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Thermal Bridges on Building 
Rooftops
Zoe Mayer   1,7 ✉, James Kahn   2,3,7, Markus Götz   2,3 ✉, Yu Hou   4,5, Tobias Beiersdörfer1, 
Nicolas Blumenröhr   3,6, Rebekka Volk   1 ✉, Achim Streit   3 & Frank Schultmann   1

Thermal Bridges on Building Rooftops (TBBR) is a multi-channel remote sensing dataset. It was 
recorded during six separate UAV fly-overs of the city center of Karlsruhe, Germany, and comprises a 
total of 926 high-resolution images with 6927 manually-provided thermal bridge annotations. Each 
image provides five channels: three color, one thermographic, and one computationally derived height 
map channel. The data is pre-split into training and test data subsets suitable for object detection and 
instance segmentation tasks. All data is organized and structured to comply with FAIR principles, i.e. 
being findable, accessible, interoperable, and reusable. It is publicly available and can be downloaded 
from the Zenodo data repository. This work provides a comprehensive data descriptor for the TBBR 
dataset to facilitate broad community uptake.

Background & Summary
About 30% of global final energy consumption and 27% of total energy sector emissions stem from building 
operations. After a short drop during the COVID-19 pandemic, emissions and energy consumption are both 
now above their pre-COVID level of 2019, showing that no late reduction trend has started1.

A major field for reducing energy consumption for building operations is the improvement of building enve-
lopes, which is critical for reductions in heating and cooling intensity2. A thermal bridge is a discontinuity of a 
building’s envelope, whose thermal properties differ fundamentally from the thermal properties of the adjacent 
enveloping surface3. With increasing demands on the quality of building envelopes, the minimization of thermal 
bridges is becoming ever more important, since losses from thermal bridges can account for up to one third of 
a building’s transmission heat loss4,5. Beyond increased energy consumption, thermal bridges can lead to a wide 
range of problems, from the risk of condensation and mold infestation6, to a reduced comfort that occurs due 
to cold inner surfaces of a building7. In summer, thermal bridges lead to increased heat absorption by buildings 
and thus can increase the need for air conditioning3.

For the detection of thermal bridges of building envelopes, thermography can be reliably used8. In recent 
years, not only individual buildings, but also buildings in their urban context have gained importance for devel-
oping adequate retrofit strategies. The New Urban Agenda of the United Nations (UN) puts a spotlight on pol-
icies affecting urban structures at all appropriate levels recognizing that building design is one of the “greatest 
drivers of cost and resource efficiencies”9. When studying building stocks in cities, city districts, and villages, 
thermographic images can be collected with Unmanned Aerial Vehicles (UAVs/drones)10,11. Thermography 
with drones is especially advantageous because it saves time, resources, and is scalable for large areas compared 
to classical thermography with static cameras10. UAV-based thermographic systems are particularly beneficial 
when examining rooftops, since recordings with hand-held cameras are difficult. Previously, rooftop inspec-
tions with thermography had to be carried out on the basis of on-site inspections at night which are particularly 
labor-intensive, dangerous, and unable to achieve the same coverage feasible with drones12.

To evaluate large number of thermographic images collected in urban areas, the manual processing of images 
is time-consuming. The detection of thermal bridges can be automated, but is not trivial. Currently, approaches 
for automated thermal bridge detection work mostly with temperature threshold values and pattern recogni-
tion13–16. It is, however, difficult to find threshold values that can be generally applied to all types of thermal 
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bridges17. Patterns and temperatures differ depending on the materials and building components where thermal 
bridges occur, on environmental conditions, and on recording settings. For example for windows, temperatures 
on thermographic images appear cooler due to high levels of reflection of glass surfaces18. Furthermore, misin-
terpretations, e.g. caused by open windows, can occur with simple threshold methods. Deep learning methods, 
which can overcome the aforementioned problems, may provide better results, but require annotated image 
datasets.

