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A B S T R A C T

The goal of this study is to develop correlations between microstructure morphology and macroscopic material
behavior, known as structure–property linkages. These correlations can be used to predict material behavior
and enable virtual materials design efforts. In this work the structure–property linkages for the capillary-driven
fluid transport through highly porous open-pored polymeric membranes are determined by a data-driven
approach. To establish linkages, about 400 porous microstructures with different geometrical features are
algorithmically generated and characterized in 3D, using fluid flow simulations and image analysis methods.
The data processing pipeline for the generation and analysis of the microstructures is implemented by a generic
workflow tool called KadiStudio, which is embedded in the research data infrastructure Kadi4mat. The data-
driven analysis enables predictions about the propagation time of a fluid over definable distances when only
the porosity and the ligament radius are known as microstructural properties. The generated knowledge can
be utilized for an accelerated development of novel polymeric membranes with an optimized pore structure.
 

1. Introduction

The digital transformation across all fields and disciplines is fueled
by the ever-increasing computing power and new developments in
data processing technologies [1] while the amount of data increased
tremendously over the recent years. In consequence, the availability
of huge data quantities generated by experiments or simulations has
ushered in a new era based on data-driven science, commonly referred
to as the fourth paradigm of science [2]. This poses new challenges for
science, such as data analysis, data management, and data sharing [3].
At the same time, new opportunities are emerging to gain new insights
by finding individual relationships within and between data sets.

Materials science usually deals with complex multiscale and multi-
physics materials, where the different scales, e.g., atomistic, microstruc-
tural, and application scales, are usually studied in a decoupled manner
by theoretical, experimental, and computational research groups [4].
The current research paradigm aims to unify the research activities

by examining and processing data from different scales and disci-
plines. In this way, knowledge is generated about how the process
history of the material (e.g. chemical composition, thermal condi-
tion) causes the morphology of the microstructure (e.g. pore sizes
and shapes) and ultimately results in a specific material behavior.
These so-called process-structure–property (PSP) relationships can be
based on two types of models: (i) forward models used for predic-
tive analysis, based on cause–effect relationships (see Fig. 1), and
(ii) inverse models used for optimization and design, based on goals
and means relationships [2]. A concrete example of a forward model
for structure–property relationships is the empirical fitting of clas-
sical fluid mechanics models such as the Kozeny–Carman equation
to experimentally or computationally obtained data [5]. To accel-
erate the quantification and understanding of the PSP relationships,
high-throughput experiments and high-throughput computing offer an
excellent potential [6].
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Fig. 1. The interplay between processing-structure–property relationships and the
research data infrastructure. An example of forward modeling for predictive approaches.

Fig. 2. Generation of a porous membrane, based on Voronoi tessellation. The left
figure shows the Voronoi cells that are build on the Voronoi points 𝑉p , 𝑉q, and 𝑉r
(based on [13]). Additionally, along the intersecting edges of the Voronoi cells, the
drawn membrane structure is illustrated. The right figure represents the isovolume of
a generated microstructure, in which the gray part represents the membrane structure.

High-throughput research activities are characterized by an auto-
mated process that enables rapid and cost-effective investigations [7].
In computational materials science in particular, high-throughput sim-
ulations are used to efficiently build an extensive database of char-
acteristic material parameters and structural properties that form the
basis for PSP linkages [8,9]. In the context of data-driven research, data
nfrastructures are needed that enable both the curation of data and
he creation of data pipelines, so-called (data science) workflows. The
atter aims at realizing preprocessing, analysis, and postprocessing tasks
n an automatable, reproducible, and traceable way, thus establishing
ata provenance relationships. Combining data repository and data
cience workflows in a research data infrastructure (see Fig. 1) also
ncorporates the FAIR data principles [10]. Through the integration of

the KadiStudio workflow editor [11], the Karlsruhe Data Infrastructure
for material Science (Kadi4mat) [12] enables an excellent opportunity
o realize the previous mentioned points.

