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Abstract
Objective.Wepropose an integration scheme for a biomechanicalmotionmodel into a deformable
image registration.We demonstrate its accuracy and reproducibility for adaptive radiation therapy in
the head and neck region.Approach. The novel registration scheme for the bony structures in the head
and neck regions is based on a previously developed articulated kinematic skeletonmodel. The
realized iterative single-bone optimization process directly triggers posture changes of the articulated
skeleton, exchanging the transformationmodel within the deformable image registration process.
Accuracy in terms of target registration errors in the bones is evaluated for 18 vector fields of three
patients between each planning CT and six fractionCT scans distributed along the treatment course.
Main results. Themedian of target registration error distribution of the landmark pairs is 1.4± 0.3
mm.This is sufficient accuracy for adaptive radiation therapy. The registration performs equally well
for all three patients and no degradation of the registration accuracy can be observed throughout the
treatment. Significance. Deformable image registration, despite its known residual uncertainties, is
until now the tool of choice towards online re-planning automation. By introducing a biofidelic
motionmodel into the optimization, we provide a viable way towards an in-build quality assurance.

1. Introduction

Image registration is a fundamental part of image-guided and adaptive radiation therapy for cancer. As
deformations during treatment are present in nearly every body region, deformable image registration (DIR) has
superseded the application of rigid-bodymethods.

Commonly used intensity-basedDIR techniques can be a computationally fast and simple way to
approximate anatomical deformations. They are however susceptible to artifacts in the image due to their
reliance on voxel intensities.Moreover, homogenous regionsmissing high-contrast features can cause
misregistrations (Kirby et al 2011). In general, these approaches consider changes in the intensity distribution
without concern for the biomechanical properties of the tissues. This can lead to unrealistic deformations.

Utilizing biomechanicalmodels enables the incorporation of the available knowledge of anatomy and
physiology into the registration process as a biofidelic transformationmodel.
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Finite elementmethods are assumed to provide high accuracy and are of interest when complex and
independent organmotion is considered (Brock et al 2005). They suffer however from long computation times
limiting their practical use in adaptive radiation therapy.

Simplified approaches utilize the rigidity of independent individual bones and can be used to evaluate
skeletalmotion.However, they do not incorporate anymotion propagation of soft tissue and ignore the
biomechanical constraints given by the joints that are essential in skeletalmotion (Yip et al 2014).

To enforce rigidity of bones in image registration, intensity-basedDIR algorithmswere previously enhanced
with a rigidity constraint (Reaungamornrat et al 2014, König et al 2016). These approaches consider themotion
in each rigid structure independently rather than incorporating the articulated nature of the skeleton.

For an articulated skeleton-based registration, the head and neck area is of special interest. Due to the close
proximity of tumors to organs at risk, the utilized image registration has to be very accurate and robust to
facilitate the optimal treatment in the presence of steep dose gradients. Furthermore, the head and neck region is
governed by skeletalmotion between the fractions influencing soft tissue deformations. Thismeans soft tissue
deformation can bemodeled based on the skeletalmotion.

In this study, wefirstly propose the novel integration concept of the articulated kinematic skeletonmodel
introduced by Teske et al (2017a) in a fully automated registration process bywrapping the articulated skeleton
as the transformationmodel within the optimization process of the registration. Secondly, we quantify the
accuracy of thismodel to represent imaged postures in the range of anatomical deformations present in typical
inter-fractional radiotherapy treatment courses of the head and neck region. Additionally, we also test the
interdependency between the targeted postures by the registration optimizer and the achievable restricted
postures of the kinematicmodel, showing that a high accuracy and robustness of the registration of the skeleton
is achievable.

2.Materials andmethods

2.1. Articulated biomechanicalmodel
Themodel constructionwas previously published by Teske et al (2017a) andwill be briefly summarized in the
following, highlighting the newly introduced improvements.

The biomechanical transformationmodel is composed of two different parts, a kinematics-basedmodel for
the description of transformations induced in the skeleton and a chainmail-basedmodel subsequently
deforming the adjacent soft tissue. In this study, the registration process was performed on the skeletonmodel,
while soft tissue extrapolationwas utilized to resample the deformed image after the registration.

