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for renewable power systems, robust
to cost uncertainty and near-optimality

Fabian Neumann1,2,3,* and Tom Brown1,2

SUMMARY

Achieving ambitious CO2 emission reduction targets requires energy system
planning to accommodate societal preferences, such as transmission reinforce-
ments or onshore wind parks, and acknowledge uncertainties in technology
cost projections among many other uncertainties. Current models often solely
minimize costs using a single set of cost projections. Here, we apply multi-objec-
tive optimization techniques in a fully renewable European electricity system to
explore trade-offs between system costs and technology deployment for elec-
tricity generation, storage, and transport. We identify ranges of cost-efficient
capacity expansion plans incorporating future technology cost uncertainties.
For example, we find that some grid reinforcement, long-term storage, and large
wind capacities are important to keep costs within 8% of least-cost solutions.
Near the cost optimum a technologically diverse spectrum of options exist, allow-
ing policymakers to make trade-offs regarding unpopular infrastructure. Our
analysis comprises 50,000+ optimization runs, managed efficiently through
multi-fidelity surrogate modeling techniques using sparse polynomial chaos
expansions and low-discrepancy sampling.

INTRODUCTION

Energy systemmodels have become a pivotal instrument for policy-making to find cost-efficient system lay-

outs that satisfy ambitious climate change mitigation targets. But even though they have proliferated in

spatial, temporal, technological, and sectoral detail and scope in recent years, least-cost optimization

models can easily give a false sense of exactness.1,2 Frequently, they present just a single least-cost solution

for a single set of cost assumptions, which not only neglects uncertainties inherent to technology cost pro-

jections, which can have a strong effect on the results of capacity expansion models,3–5 but also hides a

wide array of alternative solutions that are equally feasible and only marginally more expensive.6–8

Trade-offs revealed by deviating from least-cost solutions are extremely attractive for policymakers

because they allow them to make decisions based on non-economic criteria without affecting the cost-ef-

fectiveness of the system. Knowing that many similarly costly but technologically diverse solutions exist

helps to accommodate political and social dimensions that are otherwise hard to quantify; for instance,

rising public opposition toward new transmission lines and onshore wind turbines or an uneven distribution

of new infrastructure.8–10

Techniques like multi-objective optimization and modeling-to-generate-alternatives (MGAs) are designed

to find such near-optimal solutions. They have been applied to investment planning models of the Euro-

pean,6 the Italian,7 and the United States power system,11 pathways to decarbonize the power system of

the United Kingdom,12 the European sector-coupled energy system,13 a single-node energy model of Ger-

many,14 and global integrated assessment models15 and were combined with a quick hull algorithm to span

a polytope of low-cost solutions for a single set of cost parameters.16

However, most of the studies above only use a central cost projection for each considered technology.

Recent decades have shown that many of these projections contain a high level of uncertainty, particularly

for fast-moving technologies like solar, wind, batteries, and hydrogen storage.17–19 This uncertainty prop-

agates through the model to strongly affect the optimal and near-optimal system compositions, thus
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undermining any analysis of the trade-offs. Hence, it is crucial that apparent compromises are rigorously

tested for robustness to technology cost uncertainty to raise confidence in conclusions about viable,

cost-effective power system designs. To thoroughly sweep this uncertainty space, we can avail of previous

studies on multi-dimensional global sensitivity analysis techniques in the context of least-cost optimiza-

tion.3,20–23 In this context, it is also important to note that this methodology can also be used to address

many further uncertainties, for instance, regarding weather variability between years, demand projections,

and the level of cross-sectoral integration that can be realized.

In this paper, we bring together near-optimal analysis with global sensitivity sweeps over uncertainty. This

allows us to systematically explore more robust trade-offs near the cost optimum of a fully renewable

European electricity system model, PyPSA-Eur,24 and investigate how they are affected by uncertain tech-

nology cost projections. We evaluate compromise solutions between system cost and technology choices

by minimizing and maximizing the use of on- and offshore wind, solar photovoltaics, transmission, batte-

ries, and hydrogen storage in order to identify near-optimal alternatives that are no more than 8% more

expensive than the least-cost option. This discretionary choice is low enough to argue that such solutions

are nearly cost optimal and high enough such that most trade-offs have flattened out at this point. Howev-

er, more expensive solutions may still be acceptable to the public, in particular when they are more widely

accepted or if they could be implemented more quickly. We also show examples of trade-offs for pairs of

technologies and a chosen allowed cost penalty of 6%; namely between wind and solar, battery and

hydrogen storage, and offshore and onshore wind. For this research, we solve numerous spatially and

temporally explicit long-term investment planning problems that coordinate generation, transmission,

and storage investments subject to multi-period linear optimal power flow constraints. The capacity opti-

mization is supplemented with global sensitivity analysis methods to account for a wide range of cost pro-

jections for wind, solar, battery, and hydrogen storage technologies. These cost projections are assumed

to be uniformly distributed based on ranges from the Danish Energy Agency (DEA) for the year 2050.25

To handle the high computational burden incurred by searching for near-optimal alternatives alongside

evaluating many different cost parameter sets, we employ multi-fidelity surrogate modeling techniques,

based on sparse polynomial chaos expansion, that allow us to merge results from one simpler and another

more detailed model. One covers 37 regions at 4-hourly and the other 128 regions at 2-hourly resolution

over a full year (see Figure 1 and multi-fidelity approach in surrogate modeling for details). This approach

has been proven very effective in Tröndle et al.3 Heavy parallelization with high-performance computing

infrastructure allows us to solve more than 50,000 resource-intensive optimization problems which, in com-

bination with surrogate modeling, can span a probabilistic space of near-optimal solutions with respect to

cost uncertainties rather than putting single technology cost futures into the foreground (see also Figure 2).

While the methodology is general enough to be applied to other uncertainties like interannual weather

variability or demand projections, our application addresses the probabilistic space of technology cost

projections.

In this way, we are able to present alternative solutions beyond least cost that have a high chance of

involving a limited cost increase, just as we identify regions that are unlikely to be cost efficient for realizing

a fully renewable electricity system. We derive both ranges of options and technology-specific capacity

expansion ranges that are not affected by cost uncertainty and should be met to keep the total system

cost within a specified range, given the model setup. Our results show that indeed many such similarly

costly but technologically diverse solutions exist regardless of how technology cost developments will un-

fold within the considered ranges.

We approach the presentation of these results in two steps: we first show the propagation of uncertainties

in least-cost solutions, including a global sensitivity analysis that identifies the most influential cost param-

eters. We then gradually expand the uncertainty analysis to the space of nearly cost-optimal solutions.

