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AN SPQR-TREE-LIKE EMBEDDING REPRESENTATION
FOR LEVEL PLANARITY∗†

Guido Brückner‡ and Ignaz Rutter§

Abstract. An SPQR-tree is a data structure that efficiently represents all planar embed-
dings of a biconnected planar graph. It is a key tool in a number of constrained planarity
testing algorithms, which seek a planar embedding of a graph subject to some given set of
constraints.

We develop an SPQR-tree-like data structure that represents all level-planar em-
beddings of a biconnected level graph with a single source, called the LP-tree, and give an
algorithm to compute it in linear time. Moreover, we show that LP-trees can be used to
adapt three constrained planarity algorithms to the level-planar case by using LP-trees as a
drop-in replacement for SPQR-trees.

1 Introduction

Testing planarity of a graph and finding a planar embedding, if one exists, are classical al-
gorithmic problems. For visualization purposes, it is often desirable to draw a graph subject
to certain additional constraints, e.g., finding orthogonal drawings [41] or symmetric draw-
ings [32], or inserting an edge into an embedding so that few edge crossings are caused [29].
Historically, these problems have been considered for embedded graphs. More recent research
has attempted to optimize not only one fixed embedding, but instead to optimize over all
possible planar embeddings of a graph. This includes (i) orthogonal drawings [11], (ii) si-
multaneous embeddings, where one seeks to embed two planar graphs that share a common
subgraph such that they induce the same embedding on the shared subgraph (see [10, 40]
for a survey), (iii) simultaneous orthogonal drawings [3], (iv) embeddings where some edge
intersections are allowed [1], (v) inserting an edge [29], a vertex [15], or multiple edges [16]
into an embedding, (vi) partial embeddings, where one insists that the embedding extends
a given embedding of a subgraph [4], and (vii) finding minimum-depth embeddings [6, 7].

The common tool in all of these recent algorithms is the SPQR-tree data struc-
ture, which efficiently represents all planar embeddings of a biconnected planar graph G by
breaking down the complicated task of choosing a planar embedding of G into the task of
independently choosing a planar embedding for each triconnected component of G [21, 22,
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23, 33, 38, 42]. This is a much simpler task since the triconnected components have a very
restricted structure, and so the components offer only basic, well-structured choices.

An upward planar drawing is a planar drawing where each edge is represented by
a y-monotone curve. For a level graph G = (V,E), which is a directed graph where each
vertex v ∈ V is assigned to a level ℓ(v) such that ℓ(u) < ℓ(v) for each edge (u, v) ∈ E, a level-
planar drawing is an upward planar drawing where each vertex v is mapped to a point on the
horizontal line y = ℓ(v). Level planarity can be tested in linear time [24, 35, 36, 39]. Recently,
the problem of extending partial embeddings for level-planar drawings has been studied [13].
While the problem is NP-hard in general, it can be solved in polynomial time for single-source
graphs. Very recently, an SPQR-tree-like embedding representation for upward planarity
has been used to extend partial upward embeddings [12], see also [17]. Its construction
crucially relies on an existing decomposition result for upward-planar graphs [34]. No such
result exists for level-planar graphs. Moreover, the level assignment leads to components of
different “heights”, which makes our decompositions significantly more involved.

Contribution. We develop the LP-tree, an analogue of SPQR-trees for level-planar embed-
dings of level graphs with a single source whose underlying undirected graph is biconnected.
It represents the choice of a level-planar embedding of a level-planar graph by individual
embedding choices for certain components of the graph, for each of which the embedding is
either unique up to reflection, or allows to arbitrarily permute certain subgraphs around two
pole vertices. Its construction is based on suitably modifying the SPQR-tree of G, which
represents all planar embeddings of G, not just the level-planar ones, such that, eventually,
the modified tree represents exactly the level-planar drawings of G. See Figure 1 (a, b)
for examples of how level planarity is more restrictive than planarity. The size of the LP-
tree is linear in the size of G and it can be computed in linear time. The LP-tree is a
useful tool that unlocks the large amount of SPQR-tree-based algorithmic knowledge for
easy translation to the level-planar setting. In particular, we obtain linear-time algorithms
for partial and constrained level planarity for biconnected single-source level graphs, which
improves upon the O(n2)-time algorithm known to date [13]. Further, we describe the first
efficient algorithm for the simultaneous level planarity problem when the shared graph is a
biconnected single-source level graph.

We first introduce important concepts and notation that we use throughout the paper
in Section 2. We show the existence of LP-trees in Section 3. The proof is constructive and
immediately gives a polynomial-time algorithm, which we then improve to run in linear time.
In Section 4, we present three applications of LP-trees. Finally, we give some concluding
remarks in Section 5.

2 Preliminaries

Let G = (V,E) be a connected level graph. We assume further that for each vertex v ∈ V ,
we are given a value d(v) ≥ ℓ(v) called the demand of v. Demands provide an interface to
model the restrictions imposed on the embeddings of one biconnected component by other
biconnected components; see Figure 1 (c).
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Figure 1: In (a), the height of the red component makes it impossible to flip it. In (b),
note that the red and green components can be exchanged, as can the blue and yellow
components, but neither the blue nor the yellow component can be embedded between the
red and green component. In (c), set the demand of v as d(v) = ℓ(w) in the LP-tree that
represents the graph that consists of the red and gray part (but not the striped blue part).
This models the restriction imposed on the embedding of the red subgraph by the striped
blue biconnected component.

An apex of some vertex set V ′ ⊆ V is a vertex v ∈ V ′ whose level is maximum.
We write apex(V ′) for the set of all apices of V ′. The demand of V ′, denoted by d(V ′) =
max{d(v) | v ∈ V ′}, is the maximum demand of a vertex in V ′. Similarly, we write ℓ(V ′) =
max{ℓ(v) | v ∈ V ′} to denote the maximum level of the vertices in V ′. An apex of a face f
is an apex of the vertices incident to f , and we denote the set of all apices of f by apex(f).

A planar drawing of G is a planar drawing of the underlying undirected graph of G in
the plane. Planar drawings are equivalent if they can be continuously transformed into each
other without creating intermediate intersections. A planar embedding is an equivalence
class of equivalent planar drawings. Planar embeddings of connected graphs are usually
represented by specifying a rotation system, which defines the clockwise cyclic order of the
edges around each vertex, and an outer face.

Level Graphs and Level-Planar Embeddings. A path is a sequence (v1, v2, . . . , vj) of ver-
tices so that for 1 ≤ i < j either (vi, vi+1) ∈ E or (vi+1, vi) ∈ E. A directed path is a
sequence (v1, v2, . . . , vj) of vertices so that (vi, vi+1) ∈ E for 1 ≤ i < j. A vertex u domi-
nates a vertex v if there exists a directed path from u to v. A vertex is a sink if it dominates
no vertex except for itself. A vertex is a source if it is dominated by no vertex except for
itself. An st-graph is a graph with a single source and a single sink, usually denoted by s
and t, respectively.

For the remainder of this paper we restrict our considerations to level-planar drawings
of G where each vertex v ∈ V that is not incident to the outer face is incident to some inner
face f so that each apex a of f satisfies d(v) < ℓ(a). We call such drawings level-planar
with demand d, and say that G is level-planar with demand d, if it admits a corresponding
drawing. Note that setting d(v) = ℓ(v) for each v ∈ V gives the conventional definition of
level-planar drawings.

We sketch in Section 4 how to use demands to restrict the admissible embeddings
of biconnected components in the presence of cutvertices. A planar embedding Γ of G is
level-planar (with demand d) if there exists a level-planar drawing of G (with demand d)
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whose underlying planar embedding is Γ. We then call Γ a level-planar embedding (with
demand d).

To simplify the exposition, we preprocess our input level graph G = (V,E) on k
levels to a level graph G′ on d(V ) + 1 levels as follows. We obtain G′ from G by adding a
new vertex t on level d(V ) + 1 with demand d(t) = d(V ) + 1, connecting it to all vertices
on level k and adding the edge (s, t). Note that G′ is generally not an st-graph. Let H be a
graph with a level-planar embedding Γ and let H ′ be a supergraph of H with a level-planar
embedding Γ′. The embedding Γ′ extends Γ if Γ′ and Γ coincide on H. The embeddings
of G′ where the edge (s, t) is incident to the outer face and the embeddings of G are, in a
sense, equivalent.

Lemma 1. A planar embedding Γ of G is level-planar if and only if there exists a level-planar
embedding Γ′ of G′ that extends Γ.

Proof. Let Γ be a planar embedding of G so that there exists a level-planar embedding Γ′

of G′ that extends Γ. Because G is a subgraph of G′, the restriction of Γ′ to G, which is Γ,
is also level-planar.

Conversely, let Γ be a level-planar embedding of G. Since all apices of V lie on the
outer face, the newly added vertex t can be connected to them without causing any edge
crossings. Then, because s is the single source of G and t is the sole apex of V (G′), the
edge (s, t) can be drawn into the outer face as a y-monotone curve without causing edge
crossings. Let Γ′ refer to the resulting embedding. Then Γ′ is a level-planar embedding of G′

that extends Γ.

