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Phonon transmission through a nonlocal
metamaterial slab
Yi Chen 1✉, Ke Wang1,2, Muamer Kadic3, Sebastien Guenneau4, Changguo Wang2 & Martin Wegener 1,5

Previous theory and experiment has shown that introducing strong (nonlocal) beyond-

nearest-neighbor interactions in addition to (local) nearest-neighbor interactions into

rationally designed periodic lattices called metamaterials can lead to unusual wave dispersion

relations of the lowest band. For roton-like dispersions, this especially includes the possibility

of multiple solutions for the wavenumber at a given frequency. Here, we study the one-

dimensional frequency-dependent acoustical phonon transmission of a slab of such nonlocal

metamaterial in a local surrounding. In addition to the usual Fabry-Perot resonances, we find

a series of bound states in the continuum. In their vicinity, sharp Fano-type transmission

resonances occur, with sharp zero-transmission minima next to sharp transmission maxima.

Our theoretical discussion starts with a discrete mass-and-spring model. We compare these

results with solutions of a generalized wave equation for heterogeneous nonlocal effective

media. We validate our findings by numerical calculations on three-dimensional metamaterial

microstructures for one-dimensional acoustical wave propagation.
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The wave properties of ordinary crystals are determined by
the atoms forming the crystal as well as by their interac-
tions. Likewise, the wave properties of rationally designed

artificial periodic lattices called metamaterials1–3 are determined
by the interior of the metamaterial unit cells as well as by the
interactions among the unit cells4–6. A bulk of literature has used
the approximation of considering interactions among only the
nearest neighbors7–9. Interactions beyond the nearest neighbors
have been considered to test the validity of this approximation10.
However, in metamaterials, the interactions beyond the nearest
neighbors can be designed rationally and can be made
strong10–14. This additional design freedom has lately been used
to realize unusual dispersion relations of the lowest acoustic or
elastic metamaterial band15–18. For example, the latter can
resemble the unusual dispersion relation, ω kð Þ, of sound waves in
superfluid helium19,20 that starts with an angular frequency of the
wave, ω, proportional to its wavenumber, k, followed by a max-
imum (the “maxon”) and a minimum (the “roton”) versus k21,22.
Such unusual phonon dispersion relations have been observed
experimentally using three-dimensional macroscopic metama-
terials for airborne sound at audible frequencies17,18 and using
three-dimensional microstructured metamaterials for elastic
waves at ultrasound frequencies17.

However, structures and devices in applications usually exploit
multiple dissimilar materials and the interplay between them and their
interfaces. A paradigmatic textbook heterostructure geometry is a slab
with thickness L of material A clad between two semi-infinite half
spaces of material B. For usual local materials A and B, it is well-
known that this setting leads to Fabry-Perot resonances connected to
unity wave transmission, TðωÞ

�� �� ¼ 1, through the slab at particular
angular frequencies ω ¼ ωi of the incident wave23. At these particular
frequencies, the phase that the wave accumulates in one round trip
through the slab is an integer multiple of 2π. For a slab with a
sufficiently large number of unit cells within, this condition translates
into 2kL ¼ ni2π, where k ¼ k ωi

� �
is the single wavenumber in

material A at the angular frequency ωi and ni is an integer. Fabry-
Perot resonances with high quality factors have numerous applica-
tions, e.g., as optical filters or interferometry24.

Here, we discuss the case that material A in the slab is replaced
by a nonlocal metamaterial. At a given angular frequency ω, such
medium generally supports more than a single wave mode with
single wavenumber k. For different wavenumbers kjðωÞ, with

j ¼ 1; 2; ¼N , at a given angular frequency ω, the behavior is
richer than for local material slabs. We start by discussing the
problem using a previously introduced simple discrete one-
dimensional (1D) mass-and-spring model15. Apart from the
nearest-neighbor interactions via Hooke’s springs, it contains
N-th nearest-neighbor interactions with integer N ≥ 2. Here, we
emphasize the example of N ¼ 3, which is the smallest N for
which the roton-like minimum fully lies inside of the first Bril-
louin zone (for N ¼ 2 it lies right at the Brillouin zone border).
We find a series of sharp Fano-type resonances in the frequency-
dependent transmission TðωÞ

�� �� in the frequency region for which
multiple solutions kjðωÞ for the wavenumber exist. We show that
the linewidth of the Fano-type resonances tends to zero towards
special points in material-parameter space corresponding to
bound states in the continuum (BIC)25. BIC physics in general,
not related to beyond-nearest-neighbor interactions in periodic
lattices, has a long history in acoustics26, elasticity27,28, as well as
optics29,30, and has recently attracted renewed attention in the
metamaterials community31. We refer the reader to the review
articles25,29 for an introduction to and comprehensive reviews of
the BIC field. Next, we discuss the nonlocal slab transmission on
the level of a 1D effective-medium approximation for the dis-
placement field of the heterogeneous 1D mass-and-spring model,
which leads to a phenomenological generalized wave equation
containing spatial derivatives up to order 2N . Finally, we present
numerical calculations for three-dimensional nonlocal metama-
terial microstructures for wave propagation along one direction,
again showing BIC behavior.