RESULTS

System cost and capacity distribution of least-cost solutions

We explore the impacts of cost uncertainty in a spatially and temporally resolved model of the European

power system with fully renewable generation and zero direct carbon dioxide emissions. Based on sam-

pling the uncertainty of cost inputs given by the DEA (Table 1),25 the total annual power system costs

vary between 160 and 220 bnV/a, as displayed in Figure 3. This means themost pessimistic cost projections
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entail about 40% higher cost than the most optimistic projections. All least-cost solutions build more than

350 GW solar and 600 GWwind, but none more than 1100 GW of wind or more than 950 GW of solar. While

wind capacities tend to cluster toward higher values, solar capacities tend toward lower values. We observe

that least-cost solutions prefer onshore over offshore wind, yet onshore wind features the highest uncer-

tainty range alongside battery storage. The cost optimum gravitates toward hydrogen storage rather

than battery storage unless battery storage becomes very cheap. In the uncertainty space sampled, there

are no least-cost solutions without the long-duration storage provided by hydrogen, only some without

battery storage. Transmission network expansion is least affected by cost uncertainty and consistently

doubled compared to today’s capacities to achieve a fully renewable electricity system.

Although these results outline the extent to which cost uncertainty affects cost-optimal designs, the insights

from the observed ranges are limited because there is considerable flexibility beyond the least-cost solu-

tions and acknowledge structural modeling uncertainties, such as social constraints to the expansion of

grids and wind turbines. Moreover, the pure distribution of outputs does not yet convey information about

how sensitive results are to particular cost assumptions. But knowing the technologies for which lowering

overnight costs has a significant impact is important to promote technological learning in that direction.

Local parameter sweeps and global sensitivity indices

Therefore, Figure 4 expands the previous view by additionally showing how the cost of a technology influ-

ences its deployment while displaying the remaining uncertainty induced by other cost parameters. The

overall tendency is easily explained: the cheaper a technology becomes, the more it is built. However,

A B

Figure 1. Spatial and temporal resolution of the low- and high-fidelity model

(A and B) (A) Low-fidelity model with 37 nodes and 4-hourly resolution, (B) high-fidelity model with 128 nodes and 2-hourly

resolution. Green lines represent controllable HVDC lines. Red lines represent HVAC lines. Examples for capacity factors

for wind and solar are shown for four days in March at the northernmost node in Germany, alongside the normalized load

profile.
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changes of slope and effects on the uncertainty range as one cost parameter is swept are insightful still. For

instance, Figure 4 reveals that battery storage becomes significantly more attractive economically once its

cost falls below 750 EUR/kW (including 6-h energy capacity at full power output), while hydrogen storage

(including electrolysis, fuel cell, and underground storage with an energy-to-power ratio of 168 h) features a

steady slope. A low cost of onshore wind makes building much onshore wind capacity attractive with low

uncertainty, whereas if onshore wind costs are high howmuch is built greatly depends on other cost param-

eters. The opposite behavior is observed for offshore wind and solar. The cost of hydrogen storage mostly

causes the limited uncertainty about cost-optimal levels of grid expansion. As the cost of hydrogen storage

falls, less grid reinforcement is chosen.

A B

Figure 2. Cross-validation errors

(A) Cross-validation errors by output for varying sample sizes.

(B) Cross-validation errors by output for varying polynomial orders of least-cost low-fidelity surrogate models.
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But since the presented sensitivity of capacities toward their own cost only exhibits a fraction of all sensi-

tivities, we further apply a more systematic variance-based global sensitivity analysis, which has been

applied in energy systems analysis, e.g., in Tröndle et al.3 and Mavromatidis et al.20 Sensitivity indices,

or Sobol indices, attribute the observed output variance to each input.26 For our application, the Sobol

indices can, for instance, tell us which technology cost contributes the most to total system cost or how

much of a specific technology will be built. The first-order Sobol indices describe the share of output vari-

ance due to variations in one input alone averaged over variations in the other inputs. Total Sobol indices

also consider higher-order interactions, which are greater than 100% if the relations are not purely additive

or independent.

The first-order and total Sobol indices for least-cost solutions in Figure 5 show that the total system cost is

largely determined by how expensive it is to build onshore wind capacity, followed by the cost of hydrogen

storage. The amount of wind in the system is almost exclusively governed by the cost of onshore and

offshore wind parks. Other carriers yield a more varied picture. The cost-optimal solar capacities addition-

ally depend on onshore wind and battery costs. The amount of hydrogen storage is influenced by battery

and hydrogen storage cost alike. Although there are noticeable higher-order effects, which are most exten-

sive for transmission, the first-order effects dominate. Strikingly, the volume of transmission network expan-

sion strongly depends on the cost of hydrogen storage. This can be explained because they both compete

to balance out the large weather systems crossing the continent, which cause in particular wind variations.

Hydrogen storage can balance themulti-week transit of weather systems in time, whereas transmission net-

works can smooth them in space. While hydrogen storage typically balances multi-week variations in time,

continent-spanning transmission networks exploit the circumstance that, as weather systems traverse the

continent, it is likely always to be windy somewhere in Europe.

Fuzzy near-optimal corridors with increasing cost slack

So far, we quantified the output uncertainty and analyzed the sensitivity toward inputs at least-cost solu-

tions only. However, it has been previously shown that even for a single cost parameter set a wide array

of technologically diverse but similarly costly solutions exists.6,7,13,16 We now examine how technology

cost uncertainty affects the shape of the space of near-optimal alternatives within 8% of the least-cost so-

lution. We do not extend beyond this value because the rate of change of most Pareto fronts has consid-

erably reduced at that point, while we acknowledge that higher cost penalties may still be acceptable.

By identifying feasible alternatives common to all, few or no cost samples, in Figure 6 we outline low-cost

solutions common to most parameter sets (e.g., above 90% contour) as well as system layouts that do not

meet low-cost criteria for nearly no technology cost samples for varying e. For each technology and cost

sample, the minimum and maximum capacities obtained for increasing cost penalties e form a cone of

an upper and a lower Pareto front, starting from a common least-cost solution. These Pareto fronts delin-

eate boundaries beyond which neither reducing system cost nor extremizing the capacity of a technology

can be improved without depressing the other. By arguments of convexity, the capacity ranges contained

by the cone can be near optimal and feasible, given a degree of freedom in the other technologies. From

optimization theory, we also know that the cones widen up for increased slacks. As we consider technology

cost uncertainty, the cone will look slightly different for each sample causing the fuzziness of the bound-

aries. The contour lines represent the frequency with which a solution is inside the near-optimal cone

over the whole parameter space. This is calculated from the overlap of many cones, each representing a

different set of cost assumptions. The wider the displayed contour lines are apart, the more uncertainty ex-

ists about the borders. The closer contour lines are together, the more specific the limits are despite the

Table 1. Technology cost uncertainty using optimistic and pessimistic assumptions from the Danish Energy Agency

Technology Lower CAPEX Upper CAPEX Unit Source

Onshore Wind 800 1190 EUR/kW DEA25

Offshore Wind 1420 1950 EUR/kW DEA25

Solar 420 620 EUR/kW DEA25

Battery 316 1306 EUR/kW DEA25

Hydrogen 668 2002 EUR/kW DEA25
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cost uncertainty. The height of the quantiles quantifies flexibility for a given level of certainty and slack; the

angle presents information about the sensitivity toward cost slack.

