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KURZFASSUNG

Entlang der Signalverarbeitungskette von Radar Detektionen bis zur Fahrzeugansteuerung,
diskutiert diese Arbeit eine semantischen Radar Segmentierung, einen darauf aufbauenden
Radar SLAM, sowie eine im Verbund realisierte autonome Parkfunktion. Die Radarsegmen-
tierung der (statischen) Umgebung wird durch ein Radar-spezifisches neuronales Netzw-
erk RadarNet erreicht. Diese Segmentierung ermdoglicht die Entwicklung des semantischen
Radar Graph-SLAM SERALOC. Auf der Grundlage der semantischen Radar SLAM Karte wird
eine beispielhafte autonome Parkfunktionalitdt in einem realen Versuchstriger umgesetzt.
Entlang eines aufgezeichneten Referenzfades parkt die Funktion ausschlieBlich auf Basis der
Radar Wahrnehmung mit bisher unerreichter Positioniergenauigkeit.

Im ersten Schritt wird ein Datensatz von 8.2 - 10® punktweise semantisch gelabelten Radar-
punktwolken iiber eine Strecke von 2507.35 m generiert. Es sind keine vergleichbaren Daten-
sitze dieser Annotationsebene und Radarspezifikation 6ffentlich verfiigbar. Das {iberwachte
Training der semantischen Segmentierung RadarNet erreicht 28.97% mloU auf sechs Klassen.
Aulerdem wird ein automatisiertes Radar-Labeling-Framework SeRaLF vorgestellt, welches
das Radarlabeling multimodal mittels Referenzkameras und LiDAR unterstiitzt.

Fiir die kohdrente Kartierung wird ein Radarsignal-Vorfilter auf der Grundlage einer Ak-
tivierungskarte entworfen, welcher Rauschen und andere dynamische Mehrwegreflektionen
unterdriickt. Ein speziell fiir Radar angepasstes Graph-SLAM-Frontend mit Radar-Odometrie
Kanten zwischen Teil-Karten und semantisch separater NDT Registrierung setzt die vorge-
filterten semantischen Radarscans zu einer konsistenten metrischen Karte zusammen. Die
Kartierungsgenauigkeit und die Datenassoziation werden somit erh6ht und der erste seman-
tische Radar Graph-SLAM fiir beliebige statische Umgebungen realisiert.

Integriert in ein reales Testfahrzeug, wird das Zusammenspiel der live RadarNet Segmen-
tierung und des semantischen Radar Graph-SLAM anhand einer rein Radar-basierten au-
tonomen Parkfunktionalitédt evaluiert. Im Durchschnitt tiber 42 autonome Parkmandover
(@3.73’“7'”) bei durchschnittlicher Manéverldnge von ©172.75 m wird ein Median absoluter
Posenfehler von 0.235m und End-Posenfehler von 0.2443 m erreicht, der vergleichbare
Radar-Lokalisierungsergebnisse um = 50% tibertrifft. Die Kartengenauigkeit von verédnder-
lichen, neukartierten Orten iiber eine Kartierungsdistanz von &165 m ergibt eine = 56%-ige
Kartenkonsistenz bei einer Abweichung von &0.163 m. Fiir das autonome Parken wurde ein
gegebener Trajektorienplaner und Regleransatz verwendet.






ABSTRACT

This thesis covers the complete signal processing from raw radar perception to full au-
tonomous vehicle control with special focus on radar segmentation, SLAM and autonomous
parking. The semantic radar segmentation capability of the real-world (static) environment
is addressed by a radar specific neural network RadarNet. Achieving real-time semantic radar
segmentation, the output of RadarNet is applied to enrich a semantic radar graph-SLAM
SERALOC. The exemplary autonomous parking functionality parks a real-world vehicle along
arecorded reference path with unprecedented robust absolute pose accuracy, solely based
on radar data. This work achieves a novelty of semantic radar segmentation and localization
benchmark.