Results and discussion
Mass-and-spring model. Figure 1a illustrates the infinite one-
dimensional mass-and-spring toy model that we have discussed
previously15. Herein, identical masses m, periodically arranged
with period or lattice constant a, are connected to their
immediate neighbors along the x-axis on the left and on the right
by linear elastic Hooke’ springs with spring constant K1. In this
form (i.e., for KN ¼ 0), Fig. 1a corresponds to the paradigmatic
one-dimensional model for acoustical phonons in usual local
media as described in any solid-state-physics textbook32. For the
nonlocal case, the masses in Fig. 1a are additionally connected to
their N-th nearest neighbor on the left and on the right by

Fig. 1 Illustration of mass-and-spring model. a An infinite periodic one-dimensional mass-and-spring model composed of masses (light yellow), m,
connected to their nearest neighbors by Hooke’s springs (blue) with spring constant K1 and additionally connected to their N-th nearest neighbors by
Hooke’s springs (red) with spring constant KN. Shown is the example of N ¼ 3, which we emphasize in this paper because it is the smallest integer for
which one obtains a roton-like minimum inside of the first Brillouin zone. The lattice constant is a. b A slab of such nonlocal material clad between half
spaces of an ordinary local mass-and-spring model with only nearest-neighbor interactions. The slab thickness is defined by the integer ratio L=a. Shown is
the example of L=a ¼ 6 and N ¼ 3. Note that the boundaries of the slab are smeared out in the sense that only the center mass out of the ð1þ L=aÞmasses
in the slab has two third-nearest-neighbor connections. The remaining six masses have only one such connection. This smearing-out is an immediate
consequence of the nonlocality.
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Hooke’s springs with spring constant KN . Shown is the example
of N ¼ 3. This is the lowest integer for which roton-like disper-
sion relations15 can occur within the first Brillouin zone of the
model. For N ¼ 2, the roton-like minimum is right at the
boundary of the first Brillouin zone. Clearly, the model can be
extended to contain multiple orders of beyond-nearest-neighbor
interactions33. Here, for simplicity, we only consider nearest
neighbors plus neighbors with N ¼ 3. We will see that the
resulting behavior of slabs is extremely rich and complex already.
The beyond-nearest-neighbor springs in Fig. 1 are meant sym-
bolically, an actual feasible realization is discussed in Section V.

As an example for N ¼ 3, Fig. 1b shows a slab of relative
thickness L=a ¼ 6 of such nonlocal material clad between a local
mass-and-spring model. The thinnest possible slab corresponds
to L=a ¼ N , for which only a single N-th nearest-neighbor spring
is left. For simplicity and clarity, we depict and study in what
follows the case that the lattice constant a, the masses m, and the
spring constants K1 are constant throughout the entire structure
considered. We notice that, for a given well-defined integer ratio
L=a, the left and right boundaries of the nonlocal slab in Fig. 1b
cannot be defined unambiguously anymore. Six of the seven
masses in the slab have only third-nearest-neighbor springs to
one side. Further inside of the nonlocal slab (in Fig. 1b only the
middle mass), the masses have long-range interactions to their
left and to their right-hand side. For the phenomenological
effective-medium description to be discussed below, this obvious
fact means that the boundaries between the local and the nonlocal
medium cannot be considered as being sharp or discontinuous
anymore. The boundaries are rather smeared out, which is a
direct consequence of the nonlocality of the slab. This simple
observation will become important for an intuitive interpretation
of our results and for the effective-medium description
described below.

Before discussing the nonlocal slab, let us briefly recapitulate
the expected transmission, TðωÞ, of a slab of a local material
embedded in a different local material, at the real-valued angular
frequency ω. We define the complex-valued transmission as the
ratio of the transmitted displacement amplitude or output, uout,
and the displacement amplitude incident onto the slab, uin, i.e.,

T ωð Þ ¼ uout
uin

: ð1Þ

The phase of TðωÞ clearly depends on at which lattice site
exactly we take the incident and the transmitted displacement,
respectively. This dependence drops out when considering the
modulus, i.e., TðωÞ

�� ��. Therefore, we consider TðωÞ
�� �� in what

follows. As pointed out in the introduction, for a local slab in a
local surrounding, TðωÞ

�� �� generally exhibits Fabry-Perot reso-
nances with T ωi

� ��� �� ¼ 1 at particular angular frequencies ωi
which fulfill the standing-wave condition23

k ωi

� �
L ¼ niπ; ð2Þ

with integer ni. Clearly, this reasoning implies that the slab
contains sufficiently many unit cells, such that the wavenumber k
can assume nearly any value. For these particular angular
frequencies, the wave accumulates a phase in one round trip
within the slab that is an integer multiple of 2π. For the special
case that the impedances between the two materials are matched,
we have TðωÞ

�� �� ¼ 1 for all angular frequencies.
Let us apply this intuitive reasoning to a nonlocal slab with

sufficiently many unit cells inside. As we have shown previously15

and as can be seen from roton-like dispersion relation shown in
Fig. 2a, one generally has three solutions (for N ¼ 3) for each
direction (left/right or þk=� k) for the (real part of the)
wavenumber at a given angular frequency, i.e., kðωiÞ ! kjðωiÞ

and ni ! nij with j ¼ 1; 2; 3. Intuitively, a standing-wave
condition Eq. (2) has to be fulfilled for each one of them
simultaneously to obtain a “special” behavior of TðωÞ

�� �� at certain
angular frequencies ωi. Below, we will connect this “special”
behavior to bound states in the continuum (BIC). For arbitrary
parameter choices of m, K1, K3, and a, and hence arbitrary
dispersion relations ωðkÞ, it is unlikely that the condition Eq. (2)
can be fulfilled three times simultaneously for any one angular
frequency ωi. However, as pointed out above (see Fig. 1b), the
boundaries of the nonlocal slab are not sharp (see above
discussion on Fig. 1a), and, hence, the effective slab thickness,
Leffj , may be different from L in Eq. (2), i.e., we have to replace

L ! Leffj in Eq. (2). Together, we obtain

kj ωi

� �
Leffj ¼ nijπ: ð3Þ

Unfortunately, there is no obvious and unambiguous way to
calculate the effective slab thicknesses Leffj and thereby the special
frequencies ωi from Eq. (3) and the given dispersion relation kðωÞ.
Nevertheless, this simple reasoning connects the textbook
treatment of Fabry–Perot resonances for ordinary local slabs to
the more unusual resonances in nonlocal slabs discussed in
this paper.