This work deals with the establishment of a structure–property
elationship for porous polymer membranes (PPMs). In the last decades,
PMs have gained increasing interest. This is not least due to new
pplication areas which could be opened up by the advantageous prop-
rties of PPMs or which would not have been feasible with alternative
aterials from a technical and economic point of view. The success

tory is based on the controlled introduction of pores into a dense
olymer matrix (e.g. polymer solution), which allows the formation of
hin, porous layers with unique structural properties [14–16]. Porous
tructures are generally defined by a material matrix, i.e. by the coher-
nt solid that forms the actual structure, and by the pore space, which
s described by pores and pore throats. For a better description of the
ifferent structural morphologies, the pore types can be further divided
nto isolated pores, dead-end pores and interconnected pores [17]. De-
ending on the combination of the different pore types, open-pored or
losed-pored morphologies result. In open-pored structures, the pores
re interconnected, creating a pore network that is permeable to fluids.
n closed-pored structures, on the other hand, isolated pores and dead-
nd pores predominate, which reduces the permeability to fluids, but
ncreases the mechanical strength and thermal conductivity of suitable
tructural materials, which can also be exploited as very advantageous
roperties.

In this work, about 400 digital twins of open-pored porous poly-
eric membranes, which are preferentially used in lateral flow assays

LFA), were generated algorithmically and characterized in 3D, using
luid flow simulations and image analysis techniques. The processing
f the microstructures was realized by high-throughput workflows,
mplemented in the KadiStudio workflow environment. Based on the ob-
ained data, structure linkages were obtained by applying a curve fitting
rocedure with the commonly known Kozeny–Carman equation, while
urther parameters were linked using a linear regression approach.
inally, the resulting linkages are passed to a macroscopic wicking
odel [18], which allows the prediction of capillary-driven fluid prop-

agation in PPMs, just by knowing the porosity and the ligament radius,
thus allowing an accelerated design of LFAs for medical diagnostic tests.
This presents an easily reproducible method for addressing the scien-
tific question of creating structure–property relationships for porous
structures.

2. Materials and methods

2.1. Generating digital representations of porous polymeric membranes
(PPM)

Virtual material design thrives on the ability to create digital rep-
resentations that form the basis for data-driven approaches. In general,
there are three different ways to obtain 3D microstructures [19]:
(i) image-based capturing and reconstruction of 3D microstructures,
by real material samples [20], (ii) algorithm-based generation of mi-
crostructures [21–23], and (iii) simulation-based evolution of microstruc
tures, by solving mathematical models of physical processes [24,25]. In
this data-driven approach, the necessary database is realized through
the algorithm-based generation of digital representations. The algo-
rithm is implemented in the simulation framework Pace3D [26], where
the generation process is generally based on two main steps [21]:

(i) The first step is to distribute Voronoi points with a defined
distribution function, the so-called seed, in space. These points
are entangled in neighborhood relations that allow a Voronoi cell
to be defined around each Voronoi point (see Fig. 2). Due to the
planes and surfaces of the Voronoi cells, they generally represent
polyhedra [27].

(ii) In the second step, the membrane structure is drawn along the
intersecting edges of the polyhedra, by means of overlapping
spheres. Subsequently, they are fused together by a smoothing
step and finally represent the webs of the membrane structure,
as can be seen in Fig. 2.
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The described generation algorithm enables the generation of porous
microstructures with defined structure characteristics and is controlled
by several optional input parameters. Important parameters influencing
the morphology are the number 𝑛 of Voronoi points, the thickness of
he ligaments 𝑟l (the radius of the placed spheres), the porosity 𝜑 and,
or statistical reasons, the seed number. The pore size of the membrane
tructure is indirectly defined by the number of Voronoi points placed.
or example, a smaller number of Voronoi points at constant ligament
hickness leads to larger pores and thus a higher porosity.

In this study, the porosity and the mean ligament radius are investi-
ated as structural characteristics and the resulting wicking behavior as
macroscopic property. The characteristic ranges of interest are based
n real membrane samples [18]. They reach from 80% to 90% for the

porosity and 0.1 μm to 0.9 μm for the ligament radius. To realize the
ranges of the characteristic metrics, the number of Voronoi points, the
porosity, and the seed number are varied. Thereby, the microstructures
are generated with a domain size of 200 × 200 × 200 voxels with
an assumed resolution of 150 nm per voxel. This results in cubical
microstructures with 30 μm edge lengths.

