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Accurate and credible identification of the drivers of algal growth is essential for sustainable utilization and
scientific management of freshwater. In this study, we developed a deep learning-based Transformer model,
named Bloomformer-1, for end-to-end identification of the drivers of algal growth without the needing extensive a
priori knowledge or prior experiments. The Middle Route of the South-to-North Water Diversion Project (MRP)
was used as the study site to demonstrate that Bloomformer-1 exhibited more robust performance (with the
highest R2, 0.80 to 0.94, and the lowest RMSE, 0.22–0.43 μg/L) compared to four widely used traditional machine
learning models, namely extra trees regression (ETR), gradient boosting regression tree (GBRT), support vector
regression (SVR), and multiple linear regression (MLR). In addition, Bloomformer-1 had higher interpretability
(including higher transferability and understandability) than the four traditional machine learning models, which
meant that it was trustworthy and the results could be directly applied to real scenarios. Finally, it was determined
that total phosphorus (TP) was the most important driver for the MRP, especially in Henan section of the canal,
although total nitrogen (TN) had the highest effect on algal growth in the Hebei section. Based on these results,
phosphorus loading controlling in the whole MRP was proposed as an algal control strategy.
1. Introduction

Algae, as a major footstone in the aquatic food chain, have a two-way
and complex relationship with water quality. On the one hand, algae can
affect water quality, since overgrowth and eventual death of algae cells
can adversely influence water quality by producing toxic secondary
metabolites and stench thereby affecting the survival of other aquatic
organisms (Xia et al., 2019). On the other hand, algae can respond
immediately to changes in physico-chemical properties of water, such as
variations of temperature and nutrients, which can lead to changes in the
species' qualitative and quantitative composition. Consequently, algae
can often be used as reliable indicators for water quality assessment
(G€okçe et al., 2016). However, increased knowledge and understanding
of this relationship is necessary.

Modeling the interactions of algal biomass, expressed as chlorophyll-
a(Chl-a) content, with multiple environmental factors based on a
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mathematical representation of the ecosystem is an effective approach to
analyzing the relationship between water quality and algal growth,
including process-based models and data-driven models (Su et al., 2022).
Process-based models, such as the Lotka-Volterra model in ecology, are
mathematical models that explicitly represent the processes occurring in
the target system with equations. In the identification of the driving
factors of algal growth, the process-based model is represented as an
ecodynamic model that attempts to simulate process-based relationships
by combining hydrodynamic processes with ecological processes and
takes into account the interactions between multiple subsystems.
Although ecodynamic models are capable of systematically representing
relationships between a single output and multiple inputs, they usually
require significant computational resource (Ralston andMoore, 2020). In
addition, equations for process-based models are often derived from
theory, but they are not necessarily credible (Knüsel and Baumberger,
2020), which leads to questionable correlations being obtained from the
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resulting models. In contrast, because this information is hidden in pre-
vious data, data-driven models can escape the limitations of theory and
reveal patterns of interaction between algal growth and environmental
factors from limited data and explain these patterns by correlation the-
ory. Earlier data-driven approaches were empirical regression algorithms
that used simple correlation and regression analyses to empirically model
the relationship between a single water quality parameter (e.g., TP) and
Chl-a (Xia et al., 2019). Since these models were generally unable to
represent multi-factor interactions, multivariate analysis methods, such
as cluster analysis (CA) and principal component analysis (PCA), were
applied to explore algal growth (Bierman et al., 2011; Du et al., 2017;
Qian et al., 2021). However, the relationship between environmental
factors and algal biomass is, in many cases, non-linear (Nelson et al.,
2018). As linear functions are the basis for most correlation coefficients
and multivariate methods, they cannot be applied to nonlinear re-
lationships (Su et al., 2022). In this context, machine learning has
recently been widely used to understand aquatic ecological processes and
to determine the strength of the association between environmental
variables and algal growth (Yu et al., 2021; Ly et al., 2021; Deng et al.,
2021).