In this data descriptor, we present the Thermal Bridges on Building Rooftops (TBBR) dataset. To the best 
of our knowledge it is the first comprehensive aerial thermographic image dataset, which also provides height 
mapping information while also being fully annotated for district-scale segmentation of thermal bridges on 
building rooftops. It is organized and structured according to the FAIR principles19, i.e. being findable, accessi-
ble, interoperable and reusable.

The remainder of the data descriptor is organized as follows: the Methods section describes the environmen-
tal conditions and methodological approach in recording the TBBR dataset. Data Records details the organiza-
tion of the data, including file formats, how the data has been preprocessed and curated, as well as how to obtain 
it from a publicly available data repository. In the Technical Validation section we highlight data quality aspects 
of TBBR. Finally, the Usage Notes sections sketches current and prospective use case scenarios for the data with 
an emphasis on (semi-)automated thermal bridge object detection and instance segmentation.

Methods
The raw images for our dataset were recorded with a Zenmuse XT2 visual (RGB) and a FLIR Tau 2 (thermal, 
https://flir.netx.net/file/asset/15598/original/) camera (see Table  1 for details) on a DJI M600 drone  
(https://www.dji.com/de/matrice600). They were recorded at flight heights between 60–80 m above ground with 
a flight speed of 1 m

s
 and contain GPS information. The images cover six large blocks of around 20 buildings per 

block recorded in the city center of the German city Karlsruhe with a total fly-over area of roughly 48500 m2  
(see Fig. 1). Because of a high overlap rate of the images, the same buildings are on average recorded from differ-
ent angles in different images about 20 times. All images were recorded during drone flights on Tuesday 19th 
March 2019 from 7am to 8am (UTC + 02:00). At this time, temperatures were between 3.78 °C and 4.97 °C, and 
humidity between 80% and 98%. There was no rain on the day of the flights, but there was .2 3 mm

m2  48 hours 
beforehand. For all images, an exposure time of 1/100 s and ISO speed rating of 128 was used. For recording the 
thermographic images, an emissivity of 1.0 and an aperture of F1 was set. For the RGB images, an aperture of 
F1.8 was used. The global radiation during this period was between .38 59 W

m2  and .120 86 W
m2 . No direct sunlight 

can be seen visually on any of the recordings. Further environmental conditions are shown in Table 2. We do not 
provide information on the recorded buildings’ internal temperatures, for estimates we refer readers to the cor-
responding German DIN standards20.

The full set of raw images captured contained a total of 5698 images before preselection21. Preselection 
involved the removal of all blurry images, e.g. due to rapid movement or turning of the drone, and all images 
containing no visible thermal bridges. After preselection a total of 926 images remained.

The RGB and thermal drone images were fused with a computed height map. All images were converted 
to a uniform format of 4000 × 3000 px, aligned, and cropped to 3370 × 2680 px to remove empty borders.  
The annotations only include thermal bridges that are visually identifiable with the human eye. Because of 
the aforementioned image overlap, each thermal bridge is annotated multiple times from different angles. For 
the annotation of the thermal images the image processing program VGG Image Annotator from the Visual 
Geometry Group, version 2.0.1022, was used. The thermal bridge annotations are outlined with polygon 
shapes. These polygon lines were placed as close as possible but outside the area of significant temperature 
increase. If a detected thermal bridge was partially covered by another building component located in the fore-
ground, the thermal bridge was also marked across the covering in case of minor coverings. Adjacent thermal 
bridges, which affect different rooftop components, were annotated separately. For example, a window with 
poor insulation of the window reveal located in the area of a poorly insulated roof is annotated individually.  
There is no overlap between annotated areas. While each image contains annotations, they also include thermal 
bridges present that are not annotated due to not being clearly identifiable, e.g. too small for accurate identifica-
tion or unclear due to the camera perspective.

Image preparation.  The image registration and alignment procedure is shown in Fig. 2. The procedure 
involves three main steps:

	 1.	 distortion correction,
	 2.	 registration and alignment,
	 3.	 cropping and stacking.

