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1 Stochastic, stationary noise

Power spectral density (PSD) is a quantity to specify the sig-
nal level of stochastic, stationary noise.

The word ’noise’ frequently is used to summarize all un-
wanted components in a seismic record. This comprises drifts,
spikes, glitches, steps, and stationary stochastic signals and
more. It then serves as a ’garbage can’ to summarize all sig-
nal components which appear annoying because they might
hide signals of interest, distort the signal, are of unknown ori-
gin, or simply lack a proper quantitative model to describe the
signal in a deterministic way.

Here, in the context of power spectral density, ’noise’ refers
to a signal with the following properties:

• The signal appears non-deterministic.

• The signal’s phase varies randomly with time.

• Only stochastic properties of the signal can be specified.

If the stochastic properties remain constant with time the sig-
nal is called stationary. Properties in that sense may be the
mean amplitude, the average power, or the frequency distribu-
tion of sample values.

Seismological signals to which this concept at least partly ap-
plies are the marine microseisms, high-frequency vibrations
caused by forces excerted by turbulent wind at the surface,
and electronic noise. In practice these signals might not ex-
actly match the definition given above. They might by partly
correlated and not completely random. Their properties like
signal power depending on frequency might slowly (some-
times quickly) change with time, such that they are not exactly
stationary. We have to keep these limitation in mind. Never-
theless it is appropriate to apply the concept of power spectral
density at least to finite sections of the recordings.

2 Signal power and rms-amplitude

2.1 Energy and power in physics

If a current I(t) flows through a resistor of resistance R, there
appears a voltage drop of

U(t) = RI(t) (1)

across the resistor. Eq. (1) is called ’Ohm’s law’. Then

P (t) = U(t) I(t) = RI2(t) (2)

is the power, which is dissipated at the resistor at any instance
of time t.

In the time from t = T1 to t = T2 a total of electric energy

E =

T2∫
T1

P (t) dt =

T2∫
T1

RI2(t) dt (3)

is transformed to thermal energy at the resistor. The resistor is
heated, it becomes warm.

Power is energy per unit of time. The average power of heat-
ing is

P =
E

∆T
=

1

T2 − T1

T2∫
T1

RI2(t) dt. (4)

If I(t) is constant or if

I(t) = I sin(ωt) (5)

oscillates with constant amplitude, the dissipated energy will
on average increase at constant rate. The average power P
converges to a constant value for large time windows ∆T =
T2 − T1.

The physical unit of energy is the joule (J) and the unit of
power is the watt (W).

2.2 Energy and power in signal theory

In signal theory an abstraction of energy and power is used
to characterize signals. If a(t) is a signal of some physical
quantity, then

E =

T2∫
T1

a2(t) dt (6)
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2 Power spectral density and rms-amplitude

is the energy of this signal in the time window from T1 to T2.
Likewise

P =
1

T2 − T1

T2∫
T1

a2(t) dt (7)

is the average power of the signal. Neither is the joule the unit
of signal energy nor is the watt the unit of signal power. The
unit of signal energy

[E] = [a(t)]
2 s (8)

is the square of the unit of the signal times the unit of time.
The unit of signal power

[P ] = [a(t)]
2 (9)

is the square of the unit of the signal.

2.2.1 Signals of finite energy

A transient signal has an onset at a given time and decays to
vanishing amplitude after a given time. It is confined to a
limited time window, just like an earthquake signal. For such
a signal the total signal energy

E =

+∞∫
−∞

a2(t) dt (10)

is finite. The signal in jargon sometimes is called an ’energy
signal’ for this reason. One essential condition for the exis-
tence of a Fourier transform is that the value of eq. (10) is
finite.

2.2.2 Signals of finite power

If the signal lasts forever (like the tides or continuously on-
going noise) the total energy as defined by eq. (10) becomes
infinite. The Fourier transformation no longer is applicable.
However, if the signal is well behaved and its amplitude re-
mains within finite limits, its average power

P = lim
T→∞

1

2T

+T∫
−T

a2(t) dt (11)

remains finite. The signal in jargon sometimes is called a
’power signal’ for this reason.