Before we discuss the problem more rigorously, especially
including the possibility of only a small number of unit cells
within the slab, let us address a subtlety of the dispersion relation
connected to the finite-thickness slab that turns out to be
important for an intuitive interpretation of our results. For the
infinitely extended periodic nonlocal mass-and-spring model (see
Fig. 1a), Newton’s law for the displacement ul of the mass m at
site l along the x-axis reads

m
∂2ul
∂t2

¼K1 ulþ1 � 2ul þ ul�1

� �þ KN ulþN � 2ul þ ul�N

� �
; l

¼ �1; ¼ ; 0; ¼ þ1:

ð4Þ
Without further assumptions or approximations, the plane-

wave ansatz ul ¼ eu expðiðkx � ωtÞÞ, with x ¼ la, constant pre-
factor eu, and imaginary unit i, leads to the phonon dispersion
relation ω kð Þ given by15

ω2 kð Þ ¼ 4
m

K1sin
2 ka

2

� �
þ KNsin

2 Nka
2

� �� �
: ð5Þ

Clearly, when taking the square root on both sides of Eq. (5),
we obtain two signs for ω. As usual, we follow the convention to
consider positive (real parts of the) angular frequencies. For an
infinite non-dissipative nonlocal medium, according to Bloch’s
theorem32, the wavenumber must be real. However, for a finite-
thickness nonlocal slab, the wavenumber is not necessarily real
because evanescent modes may appear. For the considered
transmission Gedankenexperiment, the angular frequency is
purely real (by definition) and positive by convention. Never-
theless, we plot in Fig. 2 all mathematical solutions of Eq. (5) for
the most general case of complex-valued k and complex-valued ω.
Figure 2a is for a parameter set (see caption) for which ReðωÞ
versus ReðkÞ shows a roton-like dispersion relation with a
pronounced maximum and a pronounced minimum. Figure 2b is
for a parameter set (see caption) for which ReðωÞ versus ReðkÞ
shows no roton minimum in the phonon dispersion relation.
Nevertheless, in Fig. 2b, we still obtain three solutions (three
modes) for the complex-valued wavenumber k for real and
positive ω in the range of ReðkÞ>0. We repeat that Im kð Þ≠0
indicates evanescent modes that drop out for an infinite medium,
but that we have to consider for a finite-thickness nonlocal slab.
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For a local medium with KN ¼ 0, be it finite or infinite in
thickness, this subtlety does not apply because Im kð Þ ¼ 0 holds
true for any real-valued ω>0.

We note in passing that the behavior shown in Fig. 2 can be
understood in terms of the roton minimum being an exceptional
point34–36. In fact, any k-position of a minimum or maximum of
ωðkÞ in the first Brillouin zone of any type of wave in any kind of
lossless system is an exceptional point in the sense that two
eigenmodes coalesce in both eigenvalues and eigenvectors for the
angular eigenfrequency ω at the k-position of the maximum or
minimum. At the position of a saddle point (see Fig. 2b), even
three eigenmodes coalesce. This exceptional degeneracy is lifted
as soon as one introduces a perturbation. It is also lifted as soon
as one considers finite imaginary parts of k (i.e., evanescent
waves). As a result, one black line emerges from the roton
minimum for increasing imaginary part of the wavenumber in
Fig. 2a. In Fig. 2b, two black lines emerge from the saddle point
for Im kð Þ>0.

Next, we discuss solutions for TðωÞ
�� �� of the nonlocal slab. As

our model contains no losses, the sum of kinetic and potential
energy is conserved, and the reflectivity spectrum, RðωÞ

�� ��, is
directly connected to the transmission spectrum by the relation

RðωÞ
�� ��2 þ TðωÞ

�� ��2 ¼ 1: ð6Þ

This expression is only meaningful and valid for a local
surrounding that supports only a single relevant mode (in either
direction). This condition is automatically fulfilled for the discrete
mass-and-spring model (cf. Fig. 1), but has to be taken with
caution for the below approximate effective-medium description
in which a very small but finite nonlocality needs to be added to
the surrounding of the slab. We will come back to this
point below.

To mathematically compute the transmission spectrum for the
discrete model (see Fig. 1b), we proceed as follows. An incident

wave with angular frequency ω impinges onto the slab from the
left-hand side. We aim at computing the frequency-dependent
reflection and transmission coefficients. We write the displace-
ments corresponding to masses with label l ≤ 0 (see Fig. 1b) as

ul ¼ uinexp iklað Þ þ uref exp �iklað Þ; ð7Þ

where uin indicates the complex-valued amplitude of the incident
wave, k is the wavenumber, and uref represents the unknown
amplitude of the reflected wave, respectively. To ease readability,
the time harmonic factor expð�iωtÞ is omitted here and
throughout the following. It can be shown that the displacements
of the masses with label l ≤ � 1 satisfy their balance equations
automatically. Likewise, we represent the displacements of the
masses with label l ≥ L=a by,

ul ¼ uoutexp ikðl � L=aÞa� �
; l ≥ L=a ð8Þ

Here, uout indicates the unknown amplitude of the transmitted
wave. In total, we have L=aþ 1 unknowns, including uref , uout,
and the displacements, ul , with l ¼ 1; 2¼ ðL=a� 1Þ. These
unknowns are obtained from L=aþ 1 equilibrium equations for
the masses with labels l ¼ 0; 2¼ L=a. As defined above, the
transmission coefficient is obtained via T ωð Þ ¼ uout=uin.