2.1.1. Set-up of patient specificmodel geometry
The construction of themodel requires input segmentation of individual skeleton bones. In this study, we used
manual bone delineations on the planningCT. Skull bones are delineated as one connected structure excluding
the brain and nasal cavities, ribs were delineated including the costal cartilages. Carewas taken that contours of
different bones do not overlap despite 3mm slice thickness of the planningCT.

2.1.2. Joint positioning and parametrization
All joints aremodeled as 3 degree-of-freedomball-and-socket joints withoutmobility restrictions. Their
position is either calculated as the nearest distance between a pair of connecting bones (Teske et al 2017a), or
determined according to joint-specific rules (Teske et al 2017b). The newly positioned joints are shown in
figure 1.

Atlanto-occipital joint located between the skull and the atlas is positioned on the curve, approximating the
spinal curvature on a level with the points of contact of atlas and skull.

Atlanto-axial joint located between the atlas and axis (2nd cervical vertebra) is positionedwithin the
odontoid process of the axis (dens). Its eigenvector with the smallest eigenvalue represents the direction vector of
the dens. After projection of all vertebra voxels onto this eigenvector axis, themean positions of 1%of the voxels
each fromboth ends of the scale are used to calculate dens axis position. The joint is approximated to be in the
middle of the line connecting both positions.

Intervertebral joint located between two adjacent vertebrae is positioned in the center of the line connecting
the two body centroids to locate it centrally within the intervertebral disk.

Costovertebral joint located between each rib and adjacent vertebral body is positioned in the center of the
shortest line connecting the center of the vertebral body and themedial axis of the rib.

Acromioclavicular joint located between the scapula and the clavicle is positioned in the center of the
nearest distance between themedial axis transforms of both bones.
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Glenohumeral joint located between humerus and scapula is positioned in the center of the humeral head
(Veeger 2000). The latter is determined as the voxel with the largest distance to the humerus surface.

2.1.3. Kinematic tree and inverse kinematics solver
The described prototype is based on the open-source Simbody toolkit (Seth et al 2010, Sherman et al 2011),
which is used for the construction of the kinematicmodel and for solving the inverse kinematic equations. The
chosen solver is based on the L-BFGS optimization approach (Liu andNocedal 1989). Three points with fixed
positions relative to each other characterize the position of each bone. The posture of the skeleton ismodified by
moving these points according to the shift and rotation parameters chosen by the optimizer of the registration
process.

Figure 2 shows the schematic construction of the kinematic tree and the connections from the root element (
i.e. the skull). To avoid loops in the kinematic tree, themandible and sternum are split during optimization and
kept rigidly connected using aweld constraint. This constraint is included into the cost function of the optimizer
to assure biofidelity.

2.2. Image data sets
The accuracy of the proposed non-rigid image registration approach incorporating an articulated kinematic
skeletonmodel is retrospectively evaluated using imaging scans of three head and neck cancer patients. All
patients have undergone postoperative fractionated radiation therapy using an integrated boost concept in 33
fractions. Theywere randomly selected froma patient cohort described previously including utilized fixation
(Giske et al 2011) and planning dose prescription (Schwarz et al 2012).Written informed consent to use their
data was obtained from all patients.

Besides the planningCT scans, daily kV-control-CT scanswere available, showing typical inter-fractional
anatomical deformations in the range from0 to 9mmafter a rigid offset correction (Giske et al 2011). Patient 1
and 2 receivedmultiple control-CT scans in some fractions, where image inspection uncovered re-positioning
necessity. For patient 1 and 3, some of the fraction scanswere absent due to the unavailability of the scanner on
some treatment days.

In total 18 (6 per patient) fraction scanswere utilized in this retrospective study. All image scans share a pixel
spacing of 0.98× 0.98mmwith a slice thickness of 3, 3, and 2mm for patients 1, 2, and 3, respectively. Planning
CT scanswere acquired by a Toshiba Aquilon scanner (Toshiba, Otawara, Japan), and the fractionCT scans by a
Siemens Primatom in-room single-slice spiral scanner (SiemensOCS,Malvern, PA). In all fractionCT scans, a
stereotactic frame registrationwas applied to establish their spatial alignment with the planningCT scans
utilizing a stereotactic frame described earlier (Giske et al 2011).