In the first step, a point cloud data set of 8.2 - 10° point-wise semantically labeled radar detec-
tions covering a length of 2507.35 m is generated. There are no comparable publicly available
data set with this annotation-level and radar specifications. The supervised training of a
semantic segmentation approach RadarNet achieves 28.97% mloU on six classes. An auto-
mated radar labeling framework SeRaLF is presented, involving multi-modal label generation
via reference cameras and LiDAR, to support the radar labeling.

For the coherent mapping, a radar signal pre-filter is designed on the basis of an activation
map to suppresses noise and other dynamic multi-path reflections. A specially radar-adapted
Graph-SLAM front-end with radar odometry edges between sub-maps and the semantically
seperated NDT registration assembles the pre-filtered semantic radar sensor measurements
to a consistent metric map. The mapping accuracy and data association are boosted by
the separated registration of semantic-radar sub-sets. Overall, the first real-time capable
semantic radar graph-SLAM is realized for arbitrary static environments.

Integrated into a real-world test vehicle, the interaction of the live RadarNet segmentation
and semantic radar graph-SLAM is evaluated, applied for a solely radar-based autonomous
parking functionality. Averaging 42 autonomous parkings (&3.73 kTm) over an average ma-
neuver length of 172.75 m, an absolute pose error median of 0.235 m and end position error
0.2443 m is achieved, outperforming comparable radar-localization results by = 50%.. The
map accuracy of changing re-visited places along @165 m yields = 56% map consistency at
a deviation of ©0.163 m. For the autonomous parking approach, a given trajectory planner
and controller approach is combined with the presented radar localization.
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1 INTRODUCTION AND MOTIVATION

1.1 Motivation

Digitalization and automation in the automotive industry focuses on automating driving in
order to support the driver in critical or monotonous situations. The Society of Automotive
Engineers (SAE) taxonomy of automated driving discriminates 5 driver assistance function-
ality levels starting from level 0, not-automated but full human supervision, to level 5, fully
autonomous driving at no human supervision. Level 1 covers driver assistance functions to
overtake a single task (e.g. braking for an ACC system). Advanced Driver Assistance Systems
(ADAS) functionalities cover level 2 or 2+ (if highly automated driving (HAD) is conditionally
available under human supervision). Level 3 of conditional automation allowing the system
to operate automated on in special conditions, e.g. a highway pilot. Level 4 and beyond
describe fully autonomous vehicle systems.

In passenger vehicle cars, the general motivation to solve the technical challenge of increasing
automation as driver support towards autonomous driving is found primarily in the safety
aspect:

-Decrease of vehicle casualties by automated safety warnings and actuating systems, e.g.
breaking systems, collision avoidance, human mis- or late-reaction and more.

-Second, to increase driver productivity, e.g. during a commuting situation on a highway, is
the secondary goal.

-Third, the core of automation yields relief to the driver to perform un-liked or non-satisfying
tasks, or even challenging tasks for humans e.g. parking or traffic jam assistance.

A measure for this are automated driving functionalities, which require first a relative localiza-
tion, to know where the vehicle is located at, with respect to a very precise reference map of
the environment. HD-maps are recorded with high precise reference sensors and provided as
offline generated maps by special map suppliers. Having a relative ego-location, the question
of path planning, where to go, needs to be solved.

Exemplary for the highway pilot level 3 system, the localization is based on live sensor data,
mainly Global Navigation Satellite System (GNSS) or Global Positioning Systems (GPS) sen-
sors, potentially paired with visual camera or LiDAR perception that is registered to precise
offline reference HD-maps. The areal application limitations is structural: A HD-map needs



1 Introduction and motivation

to be available as reference, a satellite based localization is necessary, and the potential cam-
era or LiDAR vision requires good lighting or fair weather conditions respectively.

In this thesis, a solution solely relying on processing of on-board radar sensor data is re-
searched, enabling an HD-map-free, satellite- and camera- or LiDAR-independent autonomous
driving approach. The outcome of the radar-based localization, environment segmentation
coupled with the path-planning is applicable for autonomous vehicles and other applica-
tions. For the target use-case of this thesis, an automated parking functionality, similar to
the automated valet parking (AVP), but applicable to arbitrary environments is researched.
This sense of technical system autonomy is applied to automate a manual parking based on
a single manual maneuver execution as reference example. The conceptual independence of
HD-maps enables new automated parking operational domains, e.g. private property area
or any other environment for the automated parking functionality and the researched radar-
based principle. Additionally, a new generation of parking assistance systems is enabled,
parking a car along an arbitrary reference path (e.g. for 150 m from a front-door of a house
to a garage complex) to a distant parking location, compared to the current parking systems
which maneuver into a beside parking gap.

