Absolute quantum yield for understanding upconversion and downshift luminescence in PbF₂:Er³⁺,Yb³⁺ crystals†

Eduard Madirov, Dmitry Busko, Ian A. Howard, Bryce S. Richards and Andrey Turshatov

The search for new materials capable of efficient upconversion continues to attract attention. In this work, a comprehensive study of the upconversion luminescence in PbF₂:Er³⁺,Yb³⁺ crystals with different concentrations of Yb³⁺ ions in the range of 2 to 7.5 mol% (Er³⁺ concentration was fixed at 2 mol%) was carried out. The highest value of upconversion quantum yield (ϕ_{UC}) 5.9% (at 350 W cm⁻²) was found in the PbF₂ crystal doped with 2 mol% Er³⁺ and 3 mol% Yb³⁺. Since it is not always easy to directly measure ϕ_{UC} and estimate the related key figure of merit parameter, saturated photoluminescence quantum yield ($\phi_{UC,sat}$) can be used. Judd–Ofelt theory provides a convenient way to determine the radiative lifetimes of the exited states of rare-earth ions based on absorption measurements. When the luminescence decay times after direct excitation of a level are also measured, $\phi_{UC,sat}$ for that level can be calculated. This approach is tested on a series of PbF₂:Er³⁺,Yb³⁺ crystals. Good agreement between the estimates obtained as above and the directly experimentally measured $\phi_{UC,sat}$ values is demonstrated. In addition, three methods of Judd–Ofelt calculations on powder samples were tested and the results were compared with Judd–Ofelt calculations on single crystals, which served as the source of the powder samples. Taken together, the results presented in our work for PbF₂:Er³⁺,Yb³⁺ crystals contribute to a better understanding of the UC phenomena and provide a reference data set for the use of UC materials in practical applications.

Introduction

The synthesis of materials with efficient upconversion (UC) luminescence is a hot topic in materials science due to their use in a wide range of applications. These include potential applications in photovoltaics and solar energy harvesting, security markers, luminescent thermometry, as well as tracers for advanced plastics sorting. Most of these applications are made possible by the unique optical properties of the trivalent ions of the lanthanides, which are defined by partially forbidden transitions within 4f electronic shells. UC processes in trivalent lanthanide ions, the symmetry of the local environment is reduced, increasing the probability of the transitions. This is because trivalent ions replace divalent cations and require charge compensation via F⁻ ions taking interstitial positions in the lattice. In addition, MF₂ hosts tend to have a lower maximum phonon energy than other fluoride hosts: CaF₂ – 320 cm⁻¹, SrF₂ – 284 cm⁻¹, BaF₂ – 240 cm⁻¹, versus β-NaYF₄ – 360 cm⁻¹, LiF – 350 cm⁻¹, and LiYF₄ – 460 cm⁻¹. Low phonon energy hosts favour achieving high ϕ_{UC} values. For near-infrared (980 nm) to visible UC, the highest ϕ_{UC} values observed in MF₂ materials are 6.5% in SrF₂:Er³⁺,Yb³⁺ and 10.0% in BaF₂:Er³⁺,Yb³⁺, whereas the highest known ϕ_{UC} in a material doped with Er³⁺ and Yb³⁺ ions is 11% in β-NaYF₄. However, to date, there have been...
only a small number of publications on lanthanide-doped crystalline PbF₂ hosts. From the available data it can be inferred that PbF₂ doped with Er³⁺ and Yb³⁺ should perform similarly to the other materials mentioned above due to low phonon energy (257 cm⁻¹). In addition, the observed ϕUC increases when moving from SrF₂ to BaF₂ thus suggesting that heavier cations help to achieve high ϕUC values, thus PbF₂ could offer even better UC performance.

Usually, the UC samples can be obtained either in a form of micro/nanometer size particles or in a form of single crystals. While the characterisation of crystalline materials is best performed when the samples are in the form of single crystals due to the convenient and reliable measurement of the absorption coefficient, luminescence decay time and ϕUC value as well as Judd–Ofelt (JO) calculations, the micro- or nanoparticles are often more feasible for applications and easier to synthesise. Thus, it is crucial to compare the results obtained with these two forms of the material.

This paper presents a comprehensive study of PbF₂ crystals doped with Er³⁺ and Yb³⁺ - the Er³⁺ concentration was set to either 2 or 1.5 mol% and the Yb³⁺ concentration was varied in the range 1.5–7.5 mol%. To gain insight into the upconversion properties of the studied crystals, both the power density dependent ϕUC under 976 nm excitation and the down-shifting quantum yield (ϕDS) under 522 and 652 nm excitation were obtained. The analysis of ϕUC and ϕDS values and radiative lifetimes from JO calculations was used to understand the UC mechanism and to find factors limiting ϕUC in Yb³⁺/Er³⁺ codoped PbF₂ crystals. In addition, powder samples prepared by grinding the above crystals were studied. JO analysis on crystalline and powder samples provided a useful comparison of three different methods for calculating JO parameters on powder materials.

Experimental part

Synthesis procedure

The single crystals based on PbF₂ doped with Yb³⁺ and Er³⁺ were grown by the Bridgman technique in a vacuum using the CF₄ fluorination atmosphere in multi-temperature graphite crucibles with a temperature gradient (7 deg mm⁻¹). The growth rate (7 mm hour⁻¹) was estimated from the stability function of a flat crystallization front. Based on the PbF₂–RF₃ (R = Yb, Er)₃₁ phase diagrams, the single crystal growth temperature was chosen to be 870 °C. The crystalline samples were prepared in a shape of disks 10 mm in diameter and about 1.7 mm in thickness, cut perpendicular to the long axis of the crystal boule.

Characterization

To estimate maximum host phonon energy, the Raman spectrum of the undoped PbF₂ sample was recorded (Polytec i-Raman instrument) using 785 nm excitation and with a 3.5 cm⁻¹ resolution. It was not possible to obtain the Raman spectrum of a doped PbF₂ sample due to presence of emission from 4f/2 energy level of Er³⁺ under 785 nm excitation that makes the detection of the pure Raman bands complicated.

The crystalline structure of the samples was determined using the powder XRD patterns recorded with a diffractometer (Bruker, D2 PHASE) (CuKα radiation). A small part of the single crystal was ground into powder. The patterns were recorded in the 2 theta range from 10 to 70 degrees.

Absorption spectra of the crystals were recorded at a room temperature using a ultraviolet (UV)-visible (Vis)-NIR spectrophotometer (PerkinElmer Lambda 950) in absorbance mode. The instrument provided the absorbance data, which was then converted to the absorption coefficient using eqn (1):

\[\alpha = \frac{1}{d} \ln(10^4) \]

where \(\alpha \) is the absorption coefficient in cm⁻¹, A is the absorbance data obtained from the instrument, and d is sample thickness in centimetres.

