KIT | KIT-Bibliothek | Impressum | Datenschutz

Machine learning and LHC event generation

Butter, Anja; Plehn, Tilman; Schumann, Steffen; Badger, Simon; Caron, Sascha; Cranmer, Kyle; Di Bello, Francesco Armando; Dreyer, Etienne; Forte, Stefano; Ganguly, Sanmay; Gonçalves, Dorival; Gross, Eilam; Heimel, Theo; Heinrich, Gudrun 1; Heinrich, Lukas; Held, Alexander; Höche, Stefan; Howard, Jessica N.; Ilten, Philip; ... mehr

Abstract:

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.


Verlagsausgabe §
DOI: 10.5445/IR/1000158600
Veröffentlicht am 31.05.2023
Originalveröffentlichung
DOI: 10.21468/SciPostPhys.14.4.079
Scopus
Zitationen: 36
Web of Science
Zitationen: 29
Dimensions
Zitationen: 42
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Physik (ITP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2542-4653
KITopen-ID: 1000158600
Erschienen in SciPost Physics
Verlag SciPost
Band 14
Heft 4
Seiten Art.-Nr.: 079
Vorab online veröffentlicht am 21.04.2023
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page