To represent all level-planar embeddings of G, it is sufficient to represent all level-
planar embeddings of G′ and to remove t and its incident edges from all embeddings. It is
easily observed that if G is a biconnected single-source graph, then so is G′. We assume from
now on that the vertex set of our input graph G has a unique apex t and that G contains
the edge (s, t). We still refer to the highest level as level k, i.e., the apex t lies on level k.

Level-planar embeddings Γ of a graph G can be characterized by the existence of a
supergraph H of G that is an st-graph and that has a planar embedding whose restriction
to G is Γ. We use Lemmas 2 and 3, and a novel characterization of single-source level
planarity in Lemma 4 to prove that certain planar embeddings are also level-planar.

Lemma 2. Let G = (V,E) be a level graph with a single-source s and a unique apex t.
Further, let Γ be a level-planar embedding of G. Then there exists an st-graph Gst = (V,E∪
Est) together with a level-planar embedding Γst that extends Γ.

Proof. We prove the claim by induction over the number of sinks in G. Note that because t
is an apex of G, it must be a sink. So G has at least one sink. If G has one sink, the claim is
trivially true for Est = ∅. Now suppose that G has more than one sink. Let w ̸= t be a sink
of G. In some level-planar drawing of G with embedding Γ, walk up vertically from w into
the incident face above w. If a vertex v or an edge (u, v) is encountered, set Est = {(w, v)}.
If no vertex or edge is encountered, w lies on the outer face of Γ. Then set Est = {(w, t)}.
Note that in both cases the added edge can be inserted into the drawing as a y-monotone
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curves while maintaining level-planarity, and this decreases the number of sinks by 1. Then
extend Est inductively, which shows the claim.

Next we establish a characterization of the planar embeddings that are level-planar.
The following lemma is implicit in the planarity test for st-graphs by Chiba [14] and the
work on upward planarity by Di Battista and Tamassia [20].

Lemma 3. Let G be an st-graph. Then each planar embedding Γ of G where (s, t) is incident
to the outer face is also a level-planar embedding of G and vice, versa.

Proof. Consider a vertex v ̸= s, t of G. Then the incoming and outgoing edges appear
consecutively around v in Γ. To see this, suppose that there are four vertices w, x, y, z ∈ V
with edges (w, v), (v, x), (y, v), (v, z) ∈ E that appear in that counter-clockwise cyclic order
around v in Γ; see Fig. 2 (a). Because G is an st-graph there are directed paths pw and py
from s to w and y, respectively, and directed paths px and pz from x and z to t, respectively.
Moreover, p ∈ {pw, py} and p′ ∈ {px, pz} are disjoint and do not contain v. Then some p ∈
{pw, py} and p′ ∈ {px, pz} must intersect, a contradiction to the fact that Γ is planar.

Let e1, e2, . . . , ei, ei+1, . . . , en be the counter-clockwise cyclic order of edges around v
in Γ so that e1, . . . , ei are incoming edges and ei+1, . . . , en are outgoing edges. In other
words, e1, . . . , ei denote the left-to-right order of incoming edges and en, en−1, . . . , ei+1 denote
the left-to-right order of outgoing edges. Split the clockwise cyclic order of edges around s
at (s, t) to obtain the left-to-right order of outgoing edges. Symmetrically, split the counter-
clockwise order of edges around t at (s, t) to obtain the left-to-right order of incoming edges.

Create a level-planar drawing Γ′ of G step by step as follows; see Fig. 2. Draw
vertices s and t on levels ℓ(s) and ℓ(t), respectively, and connect them by a straight-line
segment. Call the vertices s, t and the edge (s, t) discovered. Call the path s, t the right
frontier. Call a vertex on the right frontier settled if all of its outgoing edges are discovered.

More generally, let s = u1, u2, . . . , un = t denote the right frontier. Modify the right
frontier while maintaining that (i) the right frontier is a directed path from s to t, (ii) the
edges on the boundary of and in the interior of the cycle formed by the right frontier and the
edge (s, t) are precisely the discovered edges, and (iii) the edge (s, t) and the right frontier
bound the left and right side of the outer face of Γ′, respectively.

Let ui denote the vertex on the right frontier closest to t that is not settled. Discover
the leftmost undiscovered outgoing edges starting from ui to construct a directed path v1 =
ui, v2, . . . , vm, where vm is the first vertex that had been discovered before. Because G has a
single sink such a vertex exists. Because Γ is planar, vm lies on the right frontier, i.e., vm = uj
for some j with i < j ≤ n. Draw the vertices v2, . . . , vm−1 and the edges (va, va+1) for 1 ≤
a < m to the right of the path ui, . . . , uj in Γ′ (Property (iii) of the invariant), maintaining
level-planarity of Γ′. This creates a new face f of Γ′ whose boundary is ui, ui+1, . . . , uj =
vm, vm−1, . . . , v1 = ui.

We show that f is a face of Γ. Because ua is settled for a > i, there cannot be an
undiscovered outgoing edge between (ua−1, ua) and (ua, ua+1) in the counter-clockwise order
of edges around ua in Γ for i < a < j (see edge g in Fig. 2 (b)). There can also not be a
discovered outgoing edge because of Property (ii) of the invariant (see edge e in Fig. 2 (b)).
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Figure 2: Proof of Lemma 3. The incoming and outgoing edges around each vertex are
consecutive (a). Creating the level-planar embedding Γ′ by attaching the path v1, v2, . . . , vm
(drawn in red) to the right frontier u1, u2, . . . , un, thereby creating a new face f . Discovered
edges are drawn thickly. The edges e, g, h, q, r, d cannot exist.

Since we always choose leftmost undiscovered edges, there is no undiscovered outgoing edge
between (va, va+1) and (va−1, va) in the counter-clockwise order of edges around va in Γ
for 1 < a < m (see edge h in Fig. 2 (b)). There can also not be a discovered outgoing edge
because va was not discovered before (see edge q in Fig. 2 (b)). There can be no outgoing edge
between (v1, v2) and (ui, ui+1) in the counter-clockwise order of edges around v1 = ui because
either such an edge would be discovered contradicting Property (ii), or not, contradicting
the fact that (v1, v2) is chosen as the leftmost undiscovered outgoing edge of v1. There can
be no outgoing edge between (uj−1, uj) and (vm−1, vm) in the counter-clockwise order of
edges around uj = vm because either uj = vm = t is a sink, or the incoming and outgoing
edges appear consecutively around uj = vm in Γ (see edge d in Fig. 2 (b)).

There can also be no incoming edge (u, v) between any of these edge pairs (see edge r
in Fig. 2 (b)). This is because G has a single source s, so there exists a directed path p
from s to u. Because u lies inside of f , the path p must contain a vertex x on the boundary
of f . Then p would also contain an outgoing edge of x which we have just shown to be
impossible.

Let s = u1, u2, . . . , ui = v1, v2, . . . , vm = uj , . . . , un = t denote the new right frontier.
Note that the invariant holds for this modified right frontier. Because G has a single source,
the above procedure discovers (and hence draws) all vertices and edges of G in this way.
Because Γ and Γ′ have the same faces they are the same embedding. Finally, Γ′ is level-planar
by construction, which shows the claim.

Thus, a planar embedding Γ of a graph G is level-planar if and only if it can be
augmented to an st-graph G′ ⊇ G such that all augmentation edges can be embedded in
the faces of Γ without crossings. This gives rise to the following characterization.

Lemma 4. Let G be a single-source k-level graph with a unique apex t. A planar embedding Γ
of G is level-planar if and only if each vertex of v with ℓ(v) < k is incident to at least one
face f such that v is not an apex of f .

Proof. Let Γl be a level-planar drawing of G. Consider a vertex v with ℓ(v) < ℓ(t). If v has
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an outgoing edge (v, w), then v and w are incident to some shared face f . Since ℓ(v) < ℓ(w),
vertex v is not an apex of f . If v has no outgoing edges, start walking upwards from v in a
straight line. Stop walking upwards if an edge (u,w) or a vertex w is encountered. Then v
and w are again incident to some shared face f . Moreover, ℓ(v) < ℓ(w), and therefore v is
not an apex of f . If no edge or vertex is encountered when walking upwards, v must lie on
the outer face. Because t lies on the outer face and ℓ(v) < ℓ(t), vertex v is not an apex of
the outer face. Finally, because Γl is level-planar it is, of course, also planar.

Conversely, let Γp be a planar embedding of G where every vertex v with ℓ(v) < ℓ(t)
is incident to at least one face of which it is not an apex. The idea is to augment G and Γp

by inserting edges so that G becomes an st-graph together with a planar embedding Γp. To
that end, fix for each face f an arbitary apex af ∈ apex(f) and consider each sink v ̸= t
of G. By assumption, v is incident to at least one face f so that v is not an apex of f , and
hence ℓ(v) < ℓ(af ). So the augmentation edge e = (v, af ) can be inserted into G without
creating a cycle. Further, e can be embedded into f .

Because all augmentation edges that are embedded into the same face f have the
same endpoint af , the embedding Γp of G remains planar. This means that G can be
augmented so that t becomes the only sink while maintaining the planarity of Γp. Because G
also has a single source, G is now an st-graph and it follows from Lemma 3 that Γp is not
only planar, but also level-planar.