From the fuzzy upper and lower Pareto fronts in Figure 6, it can be seen that for our scenarios, building

900 GW of wind capacity is highly likely possible within 3% of the optimum and that conversely building

less than 600 GW has a low chance of being near the cost optimum with our model setup. Only a few so-

lutions can forego onshore wind entirely and remain within 8% of the cost optimum, whereas it appears to

be likely possible to build a system without offshore wind at a cost penalty of 4% at most. On the other

hand, more offshore wind generation seems equally possible. Unlike for onshore wind, where it is more un-

certain how little can be built, uncertainty regarding offshore wind deployment exists about how much can

be built so that costs remain within a pre-specified range. For solar, the range of options within 8% of the

cost optimum at 90% certainty is very wide. Anything between 100 GW and 1000 GW appears feasible as

long as other substituting technologies are built and suitably sited. In comparison to onshore wind, the un-

certainty about minimal solar requirements is smaller.

The level of required transmission expansion is least affected by the cost uncertainty. To remain within the

pre-defined e = 8%, it is just as likely feasible to plan for moderate grid reinforcement by 30% as is initiating

extensive remodeling of the grid by tripling the transmission volume compared to what is currently in oper-

ation. One reason for this is perhaps that cost uncertainty on building new transmission lines was not

included as it is a quite mature technology. These results indicate that in any of the cases considered

some transmission reinforcement to balance renewable variations across the continent appears to be

essential. Hydrogen storage, symbolizing medium- to long-term storage, also is a vital technology in

many cases. In a model with increased cross-sectoral integration, this role could also likely be taken over

by thermal storage or other power-to-X conversion processes. Some short- to medium-term balancing

needs might also be covered by demand-side management. At e = 8%, only 25% of cost samples require

no long-term storage; namely when battery costs are exceptionally low. Overall, 90% of cases appear to

function without any short-term battery storage while the system cost rises by 4% at most. However,

especially battery storage exhibits a large degree of freedom to build more given the high cost uncertainty

reported in the DEA technology database.25

Probabilistic near-optimal feasible space in two technology dimensions

The fuzzy cones from Figure 6 look at trade-offs between system cost and single techologies, assuming that

the siting and deployment of other technologies can be heavily optimized. But as there are dependencies

between the technologies, in Figure 7 we furthermore evaluate trade-offs between technologies for three

selected pairs of technologies at an example fixed system cost increase of e = 6% for illustration, address-

ing which combinations of wind and solar capacity, offshore and onshore turbines, and hydrogen and bat-

tery storage are likely to be cost efficient.

Figure 3. Distribution of system cost, generation, storage, and transmission in least-cost solutions

The dashed line in the transmission line chart indicates today’s existing transmission capacities for comparison. Violin

range is limited to the range of observed data. Boxplots showmedian, interquartile range, and upper/lower quartileG 1:5

times the interquartile range.
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First, Figure 7A addresses constraints between wind and solar. The upper right boundary exists because

building much of both wind and solar would be too expensive for the given budget. The absence of solu-

tions in the bottom left corner means that building too little of any wind or solar does not suffice to generate

enough electricity. From the shape and contours, we see a high chance that building 1000 GW of wind and

400 GWof solar is within 6% of the cost optimum for the scenarios at hand. On the other hand, building less

than 200 GW of solar and 600 GW of wind is unlikely to yield a low-cost solution in our model setup. In

general, minimizing the capacity of both primal energy sources will shift capacity installations to high-yield

locations even if additional network expansion is necessary and boost the preference for highly efficient

storage technologies. Overall, we can conclude from this that, even considering combinations of wind

and solar, a wide space of low-cost options exists with moderate to high likelihood, although the range

of alternatives is shown to be more constrained.

The trade-off betweenonshorewind andoffshorewind is illustrated in Figure 7B. Here, themost certain area

is characterized by building more than 600 GW onshore wind and less than 250 GW offshore wind capacity

for our electricity-only scenarios. However, there are some solutions with high substitutability between

onshore and offshore wind, shown in the upper left bulge of the contour plot. Compared to wind and solar,

the range of near-optimal solutions is evenmore constrained. The key role of energy storage in a fully renew-

able system is underlined in Figure 7C. Around 50 GW of power capacity of each is at least needed in any of

the considered cases, while highest likelihoods are attained when building 150 GW of each.

Capacity distributions at minimal onshore wind and transmission grid

The aforementioned contour plots Figures 6 and 7 outline what is likely possible within specified cost ranges

and subject to technology cost uncertainty but do not expose the changes the overall system layout expe-

riences when reaching for the extremes in one technology. Therefore, we show in Figures 7D and 5E how the

system-wide capacity distributions vary compared to the least-cost solutions (Figure 3) for two illustrative

A B C

FED

Figure 4. Sensitivity of capacities toward their own technology cost

(A–F) (A) Onshore wind, (B) offshore wind, (C) solar, (D) battery storage, (E) hydrogen storage, (F) transmission. The

median (Q50) alongside the 5%, 25%, 75%, and 95% quantiles (Q5–Q95) display the sensitivity subject to the uncertainty

induced by other cost parameters. Dots represent samples of the high-fidelity model runs.
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alternative objectives. For that, we choose the scenarios with least onshore wind capacity and least trans-

mission expansion because they are often linked to the social acceptance of energy infrastructures.

Figure 7D illustrates that reducing onshore wind capacity is predominantly compensated for by increased

offshore wind generation but also added solar capacities. The increased focus on offshore wind also leads

to a tendency toward more hydrogen storage, while transmission expansion levels are similarly distributed

as for the least-cost solutions. From Figure 7E we can further extract that avoiding transmission expansion

entails more hydrogen storage that compensates balancing in space with balancing in time, and more

generation capacity overall, where resources are distributed to locations with high demand but weaker

capacity factors and more heavily curtailed.