2.3 Root-mean-square (rms) amplitude

A proper definition of average amplitude of a stationary ran-
dom signal is the ’root-mean-square’ (rms) amplitude

arms =

√√√√√ lim
T→∞

1

2T

+T∫
−T

a2(t) dt =
√
P . (12)

Table 1: Properties for a time continuous signal a(t) in correspon-
dence to a discrete time series of N samples al with sampling interval
∆t.

discrete continuous

value al a(t)

instantaneous
power a2l a2(t)

total energy
N∑
l=1

a2l ∆t
+T∫
−T

a2(t) dt

average power
(’mean square’)

1
N

N∑
l=1

a2l
1
2T

+T∫
−T

a2(t) dt

rms-amplitude

√
1
N

N∑
l=1

a2l

√
1
2T

+T∫
−T

a2(t) dt

which equals the square root of average power

P = lim
T→∞

1

2T

+T∫
−T

a2(t) dt. (13)

The reason for the term ’root-mean-square’ becomes obvious
from the expression for a discrete time series as given in Ta-
ble 1 in correspondence to the continuous time expressions. If
al is a series with vanishing average

N∑
l=1

al = 0 (14)

then the expression for the mean squares equals the variance
of the sequence and the root-mean-square equals the expres-
sion for the standard deviation for large N .

3 Spectral density

3.1 Energy density

The signal energy for a transient signal a(t) is

E =

+∞∫
−∞

a2(t) dt. (15)

The Fourier transform of a(t) is

ã(ω) =

+∞∫
−∞

a(t) e−iωt dt (16)
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Power spectral density and rms-amplitude 3

and because of Parceval’s theorem1

E =

+∞∫
−∞

∣∣ã(ω)
∣∣2 dω

2π
=

+∞∫
−∞

a2(t) dt. (17)

Hence the signal’s energy in the frequency band from ω1 to
ω2 is

Eω1,ω2 = 2

ω2∫
ω1

∣∣ã(ω)
∣∣2 dω

2π
. (18)

That is why we call
∣∣ã(ω)

∣∣2 the energy density of the sig-
nal. The factor 2 in eq. (18) accounts for the contribution
at negative frequency, because

∣∣ã(ω)
∣∣ is an even function of

frequency. This is a consequence of the symmetry condition
for the Fourier transform of a signal a(t) of real values.

3.2 Power spectral density

The normalized auto correlation function for a stationary
stochastic signal a(t) is

P (τ) = lim
T→∞

1

2T

+T∫
−T

a(t) a(t+ τ) dt. (19)

Its Fourier transform

P̃ (ω) =

+∞∫
−∞

P (τ) e−iωτ dτ (20)

is called the power spectral density. Why?

The average signal power is

P = P (τ = 0) = lim
T→∞

1

2T

+T∫
−T

a2(t) dt. (21)

With eq. (20) the normalized auto-correlation function

P (τ) =

+∞∫
−∞

P̃ (ω) eiωτ
dω
2π

(22)

can be expressed by Fourier expansion. The average total
power as defined in eq. (21) then is computed from P̃ (ω) by

P = P (τ = 0) =

+∞∫
−∞

P̃ (ω) eiω·0
dω
2π

=

+∞∫
−∞

P̃ (ω)
dω
2π
. (23)

Hence the total average signal power is

P =

+∞∫
−∞

P̃ (ω)
dω
2π

(24)

1Jenkins and Watts (1968, eq. A2.1.4) specify the theorem in its most
general form for the cross-correlogram of two signals and the integral over
the normalized cross-spectrum.

and analogous to the definition of energy density. Because of
its even symmetry with P̃ (−ω) = P̃ (ω) the components at
negative frequency do not contribute additional information.
Hence the average power in the frequency band from ω1 to ω2

is

Pω1,ω2
= 2

ω2∫
ω1

P̃ (ω)
dω
2π
. (25)

That is why we call P̃ (ω) the power spectral density (PSD) of
the signal.

3.3 One-sided PSD

In engineering 2P̃ (ω) is frequently used and called the one-
sided PSD because it allows the computation of total power
by integration over positive frequency only (in contrast to the
two-sided PSD P̃ (ω)). Also in seismology it is quite com-
mon to specify the one-sided PSD as a result of signal anal-
ysis. When analyzing signals it is essential to check whether
the used computer function returns one-sided PSD (2P̃ (ω)) or
twosided PSD (P̃ (ω)) to make diagrams consistent. As well
the caption of the diagram should specify whether one-sided
or two-sided PSD is displayed.

3.4 Total average power and bandwidth

Obviously we require P (τ) for all lag-times τ in order to ob-
tain a frequency dependent power spectral density P̃ (ω) with
eq. (20). However, with eq. (24) and eq. (22) it is obvious that
the total average power is only present in the value of P (τ)
for τ = 0. When computing the total average power P , we
extract one scalar value from the information contained either
in P (τ) or P̃ (ω). We do this by taking P = P (0) or by inte-
gration in eq. (24).