In particular, since all the demands satsisfy d(v) ≥ ℓ(v) for all v ∈ V , we have the
following corollary.

Corollary 1. Let G be a single-source k-level graph with a unique apex t and let Γ be a planar
embedding of G. Then Γ is level-planar with demand d if and only if every vertex v that
does not lie on the outer face is incident to a face with an apex a that satisfies d(v) < ℓ(a).

Decomposition Trees and SPQR-Trees. Our description of decomposition trees follows
Angelini et al. [2]. Let G be a biconnected graph. A separation of G consists of two
subgraphs H1, H2 of G with H1 ∪ H2 = G and H1 ∩ H2 = {u, v}. Define the tree T that
consists of two nodes µ1 and µ2 connected by an undirected arc as follows. For i = 1, 2
node µi is equipped with a multigraph skel(µi) = Hi+ei, called its skeleton, where ei = (u, v)
is called a virtual edge. The arc (µ1, µ2) links the two virtual edges ei in skel(µi) with each
other. We also say that the virtual edge e1 corresponds to µ2 and likewise that e2 corresponds
to µ1. The idea is that skel(µ1) provides a more abstract view of G where e1 serves as a
placeholder for H2. More generally, there is a bijection corrµ : E(skel(µ)) → N(µ) that maps
every virtual edge of skel(µ) to a neighbor of µ in T , and vice versa. For an arc (ν, µ) of T ,
the virtual edges e1, e2 with corrµ(e1) = ν and corrν(e2) = µ are called twins, and e1 is
called the twin of e2 and vice versa. This procedure is called a decomposition; see Fig. 3
on the left. It can be re-applied to skeletons of the nodes of T , which leads to larger
trees with smaller skeletons. A tree obtained in this way is a decomposition tree of G. A
decomposition can be undone by contracting an arc (µ1, µ2) of T , forming a new node µ
with a larger skeleton as follows. Let e1, e2 be twin edges in skel(µ1), skel(µ2). The skeleton
of µ is the union of skel(µ1) and skel(µ2) without the two twin edges e1, e2. Contracting all
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Figure 3: Decompose the embedded graph G on the left at the separation pair u, v. This
gives the center-left decomposition tree whose skeletons are embedded as well. Reflecting
the embedding of skel(µ) or, equivalently, flipping (λ, µ), yields the same decomposition tree
with a different embedding of skel(µ). Contract (λ, µ) to obtain the embedding on the right.

arcs of a decomposition tree of G results in a decomposition tree consisting of a single node
whose skeleton is G; see Fig. 3 on the right. Let µ be a node of a decomposition tree with
a virtual edge e with corrµ(e) = ν. The expansion graph of e and ν in µ, denoted by G(e)
and G(µ, ν), respectively, is the graph obtained by removing the twin of e from skel(ν) and
contracting all arcs in the subtree that contains ν.

Each skeleton of a decomposition tree of G is a minor of G. So if G is planar,
each skeleton of a decomposition tree T of G is planar as well. If (µ1, µ2) is an arc of T ,
and skel(µ1) and skel(µ2) have fixed planar embeddings Γ1 and Γ2, respectively, then the
skeleton of the node µ obtained from contracting (µ1, µ2) can be equipped with an em-
bedding Γ by merging these embeddings along the twin edges corresponding to (µ1, µ2);
see Fig. 3 on the right. This requires at least one of the virtual edges e1 in skel(µ1)
with corrµ1(e1) = µ2 or e2 in skel(µ2) with corrµ2(e2) = µ1 to be incident to the outer
face. If we equip every skeleton with a planar embedding and contract all arcs, we obtain a
planar embedding of G. This embedding is independent of the order of the edge contractions.
Thus, every decomposition tree T of G represents (not necessarily all) planar embeddings
of G by choosing a planar embedding of each skeleton and contracting all arcs.

Let eref be an edge of G, called the reference edge. Rooting T at the unique node µref

whose skeleton contains the real edge eref identifies a unique parent virtual edge in each of the
remaining nodes; all other virtual edges are called child virtual edges. We direct the arcs of T
from the root towards the leaves. This determines for each node µ ̸= µref a unique parent
virtual edge in skel(µ). We call its endpoints the poles of µ. Restricting the embeddings
of the skeletons so that the parent virtual edge (the edge eref in case of µref) is incident to
the outer face, we obtain a representation of (not necessarily all) planar embeddings of G
where eref is incident to the outer face. Let µ be a node of T and let e be a child virtual
edge in skel(µ) with corrµ(e) = ν. Then the expansion graph G(µ, ν) is simply referred to
as G(ν).

The SPQR-tree is a special decomposition tree whose skeletons are precisely the
triconnected components of G. It has four types of nodes: S-nodes, whose skeletons are
cycles, P-nodes, whose skeletons consist of three or more parallel edges between two vertices,
and R-nodes, whose skeletons are simple triconnected graphs. Finally, a Q-node has a
skeleton consisting of two vertices connected by one real and by one virtual edge. In the
skeletons of all other node types all edges are virtual. Moreover, no two S-nodes and no
two P-nodes can be adjacent. In an SPQR-tree the embedding choices are of a particularly
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Figure 4: A planar graph on the left and its SPQR-tree in the middle. The five nodes of
the SPQR-tree are represented by their respective skeleton graphs. Dashed edges connect
twin virtual edges and colored edges correspond to Q-nodes. The embedding of the graph
on the right is obtained by flipping the embedding of the blue R-node and swapping the
middle and right edge of the P-node.

simple form. The skeletons of Q- and S-nodes have a unique planar embedding (not taking
into account the choice of the outer face). The child virtual edges of P-node skeletons may
be permuted arbitrarily, and the skeletons of R-nodes are 3-connected, and thus have a
unique planar embedding up to reflection [43]. See Fig. 4 and Fig. 7 (a,b) for examples of a
planar graph and its SPQR-tree.

3 A Decomposition Tree for Level Planarity

We construct a decomposition tree of a given single-source level graph G = (V,E) whose
underlying undirected graph is biconnected that represents all level-planar embeddings of G,
called the LP-tree. As noted in Section 2, we assume that G has a unique apex t, for
which ℓ(t) = ℓ(V ).

The LP-tree for G is constructed based on the SPQR-tree for G. We keep the notion
of S-, P-, Q- and R-nodes and construct the LP-tree so that the nodes behave similarly
to their namesakes in the SPQR-tree. The skeleton of a P-node consists of two vertices
that are connected by at least four parallel virtual edges that can be permuted arbitrarily.
The skeleton of an R-node µ is equipped with a reference embedding Γµ, and the choice
of embeddings for such a node is limited to either Γµ or its reflection. Unlike in SPQR-
trees, the skeleton of µ need not be triconnected, instead it can be an arbitrary biconnected
planar graph. We note that, in SPQR-trees, P-nodes have at least three parallel virtual
edges. However a P-node that has only three parallel virtual edges has a fixed embedding
up to reflection, and we therefore consider such nodes as R-nodes.

In the following we first determine necessary conditions on the embeddings of the
skeletons of the SPQR-tree in order to obtain a level-planar embedding. Afterwards, we
modify the SPQR-tree so that it only represents embeddings that satisfy these necessary
conditions and show that they are also sufficient, i.e., the resulting decomposition tree
represents exactly the level-planar embeddings. Finally, we show that the construction can
be performed in linear time.
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3.1 Necessary Conditions

Let G = (V,E) be a biconnected single-source level graph with demand function d and
let T be its SPQR-tree. As a first step, we study necessary conditions on the embeddings
of skeletons of T for the corresponding embedding of G to be level-planar with demand d.
We will frequently use the following criterion for showing that a particular embedding is not
level-planar with demand d.

Lemma 5. Let G be a level graph with a fixed planar embedding Γ, let C be a cycle of G
and let v be a vertex that is embedded in the interior of C. If d(v) ≥ ℓ(C), then Γ is not
level-planar with demand d.

Proof. Let x be a vertex that is embedded in the interior of C and that maximizes d(x)
among all such vertices. If Γ is level-planar with demand d, then x must be incident to
a face whose apex a satisfies ℓ(a) > d(x) by Corollary 1. If a lies in the interior of C,
then d(a) ≥ ℓ(a) > d(x) contradicts the choice of x. If a lies on C, then ℓ(a) > d(x) ≥
d(v) ≥ ℓ(C) is a contradiction.

Let µ be a node of a decomposition tree of a graph G with poles u, v. We define d(µ)
as the maximum level of any vertex in G(µ), except for u and v. The following lemma gives
a necessary condition on the ordering of the children of P-nodes for level-planar embeddings
with demand d.

Lemma 6. Let T be a decomposition tree of a biconnected single-source graph G that rep-
resents a planar embedding Γ of G that is level-planar with demand d. Let further µ be a
P-node of T with poles u, v such that ℓ(u) ≤ ℓ(v).

Let ν1, . . . , νn be the children of µ ordered non-decreasingly according to d(νj) and
let εj denote the virtual edge of skel(µ) that corresponds to νj. Let 1 ≤ i ≤ n be the largest
index such that d(νi) < ℓ(v) if such a component exists, and i = 1 otherwise. Then for each
i ≤ j ≤ n the virtual edges ε1, . . . , εj appear consecutively around u and v in Γ.