DISCUSSION

In this work, we systematically explore a space of alternatives beyond least-cost solutions for society and

politics to work with subject to uncertain technology cost projections. We show how narrowly following

cost-optimal results underplays an immense degree of freedom in designing future renewable power

systems. To make our finding that there is no unique path to cost-efficiency more robust, we account for

technology cost uncertainties as one example of the many unknowns faced in the energy transition and

draw the following conclusions.

Wide range of trade-offs

We find that there is a substantial range of options within 8% of the least-cost fully renewable electricity

system regardless of how cost developments will unfold. This holds across all technologies individually

and even when considering dependencies between wind and solar, offshore and onshore wind, as well

as hydrogen and battery storage as examples of flexibility options.

Solutions to avoid

We also carve out parts of the solution space which are unlikely to keep costs within given cost ranges given

the considered range of technology cost futures. For a fully renewable electricity system, either offshore or

onshore wind capacities of the order of 600 GW along with some long-term storage technology and trans-

mission network reinforcement appear essential in the scenarios we analyze. Less wind capacity leads to

high-cost solutions in our model.

Key technology cost sensitivities

We identify onshore wind cost as the apparent main determinant of system cost, though it can often be

substituted with offshore wind for a small additional cost. This aligns with the finding that the near-optimal

A B

Figure 5. First-order and total Sobol indices

(A and B) (A) First-order Sobol indices, (B) total Sobol indices. These sensitivity indices attribute output variance to

random input variables and reveal which inputs the outputs are most sensitive to. The first-order Sobol indices quantify

the share of output variance due to variations in one input parameter alone. The total Sobol indices further include

interactions with other input variables. Total Sobol indices can be greater than 100% if the contributions are not purely

additive.
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feasible space is flat. Moreover, the deployment of batteries is the most sensitive to its cost, whereas required

levels of transmission expansion are least affected since transmission cost was not considered to be uncertain.

Benefits of combining MGA and global sensitivity analysis

The combination of MGAs to explore the near-optimal solution space and global sensitivity analysis to ac-

count for an uncertain input parameter space unifies two approaches to uncertainty quantification. The pre-

sented methodology is helpful to show that near-optimal insights are robust to some uncertainty (in our

case technology cost). Likewise, it can show whether some parts of the near-optimal solution space are

more or less affected by uncertainty.

The robust finding of our study is that there is consistent investment flexibility in shaping fully renewable power

systems, even without availing of themyriad flexibility options offered through sector coupling. This opens the

floor todiscussionsabout social trade-offs andnavigatingaround issues, suchaspublicopposition towardwind

turbines or transmission lines. Rather than modelers making normative choices about how the energy system

shouldbeoptimized,by applyingmulti-fidelity surrogatemodeling techniquesand theMGAmethodology,we

Figure 6. Space of near-optimal solutions by technology under cost uncertainty

For each technology and cost sample, the minimum and maximum capacities obtained for increasing cost penalties ε

form a cone of an upper and a lower Pareto front, starting from a common least-cost solution. By arguments of convexity,

the capacity ranges contained by the cone can be near optimal and feasible, given a degree of freedom in the other

technologies. From optimization theory, we know that the cones widen up for increased slacks. As we consider

technology cost uncertainty, the cone will look slightly different for each sample. The contour lines represent the

frequency a solution is inside the near-optimal cone over the whole parameter space. This is calculated from the overlap

of many cones, each representing a set of cost assumptions. Due to discrete sampling points in the ε-dimension, the plots

further apply quadratic interpolation and a Gaussian filter for smoothing.
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offer amethodology to present awide spectrumof options and trade-offs that are feasible andwithin a reason-

able cost range, to help society decide how to shape the future of the energy system.

Limitations of the study

The need to solve models for many cost projections and near-optimal search directions in reasonable time

means that compromises had to be made in other modeling dimensions. For instance, the analysis would

profit from a richer set of technologies and further uncertain input parameters, including efficiencies of fuel

cells and electrolysis or the consideration of concentrating solar power, geothermal energy, biomass, and

nuclear to name just a few. All of these may also influence the near-optimal range of options for the tech-

nologies we considered. But as the number of considered technologies and parameters rises, so does the

computational burden. Given the already considerable computational efforts involved in procuring our re-

sults, considering the full breadth of technologies and uncertainties would not have been feasible with the

computational resources available. Moreover, further limitations apply to the scope of the analysis, which is

limited to the electricity sector and does not consider rising electricity demand as also other energy sectors

are electrified. Like a broader set of technologies, leveraging additional measures to integrate renewables

through tighter cross-sectoral coupling and demand-side flexibilities would also yield different results

about the technology choices for near-optimal energy system designs. Therefore, accounting for interac-

tions across sectors at high resolution in a similar future study is desirable. Additionally, we assess no path

dependencies via multi-period investments and endogenous learning but optimize for an emission

reduction in a particular target system based on annualized costs. For computational reasons, we disregard

interannual variations of weather data by basing the analysis just on a single weather year for computational

reasons, as well as uncertainties about future demand predictions and electrification rates. Finally, aspects

such as reserves, system adequacy, and inertia have not been considered.

A B C

ED

Figure 7. Space of near-optimal solutions by selected pairs of technologies under cost uncertainty

(A–C) Just like in Figure 6, the contour lines depict the overlap of the space of near-optimal alternatives across the parameter space. It can be thought of as

the cross-section of the probabilistic near-optimal feasible space for a given e in two technology dimensions and highlights that the extremes of two

technologies from Figure 6 cannot be achieved simultaneously.

(D and E) Plots show the distribution of total system cost, generation, storage, and transmission capacities for two near-optimal search directions with e = 8%

system cost slack. The dashed line in the transmission line chart indicates today’s existing transmission capacities.
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30. Köster, J., and Rahmann, S. (2012).
Snakemake—a scalable bioinformatics
workflow engine. Bioinformatics 28,
2520–2522.

31. Gritsevskyi, A., and Naki�cenovi, N. (2000).
Modeling uncertainty of induced
technological change. Energy Pol. 28,
907–921.

32. Yeh, S., and Rubin, E.S. (2012). A review of
uncertainties in technology experience
curves. Energy Econ. 34, 762–771.

33. Heuberger, C.F., Rubin, E.S., Staffell, I., Shah,
N., andMacDowell, N. (2017). Power capacity
expansion planning considering endogenous
technology cost learning. Appl. Energy 204,
831–845.

34. Mattsson, N. (2019). Learning By Modeling
Energy Systems. PhD thesis. https://research.
chalmers.se/en/publication/514513.

35. Zeyen, E., Victoria, M., and Brown, T. (2022).
Endogenous Learning for Green Hydrogen in
a Sector-Coupled Energy Model for Europe.
Preprint at arXiv. https://doi.org/10.48550/
arXiv.2205.11901.

