

Figure 6.23: Exemplary illustration of the 30 m quadratic map tiles and map grid cells of test scenario D. The
voxel grid of 0.5 m cubes is not displayed to scale.

Per voxel, the inlying radar points are summarized to a cell abstraction level: Each map voxel

receives the majority vote of the radar detections’ semantic labels ysem as voxel label. All

209



6 Pretrained automated Parking

points p(x, y, z)|ysem,majority of the majority class in each voxel are summarized to a represen-

tative cluster position pcluster,i (x̃i , ỹi , z̃i ) per voxel i .

pcluster,i (x̃, ỹ , z̃) = 1

Nysem, majority

Nysem,majority∑
i=1

(
pi (xi , yi , zi )|ysem,majority

)
(6.2)

For the general map comparison, the registration process yields overlying maps. To report a

measure of matching percentage of the associated map voxels, the count of overlying, in both

maps occupied (non-empty) voxels of the coinciding semantic majority label is reported.

cvoxel static =
#spatio-semantic associated, occupied voxels excluding vehicle and person

#all occupied voxels excluding vehicle and person
(6.3)

The count cvoxel staticof corresponding voxels is assumed to yield a description of regions with

coinciding map content of the captured environment structures of the two compared maps.

Based on the spatio-semantic voxel association, this subset of Nv ∈ R associated voxels are

considered to compute the distance metric dvoxel static between the point cluster center po-

sition (x̃i , ỹi , z̃i ) of two associated voxels i = 1, .., Nv . This metric measures how similar the

perceived map regions in the associated voxels are.

dvoxel static,i =
∥∥pcluster, map,i (x̃map,i , ỹmap,i , z̃map,i ) , pcluster, ref,i (x̃ref,i , ỹref,i , z̃ref,i )

∥∥ (6.4)

∅dvoxel static =
1

Nv

Nv∑
i=1

dvoxel static,i (6.5)

By reporting the average mean distance ∅dvoxel static of point clusters in voxels, the depen-

dency of the total point-count of the two compared environment regions is avoided. It gets

irrelevant by how many specific radar reflections the map content or the environment struc-

ture is represented.6 As point-count indifferent measure, the comparison is also free of spe-

cific landmark shapes but indicates differences of the mapped environment point cloud

represented by the local reflection clusters.

Two identical maps would yield a 100% association percentage at a distance measure of

0.0cm, compared to which the probabilistic nature of radar sampling can be compared. This

KPIs deliver two straight-forward interpretable metrics describing the fraction of matching

map content, and to which metric accuracy two maps correspond.

Map Evaluation Results: The box plots of the average map metrics per test scenario in

Figure 6.24 can be compared to the visualization of matching map regions in Figure 6.25 and

the original semantic radar maps in Figure 6.26.

6 The radius outlier filter in Figure 6.20 removes noise and other single detections to compare only the plausi-
ble and relevant environment mapping.

210



6.5 Results of automated Parking Experiments

A B C D
Test Track

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 C
lu

st
er

 C
en

te
r D

ist
an

ce
 [m

]

A B C D
Test Track

0

20

40

60

80

100

St
at

ic 
Pe

rc
en

ta
ge

 [%
]

Figure 6.24: Averaged map evaluation metrics of all scenarios A-D averaged metrics over independent au-
tonomous parking runs.

Summarizing over 43 runs (11 for scenario A, 11 for scenario B, 13 for scenario C, and 8 for

scenario D), the automated drive evaluation in Table 6.1, as well as the map evaluation in

Table 6.2, and Figure 6.24 reveals a general reproducibility of a maximum distance error of

16,25cm and reliable environment mapping over the test sequences A-C and throughout

the passed time and changing environment between independent test drives. The maxi-

mum map distance error of 16,25cm yields as average value of the measured cluster center

distances in the left plot of Figure 6.24.

