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Abstract Polycyclic aromatic hydrocarbons (PAH) containing
tar-mixtures pose a challenge for recycling road rubble, as the
tar containing elements have to be extracted and decontami-
nated for recycling. In this preliminary study, tar, bitumen and
minerals are discriminated using a combination of color (RGB)
and Hyperspectral Short Wave Infrared (SWIR) cameras. Fur-
ther, the use of an autoencoder for detecting minerals embedded
inside tar- and bitumen mixtures is proposed. Features are ex-
tracted from the spectra of the SWIR camera and the texture of
the RGB images. For classification, linear discriminant analysis
combined with a k-nearest neighbor classification is used. First
results show a reliable detection of minerals and positive signs
for separability of tar and bitumen. This work is a foundation for
developing a sensor-based sorting system for physical separation
of tar contaminated samples in road rubble.

Keywords Hyperspectral Imaging, Autoencoder, Polycyclic
Aromatic Hydrocarbons

1 Introduction

Until the 1980s, tar was primarily used as a binder for road surface con-
struction in Germany [1]. It has since been outlawed for the construc-
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P. Bäcker et al.

tion of new roads due to its high levels of Polycyclic Aromatic Hydro-
carbons (PAHs) that have been identified to be carcinogenic, mutagenic
and genotoxic and can contaminate the groundwater [2]. Further, the
use of recycled tar containing materials as a foundation of new road
surfaces has been restricted.

Other materials present in road rubble are bitumen, which replaced
tar as binder material, and minerals, which make up the biggest part
of the road surface mixture (∼95 wt%) and are used in the road foun-
dation. Both of these materials are valuable for recycling, but are fre-
quently lost as they cannot be separated from the tar containing frac-
tions. Therefore, they are deposited at a landfill, which is increasingly
expensive, or fed into a highly energy consuming tar decontamination
process where they are damaged due to high temperatures altering the
molecular structure of the minerals.

The mixing of tar contaminated road rubble with uncontaminated
bitumen and minerals is due to different road layers and repaired road
patches that appear in close proximity and are therefore mixed during
demolition. Further, many uncontaminated mixtures are unnecessarily
declared as tar containing, as this can be cheaper for the demolition
crews than carrying out the mandated testing procedures. This test-
ing includes taking point-samples in a certain raster and having them
analyzed in a laboratory.

To acquire a rough estimate over possible PAH concentration,
solvent-based paints can be sprayed onto the rubble. Such paints react
with the PAHs creating a fluorescent effect that is visually observable.
This method is however not sufficient for official classification, as this
detection method is not accurate for all PAHs and cannot be used for
dense classification and sorting of all material to limit paint usage.

As part of the InnoTeer project, the entire process from the creation of
rubble at the construction site to transportation, separation and decon-
tamination is reevaluated [3]. Fraunhofer IOSB is developing a method
to efficiently separate the tar from the mixture of materials using visual
inspection with the goal to develop a sensor-based sorting system.

1.1 Related Work

Methods such as gas chromatography, high-performance liquid chro-
matography [4] and mass spectroscopy deliver accurate estimations of
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PAH content. However, these Methods offer low throughput at a high
cost and require dissolving the tested materials, rendering the methods
unsuitable for recycling.

Visual methods for detecting PAHs include fluorescent spectroscopy.
UV-excited fluorescence of PAH molecules in the Mid Infrared spec-
trum is widely used in astronomy to investigate properties of astro-
nomical objects [5]. [6]. However, the detected PAHs are in gaseous
form, which alters their fluorescence compared to PAHs in solid com-
pounds. Quazi et al. have used fluorescent spectroscopy to detect
and distinguish between different kinds of PAHs in soil samples [7].
Excitation is performed in low-wavelength regions of the visual spec-
trum (blue to green), detection in slightly higher wavelengths (green
to red). Different excitation wavelengths have shown to excite differ-
ent PAHs. In addition to detection, the varying distribution patterns of
different PAHs were observed with phenantrene forming spherical par-
ticles, whereas naphtalene forms a uniform film. The approach seems
promising, however the analysis was carried out in microscopic scale
and at low speeds (several seconds for a 200 × 200µm patch). Adap-
tation of this method to the macroscopic scale has to the best of our
knowledge not been tried in the context of PAH detection in soil.

Li et al. use a Fourier Transform Infrared (FTIR)-Spectrometer to
measure the reflectance of different PAHs in soil over a broad Mid
Infrared spectrum (2500 – 16000nm) with a spectral resolution of
4cm−1 [8]. The 35 measured samples were analyzed using a hybrid
variable selection approach, that combines wavelength interval selec-
tion and wavelength point selection as preprocessing for a partial least
squares regression. The method shows high accuracy, but the use of a
point-measuring FTIR-Spectrometer in large throughput sensor-based
sorting applications is not feasible. Jahangiri et al. have investigated
differences between bitumen-based asphalts in terms of different ad-
ditives using a FTIR-Spectrometer [9]. This illustrates the big variety
in road surfaces which further complicates the task of separating tar-
from bitumen-based binder.
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Figure 1: Data Processing pipeline. Preprocessing includes separating the samples from
each capture and removing dead pixels. An autoencoder (AE) for detecting
minerals embedded in tar and bitumen is trained on a subset of mineral fea-
tures and applied to the training samples of tar and bitumen.