36. Moret, S., Codina Gironès, V., Bierlaire, M.,
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Requests for further information, resources and materials should be directed to the lead contact, Fabian

Neumann (f.neumann@tu-berlin.de).

Materials availability

Not applicable.

Data and code availability

The code to reproduce the experiments as well as results dat including selected networks and all graphics

is available at github.com/fneum/broad-ranges and archived at https://doi.org/10.5281/zenodo.6641551.

We also refer to the documentation of PyPSA (pypsa.readthedocs.io) and PyPSA-Eur (pypsa-eur.

readthedocs.io).

METHOD DETAILS

For the description of our experimental procedures, we first outline how we obtain least-cost and near-

optimal solutions for a given cost parameter set. We then describe the model of the European power sys-

tem and define the cost uncertainties. Finally, we explain how we make use of multi-fidelity surrogate

modeling techniques based on polynomial chaos expansions and find an experimental design that effi-

ciently covers the parameter space.

Least-cost investment planning

The objective of long-term power system planning is to minimize the total annual system costs, comprising

annualized capital costs c+ for investments at locations i in generator capacityGi;r of technology r, storage

capacity Hi;s of technology s, and transmission line capacities Fl, as well as the variable operating costs o+

for generator dispatch gi;r;t :

min
G;H;F;g

(X
i;r

ci;r $Gi;r +
X
i;s

ci;s $Hi;s +
X
l

cl $ Fl +
X
i;r ;t

wt $oi;r $gi;r ;t

)
(Equation 1)

where the snapshots t are weighted bywt such that their total duration adds up to one year. The objective is

subject to a set of linear constraints that define limits on (i) the capacities of infrastructure from geograph-

ical and technical potentials, (ii) the availability of variable renewable energy sources for each location and

point in time, and (iii) linearized multi-period optimal power flow (LOPF) constraints including storage con-

sistency equations, which we describe in more detail in the following.

The capacities of generation, storage and transmission infrastructure are limited to their geographical po-

tentials from above and existing infrastructure from below:

Gi;r % Gi;r %Gi;r ci; r (Equation 2)

Hi;s % Hi;s %Hi;s ci; s (Equation 3)

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

PyPSA-Eur Hörsch et al.24 https://www.github.com/pypsa/pypsa-eur

Software and algorithms

PyPSA Brown et al.27 https://github.com/pypsa/pypsa
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Fl % Fl %Flcl (Equation 4)

The dispatch of a renewable generator is constrained by its rated capacity and the time- and location-

dependent availability gi;r;t , given in per-unit of the generator’s capacity:

0 % gi;r ;t %gi;r;tGi;r ci; r ; t (Equation 5)

The dispatch of storage units is described by a charge variable h+
i;s;t and a discharge variable h�i;s;t , each

limited by the power rating Hi;s.

0 % h+
i;s;t %Hi;s ci; s; t (Equation 6)

0 % h�
i;s;t %Hi;s ci; s; t (Equation 7)

The energy levels ei;s;t of all storage units are linked to the dispatch by

ei;s;t = hwt
i;s;0$ei;s;t� 1 +wt$h

inflow
i;s;t � wt$h

spillage
i;s;t ci; s; t + hi;s;+ $wt$h

+
i;s;t � h� 1

i;s;�$wt$h
�
i;s;t : (Equation 8)

Storage units can have a standing loss hi;s;0, a charging efficiency hi;s;+ , a discharging efficiency hi;s;�, nat-
ural inflow hinflowi;s;t and spillage hspillagei;s;t . The storage energy levels are assumed to be cyclic and are con-

strained by their energy capacity

ei;s;0 = ei;s;T ci; s (Equation 9)

0 % ei;s;t %Ts$Hi;s ci; s; t: (Equation 10)

To reduce the number of decisison variables, we link the energy capacity to power ratings with a technol-

ogy-specific parameter Ts that describes the maximum duration a storage unit can discharge at full power

rating. Owing to the absence of large thermal power plants in our fully renewable scenarios, unit commit-

ment constraints regarding the ramping, start-up and shut-down of generators are not considered.

Kirchhoff’sCurrent Law (KCL) requires local generators and storageunits aswell as incomingor outgoing flows fl;t
of incident transmission lines l to balance the inelastic electricity demand di;t at each location i and snapshot tX

r

gi;r;t +
X
s

hi;s;t +
X
l

Kil fl;t = di;tci; t; (Equation 11)

where Kil is the incidence matrix of the network.

Kichhoff’s Voltage Law (KVL) imposes further constraints on the flow of AC lines. Using linearized load flow

assumptions, the voltage angle difference around every closed cycle in the network must add up to zero.

We formulate this constraint using a cycle basis Clc of the network graph where the independent cycles c

are expressed as directed linear combinations of lines l.28 This leads to the constraintsX
l

Clc$xl$fl;t = 0cc; t (Equation 12)

where xl is the series inductive reactance of line l. Controllable HVDC links are not affected by this

constraint.

Finally, all line flows fl;t must be operated within their nominal capacities Fl��fl;t��% f lFl cl; t; (Equation 13)

where f l acts as a per-unit buffer capacity to protect against the outage of single circuits.

This problem is implemented in the open-source tool PyPSA27 and is solved by Gurobi. Note, that it as-

sumes perfect foresight for a single reference year based on which capacities are optimized. It does not

include pathway optimization, nor aspects of reserve power, or system stability. Changes of line expansion

to line impedance are ignored.

Finding near-optimal alternatives

Using the least-cost solution as an anchor, we use the e-constraint method from multi-objective optimiza-

tion to find near-optimal feasible solutions.6,29 For notational brevity, let cux denote the linear objective

ll
OPEN ACCESS

14 iScience 26, 106702, May 19, 2023

iScience
Article



function Equation 1 and Ax%b the set of linear constraints Equations 2–13 in a space of continuous vari-

ables, such that the minimized system cost can be represented by

C = min
x
fcuxjAx % bg: (Equation 14)

We then encode the original objective as a constraint such that the cost increase is limited to a given e. In

other words, the feasible space is cut to solutions that are at most emore expensive than the least-cost so-

lution. Given this slack, we can formulate alternative search directions in the objective. For instance, we can

seek to minimize or maximize the sum of solar installations xs4x with

xs = min
xs

f1uxsjAx % b; cux % ð1 + eÞ $Cg (Equation 15)

xs = max
xs

f1uxsjAx % b; cux % ð1 + eÞ $Cg: (Equation 16)

To draw a full picture of the boundaries of the near-optimal feasible space, we systematically explore the

extremes of various technologies: we both minimize and maximize the system-wide investments in solar,

onshore wind, offshore wind, any wind, hydrogen storage, and battery storage capacities, as well as the

total volume of transmission network expansion. Evaluating each of these technology groups for different

cost deviations e˛ f1%; 2%; 4%; 6%; 8%g allows us to observe how the degree of freedom regarding invest-

ment decisions rises as the optimality tolerance is increased, both at lower and upper ends. The boundaries

delineate Pareto frontiers on which no criterion, neither reducing system cost nor extremizing the capacity

of a technology, can be improved without depressing the other. By arguments of convexity, these extremes

even define limits within which all near-optimal solutions are contained. Moreover, although this scheme

primarily studies aggregated capacities, the solutions are spatially explicit, and we can inspect for each

case how the capacities of each technology are distributed within the network.