We remark that the statement of the lemma does not hold for j < i since the
edges ε1, . . . , εi can be permuted arbitarily.

Proof of Lemma 6. Assume for the sake of contradiction that there is a j with i ≤ j ≤ n for
which ε1, . . . , εj are not consecutive. Without loss of generality, we may assume that j > 1
is smallest with this property. Then there is a child νk, k > j such that εk is embedded
between ε1 and εj .

Let v1, vj , vk be vertices in G(ν1), G(νj), G(νk) with maximum demand, respectively.
Let further p1, pj , pk be a simple path from u to v in G1, Gj , Gk containing v1, vj , vk, re-
spectively. The paths p1, pj together form a simple cycle C that contains vk in its interior.
Since k > j > 1, we have d(νk) ≥ d(νj), d(ν1). Moreover max{d(νj), d(ν1), ℓ(v)} is an upper
bound for ℓ(C). Thus, C contains in its interior C the vertex vk with d(vk) ≥ ℓ(C). Hence Γ
is not level-planar with demand d by Lemma 5.
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Figure 5: In the figure we assume d(v) = ℓ(v) for all vertices. Then d(µ1) = ℓ(w1) = ℓ(w2),
d(µ2) ≤ ℓ(v) − 1 and d(µ3) = ℓ(w3). The space around µ1 is ℓ(a1), the space around µ2

is ℓ(v) and the space around µ3 is ℓ(a5). Observe that for µ1 and µ2 the demand is strictly
less than the space around them, and therefore G(µ1) and G(µ2) can be mirrored without
violating level-planarity. On the other hand, d(µ3) is greater than the space around µ3, and
mirroring G(µ3) results in an embedding that is not level-planar.

Next, we also develop necessary conditions that involve the skeletons of R-nodes.
To this end, we assume that the decomposition tree T represents at least one planar em-
bedding Γref that is level-planar (with demand d). We further assume that the reference
embeddings of the R-node skeletons are chosen consistently with Γref .

Let λ, µ be two R-nodes such that λ is the parent of µ. We call λ and µ relatively fixed
if in each embedding of G that is represented by T and that is level-planar with demand d,
the skeletons of λ and µ are either both the reference embedding, or they are both the flipped
version of the reference embedding. Note that Γref guarantees that it is not necessary to flip
exactly one of them.

Let ε denote the edge of λ that represents µ and let g1, g2 denote the two faces
of Γref that project to the faces f1, f2 left and right of ε in skel(µ), respectively. Whether
it is possible to flip in Γref the embedding of G(µ) depends on the demand d(µ) and on
the apices of g1 and g2. Namely, if both apex sets have a level that is strictly greater
than d(µ), then G(µ) can be flipped; see the components G(µ1), G(µ2) in Fig. 5. On the
other hand, if the demand d(µ) exceeds the level of the lower of the two apex sets, i.e.,
d(µ) ≥ min{ℓ(g1), ℓ(g2)}, then G(µ) cannot be flipped; see the component G(µ3) in Fig. 5.
Motivated by this, we call min{ℓ(g1), ℓ(g2)} the space around ε.

To incorporate this information into our decomposition tree, we associate to each
face f of each R-node skeleton µ a value space(f) as follows. If f is an inner face, take g
as the face of Γref that projects to f and set space(f) = ℓ(g). If f is the outer face, we
set space(f) = ∞. The following lemma shows that the space around edges of R-nodes is the
same for all level-planar embeddings with demand d, i.e., the definition of space requires only
the existence of some level-planar embedding (with demand d), but is otherwise independent
of Γref .

Lemma 7. Let T be a decomposition tree of a biconnected single-source graph G, let µ be
an R-node of T and let f be an inner face of skel(µ). Let further Γ,Γ′ be embeddings of G
that are level-planar with demand d and that are both represented by T and let g, g′ be the
faces of Γ and Γ′, respectively, that project to f in skel(µ). Then apex(g) = apex(g′).
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Proof. Assume for the sake of contradiction that apex(g) ̸= apex(g′). Let Cg, Cg′ denote
the facial cycles of g and g′. After possibly mirroring Γ′ (which changes neither the fact
that it is level-planar with demand d, nor the apices of g′), we may assume that the skeleton
of µ has the same embedding in Γ and Γ′. We may further assume that ℓ(Cg) ≥ ℓ(Cg′) and
if ℓ(Cg) = ℓ(Cg′) that further apex(Cg) \ apex(Cg′) ̸= ∅. Note that if ℓ(Cg) > ℓ(Cg′), then
trivially apex(Cg) ∩ apex(Cg′) = ∅. In either case, we find that there exists a vertex x ∈
apex(Cg) \ apex(Cg′), which therefore satisfies d(x) ≥ ℓ(x) ≥ ℓ(Cg′).

Since Cg and Cg′ both project to f in skel(µ), it follows that in Γ all vertices of V (Cg)\
V (Cg′) lie in the interior of Cg′ . In particular x lies in the interior of Cg′ . Then Γ is not
level-planar with demand d by Lemma 5.

Our next goal is to show that indeed this definition of space allows to determine
whether two adjacent R-nodes of a decomposition tree T are relatively fixed.

Lemma 8. Let T be a decomposition tree of a biconnected single-source graph G that rep-
resents some embedding Γref that is level-planar with demand d. Let further λ, µ be R-nodes
such that λ is the parent of µ, let ε denote the edge of skel(λ) that represents µ, and let f1, f2
be the two faces of skel(λ) incident to ε. If min{space(f1), space(f2)} ≤ d(µ), then µ and λ
are relatively fixed.

Proof. Without loss of generality, assume space(f1) ≥ space(f2). Assume for the sake of
contradiction that there exists an embedding Γ′ of G that is level-planar with demand d
and that is represented by T in such a way that exactly one of skel(µ) and skel(λ) has
its reference embedding. After possibly mirroring Γ′, we may assume that skel(λ) has the
reference embedding. Let g1, g2 be the faces of Γref that project to f1, f2, respectively, and
likeswise let g′1, g

′
2 be the faces of Γ′ that project to f1 and f2, respectively.

By Lemma 7, ℓ(g1) = space(f1) = ℓ(g′1) and ℓ(g2) = space(f2) = ℓ(g′2). Let x be
a vertex of G(µ) except for its pole vertices that maximizes d(x). By assumption d(x) ≥
min{space(f1), space(f2)} = space(f2).

Observe that by Lemma 5, x must lie on the outer face of every embedding of G(µ)
that is level-planar with demand d. Since Γref is level-planar with demand d, x is incident
to a face whose apex has level greater than d(x), which can hence only be g1.

Since in Γ′ skel(λ) is mirrored with respect to skel(µ) and skel(µ) is biconnected,
it follows that x is incident to g′2 in Γ′. But then the demand of x is at least as great as
the level of all vertices of its incident faces, and Γ′ is not level-planar with demand d by
Corollary 1.

3.2 Constructing the LP-tree

The construction of the LP-tree starts out with an SPQR-tree T of G and uses an arbitary
fixed embedding Γref that is level-planar with demand d, which we use to define the reference
embeddings of the R-node skeletons and to associate the space values to faces of the R-node
skeletons.
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Figure 6: Result of a P-node µ split with parent λ and child with maximum demand ν.
Note that after the split, µ1 is an R-node and µ2 has one less child than µ had.

At the start, we explicitly label each node of T as an S-, P-, Q- or R-node. This way,
we can continue to talk about S-, P-, Q- and R-nodes of our decomposition tree even when
they no longer have their defining properties in the sense of SPQR-trees. As mentioned
above, we label P-nodes of T that have only three virtual edges as R-nodes and equip them
with a reference embedding.

Assume the edge (s, t) to be incident to the outer face of every level-planar drawing
of G (Lemma 1), i.e., consider T rooted at the Q-node corresponding to (s, t).

The construction of our decomposition tree works by following the necessary con-
ditions established in Section 3.1. It works in three steps. First, we decompose the tree
further by decomposing P-nodes in order to disallow permutations that lead to embeddings
that are not level planar (with demand d) according to Lemma 6. Second, we contract all
arcs of the decomposition tree that connect an R-node parent to an S-node child. Third, we
contract arcs between all pairs of R-nodes that satisfy the condition of Lemma 8 and are
therefore relatively fixed. Since all operations either impose necessary conditions on level-
planar embeddings (with demand d) or do not change the embeddings that are represented
by the tree, the resulting LP-tree represents all embeddings of G that are level-planar with
demand d. After giving the details of the construction, we prove that the converse holds as
well by showing that every embedding represented by the LP-tree satisfies the conditions
of Corollary 1. We start with the first step. Lemma 6 motivates the following modification
of a decomposition tree T ; see Fig. 6. Take a P-node µ with poles u, v that has a child
edge whose demand is at least ℓ(v). Denote by λ the parent of µ. Further, let emax be a
child virtual edge with maximum demand and let eparent denote the parent edge of skel(µ).
Obtain a new decomposition tree T ′ by splitting µ into two nodes µ1 and µ2 representing the
subgraph H1 consisting of the edges emax and eparent, and the subgraph H2 consisting of the
remaining child virtual edges, respectively. Note that the skeleton of µ1, which corresponds
to H1, has only two child virtual edges. We therefore define it to be an R-node. The other
node µ2 is either a P-node (if it has at least three children) or an R-node (if it has only
two children). Observe that in any embedding of skel(µ) that is obtained from choosing
embeddings for skel(µ1) and skel(µ2) and contracting the arc (µ1, µ2), the edge emax is the
first or last child edge. Conversely, since µ2 allows to arbitarily permute it children (either
because it is a P-node or because it is an R-node with just two children) all embeddings
where emax is the first or last child edge are still represented by T ′.

