KIT | KIT-Bibliothek | Impressum | Datenschutz

Semi-supervised methods for CNN based classification of multispectral imagery

Bihler, Manuel ORCID iD icon 1; Zhou, Jiachen 1; Heizmann, Michael 1
1 Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Abstract Deep Convolutional neuronal networks, with their recent increase in performance, have become one of the standard techniques for RGB image classification. Due to a lack of large labeled datasets, this is not the case for multispectral image classification. To overcome this, we analyze the use of semi- supervised learning for the case of multispectral datasets. We use parameter reduction strategies to create small and efficient multispectral CNNs and combine these computationally efficient classifiers with semi-supervised learning methods. We choose the state-of-the-art semi-supervised methods MixMatch, ReMix-Match, FixMatch, and FlexMatch, to conduct experiments on the multispectral dataset EuroSAT. Additionally, we challenge this semi-supervised multispectral approach with a decreasing number of labeled images. We found that with only 15 labeled images
per class, we can reach an accuracy above 80 %. If more labeled images are provided, the analyzed semi-supervised methods can even surpass basic supervised learning strategies.


Verlagsausgabe §
DOI: 10.5445/IR/1000158446
Veröffentlicht am 26.05.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industrielle Informationstechnik (IIIT)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISBN: 978-3-7315-1274-5
ISSN: 2510-7240
KITopen-ID: 1000158446
Erschienen in OCM 2023 - Optical Characterization of Materials : Conference Proceedings. Ed.: J. Beyerer; T. Längle; M. Heizmann
Veranstaltung 6th International Conference on Optical Characterization of Materials (OCM 2023), Karlsruhe, Deutschland, 22.03.2023 – 23.03.2023
Verlag KIT Scientific Publishing
Seiten 37 – 49
Serie Optical Characterization of Materials (OCM)
Schlagwörter Artificial intelligence, image processing, multispectral images, semi-supervised learning, CNN, consistency regularization, parameter reduction
Nachgewiesen in Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page