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Abstract In order to enable high quality recycling of polypropy-
lene (PP) plastic, additional classification and separation into the
degree of degradation is necessary. In this study, different PP
plastic samples were produced and degraded by multiple extru-
sion and thermal treatment. Using near infrared spectroscopy,
the samples were examined and regression models were trained
to predict the degree of aging. The models of the multiple ex-
truded samples showed high accuracy, despite only minor spec-
tral changes. The accuracy of the models of the thermally aged
samples varied with the design of the training set due to the
non-linear aging process, but showed sufficient accuracy in pre-
diction.
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1 Introduction

With their versatile applications, plastics are indispensable for a high
living standard in all areas of life, be it hygiene, lightweight construc-
tion and transport, food supply or technology [1, 2]. The plastic pro-
duction worldwide amounts to 390 mio. t (2021) and in Germany alone,
around 12 mio. t are consumed every year [3]. This causes massive
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plastic waste streams, which are currently mainly disposed of through
energy recovery in Europe and by landfill in most other regions of
the world [4, 5]. However, so-called end-of-life-plastics are an impor-
tant resource both for the plastic industry through mechanical recycling
and the chemical industry through chemical recycling, yielding recy-
cled plastic materials and platform chemicals and monomers respec-
tively [6,7]. To underline their economical and environmental potential,
plastic waste streams are referred to as secondary raw materials [8]. Spe-
cial focus needs to be laid on the recycling of post-consumer secondary
raw materials, which are plastics which have undergone their service-
life once, as opposed to pre-consumer- or post-industrial materials, as the
recycling rates of the former are very low [3, 4, 9].

For plastics recycling, particularly mechanical recycling, the quality
of the resulting recyclate strongly depends on the characteristics of the
input stream. The material homogeneity is therefore an important pre-
requisite for the input stream. To achieve this, the input stream is pre-
processed and sorted in multiple stages, where sensor-based sorting
plays a crucial role. The umbrella term sensor-based sorting describes
a family of systems that enable the physical separation of individual
particles from a material stream on the basis of information acquired
by one or multiple sensors. A particular strength of the technology is
its flexibility in terms of the criteria according to which sorting can be
performed. This flexibility exists due to the variety of eligible sensor
principles as well as the freely programmable data evaluation.

1.1 Contribution

During their service life, plastics undergo an aging process, inducing
changes in the material’s chemical and physical properties and poten-
tially compromising its quality [10]. There are multiple factors which
cause degradation effects during processing and service life such as
thermo-mechanical stress during processing, causing chain scission
and/or cross linking, exposure to UV-radiation, humidity, high tem-
peratures or other weathering conditions, causing (thermo-)oxidative
degradation [8, 11]. The mechanism of the oxidative degradation of
polymers is referred to as autoxidation [12]. In the case of polypropy-
lene (PP), autoxidation occurs after an induction period, accelerating
the degradation exponentially [13]. Metal impurities from catalyst
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residues may accelerate this process still further [14]. To counteract
material degradation and to compensate a negative influence by aged
polymers, stabilizers, compatibilizers and other additives are used [15].
Detailed knowledge of the degree of degradation of a secondary raw
material stream is therefore highly useful for determining and adjust-
ing the composition and concentration of the master batch in question,
thereby improving the recycling of mixed materials with varying de-
grees of degradation.

In this study, a virgin PP homo-polymer has undergone two separate
accelerated aging experiments. The first has been a recycling simula-
tion by multiple processing and the second a service life simulation us-
ing an oven and thermo-oxidative conditions. The test specimen were
injection-moulded and analyzed using NIR spectroscopy. Regression
models were trained using NIR spectra to model the aging stage and
predict the degree of degradation of unknown samples.

1.2 Related Work

Existing work has demonstrated the general suitability of NIR spec-
troscopy for age prediction of plastic samples. In [16], different types
of plastics (virgin polymers) were investigated and regression mod-
els were trained using NIR spectra to predict the polymer degrada-
tion and a polymer quality assessment of the samples, caused by con-
trolled, laboratory thermal aging. It showed the general suitability of
NIR spectroscopy for determining polymer degradation, however ac-
curacy depends on the type of plastic. Acrylonitrile butadiene styrene
(ABS) and polyethylene terephthalate (PET) proved to be particularly
suitable, while low-density polyethylene (LDPE) and PP were more
difficult to evaluate. The chemical stability of polyethylene (PE) and
PP was named as the cause. In [17], the investigations were extended
to include the prediction of the extrusion cycles, which also showed
differences in accuracy depending on the type of plastic. It was rec-
ommended to include more data in the model generation. Specifically,
the prediction of the age of thermally treated PP samples was the sub-
ject of [18], with focus on the chemical modification of the polymer
structure. In [19], the investigations were extended to plastic waste
degraded under natural circumstances.
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2 Materials and Methods

In the following, the production of the PP plastic samples is outlined.
Subsequently, the data acquisition and the calculation of the regression
models for the prediction of the aging stage are described.