2.2. Computational determination of structure characteristics

To determine the relevant structural properties, both image analysis
algorithms and a numerical solution of partial differential equations are
used. Furthermore, the analysis is based on the full voxel representation
of the digital twins, while the applied techniques are implemented in
Pace3D.

2.2.1. Porosity
Porosity is a very commonly used effective characteristic in the field

of membrane science and serves as a structural property that is usually
linked to the resulting material behavior. To determine the porosity, the
voxel values 𝐼b = 1 in the whole domain are summed up as follows:

= 1
(𝑁x ⋅𝑁y ⋅𝑁z)

⋅
𝑁x
∑

𝑖=1

𝑁y
∑

𝑗=1

𝑁z
∑

𝑘=1
𝐼b(𝐱) =

𝑁P
𝑁

, (1)

where 𝑁p is the number of voxels in the pore space, 𝑁x, 𝑁y, 𝑁z are
the numbers of voxels along the x, y, and z direction, and 𝑁 is the total
number of voxels in the domain. Fig. 4b shows an example of a section
of a reconstructed porous membrane.

2.2.2. Pore size and ligament size
The geometric mean pore radius 𝑟̄c and the mean ligament thickness

̄l of the PPMs are referred to as structure parameters [18]. They are
estimated by an image analyzing method developed and implemented
in Pace3D and applied in both the pore and the structural space of
the digital twins. Due to the combination of a Euclidean distance map
and a thinning algorithm, the method is able to estimate the local
distributions of the pore sizes and the local ligament thicknesses, as
respectively shown in Fig. 4c and Fig. 4d. Subsequently, the obtained
distributions are used to determine the respective mean values of the
structure parameter. The characterization method is described in more
detail in [20].

As pointed out in our previous work [18], the wicking process in
open-pored and complex porous microstructures can be correctly pre-
dicted only if an effective pore radius is used in common macroscopic
flow models, instead of the geometric pore radius. Therefore, in [18], a
arametric study was performed using selected simplified structures to
epresent the complex microstructure of the membrane. A phase-field
pproach was then applied, incorporating a special wetting boundary
ondition to describe meniscus formation and the corresponding mean
urface curvature for each structure. The main result of the study
as the establishment of an analytical correlation between geometric
structure parameters and an effective capillary radius 𝑟eff, using a
correction factor 𝐹 (𝑟l, 𝑟c):

𝑟eff = 𝐹 (𝑟l, 𝑟c) ⋅ 𝑟c. (2)

Thus, an analytical correlation was fit to the simulation results of
the simplified structures to obtain the correction factor 𝐹 (𝑟l, 𝑟c):

𝐹 (𝑟l, 𝑟c) =
𝑎

𝑟l∕𝑟c
+ 𝑏, (3)

with the values 𝑎 = 1.98 and 𝑏 = 3.012. The derivation of the
effective capillary radius was validated with experimental results [18].

2.2.3. Permeability
To establish a relationship between the structural metrics and the

resulting permeability as material behavior, fluid flow simulations are
performed in the pore space as follows: First, a pressure difference 𝛥𝑝
is defined over the considered PPM layer with a thickness 𝐿, while a
periodic condition is applied to the remaining boundaries. In a second
step, the Stokes equations for the steady-state solution are solved with
a finite-difference scheme on the equidistant voxel grid, so as to obtain
the spatial velocity distribution 𝐯 = (𝑢x, 𝑢y, 𝑢z)𝑇 , as shown in Fig. 4e.
Finally, the permeability is determined by applying Darcy’s law

𝐾 =
𝜂𝑈𝐿
𝛥𝑝

, (4)

where 𝜂 describes the dynamic viscosity and 𝑈 denotes the Darcy
velocity in the main flow direction (e.g. 𝑈 = 𝜑𝑢̄x). To validate
the permeability determination, analytical investigations are typically
conducted using simplified porous structures. A widely used approach
is the Gebart equation [28]

𝐾
𝑟l2

= 𝐶
⎛

⎜

⎜

⎝

√

1 − 𝜑𝑐
1 − 𝜑

− 1
⎞

⎟

⎟

⎠

5
2

, (5)

here 𝜑𝑐 describes the critical porosity, below which flow is no longer
possible and 𝐶 is a geometrical factor. For a hexagonal arrangement
of cylinders with periodic boundary conditions the critical porosity 𝜑𝑐
quals 1 − 𝜋∕(2