The right plot of Figure 6.24 illustrates the measured static percentage of the semantic radar

SLAM map, for the reduced static detections of building, pole and vegetation. Except for the

car park scenario D, the right plot of Figure 6.24 shows matching percentages beyond 50% to

a peak value of 72%, as measure of the spatio-semantic coinciding map-content, especially

with respect to a consistent semantic label of the radar detections (building, pole and vegeta-

tion). Test scenario D plays a special role as most difficult test environment, since the parked

cars in the car park are fully re-arranged and exchanged, resulting in a significantly differ-

ing environment and differing occlusions of the static environment. Without the semantic

radar labels, it would be impossible to separate relevant static structures (also including the

correctly labeled radar multi-path detections behind cars), from the potentially moving e.g.

vehicle radar detections - still less a re-localization would be possible based on non-seperable,

non-interpretable the point cloud data.

In contrast, the remaining static map content of ≈ 30% of the semantic radar maps still

delivers a robust data-basis to still achieve and realize the same parking accuracy as the other

test drives7. As a result of the majority of the scenario being constituted by vehicles, compare

Figure 6.26, the robustly sensed static environment serves as sufficient map-content to realize

7 The car park scenario could not be measured with d-GPS due to d-GPS signal non-availability in the multi-
story car-park, but was successfully executed and visually inspected.
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the autonomous parking maneuver. The percentage seems low, but only the overlap with

reference map voxels are counted. Newly occupied cells in the current map, e.g. due to

other aspect conditions, reduce the metric, even if this structure is relevant and static. The

robustness of the positioning accuracy of the autonomous parking which is achieved with

this level of spatio-semantic coinciding map-content.

This semantically and spatially matching map voxel distances yields an average mapping

precision of 16.3cm, for a matching average map content of ≈ 56% over the test scenarios

A-D. All matching regions, similar to e.g. a landmark matching comparison, are averaged

over a whole map to this average deviation of 16.3cm.

Table 6.2: SLAM map evaluation of the averaged test scenario metrics. Test scenario A-D with different length
and environmental content.
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A 1.14 0.1501 64 0.1487 183.33 0.82 3.59 152.69 27992 2.08 15.9 72.6 4.14 5.28 5.28

B 1.63 0.3401 73 0.1493 166.75 0.79 3.83 139.76 23305 2.64 9.9 78.22 4.19 5.0 5.0

C 1.04 0.2428 53 0.1625 168.18 1.3 3.77 85.09 14309 5.07 19.79 47.83 15.93 11.32 11.32

D - - 34 0.1986 135.53 0.0 4.0 158.72 26468 3.66 46.98 35.7 5.98 7.66 7.66

A visual inspection of the map evaluation KPIs is possible in Figure 6.25, indicating the spe-

cific regions of the map with respect to the initial reference map. Matching map grid cells are

highlighted in green, newly occupied map grid cells are high-lighted in orange color.

It is found that mainly vegetation structures in test scenario C and car park building structure

(of a metal fence) for test scenario D is highlighted in orange, showing a difference to the

reference map. The total spatially and semantically coinciding static voxel percentage closely

beyond ≈ 50% in scenario C specifically results from the vegetation framing. The vegeta-

tion (hedge) scatters radar reflections causing non-corresponding semantic labels or spatial

shapes. In contrast, the structurally distinct reflections of trees and light-poles at the y center

of the plot, are consistently found as corresponding (green marked) voxels. This scenario is

specifically depicted in order to illustrate an example of the lowest achieved spatially and se-

mantically coinciding static voxel percentage. The other test scenario contain less vegetation,
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6.5 Results of automated Parking Experiments

which induces less reflection scatter and additionally yields increased semantic accordance

closely to 80%, see Figure 6.24.

Figure 6.25: Illustration of matching cells (green) and newly occupied regions (orange) of three independent
maps of automated parking runs (vertical) of the four test scenarios A-D (left to right).

Figure 6.26: Three different autonomous drive semantic radar maps (vertically) of the four test scenarios A-D
(left to right).8
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6 Pretrained automated Parking

Especially for the car park in scenario D, the removed vehicle detections and direct line-

of-sight occlusion of the static environment structure behind parked cars reduce the coin-

ciding static map structure significantly. Compare the remaining map structure (black) in

Figure 6.25 with the original map, including original vehicle detections (blue) in Figure 6.26.

As a result, the percentage of the remaining map content is lower, compared to the other test

scenarios A-C.

For a general visual comparison of the semantic radar maps, the exemplary SLAM maps in

Figure 6.26 can be inspected. The 3D inspection of the radar maps allows further details to

be grasped: Poles, trees or other vertical structures are well-represented. And also the 3D

vehicle shape or shape of building structures (wall-planes, etc.) can be detected by the 3D

radar map.