For the construction of the LP-tree (see Fig. 7 for an example), we start with the
SPQR-tree S of G and iteratively apply this decomposition, creating new R-nodes on the
way, until each P-node µ with poles u and v has only child virtual edges e that have demand
at most ℓ(v)− 1. Denote the resulting decomposition tree by S ′; see Fig. 7c.
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(a) (b)

(c) (d)

Figure 7: Example construction of the LP-tree for the graph G (a). We start with the
SPQR-tree of G (b). Arcs are oriented towards the root. Next, we split the P-node, obtaining
the tree shown in (c). Finally, we contract arcs that connect R-nodes with S-nodes and arcs
that are between R-nodes that are relatively fixeds (thick dashed lines). This gives the final
LP-tree T for G (d).
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In the second step, we modify S ′ by contracting all arcs that connect an R-node to
a child that is an S-node. Denote the resulting decomposition tree by S ′′. We equip the
resulting R-node with the reference embedding obtained by the contraction of the reference
embedding of the R-node parent and the unique embedding of the S-node child.

In the third step, we contract in S ′′ each arc (λ, µ) between R-nodes µ, λ such
that d(µ) ≥ min{space(f1), space(f2)} where f1, f2 are the faces of skel(λ) incident to the
edge that represents µ. When performing such a contraction, we equip the resulting R-
node with the reference embedding obtained by the contraction of the reference embeddings
of skel(λ) and skel(µ). The decomposition tree obtained by performing all these contractions
is the LP-tree T ; see Fig. 7d.

Note that a P-node of S whose poles u, v satisfy ℓ(u) = ℓ(v) has d(µ) < d(µi) for
each of its children and it is therefore entirely decomposed into R-nodes with two children,
each, in S ′. In the third step, these will in fact be contracted into a single R-node (possibly
together with some other R-nodes).

By construction, the LP-tree T has the following properties.

(P1) For every P-node µ with poles u, v such that ℓ(u) ≤ ℓ(v) d(µ) < ℓ(v) holds.

(P2) No R-node has an S-node child.

(P3) For every R-node λ with an R-node child µ, d(µ) < min{space(f1), space(f2)} holds,
where f1, f2 are the two faces incident to the edge of skel(λ) that corresponds to µ.

3.3 Correctness

We now prove the correctness of the construction. Let Γ be an arbitrary embedding of G
that is level-planar with demand d. Since S is the SPQR-tree of G, it represents Γ. By
Lemma 6 Γ is also represented by S ′ and therefore also by S ′′, since S-nodes do not provide
any embedding options. Finally, Lemma 8, guarantees that all contracted arcs connect two
R-nodes that are relatively fixed, and therefore Γ is also represented by T . Conversely, we
prove that every planar embedding represented by T is level-planar with demand d.

Recall that the LP-tree T can be constructed only if there exists at least one planar
embedding Γref of G that is level-planar with demand d. By the above arguments, the
LP-tree represents all embeddings that are level-planar with demand d, in particular the
embedding Γref .

Let now Γ be an arbitrary planar embedding of G that is represented by T . Then G
induces an embedding Γ(µ) of G(µ) for each node of µ. The following two lemmas will be
useful to prove the correctness. The first one states that each vertex of an R-node skeleton
is incident to at least one face whose space value is greater than its demand.

Lemma 9. Let T be the LP-tree of G. Let further µ be an R-node of T and let x be a vertex
of skel(µ). Then there is a face f of skel(µ) that is incident to x such that d(x) < space(f).
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Figure 8: Illustration of the proof of Lemma 9.

Proof. Note that the statement clearly holds if x is incident to the outer face of skel(µ),
as its space value is ∞ by definition. Hence assume that x is not incident to the outer
face of skel(µ). Consider an arbitrary embedding Γ that is level-planar with demand d, and
which is hence represented by T . If there is a face g of Γ incident to x with ℓ(g) > d(x) that
projects to a face f of skel(µ), then by Lemma 7 d(x) < ℓ(g) = space(f) holds.

Assume for the sake of contradiction that d(x) ≥ ℓ(g) for each face g of Γ that
projects to a face of skel(µ) incident to x. Remove from G all vertices (together with their
incident edges) that are either (i) a non-pole vertex of some child G(ν) whose corresponding
edge ε of skel(µ) is incident only to faces that are also incident to x or (ii) a vertex of skel(µ)
whose incident faces in skel(µ) are all incident to x; see Fig. 8a for an illustration, where
the parts that are removed are shaded red. Let G′ be the resulting graph and let Γ′ be the
embedding of G′ induced by Γ. Observe that Γ′ has an interior face F that used to contain
all the removed vertices; see Fig. 8b. Let C be a simple cycle that is entirely contained in
the boundary of F and that encloses F in its interior. Observe that, by construction of Γ′,
each vertex v of C is incident to a face g of Γ that projects to a face of skel(µ) incident to x.
Therefore ℓ(C) ≤ d(x). However, in Γ the vertex x lies in the interior of C. Therefore Γ is
not level-planar with demand d by Lemma 5. A contradiction.

The next lemma finally establishes that the space values assigned to the faces of R-
node skeletons have a meaning for arbitary planar embeddings represented by the LP-tree,
namely the apex of each face g projecting to an inner face f of an R-node skeleton is at
least as high as the space value of f promises.

Lemma 10. Let Γ be a planar embedding of G that is represented by the LP-tree of G. Let µ
be an R-node and let f be an inner face of skel(µ). Then the face g of Γ that projects to f
satisfies ℓ(g) ≥ space(f).

Proof. Suppose for the sake of contradiction that ℓ(g) < space(f). Consider a vertex a that
is an apex of the face that projects to f in the embedding Γref , which is level-planar with
demand d. Since ℓ(g) < space(f) = ℓ(a), a is not incident to g in Γ. It is therefore not a
vertex of skel(µ) but belongs to G(ν) for a unique child ν of µ. Observe that ν cannot be a
Q-node as they do not have interior vertices, and it cannot be an S-node by property (P2)
since S-node children have been contracted into their R-node parents during the construction
of the LP-tree. If ν is a P-node, then its higher pole v satisfies ℓ(a) ≤ d(a) < ℓ(v) by
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property (P1). But then ℓ(v) > space(f) is a contradiction. Therefore ν must be an R-
node. But then d(ν) ≥ d(a) ≥ ℓ(a) = space(f), contradicting property (P3).

We are now ready to prove that an arbitary planar embedding represented by the
LP-tree is level-planar with demand d.

Lemma 11. Let T be the LP-tree and let Γ be a planar embedding represented by T . Then Γ
is level-planar with demand d.

Proof. If Γ is not level-planar, then by Corollary 1, there exists an interior vertex x such
that d(x) ≥ ℓ(f) for each face f incident to x. Consider the bottom-most node µ of T for
which x is embedded in the interior of Γ(µ). Then either x is an inner vertex of skel(µ) or
it belongs to G(ν) for a unique child ν of µ and x is incident to the outer face of Γ(ν). We
distinguish cases based on the type of µ.

If µ is a Q-node, then x is one of its poles, and therefore incident to the outer face
of µ, contradicting the choice of µ. If µ is an S-node, then x is either a vertex of skel(µ),
or it lies on the outer face of Γ(ν). In either case, it also lies on the outer face of Γ(µ),
contradicting the choice of µ. If µ is a P-node with poles u, v, then x cannot be a vertex
of skel(µ) and it must lie on the outer face of some Γ(ν). Therefore x and v share a face f .
However, we have d(x) ≤ d(ν) < ℓ(v) ≤ ℓ(f) by property (P1). This contradicts the choice
of x. It remains to deal with the case that µ is an R-node. We now distinguish cases based
on whether x is a vertex of skel(µ) or belongs to G(ν) for some child ν.

If x is a vertex of skel(µ), by Lemma 9 there is a face f of skel(µ) incident to x with
d(x) < space(f). Consider the face g of Γ that projects to f . Then g is incident to x, and
by Lemma 10 ℓ(g) ≥ space(f) > d(x) holds. This again contradicts the choice of x. We
may hence assume that x belongs to a child G(ν) and that it lies on the outer face of Γ(ν)
but is not one of its poles.

As before, ν cannot be Q-node (for the lack of interior vertices). As above ν cannot be
a P-node as otherwise x shares a face with the higher pole v of ν, and ℓ(v) > d(ν) ≥ d(x) by
property (P1), contradicting the choice of x. Also ν cannot be an S-node by property (P2).
So ν must be an R-node.