2.1 Accelerated aging of test specimen

A PP homo-polymer (Moplen HP 500N, LyondellBasell, Rotterdam,
Netherlands) in granular form was used as raw material for the accel-
erated aging experiments. Multiple processing was performed using a
twin-screw extruder (Thermo Scientific™HAAKE™Rheomex PTW 16,
Thermo Fisher, Waltham, Massachusetts, US) with a processing tem-
perature range of 185 - 236 °C and 200 rpm. The extrusion process
was repeated five times. From each extrusion cycle, a quantity was
used for the preparation of test specimen (plates, 80 x 80 x 2.5 mm).
Test specimen for further analysis were produced using an injection
moulding system (Allrounder 320 C, Arburg, Loßburg, Germany). For
the thermo-oxidative aging, test specimen were injection mouled im-
mediately from the raw material using the above mentioned injec-
tion moulding system and conditions. The plates were placed in an
aging furnace (Memmert Universalschrank UF75, Memmert, Büchen-
bach, Germany) at 150 °C and 100 % ventilation. An overview can be
found in Table 1.

Table 1: Overview of the two datasets consisting of differently aged PP samples.

Dataset A Dataset B

Plastic type PP PP
Material Moplen HP 500N Moplen HP 500N
Treatment extrusion thermal
Aging state parameter 1, 3, 5 (times) 10, 22, 27, 30, 34 (days)
Number of samples 3x10 5x10

2.2 Data acquisition

Due to the possibility to distinguish different types of plastics, the use
of hyperspectral cameras in the near-infrared (NIR) wavelength range
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is widespread within the sensor-based sorting industry [20]. Based on
the chemical molecules present, or specifically their functional groups,
different types of plastics have individual absorption characteristics
and therefore show distinct spectra in the NIR wavelength range. On
an experimental level, the sensor technology has also been used to in-
vestigate different characteristics, e. g., aging states of plastic. However,
the use of NIR spectra for plastic age prediction is limited due to sev-
eral possible properties. Regression on the basis of NIR spectra is an
inverse problem, i. e., the exact composition of the sample cannot be
derived from the spectral information. One problem is the overlap of
the absorption bands [21, 22].

For this study, the specimen were recorded using a hyperspectral
NIR line-scan camera in the wavelength range of 900 – 1700 nm. The
camera model is FX17 from Specim, consisting of a spatial resolution
of 640 pixels. Per pixel, 256 spectral bands were acquired, resulting
in a spectral resolution of slightly more than 3 nm. Due to different
reflection properties caused by surface characteristics and camera po-
sition, variations occur in the raw spectra falling through the camera
apparatus and captured by the sensor. These so-called scatter effects
are minimized with the help of pre-processing steps.

First, the output of the hyperspectral sensor, which can be inter-
preted as the spectral reflectance, was converted to absorption units
a = log(1/R). The wavelength range was then cropped to avoid un-
wanted edge effects. To minimize scattering effects, the Signal Normal
Variant (SNV) was applied. The mean value of each spectrum is sub-
tracted and then divided by its standard deviation.

2.3 Evaluation of the NIR spectra of aged PP samples

For each image, the foreground pixels were segmented and an average
absorption spectrum was calculated from all spectra within the sample
mask. This turned out to be a relevant measure to suppress noise ef-
fects and to better highlight the small spectral changes. The mean NIR
absorption spectra within a degradation stage are shown in Figure 1.
Clearly visible absorption bands of the NIR spectrum are associated
with CH2 and CH3 groups of the PP molecules. In the range between
1100 and 1225 nm as well as 1350 to 1450 nm, absorption bands of
the second overtone region of the methylene and methyl group or the
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respective combination vibrations with CH groups are located. Ab-
sorption bands of the CH3 groups are located at lower wavelengths
(1195 nm, 1360 nm) compared with CH2 absorption bands (1215 nm,
1395 nm) [23]. Due to the spectral proximity, there is a strong overlap
of the absorption bands.