Many studies have confirmed that traditional machine learning tools,
such as support vector machine (SVM), logistic regression, extra trees
regression (ETR), and multi-linear regression, are effective for the
simulation of algal growth, (Su et al., 2022; Park et al., 2015; Liping and
Binghui, 2013).As environmental research begins to migrate from small
data to big data, the shortcomings of traditional machine learning is
becoming more apparent, and deep learning, with its powerful big data
processing capabilities, is receiving increased attention (Qian et al.,
2022). Deep learning has been employed in previous studies to make
predictions regarding Chl-a time series, but has rarely been applied to
identify the critical factors associated with algal growth. This is because
deep learning operates with less transparency than traditional machine
learning and is implicitly expressive about the contributions of each
factor. To solve this problem, deep learning models of algal growth are
needed.

The Middle Route of the South-to-North Water Diversion Project
(MRP) is a national large-scale project in China, which aims to transfer
abundant water resources from the south to the north through artificial
channels in order to balance the overall water distribution of the country
(Zhu et al., 2022). The total length of the channel is 1432 km, including
155 km in Tianjin, serving a population of about 69million people (Wang
et al., 2021). As a long-distance and long-term drinking water supply
corridor, water quality safety of the MRP is particularly important. Pre-
vious studies have shown that algal growth accelerated in parts of the
MRP after 2016, with large clusters of filamentous algae causing prob-
lems such as blockage of the basin grate and rapid siltation in front of the
outlet sluice (Zhu et al., 2019). Moreover, foul-smelling compounds and
algal toxins produced by the siltation of decomposing algal debris also
affected water quality levels and threatened water supply safety (Zhu
et al., 2022). Consequently, during the 5–10 years since MRP operation,
algal biomass has been a major factor affecting water quality. Further-
more, the instability of the overall system has made it difficult to identify
the mechanisms and factors that determine algal growth in the MRP. It is
noteworthy that most of the world's large water diversion projects are
built for irrigation and power generation and that only a small percentage
have provision of a drinking water supply as the main purpose (Long
et al., 2022). The low attention to water quality changes in these large
water diversion projects has resulted in a lack of case studies that can be
applied to the management of water quality safety in MRP. Therefore, at
this stage, the accurate identification of mechanisms that influence water
quality and algae in MRP is lacking. Nevertheless, the effective prediction
and management of algal growth are important for success of long dis-
tance and long-term drinking water delivery projects such as MRP.
2

This study aims to accurately and quantitatively identify the driving
factors of algal biomass in the MRP with the core of big data mining. Our
method involves developing a Transformer-based deep learning model,
named Bloomformer-1, which runs on a big data platform derived from
long-term manual monitoring data, in order to reveal the driving
mechanisms of algal growth in the MRP accurately, transparently, and
directly. The findings will be useful for the efficient management and
sustainable utilization of the MRP.

2. Materials and methods

2.1. Study area and data collection

A total of nine water quality monitoring stations were evenly spaced
along the MRP, labeled P1 to P9, extending from south to north, with P1,
P2, P3 and P4 located in the Henan section, P5, P6 and P7 located in the
Hebei section, P8 located in the Tianjing section, P9 located in the Beijing
Section (Fig. 1). The database used in this study consists of 49 months
(August 1, 2018, to August 30, 2022) of water quality monitoring data
from each station. Water samples were collected at a depth of 0.5 m,
stored at 4 �C, and transported to the laboratory to determine water
quality parameters.

The chemical water quality parameters, which comprised total
phosphorus (TP), phosphorous-phosphate (PO4 � P), total nitrogen (TN),
nitrogen-nitrate (NO3 � N), nitrogen-ammonia (NH3 � N), potassium
permanganate index (CODMn), and total organic carbon (TOC), were
determined according to APHA (Zhu et al., 2022). The concentration of
Chl-a was used as a response variable in the data-driven methods since it
is considered to be an indicator of phytoplankton biomass and was
determined according to ASTM D3731-87 (ASTM, 1993).