For example, for L=a ¼ 4, we obtain the transmission
spectrum

T ωð Þ ¼ 2isin kað ÞK2
1ðK1 K1 þ K3

� �
K1 þ 5K3

� �� 2K3 4K1 þ K3

� �
mω2 þ 2K3m

2ω4Þ
F1ðωÞF2ðωÞ

:

ð9Þ
Herein,

F1 ωð Þ ¼ exp ikað ÞK1 2K1 þ K3 �mω2
� �� 3K1 �mω2

� �
K1 þ 2K3 �mω2
� �

;

ð10Þ

Fig. 2 Dispersion relations of the mass-and-spring model. a Surface plot of real component of frequency ω versus the real and the imaginary components
of the wavenumber k following Eq. (5). For the conditions discussed in this paper, the angular frequency ω is purely real. The wavenumber k is also purely
real for a Bloch-periodic solution of an infinite periodic model. For a finite-thickness slab (see Fig. 1b), evanescent modes can play a role and the imaginary
part of k is generally not zero. The imaginary part of the complex-valued angular frequency ω is shown by the false-color scale. Only the positive parts of
the real and imaginary components of the wavenumber are shown here as the corresponding negative parts can be obtained by mirror symmetry. The four
highlighted black lines on the surface lead to purely real angular frequency ω. Among them, one corresponds to purely real wavenumber and the other
three correspond to complex wavenumbers in the range of ReðkÞ>0. For a normalized frequency of ω=ω0 ¼ 1:0, in between the local maximum and roton
minimum, three real wavenumbers (see the three gray dots) can be obtained from the dispersion relation. For ω=ω0 ¼ 0:2 below the roton minimum, a real
wavenumber and a pair of complex conjugate wavenumber are obtained (see two yellow dots). Parameters are K3=K1 ¼ 1:0 and the normalization
frequency is ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K1=m

p
. b Parameters corresponding to the critical case without roton minimum in the dispersion relation, i.e., m ¼ 1 and K3=K1 ¼ 1=3.

Note that still three solutions for the complex-valued k in the range of ReðkÞ>0 occur at a given angular frequency ω.
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and

F2 ωð Þ ¼ 2 exp ikað Þ � 1
� �

K3
1 þm2ω4 mω2 � 2K3

� �
þ ðexpðikaÞ � 6ÞK1mω2ðmω2 � K3Þ þ K2

1ð9mω2

� 2K3 þ 2expðikaÞðK3 � 2mω2ÞÞ:
ð11Þ

The corresponding explicit expressions become very lengthy
for slab length L=a≥ 5, and are hence not provided here.

Figure 3a depicts an example of the calculated transmission
TðωÞ
�� �� (gray scale) of the nonlocal slab (see Fig. 1b) versus ω and
versus the spring-constant ratio K3=K1. For simplicity, all other
model parameters are fixed (see caption). For reference, Fig. 3b
shows the phonon dispersion relation for the slab for selected
values of K3=K1 (see dashed lines). We find a complex behavior.
In Fig. 3a, for low frequencies, transmission peaks occur that
follow the expectation for ordinary Fabry-Perot resonances
(labeled “FP” in Fig. 3). At higher frequencies, near specific
special frequencies (see arrows in Fig. 3a), the resonances in
transmission become more and more narrow. Exactly at these
special frequencies and spring constant ratio K3=K1, the
resonances disappear. We interpret these special frequencies as
being due to bound states in the continuum (BIC).

To test this interpretation, we have performed additional
numerical calculations of the eigenfrequencies and eigenmodes of
the slab alone, i.e., without the surrounding (not shown). We find
eigenfrequencies, ωBIC, for which the corresponding eigenmodes
exhibit strictly zero displacement amplitude at the left and right
end of the slab for all times t. Obviously, an incident plane wave
with non-zero amplitude impinging from the surrounding cannot
couple to such an eigenmode. Correspondingly, the lifetime of
this mode is infinitely long – provided that friction plays no role,
as implied in our model, see Fig. 1 or Eq. (4). This means that the
special frequencies of BIC resonances only depend on the slab
properties, but not on the properties of the surrounding. The
same holds true for usual Fabry–Perot resonances.

To connect to our above intuitive discussion for sufficiently
many unit cells within the slab, we can decompose the BIC modes
of the slab corresponding to the BIC angular frequencies ωi into
the three (j ¼ 1; 2; 3) eigenmodes with wavenumbers kjðωiÞ of the
nonlocal dispersion relation according to Eq. (5) to fulfill the
three standing-wave conditions Eq. (3) simultaneously. However,
the reverse is not true. Just any arbitrary linear combination of

the three standing-wave solutions fulfilling Eq. (3) will generally
not lead to a BIC mode as the displacement of the masses at the
two ends of the slab is not necessarily strictly zero.

For special (small) integer values of the relative slab thickness
L=a, the BIC resonance frequencies ωBIC can be obtained
analytically. We consider those ð1þ L=aÞ eigenfrequencies of
the ð1þ L=aÞ coupled masses in the slab in Fig. 1b for which the
corresponding eigenmode is such that the mass on the left-hand
side and the right-hand side of the slab have strictly zero
displacement amplitude at all times t (but the masses in between
have nonzero amplitude). Such solutions occur only for special
combinations of the three slab parameters m, K1, and KN . For
any N and KN ¼ 0, BIC solutions do not occur for any value of
L=a. For KN≠0, N ¼ 3 and L=a ¼ 3 (i.e., only a single third-
nearest-neighbor spring), a BIC does not occur either. The
simplest non-trivial case is N ¼ 3 and L=a ¼ 4, for which we
have only two third-nearest-neighbor springs in the slab. It is
straightforward to obtain the eigenstates for this system
composed of five coupled masses. By demanding that the
displacements of the two masses on the left end and on the
right end of this chain are zero for all times (see Supplementary
Note 1), we obtain

K3=K1

� �
BIC ¼ 1;ωBIC ¼

ffiffiffiffiffiffiffiffi
3K3

m

r
: ð12Þ

For large relative slab thicknesses L=a we find BIC modes
numerically as it seems hard to obtain closed analytical solutions.