Semantic Map Classification: The presented automated parking maneuver tests are per-

formed over the course of late fall into winter. Due to the time frame of the thesis, summer

conditions could not be tested as closed loop autonomous parking run. The changes of the

environment maps are displayed in Figure 6.26, to compare exemplary semantic segmenta-

tion and semantic mapping on different days.

It can be found from Figure 6.26, that the semantic segmentation yields stable and consistent

labels for the same map regions. The resulting radar maps of the environment are consis-

tently use-able and also interchangeable as reference map, no mapping degradation based

on environmental changes are measured. Even weather conditions of mist, rain or darkness

in the dusk, are included in the test runs, but do not influence the semantic classification and

map.

Consistent in the segmentation, the semantic labels nevertheless reveal optimization poten-

tial. Achieving a well determined de-noising capability to filter non-relevant noise from the

map, the confusion matrix of the applied segmentation network, see Figure 4.25, reveals a

mis-classification of vegetation,person and partly vehicle that can be found in the semantic

radar maps accordingly. Especially test scenario C, consisting of dense hedges as environ-

ment framing structure, significantly shows the classification confusion of vegetation. The

dense hedges can be found in Figure 6.9 are mis-classifies as building, instead of vegetation.

Nevertheless, the data association of the SLAM mapping and re-localization map-matching

is not deprecated from this mis-classification, since the mis-classification seems systematic.

But for a semantic environment evaluation of the scenario, or further processings including

e.g. to remove vegetation from the reliable map structure, the mis-classified vegetation causes

difficulties.

8 TPA test scenario dates (top to bottom), scenario A recorded at 19.11.2021, 22.11.2021 and 25.22.2021,
scenario B recorded at 19.11.2021, 22.11.2021 and 25.22.2021, scenario C recorded at 19.11.2021, 22.11.2021
and 25.22.2021, and scenario D recorded at 19.11.2021, 22.11.2021 and 22.11.2021.
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6.5 Results of automated Parking Experiments

Changing Environment: Different weather conditions (day, night, rainy, and foggy) are

met during the tested autonomous parking maneuvers, not causing any direct perceptible

difficulties or any notable system degradation, in mapping or in reference path following

accuracy. As expected, the radar sensor and semantic radar segmentation is unconditionally

available at the same mapping and classification performance.

The evaluation over a sequence of days includes also drastic changes of the potentially dy-

namic vehicle objects. The car park sequence D illustrates the systems robustness in case of

the significantly changing environment by fully re-arranged vehicles. Comparable environ-

ment changes are found during the tests on test scenario C. A vivid change of occupied and

free parking lots with bypassing pedestrians is tested. Especially cars or trailers have been re-

parked or re-moved, dynamic objects such as passing vehicles or crossing pedestrians have

been met and cause a changing environment structure. The semantic radar SLAM enables to

associate the relevant environment structure and enables a robust data association.

The vegetation changes only marginally during the testing time of Figure 6.26. Summer

conditions of the same scenario are not tested.

For a detailed analysis of specific map regions, especially to fuse the information of multiple

maps, the regional map KPIs per map tile are relevant, instead of the global map average.

With this regional KPIs, a significant deviation of the average, especially of the matching

voxel percentage indicates occlusions or other environment changes and map-fusion can be

performed per tile or per semantic detail of map-tiles.
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6 Pretrained automated Parking

6.6 Section Conclusion

This section gives an evaluation of the integral parking functionality, compounded from dif-

ferent radar research contributions, broken down into system level contributions of Figure 1.4

and discussed in the previous Chapters 3-5. With this final section, the functional chain is

discussed and presented as semantic radar-based autonomous parking functionality.

Tested with an arbitrary start position with average distance of ∅1.27m to the reference start

position at a similar orientation, the radar-only trained parking system is initialized and the

parking maneuver performed without further human interference.

Based only on the initially driven path and pre-recorded semantic radar SLAM map, the radar-

only based assistance function achieves over an average passage of 172.75m an median APE

of 23.5cm to the reference path, at a standard deviation of 23.22cm. The end parking position

is reached with an mean lateral deviation of 24.43cm to the reference path.9 With this find-

ing, the applicability of a radar-based parking functionality experimentally and measurably

answers the system research questions of Section 1.3.