2.2. Bloomformer-1 model

Transformer is the state-of-the-art solution for natural language pro-
cessing (NLP) tasks (Wolf et al., 2020). This method takes advantage of
the Multi-Head Attention mechanism, which compares each token along
the input sequence to other tokens in order to collect and learn dynamic
contextual information. Attention is an important part of human cogni-
tive function (Lindsay, 2020), and when faced with large amounts of
information, humans can readily adjust the level of focus on the infor-
mation they received to analyze it more accurately and efficiently. The
essence of the attention mechanism was to provide weights. An attention
function could be interpreted as mapping a Q (query) and a string of
K(key)-V(value) to an output, where Q, K, V, and output were vectors
(Vaswani et al., 2017). The attention could be represented as:

OutputAttention ¼AttentionðQ;K;VÞ
Multi-Head Attention was the projection of Q, K, and V by h different

linear transformations. The different attention results were then stitched
together, which could be represented as:

MultiHeadðQ;K;VÞ¼Concatðhead1;…; headhÞWO

where

headi ¼Attention
�
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In the appealed Attention mechanism, the weights were the direct
weight correspondence between the input and output vectors, implying
that the weight calculation required the participation of the output
vectors. In contrast, the weight of Self-Attention was a weight relation-
ship between the input vectors internally, which did not require the



Fig. 1. Sketch map of sampling stations distribution in the middle section of the South-North Water Diversion Project.

Fig. 2. The framework and architecture of Bloomformer-1.
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participation of the output vectors. Therefore, the multi-head-self-
attention meant Q, K, and V were the same.

In this study, we used the scaled dot-product to calculate Attention:

AttentionðQ;K;VÞ¼ softmax
�
QKTffiffiffiffiffi
dk

p
�
V

Where dk was the vector dimension in both Q and K.
The encoder consisted of N same units (Fig. 2). Each unit consists of

two sub-layers, the multi-head-self-attention layer, and the fully con-
nected feed-forward network, where each sub-layer was processed with
the residual connection “Add” and normalization “Norm”. The output of
the sub-layer could be represented as:

OutputSublayer ¼NormðxþFðxÞÞ

Where FðxÞ was a function of the sublayer itself, multi-head-self-
attention, or fully connected feed-forward network.

The fully connected feed-forward network provided a non-linear
transformation consisting of two linear transformations with the active
function ReLu (Agarap, 2018). Compared with the encoder, the decoder
added another MHSA layer (Fig. 2). A mask operation (Fan et al., 2021)
was applied to this multi-head self-attention layer in order to prevent the
model from being exposed to future information during training.

Because algal growth is a multi-factorial process, the determination of
the driving factors of algal growth is a typical multivariate regression
task. The key to solving this problem is to learn the spatial relationships
to understand how the variables are related to each other. However, the
standard Transformer is not designed for this because it treats the value
of each variable at a given time period as a single marker on its graph:
each variable cannot have its own view of the context it should prioritize
(Grigsby et al., 2021). Therefore, we developed Bloomformer-1 for
studying spatial relationships based on Transformer. The improved
method first converted the context sequence in the database into a long
spatial sequence. This sequence was also transposed to obtain the cor-
responding long spatial sequence. The sequence was then processed with
a Transformer-based encoder-decoder architecture to obtain the pre-
dicted values for each variable. Finally, the predicted values were
repackaged into their original format and trained to minimize prediction
error metrics. The training framework of Bloomformer-1 consists of a
reconstruction stage and a regression stage. The reconstruction task is an
unsupervised pre-training and a reconstruction of the explanatory vari-
ables through the connected encoder and decoder stacks to extract their
robust and compact features. The parameters of the encoder stack and
position encoding obtained by the reconstruction task are sharedwith the
corresponding part of the regression task. In this study, the number of
units in encoder and decoder layer is 8, which represented the 7-dimen-
sional water quality parameters and the 1-dimensional station location
information. When performing the substation task, the station location
information was the station number corresponding to each water quality
parameter, from 1 to 9. When performing the wholeMRP task, the station
location information was set to 1. Mean square error (MSE, Supple-
mentary material) was selected as the loss function both in the recon-
structed stage and the regression stage. The framework and architecture
of Bloomformer-1 is shown in Fig. 2. The MHSA mechanism of
Bloomformer-1 allows the results of driving factor identification to be
obtained during model training forward propagation direction and
simultaneously derived.
2.3. Multiple linear regression

Multiple linear regression (MLR) is one of the typical traditional
machine learning models that can be used to predict the result of an
answer variable using a number of explanatory variables (Maulud and
Abdulazeez, 2020). For the purpose of verifying performance, an MLR
model was used in this study to compare with Bloomformer-1. The MLR
4

model was built by using the Scikit-learn function from the Python
package. The parameter to be tuned was the degree of the polynomial
features. The driving factor analysis methods for MLR was sensitivity
analysis (SA) (Saltelli, 2002).