1.2 State of the Art Parking Systems

Current parking assistance systems span from passive visual support (reversing camera or
360° top-view camera projection) to actively actuating systems as lateral control (park steer-
ing assistant, PSA) or full lateral-longitudinal control (park assistant, PA). The operational
domain of the PSA and PA are typically started in close proximity of a bypassed parking space,
assisting on the reversing maneuver into a parking space. The systems find closeby park-
ing lots by measuring gaps between obstacles during bypassing the scene and enables the
assisted maneuvering into this bypassed parking space. Typically perpendicular, parallel
parking spaces or fish-bone oriented parking lot patterns are found. The PSA overtakes steer-
ing, while the driver controls the longitudinal actuation of the car. PA overtakes both steering
and longitudinal actuation of the reversing park maneuver.

A new generation of mobile device connected parking assistance systems, are called remote
park assists (RPA). Coupled to a smartphone, the vehicle can be started in close proximity and
be maneuvered by inputs to the smartphone. Typically the most advanced field application is
yet limited to park out scenarios and visual obstacle avoidance [210], while straight reversing
or straight park in motion, is lately available to get a car remote assisted into or out of a
narrow parking space, requiring human supervision.

A further concept of parking automation is valet parking. Fully autonomous AVP concepts are
yet rarely realized. The taxonomy of AVP concepts divides approaches into two groups [3, 61],
AVP type I relies on independent vehicle on-board perception while AVP fype 2 concepts rely

2
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on external infrastructure-centralized perception processing. For AVP type 2, the car park
infrastructure is equipped with perception sensors to detect and track vehicles and obstacles
by a centralized compute-platform, which technically remote controls the automated vehicle
to a free parking lot. The vehicle receives actuation signals of the infrastructure and follows
the externally processed path. This concept is under test in pilot-projects [73], [74]. The
external planning and actuation is a major difference of an automated system, compared to
an autonomous system which integrates these tasks also.

An AVP type 1 vehicle operates fully on-board with no infrastructure dependency. For AVP type
1, the whole perception, planning and actuation is processed on-board the vehicle, without
any dependency of infrastructure support but relying on the vehicle sensor-set. The sole
infrastructure information to be shared is potentially free parking lot locations.

For classical AVP type 1 concepts, the environment is therefore often equipped with markers
as unique landmarks (visual keys or e.g. pole-shaped landmarks) and mapped with reference
sensors to high-definition maps (HD-map) as precise environment reference landmark.

As differentiation to autonomous driving applications, the autonomous parking use-case
shares some same requirements and complex vehicle actuation but in a comparably save
environment. Since the parking speed allows safe stops all the time, not much traffic or dy-
namic obstacles are expected, while the application scene conditions are appreciable similar.
For example a highway pilot requires besides the localization and path following actuation
also further perception modules such as driveable space estimation, object detection, seman-
tic segmentation to recognize different objects and object types in a scene, lane detection
and lane change assist, cooperative behavioral planning with respect to traffic participants,
a safety redundancy for emergency cases and other sorts of special situation strategies that
add to the system complexity.

1.3 Problem Set and Research Question

User Story:

The target use-case of this thesis is to realize an autonomous parking functionality, follow-
ing the concept of AVP fype I but independent of any HD reference maps, relying only on
on-board generated radar perception. Instead of being limited to standardized car-park sce-
narios with the AVP approach, or to generally localize to a HD-reference map, the target
system of this thesis extends the application to arbitrary environments.

With this new class, called trained parking assist (TPA), it is aimed to learn from a manual
reference drive to automatically re-drive the same path and maneuver, applicable to operate
in an arbitrary environment. As exemplary test scenarios along the system will be evaluated
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in Chapter 6, Figure 1.1 illustrates the tested use-case environments. For further details on
the scenarios, see Section 6.4.