The concentration of Er³⁺ and Yb³⁺ ions (Table S2, ESI†) was determined by wavelength dispersive X-ray fluorescence spectroscopy (Pioneer S4, Bruker AXS).

Excitation spectra were recorded using a calibrated spectrophotometer (Varias Cary Eclipse). Diffuse reflectance spectra were recorded at room temperature using a spectrophotometer (PerkinElmer Lambda 950) in absorbance mode with the sample placed inside an integrating sphere.

The setup and the methodology for estimating ϕUC under 976 nm excitation have been described previously. The setup is built around an integrating sphere (Labsphere, Ø6", 3 L-PFM-060-SL) and uses two calibrated spectrometers (Avantes, AvaSpec-ULS2048 x 64TEC, Thorlabs, CCS2000/M) to register the intensity of the sample emission and the incident laser. A 976 nm laser diode (Roithner) driven by a laser diode controller (ITC4001, Thorlabs) is used as the excitation source and the incident intensity is varied with a variable filter wheel (Thorlabs, NDC-100C-2).

The setup is built around an integrating sphere (Labsphere, Ø6", 3 L-PFM-060-SL) and uses two calibrated spectrometers (Avantes, AvaSpec-ULS2048 x 64TEC, Thorlabs, CCS2000/M) to register the intensity of the sample emission and the incident laser. A 976 nm laser diode (Roithner) driven by a laser diode controller (ITC4001, Thorlabs) is used as the excitation source and the incident intensity is varied with a variable filter wheel (Thorlabs, NDC-100C-2).

To record the ϕDS of the 4S₃/2 → 4I₁₅/₂ and 4F₉/2 → 4I₁₅/₂ transitions of the Er³⁺ ions, a tunable continuous wave (CW) laser (Solstis with EMM-Vis, M-Squared Lasers Ltd) pumped by the 532 nm laser (Verdi-V18, Coherent) is used. The system is tuned to 522 nm for the direct excitation of the 4S₃/2 level and to 652 nm for the direct excitation of the 4F₉/2 level. For the measurement of ϕDS of the 4I₁₅/₂ → 4I₁₅/₂ transition under direct excitation the tunable laser kit (Thorlabs, TLK-L1550M) operating at 1495 nm was used as the excitation source. The rest of the setup was the same as described in our previous publication.

Luminescence lifetimes are measured using an optical system described previously. Luminescence lifetimes are measured using an optical system described previously. 17,19 525 nm, 976 nm, and 633 nm (Roithner) and 1550 nm (Thorlabs) laser diodes mounted in temperature stabilized mounts (TCLDM9, Thorlabs) and driven by a laser diode controller (ITC4001, Thorlabs) are used as the excitation sources. The luminescence wavelength is selected with a double monochromator (Bentham, DTM500) and the signal is detected with a photomultiplier tube (R928P, Hamamatsu) mounted in a temperature-cooled housing.
(CoolOne, Horiba) in the UV-Vis region or with an infrared single-photon detector (ID Quantique, ID220) in IR region—both detectors are coupled to the multi-channel scaling card (Time-Harp 260, Picoquant).

Results and discussion

Crystal structure characterization

The measured powder XRD patterns are presented in Fig. 1(a). The data is in good agreement with JCPDS card # 76-1816. The XRD patterns show that the parameters of a unit cell change with doping concentration. To illustrate this, the position of the [111] peak in samples with different Yb$^{3+}$ contents is plotted in Fig. 1(b). The position of the [111] peak is shifted to the higher angles as the concentration of the dopant ions is increased. This is due to the fact that the ionic radius of the Er$^{3+}$ and Yb$^{3+}$ ions is smaller than that of the Pb$^{2+}$ ions, which causes the shrinking of the unit cell in samples with higher doping concentration. The Raman spectrum for an undoped PbF$_2$ crystal is presented in Fig. 1(c). It consists of a broad band with a maximum at 260 cm$^{-1}$. This value agrees well with the previously reported phonon energy of a PbF$_2$ crystal equal to 257 cm$^{-1}$.

Absorption spectra and JO calculations

The absorption spectra of the samples investigated are given in Fig. 2. The spectra contain absorption bands in the UV, Vis and NIR regions typical for Er$^{3+}$ and Yb$^{3+}$ ions. The transitions corresponding to the most intense bands are labelled in Fig. 2. The positions of all bands remain the same in all samples and are in agreement with the available literature data.16,19 The absorption data can be used in the JO method to calculate key features of electron levels in luminescent materials, such as radiative lifetime and branching ratios. The comparison of these radiative lifetimes with experimentally obtained luminescence decays can additionally reveal the fraction of excitation energy emitted via radiative processes, which, in turn, can help to predict both the down-shifting quantum yield ϕ_{DS} and the upconversion quantum yield ϕ_{UC}. 33,34

A standard procedure was used to obtain JO parameters in our work.35,36 The JO theory uses absorption cross-sections to determine oscillator strengths (Table S1, ESI†). These values were then used to calculate JO parameters Ω_t, which allow the...
description of a radiative transition between any two levels. To obtain the Ω_i values, some additional parameters, such as the barycentre wavelength, the doping concentration of Er$^{3+}$ ions, the refractive index and the reduced matrix elements should be accurately estimated beforehand. These values are given in Table 1 (reduced matrix elements37 and refractive index data38 were taken from the literature and are universal for all samples) and Table S2, ESI1 (concentrations of doping ions estimated by the WDXRF method).

Briefly, the parameters used in the JO calculations are obtained as follows. The absorption cross sections were calculated from the absorption spectra shown in Fig. 2 and the absorption cross-section. The reduced matrix elements are given in Table 1 (reduced matrix elements37 and refractive index38 of the host at the appropriate wavelengths).

Firstly, the increase in the doping concentration of Yb$^{3+}$ leads to higher transition probabilities in Er$^{3+}$ and thus shorter Er$^{3+}$ radiative times. On the other hand, the branching ratios are similar in all samples. Unfortunately, in many cases there is no a simple relationship between the radiative lifetime and the number of emitted photons emitted, since non-radiative relaxation and various quenching processes must be taken into account. Nevertheless, the study of luminescence decay and knowledge of the radiative lifetime is a useful data set that can shed light on the quantum yield of luminescent materials.