This is similar to the Fourier transform of signal a(t) in
eq. (16). The value of a(t) at t = 0 is given by

a(t = 0) =

+∞∫
−∞

ã(ω)
dω
2π
. (26)

As a result we may draw the conclusion that a signal of infinite
bandwidth must contain infinite power. Signals of finite power
must be band-limited, always.

4 Amplitude in a finite frequency band

P̃ (ω) as defined in eq. (20) specifies power spectral density.
The total power (or variance) in the frequency band from f1
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4 Power spectral density and rms-amplitude

to f2 then is

Pf1,f2 = 2

f2∫
f1

P̃ (2πf) df. (27)

The rms-amplitude of the band-pass filtered time series con-
sequently is

arms f1,f2 =
√
Pf1,f2 . (28)

This provides a means to specify average signal amplitude
of a random noise signal as a function of frequency. If the
frequency interval ∆f = f2 − f1 is sufficiently small and
P̃ (2πf) is well behaved, power spectral density at the center
frequency can be approximated by

P̃ (2πfc) ≈
Pf1,f2
2∆f

, (29)

where power spectral density explicitly is signal power over
bandwidth. rms-amplitude as a function of frequency then
would be

arms(fc; ∆f) ≈
√
P̃ (2πfc) 2∆f. (30)

Notice that a value of rms-amplitude without a specifica-
tion of bandwidth is meaningless.

4.1 Relative bandwidth

If arms(fc; ∆f) is to be given for a large frequency range, the
specification of a constant bandwidth ∆f is not appropriate.
∆f = 1 Hz might be a reasonable choice for arms(fc; ∆f)
being given in the range from 10 Hz to 100 Hz but not for
values in the frequency range of 1 mHz. For this reason we
prefer to specify the bandwidth

∆f = f2 − f1 (31)

proportional to the center frequency

fc =
√
f1 f2 (32)

such that
∆f = fcRBW, (33)

where RBW is called the bandwidth factor. It is common to
specify the bandwidth in

n = log2

f2
f1

octaves (34)

or

m = log10

f2
f1

decades. (35)

The bandwidth factor then is

RBW =
∆f

fc
=
f2 − f1
fc

=
2n − 1

2n/2
=

10m − 1

10m/2
(36)

Table 2: Values of bandwidth factor for different value of relative
bandwidth.

bandwidth RBW

1 decade 2,846
1/2 decade 1,215
1 octave 0,707
1/6 decade 0,386
1/2 octave 0,348
1/3 octave 0,232

and rms-amplitude as a function of frequency is specified by

arms(fc;RBW fc) =

√
2P̃ (2π fc) fcRBW. (37)

Values of RBW for commonly used values of bandwidth are
given in Table 2.

4.2 Average peak amplitude

Average peak amplitude can be defined by the mean value
of the envelope of narrow-band filtered, Gaussian distributed
stochastic noise (Rice 1945, section 3.7). By coincidence the
value of average peak amplitudes in 1/3 octave equals the rms
amplitude in 1/6 decade. The exact factor is (Peterson 1993,
page 36)

apeak(fc; 1/3 octave) =

√
π

2
apeak(fc; 1/3 octave)

=

√
π

2

0.232

0.386
arms(fc; 1/6 decade)

≈ 0.972 arms(fc; 1/6 decade), (38)

where RBW = 0.232 for 1/3 octave and RBW = 0.386 for
1/6 decade.

5 Recipe for practical computation

In practical application to time series data the signal power in
fact is computed from

power =
energy
time

i. e. signal energy being present in a finite time window over
the length of the time window. The signal then is available in
terms of N samples al over a finite time window T = N∆t,
where ∆t is the sampling interval. All computation in the
frequency domain is based on the Fourier coefficients

ãk =

N∑
l=1

al e
−2iπ (l−1) (k−1)

N ∆t, (39)
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Power spectral density and rms-amplitude 5

which usually are obtained by an appropriately scaled al-
gorithm of Fast-Fourier-Transformation (FFT). One-sided
power spectral density at frequency fk = k/T then is

2P̃k = 2
|ãk|2

T
(40)

such that

arms k =

√
2P̃k fk RBW (41)

is the corresponding value for rms-amplitude in a bandwidth
of ∆f = fk RBW.

5.1 Application of a taper

The time series al represents an ever lasting random noise sig-
nal. As a non-transient signal it is not naturally confined to a
finite time window. Prior to application of the discrete Fourier
transformation as defined in eq. (39) a taper function should
be applied in order to reduce spectral side-lobes. This taper
function must be appropriately scaled such that it does not al-
ter the signals energy in the analyzed time window.