TPA Scenario A TPA Scenario B TPA Scenario C TPA Scenario D
3 1 -

Figure 1.1: Satellite images [78, 79] of TPA test scenarios of Section 6.4 as illustration of the aimed use-case.

During an initial manual drive, called training phase, the system maps the environment with
on-board radar sensors and saves the manual driven reference path. For the automated drive,
the vehicle is manually driven to the initial starting position of the training drive, and the
autonomous system performs the localization and takes over control to follow the reference
path to the parking position. In order to be applicable in series cars for e.g. car parks, private
underground parking or any arbitrary environment, the before introduced common assis-
tance concepts are not applicable. Neither HD-maps nor other reference maps are available
for private grounds, the system needs to be independent of lighting and weather conditions,
satellite positioning is impossible for underground garages and camera localization or LIiDAR
sensors are denied due to volume applicability, low weather robustness and sensor cost.

The research questions focus to rely on the weather-robust and under-estimated radar sen-
sors of a vehicle to perform semantic radar perception, radar mapping, and radar localization
solely on-board.

Arbitrary environments deny HD-maps and GPS to be available and only a allow a marker-
free localization, due the lack of any standard landmark types in general. Therefore the
concept of semantic segmentation is chosen to be transferred to the radar domain to improve
data association. Semantic segmentation of point clouds (and images), is the perception
process to gain a contextual understanding and knowledge of the sensory input and segments
(specific point-sets or e.g. image pixels) thereof. In this thesis, point cloud data and images
are processed by semantic segmentation to leverage the sensory data to an understanding of
the sensed object types and the environmental context.

Goal of the Thesis:

As overall contribution, the design of a fully autonomous parking functionality, solely based
on radar, covering perception, planning and actuation, serves as proof of concept (POC) for
the development of next-generation autonomous parking systems, allowing larger parking
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distances compared to parking in a parking space. In the exemplary test scenarios of Sec-
tion 6.4 and preempted in Figure 1.1, the developed parking system performance is evaluated,
see Section 6.5 for test details.

The parking system should uninterruptedly execute the parking maneuver to test the radar-
based automated driving without manual interruption, except for collision avoidance. Any
manual interruption yields an invalid attempt. The path deviation is tracked to check the
error along the driven path, to check the deviation progression in different scenarios, and
measure especially the end pose accuracy. As basis for a further development, the deviation
is required to deliver a 30 cm end positioning error and to avoid collisions over a longer
path, see Section 6.5.1. Given the end-pose is reached automatically without collision, envi-
ronment dependent deviation limits may apply along the path for further optimization.

The coupling of the problem to assemble radar sensor data to an environment map and
simultaneously localize the sensor within the built map, is referred to as Simultaneous Lo-
calization and Mapping (SLAM). In this thesis, the SLAM problem is developed as radar-only
mapping and guiding system, constituting the core of the parking functionality. Secondly, the
radar SLAM is linked to the semantic radar segmentation on radar data to enable an accurate
registration of the radar data and precise semantic environment maps.

Research Motivation:

The general field of radar-based parking assistance systems, especially the application of
radar for static environment mapping is still uncommon. There exist a few works on radar
base ego-motion estimation [32, 33], some works on urban localization research on auto-
motive radar sensors for road or highway driving [151]. No specific works are covering the
problem set of low-speed mapping and relocalization for parking purposes, instead only
parking lot surveillance with radar sensors is known [109, 36].

From the pre-study of the presented radar mapping and data association in Section 5, the
registration accuracy is found essential. Figure 1.2 shows the benefit of registration accuracy
of sparse radar point clouds to accurate maps of the same environment.

Semantic
+ Wheel Odometry + Attributes

Noise
Vehicle
Building
Vegetation
Pole
Person

Iterative Closest Point Normal Distribution Transform

Figure 1.2: Illustration of different registration algorithms for radar point cloud association in the same envi-
ronment. Radar point map colored in z-coordinate, registered poses from red to green nodes.
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As novel approach on radar, the semantic radar attribute generation is motivated and re-
searched to be applied in the registration. This data attribute yields essential registration
improvements, see Section 5.3.4, allowing to build a radar parking functionality upon.