Assuming a free space to drive along the initially mapped path, the presented system achieves

unprecedented positioning accuracy, while relying only on the radar sensor set. The tested

vehicle setup yields a positioning accuracy to be applicable for further development of a

trained parking functionality under typical real-world parking conditions.

The evaluated closed-loop tests yields an upper bound accuracy evaluation serving as bench-

mark for further optimization. The positioning error is affected by all integrated module’

errors, including the radar semantic segmentation CNN, the semantic Radar SLAM, the se-

mantic radar map-matching and re-localization, plus the path planner, motion controller

and actuator imprecision.

Based on the comparably low median positioning error of 23.5cm of 43 autonomous parking

maneuvers, the realized first semantic radar based autonomous parking functionality for an

tested path length of 135m −209m establishes a new application of radar sensors in point

cloud processing and advanced driver assistance systems. The robust sensing modalities,

low sensor-set integration effort and low sensor cost, allows to further process the develop-

ment of automotive assistance functions similar to the presented semantic radar SLAM and

autonomous parking basis.

Recent comparable localization on automotive radar in urban scenarios of Narula et al. [151]

are outperformed with the presented method by 50%, considering the localization precision.

The presented work also enriches the radar environment map applicability by a whole new se-

mantic dimension towards radar map-interpretation, instance segmentation or map fusion.

9 A systematic planner-related error stops the vehicle ≈ 64cm earlier to the reference path ends.
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Based on the similarity of the semantic radar maps of different passages, the map-fusion

enables accurate map-updates and map-complements of e.g. occlusions or environment

changes. Also, the open question of semantic-reasoning can be tackled, to speed-up percep-

tive conclusions from the semantic map.

The application range of the presented system ranges from semantic radar SLAM based lo-

calization [Pat7] in an automated or autonomous driving context [Pat8], to a driver-feedback

parameterized vehicle actuation policy [Pat6] or as augmented reality application [Pat9]

6.7 Section Outlook

Automated Parking - Collision Avoidance: As additional features for the realization of

an automated parking, collision avoidance modules are necessary. To cope with potentially

blocking objects and dynamic obstacles, the presented functionality should be enriched with

an obstacle detection breaking mode. By the integration either of camera-based modules, in

combination with radar object detection, an object or obstacle could to be respected in the

planner module.

Either avoiding a collision by re-planning the trajectory to drive in the range of a maximum

deviation distance, the vehicle can be directed around a detected object. Applicable rather to

static objects, dynamic objects such as pedestrians or bicycles or other passing vehicles, an

emergency braking module offers higher safety.

Automated Parking - Enrichment with Parking Lot Lines: Derived from the use-case of

automated parking in public or private parking lots, the final orientation, lateral or longitu-

dinal offset could potentially be adapted by a fusion with parking line detection. Given the

assumption of valid and trustworthy line detection based on the surround view cameras, the

planning and vehicle positioning towards the end-position of the automated drive could be

improved.

As humans, the parking performance of a parked car is (unconsciously but) naturally eval-

uated by a comparison of the framing parking lines as reference target position. An other

common measure is to evaluate the orientation and distance with respect to neighbor vehi-

cles. In order to optimize the end-position in such an environment with parking lines and

potentially other ground markings, the planner and perception need a common mode to

adapt the final pose to a situation adaptive optimum position and orientation. As such, TPA

is capable to navigate the vehicle to its target position along a given path, but apart from the

human quasi-ideal training data (initial mapping drive), the current scenario environment

might change slightly and yield to an other optimum end-position.
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6 Pretrained automated Parking

SLAM Mapping - Surface Reconstruction: Based on the dense radar detections accumu-

lated by the SLAM map, as post-processing a surface reconstruction is tested briefly. The

advantage of enclosed volumes could be used to improve the semantic labels on objects,

e.g. by a removal of overlapping labels. The semantically isolated point-set of vehicles in

a parking garage is applied for an exemplary 3D reconstruction in Figure 6.27. The vehicle

surfaces are generated by a point to mesh reconstruction, as proposed by Open3D of Zhou

et al. [251]: First, the semantic radar detections of a single class is isolated, a radius outlier

filter is applied (minimum 6 neighbors in a 0.2m range), then a mesh is created with the

alpha shape approach (α= 0.43) of Edelsbrunner et al. [60] . Allowing object segmentation

as map post-processing, the processing of bounding box detection and instance clustering

can be transferred to the semantic radar maps, or class-specific sub-sets.