The imaging quality including themanual segmentation on the planningCT is shown infigure 3.

2.3. Reference annotation data
To evaluate the accuracy and robustness of the proposed registration, two quantification approaches were
chosen alongside the visual assessment by image fusion.

Figure 1.Visualization of joint positions in the head and neck skeleton. Newly proposed joint positions (green points) vs. the
previously applied nearest-neighbourmethod (red points) of the articulated skeletonmodel proposed byTeske et al (2017b).
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First, visibly identifiable points (landmarks)weremanually localized on the planningCT and six fraction
scans distributed along the treatment course of all patients. At least three landmarks on each boneweremarked.
For the landmarks, a combination of anatomical feature points and visually dominant intensity shifts (e.g. small
fissures)were chosen to improve the detection on several image data sets. Outlier detection and a rigidity
condition (<3mmviolation)were applied. For patient 1, we positioned at least 161 corresponding landmark
pairs per fraction scan (see figure 4).

The inter-observer variability of the landmark identificationwas assessed on two out of six fractions for
patient 1 by four independent observers and ranged from0.1–2.9mm.

Secondly, for patient 2 and 3, 63–70 corresponding landmark pairs were identified on 6 fraction scans to
evaluate the robustness of the approach over several patients and the full treatment course.

Figure 2.Articulated kinematicmodel build-up. (a) Scheme of the implemented dependency graph representing the human skeleton
articulation. (b)Resulting rigid body separation (blue) to resolve kinematic loops. All resulting rigid bodies are connected via a unique
joint (red points) to their predecessor and arewelded together using a rigid constraint.

Figure 3. Image quality of CT slices for patient 1. (a)A sagittal and transversal slice of the planningCT indicating themeasured field-
of-view. Red line indicates the position of the transversal slice. (b)The stereotactically aligned corresponding slice of a fractionCT
(F01). The chosen fraction scan is representative for the imaging quality of all fraction scans, facilitatingmeaningful accuracy of
manually identified correspondence points.
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2.4. Kinematic non-rigid skeleton registration
The registration pipeline established in this section is summarized infigure 5. Themodel is built-up frombones
and automatic joint positioning. Then the optimizermaximizes the overlap of themodel and the bone tissue in
the fractionCT. The optimizedmotion is propagated through the surrounding soft tissue to generate the
deformation vector field. Finally, the planningCT is deformed to alignwith the fractionCT.

2.4.1. Similaritymetric
Due to similar image quality of the datasets, we utilize the overlap of bone voxels in themodel and the target
image as the similaritymeasure. As an objective function, this is simple and fast. Since bones are delineated in the
planningCT scan formodel build-up, we only evaluate voxels within thesemasks. The fractionCT scans are
binarized to bones and background using a threshold at 120HU.

2.4.2. Optimization scheme
The presented image registration prototypemoves the complete skeleton depending on the kinematic rules. The
optimization, however, considers each bone sequentially following a predefined hierarchical scheme. After each
bone optimization, the respective bone isfixed and can only deviate slightly to conform to the kinematic rules as
enforced during further optimization steps.

We have adopted aNelder–Mead-Simplex optimization approach (Nelder andMead 1965) for each rigid-
bone optimization. Each corner of the simplex is either a 3 or a 6 dimensional point, representing a
transformation inducing either only rotations (R) or translations and rotations (R+T). Rotations are performed
either relative to the bone’s centroid or relative to the joint position. Bones that only undergo rotations are the
clavicles, sternum, ribs, humeri, andmandible.

Figure 4.Manually defined reference data. (a)Overlay of the separate bone delineations of patient 1with the distribution ofmanually
localized reference points on the planningCT. Blue points are anatomical landmarks (N= 125) and red ones are intensity-based
feature points (N= 60). (b)Resulting semi-automatic skeleton segmentation for patient 1 (F01) aftermanual corrections to get rid of
includedmetal artefacts and the pacemaker inserts.