Camera Spectrum (μm) Image Resolution (px) FOV (°) Focal Length (mm) Format

Zenmuse XT2 (RGB) 0.4–0.7 4000 × 3000 57.12 × 42.44 8 TIFF

FLIR Tau 2 (thermal) 7.5–13.5 640 × 512 45.00 × 37.00 13 TIFF

Table 1.  Technical specifications of the cameras used in recording the TBBR raw data. As the thermal camera 
is less than one year since purchase, it is still factory calibrated (see https://www.flir.co.uk/support-center/
surveillance/infrared-camera-calibration/).
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The distortion correction procedure used was that established in previous works23,24. In short, a reference 
image was used to determine distortion coefficients, cv2.getOptimalNewCameraMatrix() to find a 
new camera matrix, and cv2.undistort() to correct distortion. All mentioned processing functions are 
part of the computer vision programming library OpenCV25.

Image registration and alignment was then performed by transforming the RGB and height map images onto 
the thermal images, as the annotation of thermal bridges was performed on these. A homography matrix was 
calculated using a total of 316 coordinate pairs from 21 RGB and thermal images. This homography matrix was 
then used to transform all RGB images in the dataset. Since the height map was created from the RGB images, 
we also used this homography matrix to transform the height map images.

The final cropping and stacking was performed to create the 5-channel images of the TBBR dataset, output 
in the NumPy format26. Images are cropped to 3370 × 2680 px to remove large black borders present in thermal 
images, and subsequently stacked into the channel order [B, G, R, Thermal, Height].

Computation of the height map.  Due to the high overlap of images, we can extract similarities from 
feature points identified in each image and conduct photogrammetry. Photogrammetry allows estimation of the 
three-dimensional coordinates of points on an object in a generated 3D space involving measurements made on 
images taken with a high overlap rate. Therefore, we can use this technique to create a 3D point cloud model of 
the recorded region.

We used the ContextCapture  software to perform photogrammetry on the TBBR dataset. 
ContextCapture provides users with intermediate information necessary to obtain each image’s estimated 
3D coordinates and orientation23,24. This information allowed estimation of the distance between points in 3D 
and 2D spaces and to project points from the 3D to the 2D space to generate the height maps. The resulting 2D 
height map image pixels show the z-axis value (vertical height) of the corresponding 3D point cloud model 
points, normalized to the 8-bit range of the lowest 3D model point (0) and the drone (255).

Data Records
The Thermal Bridges on Building Rooftops (TBBR) data is publicly available on Zenodo27 and is licensed 
under Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/).  
The 926 images in the dataset are made available as a series of compressed archive files totaling 68.5GB. Each com-
pressed archive file corresponds to one of the six flight paths, named Flug1_100 to Flug1_105 respectively  

Fig. 1  Geo-located map of drone flyover regions (left, WGS 84 coordinate system, source: Google Maps), DJI 
M600 drone (upper right), and Zenmuse XT2 camera with a FLIR Tau 2 thermal sensor (lower right). Dashed 
lines show the flight paths of the drone, polygons the photographed regions. Numbers correspond to identifier 
of each flight paths, e.g. 2 for Flug1_102 (see Data Records section below). Image source for the drone and 
camera: © DJI.

Time Cloud Cover Pressure (hPa) Visibility (m) Wind Speed (m
s

) Wind Direction (°)

7am UTC+02:00 overcast 1012.0 29680 0.7 280

8am UTC+02:00 overcast 1012.7 34430 1.1 90

Table 2.  Environmental conditions during the fly over on 2019-03-19 as measured by the closest weather 
station in Rheinstetten N 48°58′21.4″N 8°19′48.4″E (WGS 84 coordinate system, source: DWD OpenData at 
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/).
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(the word “Flug” means flight in German). The archives contain NumPy26 files (one per image) of shape 
(2680,3370,5), where the final dimension is the color channel in the format [B, G, R, Thermal, Height]. An exam-
ple image (Flug_100, ID: 523) is depicted in Fig. 3. Archives were compressed using ZStandard compression28. 
They can be decompressed by utility software programs, e.g. tar or unzstd. Corresponding annotations are 
provided in the COCO JSON format29, which were automatically generated by the VGG Image Annotator.