Let f1, f2 be the two faces of skel(µ) that are incident to the virtual edge of skel(µ)
that corresponds to ν. Let further g1, g2 be the two faces of Γ that project to f1 and f2,
respectively. By Lemma 10 ℓ(g1) ≥ space(f1) and ℓ(g2) ≥ space(f2). Assume further that x
is incident to g1. By assumption, d(x) ≥ ℓ(g1) ≥ space(f1). But then d(ν) ≥ d(x) >
space(f1) contradicts property (P3).

This shows that the LP-tree represents all level-planar embeddings of the graph G.
To obtain the following theorem, which is our main result, it remains to prove that the
LP-tree can be constructed in linear time.

Theorem 1. Let G be a biconnected, single-source, level-planar graph. The LP-tree of G
represents exactly the level-planar embeddings of G (with demand d) and can be computed
in linear time.
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3.4 Construction in Linear Time

Clearly, the construction of the LP-tree described in Section 3.2 can be carried out in
polynomial time. In this section, we describe an implementation of it that has linear running
time. Starting out, the preprocessing step where the apex t and the edge (s, t) is added
to G is feasible in linear time. Next, the SPQR-tree S of this modified graph G can be
computed in linear time [28, 33]. Then, a level-planar embedding Γref (with demand d) of G
is computed in linear time [19] and all skeletons of T are embedded accordingly. Note that
the demands can be modeled by adding for each vertex v with ℓ(v) < d(v) an additional
vertex v′ with ℓ(v′) = d(v) and connecting it to v.

For each node µ of S we need the demand d(µ). The demands for all nodes are
computed bottom-up. For a Q-node, we can set d(µ) = −∞ (recall that the poles are
excluded in the definition. In general, to determine the demand for a node µ of S, proceed
as follows. Let Cµ be the set of children of µ and let X be the vertices of skel(µ) except
for the poles. Then d(µ) = max({d(ν) | ν ∈ Cµ} ∪ {d(x) | x ∈ X}). Thus, the running
time spent to determine the demand of µ when the demands of all its children are known is
linear in the size of skel(µ). Since the sum of the sizes of all skeletons of S is linear in n, all
demands can be computed in linear time.

The next step is to split P-nodes. Let µ be a P-node. One split at µ requires to
find the child with the greatest demand. Since Γref is a level-planar embedding, Lemma 6
gives that this is one of the outermost children. By inspecting the two outermost children
of µ, the child ν with greatest demand can be found, or it is found that all children ν of µ
satisfy d(ν) ≤ ℓ(v) and µ does not need to be split. A P-node split is a constant-time
operation. Because there are no more P-node splits than nodes in S, all P-node splits are
feasible in linear time. We can therefore compute the decomposition tree S ′ in linear time.

The final step of the algorithm are the contractions. First, note that we can contract
all S-nodes whose parent is an R-node into their parent skeletons in total linear time to
obtain S ′′. Then, we need to contract edges between R-nodes that are relatively fixed. For
this the spaces of all faces of R-nodes need to be known. These can again be computed in
a bottom-up manner. Start by labeling every face f of Γ with its apex by walking around
the cycle that bounds f . For every edge e of G the apices on both sides of e can then be
looked up in Γ. So the incident apices are known for each Q-node of S ′′. Let µ be a node
of S ′′ so that for each child ν of µ the apices of the ν-incident faces are known. Then the
apices of the µ-incident faces can be determined from the child virtual edges of skel(µ) that
share a face with the parent virtual edge of µ. The running time of this procedure is linear
in the sum of sizes of all skeletons, i.e., linear in the size of G. Finally, to contract the
arcs, simply traverse S′′ top down. For each R-node compute the space around each R-node
child node ν from the available apices of the ν-incident faces, compare it with the previously
computed demand of G(µ), and contract the arc (µ, ν) whenever µ and ν turn out to be
relatively fixed. Note that the check takes O(1) time per child, and a contraction can be
performed in time proportional to the size of the child skeleton. Therefore all contractions
can be performed in linear time. This proves the running time claimed in Theorem 1.
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Figure 9: Two level-planar drawings with the same planar embedding but different level
orders.

4 Applications

We use the LP-tree to translate efficient algorithms for constrained planarity problems to
the level-planar setting. We begin by describing a combinatorial representation of level-
planar drawings and their relations to level-planar embedding. Afterwards, we first extend
the partial planarity algorithm by Angelini et al. [4] to solve partial level planarity for
biconnected single-source level graphs. Second, we adapt this algorithm to solve constrained
level planarity. In both cases we obtain a linear-time algorithm, improving upon the best
previously known running time of O(n2), though that algorithm also works in the non-
biconnected case [13]. Third, we translate the simultaneous planarity algorithm due to
Angelini et al. [5] to the simultaneous level planarity problem when the shared graph is a
biconnected single-source level graph. Previously, no polynomial-time algorithm was known
for this problem.

4.1 Combinatorial Description of Level-Planar Drawings

For planar graphs, it is customary to work with planar embeddings, i.e., equivalence classes
of planar drawings, which can be conveniently represented by the cyclic orders of the edges
around vertices plus an outer face.

By contrast, level-planar drawings are often described by giving for each level i the
order ≺i in which the vertices of level i and the edges that cross level i appear along that
level from left to right. A collection ≺= {≺1, . . . ,≺k} containing an order ≺i for each
level i = 1, . . . , k is a level order. A level order is planar if there exists a level-planar
drawing with these orders. Sometimes it is convenient to subdivide the graph into a proper
level graph, where ℓ(v) = ℓ(u) + 1 for each edge (u, v) ∈ E. Then the ≺i are orders of
vertices.

It is easy to see that two level-planar drawings Γ1,Γ2 can be continuously transformed
into each other while keeping vertices at their levels, keeping edges y-monotone, and without
introducing intermediate crossings if and only if they have the same level order. Therefore
level orders of level-planar graphs are the natural counterpart to embeddings for planar
graphs.

It is readily seen that a planar level order ≺ uniquely determines a level-planar
embedding. The converse is, however, generally not true; see Fig. 9. For single-source level
graphs, however, the converse holds and planar level orders are equivalent to level-planar
embeddings.

Lemma 12. For a single-source level graph G = (V,E) the planar level orders correspond
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bijectively to the level-planar embeddings with s on the outer face.

Proof. Let G = (V,E) be a single-source k-level graph. Assume without loss of generality
that G = (V,E) is proper, i.e., ℓ(v) = ℓ(u) + 1 for each edge (u, v) ∈ E. Consider a
level-planar drawing ∆ of G, let ≺ be its level order and let Γ be its embedding.

Let u, v ∈ Vi be two vertices on level i with 1 ≤ i ≤ k. Since G is a single-source
graph, there exists be a vertex w of G so that there are disjoint directed paths pu and pv
from w to u and v, respectively. Let e and f denote the first edge on pu and pv, respectively.
If w is not the single source of G, it has an incoming edge g. Then u ≺i v if and only if e, f
and g appear in that clockwise order around w in Γ. Otherwise, if w = s is the source of G,
let o denote the outer face, which is incident to s. Then, u ≺i v if and only if o, e and f
appear in that clockwise order around w in Γ. The claim then follows easily.

4.2 Partial Level Planarity

Angelini et al. [4] study the problem of extending a partial drawing in the planar setting.
Given a graph G along with a planar drawing ∆H of a subgraph H ⊆ G, the question is
whether there exists a planar drawing ∆G of G whose restriction to H coincides with ∆H .
Angelini et al. show that, for planar drawings, this can be rephrased as a combinatorial
embedding problem. They hence define a partially embedded graph as a triple (G,H,ΓH)
that consists of a graph G, a subgraph H ⊆ G, and a planar embedding ΓH of H. A partially
embedded graph is planar if and only if there exists a planar embedding ΓG of G whose
restriction to H coincides with ΓH . In this case ΓG is also called an extension of (G,H,ΓH).

We consider an analogous partial drawing extension problem for level-planar graphs.
A partially level-ordered graph is a triple (G,H,≺H) consisting of a graph G, a subgraph H ⊆
G, and a planar level order ≺H of H. As above, (G,H,≺H) is level-planar if and only if
there exists a planar level order ≺G of G whose restriction to H coincides with H. Let ΓH be
the level-planar embedding of H induced by ≺H . Using Lemma 12, the problem of testing
whether a given partially ordered level graph can be rephrased into an embedding problem
if H has a single source.

Lemma 13. If H has a single source, then (G,H,≺H) is level-planar if and only if the
instance (G,H,ΓH) is planar and it has an extension that is level-planar.

Observe that, while the algorithm of Angelini et al. can be used to test whether
(G,H,ΓH) is planar, there seems no easy way to test whether (G,H,ΓH) has a level-planar
extension. It is here that the LP-tree enters the scene. Namely, in case G is biconnected,
what Angelini et al. do, is to compute the SPQR-tree T of G and to search it for a planar
embedding that extends ΓH . Inspecting their algorithm, it can be seen that it only relies on
the facts that the skeletons of P-nodes have parallel edges that can be permuted arbitrarily
and that the skeletons of R-nodes are biconnected and come with a fixed embedding that
may only be flipped. Therefore, by simply using the LP-tree T ′ as a drop-in replacement
for the SPQR-tree T in this algorithm without further modifications, it will search for an
embedding extension among all level-planar embeddings.
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Observe that the use of the LP-tree entails further conditions on G. Besides being
biconnected, it is required that G has a single source s and a unique apex t along with the
edge (s, t). We note that only the requirement of a single source is a restriction, whereas
the remaining two conditions can be established as described in Section 2. Altogether we
have the following theorem.