In addition, especially the focus on point cloud based approaches for the semantic radar
segmentation of a multi-sensor setup is new. There exist only few works on radar and camera
fusion for moving object detection [153], other works are looking into map-based segmenta-
tion of radar [226, 129]. But in general, the existance of open-souce radar datasets is the main
hurdle in this field to advance the research on radar, especially point-cloud based semantic
segmentation. The recent radar data set RadarScenes [194] is labeled per radar point and
contains vulnerable road users VRU’s. As major limitation of the semantic segmentation,
the RadarScenes data set labels only contain dynamic objects in several classes, no other
classification e.g. of the static environment is available. Also re-labeling of the missing static
labels is impossible, due to the lack of a reference sensor.

Besides, the various sensor-dependent specialties cause a lack of transferability from one
radar sensor or sensor-set to another setup.

Research Questions:

The research questions of this thesis are cross-linked to the specific sections of the thesis,
elaborating these questions in detail.

« Labeling, Section 3: How to generate point-wise semantic labels of radar point-cloud
in an efficient automated, cross-sensor labeling pipeline? How is it possible to auto-
generate labels for a point-wise labeled semantic segmentation data set of radar point-
clouds?

* Segmentation, Section 4: How can the current state of the art of point-cloud process-
ing help to solve the radar-based perception and mapping process in modern vehicles
by a semantic radar segmentation? Can the deep-learning approaches on LiDAR point
clouds be extended to the unknown level of sparse and noisy inputs a radar point-cloud
delivers, while still yielding good semantic segmentation results?

e Mapping, Section 5: How can radar-based localization with multiple on-board sensors
in an arbitrary static environment be solved? What mean mapping accuracy can be
reached with respect to moving and occluded objects how can this mapping accuracy
be measured? What mapping accuracy improvement arises in radar maps from novel
direct and live semantic radar segmentation?

 System, Section 6: To which extent might be a radar-based localization and mapping
be applicable to design and realize an autonomous parking functionality? Can the se-
mantic radar mapping process provide an accurate scene mapping for an autonomous
second passage of an automated vehicle in potentially dynamically changing situations
and environments?
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1.4 Structure of the Thesis

Organized in bottom-up sequence, Figure 1.3 illustrates the thesis’ four essential logical con-
secutive main Chapters 3-6. Per chapter, the specific existing work and research of the system
level is discussed, followed by an own contribution, and sectional summary.

Chapter 1: Motivation

Chapter 6
Chapter 5 Use-Case: Autonomous,
/ Trained Parking
Chapter 4 Semantic Radar SLAM +
Chapter 3 Semantic Segmentation / Planner Controller
Data-Set Labeling:/

Semantic Radar

Vehicle Integration

Chapter 2: Principles

Driver Assistance Systems FMCW-Radars Machine Learning Principles Rapid Prototyping Setup

Figure 1.3: Consecutive chapter structure of the thesis.

Chapter 1 motivates the thesis, followed by Chapter 2, introducing the State-of-the-Art. In
Chapter 3, a point-wise labeled radar data set is set up. Starting with an automated labeling
procedure based on LiDAR and camera data, the labeling pipeline is described, resulting in a
semantically labeled radar point-cloud data set. The subsequent Chapter 4 applies the radar
data-set to develop a novel semantic radar segmentation neural network. With this chapter,
an artificial neural network is available to directly perform semantic segmentation on radar
point clouds in real-time. Chapter 5 develops a radar-based semantic environment mapping
with on-board radar sensors and discusses different registration techniques of semantic radar
data. Integrated in a real-world test vehicle, Chapter 6 requires the essential real-time seman-
tic segmentation with semantic radar SLAM, re-localization, trajectory planner and vehicle
actuation to realize an autonomous parking functionality, solely running on the semantic
radar perception. The real-world test and summary of achieved positioning accuracy closes
the thesis. Finally, a general thesis conclusion and outlook is given in Chapter 7.