Figure 5.Representation of the present processing pipeline using data of patient 1. (a)Manually delineated separate bones of the
skeleton as input. (b)Build-up of the articulated kinematicmodel by automatically positioning the involved joints (red points)
following the implemented kinematic tree (green connections) of rigid bodies (blue pointsmark their center of gravity). (c)Themodel
motion during the optimization probing the overlap of the optimized bonewith the binarized selected fractionCT. (d)Optimized
translation (red arrows, 4xmagnified) and rotations of every bone is passed as a posture to the soft tissue interpolation. (e)
Displacement vector field resulting from the anthropomorphic chainmail deformation propagation. (f)Color fusion of the planning
CTwith its resulting resampled volume, deformed to the posturemeasured by the fractionCT.
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2.5. Soft tissue deformation propagation
To generate the deformation vector field necessary for image transformation, the optimized skeletal posture is
forwarded to a chainmail-based soft tissue deformationmodel published byTeske et al (2017b). Each bone voxel
is initializedwith the transformation parameters obtained from the registration process. The soft tissue is
parameterized by amaterial-transfer function,mapping theHU-values of the planningCT scan tomodel-
specific elasticity parameters. In this way, the skeletal posture is propagated into the surrounding soft tissue
without the need for soft tissue segmentations.

The resulting forward vector field retains the rigidity of the bones and describes a consistent deformation of
soft tissue in the vicinity of the skeletal bones. In order to resample the deformed planningCT scan, a vector field
inversion as proposed byAguilera et al (2015) is applied to the forward deformation field.

2.6. Comparison to intensity-basedDIR
To investigate the performance of KinematicDIR in the context of existing intensity-basedDIR approaches, the
registration of patient 1 is also performed using 3-stagemulti-resolution registrationwith Plastimatch (Pinter
et al 2012) in the 3DSlicer extension (Fedorov et al 2012). In each stage, the previous result is used as the initial
guess. Since the default parametrization of Plastimatch is optimized for fast registration, a second set offine grid
parameters is chosen to give the best registration accuracy. Table 1 summarizes the two sets of parameters for
each stage.

3. Results

3.1. Visual evaluation
The visual evaluation of the registration is shown infigure 6. The color fusion indicates that after stereotactic
alignment, there are large deformations between the images. After the kinematic registration, the bones in the
images alignwell and the residual errors are only present in the soft tissue. In the thoracic area, differences in the
HUaremostly caused by contrast agent that is only present in the planningCTbut not in any fractionCT.
Additionally, residuals arise in the soft tissue at distant locations frombones due to the local nature of the
implemented chainmail forward propagation. The blue and orange areas in the transversal and sagittal slice arise
from the limited field of view of the fractionCT and the treatment couch and frame result, respectively.

3.2. Accuracy evaluation
For each fraction, the target registration error (TRE)was calculated for all landmarks. The boxplots infigure 7
show the distribution between the predefined corresponding landmarks after the registration transformation is
applied.

Themedian TRE for patient 1was 1.2± 0.1mmwith an inter-quartile range (IQR) of 0.9± 0.2mm.There is
no observable trend of the TREwithin the data during the treatment course and the registration quality was
consistent for all considered fractions.

The inter-observer variability is assessed on two fractions (F02 and F28)where four independent observers
positioned the same landmarks. Figure 7 shows that after registration, there is no relevant difference in the
distribution of residual errors for all observers. Thismeans the inter-observer variability in the positioning of
landmarks did not contribute to the accuracy evaluation of the proposed kinematic registration. All further
landmarks were positioned by the same observer.

The comparison of KinematicDIRwith the Plastimatch is shown infigure 8. ThemedianTRE over all
fractionswith the Plastimatch default settings is 2.0± 0.3mmand hence significantly worse than the
KinematicDIR registration. For patient 1 the tunedfine grid parameters, Plastimatch achieves amedian TREof
1.2± 0.1mm indicating comparable registration accuracy as observed for KinematicDIR.