Figure 6.27: Illustration of an exemplary surface reconstruction of the isolated vehicle detections in a car
park from a two different semantic radar SLAM maps. The bumper shells are prominently re-
constructable for the passaged vehicle rows.
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7 THESIS CONCLUSION

Starting out from the ultimate goal to develop a novel purely radar based ADAS functionality,

to be integrated and tested in a real-world vehicle, this thesis presents the novel theoreti-

cal foundation of semantic radar signal processing, the radar-based semantic environment

modeling, to a full vehicle actuation for autonomous parking.

As enabler, an automated semantic radar labeling pipeline [SI1, SI2], a novel semantic radar

data set of the static environment is built. As new benchmark of direct semantic radar seg-

mentation of especially the static environment, the proposed semantic segmentation archi-

tecture RadarNet achieves 28.97% mIoU on six classes (Discrimination of clutter to de-noise

the radar data, and to determine buildings, vehicles, vegetation, persons and poles) [SI3].

This segmentation model is applied to extend a SLAM formulation to specifically comply with

radar data, outperforming other radar localization methods and enabling a new dimension

of semantic radar SLAM perception [SI4]. A specially radar-adapted Graph-SLAM front-end

assembles the spatio-temporally pre-filtered semantic radar detection point clouds to yield

the novelty of a consistent metric semantic radar map.

Showcasing the full potential of the proposed segmentation and SLAM, this thesis evaluates

the benefits of a complete signal processing development from raw sensor perception to

full autonomous vehicle control. Integrated into a real-world vehicle with a given trajectory

planner and controller, a solely radar-based autonomous parking functionality is developed,

built on-top of the theoretical segmentation and SLAM findings. Outperforming other radar-

map localization results by large margin of ≈ 50%, the real-world implemented autonomous

parking maneuver achieves a map consistency of ≈ 56% along a ∅165m long mapping path

in a changing environment at a total map deviation of ∅0.163m. The autonomous radar-

only parking maneuver over an average length of ∅135m yields an average of ∅0.23m lateral

distance of a reference trajectory. To the authors best knowledge, a comparable radar-based

holistic function concept for a full autonomous parking has not been published yet.

For the research questions of this thesis, the findings are presented in the specific sections, as

well as subject specific-outlooks. The main contribution can be defined as the novel real-time

capable radar segmentation network RadarNet, the semantic radar SLAM SeRaLoc, and the

combined application in a autonomous, radar-only based trained parking functionality as

novel advanced radar ADAS. With the empirical testing of the trained parking functionality,

its real-world applicability is evaluated.
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7 Conclusion

7.1 Thesis Outlook

The findings of a radar-only based potential driving function suggest, that advanced semantic

radar processing based on learning approaches will yield a new generation of semantic radar

perception to potentially substitute or support other sensors in the future.

The lack of publicly available large-scale automotive radar data sets still is a major hurdle

to advance the potential of learning based radar processing. But, the proposed automated

radar labeling framework SeRaLF attempts to provide a cross-sensor solution to generate

large-scale labeled data sets of radar data. In addition, the presented RadarNet semantic

segmentation directly facilitates the direct generation of larger data sets, which can be refined

by the SeRaLF framework. The research field of radar segmentation is expected to gain more

attention.