2.4. Support vector regression

Support vector regression (SVR) is a powerful traditional learning
machine for searching the relationship between the answer variable and
several explanatory variables, including linear and non-linear correla-
tions. The SVM approach is to map the training data non-linearly into a
high-dimensional feature space and then construct a separated hyper-
plane there with maximummargin (Awad and Khanna, 2015). This study
employed the SVR as a comparative model to assess the performance of
Bloomformer-1. The SVR model was derived by calling the function in
the Scikit-learn package in Python. Radial basis functions were selected
as kernels because they provided better performance through the kernel
test. The parameters that needed to be tuned in this study were the
regularization parameter and the Kernel coefficient. The driving factor
analysis methods for SVR was sensitivity analysis (SA) (Saltelli, 2002).

2.5. Gradient boosting regression tree

The gradient boosting regression tree (GBRT) algorithm is a combi-
nation of the classification and regression (CART) algorithm and the
gradient boosting (GB) algorithm (He et al., 2013). CART allows for the
modeling of non-linear relationships without requiring a priori infor-
mation about the probability distribution of the variables (Nie et al.,
2021). The gradient boosting algorithm combines weak learners by
iteratively focusing on the error generated at each step until a suitable
strong learner is obtained as a sum of successive weak learners (Fried-
man, 2001). The regression tree generated by the CART algorithm was
used as the weak learner and was added to the model to correct errors in
the previous model, thereby improving the accuracy of the model. This
study employed GBRT as a comparative model to assess the performance
of Bloomformer-1. The GBRT model was derived by calling the function
in the Scikit-learn package in Python. The driving factor analysis
methods for GBRT is to calculate the relative importance to the input
variables, the idea being to score each input variable by estimating the
reduction in relative variance (Su et al., 2022).

2.6. Extra trees regression

Extra trees regression (ETR) builds a collection of the unpruned de-
cision or regression trees based on a classical top-down procedure that
does not require a known underlying distribution of parameters or
associated assumptions (Geurts et al., 2006). The main difference be-
tween this method and traditional tree ensemble methods is that it splits
the nodes randomly and grows the tree based on the original training
data set rather than using a bootstrap method. With these two features,
ETR is able to produce outputs with lower variance and higher general-
ization than traditional tree-based models. In this study, the ETR was
used to evaluate the performance of Bloomformer-1 as a comparative
model. The ETR model was derived by calling the function in the
Scikit-learn package in Python. As for GBRT, the driving factor analysis
methods for ETR is to calculate the relative importance to the input
variables (Su et al., 2022).

2.7. Training and performance evaluation of model

Data from each of the nine water quality monitoring stations (P1 to
P9) were fed into the appealing model for training to identify the drivers
of algal growth at each water quality monitoring station. Chl-a and the
other water quality parameters described previously were placed in the
models as responses and explanatory variables, respectively. Before
entering all data into the model, data normalization was performed to
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ensure equality in model comparisons. Data normalization followed the
Z-equation (See Supplementary material).

Evaluation of model performance is a critical step prior to practical
application. The data set was divided into a training set and a test set
according to the rule of randomly taking one step out of every five, which
means 80% of the whole data set was used to train the model and 20%
was used to test the model performance. A tenfold cross-validation was
introduced to avoid over-fitting in the training phase. For the purpose of
evaluating the accuracy and stability of each regression model, two in-
dicators were used on the test set: coefficient of determination (R2) and
root mean square error (RMSE), following the equations:

R2 ¼ 1�
Pn
i¼0

ðyi � ~yiÞ2

Pn
i¼0

ðyi � yiÞ2

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn�1

0

ðyi � ~yiÞ
n

vuut

2.8. Operation environment

The experiment was carried out on a PC with the following features:
Hard-ware: CPU i7-6950X, RAM 64GB, dual GeForce RTX 3090, VRAM
24GB; Software: Ubuntu 20.04, Python3.6, Pytorch 1.10.0, Numpy 19.2.