Fig. 3(a) demonstrates the luminescence spectra of the PbF$_2$:Er$^{3+}$,Yb$^{3+}$ crystals excited at a wavelength of 375 nm. The emission spectra consist of several peaks corresponding to 4S$_{3/2}$–4I$_{15/2}$, 4F$_{1/2}$–4I$_{15/2}$, 4S$_{3/2}$–4I$_{13/2}$, 3Er$^{3+}$: 1I$_{15/2}$ & Yb$^{3+}$: 2F$_{7/2}$–4I$_{15/2}$ and 1I$_{13/2}$–4I$_{15/2}$ transitions. In order to correlate the results of the JO calculations with the experimental results, the luminescence decays of three states (4S$_{3/2}$, 4F$_{1/2}$ and 4I$_{13/2}$) were studied (Fig. 3(b)–(d)) using the direct excitation of the above states. The first interesting observation based on these decays is that the decay time of the 4I$_{13/2}$–4I$_{15/2}$ transition (Fig. 3(d) and Table S8, ESI1) is always longer than the radiative lifetime calculated using the JO model (Table 2). The uncertainties of the experimentally determined decay times were calculated using a method described in the work of Fišerová and Kubala.41 It can be assumed that such an extension of the decay time is due to the re-absorption of emitted photons within the crystal.42,43 To test this hypothesis, two exemplary crystals (Er$_2$Yb$_5$ and Er$_2$Yb$_2$) were carefully ground and the powder was diluted with undoped PbF$_2$ powder (the experimental protocol is inspired by the works of de Mello Donegá et al.42 and Rabouw et al.43) until the ratio between the undoped and doped fractions was 19 to 1. In such an experiment, the local concentration of Er$^{3+}$ and Yb$^{3+}$ remains unchanged, whereas the reabsorption can be significantly reduced by dilution. Indeed, the dilution led to a pronounced reduction in the decay time (Fig. 3(e)), which decreased from 8.8 ms to 5.4 ms for the powder with undoped/doped (Er$_2$Yb$_5$ crystal) ratios of

Table 1

| Excited state | λ_{ab} nm | $|U_{ij}|^2$ | $|U_{ijb}|^2$ | $|U_{i}^{(3)}|b$ | $|U_{i}^{(4)}|b$ | $|U_{i}^{(6)}|b$ | n |
|-----------------|------------------|-------------|-------------|------------------|------------------|------------------|-----|
| 4G$_{11/2}$ | 378.5 | 0.9156 | 0.5263 | 0.1167 | 1.8314 | | |
| 4H$_{9/2}$ | 406.5 | 0 | 0.0243 | 0.2147 | 1.8149 | | |
| 4F$_{7/2}$ | 487.0 | 0 | 0.1465 | 0.6272 | 1.7857 | | |
| 4H$_{11/2}$ | 522.0 | 0.7158 | 0.4128 | 0.0927 | 1.7774 | | |
| 4S$_{1/2}$ | 542.0 | 0 | 0 | 0.2235 | 1.7740 | | |
| 4F$_{9/2}$ | 653.0 | 0 | 0.55 | 0.4621 | 1.7593 | | |
| 4I$_{13/2}$ | 1520.0 | 0.0195 | 0.1172 | 14.325 | 1.7335 | | |

Table 2

| Excited state | τ_{rad} ms | $|\beta|$ | τ_{rad} ms | $|\beta|$ | τ_{rad} ms | $|\beta|$ |
|-----------------|-----------------|--------|-----------------|--------|-----------------|--------|
| 4S$_{3/2}$–4I$_{15/2}$ | 1.12 ± 0.06 | 0.67 | 1.47 ± 0.14 | 0.91 | 9.71 ± 0.17 | 1.00 |
| 4F$_{1/2}$–4I$_{15/2}$ | 0.85 ± 0.05 | 0.67 | 1.11 ± 0.12 | 0.91 | 8.39 ± 0.20 | 1.00 |
| 4I$_{13/2}$–4I$_{15/2}$ | 0.81 ± 0.04 | 0.67 | 1.06 ± 0.09 | 0.91 | 8.12 ± 0.17 | 1.00 |

Judd–Ofelt parameters, $\times 10^{-20}$ cm2:

<table>
<thead>
<tr>
<th>Ω_2</th>
<th>Ω_0</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.836</td>
<td>0.839</td>
<td>0.836</td>
</tr>
</tbody>
</table>
| 0.836 ± 0.125 | 0.839 ± 0.042 | 1.289 ± 0.129 | 1.381 ± 0.207 | 1.480 ± 0.074
9/1 and 19/1 (Fig. 3(f)). The luminescence decays of the other two transitions $^4S_{3/2} \rightarrow ^4I_{15/2}$ and $^4F_{9/2} \rightarrow ^4I_{15/2}$ were also prolonged in the crystal (which may indicate an effect of re-absorption), but to a much lesser extent (Fig. S1, ESI†). Another example of data with a similar trend can be found in ESI† for the crystal Er2Yb2 (Fig. S2, ESI†).

A second interesting phenomenon can be observed in Fig. 3(b) with multi-exponential behaviour of all decays. It is well known that the $^4S_{3/2}$ state of Er$^{3+}$ undergoes cross-relaxation with the ground states of Er$^{3+}(^4I_{15/2})$ and Yb$^{3+}(^2F_{5/2})$. Due to the distribution of the inter-ion distance (Er$^{3+}$-Er$^{3+}$ or Er$^{3+}$-Yb$^{3+}$) the cross-relaxation rate can take different values, resulting in a multi-exponential decay. For simplicity, the decays in Fig. 3(b) were fitted with a bi-exponential model, giving the results shown in Table S8 (ESI†). It is important to note that crystals with the lowest Er$^{3+}$ concentration (Er1.5Yb1.5 and Er2Yb2) demonstrate the presence of the short-lived component with decay times of 0.18 and 0.08 ms and a significant contribution from the long-lived component with decay times of 1.08 and 0.94 ms, respectively. Simultaneously, the JO calculation predicts radiative lifetimes of 1.12 and 0.85 ms (Table 2), respectively. Thus, the close examination of the decays for Er1.5Yb1.5 and Er2Yb2 crystals...
shows that the long-lived component of the decay is close to or even exceeds the radiative lifetime obtained with the JO method, which cannot be explained by simple re-absorption (with almost no extension of the experimental decay times in Fig. S1 and S2, ESI†) and requires a reasonable explanation.