5.2 Necessity to take the average

The values computed by eqs. (40) and (41) will strongly fluc-
tuate due to the stochastic nature of the signal’s phase. The
computed value for this reason depends on the actual choice
of time window. To obtain a proper value which would repre-
sent the average property of a stationary signal, values of 2P̃k
as computed for several different time windows must be aver-
aged or the average over adjacent index k must be computed
similar to eq. (29).

6 The decibel scale

Because of the large dynamic range of signal levels to be
graphed over a large interval of frequency, it is common prac-
tice to display the curves on log-log-scales. Frequency or sig-
nal period simply is given on a logarithmic axis of abscis-
sae, power-spectral density (PSD) is given in units of decibels,
which is logarithmic.

Values given in decibel always express a ratio with respect
to a reference value. It is absolutely necessary to include the
reference value in the diagram (ideally in the labeling of the
ordinate).

The decibel scale is a logarithmic scale for signal level (in
terms of signal power or amplitude). A logarithmic scale is
preferable if levels cover several orders of magnitude and in
particular, when multiplicative operations (like amplification)

are involved. A level is called to be larger by one order of
magnitude when it is larger by a factor of ten. The decibel
scale is a relative scale. It refers signal level of one signal to
that of another. Examples can be a) an output signal of an
amplifier referred to the input, b) a signal level referred to a
reference level, or c) the level of a disturbance referred to the
total signal level.

The decibel scale is defined for signal power. Signal power
scales with the square of amplitude. Details of the definition
of signal power will be given elsewhere together with the def-
inition of power spectral density.

6.1 Definition

The definition is based on the definition of the unit bel (symbol
B). If the power of signal 1 is P1 and that of signal 2 is P2 then
their ratio P2/P1 is the power of signal 2 referred to that of
signal 1 is given by

V = log10

P2

P1
B (42)

in the units of 1 B.

Because the power scales with the square of the amplitude, the
ratio can be computed from signal amplitudes A1 and A2 by

V = log10

P2

P1
B = log10

(
A2

A1

)2

B (43)

= 2 log10

A2

A1
B (44)

in the units of 1 B. The decibel simply is one tenth of a bel,
such that

1 dB = 0.1 B. (45)

This way

V = 10 log10

P2

P1
dB = 20 log10

A2

A1
dB (46)

specifies the ratio V in units of 1 dB. Eq. (46) is the commonly
used form.

6.2 Specifying signal level

If a signal level Vsignal is given in units of 1 dB, then a refer-
ence level must be specified along with this value (ideally this
is done in the labeling of the ordinate). Unfortunately authors
sometimes forget to do so and assume a standard reference
level implicitly. In seismology it then is very likely that the
author specifies the signal level with respect to acceleration
amplitude of 1 m s−2. In electronic and communications en-
gineering there exist signal units like 1 dBm based on the deci-
bel scale, which implicitly refer to a specific reference level.
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6 Power spectral density and rms-amplitude

Such units do not exist in seismology. Missing to specify a
reference level must be regarded as a fault.

Values of PSD then are

VPSD(ω) = 10 log10

(
2P̃ (ω)

Pref

)
dB (47)

if PSD is given as one-sided PSD 2P̃ (ω) with respect to a
reference value Pref or

VPSD(ω) = 20 log10

(
arms(fc;RBW fc)

Aref

)
dB (48)

if PSD is given by rms-amplitude arms(fc;RBW fc) with re-
spect to a reference value Aref. Common choices for the refer-
ence naturally are Pref = 1 m2 s−4 Hz−1 and Aref = 1 m s−2.
if PSD levels are specified for acceleration.

If the level of a signal is x dB higher than that of another signal
(where x may be negative if the level is lower actually), then
this statement applies regardless of whether the level differ-
ence was calculated from the power spectral density or from
the rms amplitude (x is identical in both cases). This is a nice
feature of the dB-scale.

6.3 Examples

• Dynamic range as the ratio of the largest signal with
respect to the smallest detectable signal level appropri-
ately is specified in units of 1 dB. A dynamic range of
140 dB implies that the largest non-clipping signal has
an amplitude of 7 orders of magnitude (factor 10 mil-
lions) larger than that of the detection level.

• If an amplifier amplifies the signal by 6 dB the output
amplitude is about twice the input amplitude.

