KIT | KIT-Bibliothek | Impressum | Datenschutz

On numerical methods for the semi-nonrelativistic limit system of the nonlinear Dirac equation

Jahnke, Tobias 1,2; Kirn, Michael 1,2
1 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

Solving the nonlinear Dirac equation in the nonrelativistic limit regime numerically is difficult, because the solution oscillates in time with frequency of 𝒪(ε2), where 0<ε≪1 is inversely proportional to the speed of light. Yongyong Cai and Yan Wang have shown, however, that such solutions can be approximated up to an error of 𝒪(ε2) by solving the semi-nonrelativistic limit system, which is a non-oscillatory problem. For this system, we construct a two-step method, called the explicit exponential midpoint rule, and prove second-order convergence of the semi-discretization in time. Furthermore, we construct a benchmark method based on standard techniques and compare the efficiency of both methods. Numerical experiments show that the new integrator reduces the computational costs per time step to 40% and within a given runtime improves the accuracy significantly.

Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2023
Sprache Englisch
Identifikator ISSN: 0006-3835, 1572-9125
KITopen-ID: 1000158458
Erschienen in BIT Numerical Mathematics
Verlag Springer
Band 63
Heft 2
Seiten 26
Vorab online veröffentlicht am 13.04.2023
Nachgewiesen in Web of Science
Scopus
OpenAlex
Dimensions

Verlagsausgabe §
DOI: 10.5445/IR/1000158458
Veröffentlicht am 10.05.2023
Seitenaufrufe: 63
seit 11.05.2023
Downloads: 24
seit 25.06.2023
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page