Table 1.Plastimatch parameters used for intensity-basedDIR. The default settings yield a fast
registration. To achieve the best possible accuracy a second parameter set offiner grid size
is used.

Default Fine grid

Parameters Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Sub-sampling 4,4,2 2,2,1 2,2,1 4,4,2 2,2,1 2,2,1

Grid size (mm) 100 50 50 50 25 5

Max iterations 50 50 50 50 50 150
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3.3. Robustness evaluation
The robustness of the proposed registration approachwas evaluated using the corresponding landmark pairs on
3 patients and a total of 18 fractionCT scans. Kinematic registrationwas performed for each fraction. For patient
1, the distribution of the TRE after registration is shown infigure 7. For patient 2 and 3, the distribution of the
TREper corresponding landmark is shown in figure 9. Themedian target registration error for patient 2was 1.6
± 0.2mmwith an IQRof 1.3± 0.4mm. For patient 3, the TREwas 1.5± 0.1mmwith an IQRof 1.2± 0.1mm.

Figure 6.Visual quality assessment of an exemplary registration result. Upper row shows the transversal, frontal and sagittal slice of a
colour fusion of the unregistered data: planningCT (blue)without stereotactic frame and fractionCT (F01, orange). Lower row
displays the registered fusion of the deformed and resampled planningCT (blue) and the fractionCT (F01, orange). Green arrows
indicate areas of good skeleton registration. Red arrows show residual soft tissue deformations.

Figure 7.Distribution of the target registration error after kinematic registration for six fractions of patient 1. In fractions F02 and F28,
the inter-observer variability was assessed by four observers (Obs1 –Obs4). TheTRE after registration is 1.2± 0.1mmwith an IQRof
0.9± 0.2mm. The kinematic registration shows accurate performance. The inter-observer variability is below 1mm for both
considered fractions and all observers.
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Of all subjects, patient 1 showed the best results because the largefield of view in the fractionCT included a
large part of the sternum. This stabilizes the alignment of the ribcage. However, the quantitative evaluation of the
TRE shows only negligible deviation between different fractions.

Patient 2 showed slightly worse registration results for the last three considered fractions. This coincides with
a re-planning after fraction 13which resulted in a new patient positioning and hence an increased deformation
in the image space between the original planningCT and the fractionCTs.

This led to an increased uncertainty when positioning the landmarks as reported by the observers which
results in a broader distribution of the TREwithout necessarily indicating aworse registration.

Overall, the TRE for all patients and fractions was robust under realistic conditions.

4.Discussion

4.1.Model build-up
The presented articulated biomechanicalmodel is built up frommanual segmentations on the planningCTof
each individual patient. Thismeanswe proposed a patient-specificmodel that incorporates the shape and size of

Figure 8.Comparison of KinematicDIR and the PlastimatchDIR algorithm.Distribution of the target registration error after
registration for patient 1. For the default parameters, KinematicDIR outperforms Plastimatch, for the customfine grid parameters,
the registration accuracy is comparable.

Figure 9.Distribution of the target registration error after kinematic registration for six fractions of patient 2 and 3. The distributions
show amedian below 2mmand do not deteriorate throughout the treatment course. No deterioration during the treatment course is
visible. The kinematic registration performs to similar accuracy for all considered patients.
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the bones.More importantly, this alsomeans the joint position in the kinematic tree is specific to the individual
and is therefore an accurate representation of the skeletal system.

This requires human input for themanual segmentation of individual bones, which is expected to be, solved
in the future using convolutional neural networks (Belal et al 2019). In particular with the development of the
TotalSegmentator framework (Wasserthal et al 2022) based on the nnUnet (Isensee et al 2021), an automated
general segmentation of individual bones is published in an open-source format. The impact on the registration
performance of such automatedmethods should be evaluated in future studies.

Regarding the kinematicmodel, the use of ball and socket joint, which is known to be approximate for all
human joints, was not detrimental to the registration quality. Anatomically, however, it appears reasonable that
certain joints can bemodeled using fewer degrees of freedom (Moore et al 2013). In particular, themotion of the
ribs can be further restricted this way. This specific adaption—as an example—would improve the biofidelity
further and reduce computation time.