• If a signal level is 100 dB larger than the reference, the
signal power is ten orders of magnitude (factor 1010)
larger than the reference and the amplitude is five orders
of magnitude (factor 105) larger than the reference.

• If the level of non-linear distortion is 90 dB below the
total signal level and the total signal level Vsignal is given
with respect to a reference level, then the distortion
level with respect to the reference level is Vdistortion =
Vsignal − 90 dB.

• The signal-to-noise ratio can be specified in units of
1 dB. If signal to noise ratio is 40 dB than the signal
amplitude is by a factor of 100 larger than the noise
amplitude.

6.4 Literature

The decibel is not an official SI-unit, however is accepted for
use with the SI, and units based on fundamental constants

(Taylor 2008, section 4.1). Bormann and Wielandt (2012b,
section 4.2.3.6) introduce the decibel scale very briefly and
refer to concepts like power spectral density. Bormann and
Wielandt (2012a) provide exercises on conversion of power
spectral density, which include computations based on the
decibel scale. Havskov and Alguacil (2016) introduce the
decibel scale in appendix A.3.1. Scherbaum (1994) uses the
decibel scale in section 2.6 to specify filter roll-off and in sec-
tion 6.1 to specify dynamic range. Parker (2010) introduces
signal-to-noise-ratio for quantization noise in units of 1 dB in
section 3.2. Aki and Richards (2002, box 12.1) give an intro-
duction to the application of the decibel scale in seismology.
However, all these reference do not significantly go beyond
the statements given above.

7 Caveats

7.1 Representation of signal level

In literature the quantities of

P̃ (ω), 2P̃ (ω),

√
P̃ (ω),

√
2P̃ (ω), and

√
2P̃ (ω) ∆f

all occasionally are called ’power spectral density’ by the
authors. This can cause confusion. Actually only the first
two are ’power spectral density’, where the second should be
called ’one-sided power spectral density’. They are given in
units [

P̃ (ω)
]

=
[a(t)]

2

Hz
.

A multiplication of 2P̃ (ω) with a value of bandwidth ∆f re-
sults in the total average power in this bandwidth, with[

P̃ (ω) ∆f
]

= [a(t)]
2
.

The square root of twice this value is rms-amplitude in units[√
2P̃ (ω) ∆f

]
= [a(t)]

of signal amplitude. Hence values of power spectral density
can easily be converted to total power or rms-amplitude in a
given bandwidth.

Values of
√
P̃ (ω) or

√
2P̃ (ω) sometimes are considered by

the authors to be closer to amplitude values because the square
root already is taken. This however is not true. Their units are
as strange as [√

P̃ (ω)

]
=

[a(t)]√
Hz

.

The computation of rms-amplitude from these values is not
straightforward, because they do not represent a spectral den-
sity. Taking the product of these values with a value of band-
width is meaningless. The product with the square-root of
bandwidth provides values of average amplitude.
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Power spectral density and rms-amplitude 7

7.2 Necessity to specify bandwidth

The value of rms-amplitude
√

2P̃ (ω) ∆f always must be ac-
companied by a specification of bandwidth ∆f . Unfortu-
nately there are examples of diagrams of amplitude over fre-
quency in the literature, without a specification of bandwidth.
In the worst case they are useless, because there is no way to
deduce their actual meaning.

7.3 Smoothing and averaging

Due to the stochastic nature of the analyzed signal, appro-
priate averaging must be applied as discussed in section 5.2.
Likewise the resulting curves of PSD commonly are smoothed
by a moving average along the frequency axis. This pro-
vides appropriate average values of PSD, while values PSD
obtained from discrete spectral analysis may strongly fluctu-
ate from frequency to frequency due to the stochastic phase of
the signal. If signal level is displayed on a logarithmic scale
(values given in decibels) averaging and smoothing must take
place for PSD, not for the logarithmic value. Smoothing the
linear value is similar to finding the upper envelope of the log-
arithmic value. Smoothing or averaging the logarithmic value
will systematically bias the results to smaller values.

7.4 Transient signals

The recording of a seismometer may contain a transient signal
(e. g. earthquake) together with some stochastic background.
The level of the earthquake signal is not appropriately repre-
sented by PSD, because it is not stationary. The larger the time
window which is analyzed, the less the earthquake signal (of
finite energy) contributes to average power.