It can be assumed that due to the formation of clusters of lanthanide ions in MF2 (M = Ca, Sr, Ba, Pb), 20,45,46 which can affect the radiative transitions, the radiative decay time may have a distribution resulting in a multi-exponential decay. The long-lived component of the decay could correspond to Er3+ ions in a highly symmetric environment (cubic symmetry of the PbF2 crystal structure), whereas the short-lived component corresponds to Er3+ ions in a less symmetric environment (corresponding to ion clusters). These two symmetries are distinguishable in luminescence decays due to the strong cross-relaxation of the 4S3/2 state. The strong cross-relaxation is expected for the cluster environment (with a shorter inter-ionic distance), which strongly reduces the lifetime of the short-lived component. The two different environments are more difficult to detect for the 4F9/2 and 4I13/2 states because these states do not participate in cross-relaxation and the difference between the radiative lifetimes is hardly noticeable in experimental decays.

Analysis of the amplitude ratio (A0) for the short-lived and long-lived components (Table S8, ESI†) for decays of 4S3/2 state allows us to understand which fraction of the Er3+ ions are distributed in the two crystalline environments. The crystals with the lowest doping concentration of Er1.5Yb1.5 and Er2Yb2 have comparable with the lowest doping concentration of Er1.5Yb1.5 and Er2Yb2 distributed in the two crystalline environments. The crystals allows us to understand which fraction of the Er 3+ ions are

<table>
<thead>
<tr>
<th>Excitation Emission</th>
<th>Er1.5Yb1.5</th>
<th>Er2Yb1.5</th>
<th>Er2Yb5</th>
<th>Er2Yb7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>522 nm</td>
<td>{Er3+: 4I13/2}</td>
<td>{Yb3+: 2F7/2}</td>
<td>4I13/2 –4I15/2</td>
<td>3.4 3.2 3.5 3.1 2.5</td>
</tr>
<tr>
<td>652 nm</td>
<td>{Er3+: 4I13/2}</td>
<td>{Yb3+: 2F7/2}</td>
<td>4I13/2 –4I15/2</td>
<td>5.4 2.0 1.2 1.5 1.3 0.9</td>
</tr>
<tr>
<td>940 nm</td>
<td>{Er3+: 4I13/2}</td>
<td>{Yb3+: 2F7/2}</td>
<td>4I13/2 –4I15/2</td>
<td>8.7 5.1 0.19 0.19 0.19</td>
</tr>
<tr>
<td>1495 nm</td>
<td>{Er3+: 4I13/2}</td>
<td>{Yb3+: 2F7/2}</td>
<td>4I13/2 –4I15/2</td>
<td>22.0 23.5 28.2 24.7 23.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4I13/2 –4I15/2</td>
<td>29.5 5.1 0.19 0.19 0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4I13/2 –4I15/2</td>
<td>37.3 60.6 69.4 52.9 43.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4I13/2 –4I15/2</td>
<td>3.0 4.4 4.5 2.7 3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4I13/2 –4I15/2</td>
<td>85.1 74.8 69.2 68.6 69.5</td>
</tr>
</tbody>
</table>

It is very likely that the conditions (i)–(iii) can be fulfilled for the 4S3/2–4I13/2 transition in the Er2Yb5 sample. Especially because this transition between two excited states is less affected by re-absorption. For example, Fig. S1c, and S3 (ESI†) indicate that there is a similar decay time for the 4S3/2–4I13/2 transition in the Er2Yb5 crystal and all powder mixtures prepared on the bases of this crystal. Taking into account the decay time (τ = 0.05 ± 0.01 ms), the radiative lifetime (τrad = 0.28 (Table S6, ESI†)), eqn (2) allows to calculate the quantum yield of the 4S3/2 –4I13/2 transition which is 5.4% (Table 3). When the same equation is applied to the 4S3/2–4I13/2 and 4F9/2–4I15/2 transitions, the calculation gives values of quantum yield of φDS = 3.3 ± 0.07% and φDS = 29.2 ± 4.7% respectively. However, lower values of quantum yield of φDS = 3.1% and φDS = 24.7% (Table 3) have been measured experimentally using an integrating sphere and correction procedure in agreement with Wilson and Richards77 (Fig. S4, ESI†). The φDS values before the correction as measured in an integrating sphere are given in Table S9 (ESI†). It is assumed that the difference between the quantum yields predicted (based on lifetime) and experimentally measured quantum yields ~ 3.3% vs. 3.1% (for the 4S3/2–4I13/2 transition) and 29.2% vs. 24.7% (for the 4F9/2–4I15/2 transition) – illustrates the realistic degree of agreement that can be expected between the JO calculations and the experimental result.

Given the results presented in Table 3, the probability of transition (as the sum of radiative and non-radiative transitions) φ2–1 can be calculated using the quantum yields of the radiative transition (φ1–0) at excitations (0–1) and (0–2):

$$\varphi_{2-1} = \frac{\phi_{1-0}(0-2)}{\phi_{1-0}(0-1)}$$

(3)
the luminescence decay time of the $^4I_{13/2} - ^4I_{15/2}$ transition is equal to the radiative lifetime and that the increasing Yb$^{3+}$ concentration, indicating the predominance in the case of $\{\text{Er}^{3+} : ^4I_{11/2} & \text{Yb}^{3+} : ^2F_{7/2}\} - ^4I_{13/2}$, samples use the luminescence decay time of the $^4I_{13/2} - ^4I_{15/2}$ transition to calibrate the JO parameters.

The decay time of the $^4I_{13/2} - ^4I_{15/2}$ transition in the Er2Yb5 crystal is 8.8 ms whereas the same transition in the powder has a decay time of 7.4 ms (5.4 ms for the diluted powder (Fig. 2(f))). It can be also noted that the experimentally measured lifetime in the crystal exceeds the radiative lifetime obtained from the JO analysis, which is 8.4 ms.

Using eqn (1) (with $\beta = 1$) it is possible to determine experimentally that the radiative lifetime of the $^4I_{13/2} - ^4I_{15/2}$ transitions as 7.9 ms (given $\phi_{\text{rd}} = 68.6\%$ and $\tau = 5.4$ ms), which is in the good agreement with the value of 8.4 ms obtained from the JO calculations for the crystal. The results lead to a rather curious observation: quenching decreases the luminescence decay time, whereas reabsorption increases it. Thus, the experimental decay time for the powder (7.4 ms) is only coincident close to the radiation lifetime predicted by JO theory (8.4 ms) for the single crystal. For the sake of simplicity, the value of 8.4 ms (calculated using JO theory for the crystal) was taken as the radiative lifetime in the further calculations for the powder sample.