Currently, the registration optimizer does not have any knowledge of the constraints imposed by the
kinematic tree. Due to this, the optimizer will probe points that violate themodel’s constraints.We deal with this
by using the implicit projection provided by the Simbody solver utilizing the closest feasible points, which are
weighted projections onto the constraint surface.We evaluate the objective function at these points instead and
modify our initial simplex to have newpositions instead. This can cause problems due to the simplex collapsing
at the boundary (Le Floc’h 2012), yet in our experiments, we did not encounter those cases.

4.2. Accuracy and robustness evaluation
The accuracy of the presented kinematic registration approachwas evaluated on six fractions withmore than
160 landmarks to assure that the quality of registration is comparable over the full course of a treatment fraction
and does not deteriorate. The evaluationwas limited to six fractions to limit themanual labor necessary to
identify feature points.

The target registration error and its statistical distribution showed two properties: the accuracy of the
skeleton registration is below 1.2mm,which can be considered sufficient for adaptive workflows. In addition,
there is no significant difference or trend to be observed throughout the treatment fractions. The kinematic
registration approach retains the same level of performance even in the presence of anatomical changes in the
surrounding soft tissue.

In two of the fractions, the inter-observer variability was investigated. The effect this inter-observer-
variability had on themedian TREwas below 1mmand in linewith other publications (Sarrut et al 2006).
Therefore, all other landmarks were identified by the same observer.

The comparison of KineamticDIRwith the intensity-based PlastimatchDIR algorithm should be seen as a
representative comparison to put KinematicDIR into the context of current intensity-based approaches.With
tunedfine grid parameters, Plastimatch achieved a comparable accuracy as the proposedKinematicDIR.
Therefore, the advancement of the articulated skeletonmodel was tomaintain accuracy in the TREwhile
combining rigidity and enforced articulation in the approach aswell as themore realisticmotionmodelingwith
explicit joint positioning. In particular, the kinematic skeletonmodel enforces the realisticmotion of the
complete skeleton. In addition, the coupling of themulti-body-physicsmodel helps in prepositioning of the
skeleton after optimizing the second bone, such that compared tomultiple independent rigid body registration
the number of evaluation steps is decreased. This helps to position bones in artifact-prone areas, where intensity-
basedmethods fail frequently.

The robustness and generalizability of the presented approachwere investigated using two additional
patients with six fractions distributed along the treatment course in the sameway as patient 1.

All patients underwent the same kinematic registrationwith the only adaptation being the optimization
order for patients without visible sternum.

For patient 2we identified a broader distribution of the TRE for the last three fractions that can be explained
by a re-planning that occurred after F13. The resulting larger deformations between the original planningCT
and consequent fractionCTs led to larger inaccuracies in the landmark positioning. The fact that themedian
TRE remainsmostly unchanged indicates that the registration performance was still on a comparable level. This
also indicates that the use of positioning devices remains useful evenwhen using the proposed kinematic
registration. Other than that, the analysis of the TRE showed no deterioration of the registration quality, and all
considered fractions show a similar distribution of the error. This indicates that the proposedmethod is robust
to be usedwith different patient anatomies and all fractions during a fractionated radiation treatment.

At the current stage of KinematicDIR, the registration is performed exclusively on the skeleton and all soft
tissue is deformed usingmotion propagation in heterogeneous soft tissue. Ongoingwork includes the
incorporation of an optimization step of predefined soft tissue voxels during the soft tissue propagation.
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5. Conclusion

In this study, for thefirst time, we have presented the application of an articulated kinematicmulti-body
skeletonmodel including joint positioning in deformable image registration. By incorporating biomechanical
properties into the registration schemewe provide a robust, accurate, and biofidelic image registration.

We could also verify the high accuracy and robustness of themodel tofit real patient postures asmeasured in
CT scans during fractionated radiation therapy.We have shown the potential of kinematicmodel registration to
be used in adaptive radiation therapy by providing an accurate transformationmodel for the skeleton in the head
and neck area.
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