The near-optimal analysis above only explores the extremes of one technology at a time, i.e. one direction

in the feasible space. But actually the space of attainable solutions within e of the cost-optimum is

multi-dimensional. To further investigate trade-offs between multiple technologies, in addition to the

e-constraint and the objective to extremize capacities of a particular technology, we formulate a constraint

that fixes the capacity of another technology within its bounds for a given e. For instance, we search for the

minimum amount of wind capacity xw4x given that a certain amount of solar is built

xw = min
xw

�
1uxw

����Ax % b; cux % ð1 + eÞ $C;1uxs = xs + a $

�
xs � xs

��
; (Equation 17)

and correspondingly for the maximum xw . The a denotes the relative position within the near-optimal

range of the second technology at given e, in this case the solar capacities. For example, at a = 0% we

look for the least wind capacity given that minimal solar capacities are built for the given e. An alternative

but more complex approach to spanning the space of near-optimal solutions in multiple dimensions at a

time using a quick hull algorithm was presented by Pedersen et al.16

Due to computational constraints, we focus on technologies which are assumed to lend themselves to sub-

stitution and limit the corresponding analysis to a single illustrative cost increase level of e = 6%. The same

methodology can be applied to any other value for e. We consider the three pairs, (i) wind and solar, (ii)

offshore and onshore wind, (iii) hydrogen and battery storage, by minimizing and maximizing the former

while fixing the latter at positions a˛ f0%; 25%; 50%; 75%; 100%g within the respective near-optimal range.

Open electricity sector model PyPSA-Eur

The instances of the coordinated capacity expansion problem (see least-cost investment planning) are

based on PyPSA-Eur, which is an open model of the European power transmission system that combines

high spatial and temporal resolution.24 Because it only uses open data and every processing step is defined

in a workflow,30 we achieve a high level of transparency and reproducibility. In the following, we outline the

main features and configurations, and refer to the supplementary material and Hörsch et al.24 for more

details.
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Scenario

We target a fully renewable electricity system based on variable resources such as solar photovoltaics,

onshore wind and offshore wind, that has not carbon emissions. We pursue a greenfield approach subject

to a few notable exceptions. The existing hydro-electric infrastructure (run-of-river, hydro dams, pumped-

storage) is included but not considered to be extendable due to assumed geographical constraints.

Furthermore, the existing transmission infrastructure can only be reinforced continuously but may not be

removed. In addition to balancing renewables in space with transmission networks, the model includes

storage options at each node to balance renewables in time. We consider two extendable storage technol-

ogies: battery storage representing short-term storage suited to balancing daily fluctuations and hydrogen

storage which exemplifies long-term synoptic and seasonal storage.We do not consider any further sector-

coupling technologies or demand-side flexibilities, but expect that these could substitute for some of the

storage requirements.

Spatial and temporal resolution

Since the spatial and temporal resolution strongly affects the size of the optimization problem, running the

model at full resolution is computationally infeasible. In our analysis, we therefore make use of two levels of

aggregation, reflecting a compromise between the computational burden incurred by high-resolution

models and the growing inaccuracies regarding transmission bottlenecks and resource distribution in

low-resolution models. We consider a low-fidelity model with 37 nodes at a 4-hourly resolution for a full

year that models power flow via a transport model (i.e. excluding KVL of Equation 12) and a high-fidelity

model with 128 nodes at a 2-hourly resolution that is subject to linearized load flow constraints (Figure 1).

More information on how the results of two models with varying resolution are merged is provided in the

section multi-fidelity approach in surrogate modeling.

Transmission grid and hydro-electricity

The topology of the European transmission network is retrieved from the ENTSO-E transparency map and

includes all lines at and above 220 kV. Capacities and electrical characteristics of transmission lines and

substations are inferred from standard types for each voltage level, before they are transformed to a uni-

form voltage level. For each line, N � 1 security is approximated by limiting the line loading to 70% of its

nominal rating. The dataset further includes existing high-voltage direct current (HVDC) links and planned

projects from the Ten Year Network Development Plan (TYNDP). Existing run-of-river, hydro-electric dams,

pumped-hydro storage plants are retrieved from powerplantmatching, a merged dataset of conventional

power plants.

Renewable energy potentials

Eligible areas for developing renewable infrastructure are calculated per technology and the grid nodes’

Voronoi cells, assuming wind and solar installations always connect to the closest substation. How much

wind and solar capacity may be built at a location is constrained by eligible codes of the CORINE land

use database and is further restricted by distance criteria, allowed deployment density, and the natural pro-

tection areas specified in the NATURA 2000 dataset. Moreover, offshore wind farms may not be developed

at sea depths exceeding 50 m, as indicated by the GEBCO bathymetry dataset.

Renewables and demand time series

The location-dependent renewables availability time series are generated based on two historical weather

datasets for the year 2013, which is an average year in terms of wind and solar availability. We retrieve wind

speeds, run-off and surface roughness from the ERA5 reanalysis dataset and use the satellite-aided

SARAH-2 dataset for the direct and diffuse surface solar irradiance. Models for wind turbines, solar panels,

and the inflow into the basins of hydro-electric dams convert the weather data to hourly capacity factors

and aggregate these to each grid node. Historical country-level load time series are taken from

ENTSO-E statistics and are heuristically distributed to each grid node to 40% by population density and

to 60% by gross domestic product.

Technology cost uncertainty

Uncertainty of technology cost projections is driven by two main factors: unknown learning rates (i.e. how

quickly costs fall as more capacity is built) and unclear deployment rates (i.e. howmuch capacity will be built

in the future).31,32 As modeling technological learning endogeneously is computationally challenging due
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to the nonconvexity it entails,33–35 technology cost uncertainty is typically defined exogenously by an inter-

val within which costs may vary and a distribution that specifies which segments are more probable.