In a systematic overview, each chapters’ contribution forms an essential part of the integral
thesis’ radar parking functionality and the realized function performance, see Figure 1.4.
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Figure 1.4: Illustration of the parking functionality structure in a system level context.






2 STATE OF THE ART

Three major topics are covered in the thesis, radar perception, semantic segmentation by
means of supervised machine learning and SLAM, applied on radar. The theoretical princi-
ples of each topic is presented.

2.1 Principles of Automotive FMCW-Radar

Frequency Modulated Continuous Wave (FMCW) radars are the type of radar sensors com-
monly used in automotive applications. The focus is on 77 GHz FMCW-radars. For further
details on other automotive radars, e.g. different bandwidths or other types of radars (e.g.
Synthetic Aperture Radars (SAR), or Multiple Input Multiple Output (MIMO) etc.), interested
readers are referred to specific works of Winner [225] and Skolnik [202].

A typical automotive radar sensor is depicted in Figure 2.1. The radar sensors are solid, robust
and comparably cheap sensors. Depending on the type and application of the radar sensor,
the processing of the radar echo information can deliver object detections in range and
azimuth coordinates. The most significant benefit of the processing of radar signal reflections
is the direct calculation of the radial relative velocity of the reflecting object [225]. With
this velocity measurement, applications in the automotive domain can combine accurate
position information of the detected object reflections with its relative velocity [114].

Figure 2.1: Image of an exemplary 77 GHz radar sensor, applied in the automotive context. Courtesy of Hella
GmbH & Co.KGaA [114].

As a benefit of the exemplary depicted radar sensor, the sensor design allows a small packag-
ing - which is in the automotive field an important factor. Besides the packaging advantage,
the sensors can additionally be integrated in the bumpers, covered by the outer shell. Hence,
the sensor setup is not visually interfering the design language of a car compared to an ex-
posed sensor integration e.g. for cameras.



2 State of the Art

Radar as acronym describes the term radio detection and ranging [225], [46]. Originally
applied in aviation, nautics and in the military context, the measurement principle to emit
electromagnetic waves and receive a the reflected signal is adopted and transferred to multi-
ple other tasks [202].

Ranging from people counting sensors, e.g. applied in trains or at in- and outdoor public
places, to the modern application of object detection in vehicles, radar sensors are commonly
met in the everyday life.

The radar principle can be described as two-stage emit-receive procedure. In the first phase,
the sensor emits a short sequence of electromagnetic waves in a directed region, not uni-
formely. In the second phase, the sensors receives the back-scattered radiation echo signals
in the sensor field of view (FoV) with a receiving antenna and processes the received echo
signals on chip.

The Radar Equation 2.1, formulates the reflected signal power P, depending on the range R
of the sensed object, object properties and sensor properties [202, p.15]:

P.GA,0 Gi Ae
R T o : ;@D
(4m)R (4m)R 4mR
~—~— —— ~—~ ——
Emitted Power Antenna RCS: Object Antenna
Emission Rate Reflection Rate Receiving Rate

The Radar Equation 2.1 is grouped in four factors for an illustrative explanation. The emitted
signal power P, is quantified in the first term. As introduced before, radar beams are directed
to a cone, often called coil, instead of emitting in a uniform sphere shape. The theoretically
isotropic spread of the emitted signals over a sphere shape of radius R is formulated as de-
nominator in the second term. But, the antenna design results in a directed beam emission,
instead of a sphere-shaped emission. This beam direction design reduces the efficient de-
nominator of the second term, formulated by the transmitting antenna gain factor G; as
nominator of the second term. The antenna design specifically influences the antenna gain
factor.

The emitted radar beam is potentially reflected by an object. The reflecting objects’ radar
properties are described by the radar cross-section (RCS), denoted as third term o. Depend-
ing on the object material, texture and geometrical shape, o describes the fraction of the
radar power to be back-scattered from the reflecting object with respect to the impinged
intercepted radar beam.

The fourth term describes how much of the reflected signal is sensed by the radar sensor. The
similar argumentation as for the emission applies. The objects’ radar reflection beam is back-
reflected, generally in an isotropic uniform sphere shape, therefore the same denominator
appears again as for the second factor. The receiving area of the receiver antenna A, absorbs
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2.1 Principles of Automotive FMCW-Radar

the reflected signals. Hence, this nominator of the fourth factor describes the fraction of the
back-scattered reflection sphere.