With the radiative lifetime of the $^4I_{13/2} - ^4I_{15/2}$ transition is defined (8.4 ms), it is now possible to perform the JO calculations on powder samples. First, the Method A described in the paper was tested. It uses the excitation spectrum recorder while monitoring the emission of the $^4S_{3/2} - ^4I_{15/2}$ transition. The spectrum obtained is given in Fig. 4(a). Using the transitions marked with arrows, the JO parameters Ω, were calculated in arbitrary units and then recalculated using the radiative lifetime (8.4 ms) of the $^4I_{13/2} - ^4I_{15/2}$ transition established above. These parameters were then used to estimate the transition probabilities and radiative lifetimes of other transitions. The algorithm of this method is illustrated in Fig. S6a (ESI†).

Secondly, the Method B described in the paper was evaluated. This approach uses the diffuse reflectance spectrum of the powder sample. The spectrum obtained is presented in Fig. 4(b). The band located around 800 nm was excluded from the calculation due to its extremely low signal to noise ratio. The band with a maximum at 980 nm was also not included in the calculations because the observed absorption band is an overlap of the $^4I_{13/2} - ^4I_{15/2}$ transition of Er$^{3+}$ ions and the $^2F_{7/2} - ^2F_{5/2}$ transition of Yb$^{3+}$ ions. To convert from arbitrary units of the diffuse reflectance spectrum to cm2 of the absorption cross-section, the experimentally determined oscillator strength of the $^4I_{15/2} - ^4I_{13/2}$ transition is calibrated to the radiative lifetime of the $^4I_{13/2} - ^4I_{15/2}$ transition. The treated spectrum is then used to calculate the JO parameters Ω. The algorithm of this method is illustrated in Fig. S6b (ESI†).

The final approach that was tested was Method C described in ref. 52,53. Unlike the previous case, here the absorption in arbitrary optical density units is used to calculate the relative intensity parameters. The actual JO parameters Ω, are calculated afterwards using the radiative lifetime of the $^4I_{13/2} - ^4I_{15/2}$ transition. In this case, a diffuse reflectance spectrum was used in combination with Kubelka–Munk theory to perform the

Table 4: Transition probabilities between certain Er$^{3+}$ excited states in the PbF$_2$:Er$^{3+}$,Yb$^{3+}$ samples in the low excitation intensity range (0.1–0.5 W cm$^{-2}$)

<table>
<thead>
<tr>
<th>Transition</th>
<th>Er1.3Yb1.5</th>
<th>Er2Yb2</th>
<th>Er2Yb3</th>
<th>Er2Yb5</th>
<th>Er2Yb7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^4S_{3/2} - ^4F_{9/2}$</td>
<td>0.40</td>
<td>0.32</td>
<td>0.25</td>
<td>0.14</td>
<td>0.07</td>
</tr>
<tr>
<td>$^4I_{13/2} - ^4I_{15/2}$</td>
<td>0.04</td>
<td>0.06</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>$^4I_{11/2} - ^4I_{13/2}$</td>
<td>0.04</td>
<td>0.06</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Since β for $^4S_{3/2} - ^4F_{9/2}$ is very small, 3×10^{-4}, ϕ_{2-1} for the $^4S_{3/2}$ state represents the fraction of all excited $^4S_{3/2}$ states that decay non-radiatively (via multi phonon relaxation) to the $^4F_{9/2}$ state. In the case of $\{\text{Er}^{3+} : ^4I_{11/2} & \text{Yb}^{3+} : ^2F_{7/2}\} - ^4I_{13/2}$, β is unknown. Therefore, ϕ_{2-1} represents the fraction of all $\{\text{Er}^{3+} : ^4I_{11/2} & \text{Yb}^{3+} : ^2F_{7/2}\}$ excited states that decay both radiatively and non-radiatively to the $^4I_{13/2}$ state.

The data in Table 4 demonstrates that ϕ_{2-1} for the $\{\text{Er}^{3+} : ^4I_{11/2} & \text{Yb}^{3+} : ^2F_{7/2}\} - ^4I_{13/2}$ transition is in the range of 0.04–0.07 for all Yb$^{3+}$ concentrations and is slightly smaller than the probability for the $^4I_{11/2} - ^4I_{13/2}$ radiative transition, since it has been shown that the branching ratio for the $^4I_{11/2} - ^4I_{13/2}$ transition in Er$^{3+}$ doped fluorides is in the range 0.11–0.15. In contrast, the ϕ_{2-1} value for the $^4S_{3/2} - ^4F_{9/2}$ transition decreases with increasing Yb$^{3+}$ concentration, indicating the predominance of cross-relaxation over non-radiative relaxation in crystals with high Yb$^{3+}$ doping concentration.
calculations in arbitrary units. The algorithm of this method is illustrated in Fig. S6c (ESI†).

In order to compare the results obtained using these three different methods the RMS values of the radiative lifetimes and \(\Omega \) values obtained for the crystalline and powder samples were calculated (Table 5). The results of lifetimes in Table 5 and the comparison branching ratios in Table S10 (ESI†) clearly show the difference between the three methods. Although none of these approaches provide a 100% consistency between transition probabilities, the Method A\(^{50}\) as well as Method C\(^{52,53}\) show adequate agreement between values calculated on a single crystal sample and results obtained on powder. If the difference in \(\Omega \) values and branching ratios is also taken into account, then the Method C\(^{52,53}\) is preferred. It should also be noted that the radiative lifetimes of the weak \(^4I_{9/2} \) compared to other emissive excited states of the Er\(^{3+}\)\(^{49}\). However, excluding this transition from the calculation of RMS (Table 5) did not change the conclusion that the method described in Method C\(^{52,53}\) better fits the parameters calculated for the single crystal.

As an additional proof, the same procedure was carried out with the Er\(_2\)Yb\(_2\) crystal. Similarly, to the Er\(_2\)Yb\(_5\) the JO calculations are first performed with the material in the form of a crystal, which was then ground to powder and the same three methods are tested. The results obtained are presented in Fig. S7 (ESI†), as well as Tables S11 and S12 (ESI†). The data allow the same conclusions to be drawn: Method C\(^{52,53}\) gave better agreement between the values obtained on a crystal sample and on a powder sample.

Up-conversion luminescence in PbF\(_2\):Er\(^{3+}\),Yb\(^{3+}\) crystals

Knowing the \(\phi_{DS} \) of the \(^4S_{3/2} \) and \(^4F_{9/2} \) emitting states and the decay times of the \(^4I_{11/2} \) \& Yb\(^{3+}\):2F\(_{7/2}\) and \(^4I_{13/2}\) intermediate states, one can estimate the efficiency of the UC process based on excited state energy transfer. In general, \(\phi_{UC} \) should be less than or equal to 0.5\(\phi_{DS} \) as UC is a two- or three-photon process. In addition, the longer decay time of \(^4I_{11/2} \) \& Yb\(^{3+}\):2F\(_{7/2}\) and \(^4I_{13/2}\) states provides a greater probability of UC at lower excitation intensities, which is important for many applications.