Ranges of cost projections are best chosen as wide as possible to avoid excluding any plausible sce-

narios.9,36 When uncertainty has been considered in the literature, cost assumptions have commonly

been modeled to vary between G20% and G65% depending on the technology’s maturity.3,21,36–38 In

this study, we consider uncertainty regarding the annuities of onshore wind, offshore wind, solar PV, battery

and hydrogen storage systems. The latter comprises the cost of electrolysis, cavern storage, and fuel cells.

For solar PV we assume an even split between utility-scale PV and residential rooftop PV. Evaluating uncer-

tainties based on annuities has a distinct advantage. They can be seen to simultaneously incorporate un-

certainties about the overnight investments, fixed operation and maintenance costs, their lifetime, and the

discount rate, since multiple combinations lead to the same annuity. We built the uncertainty ranges pre-

sented in Table 1 from the optimistic and pessimistic technology cost and lifetime projections for the year

2050 from the Danish Energy Agency, which correspond to 90% confidence intervals.25 In cases where no

uncertainty ranges were provided for the year 2050, such as for rooftop PV, projections for the year 2030

define the upper end of the uncertainty interval.

Distributions of cost projections have been assumed to follow normal20 or triangular38 distributions. But

independent uniform distributions are the most prevalent assumption.3,12,36,37,39–42 This approach is

backed by themaximum entropy approach,3 which states that given the persistent lack of knowledge about

the distribution the independent uniform distribution, that makes fewest assumptions, is most appropriate.

Although the assumed independence may neglect synergies between technologies, for example, between

offshore and onshore wind turbine development, we follow the literature by assuming that the cost are in-

dependent and uniformly distributed within the ranges specified in Table 1.

Surrogate modeling with polynomial chaos expansion

Searching for least-cost solutions (see least-cost investment planning) and many associated near-optimal

alternatives (see finding near-optimal alternatives) of a highly resolved power systemmodel (see open elec-

tricity sector model PyPSA-Eur) on its own is already labour-intensive from a computational perspective.

Repeating this search for a large variety of cost assumptions (see technology cost uncertainty), to be

able to make statements about the robustness of investment flexibility near the optimum under uncer-

tainty, adds another layer to the computational burden.

Surrogate models offer a solution for such cases, where the outcome of the original model cannot be ob-

tained easily. Surrogate names are also known by names such as approximation models, response surface

methods, metamodels and emulators. In contrast to the full model, they only imitate the input/output

behavior for a selection of aggregated outputs, but take much less time to compute.43 Like other machine

learning techniques, they generalize from a training dataset that comprises only a limited number of sam-

ples. As surrogate models interpolate gaps in the parameter space that are not contained in the sample

set, which would otherwise be computationally expensive to fill, they are well suited to use cases such as

parameter space exploration and sensitivity analysis.

Consequently, in this paper we make use of surrogate models that map the cost of onshore wind, offshore

wind, solar, hydrogen, and battery storage (Table 1) onto a selection of eight system-level outputs. These

are the total system cost and the installed onshore wind, offshore wind, solar, hydrogen, battery, and trans-

mission network capacities. We construct surrogate models for least-cost and near-optimal solutions sepa-

rately for each system cost slack, search direction, fixed total capacity, and output variable. This results in a

collection of 808 individual surrogate models based on 101 solved optimization problems per set of cost

assumptions. The method we choose from an abundance of alternatives is based on polynomial chaos

expansion (PCE).26,44,45 We select this approach because the resulting approximations allow efficient

analytical statistical evaluation26 and can conveniently combine training data from variously detailed

models.43

The general idea of surrogate models based on PCE is to represent uncertain model outputs as a linear

combination of orthogonal basis functions of the random input variables weighted by deterministic

coefficients.46 It is a Hilbert space technique that works in principle analogously to decomposing a periodic

signal into its Fourier components.46 Building the surrogate model consists of the following
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steps: (i) sampling a set of cost projections from the parameter space, (ii) solving the least-cost or near-

optimal investment planning problem for each sample, (iii) selecting an expansion of orthogonal polyno-

mials within the parameter space, (iv) performing a regression to calculate the polynomial coefficients, and

ultimately (v) using the model approximation for statistical analysis. In the following, we formalize this

approach mathematically, which we implemented using the chaospy toolbox,47 and elaborate on individ-

ual aspects in more detail.

We start by defining the vector of random input variables as

x = fx1;.; xmg (Equation 18)

that represents the m uncertain cost projections. Further, we let

y = f ðxÞ (Equation 19)

describe how the uncertainty of inputs x propagates through the computationally intensive model f (i.e. the

solving of a large capacity expansion problem) to the outputs y ˛R.

We can represent the computational model f with its polynomial chaos expansion

y = f ðxÞ =
X

a˛Nm

rajaðxÞ; (Equation 20)

where ja denotes multivariate orthogonal polynomials that form a Hilbertian basis and ra ˛R are the corre-

sponding polynomial coefficients.26 The multiindex a = fa1;.;amg denotes the degree of the polynomial

ja in each of the m random input variables xi. As Equation 20 features an infinite number of unknown coeffi-

cients, it is common practice to approximate by truncating the expansion to get a finite number of coefficients

f ðxÞz f 0ðxÞ =
X

a˛Am;p

rajaðxÞ: (Equation 21)

In the standard truncation scheme,26,45 all polynomials in m input variables (i.e. cost uncertainties) where

the total degree is less than a user-defined p are selected. We can write this as a set of indices

Am;p =
�
a ˛ Nm : jaj % p

�
; (Equation 22)

where jaj =
Pm

i = 1ai . Given the joint distribution of cost uncertainties of x and a maximum degree, a suit-

able collection of orthogonal polynomials can be constructed using a three terms recurrence algorithm.47

The cardinality of the truncated PCE,

q = card Am;p =

�
m+p
p

�
=

	
m+p



!

m!p!
; (Equation 23)

indicates the number of unknown polynomial coefficients.