7.5 Harmonic signals

The recording of a seismometer may contain a harmonic sig-
nals (e. g. tidal signals or free oscillations) together with some
stochastic background. The level of harmonic signals is not
appropriately represented by PSD. They are of finite (and
maybe stationary) amplitude and average signal power. Har-
monic signals are phase-coherent over large time intervals, in
contrast to stochastic signals. Because they exist at a single
frequency, their power spectral density theoretically is infinite
at this frequency. The PSD value obtained by the analysis of
a time series of finite length will thus strongly depend on the
length of the analyzed recording. The larger the time window,
the larger the resulting apparent PSD.

This property of harmonic signals consequently results in a
signal-to-noise ratio with respect to a stochastic background

period / s
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Figure 1: Comparison of different seismological signals, the dy-
namic range of the STS-1 and the New Low Noise Model (NLNM)
by Peterson (1993). The values given are for a local earthquake
(ML = 4, ∆ = 10 km), a teleseismic earthquake (MS = 8,
∆ = 30°) and the semi-diurnal and diurnal tides. The so-called hum
names the background free oscillations, a resonant response of the
Earth’s body to broadband forcing due to the turbulent atmosphere
and oceans at its surface. The signal levels are given in decibels rela-
tive to 1 m s−2. They can be understood as rms values in a bandwidth
of 1/6 decade or as mean peak values in a bandwidth of 1/3 octave.

signal, which depends on the length of the available recording
interval. The longer the time series, the larger the chance to
detect small amplitude harmonics. Zürn (1974) demonstrated
that even harmonic signals with an amplitude smaller than the
least-significant bit of the digitizer (i. e. signals with amplitude
smaller than quantization noise) might be detected if the time
series is sufficiently long.

7.6 Graphing clip level

Notwithstanding what was discussed above in sections 7.4
and 7.5, transient signals, harmonic signals, and levels of
stochastic noise are charted together in Figure 1. This is cor-
rect because signal level is not specified in terms of PSD but
in terms of a time-domain signal amplitude in a finite, well
specified bandwidth. This may be a reason to prefer diagrams
of rms-amplitude.

The only disputable element in the diagram is the ’STS1 clip
level’. This curve specifies the amplitude level of a harmonic
signal at which the instrument would saturate is exceeded.
The curve displayed (rather than a single data point like in
the case of tides) might suggest that this level can be applied
to a broadband signal. This however is not correct. Saturation
takes place in the time domain. What limits the instrument is
a maximum amplitude of the instantaneous time domain sig-
nal. Consider a stochastic signal of constant and finite PSD
2P̃ (ω) = Pconst. If not band-limited its total time domain
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Models of low ambient seismic noise

New Low Noise Model (Peterson, 1993)
GSN Noise Model (Berger, Davis, and Ekström, 2004): 1st percentile for horizontal component

GSN Noise Model (Berger, Davis, and Ekström, 2004): 1st percentile for vertical component

Figure 2: Power spectral density as defined by the low-noise models
by Peterson (1993) and Berger et al. (2004). The specified values of
the one-sided spectral power density are given in decibels with re-
spect to 1 m2 s−4 Hz−1. All values are based on observations from
the Global Seismographic Network (GSN). Berger et al. (2004) dis-
tinguish between signals of the horizontal components on the one
hand and vertical components on the other hand.

rms-amplitude is

arms = lim
f1=0Hz,f2→∞

√
Pf1,f2

= lim
f1=0Hz,f2→∞

√√√√√ f2∫
f1

Pconst df.→∞ (49)

infinite, despite its finite (and arbitrary small) level Pconst of
PSD. Remember what has been said in section 3.4. A signal
may have a finite PSD, which certainly always goes along with
a finite level of rms-amplitude in a finite bandwidth. However
total signal power and total rms-amplitude will only be finite
if the signal is band-limited.

A signal may saturate the instrument (i. e. exceed the clip
level) even if the amplitude of a band-limited part of the signal
is below clip level at each frequency. Only harmonic signals
are reliably band-limited without further specification.

8 Low-noise models

So-called ’low-noise models’ specify PSD as the lower enve-
lope of a large collection of recorded signals. They do not
represent the signal level of a single time series. Well estab-
lished low-noise models for the Global Seismographic Net-
work (GSN) are those published by Peterson (1993, so-called
New Low Noise Model, NLNM) and a newer one by Berger
et al. (2004, so-called GSN noise model). Figure 2 displays
both of them. They represent the lowest signal level at each
frequency observed in a well-defined subset of all recordings
in the GSN. Both differ in the approach of statistical analysis
applied to the signals.