Fig. 5(a) demonstrates the upconversion emission spectra under 976 nm excitation with an intensity of 350 W cm\(^{-2}\), where all spectra are normalised to the maximum intensity of the \(^4F_{9/2} \)\(^{-}4I_{15/2}\) transition. First, the UC properties of the crystals were investigated experimentally using a direct approach: \(\phi_{UC} \) was measured in the integrating sphere at different excitation intensities of the 976 nm laser. It is important to note that the results of measurements of \(\phi_{UC} \) can be biased in a number of ways\(^{55}\). First, at high intensities the samples can heat up, reducing the emission intensity. Second, the emission can be reabsorbed by the sample as it propagates through the integrating sphere, reducing the luminescence. The last major source of the error in the estimation of the \(\phi_{UC} \) is related to the geometry of the sample. During propagation through the sample, the excitation intensity is being absorbed. This leads to a decrease in the incident intensity inside the sample, and

Table 5 Comparison of the radiative lifetime of Er\(_2\)Yb\(_5\) powder obtained with different approaches based on the JO theory

<table>
<thead>
<tr>
<th>Emission band</th>
<th>Lifetime, ms</th>
<th>Crystal Method A(^{50})</th>
<th>Method B(^{51})</th>
<th>Method C(^{52,53})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^4S_{3/2})(-^4I_{11/2})</td>
<td>0.56</td>
<td>0.40</td>
<td>0.58</td>
<td>0.50</td>
</tr>
<tr>
<td>(^4H_{15/2})(-^4I_{15/2})</td>
<td>0.62</td>
<td>0.35</td>
<td>0.89</td>
<td>0.77</td>
</tr>
<tr>
<td>(^4S_{3/2})(-^4I_{15/2})</td>
<td>0.82</td>
<td>0.73</td>
<td>0.71</td>
<td>0.61</td>
</tr>
<tr>
<td>(^4F_{9/2})(-^4I_{15/2})</td>
<td>1.03</td>
<td>0.51</td>
<td>1.66</td>
<td>1.43</td>
</tr>
<tr>
<td>(^4I_{11/2})(-^4I_{15/2})</td>
<td>8.42</td>
<td>3.81</td>
<td>17.56</td>
<td>14.69</td>
</tr>
<tr>
<td>(^4I_{13/2})(-^4I_{15/2})</td>
<td>9.02</td>
<td>8.44</td>
<td>9.01</td>
<td>7.26</td>
</tr>
<tr>
<td>(^4I_{13/2})(-^4I_{15/2})</td>
<td>8.17</td>
<td>8.19</td>
<td>12.71</td>
<td>8.09</td>
</tr>
</tbody>
</table>

Relative RMS (w/o \(^4I_{9/2}\))

<table>
<thead>
<tr>
<th></th>
<th>Relative RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal</td>
<td>0.73</td>
</tr>
<tr>
<td>Method A(^{50})</td>
<td>0.95</td>
</tr>
<tr>
<td>Method C(^{52,53})</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Judd–Ofelt parameters, \(\times 10^{-20} \) cm\(^2\)

\(\Omega_1 \)

0.95 1.08 0.68 0.73

\(\Omega_2 \)

0.12 1.79 0.31 0.34

\(\Omega_3 \)

1.14 0.95 1.00 1.08

Relative RMS

2.86 0.74 0.67 0.67

Fig. 4 (a) The excitation spectrum of the \(^4S_{3/2} \)\(^{-}^4I_{15/2}\) transition (detection at 540 nm); (b) the reflectance (R) spectrum of the Er\(_2\)Yb\(_5\) powder sample. The arrows indicate the bands used to calculate the Judd–Ofelt parameters.
due to the non-linear nature of the up-conversion process, a decrease in observed ϕ_{UC}.

The first problem can be solved by estimating the temperature of the sample from the ratio of the $^2\text{H}_{11/2}$ and $^4\text{S}_{3/2}$ emission bands, which are thermally coupled. The temperature can be calculated as

$$\frac{1}{T} = \frac{1}{T_0} \cdot \frac{k_B}{\Delta E} \cdot \ln \left(\frac{I_{520}P_{550}^0}{I_{550}P_{520}^0} \right) \tag{4}$$

where k_B is the Boltzmann constant, ΔE is the energy difference between the $^2\text{H}_{11/2}$ and $^4\text{S}_{3/2}$ levels, and I_{520} and I_{550} are the emission intensities of the $^2\text{H}_{11/2}$ and $^4\text{S}_{3/2}$ levels respectively. T_0 is the initial temperature in the absence of excitation and P_{520}^0 and P_{550}^0 are the emission intensities at the initial temperature.

The procedure was described in detail in the literature and the results of the calculation with eqn (4) are displayed in Fig. 5(b) (ESI†). It can be seen that only in the sample with the highest concentration of Yb$^{3+}$ (Er2Yb7.5) there is noticeable change in the temperature of the sample.

The problem of re-absorption within the integrating sphere can be solved as described previously for ϕ_{US} in Table 3 and Fig. S4 (ESI†). Finally, in order to account for the effect of sample size on the calculated ϕ_{UC} values, several assumptions should be made. A crystalline sample of a given thickness is considered to be a seamless stack of 100 layers. The ϕ_{UC} of each layer was assumed to be $\phi_{\text{UC}} \propto f^\epsilon$ where I is the incident intensity and n is varied from 0 to 1 in 0.1 steps to illustrate different power dependencies of ϕ_{UC}. It is then possible to calculate the number of incident and absorbed photons for each layer as well as the ϕ_{UC} of the layer. Combination of these two values (ϕ_{UC} and n) gives the number of photons emitted by each layer. By summing the emitted and absorbed photons in each layer, the ϕ_{UC} of the sample can be calculated based on measured ϕ_{UC} (Fig. S9, ESI†).

The ϕ_{UC} values after the above-mentioned corrections (similar to the detailed explanation given by Madirov et al.25) are presented in the Fig. 5(b). The data in Fig. 5(b) indicate that ϕ_{UC} increases as the incident intensity increases, reaching its maximum value of 5.9% observed at 350 W cm$^{-2}$ for the Er2Yb3 crystal. It is known that the synthesis of PbF$_2$ single crystals by the Bridgman method can lead to a certain amount of defects in the crystal lattice,57 which could quench the emission. As a result, it might lead to slightly lower observed ϕ_{UC} values compared to SrF$_2$:Er$^{3+}$,Yb$^{3+}$ (6.5%)16 and BaF$_2$:Er$^{3+}$,Yb$^{3+}$ (9.9%)19 crystals. As in BaF$_2$:Er$^{3+}$,Yb$^{3+}$ and SrF$_2$:Er$^{3+}$,Yb$^{3+}$, at low intensities (<10 W cm$^{-2}$) the highest ϕ_{UC} is observed in the samples with the maximum amount of the Yb$^{3+}$ ions (7.5%), whereas at higher intensities (>10 W cm$^{-2}$) samples with a lower concentration (3%) of Yb$^{3+}$ demonstrate the highest ϕ_{UC}.