One of TBBR’s main design objectives was to facilitate (semi-)automated thermal bridges pattern detection 
algorithms30 (see Usage Notes). In accordance, the data is pre-split into train and test subsets with 723 (5614) 
and 203 (1313) images (annotations), respectively. There is one annotation COCO JSON for each subset, i.e. one 
for training (Flug1_100Media to Flug1_104Media) and one for test (Flug1_105Media) data. The lat-
ter block is used as a hold-out test dataset to standardize out-of-sample generalization performance assessment.

The experimental metadata was structured with the Spatio Temporal Asset Catalog (STAC) (https://stacspec.
org/en) specification family. This specification is used to provide a standardized way for describing geo-spatial 
assets. It defines related JSON object types of Item, Catalog, and Catalog, extending Collection as 
the basis. Moreover, STAC objects can be extended with other specifications and enable a mechanism to provide 
additional metadata. Such an approach addresses the relevance for a common understanding of experimental 
metadata, which is ideally a widely accepted standard31.

The STAC Collection JSON object Flug1_collection_stac_spec provides information about 
the recorded images and the environmental conditions during recordings. It also contains information about 
the overall bounding box of the entire area in which images were recorded. It links to related STAC Item 
JSON objects containing information about the recorded city blocks and the cameras. The objects for the six 
flight paths, i.e. Flug1_100_stac_spec, Flug1_101_stac_spec, Flug1_102_stac_spec, 
Flug1_103_stac_spec, Flug1_104_stac_spec, Flug1_105_stac_spec, contain the 
GeoJSON32 geometry of the respective block and the corresponding bounding box.

The objects containing the camera information, named Flug1_camera1_stac-spec for the RGB cam-
era and Flug1_camera2_stac-spec for the Thermal camera, are based on an existing STAC extension 
for camera related metadata. All STAC Item objects have a link to the Flug1_collection_stac_spec 
Collection object.

Metadata of the archived NumPy files for each image was structured using the Data Package schema from 
the Frictionless Standards (https://specs.frictionlessdata.io). This standard describes a collection of data files. 
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Fig. 2  Image registration and alignment procedure.

Fig. 3  Example image from the TBBR dataset (Flug_100, ID 523) showing the different channels, RGB (left), 
thermal (center), and height map (right), including overlaid annotations.
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Therefore, metadata about all containerized NumPy files of the six flight paths is provided within a JSON-based 
file, named Flug1_100-105_frictionless_standards.

All files are represented in a standardized way as FAIR Digital Objects (FAIR DOs) to enable machine action-
able decisions on the data in the spirit of the FAIR principles33. This representation further facilitates reproduc-
ibility of experiments performed using TBBR and the detection of data errors34. Thus, each file deposited in 
Zenodo (https://doi.org/10.5281/zenodo.7022736)27 was assigned a Persistent Identifier (PID), which is resolv-
able with the Handle.Net Registry (HNR) (https://www.handle.net/). The full list of PIDs are listed in the TBBR 
Zenodo dataset description27.

Technical Validation
The visual identification process and description of thermal bridges on building rooftops was based on typical 
patterns described in German DIN standards35–37 and thermal infrared inspections38. We note, however, that the 
interpretation of thermal images for building audits is currently always performed by human operators, which 
involves a high level of subjectivity13.

Thermal bridges occur on different parts of rooftops. Table 3 provides an overview about the different roof 
types and rooftop components where thermal bridges were annotated.

All preselected images were first manually annotated by a single industrial engineer. Then, following the 
two-person principle, all annotations were subsequently reviewed independently by an expert supervisor and 
corrected when necessary.

We qualitatively compare the distributions of thermal and height map values of thermal bridges and back-
ground between the train and test subsets. Figure 4 shows the histograms of both distributions within their 8-bit 
channel ranges of [0,255]. As expected, we observe a uniform distribution of thermal values across background 
pixels, while there is a distinct peak in warmer pixels for thermal bridges. Similarly, we see the presence of ther-
mal bridges on rooftops only being reflected in the large height map values of thermal bridges, while background 
pixels are distributed uniformly both at the building level, and to a lesser extent at street level.

