Let It TEE: Asynchronous Byzantine Atomic Broadcast with \(n \geq 2f + 1 \)

Marc Leinweber
Institute of Information Security and Dependability (KASTEL), Karlsruhe Institute of Technology (KIT), Germany

Hannes Hartenstein
Institute of Information Security and Dependability (KASTEL), Karlsruhe Institute of Technology (KIT), Germany

Abstract
Asynchronous Byzantine Atomic Broadcast (ABAB) promises, in comparison to partially synchronous approaches, simplicity in implementation, increased performance, and increased robustness. For partially synchronous approaches, it is well-known that small Trusted Execution Environments (TEE), e.g., MinBFT’s unique sequential identifier generator (USIG), are capable of reducing the communication effort while increasing the fault tolerance. For ABAB, the research community assumes that the use of TEEs increases performance and robustness. However, despite the existence of a fault-model compiler, a concrete TEE-based approach is not directly available yet. In this brief announcement, we show that the recently proposed DAG-Rider approach can be transformed to provide ABAB with \(n \geq 2f + 1 \) processes, of which \(f \) are faulty. We leverage MinBFT’s USIG to implement Reliable Broadcast with \(n > f \) processes and show that the quorum-critical proofs of DAG-Rider still hold when adapting the quorum size to \(\lfloor \frac{n}{2} \rfloor + 1 \).

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Byzantine Fault Tolerance, State Machine Replication, Trusted Execution Environments, Asynchrony

Funding This work was supported by funding from the topic Engineering Secure Systems of the Helmholtz Association (HGF).

1 Introduction
Atomic Broadcast primitives play a crucial role for Byzantine-fault tolerant State Machine Replication (SMR). A prominent example for Byzantine-fault tolerant SMR is PBFT [4]. PBFT operates in the partially synchronous timing model while tolerating \(f \) faulty processes in a set of \(n \geq 3f + 1 \) processes in total. Its seminal contribution is the introduction of a timer-based view change. Veronese et al. [9] found that, by implementing a signature service that assigns a unique counter value to each signature it produces in a Trusted Execution Environment (TEE), PBFT’s communication complexity can be reduced and the fault tolerance can be increased to \(n \geq 2f + 1 \) while still tolerating Byzantine faults. TEEs are hardware extensions that are assumed to only fail by crashing and their integrity can be verified remotely. However, as shown by Miller et al. [8], the partially synchronous timing model has inherent limits and view change-based algorithms tend to be quite complex to implement. While it is known that any asynchronous crash fault-tolerant algorithm can be compiled to withstand Byzantine faults using TEEs [2, 5], there is no concrete TEE-based Asynchronous Byzantine Atomic Broadcast (ABAB) algorithm directly available yet and the performance benefits of TEEs for the asynchronous case can only be assumed. In this brief announcement, we transform DAG-Rider [7] to provide ABAB with \(n \geq 2f + 1 \) processes. DAG-Rider uses \(n \) Reliable Broadcast instances to disseminate process messages and to construct a directed acyclic graph (DAG) that captures the communication history of all processes. In a second step, each process derives consensus on the order of transactions using a
Let It TEE

Common Coin, e.g., as proposed in [3]. We give a quick recap on the core ideas of DAG-Rider and explain the adaptation TEE-Rider. Besides using TEE-based Reliable Broadcast and changing the required quorums from \(2f + 1\) to \(\lfloor \frac{n}{2} \rfloor + 1\), we leave DAG-Rider unchanged. We show that the quorum-based arguments of DAG-Rider still hold for TEE-Rider.

2 TEE-Rider: Transforming DAG-Rider to \(n \geq 2f + 1\)

We make use of the following definition of Atomic Broadcast for a set of processes \(P, n := |P|\):

Definition 1 (Atomic Broadcast). Each process \(p_i \in P\) receives client transactions \(t\) via events \(\text{clientRequest}(t)\). Correct processes deliver tuples \((t, r, p_j)\), where \(t\) is a client transaction, \(r \in \mathbb{N}_0\) a round number, and \(p_i \in P\) the process that initially received \(t\), satisfying the following properties:

Agreement. If a correct process \(p_i \in P\) delivers \((t, r, p_j)\), then every other correct process \(p_k \in P, k \neq i\) eventually delivers \((t, r, p_j)\) with probability 1.

Integrity. For each round \(r \in \mathbb{N}_0\) and process \(p_j \in P\), a correct process \(p_i \in P\) delivers \((t, r, p_j)\) at most once.

Validity. If a correct process \(p_i \in P\) receives an event \(\text{clientRequest}(t)\), then every correct process \(p_k \in P\) eventually delivers \((t, r, p_j)\) with probability 1.

Total Order. Let \(m_1\) and \(m_2\) be any two valid tuples that are delivered by any two correct processes \(p_i, p_j \in P\). If \(p_i\) delivers \(m_1\) before \(m_2\), then \(p_j\) delivers \(m_1\) before \(m_2\).