The experimental dependence of ϕ_{UC} on excitation intensity can be examined using the approach proposed by Joseph et al. in order to estimate a single figure of merit parameter of the UC process – critical power density (CPD).32 Based on the CPD value, other important parameters of the UC process – the maximum value of the quantum yield (ϕ_{UCsat}) and the energy transfer rate between donor and acceptor ions (k_{12}) can be derived.32 It should be noted that the CPD concept was derived for a two-photon UC process (such as population and emission from the $^4\text{S}_{3/2}$ state) and not for a three-photon process (which sometimes refers to emission from the $^4\text{F}_{9/2}$ state). Table 6 displays experimental values of the UC quantum yield at a maximum intensity of 350 W cm$^{-2}$ (Max ϕ_{UC}), the values of the CPD, the values of ϕ_{UCCPD} (UC quantum yield at an intensity corresponding to the CPD), as well as ϕ_{UCsat} and k_{12} derived from the CPD.

The following conclusions can be drawn from the data in Table 6. The CPD value decreases as the concentration of the Yb$^{3+}$ ions increases and reaches 9.2 W cm$^{-2}$ for the Er2Yb7.5 sample. Slightly lower CPD values (~1 W cm$^{-2}$) have previously been reported for the most efficient hosts (NaYF$_4$, YF$_3$, YCl$_3$, and La$_2$O$_3$)32. However, these lower values were observed at a much higher concentration of Yb$^{3+}$ (18%). Thus, a high concentration of Yb$^{3+}$ is preferred to obtain a high quantum yield at a lower excitation intensity. In contrast, the highest value of ϕ_{UCsat} is expected for the sample with the lowest doping concentration (Er1.5Yb1.5), the sample with the lowest probability of the cross-relaxation. It is interesting to note that
Table 6 Maximum (at 350 W cm$^{-2}$) ϕ_{UC} values for UC emission in the 400–900 nm range (Max ϕ_{UC} total) and for the $^4S_{3/2}$ – $^4I_{15/2}$ emission (Max ϕ_{UC} $^4S_{3/2}$–$^4I_{15/2}$); CPD: ϕ_{UC} at CPD ($\phi_{UC,CPD}$); and saturation ϕ_{UC} (ϕ_{UCsat}) as well as energy transfer rate (κ_{123}) of the $^4S_{3/2}$–$^4I_{15/2}$ transition.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Max ϕ_{UC} total, %</th>
<th>Max ϕ_{UC} $^4S_{3/2}$–$^4I_{15/2}$, %</th>
<th>CPD $^4S_{3/2}$–$^4I_{15/2}$, W cm$^{-2}$</th>
<th>$\phi_{UC,CPD}$</th>
<th>ϕ_{UCsat} $^4S_{3/2}$–$^4I_{15/2}$, %</th>
<th>κ_{123} $^4S_{3/2}$–$^4I_{15/2}$, cm$^{-1}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er1.5Yb1.5</td>
<td>4.3</td>
<td>4.4</td>
<td>1.0</td>
<td>0.9</td>
<td>0.4</td>
<td>6.0</td>
</tr>
<tr>
<td>Er2Yb2</td>
<td>4.4</td>
<td>5.9</td>
<td>1.2</td>
<td>1.1</td>
<td>0.4</td>
<td>2.1</td>
</tr>
<tr>
<td>Er2Yb3</td>
<td>4.7</td>
<td>4.8</td>
<td>1.3</td>
<td>1.0</td>
<td>0.4</td>
<td>1.9</td>
</tr>
<tr>
<td>Er2Yb5</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er2Yb7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ϕ_{UCsat} (Table 6) is 0.5 ϕ_{DS} (Table 3) for most samples, with a slightly larger deviation for Er2Yb7.5. Furthermore, it could be assumed that in the case of the $^4S_{3/2}$ state, the relatively low ϕ_{DS} is a limiting factor for achieving high ϕ_{UC}.

While it is well known that the green UC emission from the $^4S_{3/2}$ state is a two-photon process, the red UC emission from the $^4F_{9/2}$ state may have a more complex origin. It is hypothesized that if the $^4F_{9/2}$ state is populated via relaxation of the $^4S_{3/2}$ state (and also a two-photon process), the red-to-green (R/G) ratio in the UC spectra should be similar to the R/G ratio observed for the direct excitation of the $^4S_{3/2}$ state. In the latter case, the R/G ratio can be estimated from the values of ϕ_{DS} given in Table 3. Therefore, a comparison of the R/G ratios for the UC and DS processes should shed light on the mechanism of the $^4F_{9/2}$ state population. Fig. 6(a) demonstrates how the R/G ratio changes as a function of excitation intensity in the UC process for the Er2Yb5 sample. At low excitation intensities (<1 W cm$^{-2}$), the R/G ratio in the UC spectra corresponds well to the R/G value obtained by direct excitation of the $^4S_{3/2}$ state (R/G = 1.5). It is therefore likely that the $^4F_{9/2}$ state originates from the $^4S_{3/2}$ state via non-radiative relaxation. However, increasing the excitation intensity (>1 W cm$^{-2}$) clearly leads to an increase in the R/G ratio. This rise in red emission can be explained either by the model proposed by Berry and May,18 where the $^4F_{9/2}$ state results from the three-photon process of populating the $^2H_{9/2}$ state and the subsequent back energy transfer to Yb$^{3+}$, or by the ETU process involving $^1I_{13/2}$ state.