For frequencies and parameters near but not identical to these
BIC conditions, an incident propagating plane wave can couple to
the resonance mode localized within the slab. The interference of
a continuum of propagating modes and a spectrally-sharp
localized mode is well known to give rise to Fano-type line
shapes37, the detailed form of which depends on the Fano
coupling parameter. In Fig. 4a, we show a zoomed-in view of one
BIC point highlighted by the yellow box in Fig. 3a. For K3=K1
values below the BIC points and with increasing angular
frequency ω, we find a transmission dip (zero transmission)
followed by a transmission peak (complete transmission),
whereas for K3=K1 ratios above the BIC frequency, the sequence
flips and we find a transmission peak followed by a transmission
dip with increasing frequency. This behavior is more clearly seen

Fig. 3 Phonon transmission results of the mass-and-spring model. a Calculated transmission amplitude TðωÞ
�� �� of the discrete nonlocal mass-and-spring-

model slab (see Fig. 1b) shown on a gray scale versus ω and K3=K1. In the hatched region above the cut-off frequency ω=ω0 ¼ 1:0, waves cannot propagate
in the surrounding medium. “FP” denotes Fabry-Perot resonances, “BIC” bound-states-in-the-continuum points. Note the Fano-type line shapes of TðωÞ

�� ��
near the BIC points. Two “BIC” points are indicated. A zoom into one of them (see yellow box) is shown in Fig. 4a. The normalization frequency is
ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K1=m

p
. Parameters are: m ¼ 1, L=a ¼ 9. b Illustration of the corresponding dispersion relations of the slab region for purely real ω and purely real k

for different ratios of K3=K1.
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from the selected cuts shown in Fig. 4b corresponding to three
different K3=K1 values.

Further examples for other L=a, represented likewise in Fig. 3a,
are shown in Supplementary Fig. 1. We find BIC modes even if
only two third-nearest neighbor Hooke’s springs are kept
(L=a ¼ 4 and N ¼ 3, see Eq. (6)). In the opposite limit of a
thick slab, L=a � 1 (see Fig. 1b), in which we expect that we can
consider the slab as an effective medium, the BIC resonances
survive as well. This brings us to a possible effective-medium
description.

Effective-medium description. For an infinitely periodic non-
local mass-and-spring model and for N ¼ 3, we have previously
argued17 that one gets the following general form for the dis-
placement field u ¼ uðx; tÞ within the long-wavelength limit
ðka ! 0Þ

m
∂2u
∂t2

¼ A2
∂2u
∂x2

þ A4
∂4u
∂x4

þ A6
∂6u
∂x6

: ð13Þ

In a previous study17, we have derived explicit expressions for the
parameters A2, A4, and A6. However, it should be noted that one
gets different explicit expressions for A2, A4, and A6 depending on
which terms of the expansion one keeps. For example, even for the
nearest-neighbor interactions alone (i.e., for K1≠0 and K3 ¼ 0) one
can obtain finite terms for all three coefficients A2, A4, and A6 in Eq.
(13). Unless K1 � K3 (which does not hold true for the parameters
considered in this paper), these terms are not negligible compared to
the ones originating from the third-nearest-neighbor interactions.
Therefore, we have assumed a phenomenological spirit and have
considered the parameters A2, A4, and A6 in the general form Eq.
(13) as fit parameters when plotting the phonon dispersion relations
as gray curves in Fig. 4b, d in Martínez et al.17. Further examples are
given in Wang et al.16.

If one wants to go beyond this phenomenological treatment,
one would have to expand the finite differences on the right-hand
side of Eq. (4) to yet much-higher orders of spatial derivatives
than in Eq. (13) in order to quantitatively reproduce the results of
the discrete mass-and-spring model. However, in this case,
nothing is gained because the point of a meaningful effective-
medium description is that it should be simpler than the
underlying discrete model (or microstructure or atomic struc-
ture). Otherwise, one could rather continue working with the
more complete discrete model.

We assume the same phenomenological spirit here. However,
importantly, for the slab geometry of interest in this paper, the
coefficients A2, A4, and A6 are no longer constant versus the
x-coordinate (see Fig. 1b). For this case of a heterogeneous
nonlocal medium, it is straightforward to derive, starting from Eq.
(4), the more general form

m
∂2u
∂t2

¼ ∂

∂x
A2 xð Þ ∂u

∂x

� �
þ ∂2

∂x2
A4ðxÞ

∂2u
∂x2

� �
þ ∂3

∂x3
A6ðxÞ

∂3u
∂x3

� �
;

ð14Þ

in the limit of a ! 0. The coefficients A2ðxÞ, A4ðxÞ, and A6ðxÞ
can be expressed by the model parameters K1 xð Þ, KN ðxÞ and
spatial derivatives up to third order thereof (see Supplementary
Materials of Martínez et al 17 for the case of constant coefficients).
However, again, the expressions for A2ðxÞ, A4ðxÞ, and A6ðxÞ
depend on which terms of the expansion one keeps. If one
considers the mathematically strict limit of a ! 0, one gets
discontinuous steps of the coefficients A2ðxÞ, A4ðxÞ, and A6ðxÞ at
the interfaces of the slab, leading to diverging derivatives on the
right-hand side of Eq. (14). One possible strategy to solve Eq. (14)
with such discontinuous jumps of parameters is to introduce
additional continuity conditions (as described for low-order
differential equations in many textbooks38) or to treat the
derivatives in a distributional sense39. However, in the current
paper, we rather assume continuous coefficients as detailed below.