When looking at the samples that have been extruded several times,
a decrease in the intensity of the absorption bands associated with
CH2 and CH3 can be observed. A linear relationship between spectral
changes and the number of extrusion cycles can be assumed. The ob-
servations can be explained by the increasing degradation of the poly-
mer chains per extrusion cycle.

The observation of the spectra of the thermally aged PP samples
show a similar course, but clear differences are recognizable. The ther-
mally aged samples clearly show inhomogeneous degradation behav-
ior related to the spatial area, visible as spots on the surface. The ex-
tracted local NIR spectra of a sample therefore show different aging
stages depending on the spatial pixel position. With increasing ther-
mal age, the intensity of the CH3 and CH2 absorption bands decreases.
The behavior is clearly non-linear and can rather be modeled as an
exponential relationship. Furthermore, stabilizing additives prevent
chain scission at the beginning of aging. Once the additives are con-
sumed, the aging process takes its exponential course. The start of the
exponential aging process therefore has an induction period.
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Figure 1: Mean absorption spectra of multiple extruded PP samples (1-, 3- and 5-fold
extruded) after SNV (left) and mean absorption spectra of thermally aged PP
samples (10, 22, 27, 30, 34 days) after SNV (right).
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2.4 Regression-based age prediction

Linear regression models were trained to predict the degree of degra-
dation of the PP samples based on the NIR absorption spectra. For
this purpose, Partial Least Squares (PLS) Regression was used. The
algorithm is based on the assumption of a linear relationship y = Xb
between the input data X (spectral data) and the target values y (aging
time or extrusion cycles). Even though this is not the case, especially
for the thermally aged samples, its application in hyperspectral data
evaluation has nevertheless proved successful and showed good results
even for non-linear datasets [24]. The algorithm projects the data into
a space with a smaller dimension, depending on the number of latent
variables (LV) defined manually beforehand. The ability to model com-
plex relationships increases with the number of LVs, but runs the risk
of overfitting. The selection of the parameter is therefore crucial. When
calculating the regression model, the number of LVs must be specified.
This largely determines the ability of the model to adapt to complex
data. In order to obtain a highly generalizing model using only a small
amount of training data, a trade-off in the training stage is necessary.
To determine the number, Leave-One-Out Cross-Validation was used.
In each run, one partition is used as the test set and one model is
trained with the remaining partitions. A metric is calculated for each
model and then averaged over the metric values to obtain an overall
assessment of the suitability of the parameterization of the model. This
is done for a given number of LVs, and then the number of the best,
most generalized model is chosen.

Extrusion cycle prediction model

To calculate the PLS regression for Dataset A, 10 single-extruded and 10
five-extruded samples were used for training. The remaining 10 triple-
extruded samples formed the independent test set. The optimization
of the numbers of LVs resulted in a number of 5, this value was later
used for calculation of the PLS model.
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Thermal age prediction model

The investigations were divided into two parts, both using Dataset B.
First, it was analyzed whether linear regression is suitable to model
the nonlinear aging process by using only a few target values. For this
purpose, the samples with aging stages 10, 27 and 34 (days) were used
for training. The calculated model (Model 1) was evaluated using test
data obtained from the samples with aging stages 22 and 30 (days). For
the model calculation, a LV number of 8 was used after optimization.

In a second study, all 5 aging stages were used for model training.
For this purpose, 5 samples per aging stage were selected for model
training and 5 samples each were used for the test set. Thus, the total
number of spectra used for model training was reduced compared to
the first study, but included a wider range of target values. The model
(Model 2) was calculated using a number of 8 LVs.

Evaluation metrics

As a metric to evaluate the regression model, the Root Means Squared
Error (RMSE) and R2 score is used. The RMSE score

RMSE =

√
∑n

i=1(ŷi − yi)2

n
(1)

estimates the standard deviation of the prediction of a regression
model. Here, ŷi describes the prediction result and yi the ground truth
value. A distinction can be made between the RMSE of the calibration
set (training) and the prediction set (test). In addition, the R2 score

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (2)

indicates how well the independent variables are suited to explain the
variance of the dependent variables, where n is the number of samples.

3 Experimental Results

The performance of the regression models for predicting the age of
PP plastics is examined below. A distinction is made between thermal
aging and aging by multiple extrusion.