TEE-Rider adapts DAG-Rider [7] to implement asynchronous Byzantine Atomic Broadcast for a set of \(n \geq 2f + 1\) processes of which at most \(f\) may deviate arbitrarily from the protocol. The processes communicate via messages over authenticated point-to-point links. Each message sent will eventually be delivered. Each process is equipped with a TEE that implements MinBFT’s unique sequential identifier generator (USIG) [9]. The USIG is used to implement Reliable Broadcast (informally: Atomic Broadcast without the Total Order property) with a fault tolerance of \(n > f\) as, e.g., defined in [6]. An instance of the Reliable Broadcast abstraction has two functions: \(\text{broadcast}(r, m)\) to reliably broadcast exactly one arbitrary message \(m\) for round \(r\) to all processes in \(P\), and \(\text{delivered()\ }\) which returns all messages that were received by the instance since the last call to \(\text{delivered()}\). Additionally, we assume a common coin scheme, e.g., as defined by Cachin et al. [3] using threshold signatures, that produces a uniformly distributed common random number \(p\) out of \(\{p \mid p \in \mathbb{N}_0; p < n\}\) for all correct processes and a name \(i \in \mathbb{N}_0\) as soon as \(f + 1\) processes invoked \(\text{toss}(i)\); repetitive calls with same the \(i\) yield the same \(p\). We require for the setup of the common coin and the USIGs, i.e., remote attestation and key exchange, synchrony and a public key infrastructure. We note that, for the common coin’s threshold signature scheme, dealerless variants and those with an asynchronous setup exist. To guarantee liveness, i.e., validity, an infinite stream of client request events at each correct process is required.

The adapted DAG-Rider algorithm executed by a correct process \(p_i \in P\) is shown in Algorithm 1. Quorum size changes are highlighted with a comment. The core of the approach is the construction and interpretation of a (local) DAG that captures received transactions and the observed communication sequence between processes. The DAG is structured in rounds and a round contains at maximum one vertex per process, i.e., \(n\) vertices. Rounds are addressed in an array style and the local view of a process \(p_i\) on the DAG is indicated by an index \(i\). The very first round \(\text{DAG}_{i}[0]\) is initialized with \(n\) hard-coded “genesis” vertices. A vertex in round \(r\) has two types of edges: strong edges point to vertices of round \(r - 1\) and weak edges point to vertices of any round \(r' \leq r - 2\). As soon as \(p_i\) received \(\lfloor \frac{n}{2} \rfloor + 1\) valid
vertices for a round \(r \), i.e., \(\lceil \frac{n}{2} \rceil + 1 \) vertices referencing \(\lceil \frac{n}{2} \rceil + 1 \) vertices of round \(r - 1 \) as strong edges (\(v.\text{strong} \), l. 11), for which it also knows its predecessors (l. 15), \(p_i \) will complete round \(r \) and transition to round \(r + 1 \). Now, as soon as \(p_i \) receives a client transaction, it will become the payload of a vertex \(v \) which is created and broadcast by \(p_i \) for round \(r + 1 \) (ll. 44 and 21-27). The vertex \(v \) connects to all vertices \(p_i \) received for round \(r \) (l. 23). If \(p_i \) received vertices \(u \) for older rounds that are not reachable from the newly created vertex using the transitive closure of strong and weak edges (a ‘path’), \(u \) will become a weak edge of \(v \) (\(v.\text{weak} \), l. 26). The new vertex is broadcast using Reliable Broadcast instance \(i \) to all processes (l. 27). Every fourth round a so-called wave, consisting of four rounds, is completed (l. 19) and the DAG structure is used to derive a total order on the transactions (ll. 28-42).

Each wave \(w \) has exactly one wave leader \(v \) which is chosen calling \(\text{coin.toss}(w) \) from the vertices of \(w \)’s first round(\(w, 1 \)). The random number is used to select the process whose vertex is to be used as wave leader. If \(v \) was not (yet) received or there are no \(\lceil \frac{n}{2} \rceil + 1 \) vertices in the \(w \)’s fourth round(\(w, 4 \)) that have \(v \) in their transitive closure of strong edges (a ‘strong path’), the wave cannot be committed (l. 30). If wave \(w \) can be committed, process \(p_i \) checks first if there are wave leaders of waves \(w' \) between the last wave that was committed (variable \(\text{decidedWave} \)) and the current wave \(w \) that were received in the meantime and are connected to the leader of the wave \(w' + 1 \) (ll. 33-36). The wave leaders are used as the root for a deterministic graph traversal to determine the total order of transactions (ll. 38-42).

3 Correctness Argument

Lemmas 1 and 2 of the original DAG-Rider publication [7] are crucial for Total Order and Agreement. The following Lemmas 2 and 3 show the corresponding results for a quorum size of \(\lceil \frac{n}{2} \rceil + 1 \). Results for Integrity and Validity simply follow from the original paper.

