KIT | KIT-Bibliothek | Impressum | Datenschutz

Electrocardiogram Analysis Reveals Ionic Current Dysregulation Relevant for Atrial Fibrillation

Dasí, Albert; Nagel, Claudia 1; Loewe, Axel ORCID iD icon 1; Camps, Julia; Bueno-Orovio, Alfonso; Rodriguez, Blanca
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

Antiarrhythmic drug choice for atrial fibrillation (AF) neglects the individual ionic current profile of the patient,
even though it determines drug safety and efficacy. We hypothesize that the electrocardiogram (ECG) might contain information critical for pharmacological treatment personalization. Thus, this study aims to identify the extent of atrial ionic information embedded in the ECG, using multi-scale modeling and simulation. A dataset of 1,000 simulated ECGs was computed using a population of human-based whole-atria models with 200 individual ionic profiles and 5 different torso-atria orientations. A regression neural network was built to predict key atrial ionic conductances based on P- and T$_a$ -wave biomarkers. The neural network predicted, with >80% precision, the density of seven ionic currents relevant for AF, namely, ultra-rapid (I$_{Kur}$ ), rapid (I$_{Kr}$ ), outward transient (I$_{to}$ ), inward rectifier K$^+$ (I$_{K1}$ ), L-type Ca$^{2+}$ (I$_{CaL}$ ), Na$^+$ /K$^+$ pump (I$_{NaK}$ ) and fast Na$^+$ (I$_{Na}$) currents. These ionic densities were identified through the P- (i.e., I$_{Na}$), Ta - (i.e., I$_{K1}$ , I$_{NaK}$) or both waves (i.e., I$_{Kur}$ , I$_{Kr}$ , I$_{to}$ , I$_{CaL}$), providing a non- invasive characterization of the atrial electrophysiology. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000158447
Veröffentlicht am 05.05.2023
Originalveröffentlichung
DOI: 10.22489/CinC.2022.083
Scopus
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISBN: 979-83-503-0097-0
ISSN: 2325-887X
KITopen-ID: 1000158447
Erschienen in 2022 Computing in Cardiology Conference (CinC)
Veranstaltung 49th Computing in Cardiology (CinC 2022), Tampere, Finnland, 04.09.2022 – 07.09.2022
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Serie Computing in Cardiology Conference (CinC)
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page