Although the PSD levels specified by the models do not rep-
resent the PSD of single recording, they are commonly used
as reference values. A seismometer with a self-noise level be-
low the low-noise curve would qualify to be able to detect the
signals of smallest amplitude at any GSN-station. If a seis-
mometer station produces signals with PSD above the low-
noise models it is not able to compete with the best stations in
the GSN. Low-noise models thus also serve as a quality stan-
dard for instruments and seismometer sites. This does mean
that the signal level specified by the low-noise model repre-
sents a smallest level of ground motion originating from the
Earth’s interior in all cases (see below in section 8.3). Fu-
ture observational techniques shall be able to detect signals
below the level of the low-noise models and in fact gravime-
ters with appropriate signal correction are already able to do
so as demonstrated by Zürn and Widmer (1995, Figure 1) and
Rosat and Hinderer (2011, Figure 1) for observations at fre-
quencies below 1 mHz.

8.1 The low-noise model by Peterson (1993)

A classic and still frequently used low-noise model is the so-
called New Low Noise Model (NLNM) by Peterson (1993).
He examined the data from 75 stations of the GSN and two
additional stations. For each station he selected three quiet
time windows, each 24 hours long. For each component of
the seismometer, Peterson calculated the values of the power
spectral density in these time windows and averaged them.
Values of PSD are given for the one-sided spectral power den-
sity (Bormann and Wielandt 2012b, Section 4.4.4) as defined
in section 3.3 above. The NLNM forms the lower envelope
of the family of curves for all results (for all stations and all
components), which was found by graphically fitting linear
segments in decibels (Peterson 1993, Fig. 13).

For comparison with amplitudes in a finite frequency band,
Peterson (1993, Fig. 18) additionally gives average peak-to-
peak amplitudes in 1/3 octave. He defines this as twice the
mean values of the envelope of narrow-band filtered, normally
distributed noise signals (Rice 1945, Section 3.7). The calcu-
lation shows that the mean peak values defined in this way in
1/3 octave are approximately equal (factor 0.972) to the rms
values in 1/6 decade (see section 4.2 above). Peterson’s defini-
tion of the amplitude values seems unnecessarily complicated.

Peterson misses to explicitly specify signal level being the
onesided PSD. A quantitative conversion of PSD (Peterson
1993, Fig. 15) into average peak-to-peak values (Peterson
1993, Fig. 18) however, leaves no room for doubt. The av-
erage peak-to-peak amplitude in 1/3 octave is

aPP(fc; 1/3 octave)

= 2

√
π

2

0.232

0.386
arms(fc; 1/6 decade)

=
√

2π

√
2P̃ (2π fc) fc 0.232. (50)
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If levels are given in decibels for one-sided PSD with respect
to 1 m2 s−4 Hz−1,

V = 10 log10

(
2π fc 0.232

1 Hz

)
dB (51)

must be added to obtain the value for average peak-to-peak
amplitude in 1/3 octave specified in decibels with respect to
1 m s−2.

8.2 The low-noise model by Berger et al. (2004)

Berger et al. (2004) created an updated low-noise model for
the GSN. They used the records of 118 stations covering a
whole year (July 2001 up to and including June 2002). They
split data into time windows, where the length of the indi-
vidual window (between one hour and one day) depends on
the sampling rate of the data stream. Windows with obvious
data problems (gaps, malfunctioning instruments, etc) were
discarded. Appropriately scaled Fourier amplitude spectra af-
ter smoothing in the frequency domain then provide one-sided
PSD for each time window. Berger et al. (2004) in their Figs. 6
and 7 present the frequency distribution of PSD values for the
entire data set at each frequency for the vertical components
and the horizontal components, respectively. The authors then
take quantiles of the PSD values at each given frequency. In
the supplement they provide the levels of 1st percentile, 5th
percentile, 1st quartile, and median in each recorded channel
individually. Fig. 4 of Berger et al. (2004) summarizes these
levels for all channels in comparison to the NLNM. Their
Fig. 9 sorts the values by instrument type, clearly indicating
that the seismometers of type STS-1 provide the lowest level
of detection threshold at frequencies below 10 mHz. These
instruments therefore define the low noise model for vertical
components in this frequency band.

Table 2 in the paper specifies the final GSN noise model in
terms of the 1st percentile for the vertical components and
the horizontal components of the entire data set separately.
Figure 2 in the current lecture notes displays the GSN noise
model in comparison with the NLNM.

The noise power of the horizontal components is about 10 dB
larger than that of the vertical components at signal periods
longer than 300 s. This is due to tilting of the instruments
caused by crustal deformation as a consequence of loading
forces on the Earth’s surface due to fluctuating air-pressure.
Tilting of the instrument changes the component of gravity
being coupled into the sensitive axis of the seismometer. This
effect is linear with respect to tilt angle in horizontal compo-
nents and quadratic (and therefore negligible at small angles)
for vertical components.