The whole emit-receive process is repeated with high frequency, so that common automotive
sensors provide a measurement rate of 15-20 Hz [225, 114].

Signal Processing to a 3D Point Cloud: The fundamental principle of FMCW radars
deliver the range, azimuth and relative radial velocity of the reflecting objects. Additionally,
the new generation of radar sensor applied for this work compute the elevation angle of the
reflections. Hence, a full 3D representation of the radar reflections is possible, enabling the
radar data representation in form of a 3D point cloud.

The applied radar sensors offer an interface to output 3D point clouds of radar detections. No
specific information is available for the on-chip radar echo raw processing, the automotive
sensor is manufactured by a tier-1 supplier.

The focus of this thesis is on the perception use of this radar point cloud representation. The
required advanced radar reflection processing and algorithms to compute this representation
are out of scope. This section introduces the working principle of FMCW signal processing,
as depicted in Figure 2.2.

Rx Reciever

Antenna . Radar Signal Processing
Mixer
Lowpass CFAR | Ghost Target
I 4 Filter || A/D = FFT Filter Removal

Target Tracking

Object‘\‘\ ) NV VvV VI, l

Tx Sender  Oscillator Chirp- Radar Detections:

M gt Genertor *Sigual to Nojse Ratio.
Relative Speed
Signal Power

Figure 2.2: Exemplary block diagram of a typical automotive FMCW 77 G H z radar sensor.

The signal generator produces a continuous wave signal s(f) of amplitude A, frequency f ()
and zero phase angle ¢y.
s(t) = Acos(f (1) + ¢o) (2.2)

Without modulation, the carrier frequency f, remains constant. Adding a linear modulation
term over time, the frequency results in the depicted resulting frequency f(#), see Figure 2.2
and Figure 2.3.

Although other types of modulation are researched, a linear frequency modulation

B
f=fe+ 7 (2.3)
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‘ TTY 1

Figure 2.3: Exemplary linear modulation of an typical automotive FMCW 77 G Hz radar emitted signal (black)
and reflected echo (blue dotted). Illustration according to Patole et al. [160].

is common to explain the working principle. The additive term increases the base frequency
linearly, to the maximum of f,,,,x = f. + B. The parameter B is introduced as modulation
defining bandwidth, while the fraction of T—i" of Equation 2.3 defines the linear increasing
additional modulation component.

Reformulating the modulated frequency to the instantaneous phase ®(t) [22, 192]
Lo B
<I>(t):27rf f(t)dt:Zn(fbt+—t2)+¢)0 2.4)
0 2Tm

This modulated wave is sent by the directed sending antenna [192]
stx(t) = Arx cos(®(1)), (2.5)

while the corresponding radar echo sy is received by the receiving antenna.

As a result of the signal travel time and meanwhile modulated frequency, the received signal
sgx deviates from the emitted signal in amplitude and phase [192].

Srx () = Arx cos(®(t—1)) (2.6)

The temporal shift of 7 in the received instantaneous phase ®(¢ — 1) in the received signal

echo results from two effects.
2(R+ v, 1)
T=———

c

(2.7)

The traveled distance 2R from sender antenna to the object and back to the receiver antenna
causes a time delay. Plus, the potential radial velocity v, of the reflecting object accounts
additionally for a phase shift. The denominator c in Equation 2.7 represents the speed of light
for radar traveling in air, generally representing the velocity of the emitted signal [192].
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In the further processing steps of Figure 2.2, both emitted and received harmonic wave signals
are mixed. The mixer applies a mathematical multiplication of the two slightly differing
frequencies, resulting in a beat.

1
gos(@(t))-cos(q)(t—r)l: 5(905 (CI)(t)+CI)(t—T))J + gos(q)(t)—q)(t—r)l) (2.8)
frequer;cry mixer high frej(rquency: low freguency:
filtered out beat frequency

The first term of Equation 2.8, represents a high-frequency component that is filtered out
in the subsequent high-pass filter. The relevant, low beat frequency f; of Equation 2.8 is
processed to a digital signal by an Analog-Digital converter.