√

3) and the geometric factor C is 16∕(9
√

6𝜋).
The validation calculations were conducted in a 2D periodic do-

main, using a hexagonal arrangement of cylinders as depicted in Fig. 3.
The cylinder radius was kept constant at 80 cells, while the area
size was varied by increasing the 𝑥-direction edge length 𝑁𝑥. For the
hexagonal arrangement, the 𝑦-direction edge length 𝑁𝑦 was determined
using the geometric relation 𝑁𝑦 =

√

3𝑁𝑥. Starting from 𝑁𝑥 = 180 cells,
the area was successively increased and the resulting permeability was
evaluated [29]. The results, along with a comparison of the Gebart
equation and simulation results, are shown in Fig. 3. Additionally, it is
worth noting that the fluid flow solver used in this work has undergone
prior validation and comparison to experimental data in a separate
publication. In said study [20], the solver was utilized to simulate the
flow through a macro-porous polymer membrane and was compared to
experimental results, indicating a favorable level of agreement between
the simulation and the experiment.

In Fig. 4, an overview of the determination of all the structural
characteristics is given.

2.3. Macroscopic flow model for wicking processes in LFAs

Lateral flow assays (LFAs) are easy-to-use medical diagnostic tests
based on the self-sufficient transport of a liquid sample, containing
analytes and detector particles, to a detection zone (test and control
lines). One of the most popular LFAs are home pregnancy tests or the
currently widespread COVID-19 rapid tests. The transport process is
called wicking, which describes a surface-driven imbibition process in
porous structures, where a non-wetting fluid (gas) is replaced by a wet-
ting one (water), when subjected to a capillary suction pressure [30].
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Fig. 3. The Stokes solver was validated by comparing its simulation results to the
ebart equation (5). The validation simulations were performed using a hexagonal
rrangement, as schematically depicted where the gray rectangle represents the
imulation domain.

n LFAs, the capillary-driven wicking process is realized by an open-
ored and highly porous PPM as conductive medium. Thereby, the
icking process is significantly influenced by the morphology of the
icrostructure. The wicking time and the associated wicking velocity

t the test and control line have a decisive influence on the sensitivity
nd thus on the test result [31].

Macroscopic flow models allow bridging the different length scales
entioned above. Thus, by using microstructural properties, the flow

ehavior on a macroscale can be predicted. The main approaches used
o model the wicking process are all based on the description of the
ransport process, by including the dominant effects such as friction,
ravity, and capillarity into the momentum balance equation. In this
ork, we only consider the horizontal flow behavior, which is why
ravity can be neglected. Therefore, the prediction of wicking based on
he balance of forces between a capillary and a viscous term is used:
2𝛾lg cos (𝜃e)

𝑟eff
=

𝜑
𝐾
𝜂𝑙𝑙̇. (6)

Here, 𝛾lg describes the surface tension between the liquid and the
air phase and 𝜃e is the corresponding contact angle. 𝑟eff represents the
effective capillary radius, which is based on the mean pore radius 𝑟𝐜
and a correction factor 𝐹 (𝑟l, 𝑟c), as described in Eq. (2). The viscous
term is described by the porosity 𝜑, the permeability 𝐾, the viscosity
𝜂, the wicking length 𝑙, and the wicking velocity 𝑙̇.

For the applied force balance, a fully analytical solution is given
in [32] as follows:

𝑙(𝑡) =

√

4𝛾lg cos (𝜃e)
𝜂

𝐾
𝜑𝑟eff

√

𝑡. (7)

By rearranging the previous Eq. (7), the wicking time 𝑡w can be
calculated in dependence of the permeability and the effective pore
radius:

𝑡w = 𝑙2 ⋅
𝜑𝑟eff
𝐾

⋅
𝜂

4𝛾lg cos (𝜃e)
(8)

For this investigation, the imbibition fluid was assumed to be pure
ater and the PPM was assumed to be a cellulose nitrate membrane

CN membrane). The properties listed in Table 1 are used for the
ollowing wicking predictions:

The surface tension 𝛾lg and the dynamic viscosity 𝜂 for pure water
re considered. The contact angle between the CN membrane and the
iquid is taken from [33], where a contact angle between 40° and 60°
as measured for pure water. Since the method presented here can
e easily reproduced with the help of the presented workflows and

quations, the focus of this work is not on the realistic mapping of
Table 1
Assumed wetting properties for an imbibition of pure
water on a CN membrane liquid [33].
𝛾lg (mNm−1) 𝜃e (◦) 𝜂 (mPa s)

72.0 50.0 1

the values, but on the presentation of the approach and its potential
benefits for the accelerated development of novel membrane structures.
Therefore, an average value of 50° is assumed for the static contact
angle 𝜃e.

2.4. High-throughput workflow in Kadi4Mat

The described data-driven approach in Fig. 4 is realized by build-
ing and applying high-throughput data pipelines. For such purposes,
the Karlsruhe Data Infrastructure for Material Science (Kadi4Mat) is
being developed at the Karlsruhe Institute of Technology (Karlsruhe,
Germany). The overall goal of Kadi4Mat is to provide a modular and
generic architecture for handling large amounts of diverse research
data from different disciplines and ultimately to accelerate research
activities. Main components can be summarized as Community Reposi-
tory [12] and Electronic Lab Notebook (ELN) [11]. While the community
repository provides an extensive data sharing and managing infrastruc-
ture, the ELN enables the creation of reproducible and automatable
workflows.

The workflow component mainly consists of a workflow editor
which is based on an open source node editor library for Qt [34].
Within the framework of Kadi4Mat, there are two versions of this
editor. One is a desktop-based, standalone software version called
KadiStudio, while the second is a web-based version integrated into
the web version of Kadi4Mat. In KadiStudio, the creation of workflows
is implemented by adding and connecting nodes within a graphical
user interface (GUI), each of the insertable nodes represents a specific
process. The nodes can be divided into the following categories: (i)
tool nodes that allow the integration of various programs or func-
tions, (ii) environment nodes that provide different environments in
which the tool nodes are executed, and finally (iii) built-in nodes
that provide additional flexibility to the execution of a workflow. In
particular, some of the built-in nodes that cover control mechanisms
such as if-conditions and for-loops are fundamental to high-throughput
automatable generation and analysis. Fig. 5 exemplifies the automated
generation of porous membrane microstructures by three encapsulated
for-loop nodes and a tool node that executes the generation process.

In order to connect KadiStudio to the Kadi4Mat repository, an ap-
plication programming interface (API) is being developed that provides
a set of functions for the interaction. The open source API can be
integrated through the kadi-apy library [35], while the functions can
be used as nodes in KadiStudio, as shown in Fig. 5.

When executing a workflow, the tool nodes used are translated into
command line interface (CLI) commands, while the entire workflow is
executed sequentially in a Linux terminal. A major advantage of the
workflow editor is its technical nature of a graphical programming
language, which makes it possible to make high-throughput research
accessible to a wider range of users [11].

3. Results

3.1. Data-driven structure linkages

In this study, a structure-wicking relationship is established be-
tween two microstructure parameters and the wicking time, using the
designed workflows to generate and characterize microstructures. To
calculate the wicking time using Eq. (8), the parameters ligament
radius, pore radius, porosity, and permeability are required. To reduce

the number of free structure variables, mathematical relationships were
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stablished for the remaining two parameters. In this study, the liga-
ent radius and the porosity were chosen as the parameters of interest.

t is worth mentioning that the influence of different combinations
f two structure parameters can be explored by choosing different
it functions for the data. For the study, 407 structures were used
s the database. Furthermore, by using this workflow and observing
nother property, any kind of structure–property relationship can be
stablished.