3. Results

3.1. Model performance evaluation

The performance of regression models directly determined the ac-
curacy and plausibility of the driver identification. After optimizing the
proposed models, we compared the performance of five machine
learning models across all monitoring stations using R2 and RMSE in a
tenfold cross-validation. The results for model performance are summa-
rized in Table 1. The comparison between model simulation and the
ground truth is shown in Figs. 3 and 4. In order to describe the training
process of Bloomformer-1 more intuitively, the loss values during the
training process are shown in Fig. S1.

The results of P1, P2, and P3 showed that Bloomformer-1 performed
much better than the four traditional machine learning models because
Table 1
Results of model performance evaluation.

Stations Indicatora Bloomformer-1 ETR GBRT SVR MLR

P1 R2 0.85 0.75 0.72 0.63 0.42
RMSE 0.32 0.56 0.57 0.60 0.73

P2 R2 0.80 0.66 0.51 0.63 0.25
RMSE 0.43 0.62 0.68 0.63 0.82

P3 R2 0.83 0.70 0.39 0.58 0.39
RMSE 0.40 0.59 0.69 0.64 0.79

P4 R2 0.89 0.84 0.68 0.46 0.35
RMSE 0.33 0.52 0.62 0.61 0.76

P5 R2 0.90 0.89 0.78 0.88 0.49
RMSE 0.30 0.50 0.58 0.51 0.71

P6 R2 0.89 0.85 0.74 0.88 0.46
RMSE 0.26 0.45 0.49 0.43 0.68

P7 R2 0.94 0.94 0.85 0.92 0.68
RMSE 0.23 0.43 0.47 0.45 0.66

P8 R2 0.94 0.91 0.84 0.89 0.71
RMSE 0.22 0.43 0.48 0.44 0.62

P9 R2 0.93 0.91 0.89 0.86 0.62
RMSE 0.28 0.46 0.48 0.49 0.68

Whole MRP R2 0.85 0.79 0.73 0.80 0.39
RMSE 0.35 0.54 0.55 0.51 0.70

The bold values represent the best regression results.
a Unit of RMSE is μg/L.
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the difference in R2 values between themwas greater than 0.1. There was
also a significant difference in RMSE values (e.g., in P1, Bloomformer-1
had an R2 value of 0.85, while the four traditional machine learning
models had R2 values less than or equal to 0.75; Bloomformer-1 had an
RMSE value of 0.32, while the other models had RMSE values greater
than or equal to 0.56. The RMSE value of Bloomformer-1 was 0.32, while
the RMSE values of the other models were all greater than or equal to
0.56).

According to the results of P4, P5, P6, P8, and P9, Bloomformer-1
showed relatively high performance. Although the difference with ETR
in R2 values was small (0.03–0.06), it still had a significant advantage in
RMSE values (e.g., Bloomformer-1 had an RMSE value of 0.33 in P4,
while ETR had the lowest RMSE of 0.52 among the four traditional
machine learning models). In P7, except for MLR, the other three tradi-
tional machine learning models showed better performance, especially
the R2 value of ETR which was the same as Bloomformer-1 at 0.94.
However, Bloomformer-1 still had a significant advantage in RMSE
values (Bloomformer-1 0.23, ETR 0.43, GBRT 0.47, SVR 0.45, MLR 0.66).
Consistent with the results from the individual stations, Bloomformer-1
showed superior performance on the whole MRP, as evidenced by the
higher R2 values (0.85) and lower RMSE values (0.35). In summary,
Bloomformer-1 showed the highest R2 with the lowest RMSE across all
stations compared to traditional machine learning models and was,
therefore, the best model in terms of performance to describe the rela-
tionship between Chl-a concentration and the water quality parameters.

3.2. Driving factors of algal growth

The driving factors of algal growth in the MRP based on the attention
mechanism of Bloomformer-1 are shown in Fig. 5. In P1, P2 and the
whole MRP, the most dominant driving factor of algal growth was TP,
with 18.73%, 19.20% and 22.28%, respectively. It is noteworthy that
PO4 � P also exhibited a very close occupancy rate in the whole MRP, at
16.09%. The results for P5, P6, P8, and P9 showed that the major driving
factor of algal growth at these four stations was NO3 � N with 20.24%,
28.27%, 20.16%, and 17.16%, respectively. In P4 and P7, TN was the
main driving factor of algal growth, with 22.16% and 17.96%, respec-
tively. The results of P3 differed from the others, with 23.84% of NH3 �
N as the most dominant driving factor of algal growth.