The experimental automated parking functionality showcases a glimpse towards the future of

radar-based applications in the automotive context. It remains open to research, how systems

of currently dominant camera-systems can be boosted by a radar fusion, by optimized sensor

set designs [Pat10] or in company with improved sensors in general, e.g. distributed camera

lenses [Pat11]. Exemplary, the camera blindness-compensating radar is proven in this thesis

to be capable already to be applicable for vehicle localization and automated driving even

without a HD-map as reference. With future radar sensors delivering a denser and more

accurate radar point cloud, the potential of this sensor type is expected to play an essential

role for further driver assistance systems directly or as redundant fallback in case of visual

sensor blindness.
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A APPENDIX

A.1 Alternative Segmentation Approaches

As extension to the discussed approaches of semantic segmentation in Section 4.2, existing

radar segmentation approaches also include and build on sensor fusion. Fusion approaches

of multiple sensors and potentially different pre-trained expert networks, introduce system

complexity, the necessity of a specific sensor set and mostly require large memory and a

special data. Hence, these fusion approaches are not further discussed in this thesis but

denoted briefly as existing works:

Choi and Kim [44] fuses raw radar data with the depth information of a RGB-D camera and

try to validate the a-priori known motion ground-truth data of objects. Given the dynamic

objects’ trajectories, the authors prove that the object motion can be applied to separate

object instances. These findings are limited to an offline data set. Steyer et al. [206] suggest

the fusion of radar point clouds with dense LiDAR point clouds to estimate object bounding

boxes. Similarly, Nobis et al. [153] suggest neural sensor fusion of radar point cloud and

camera image automatically by a CNN classificator to distinguish 7 classes of VRUs. A similar

network structure is proposed for RSS-Net [110], fusing a seperate semantically segmented

camera image with the radar point cloud, to classify from a set of seven classes ( pole-like,

bike-like, vegetation, construction, pedestrian, vehicle and empty). Meyer and Kuschk [143]

propose the similar fusion, but detect 3D bounding boxes of vehicles. The proposed CNN

intakes the 3D spatial information of the radar point cloud with magnitude and an rgb image.

From both data sources, feature extractors are combined to region proposals and fused with

fully connected layers.
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A.2 Density Plots per Semantic Class

In the following plots, the original data distribution is displayed in a range of [0,50]m for

the classes building, vehicle, vegetation, person and pole. For the summary over all classes in

Figure A.1, and the clutter/ noise class, Figure A.7 shows the range of [0,100]m.

Figure A.1: Original spatial distribution of all radar point classes (left) compared to augmented by rotation and
coordinate flipping (right).

Figure A.2: Original spatial distribution of building radar point class (left) compared to augmented by rotation
and coordinate flipping (right).
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A.2 Density Plots per Semantic Class

Figure A.3: Original spatial distribution of vehicle radar point class (left) compared to augmented by rotation
and coordinate flipping (right).

Figure A.4: Original spatial distribution of vegetation radar point class (left) compared to augmented by rotation
and coordinate flipping (right).

Figure A.5: Original spatial distribution of person radar point class (left) compared to augmented by rotation
and coordinate flipping (right).
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Figure A.6: Original spatial distribution of pole radar point class (left) compared to augmented by rotation and
coordinate flipping (right).

Figure A.7: Original spatial distribution of clutter/ noise radar point class (left) compared to augmented by
rotation and coordinate flipping (right).
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A.3 Semantic Radar SLAM Map Postprocessing

The final semantic radar maps of the radar SLAM still include scattered radar detections or

outliers and the maps are not checked to contain consistent labels per local structure. In

perspective to process the maps for further applications, e.g. for a free space estimation, a

map fusion, or for semantic instance segmentation, the maps benefit from a post-processing.

Label Morphing: Clutter detections, as "container" for semantically labeled clutter can

still be contained in the SLAM map MSLAM, if the detections pass the pre-filtering and the

temporal filter of the SLAM pipeline. Semantically labeled as clutter, but still contained the

map MSLAM, these points can be assumed to be semantically labeled incorrectly by the radar

semantic segmentation CNN. Hence, an online label morphing algorithm is implemented,

to process a running window of SLAM nodes, similar to a graph-tail lagging running window

sub-map, while the SLAM nodes at the latest graph-tail are unchanged. The label-morphing

updates only the semantic labeling of SLAM mapped initially labeled clutter according to the

semantic labels of the local neighborhood. The window of the considered SLAM Map nodes

starts in a node offset of dx,min = 15 from the latest SLAM node to the farthest dx,max = 30

SLAM node.

All the semantic radar SLAM maps shown in this thesis are post-processed with the Algo-

rithm 3.

Algorithm 3 Applied SLAM label morphing in a lagging window of 15 SLAM nodes.