.1.1. Permeability as a function of porosity and mean ligament radius
Kozeny–Carman equation)

By performing fluid flow simulations in the pore space of the
igital representations, the permeability 𝐾 is determined as described

in . Combining this with the extracted ligament radius 𝑟l and the
known porosity 𝜙 yields a correlation expressed by the well-known

ozeny–Carman equation (K-C equation) [36]:

(𝑟l, 𝜙) =
𝜙3𝑟2l

𝑐(1 − 𝜙)2
. (9)

Here, 𝑐 is a geometry factor that describes the shape of the pores
and is obtained by a 3D fitting procedure, using the scientific graphics
utility Gnuplot 5.2 [37]. Together with the fitted level, Fig. 6a shows
the results of the fluid flow simulations for the structures with the
porosities 83%, 85%, 87%, and 89%. As a result of the fitting procedure,
it is found that the geometry factor 𝑐 is determined to equal 𝑐 =
15.7171 for the investigated range of structural properties. For statistical
validation, the coefficient of determination R2 was also calculated,
where R2 corresponds to the value 0.966. This shows that the fitted
Kozeny–Carman equation is an appropriate approximation to the data
obtained.
3.1.2. Pore radius as a function of ligament radius and porosity
In a further step, we perform a linear regression procedure with the

structural properties mean pore radius 𝑟c, ligament radius 𝑟l, and poros-
ity 𝜙. Since the data showed a linear relationship in three-dimensional
space, we chose the following approach function:

𝑟c(𝑟l, 𝜙) = 𝑑𝜙 + 𝑒𝑟l + 𝑓. (10)

By fitting the acquired data to Eq. (10), using the scientific graphics
utility Gnuplot 5.2, we obtain the following parameters: d =
.614 15 × 10−6 m, e = 3.178 36, and f = −8.152 31 × 10−6 m. The coef-
icient of determination R2 has a value of 0.956, which proves that the
hosen approach function in Eq. (10) is a suitable model. The data and
he best-fit level of Eq. (10) are plotted in Fig. 6b.

.2. Wicking time predictions in PPMs

Embedding the Eqs. (2), (9), and (10) into the macroscopic wicking
odel in Eq. (8) finally results in a correlation between the wicking

ime 𝑡w and the structural properties porosity 𝜙 and ligament radius 𝑟l,
s expressed in Eq. (11). There, the fitting parameters 𝑎 and 𝑏, used to
alculate an accurate effective capillary radius for open-pore structures,
re taken from our previous work [18], which is described in more
etail in . The fitting parameters 𝑐, 𝑑, 𝑒, and 𝑓 were determined in

the sections to establish a mathematical relationship for calculating
permeability and pore radius in dependence of porosity and the liga-
ment radius, respectively. The wetting properties are described by the
surface tension 𝛾lg, the dynamic viscosity 𝜂, and the contact angle 𝜃e,
and are kept constant by the values described in Table 1. The remaining
parameter 𝑙 represents the desired wicking length.

Fig. 7a schematically illustrates the length scales to be bridged. The
application scale is represented by the length of the test strip, while
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Fig. 5. Visualization of an applied workflow for the high-throughput structure generation. The workflow is realized with the KadiStudio workflow editor, while the boxes are
added to highlight the executed steps.
the microscale is described by the morphology of the microstructure
(porosity 𝜙, ligament radius 𝑟l, and pore radius 𝑟c). Thereby, a factor
of 1000 has to be bridged.

𝑡𝑤(𝑟l, 𝜙) =

(

𝑑𝜙 + 𝑒𝑟𝑙 + 𝑓
) (

𝑎𝑑𝜙 + (𝑎𝑒 + 𝑏) 𝑟𝑙 + 𝑎𝑓
)

(−1 + 𝜙)2 𝑐

𝑟3𝑙 𝜙
2

⋅
𝑙2𝜇

4𝛾 cos(𝜃𝑒)

(11)

As a first proof of concept, Fig. 7b shows a typical wicking behavior
n a graph where the wicking length 𝑙 is plotted against the time t. Here,
he curves follow the classical course, where the wicking behavior can
e described in general terms with a root function 𝑙 ∼ 𝑡0.5 [38]. Here,

the ligament radius for all three curves has the constant value 𝑟l =
0.7 μm and the three porosities of 80%, 82%, and 84% are shown. As
can be seen in Fig. 6a and Fig. 6b, at a constant ligament radius, the
pore radius and the permeability increase with an increasing porosity.
In the three examples shown, this circumstance leads to a faster wicking

behavior with increasing porosity.
Fig. 7c shows the wicking time for a wicking length of 0.025m over
the ligament radius, at three constant porosities. In contrast to Fig. 7b,
no clear staggering of the wicking time can be seen, which is dependent
on the porosity. Instead, structures with a higher porosity show a slower
wicking behavior at smaller ligament radii, with this behavior tilting
as the radius increases. This observation gives a first indication of the
non-trivial relationship between the ligament radius, the porosity, and
the wicking time.