Theorem 2. Let (G,H,≺H) be a partially level-ordered graph such that G and H are single-
source graphs and G is biconnected. It can be tested in linear time whether (G,H,≺H) is
level-planar.

Observe that, to make this work, it is necessary to compute ΓH from ≺H in linear
time. We prove that this is possible in a more general context in Lemma 15 in the next
section.

In what follows, we briefly discuss the restrictions imposed by the above theorem.
First note that G being a single-source graph is an absolute prerequisite as the drawing
extension problem for level-planar graphs is NP-complete without this restriction [13].

Concerning the biconnectivity of G, we note that Angelini et al. [4] extend their
algorithm to the case where G is connected but not necessarily biconnected. This requires
significant additional effort and the use of another data structure, called the enriched block-
cut tree, that manages the biconnected components of a graph in a tree. Some of the
techniques described in this paper, in particular our notion of demands, may be helpful in
extending our algorithm to the connected single-source case. Consider a connected single-
source graph G. All biconnected components of G have a single source and the LP-tree can
be used to represent their level-planar embeddings. However, a vertex v of some biconnected
component H of G may be a cutvertex in G and can dominate vertices that do not belong
to H. Depending on the space around v and the levels on which these vertices lie, this
may restrict the admissible level-planar embeddings of H. Let X(v) denote the set of
vertices dominated by v that do not belong to H. Set the demand of v to d(v) = d(X(v)).
Computing the LP-tree with these demands ensures that there is enough space around
each cutvertex v to embed all components connected at v. The remaining choices are into
which faces of H incident to v such components can be embedded and possibly nesting
biconnected components. These choices are largely independent for different components
and only depend on the available space in each incident face. This information is known
from the LP-tree computation. In this way it may be possible to extend the steps for
handling non-biconnected graphs due to Angelini et al. to the level-planar setting.

Finally, the requirement that H has a single source was only necessary to rewrite
the drawing extension problem into an embedding extension problem. This can in fact be
alleviated as the next section shows, which solves a more general problem.

4.3 Constrained Level Planarity

A constrained level graph is a tuple (G,≺′) that consists of a k-level graph G = (V,E)
and a set ≺′= {≺′

1,≺′
2, . . . ,≺′

k} of irreflexive relations ≺′
i⊆ Vi × Vi for i = 1, . . . , k [13].

The task is to find a drawing of G, i.e., a planar level order ≺ of G such that for any two
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vertices u, v ∈ Vi we have that u ≺′
i v implies u ≺i v. If this is the case, then (G,≺′) is

called level-planar. Brückner and Rutter [13] showed that testing level-planarity of partially
level-ordered graphs is a special case of testing level-planarity of constrained level graphs.

If G has a single source s, then similarly to Lemma 12, we can transfer the partial
order constraints into constraints on a level-planar embedding of G. To this end, consider
two vertices u, v on the same level i such that u ≺′

i v. Let w be a vertex so that G contains
disjoint directed paths pu and pv from w to u and v, respectively. Note that such a vertex w
exists since G has a single source s. As described in Section 2, we may further assume that G
has a unique apex t and it contains the edge (s, t).

Let e and f denote the first edge of pu and pv, respectively. Further, if w ̸= s, let g
be an arbitrary incoming edge of w, otherwise let g = (s, t). We define T (u ≺′

i v) = (e, f, g)
and call this a triple constraint. Along the lines of the proof of Lemma 12 it is seen that in a
level-planar drawing ≺ of G we have u ≺i v if and only if in the corresponding level-planar
embedding Γ of G the edges (e, f, g) occur in this clockwise order around w; in this case, we
say that Γ satisfies the triple constraint (e, f, g).

Let T (≺′) = {T (u ≺′
i v) | u, v ∈ Vi for i ∈ {1, . . . , k} and u ≺′

i v} be the triple
constraints for all comparable pairs of V . We say that a level-planar embedding Γ of G
satisfies T (≺′) if it satisfies all triple constraints in T (≺′). The above discussion implies the
following characterization.

Lemma 14. Let (G,≺′) be a level graph with a single source s, a unique apex t, and that
contains the edge (s, t). Then (G,≺′) is level-planar if and only if G admits a level-planar
embedding Γ that satisfies T (≺′).

The following lemma shows that T (≺′) can be computed in linear time.

Lemma 15. Given ≺′, T (≺′) can be computed in linear time.

Proof. We start by finding for each pair u, v with u ≺′
i v a vertex w so that there are

disjoint paths pu and pv from w to u and v. This can be achieved in linear time by using
the algorithm of Harel and Tarjan on a depth-first-search tree D of G [31]. Mark w with
the pair (u, v) for the next step. Then, we find the edges e and f of pu and pv incident
to w, respectively. To this end, we proceed similarly to a technique described by Bläsius
et al. [9]. At the beginning, every vertex of G belongs to its own singleton set. Proceed
to process the vertices of G bottom-up in D, i.e., starting from the vertices on the greatest
level. When encountering a vertex w marked with a pair (u, v), find the representatives of u
and v, denoted by u′ and v′, respectively. Observe that e = (w, u′) and f = (w, v′), and that
both e and f are tree edges of D. Then unify the sets of all of its direct descendants in D and
let w be the representative of the resulting union. Because all union operations are known in
advance we can use the linear-time union-find algorithm of Gabow and Tarjan [26]. Finally,
pick as g the unique incoming edge of w in D, or the edge (s, t) if w = s. Altogether, we
obtain T (≺′) in time linear in G and the number of comparable pairs u ≺′

i v we consider.

Theorem 3. Constrained level planarity can be solved in linear running time for biconnected
single-source level graphs.
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Proof. Let (G,≺′) be a constrained level graph such that G is biconnected and has a single
source. As in Section 2, we may assume that G has a unique apex t and it contains the
edge (s, t). We compute T (≺′) in linear time by Lemma 15. According to Lemma 14 it
suffices to check whether G admits a level-planar embedding that satisfies T (≺′).

Consider a triple (e, f, g) of edges sharing a common vertex w and let T be the
LP-tree of G. Then e, f, g correspond to distinct leaves of T , and there is a unique node µ
for which e, f, g are contained in distinct connected components of of T − µ. It follows
that in skel(µ) the edges e, f, g are represented by distinct virtual edges, and the embed-
ding of skel(µ) determines the circular order of (e, f, g) around w. Therefore, each triple
constraint (e, f, g) corresponds to a triple constraint (eµ, fµ, gµ) in some skeleton µ of T .
We say that (e, f, g) projects to µ and that (eµ, fµ, gµ) is its projection to skel(µ). It hence
follows that, to satisfy T (≺′), it suffices to find for each node µ of the LP-tree an embed-
ding that satisfies the projections of all triple constraints in T (≺′) that project to µ. We
note that Angelini et al. [4] use the same observation on SPQR-trees for their embedding
extension algorithm. Using techniques similar to the ones by Bläsius et al. [9] or Da Lozzo
and Rutter [18] for SPQR-trees, the projections of all triple constraints can be computed in
time linear in the sizes of G and T (≺′). It then remains to determine suitable embeddings
for the skeletons of T .

To this end, recall that only R- and P-nodes offer an embedding choice and that for
each R-node µ, the skeleton skel(µ) has a unique embedding up to a flip. For an R-node µ,
it can be easily tested in time linear in the size of skel(µ) and the number of constraints that
project to µ whether one of these two flips satisfies all the triples that project to µ. For a
P-node µ let u, v denote its two poles with ℓ(u) < ℓ(v). Observe that by property (P1) only
the parent edge may represent outgoing edges of v. Since each triple constraint contains
two outgoing and one incoming edge of the shared vertex, it follows that all constraints
that project to skel(µ) affect u. Note that, generally, finding a circular order around v
satisfying given triples is equivalent to the NP-complete problem CyclicOrdering [27].
However, the property that G has a single source guarantees that only the parent edge may
represent edges incoming at u, and therefore each triple constraint (e, f, g) ∈ T (≺′) that
projects to (eµ, fµ, gµ) in µ contains the parent edge as gµ. By convention, the parent edge
is embedded left-most, and it therefore suffices to find an embedding where eµ is embedded
before fµ for each such constraint. This corresponds to a simple topological ordering problem
that can be solved in time linear in the size of skel(µ) and the number of triple constraints
that project to µ.