4. Discussion

4.1. Model performance

Inferring causation from correlation and determining the explanatory
variables associated with the response variables is the basis for tradi-
tional model building, which requires a great deal of a priori knowledge
and background information about the domain (Xia et al., 2019; Su et al.,
2022). In traditional machine learning, feature extraction is
manual-based and has limited learning capability, thus requiring the
input terms (explanatory variables) have a clear one-way correlation
with the response variables, which implies a high reliance on a priori
knowledge. However, some explanatory variables are difficult to deter-
mine in practical applications, such as CODMn in this study. The rela-
tionship between CODMn and algal growth is bidirectional and complex
(Li et al., 2020; Yan et al., 2016). The foundation of CODMn as an
explanatory variable depends on which direction of the relationship is
dominant, which requires a priori knowledge as well as prior experi-
ments. Bloomformer-1 employs a combination of encoder and decoder
structures as well as the MHSA mechanism to automatically extract
features from raw data and to fully understand the raw data at the same
time. This full understanding means that the complex relationship be-
tween CODMn and algal growth in the raw data is mined and quantified.
In this way, a rigorous correlation analysis is not required before using
Bloomformer-1. Moreover, building a model with excellent fitting per-
formance is the first and most critical step to identify the driving factors



Fig. 3. Performance of Bloomformer-1 in P1–P9 (blue lines are observations, red lines are model simulations). The circles are the test set, where the blue circles are
the true values and the red circles are the predicted values. The blue line, except for the blue circles, is the training set. Numbers show RMSE and R2 for model
prediction and training data (inside brackets).
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of response variables. As a state-of-the-art deep learning model,
Bloomformer-1 has an advantage in the accuracy of model fitting with R2

(0.80–0.94). Compared with traditional machine learning, deep learning
is more advanced and has a stronger learning ability to automatically
extract, analyze and understand useful information from raw data to
obtain better results (Chauhan and Singh, 2019; Janiesch et al., 2021).

In the present study, when training traditional machine learning
models, each explanatory variable was completely independent, for
example, each decision tree that made up the ETR was unrelated to each
other. This meant that the traditional machine learning models only
focused on the logical relationship between each explanatory variable
and the corresponding variable, ignored the additional effects of the in-
teractions between explanatory variables on the corresponding variable.
Consequently, the traditional machine learning models could only
partially identify the drivers of algal growth, because algal growth is not
only related to a single water quality parameter, but also to the
6

interactions between multiple water quality parameters in different
spatial-temporal dimensions. The Transformer structure in Bloomformer-
1 had the MHSA mechanism that could simultaneously focus on all
relationship changes (Vaswani et al., 2017). Therefore, Bloomformer-1
can identify the drivers more reliably than traditional machine learning
models.
4.2. Model interpretability

Model interpretability represents trustworthiness (Ridgeway et al.,
1998), which can be expressed in terms of transferability and under-
standability (Lipton, 2016).

Transferability represents the ability to transfer learned skills to un-
familiar environments, especially in non-stationary environments (Lip-
ton, 2016). In this study, Bloomformer-1 outperformed four traditional
machine learning models on the test data set and was able to easily cope



Fig. 4. Model performance evaluation in the whole MRP, where (a), (b), (c), (d) and (e) represent the test results of the Bloomformer-1, ETR, GBRT, SVR and MRL,
respectively.
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with abrupt changes in Chl-a concentration whereas traditional machine
learning models were unable to do so (e.g., P3 in February 2020). These
findings demonstrate that Bloomformer-1 has superior transferability.