A more general overview of the complex wicking behavior within
the investigated property range is given by the contour plot in Fig. 7d.
The wicking time is plotted as isochoric contour lines, as a function of
the porosity and the ligament radius, while the wicking length is held
constant as 0.025m. As can be seen from Fig. 7c, the strong nonlinear
correlation between the structural properties and the material behavior
is first of all obvious. Second, there is no clear rule of thumb that
summarizes the nonlinear behavior, since the trends linking structure to
properties are highly dependent on the observed structural range. For

instance, by assuming a constant porosity of 82%, we can observe that
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Fig. 6. (a) Flow simulation results: Correlation between the ligament radius 𝑟l and the resulting permeability 𝐾 of the porous membranes for different porosities, using the
Kozeny–Carman equation. (b) Correlations between 𝑟c , 𝑟l and 𝜑.
Fig. 7. Resulting plots for the wicking time prediction: (a) Overview of the application of the results, by using Eq. (11); (b) Wicking distance over wicking time, for different
porosities and a constant ligament radius of 0.7 μm; (c) Wicking time over ligament radius, for different porosities; (d) Contour plot of isochores in (s), in dependence of the
orosity and the ligament radius.
h
t
h

he wicking time increases when the ligament radius ranges from 0.1 μm
o 0.2 μm, while it decreases when the ligament radius ranges from
.2 μm to 0.9 μm. The isochores show that while different combinations
f structural characteristics lead to different morphologies, the same
icking time can be achieved with an infinite number of different mor-
hologies. This can be exploited in the design of LFTs, by maintaining
he same wicking time along the isochores to simultaneously optimize
he structural parameters for other requirements.

. Discussion

The presented results confirm that the influence of the morphologies
𝜑 and 𝑟l) on the wicking time and thus on the liquid velocity at the
est and control line is immense. Since the flow velocity in the test area
as a crucial influence on the sensitivity of the test [39], it is important
o know and predict the flow conditions, so as to improve and design
ighly sensitive LFAs [31]. The resulting correlation in Fig. 7d provides

the necessary prediction for LFA design.
With respect to the virtual material design, the obtained structure–

property linkage clarifies the relation between the structure and the
resulting properties of the overall PSP chain relationship, according to
which the PSP linkage has a many-to-one (forward model) and a one-
to-many (inverse model) character [2]. In our case, this is shown by
the fact that many structures can lead to a certain wicking time, which
can be seen along the isochoric lines. Conversely, a certain wicking time
can be realized by many structures, which can play a crucial role in the
design of LFAs, since factors such as pore size have a further influence
on the width of the test line [40] and thus on the sensitivity of the test.
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Therefore, the test performance can be improved without changing the
wicking behavior, by adapting the structure along the isochoric line.

5. Conclusion

In this work, 407 structures representing digital twins of porous
polymeric membranes were generated by an algorithm. The character-
ization was done using fluid flow simulations and 3D image analysis
methods. The obtained data was used to establish structural correla-
tions by regression approaches that include the pore radius 𝑟c, the
ligament radius 𝑟l, the porosity 𝜙, and the permeability 𝐾. Finally, us-
ing the determined structural relationships and a macroscopic wicking
model, an isochoric diagram was created that analytically describes the
complex relationship and allows a prediction of the wicking behavior.
In order to follow the FAIR principles, the relationship was realized by
implementing reusable workflows with the workflow editor KadiStudio
and made available to the research community via Zenodo, as a public
repository.

For future work, the created and provided workflows can easily be
used to extend the characteristic ranges and apply them to new use
cases. Moreover, not only digital twins of algorithmically generated
membrane structures, but also time-dependent physical simulations of
the underlying phase separation [24] or reconstructed membranes [20]
could be additionally used. As a result, not only a structure–property
relationship could be realized, but also a full process-structure–property
relationship, which offers the possibility to tailor novel membranes
more precisely, taking into account the manufacturing process, and
thus improve the rapid adaptation of LFAs to new diseases.
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