We rather make a second phenomenological assumption: We
search for reasonable coefficients A2ðxÞ, A4ðxÞ, and A6ðxÞ that lead
to a behavior of the transmission TðωÞ

�� �� of the nonlocal slab that at
least roughly qualitatively resembles the behavior we have found for
the discrete mass-and-spring model shown in Fig. 3 or Fig. 4. By
“reasonable”, we mean that the dependencies A2ðxÞ, A4ðxÞ, and
A6ðxÞ must assume constant values far away from the interfaces.
However, we must assume phenomenological shapes of the
transition in the smeared-out interface regions (see above discussion
on Fig. 1b). Intuitively, the smearing out extends over a length scale
Na given by the nonlocal interaction of order N . Furthermore, the
coefficients A4ðxÞ and A6ðxÞ must be extremely small in the local
surrounding. Conceptually, they should be zero in a local medium.
However, mathematically, they cannot be strictly zero there, because
this would again lead to discontinuous jumps and hence divergences
of spatial derivatives when attempting to solve Eq. (14).

Fig. 4 Zoomed-in view of the BIC and sharp resonances. a Zoomed-in view of the bound-states-in-the-continuum (BIC) point highlighted by the yellow
box in Fig. 3a. b Cuts through the data in panel a at three selected ratios K3=K1 (see dashed vertical lines in a). Extremely sharp resonance versus frequency
ω occur for parameters close to the BIC point (yellow and purple curves). At the BIC point (red curve), the sharp resonance disappears as incident waves
strictly do not couple to the BIC.
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We do not expect a quantitative agreement with our results for
the discrete heterogeneous mass-and-spring model (see, e.g., Fig. 3)
because this form of a phenomenological effective-medium descrip-
tion does not even capture the dispersion relation of the nonlocal
model quantitatively (see Fig. 4b, d in a previous study17). The
asymptotics for jkj ! π=a is incorrect, too40. Our effective-medium
description can only capture roughly and qualitatively the fact that
there is a roton minimum at a finite wavenumber within the first
Brillouin zone. Nevertheless, we feel that it is interesting and relevant
to identify a simple effective-medium description that can at least
capture the existence of BIC behavior for nonlocal slabs.

To compute the transmission spectrum of a nonlocal slab
according to Eq. (14) within the effective-medium description
numerically, we proceed as follows. Figure 6a, b illustrate the discrete
model and the corresponding continuum model. Here, L ¼ 9a
serves as an example. In the discrete model (see Fig. 5a), all springs
connecting two neighboring masses are the same. Therefore, we can
naturally set K1 xð Þ ¼ 1 in the continuum model. The spatial
dependence of the non-local spring constant K3 xð Þ needs to be
manually constructed. We assume a smooth function for K3 xð Þ in
the region of 0<x<3a, roughly corresponding to the boundary
length scale of the discrete slab (compare Fig. 5a, b). Due to mirror
symmetry of the discrete system, K3ðxÞ for L� 3a<x<L is obtained
by symmetry. For the central part of the slab, i.e., 3a<x<L� 3a, and
the two surroundings to the left and right of the slab, i.e., x<0 and
x>L, K3ðxÞ becomes constant. This constant is determined by the
value of the graded profiles at x ¼ 0 and x ¼ L. The effective
coefficients, A2 xð Þ;A4 xð Þ, and A6 xð Þ of the continuum model are
chosen phenomenologically as described above.

Now, we consider a plane wave with angular frequency ω
incident onto the left interface of the slab. Since the surrounding
has small but non-zero coefficients A4 and A6, three reflected
modes exist, one with a real wavenumber, corresponding to a
propagating mode, and two with complex wavenumbers,
denoting evanescent modes that exponentially decay away from
the interface. The total displacement field can be written as

uðxÞ ¼ uinexp ik1x
� �þ R1exp �ik1x

� �þ R2exp �ik2x
� �

þ R3 expð�ik3xÞ; x ≤ 0:
ð15Þ

The wavenumber k1is purely real, while k2 and k3 should have
positive imaginary parts to ensure exponential decay for x<0. The

three wavenumbers all satisfy the dispersion relation

ω2 ¼ A2k
2
i � A4k

4
i þ A6k

6
i ð16Þ

for i ¼ 1; 2; 3: In the transmission region, we start from the
displacement field

u xð Þ ¼ T1exp ik1x
� �þ T2exp ik2x

� �þ T3exp ik3x
� �

; x ≥ La:

ð17Þ

Here, the three wavenumbers ki, i ¼ 1; 2; 3 are the same as in
Eq. (15). In the above two expressions, Ri and Ti, i ¼ 1; 2; 3, are
the corresponding unknown reflection and transmission coeffi-
cients for the three modes.

To solve the six unknown coefficients, Ri and Ti, i ¼ 1; 2; 3,
wave propagation inside the non-local slab must be considered.
However, due to inhomogeneous material parameters, the
displacement fields cannot be constructed analytically. Here, we
implement a state-space approach for solving the high-order
ordinary differential equation41.

We first re-write the above sixth-order ordinary differential Eq.
(14) into the following matrix form,

dSðxÞ
dx

¼ P xð Þ � SðxÞ; ð18Þ

S xð Þ ¼

uðxÞ
A2 xð Þu0ðxÞ
A4 xð Þu’’ðxÞ
A6 xð Þu’’’ðxÞ

A6 xð Þu’’’ xð Þ
� 	0

þ A4ðxÞu’’ðxÞ

A6 xð Þu’’’ xð Þ
� 	’’

þ A4 xð Þu’’ xð Þ
� 	0

þ A2 xð Þu0ðxÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

ð19Þ

Fig. 5 Illustration of the effective-medium model. a Discrete system with slab thickness L. L ¼ 9a is used as an example. b Scheme of the continuum
model composed of the slab region and the two semi-infinite surroundings. The slab is further decomposed into a central uniform region, i.e., 3a<x<L� 3a,
and two graded regions, i.e., 0<x<3a, and L� 3a<x<L. The graded regions represent smooth transitions of the effective parameters to those in the two
surroundings. In the region of 0<x<3a, a function that increases smoothly from an extremely small value to a finite value is assumed for K3ðxÞ, indicating
the third-nearest-neighbor constants. K3ðxÞ for L� 3a<x<L is obtained from mirror symmetry of the system. For the central uniform part of the slab, i.e.,
3a<x<L� 3a, and the two surroundings, i.e., x<0 and x>L, K3ðxÞ becomes constant and is obtained from continuity. The parameter K1ðxÞ is assumed to be
constant throughout the 1D system, K1 xð Þ ¼ 1. The effective parameters of the continuum model are constructed from the two spring constants K1ðxÞ and
K3ðxÞ, i.e., from A2 xð Þ ¼ K1 xð Þ þ 9K3ðxÞ, A4 xð Þ ¼ 6K3 xð Þ, and A6 xð Þ ¼ K3ðxÞ, respectively.
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P xð Þ ¼