2 Materials and Methods

The problem of detecting tar in road rubble is posed as a classification
problem between the classes tar, bitumen and minerals. Solving the
problem requires data capture, preprocessing and classification. Pre-
processing includes segmentation of the different samples, dead-pixel
correction, feature extraction and a novel method for removing mineral
patches embedded in the tar and bitumen samples. Figure 1 gives an
overview of the different steps used in this work.

2.1 Samples

Samples for the classes tar and bitumen are both taken from the top
layers of road surfaces and constitute a mixture of differently sized
mineral elements and the binder (tar or bitumen). The class of minerals
contains only solid pieces of minerals from the foundation layer. The
sample size has been chosen to be between 16 and 32mm. Figure 2
shows examples of samples.

2.2 Data Acquisition Hardware

In this work, data from a hyperspectral Short Wave Infrared (SWIR)
camera and a high-resolution RGB camera were combined for clas-
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Figure 2: Examples for the three classes. From left to right: bitumen, tar, minerals.

sification. Both cameras are line-scanning cameras that have been
mounted above the same linear stage. The linear stage carrying the
samples is moving past the line-scanning cameras for image acquisi-
tion. For the hyperspectral camera, the line is illuminated using six
halogen work lights. Illumination for the RGB camera is provided by
two white-light LED-bars.

2.3 Preprocessing

As a first preprocessing step, dead-pixel correction is performed by
quadratic interpolation in the spectral domain. Sample masks are au-
tomatically extracted using a binary threshold, with small artifacts be-
ing removed by morphological operation (opening) and filtering the
remaining elements by size and shape.

Our goal is to be able to overlap RGB- and SWIR images (Image
Registration). Therefore, the transformation between the cameras is es-
timated. First, the nonlinear lens distortion is calculated for each cam-
era separately using a known calibration pattern. The resulting camera
pixels are now related through a linear transformation, assuming all
captured objects lie in the same plane. The main components of this
transformation are a scaling factor, which is necessary because of the
different resolutions and slightly different capture areas of the imag-
ing sensors, and a translation between the cameras. These scaling and
translation changes could be covered by a similarity transform (which
always preserves shape). However, due to small inaccuracies in the
mounting of the cameras, a more general perspective transformation is
assumed (homography). The transformation matrix is estimated using
a set of matching points on a calibration pattern. Using the transfor-
mation matrix, both images can be transformed into each others view.
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Figure 3: Detection of minerals in tar and bitumen. The upper row shows unedited RGB
images. The lower row shows an overlay of the RGB images and a contrast-
enhanced inverse reconstruction error as computed by the autoencoder.

2.4 Distinguishing Surface Minerals from Tar and Bitumen

A challenge when trying to distinguish between tar, bitumen and min-
erals is that tar and bitumen are mixtures containing large amounts of
minerals (∼95 wt%) and much less solvent (∼5 wt%). Although a thin
layer of binder is prevalent, there are several surface patches displaying
clean minerals. Figure 3 shows examples for this.

In this work, a pixelwise autoencoder was trained on a subset of sam-
ples in the minerals-class. The in- and output of the autoencoder are
spectra corresponding to a single pixel. The autoencoder is structured
as a multilayer perceptron network with a latent space of 32 neurons.
As a preprocessing step for tar and bitumen, the autoencoder is applied
to all pixels in the training set. If the reconstructed spectrum is close
to the original spectrum, it is assumed that the pixel shows a mineral
(see Figure 3). These pixels are disregarded for training. This results in
more homogeneous training data and increases the distance between
the tar and bitumen classes and the minerals. In Section 3, the effect of
this measure on classification performance is discussed.
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2.5 Feature Extraction

In this work, classification is performed both on a pixel- and an ob-
ject level. For pixelwise analysis, each pixel is initially treated as a
separate sample, whereas objectwise classification uses data collected
for an entire sample. As pixel features, the Standard Normal Variate-
normalized spectra and their derivatives are used. Object features are
the object-wide means of the spectral information as well as texture in-
formation. Since texture features require multiple pixels, they are not
used in the pixelwise analysis. For texture features, the frequencies in
the grayscale-converted RGB image is analyzed using Discrete Fourier
Transformation and Local Binary Patterns (LBP) are extracted.