8.3 Common properties of low-noise models

The processes which control the level of low-noise models are
largely understood but different in different frequency ranges.
In the order of decreasing frequency they are the following.

At frequencies above 1 Hz ground vibrations dominate the
background level. They typically originate from local sources,
which can be man-made (traffic, industry, etc) or natural
(rivers, dynamic forces of wind on the Earth’s surface, etc).
Force-balance feedback seismometers are not able to re-
solve the smallest levels of ground vibrations at frequencies
larger than about 10 Hz. This is because this type of instru-
ments needs detecting mass displacement, which becomes
smaller and smaller with increasing frequency. At these
large frequencies passive seismometers with electrodynamic
(velocity-)transducer provide a lower level of self-noise and
are able to resolve ground vibrations of smallest amplitude.

A signal produced by fluctuating pressure at the sea bottom
in the oceans can be observed throughout the continents in
the frequency band between 0.02 Hz and 1 Hz. This signal is
called the marine microseisms and exact frequencies depend
on the size of the ocean producing the signal. Typically we see
amplified signal levels at 0.07 Hz (the peak of the so-called
primary marine microseisms) and at 0.14 Hz (the larger peak
of the so-called secondary marine microseisms). Webb (1992,
1998, 2002) describes the oceanographic processes driving
this signal which even elevate the curves of low-noise models.
Longuet-Higgins (1950) contributes the theory for the cou-
pling mechanism, which allows oceans to act as very effective
seismic sources.

At frequencies smaller then 10 mHz other forces than those
of inertial acceleration start to contribute. Contributions of
inertial acceleration decrease with decreasing frequency. A
major source of background noise at these small frequencies
is the Earth’s atmosphere with ever fluctuating mass density,
resulting in fluctuating gravitational attraction and fluctuat-
ing deformation of Earth’s crust due to surface loading by
air pressure. There are clear indications that for the verti-
cal component recordings the atmospheric effects cancel near
3 mHz as motivated by Zürn and Wielandt (2007) and demon-
strated by Zürn and Meurers (2009). As a consequence verti-
cal component background noise level at frequencies between
about 2 mHz and 10 mHz is controlled by the so-called back-
ground free oscillations (the so-called hum) as demonstrated
by Berger et al. (2004, Fig. 8). Benioff et al. (1959) first pro-
posed the existence of this signal which represents the reso-
nant response of the Earth to broadband, random forcing at
the surface. With modern instruments the hum is clearly iden-
tified in the vertical component (Kobayashi and Nishida 1998;
Nawa et al. 1998; Suda et al. 1998) as well as in horizontal
component (Kurrle and Widmer-Schnidrig 2008) recordings.

Zürn and Widmer (1995, Fig. 1) first demonstrated that the
signal level of the NLNM below 1 mHz does not represent the
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smallest signals originating from Earth’s interior. It is widely
accepted that detection level of gravimeters can be lowered
below the level of NLNM by an appropriate correction for sig-
nals originating in the atmosphere (Rosat and Hinderer 2011).
Zürn and Wielandt (2007) have proposed physical models of
the coupling mechanism, which can successfully be used for
signal correction in many cases. It is also accepted that the
level of the horizontal component low-noise model at frequen-
cies below 1 mHz is controlled by tilting of the seismometers
(Wielandt 2012; Zürn et al. 2007). This is caused by pressure
fluctuations at the surface of Earth which cause a deformation
of the subsurface and tilting of the instrument and thus cou-
ple a component of gravity into the horizontal components.
Whether the level of the vertical component low-noise mod-
els at frequencies below 1 mHz represents the smallest signal
level originating from the atmosphere or whether it represents
the instrumental noise of the seismometers of type STS-1 in
the GSN (Berger et al. 2004, Fig. 9) currently is under debate
and is subject of ongoing research.

9 Further reading

The classic text on the estimation of power spectral density
was written by Blackman and Tukey (1958). Welch (1967)
demonstrated the equivalence of averaging over time windows
on the one hand and averaging over adjacent index k on the
other hand. Jenkins and Watts (1968) further develop concepts
of random signals with a sound background of statistical the-
ory. They further develop the theory of Parceval’s theorem to
the quantity of cross-power spectral density, which allows the
computation of signal coherence. The application of power
spectral density to signals in seismology is discussed by Bor-
mann and Wielandt (2012b).
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