0 1
A2ðxÞ 0 0 0 0

0 A0
2ðxÞ

A2ðxÞ
A2 xð Þ
A4 xð Þ 0 0 0

0 0 A0
4ðxÞ

A4 xð Þ
A4 xð Þ
A6 xð Þ 0 0

0 0 �1 0 1 0

0 �1 0 0 0 1

�mω2 0 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð20Þ

Here, the prime symbol 0 represents the spatial derivative with
respect to the coordinate x and SðxÞ is called the state-space vector.

Next, the slab is discretized into many thin layers. The left
location and right location of the jth layer are denoted as xj�1 and
xj, respectively. Each layer is assumed to be homogeneous with its
material parameters being evaluated at its middle, i.e., A2ððxj�1 þ
xjÞ=2Þ; A4ððxj�1 þ xjÞ=2Þ; and A6ððxj�1 þ xjÞ=2Þ; respectively. The
discretized problem will converge to the original problem with
graded material parameter distribution if the discretized layers are
sufficiently thin.

Within the jth layer, the matrix PðxÞ becomes a constant matrix
and the Eq. (19) has an exponential solution41. Furthermore, the
two state-space vectors at both ends of the thin layer have the
following transfer relation,

S xj
� 	

¼ t xj
� 	

� S xj�1

� 	
; j ¼ 1; 2¼ ; ð21Þ

with

t xj
� 	

¼ exp xj � xj�1

� 	
P

xj�1 þ xj
2

� �� �
: ð22Þ

Note that the state-space vector is continuous across the
interface between two adjacent thin layers. Therefore, we can
apply the transfer relation Eq. (21) sequentially to obtain the
transfer relation between the two state space vectors at both ends,
i.e., x ¼ 0 and x ¼ L, of the slab region,

S Lð Þ ¼ T � S 0ð Þ;T ¼
Y

j
tðxjÞ: ð23Þ

The two state-space vectors S Lð Þ and S 0ð Þ are also obtained
from the derived displacement fields Eqs. (15)–(17) for the
incidence region and transmission region. Together with the

transfer relation Eq. (23), the six unknown coefficients, Ri and Ti,
i ¼ 1; 2; 3 can be obtained.

In Fig. 6a, we show the numerically calculated transmission
results by using the above effective-medium model for a slab with
relative length L=a ¼ 9. The other chosen parameters are given in
the figure caption. By comparing Fig. 3a and Fig. 6a, we see that the
effective model can capture the BIC behavior as well as the usual
Fabry-Perot resonance qualitatively well. The BIC behavior also
occurs in the frequency range where multiple eigenstates coexist
(the roton part of the dispersion relation). The agreement with
respect to the discrete model cannot be quantitative because the
dispersion relations for the discrete model and the effective-
medium model do not match exactly (Fig. 6b). As for previous
discrete model (see Fig. 4), Fig. 7a shows an enlarged view of the
BIC point enclosed by the yellow box in Fig. 6a. While the BIC
point appears in both, the transmission line shapes are qualitatively
different (see Fig. 4b and Fig. 7b). Results for different relative slab
thicknesses in the effective-medium model are shown in
Supplementary Fig. 2. There, one can again see the trend that, as
the slab thickness increases, more and more BIC points appear.

Metamaterial microstructures. So far, we have only considered a
conceptual discrete mass-and-spring toy model and an effective-
medium simplification thereof. This model itself can hardly be called
a metamaterial. We have previously discussed that acoustic meta-
materials for airborne sound can be described approximately by the
mass-and-spring toy model16. Therefore, in this section, we perform
numerical calculations for a slab of a specific acoustic metamaterial.

Figure 8a illustrates the considered metamaterial for airborne
sound. The metamaterial is composed of acoustical cavities (blue
cylinders) and acoustical tubes (green and red pipes). Based on our
previous theoretical and numerical studies16, the acoustical cavities
can be treated as masses in the discrete model in Fig. 1a, and the
green (red) acoustical tubes correspond to nearest-neighbor (third-
nearest-neighbor) springs. The ratio between the strength of the
third-nearest-neighbor interactions and that of the nearest-neighbor
interactions can be tuned through the geometry parameter R3=R1.
Figure 8b exhibits a specific realization of the discrete model in
Fig. 1b by using the illustrated nonlocal metamaterial in Fig. 8a. The
length of the metamaterial structure in Fig. 8b is about L ¼ 5a. The
surrounding tubes have no cut-off frequency, which is similar to the
continuum model in the preceding section. Viscosity of air usually
leads to losses in acoustic systems42 and can influence the high-

Fig. 6 Phonon transmission results for the phenomenological effective-medium model rather than the discrete mass-and-spring model. a Phonon
transmission results. Parameters are L ¼ 9a and K3 xð Þ=K1 ¼ 1� 1= 1þ exp 2 x� 3a=2

� �� �� �
for 0<x<3a. The assumed K3 xð Þ ensures that the two

surrounding regions exhibit extremely small non-local stiffness parameters (about two orders of magnitude smaller than for the slab). b Dispersion
relations for the effective-medium model (solid curves). The dashed curves correspond to the data in Fig. 3b for the discrete mass-and-spring model and
can be compared directly to the effective-medium model.
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quality-factor resonances near the expected BIC points. Therefore,
in what follows, we will show and discuss numerical results with
and without losses.