To quantitatively compare annotated distributions, we use scale invariant feature transform (SIFT) descrip-
tors39 which has been shown to have a good general robustness across a range of image transformations40, e.g. 
affine transformations, scale changes, and rotations, making it an appropriate comparison for thermal bridge 
images of rooftops from various distances and angles. Figure 5 shows the average Euclidean distances between 
all 128 SIFT descriptors for annotated thermal bridges and background pixels across the train and test subsets.  
We observe a small distance between like classes across both train and test subsets, and larger relative distances for 
unlike classes, indicating that annotated regions contain distinct features from background in a consistent manner.

Usage Notes
The annotation files contain relative paths to the NumPy files. We recommend the folder structure shown 
in Fig. 6 for usage of TBBR in conjunction with computer vision libraries such as Detectron241 or 
MMDetection42, or with the provided TBBRDet library (see Code Availability).

For image analysis pipelines we recommend to standardize the images, i.e. center it to 0 mean with a standard 
deviation of 1, to make the different channel ranges of the image data comparable:
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where Z is the transformed data, I the input images, overlines are mean values and σ the standard deviation, 
subscripts denote shapes of the data. For ease-of-use, we have precomputed the resulting values:

I I[130 0, 135 0, 135 0, 118 0, 118 0] ( ) [44 0, 40 0, 40 0, 30 0, 21 0](5) (5)σ= . . . . . = . . . . . .

Train Test Total

Annotated images 723 203 926

Total annotations 5614 1313 6927

Average annotations per image 7.8 6.5 7.5

Rooftop shape No. of annotations

Steep roof 3939 895 4834

Flat roof 524 379 903

Mixed shape 1151 39 1190

Rooftop component No. of annotations

Rooftop surfaces 437 185 622

Component connections (dormers, ridges, valleys, gables, eaves lines, etc.) 3977 842 4819

Cantilevers (cantilever walls, attics, cantilever floor slabs, etc.) 640 149 789

Windows (reveals, lintels, parapets, dome lights, etc.) 560 137 697

Table 3.  TBBR annotation and component overview.
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Code availability
Processing code is publicly available and can be found at https://github.com/Helmholtz-AI-Energy/TBBRDet. 
The software is licensed under the Revised Berkley Software Distribution (BSD-3) license (https://opensource.
org/licenses/BSD-3-Clause). All scripts are implemented with the Python (v.3.6.8) programming language43 and 

Fig. 4  Histograms of thermal (left) and height map (right) pixel values of thermal bridges and background for 
both the train and test subsets within their 8-bit channel ranges of [0, 255]. Note that the height map values have 
been truncated slightly above their maximum at 170 for visual clarity. The zero valued pixel peaks arises from 
slight (~20 pixels) black borders remaining on the right side of images after cropping.

Fig. 5  Euclidean distances between SIFT descriptors for thermal bridges and background annotations between 
train and test subsets.

Fig. 6  Recommended folder structure for TBBR dataset.
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utilize the PyTorch (v.1.10.2) machine learning framework44.
Conceptually, the software provides the following functionalities:
VGG annotation to COCO JSON converter implementing fully automatic conversion from the annotation 

format generated during the manual labeling process into the COCO JSON format archived on Zenodo.
Dataset mappers for the Detectron2 and MMDetection libraries implementing random-access col-

lections to individual images and corresponding annotations. These are necessary for enabling the loading of 
five-channel images in each library. Data may be augmented by arbitrary transformations during the loading 
procedure.

Model configuration for all Detectron2 and MMDetection experiments performed in related works.
Training/evaluation scripts for performing training and evaluation of neural networks for both 

Detectron2 and MMDetection.
Dataset/experiment utilities for exploring the dataset, calculating image normalization coefficients, combin-

ing model scores, and calculating SLURM workload manager system45 statistics (consumed energy, runtime, etc.).
For creating, updating, and validating the FAIR DOs, the Typed PID Maker was used. This is a component 

of the FAIR DO Lab for working on FAIR DO tasks, which is found at https://github.com/kit-data-manager/
FAIR-DO-Lab.
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