2.6 Classification

Classification is either performed using object features, such as ex-
tracted texture features and mean spectra, or pixelwise using only the
captured spectrum of each pixel. For pixelwise classification, a major-
ity decision (MD) is added to get the desired object wide decisions.
Classification is performed using Linear Discriminant Analysis (LDA),
combined with a k-nearest neighbor (KNN) classifier. The LDA reduces
the feature space to n − 1 where n is the number of different classes.
Other classifiers, such as a multilayer perceptron and a support vector
machine, have also been considered, but did not perform as good.

3 Experimental Results

Table 1 shows the recall scores for different classification methods. For
all classifications, a split of 80/20 for training- and testing data was
used. The classification results were cross-validated by using 50 differ-
ent training/testing splits. Classification was performed either object-
wise or using a pixelwise classification with a majority decision.

The pixelwise majority decision model without an autoencoder per-
formed best with an overall recall of 93.69%. For real life scenarios, a
reliable detection of tar may be more important than the maximizing
recall over all classes, since small amounts of tar can suffice to render a
fraction contaminated, prohibiting the use as recycled material. There-
fore for the pixelwise majority decision classifiers, robust versions were
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Table 1: Results for different classification algorithms. Values marked with an asterisk
indicate that the classes bitumen and tar were treated as a single class.

Classification Results (Recall)
Classifier Features Mineral Bitumen Tar
Objectwise All 96.65 86.86 83.57
Objectwise M. vs. O. Texture 98.2 97.85* 97.85*
Pixel MD SWIR, RGB 99.71 85.60 94.84
Pixel MD AE SWIR, RGB 100.0 86.23 91.41
Pixel MD robust SWIR, RGB 98.97 56.34 100.0
Pixel MD AE robust SWIR, RGB 100.0 59.62 99.03

implemented, that assign all samples with more than 30% of pixels be-
ing classified as tar to the tar class. This achieves a perfect recall for
tar samples using the pixelwise majority decision and a 99.03% recall
when using the autoencoder.

The objectwise classification using both texture- and spectral features
performed slightly worse overall than the pixelwise methods. How-
ever, it is more computationally which could be critical in real-world
systems. For separating minerals from tar and bitumen, a single RGB
camera can be sufficient to attain good separation with 98.02% of the
detected minerals being true positives. This indicates the possibility of
using a low-cost preselection stage using only a RGB camera to remove
the minerals from the material flow.

The usage of an autoencoder for preprocessing of the training sam-
ples improves the overall classification recall for mineral and bitumen.
Especially minerals can be identified consistently, as shown by the re-
call scores for the two models using the autoencoder. The majority de-
cision to some degree obscures the positive effects of the autoencoder
on the robustness of the detection of minerals. This improvement is ob-
servable in the overall recall over all pixels without majority decision,
as shown in table 2 for pixelwise classification with- and without au-
toencoder. The False number of false positives in the mineral class has
been halved using the autoencoder improving the recall from 98.0% to
99.19%. Recall scores for tar are slightly decreased both for the major-
ity decision and recall over all pixels. One possible explanation for this
might be that the tar samples contain a certain type of mineral that is
not present in the bitumen samples. Masking out these minerals from
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Table 2: Results for different classification algorithms on a per-pixel level.

Pixelwise Classification Results (Recall)
Classifier Features Mineral Bitumen Tar
Pixelwise SWIR, RGB 98.05 62.27 71.82
Pixelwise with AE SWIR, RGB 99.19 62.87 70.17

the training samples would therefore remove a means of detecting tar.

4 Conclusion and Future Work

In this work, we demonstrated that minerals, tar and bitumen can be
distinguished using a combination of a hyperspectral SWIR camera and
a RGB camera with overall recall scores of up to 93.69%. Using a robust
majority decision, the recall for tar was further increased, resulting in
mineral and bitumen fractions with high purity. The use of an autoen-
coder achieved mixed results, improving the detection of minerals and
bitumen, but performing worse in the detection of tar. Possible reasons
for this have been identified and will be investigated further.

A focus of future research is determining whether the achieved re-
sults generalize to all road rubble. Each of the used fractions in this
study is taken from two different sources. Both tar- and bitumen based
binders can include additives like rubber, polymer and fiber [9] to op-
timize for certain properties like temperature stability or noise genera-
tion. The utilized differences may be based in large parts on differences
in these additives instead of strictly tar- or bitumen specific proper-
ties. Evaluation with additional test samples from multiple sources
will therefore be needed to further validate the results.

The three classes used in this study do not include rocks used in
the foundation layer that are in parts sprayed with a thin layer of PAH
contaminated binder for adhesion with the higher road-layers. These
foundation-layer rocks are challenging, as the surface contains patches
of this adhesive binder as well as patches without this binder. For real-
world applications, this class of samples will have to be addressed as
well.

Finally, additional measurement systems like fluorescent spec-
troscopy and MWIR will be utilized to directly identify PAHs or other
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chemical properties relating to tar or bitumen. An ideal solution to
the problem will deliver estimates for the PAH concentration of each
sample in addition to a classification.
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