Require: PSLAM,radar(t ),MSLAM,dx,max,dx,min

for C (pSLAM,i ) = unknown do
C (pSLAM,i ) ← K-NN((MSLAM|dx,min,dx,max), pSLAM,i )

end for
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A.4 Trained Parking System Integration

For the closed-loop real-world testing of the automated parking functionality, the introduced

modules of this thesis are integrated and tested in a vehicle: The 3D semantic radar seg-

mentation RadarNet, the semantic radar SLAM for mapping, a semantic radar relocalization,

together with a trajectory planning and vehicle actuation module.

To perform the closed-loop automated parking tests, the following software modules are

additionally implemented.

1. Re-localization Approach: To find the position of the ego-vehicle in a reference map,

this module compares map extracts and finds the best match. Starting from an initial

position guess at at (xinit = 5, yinit = 0) map matching is performed in a constant rate of

every Nmap, update map update cycles.

2. Vehicle Interface: A real-time controller platform is integrated as ROS to CAN interface,

realizing the communication between CarPC ↔ embedded platform ↔ vehicle.

3. Vehicle Actuation Pipeline: A motion planner module finds the path to follow the refer-

ence path, which is translated by a controller to vehicle actuation signals (acceleration

a and steering angle δ).

From the list above, the relocalization registration re-uses the semantic radar registration of

Section 5.3.4, but applied in larger map regions.

The second module, as interface between the compute platform and the real-time controller

platform, is specifically implemented for the vehicle setup.

The remaining third module of planner and actuation, are not part of this thesis work

and treated as given modules. The trajectory planner is designed by Lukas Köhrer from

Forschungszentrum Informatik FZI 1. As part of joint supervision of the Master thesis of

Fabian Bischoff [MT4], the planner and the actuation controller are integrated in the test

vehicle and treated in this work as given modules.

1 www.fzi.de

226



A.5 Trained Parking Initialization Drive

A.5 Trained Parking Initialization Drive

To start the trained parking functionality, a short initialization drive is necessary to map

the current environment and register with a reference map. This initialization process is

described in the following.

Due to the sparsity of radar point clouds, it is found fragile to match single radar point clouds

directly onto a map. Improved localization robustness is reached when a small environment

map is recorded and compared to the reference radar map of the scenario.

Figure A.8: Illustration of the automated initialization drive resulting semantic radar SLAM map for the test
scenarios A and B (left), scenario C (center) and car park scenario D (right).

Hence, the automated parking function requires an automated drive to generate this initial

environment map. As most simple automated drive, a straight path of 5m is driven automat-

ically after the parking function initialization to generate a current environment map. Based

on this environment map, the map matching with the reference map can be computed.

From a functional point of view, the initialization position of the automated parking func-

tionality is required to be positioned in close proximity to the original start position of the

reference mapping. Since a manually driven position will never match the exact initial start

position, the system needs to cope with variable start positions. The assumption is formu-

lated, that the starting position of the autonomous parking can be located in a search range

of 10 meters from the reference start point (xref, start = 0, yref, start = 0), with the vehicle orien-

tation pointing towards the reference driving direction.

After the initialization drive, the re-localization assumes a position guess (xinit = 5.0, yinit =
0.0) and registers the current map so the reference map. This initialization drive does not
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respect the reference driving path in any way, but only needs to generate a first environment

map for the map-matching.2

The test drives are initialized from an arbitrary initialization position, in 5 meters range

around the reference mapping start, pointing in a similar driving direction. The semantic

radar maps in Figure A.8 illustrate the initial maps, resulting from the automated initialization

drive. The 5m straight initialization drive is visible by the driven path, depicted as black

graph-SLAM nodes, with the current semantic radar environment map. This sparse current

initialization radar map is map-matched with the reference map of the scenario to register

the current vehicle pose in the reference map, as discussed in the next section.

Figure A.9: Illustration of the total semantic radar SLAM map for the test scenarios A and B (left), scenario C
(center) and car park scenario D (right).

2 A more elaborate vehicle integration scheme could eradicate this initial drive, e.g. by implementing a con-
tinuous initialization environment mapping as background functionality, allowing to immediately supply a
current map.
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A.6 Trained Parking Map-Matching

Not only once for the initialization of the trained parking functionality, but recurrently with

a growing current map, the two maps of the current perception and the initially mapped

reference map are registered to find their relative transformation Tref,cur. The relative trans-

formation Tref,cur between the maps is used to project the initially mapped reference map

into the current map coordinate system.