In turn, the $^1I_{13/2}$ state can stem either by radiative transition from the $^1I_{11/2}$ or $^2S_{3/2}$ states, or by cross-relaxation of the $^4F_{9/2}$ state. The probability of the $^1I_{11/2}$–$^1I_{13/2}$ transition (0.04) was calculated earlier in Table 4 as the contribution of both radiative and phonon-assisted relaxation processes. This probability does not depend on the excitation intensity and, thus ϕ_{DS} of the $^1I_{11/2}$–$^1I_{13/2}$ radiative process should also remain constant. However, an interesting observation can be found in Fig. 6(b). The quantum yield of the $^1I_{11/2}$–$^1I_{13/2}$ luminescence increases with increasing laser intensity, suggesting that the $^1I_{13/2}$ state is populated via a new pathway at high excitation intensity – mainly via cross-relaxation of the $^2S_{3/2}$ state and minimally via the $^2S_{3/2}$–$^4I_{13/2}$ radiative transition. Although it is rather difficult to decide how the $^4F_{9/2}$ state is populated – either via the Berry and May model or via the $^1I_{13/2}$ state – it can be assumed that the sublinear increase in the number of $^4I_{13/2}$ states with excitation intensity leads to an increase in the number of $^4F_{9/2}$ states (by the ETU process: $^1I_{13/2} + ^2F_{5/2}$ → $^4F_{9/2} + ^2F_{7/2}$) and thus to an increase in the R/G ratio. Fig. S11 (ESI†) also demonstrates the similar trends in the R/G ratio and ϕ_{DS} for other investigated samples. Thus, the assumption made about additional population of the $^4F_{9/2}$ state via $^2I_{13/2}$ state can be valid for a wide range of Yb$^{3+}$ concentrations (1.5–7.5%).

Conclusions

The optical properties of a series of crystalline PbF$_2$:Er$^{3+}$,Yb$^{3+}$ samples (with fixed Er$^{3+}$ concentration of 2 mol% and variable Yb$^{3+}$) concentration of (2–7.5 mol%) were investigated. Since the luminescence properties of the $^2S_{3/2}$ and $^4F_{9/2}$ states of Er$^{3+}$ are important for understanding of the UC in PbF$_2$:Er$^{3+}$,Yb$^{3+}$ crystals, they were investigated by applying JO analysis, luminescence decay measurements and determination of the absolute luminescence quantum yield at the direct excitation of the corresponding states. It was shown that the quantum yield of the $^2S_{3/2}$ and $^4F_{9/2}$ states can be predicted using the JO model and luminescence decays, and that these values are in good conformity with experimental values of quantum yield measured by an integrating sphere. In the case study for the Er2Yb5 crystal, ϕ_{DS} values of 3.3% ($^4S_{3/2}$–$^4I_{15/2}$ transition) and 29.2% ($^4F_{9/2}$–$^4I_{13/2}$ transition) were obtained from the JO model, while 31.1% and 24.7%, respectively, were measured using an integrating sphere. The proposed method can also be applied to other upconversion materials doped with rare earth ions (Tm$^{3+}$ and Ho$^{3+}$), as long as it is possible to perform Judd–Ofelt analysis for the emitting ions and obtain luminescence decay times. Upon excitation with a 976 nm laser, all PbF$_2$:Er$^{3+}$,Yb$^{3+}$ crystals exhibit bright UC emission. In the case study for the Er2Yb5 crystal, the value of ϕ_{UCsat} for the $^4S_{3/2}$–$^4I_{15/2}$ transition was estimated to be 1.2%. This value follows an empirical rule $\phi_{UCsat} \approx 0.5\phi_{DS}$, leading to the conclusion that the pure emission property of the $^2S_{3/2}$ state is the limiting factor for a UC quantum yield. Overall, ϕ_{UC} can be as high as 4.4% for the
Er2Yb5 crystal (at intensity of 350 W cm\(^{-2}\)) because it also includes the \(^{4}F_{9/2} \rightarrow ^{4}I_{15/2}\) transition with much higher \(\phi_{\text{DS}}\). The \(^{4}F_{9/2}\) state originates from the \(^{2}S_{1/2}\) via multi phonon relaxation (with probability of 0.136 for the Er2Yb5 sample) or via the ETU from the \(^{4}I_{13/2}\) state or via the \(^{2}H_{11/2}\) state. This complex path reduces the \(\phi_{\text{UC}}\) for the \(^{4}F_{9/2} \rightarrow ^{4}I_{15/2}\) transition, although the emission property of the \(^{4}F_{9/2}\) state is good. The highest value of \(\phi_{\text{UC}}\) 5.9% was measured for the Er2Yb3 crystal in the sample series.

UC materials are often not available in the form of transparent crystals, but are synthesized as microcrystalline or nanocrystalline powders. Several methods of JO parameters calculation for powder samples are available in the literature. In the present work, comparison of three methods (for powder samples) with results obtained for a single crystal of identical material was done. The RMS analysis reveals that method, utilizing the reflection spectrum and giving \(\Omega\) parameters measured in arbitrary units, gives better agreement between the results obtained for the crystal and the powder. The true values of \(\Omega\) (in cm\(^{-2}\)) were then recovered by the known value of radiative lifetime for the \(^{4}I_{13/2} \rightarrow ^{4}I_{15/2}\) transition. However, it has been demonstrated that the radiative lifetime of the \(^{4}I_{13/2} \rightarrow ^{4}I_{15/2}\) transition cannot simply be considered equal to the measured decay time of the \(^{4}I_{13/2} \rightarrow ^{4}I_{15/2}\) transition, as very often due to the non-perfect crystalline materials and the presence of additional quenching channels \(\phi_{\text{DS}} < 100\%\). More careful data evaluation of radiative rate for the \(^{4}I_{13/2} \rightarrow ^{4}I_{15/2}\) transition is therefore required before applying decay time of the \(^{4}I_{13/2} \rightarrow ^{4}I_{15/2}\) transition in the JO analysis.

Although \(\phi_{\text{UC}}\) of PbF\(_{2}\):Er\(^{3+}\),Yb\(^{3+}\) crystals does not outperform SrF\(_{2}\):Er\(^{3+}\),Yb\(^{3+}\) (\(\phi_{\text{UC}} = 6.5\%\)) and BaF\(_{2}\):Er\(^{3+}\),Yb\(^{3+}\) (\(\phi_{\text{UC}} = 10.0\%\)) crystal series, the comprehensive data set presented in our work for PbF\(_{2}\):Er\(^{3+}\),Yb\(^{3+}\) crystals can contribute to a better understanding of UC phenomena and provide a reference data set for the use of UC materials in practical applications.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The reported study was funded DFG (project no. TU 487/8-1 for A. T. and B. S. R.). The financial support provided by the Helmholtz Association is gratefully acknowledged: (1) a Recruitment Initiative Fellowship for B. S. R.; (2) the funding of chemical synthesis equipment from the Helmholtz Materials Energy Foundry (HEMF); and (3) Research Field Energy—Program Materials and Technologies for the Energy Transition—Topic 1 Photovoltaics. The authors acknowledge T. Bergfeldt (IAM, KIT) for conducting WDXRF analysis.

References