We determine these coefficients by a regression based on a set of cost parameter samples and the corre-

sponding outputs,

X =
�
xð1Þ;.; xðnÞ� and Y =

�
f
	
xð1Þ
;.; f

	
xðnÞ
�: (Equation 24)

Using this training dataset, we minimize the least-square residual of the polynomial approximation across

all observations. We add an extra L1 regularization term, that induces a preference for fewer non-zero co-

efficients, and solve

br = argmin
r˛Rq

"
1

n

Xn
i = 1

 
f
	
xðiÞ
 �

X
a˛Am;p

raja

	
xðiÞ
!2

+ l k rk1
#
; (Equation 25)

where we set the regularization penalty to l = 0:005. This results in a sparse PCE that has proven to

improve approximations in high-dimensional uncertainty spaces and to reduce the required number of

samples for comparable approximation errors.45 Knowing the optimized regression coefficients, we can

now assemble the complete surrogate model

y = f ðxÞzf 0ðxÞ =
X

a˛Am;p

br ajaðxÞ: (Equation 26)
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Multi-fidelity approach in surrogate modeling

To construct a sufficiently precise PCE-based surrogate model, it is desirable to base it on many samples

from a high-fidelity model. However, this is likely prohibitively time-consuming. On the other hand, relying

only on samples from a low-fidelity model may be too inaccurate.48 For example, an investment model that

features only a single node per country will underestimate transmission bottlenecks and regionally uneven

resource or demand distribution. In the section on Open Electricity Sector Model PyPSA-Eur we already

alluded to using two models with varying spatial and temporal resolution in this paper. We integrate

both in a multi-fidelity approach,43,48 and demonstrate how we can simultaneously avail of high coverage

of the parameter space by sampling the simpler model many times, and the high spatiotemporal detail

yielded by fewer more complex model runs.

The idea of the multi-fidelity approach is to build a corrective surrogate model f 0DðxÞ for the error of the low-

fidelity model fl compared to the high-fidelity model fh

fDðxÞ = fhðxÞ � flðxÞ; (Equation 27)

and add it to a surrogate model of the low-fidelity model to approximate the behavior of the high-fidelity

model

f 0hðxÞ = f 0l ðxÞ+ f 0DðxÞ: (Equation 28)

Typically, the corrective PCE rectifies only the lower order effects of the low-fidelity surrogate model (e.g.

linear effects of an individual technology’s cost).43 The advantage is that this way the correction function

can be determined based on fewer samples analogous to the previous section surrogate modeling with

polynomial chaos expansion. To sample the errors, it is only required that the high-fidelity samples are a

subset of the low-fidelity samples, e.g.

X h =
�
xð1Þ;.; xðnhÞ� and X l =

�
xð1Þ;.; xðnhÞ;.; xðnlÞ�; (Equation 29)

which we can easily guarantee by using deterministic low-discrepancy series in the experimental design

(see experimental design for surrogate modeling). With pD <pl and consequentlyAD3Al, the multi-fidelity

surrogate model can be written as a combination of low-fidelity and corrective polynomial coefficients

f 0hðxÞ =
X

a˛Am;pl
l

XAm;pD
D

ðrl;a + rD;aÞjaðxÞ +
X

a˛Am;p[
[

\Am;pD
D

rl;ajaðxÞ: (Equation 30)

In this work, we apply a multi-fidelity surrogate model that considers effects up to order three observed in

the low-fidelity model. These are then corrected with linear terms derived from insights from the high-fidel-

ity model. We justify this choice by experimentation in the Validation of the Surrogate Models, by testing

against other typical choices between orders one to five.45 Given the polynomial expansion order, the re-

maining question is how many samples are necessary to attain an acceptable approximation.

Experimental design for surrogate modeling

The experimental design covers strategies to find sufficiently high coverage of the parameter space at low

computational cost.23,44 It deals with how many samples are drawn and what sampling method is used.

Traditional Monte-Carlo sampling with pseudo-random numbers is known to possess slow convergence

properties, especially in high-dimensional parameter spaces. So-called low-discrepancy series can greatly

improve on random sampling. Because they are designed to avoid forming large gaps and clusters, these

deterministic sequences efficiently sample from the parameter space.44 Thus, we choose to draw our sam-

ples from a low-discrepancy Halton sequence.

For the question about how many samples should be drawn, we resort to the oversampling ratio (OSR) as a

guideline. The OSR is defined as the ratio between the number of samples and the number of unknown

coefficients.43 The literature recommends values between two and three.43–45,49 In other words, for a suf-

ficiently accurate approximation, there should be significantly more samples than unknown coefficients. If

the OSR is lower, the regression is prone to the risk of overfitting. On the other hand, a high OSR may lead

to a very coarse approximation.43

According to Equation 23, targeting an OSR of two and considering the five uncertain technology cost pa-

rameters (Table 1), approximating linear effects would require at least 12 samples, whereas cubic relations
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would already need 112 samples. Even 504 samples would be necessary to model the dynamics of order 5.

To investigate the quality of different PCE orders and retain a validation dataset, we draw 500 samples for

the low-fidelity model. Due to the computational burden carried by the high-fidelity models, we settle on a

linear correction in advance, such that 15 samples for the high-fidelity model are acceptable. In combina-

tion with 101 least-cost and near-optimal optimization runs for each sample, this setup results in a total

number of 50,500 runs of the low-fidelity model and 1,515 runs of the high-fidelity model. On average a sin-

gle high-fidelity model run took 20 GB of memory and 5 h to solve. Each low-fidelity model run on average

consumed 3 GB of memory and completed within 5 min. This setup profits tremendously from paralleliza-

tion as it involves numerous independent optimization runs. Moreover, it would have been infeasible to

carry out without high-performance computing.

Validation of the surrogate models

We justify the use of surrogate modeling by cross-validation. Out of the 500 low-fidelity samples, 100

samples are not used in the regression. This validation dataset is unknown to the surrogate model and

is consulted to assess the approximation’s quality. Because the high-fidelity sample size is limited and

approximating near-optimal solutions is not assumed to fundamentally differ, we base the validation on

low-fidelity least-cost solutions only. We experimentally evaluate the approximation errors between pre-

dicted and observed data for different combinations of polynomial order and sample size to decide on

a suitable parameterization. We present the coefficient of determination (R2) for the variance captured,

the mean absolute (percentage) errors (MAE/MAPE) for absolute and relative deviations, and the root

mean squared error (RMSE).

Regarding the number of samples required, Figure 2 foremost illustrates that, given enough samples, we

achieve average relative errors of less than 4% for most output variables. This is comparable to the cross-

validation errors from Tröndle et al.3 at rates below 5%. Only for offshore wind and battery storage, we

observe larger errors. However, this can be explained by a distortion of the relative measure when these

technologies are hardly built for some cost projections. On the contrary, the prediction of total system

costs is remarkably accurate. Figure 2 also demonstrates that for a polynomial order of 3, we gain no sig-

nificant improvement with more than 200 samples. In fact, thanks to the regularization term used in the

regression, we already attain acceptable levels of accuracy with as few as 50 samples. Moreover, the

high R2 values underline that the surrogate model can explain most of the output variance.

Regarding the polynomial order, Figure 2 shows that an order of 2 and belowmay be too simple to capture

the interaction between different parameters. On the other hand, an order of 4 and above yields no

improvement and, were it not for the moderating regularization term, would even result in a loss of gener-

alization properties due to overfitting. As higher-order approximations require significantly more samples,

an order of 3 appears to be a suitable compromise to limit the computational burden.
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