We simulate the sound wave propagation in the metamaterial
shown in Fig. 8b by using the commercial software COMSOL
Multiphysics. A plane-wave radiation condition is applied at the

Fig. 7 Zoomed-in view of the BIC and sharp resonances. a Zoomed-in view of the bound-states-in-the-continuum (BIC) point highlighted by the yellow
box in Fig. 6a. b Cuts through the data in panel a at three selected ratios K3=K1 (see dashed vertical lines in a).

Fig. 8 Illustration of the considered 3D acoustical metamaterial for airborne sound. a Infinite periodic metamaterial with non-local interactions. The
metamaterial is composed of acoustical cavities (yellow cylinders) and acoustical channels (blue and red pipes). Colors are for illustration only, all parts
represent voids for air. The yellow cylinders, with height h and diameter d, correspond to masses in the discrete mass-and-spring model, and the blue (red)
pipes, with diameter 2R1 (2R3), represent the nearest-neighbor interactions (third-nearest-neighbor interactions). The helix part of the red pipes has a
major radius, D=2. b A specific realization of the discrete model in Fig. 1b by using the metamaterial structure in a. The two semi-infinite pipes at both ends
represent the surrounding. Therefore, the surrounding medium has no cut-off frequency, analogous to the effective-medium model shown in Fig. 6.
Geometry parameters are: h ¼ 0:5a, d ¼ 0:6a, D ¼ 1:5a, R1 ¼ 0:1a, and a ¼ 0:1 m, respectively. For air, we choose the sound velocity cair ¼ 343 m s�1 and
the mass density ρair= 1.29 kgm−3.
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bottom of the model to mimic an incident plane wave. A perfectly
matched layer is employed at the top to mimic a semi-infinite
transmission region with no reflections43. All other boundaries
are treated as acoustic rigid boundaries23. The linear acoustic
equation in frequency,

∇ � ∇pωðrÞ
� � ¼ � ω2

c2air
pωðrÞ ð24Þ

is solved with the above specified boundary conditions. ω again
represents the excitation angular frequency, pωðrÞ is the
corresponding pressure field, and cair is the speed of sound wave
in air. The transmission coefficient T is extracted from the
pressure field in the transmission region.

Figure 9a depicts the transmission amplitude jTj versus the
wave frequency ω and the geometry parameters R3=R1. Figure 9b
exhibits the calculated lowest phonon band for the periodic
metamaterial in Fig. 8a for different ratios R3=R1. In the
numerical simulations, we fix the radius R1 ¼ 0:1a and vary the
parameter R3. In analogy to the above mass-and-spring model
and continuum model, Fabry-Perot resonances are observed in
Fig. 9a. Furthermore, a BIC behavior is clearly identified within
that frequency range, for which multiple Bloch wave modes
coexist. Near by the BIC point, very sharp Fano resonances
appear – as for the discrete model as well as for the effective-
medium model (see above).

In Fig. 10, we show the calculated transmission amplitude jTj as
in Fig. 9a, but with losses accounted for. Here, viscous damping in
the acoustic pipes is treated via the “narrow region acoustics” in
COMSOL Multiphysics. A quasi-BIC behavior is still observed in
the plot. Here, the resonances near the BIC points have much
smaller quality factors compared to the lossless case in Fig. 9a.
Nevertheless, the behavior is qualitatively similar to that of the
discrete model and that of the effective-mediummodel, respectively.

We expect that our findings for nonlocal elastic slabs can be
translated to other systems. For example, a thin film of superfluid
helium, for which rotons were originally discovered, in a local
surrounding should show a similar overall transmission behavior
according to our intuitive interpretation. The detailed mathema-
tical description might be quite different though. Furthermore,
the nonlocal discrete mass-and-spring model discussed here can
be exactly mapped onto an electrical circuit composed of lumped
capacitors and inductors, where the capacitors correspond to the
masses and two types of inductors to the nearest-neighbor and
beyond-nearest-neighbor Hooke’s springs, respectively.

Finally, we note again that the minimum in the roton-like
dispersion relation corresponds to an exceptional point. Further-
more, we have shown that the roton-like dispersion relation leads to
BIC for a nonlocal metamaterial slab. This BIC behavior has already
occurred at frequencies near to those of the roton minimum of the
slab. We speculate that further interesting behavior might occur if
one tunes the system parameters such that the BIC frequency
coincides with that of the roton exceptional point.

Data availability
The data that support the plots within this paper and other findings of this study are
published on the open access data repository of the Karlsruhe Institute of Technology
(https://doi.org/10.35097/860).

Code availability
The numerical simulations in this work for the mass-and-spring model have been
performed by using the commercial software MATLAB. Numerical simulations for the
elastic metamaterials are performed using the commercial software COMSOL
Multiphysics. The code and models are published on the open access data repository of
the Karlsruhe Institute of Technology (https://doi.org/10.35097/860).

Fig. 9 Phonon transmission results of the designed metamaterial. a Numerically obtained transmission spectrum Tj j for the metamaterial structure
shown in Fig. 8b versus exciting frequency ω=ð2πÞ and versus the ratio R3=R1. Damping is neglected. The bound-states-in-the-continuum (BIC) point is
marked by the red arrow. b Calculated phonon dispersion relation for three selected ratios R3=R1 (see legend). The lowest acoustic band exhibits a
pronounced roton-like behavior. For comparison, the dispersion relation of the surrounding (a straight line) is depicted by the black solid curve.

Fig. 10 Numerically obtained transmission spectrum |T| with viscous
damping in the acoustic pipes are accounted for. As a result, the
resonances around the BIC point are smeared out, but the overall
qualitative behavior remains unchanged.
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