58



Regression-based Age Prediction of Plastic Waste

3.1 Extrusion cycle prediction results

The performance of the model was analyzed by calculating the RMSE
and R2 of the test set. Both values are depicted together with the exact
structure of the training and test set in Table 2. The model achieved an
RMSE of 0.367 on the independent test data of the aging stage not yet
considered during training. Figure 2 shows the model-predicted values
plotted against the real values. The results show a general suitability of
the model for the estimation of extrusion cycles. The calculated RMSE
of the training data of 0.118 shows similarity to the obtained value in
the test data. In addition, the calculation of the median of the estimated
aging states of the test data (ỹpred = 3.052) shows that the results scat-
ter around the target value. The data show a linear correlation between
the target value and the spectral information. Therefore, the linear PLS
model can model the correlation with high accuracy using only two
aging stages during training. During model calculation, it has been
shown that the main focus must be on the generation of the training
data and its pre-processing. Only the calculation of mean value spectra
makes it possible to visualize the small change in the absorption spec-
trum with respect to noise influences. Thus, multiple extrusion leads
only to a small change in the functional groups.

Table 2: Performance of the regression models on a respective independent test set for
the prediction of the thermal aging stage resp. the number of extrusion cycles.

Train Test A LV RMSE R2

Dataset A 1, 5 3 5 0.367 -
Dataset B, Model 1 10, 27, 34 22, 30 8 2.158 0.709
Dataset B, Model 2 10, 22, 27, 30, 34 10, 22, 27, 30, 34 8 1.437 0.970

3.2 Thermal age prediction results

The age-prediction models of PP were assessed by calculating the
RMSE and R2 of the test set. Both values are depicted together with the
exact structure of the training and test set in Table 2. Figure 4 shows
the model-predicted values plotted against the real values.

The evaluation of the thermally aged PP samples resulted in the
calculation of two models, each based on different training data or
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Figure 2: Results of the regression model for
predicting the number of extru-
sion cycles. Measured versus pre-
dicted number of cycles.
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Figure 3: Difference of the mean NIR ab-
sorption spectra of all 1-fold and
the 5-fold extruded PP samples
used for model training.

different aging stages. The analysis of the spectra already showed a
nonlinear course of aging. The first model, calculated from only three
aging stages, achieved an RMSE of 2.158 on the test data. The scatter
of the estimated aging highlights the problem of modeling the non-
linear aging process using a few target values. Prediction of the 22
days aged samples was consistently overestimated, illustrated by the
median ỹpred,22 = 23.292. In contrast, the 30 days aged samples were
only slightly overestimated on average (ỹpred,30 = 31.367), but the val-
ues strongly scatter (σypred,30 = 2.324). The RMSE of the training data
of 0.696 is also significantly lower than the RMSE of the independent
test data. In addition to the nonlinear aging process, the tests also
confirmed a delayed start of the aging process by admixed additives.

For the second regression model, the training set was adapted by in-
cluding all 5 aging stages. The test set resulted in an RMSE of 1.437.
The RMSE of the training data of 0.857 is similarly low. In addition,
comparison of the medians of the test and training sets shows a uni-
form spread of the estimated target values around the real ones.

The comparison of both models showed that more aging stages in the
training set are more important to model the nonlinear course than the
absolute number of training spectra. Furthermore, it was shown that
despite local differences in the aging stages within a sample, the mean
spectra is suitable to represent the aging time of the entire sample.
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Figure 4: Results of the regression models of thermally aged PP samples, measured ver-
sus predicted days. Model 1 (left) and Model 2 (right).

4 Conclusion and Future Work

The investigations showed the general suitability of NIR spectroscopy
for the prediction of different aging and degradation stages of PP plas-
tic. Thermally aged as well as multiple extruded PP samples were
investigated. Different regression models were calculated to estimate
the duration of thermal aging or the number of extrusion passes. Spe-
cial attention was paid to the pre-processing and spectral averaging
of the NIR spectra in order to make small spectral differences visible.
The calculated regression models showed a correlation between aging
condition and spectral information. The exponential progression of
thermally aged samples must be modeled sufficiently well. More tar-
get values in model training greatly improves the generalizability of
the model. One challenge is the inhomogeneous aging visible on the
spatial area of the samples and therefore impacting the spectra, which
can be investigated in further studies.
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