Understandability represents our ability to understand how a model
7

works (Lipton, 2016). When dealing with multidimensional variables,
SVR is difficult to understand because the human brain is unable to
visualize the hyperplane when the number of variables have more than
three dimensions. Both GBRT and ETR also showed low



Fig. 5. Driving factors of algal growth at each of the sampling stations (P1–P9), and in the whole MRP, based on Bloomformer-1 modelling.
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understandability. The direction and/or shape of covariate effects usually
cannot be obtained by the simple interpretation of GBRT (Welchowski
et al., 2022). ETR uses the same principles as Random Forest, except that
the selection of attributes and cut points is strongly randomized when
splitting the tree nodes (Geurts et al., 2006). Random forest is considered
as a black box model in many studies (Wright, 2018), so ETR based on the
same principle can also be considered as a black box model. On the
contrary, Bloomformer-1 possessed a relatively high level of under-
standability. First, Bloomformer-1 worked by synthesizing the compu-
tational resources derived from the analysis and continuously adjusting
the weights of each computational resource to obtain the desired results.
This work pattern imitates that of humans and is therefore easy to
8

understand. Secondly, the attribution algorithm (Hao et al., 2021) of the
self-attentive mechanism could provide an interpretable description of
the information interactions within Bloomformer-1 and construct attri-
bution trees to visualize the direct information interactions in different
layers. As a result, Bloomformer-1 has a high degree of interpretability,
and the obtained results are highly applicable to real-world situations.

4.3. Driving factors of algal growth

Nutrients play a vital role in algal growth, in particular their supply
and its variability affect algal biomass and net productivity (Yang et al.,
2016; Koeller et al., 2009). Among them, nitrogen (N) and phosphorus
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(P) are essential elements for algae (Hecky and Kilham, 1988). Nitrogen
to phosphorus ratios (N:P) are often used to determine the nutrient
limitation status of water bodies (Redfield, 1963), but difficulties remain
because the optimal N:P ratio varies considerably, i.e., from 4 to 133, for
different water bodies (Klausmeler et al., 2004). Previous studies on MRP
have recognized phosphorus as the limiting factor for algal growth, but it
was not definitive that it was the most critical nutrient limitation (Nong
et al., 2020). The results of this study indicated that TP was the most
critical factor in the whole MRP. These results agreed with other studies
on algal growth and further confirmed the driving role of nutrients on
algal growth.

Although the water quality of the MRP has been good and stable since
2014, the nutrient load has been increasing. Besides the increasing
nutrient load of Danjiangkou reservoir, the rain runoff, dry and wet
deposition along the channel were the important mechanisms of nutrient
input (Wang et al., 2021; Nong et al., 2020). Inundation of farmland and
mountainous areas led to the release of nitrogen, phosphorus and other
nutrients from the soil into the water, resulting in increased nutrient
concentrations in the Danjiangkou Reservoir. In recent years, rainfall
along the MRP has increased and this, coupled with dry and wet depo-
sition, has resulted in more nutrients, both from the land and the air,
being deposited into the MRP, which made the rich material basis for
algae rapid growth. It could be deduced that nutrient control, especially
phosphorus, should be important strategy for controlling algal growth
and maintaining water quality stability.

5. Future work

Bloomformer-1, as an advanced deep learning model, has obvious
performance advantages over traditional machine learning models in
processing high volume as well as high dimensional data (Fig. S2). As the
database used in this study has medium capacity and dimensionality, the
potential of Bloomformer-1 was not fully realized, which was also why
traditional machine learning models were able to perform well in some
scenarios. In addition, due to the complexity and size of the MRP, a
deeper understanding of the relationship between algal growth and
water quality is necessary. Therefore, future work should focus on
building databases with higher data capacity and dimensionality
(including collecting physical and hydrological data), increasing the
density of monitoring stations, and using automated monitoring equip-
ment. Using such databases, Bloomformer-1, with its excellent self-
learning capability, could make more relevant and timely conclusions
regarding the management of algal growth in the MRP.

6. Conclusion

Bloomformer-1, a deep learning-based Transformer model for end-to-
end identification of the drivers of algal growth without the need for
extensive prior knowledge and prior experiments, achieved the highest
R2 (0.80–0.94) and lowest RMSE (0.22–0.43 μg/L) on both individual
subsites and full-line simulations in the MRP compared with traditional
machine learning models, namely ETR, GBRT, SVR and MLR.
Bloomformer-1 also had higher interpretability, implying that Bit was
trustworthy and that the results obtained from this model could be
directly applied to real-world scenarios. TP was the most important
driver for the MRP. Phosphorus control and reduction would be an
important strategy for controlling algal growth and maintaining water
quality stability in the MRP.
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