The interplay of current map matching for the map registration to the reference path projec-

tion procedure is illustrated in Figure A.10.

Figure A.10: Illustration of the automated re-localization process, showing the submap extraction of the refer-
ence map based on the convex hull of the current map, submap alignment and relative transfor-
mation.

The reference map from a prior training passage is therefore denoted as global initial ref-

erence map Mg l ob,i ni t . The current SLAM map, now created at revisiting the scenario and

driving the automated parking maneuver, is referred to as current map Mcur r .

Based on the initialization position assumption (xinit, yinit), the size of the current map Mcur r

is down-sampled and serves to calculate the bounding convex hull of the map area size. Based

on the initial relative transformation guess, the initial reference map Mglob, init is masked to

a sub-map SMcurr of the same size as the convex hull of Mcurr. Figure A.11 illustrates an

exemplary bounding convex hull and the corresponding extracted area to extract from the

reference map around the initial guess.
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Figure A.11: Illustration of the automated initialization drive resulting semantic radar SLAM map (left), with
respect to the reference map (right) of the test scenario B. The sub-sampled and convex-hull extract
is depicted as dashed line.

Figure A.12: Illustration of the automated initialization drive resulting semantic radar SLAM map (left), with
respect to the reference map (right) of the test scenario D. The sub-sampled and convex-hull extract
is depicted as dashed line.

Analogeously to the semantic scan-matching in Section 5.3.4, the sub-map point clouds are

compared with respect to their spatial and semantic attributes by a semantic NDT matching.

From the registration of both point clouds, the relative transformation Tref, cur between both

point clouds is given as rotation Rmap and translation Tmap and can be used to project the

maps in overlay.

In order to avoid potential local registration minima and misaligned maps, the initial param-

eter guess is varied (translation and rotation) and tested in parallel.3

3 Real-time requirements are not necessary for the calculation step of re-localization. The vehicle is consid-
ered to be at standstill during this function call.
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A.6 Trained Parking Map-Matching

Hence, the relative rotation Rmap and translation Tmap of the map registration describes the

spatial relation of both maps. Mcurr and Mglob, init - both maps are generally constructed with

(0,0,0) as their coordinate system origin.

Reference Path from Map-Matching: Besides the best matching overlay of the maps, the

projection of the initially driven SLAM reference path into the current SLAM map coordinate

system can be performed


xref

yref

zref


cur

= Tref, cur ·Tref. (A.1)

Together with the current ego-position coordinates, the projected reference path points

(xref, yref) are sent to the planner module.

Live Reference Path Updates: Based on the small initial sub-maps extract, the intial map-

matching and registration is responsible to converge to a first correct transformation Tref, cur.

Performing the map-matching not only one initial time at system start, but in a frequent

update rate, it is possible to take the growing current map into account and increase the size of

the registered sub-maps. By increasing the current sub-map size according to the automated

driven path and environment map, larger map parts are registered, which yields higher map-

matching accuracy, map matching robustness and stable registration results. Increasing the

map-matches yield robust and more accurate results, increasing also the accuracy of the

reference path projection to follow.

An example of a growing current map during an automated parking maneuver can be found

in Figure A.13-A.14.

Figure A.13: Different TPA maps and camera images at 44s, 50s, 60s and 80s of an automated parking maneuver.
Top-View front facing camera images (top), with synchronous semantic radar map, projected
reference path (yellow) and driven path (black) in the bottom image. The radar segmentation is
depicted by the color scheme.
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Figure A.14: Different TPA maps and camera images at 88s, 95s, 125s and at the end-position of an automated
parking maneuver. Top-View front facing camera images (top), with synchronous semantic radar
map, projected reference path (yellow) and driven path (black) in the bottom image. The radar
segmentation is depicted by the color scheme.

The map-matching is performed in a regular update rate to benefit from the increasing local

perception knowledge in form of the current map. Consequently, with every map-registration

update, a new relative map-transformation between current map and reference map is avail-

able. Hence, with the same update rate, the planner module needs to reload its input variable

of the reference-path projection and ego-vehicle position.
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