4.4 Simultaneous Level Planarity

We translate the simultaneous planarity algorithm of Angelini et al. [5] to solve simultaneous
level planarity for biconnected single-source graphs. They define simultaneous planarity as
follows. Let G1 = (V,E1) and G2 = (V,E2) be two graphs with the same vertices. The
shared edges E1 ∩ E2 together with V make up the intersection graph G1∩2, or simply G
for short. All other edges are exclusive. The graphs G1 and G2 are simultaneously planar
if there exist planar drawings Γ1 and Γ2 of G1 and G2, respectively, whose restrictions
to the shared graph G coincide. Jünger and Schulz [37] showed that the problem can be
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Figure 10: In the R-node, e fixes the relative embeddings of G(λ) and G(µ). In the level-
planar setting, e also fixes the embedding of G(ν). In the S-node, e2 and e3 fix the relative
embeddings of G(λ), G(ν) and G(λ), G(µ), respectively. In the level-planar setting, e1 also
fixes the embedding of G(ν). In the P-node, e1 fixes the relative embeddings of G(λ)
and G(µ). In the level-planar setting, e1 also fixes the embedding of G(ν).

equivalently phrased in terms of embeddings. Namely, two graphs G1, G2 on the same vertex
set are simultaneously planar if and only if there exist planar embeddings of G1 and G2 that
induce the same embedding on G. Or, equivalently, the question is whether there exists a
planar embedding of G that simultaneously extends to planar embeddings of G1 and of G2.
Angelini et al. [5] give a linear-time algorithm for this problem under the condition that the
shared graph G is biconnected.

We study the analogous problem for level planarity. Given two graphs G1, G2 with
shared graph G as above, are there level-planar drawings of G1, G2 that coincide on the
shared graph? Naturally, this is equivalent to asking whether G1, G2 admit planar level
orders that coincide on the shared graph. Assuming that G (and therefore also G1, G2)
have a single source s and using Lemma 12, this is equivalent to asking whether there exist
level-planar embeddings of G1 and G2 that coincide on the shared graph. As above, we can
rephrase this as asking whether the shared graph G admits a level-planar embedding that
simultaneously extends to level-planar embeddings of G1 and of G2.

Considering the algorithm of Angelini et al. [5] one observes that it finds a suitable
embedding of G by exploiting the SPQR-tree T of G, and that it relies only on the usual
properties that children of P-nodes may be permuted arbitrarily and skeletons of R-nodes
are biconnected and come with a fixed embedding up to a flip. Thus, running the very
same algorithm but on the LP-tree T ′ of G, would determine the existence of a level-planar
embedding Γ of G that simultaneously extends to planar embeddings of G1 and of G2.
Unfortunately, this is not quite enough, since answering the simultaneous level-planarity
question requires that Γ simultaneously extends to level-planar embeddings of G1 and G2.

In the following we sketch how to adapt the algorithm of Angelini et al. [5] to
achieve this. As mentioned above, their algorithm works by constructing the SPQR-tree for
the shared graph G. It then expresses the constraints imposed on G by the exclusive edges
as a 2-Sat instance S that is satisfiable if and only if G1 and G2 admit a simultaneous
embedding. We give a very brief overview of the 2-Sat constraints in the planar setting.
In an R-node, an exclusive edge e has to be embedded into a unique face. This potentially
restricts the embedding of the expansion graphs G(λ), G(µ) that contain the endpoints of e,
i.e., the embedding of G(λ) and G(µ) is fixed with respect to the embedding of the R-node.
Add a variable xµ to S for every node of T with the semantics that xµ is true if skel(µ)
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has its reference embedding Γµ, and false if the embedding of skel(µ) is the reflection of Γµ.
The restriction imposed by e on G(λ) and G(µ) can then be modeled as a 2-Sat constraint
on the variables xλ and xµ. For example, in the R-node shown in Fig. 10 on the left,
the internal edge e must be embedded into face f1, which fixes the relative embeddings
of G(λ) and G(µ). In an S-node, an exclusive edge e may be embedded into one of the
two candidate faces f1, f2 around the node. The edge e can conflict with another exclusive
edge e′ of the S-node, meaning that e and e′ cannot be embedded in the same face. This
is modeled by introducing for every exclusive edge e and candidate face f the variable xfe
with the semantics that xfe is true iff e is embedded into f . The previously mentioned
conflict can then be resolved by adding the constraints xf1e ∨ xf2e , xf1e′ ∨ xf2e′ and xf1e ̸= xf1e′
to S. Additionally, an exclusive edge e whose endpoints lie in different expansion graphs
can restrict their respective embeddings. For example, in the S-node shown in Fig. 10 in the
middle, the edges e2 and e3 may not be embedded into the same face. And e2 and e3 fix the
embeddings of G(λ) and G(ν) and of G(λ) and G(µ), respectively. This would be modeled
as xλ = xν and xλ = xµ in S. In a P-node, an exclusive edge can restrict the embeddings
of expansion graphs just like in R-nodes. Additionally, exclusive edges between the poles
of a P-node can always be embedded unless all virtual edges are forced to be adjacent by
internal edges. For example, in the P-node shown in Fig. 10 on the right, e1 fixes the relative
embeddings of G(λ) and G(µ). And e2 can be embedded iff one of the blue edges does not
exist.

We now adapt the algorithm to the level-planar setting. First, replace the SPQR-tree
with the LP-tree T . The satisfying truth assignments of S then correspond to simultaneous
planar embeddings E1, E2 of G1, G2, so that their shared embedding E of G is level planar.
However, due to the presence of exclusive edges, E1 and E2 are not necessarily level planar.
To ensure that E1 and E2 are level planar, we add more constraints to S. Consider adding
an exclusive edge e into a face f . This splits f into two faces f ′, f ′′. The apex of at least
one face, say f ′′, remains unchanged. As a consequence, the space around any virtual edge
incident to f ′′ remains unchanged as well. But the apex of f ′ can change, namely, the
apex of f ′ is an endpoint of e. Then the space around the virtual edges incident to f ′

can decrease. This may lower the level of the apices in the faces around the virtual edge
associated with ν, which, in the same way as described in Section 3.1, may make additional
pairs of adjacent R-nodes relatively fixed, thus limiting their ability to flip independently.
This can be described as an implication on the variables xfe and xν . For an example, see
Fig. 10. In the R-node, adding the edge e with endpoint v into f1 creates a new face f ′

1

with apex v. This forces G(ν) to be embedded so that its apex a is embedded into face f2.
Similarly, in the S-node and in the P-node, adding the edge e1 restricts G(ν). We collect all
these additional implications of embedding e into f and add them to the 2-Sat instance S.
Each exclusive edge leads to a constant number of 2-Sat implications. To find each such
implication O(n) time is needed in the worst case. Because there are at most O(n) exclusive
edges this gives quadratic running time overall. Clearly, all implications must be satisfied
for E1 and E2 to be level planar. On the other hand, suppose that one of E1 or E2, say E1, is
not level planar. Because the restriction of E1 to G is level-planar due to the LP-tree and
planar due to the algorithm by Angelini et al., there must be a crossing involving an exclusive
edge e of G1. This contradicts the fact that we have respected all necessary implications of
embedding e. We obtain Theorem 4.
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Theorem 4. Simultaneous level planarity can be solved in quadratic time for two graphs
whose intersection is a biconnected single-source level graph.

In the non-biconnected setting Angelini et al. solve the case when the intersection
graph is a star. Haeupler et al. describe an algorithm for simultaneous planarity that does not
use SPQR-trees, but they also require biconnectivity [30]. Very recently, the case where G
is connected has been solved with a running time of O(n8) [25], which was subsequently
improved to O(n2) [8]. However the techniques are quite different and it is unclear whether
LP-trees can be leveraged to obtain similar results for level-planar graphs.

5 Conclusion

The majority of constrained embedding algorithms for planar graphs rely on two features
of the SPQR-tree: they are decomposition trees and the embedding choices consist of arbi-
trarily permuting parallel edges between two poles and choosing the flip of a skeleton whose
embedding is unique up to reflection. We have developed the LP-tree, an SPQR-tree-like
embedding representation that has both of these features. An SPQR-tree-based algorithm
that tests whether a biconnected graph G has a planar embedding satisfying a certain prop-
erty P can then usually be executed on LP-trees without any modification to determine
whether a given biconnected single-source graph G has a level-planar embedding satisfying
property P. The necessity for mostly minor modifications only stems from the fact that in
many cases the level-planar version of a drawing problem imposes additional restrictions on
the embedding compared to the original planar version, i.e., one seeks a level-planar embed-
ding of G that satisfies certain properties P ′ that are usually a superset of P. Our LP-tree
thus allows to leverage a large body of literature on constrained embedding problems and
to transfer it to the level-planar setting.

In particular, we have used it to obtain linear-time algorithms for partial and con-
strained level planarity in the biconnected single-source case, which improves upon the pre-
vious best known running time of O(n2). Moreover, we have presented an efficient algorithm
for the simultaneous level planarity problem when the shared graph is biconnected and has
a single source. Previously, no polynomial-time algorithm was known for this problem.

It is an interesting question whether our results can be extended to level-planar
graphs with multiple sources. However, a data structure with properties similar to the
LP-tree that represents level-planar embeddings of graphs with multiple sources could be
used to efficiently solve the partial drawing extension problem for level-planar graphs with
multiple sources, which is known to be NP-complete [13]. It hence follows that, most likely,
such a data structure either does not exist or cannot be constructed efficiently. It therefore
seems a more promising question to see whether our LP-tree based techniques can be used
to obtain FPT algorithms with respect to the number of sources.

Acknowledgments. We thank the anonymous reviewers of the journal version of this article
for comments that inspired a significant simplifcation of the results and that helped us to
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