Assuming a static object with v, = 0 causing the radar reflection, Equation 2.7 simplifies to

2R
==

T (2.9)

For this case, the beat frequency f; can be computed to a range estimate R for the radar
illuminated object. The triangular similarity between the bandwidth modulation B over the
modulation chirp time T}, and the beat frequency f}, over the time delay 7, can be reformu-
lated to Schumann [192]

B fp  Equation 29 _ foTe c

R .
Twm 7T B 2

(2.10)

For general cases, the simplification of v, = 0 does not hold. Commonly, as shown in Fig-
ure 2.3, in automotive radar processing not only one chirp, but a periodic array of Nchirp
chirps are combined to compute the positional (range) information and relative velocity.
The Nepirp chirps are periodically repeated and form a radar scan. The chirps are processed
altogether and constitute one radar scan measurement.

The Nenirp repetitive chirps are applied to compare the phase ®. In subsequent chirps, station-
ary objects remain at the same range R, hence the corresponding phase ® remains constant.
In contrast, dynamic objects appear at a changing range coordinate R, yielding a changing
phase .

To identify the object reflections based on the range-frequency dependency, two subsequent
Fast Fourier Transformations (FFT) are applied of the digitized mixed frequency. First, the
radar echo interpretation in the (range-) FFT spectrum yields a peak per object at a certain
frequency, which yields the actual range of the object. The second FFT is performed over the
Nehirp chirps, combining the range information and the changing frequencies to compute
the relative velocity, also called Doppler-velocity, for the moving objects.

Further mathematical details of the radar FFT analysis theory are available by the works of
Suleymanov [207] and Winkler [224].
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Azimuthal Resolution: Figure 2.2 illustrates only a simplified single emitting and receiv-
ing antenna, but includes the basic principle of an angular reflection of the radar signal wave
front towards the receiving antenna. In detail, inside of each radar sensor a matrix-arranged
pattern of multiple receiving antennas is active to compute the azimuth angle y. The antenna
array of N,,, independent antennas is generally oriented parallel to the sensor surface in a
equidistant spacing of d,,, as square array or matrix. The spacing and matrix orientation of
(multiple) antenna arrays is a design parameter of the sensor. Every received radar reflection,
received under an azimuth angle of ¢ # 90°, so off the sensor-normal, results in a measurable
phase shift between the independent antennas of the sensors’ antenna array

27 .
AD(Pp) = Tdmr sin¢. (2.11)

Resulting from the equidistant arrangement, the phase differences between the independent
receiving antennas are integral multiples of Equation 2.11. Analogeous as for the range and
relative velocity, a Fourier transformation is applied. The FFT covers now the N, receiver
antennas to compute the azimuth angle ¢.

To achieve an adequate azimuthal resolution for automotive applications, circa 1° angular
resolution is required. The number of sensor-inbuilt antennas is often limited by the sensor
ans circuit design, and consequently the accuracy is compromised. In contrast, advanced
techniques are applied, such as Multiple Input Multiple Output (MIMO) radars, proposed by
Li and Stoica [123]. Applying not only N, multiple receiver antennas but combining these
with independent, equidistant arranged N,,, emitter antennas, the virtual field of N,;,;,xNg;,
antennas increases the effective radar aperture A,.

Target Detection: Depicted by the block diagram of Figure 2.2, the next processing stage
includes the target extraction. Among the computed FFT of the radar echo, the radar reflec-
tions of real objects need to be filtered from clutter and amplified noise content of the signal
processing. Remaining relevant radar reflections are commonly called fargets and determine
the most probable reflections of the radar echo.

For this process, the Constant False Alarm Rate (CFAR) algorithm is commonly applied [174]
with sophisticated approaches to handle a variable noise level and determine significant
peaks in the 3D FFT. Since the sensor processing steps are unknown, no further details of the
applied radar raw signal processing can be given. Holder et al. [91] outline, that approaches
such as target tracking [124], multi-scan comparison [121, 63] or high frequency estimation
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