Lemma 2. If a correct process \(p_i \in P \) commits the wave leader \(v \) of a wave \(w \) when it completes wave \(w \) in round(\(w, 4 \), then any valid vertex \(v' \) of any process \(p_j \in P \) broadcast for a round \(r \geq \text{round}(w + 1, 1) \) will have a strong path to \(v \).

Proof. Since \(p_i \) commits \(v \) in round(\(w, 4 \)), the direct commit rule is fulfilled (l. 30): \(\exists U \subseteq \text{DAG}(\text{round}(w, 4)) : |U| \geq \lceil \frac{n}{2} \rceil + 1 \land \forall u \in U : \text{strongPath}(u, v) \). A valid vertex must reference at least \(\lceil \frac{n}{2} \rceil + 1 \) distinct vertices of the previous round with a strong edge (l. 11). Thus, a process \(p_j \in P \) broadcasting a valid vertex \(v_j \) for round(\(w + 1, 1 \)) selected at least \(\lceil \frac{n}{2} \rceil + 1 \) vertices of round(\(w, 4 \)) as strong edges for \(v_j \). Any two subsets of size \(\lceil \frac{n}{2} \rceil + 1 \) of a superset of size \(n \) intersect at least in one element. Thus, every valid vertex of a process broadcast for round(\(w + 1, 1 \)) must have at least one edge to a vertex of \(U \), and, via \(U \) to \(v \). As every valid vertex of round(\(w + 1, 1 \)) has a strong path to \(v \), and every valid vertex of round(\(w + 1, 2 \)) connects to at least \(\lceil \frac{n}{2} \rceil + 1 \) vertices of round(\(w + 1, 1 \)), by induction, any valid vertex \(v' \) of any process \(p_j \in P \) broadcast for a round \(r \geq \text{round}(w + 1, 1) \) has a strong path to \(v \).

Lemma 3. When a correct process \(p_i \in P \) completes round(\(w, 4 \)) of wave \(w \), then \(\exists V_1 \subseteq \text{DAG}(\text{round}(w, 1)) \), \(V_4 \subseteq \text{DAG}(\text{round}(w, 4)) : |V_1| \geq \lceil \frac{n}{2} \rceil + 1 \land |V_4| \geq \lceil \frac{n}{2} \rceil + 1 \land (\forall v_1 \in V_1, \forall v_4 \in V_4 : \text{strongPath}(v_4, v_1)) \).

Proof. By use of Reliable Broadcast and validity checks in ll. 11 and 15, faulty processes are limited to omission faults. Thus, the get-core argument of Attiya and Welch [11] Sec. 14.3.1 still holds [11 Sec. 14.3.3]: Let \(A \in \{0, 1\}^{n \times n} \) be a matrix that contains a row for each possible vertex of round(\(w, 3 \)) and a column for each possible vertex of round(\(w, 2 \)). Let \(A[j,k] = 1 \) if the vertex of process \(p_j \) of round(\(w, 3 \)) has a strong edge to the vertex of process
Algorithm 1 TEE-Rider pseudocode for process $p_i \in P, n := |P|, n \geq 2f + 1$

1. state DAG: array of sets of vertices, $DAG[0]$ initialized with “genesis” vertices
2. state r: \mathbb{N}_0, initialized with 0
3. state decidedWave: \mathbb{N}_0, initialized with 0
4. state transactionsToPropose: queue of client transactions t, initialized empty
5. state buffer: set of vertices, initialized empty
6. state rb: array of n reliable broadcast instances with delivered() and broadcast(r, m)
7. state coin: common coin instance with toss(w)
8. while True do
9. for $k \leftarrow 0$ up to $n - 1$ do
10. for $m = (r', v) \in rb[k].delivered()$ do
11. if $|v.strong| < \lceil \frac{n}{2} \rceil + 1$ then continue \> adjusted quorum size
12. $v.source \leftarrow p_k; v.round \leftarrow r'; v.delivered \leftarrow False$
13. buffer.add(v)
14. for $v \in buffer$ do
15. if $v.round > r \lor \exists u \in v.strong \lor v.weak: u \notin \cup_{r' \geq 0}DAG[r']$ then continue
16. $DAG[v.round].add(v)$
17. buffer.remove(v)
18. if $|DAG[r]| < \lceil \frac{n}{2} \rceil + 1$ then continue \> adjusted quorum size
19. if $r \mod 4 = 0$ then waveReady($\frac{r}{4}$)
20. $r \leftarrow r + 1$
21. wait until $\neg transactionsToPropose.isEmpty()$
22. $v \leftarrow$ new vertex
23. $v.block \leftarrow transactionsToPropose.dequeue(); v.strong \leftarrow DAG[r - 1]$
24. for $r' \leftarrow r - 2$ down to 1 do
25. for $u \in DAG[r']$ do
26. if $\neg path(v, u)$ then $v.weak.add(u)$
27. $rb[i].broadcast(r, v)$
28. function waveReady(w)
29. $v \leftarrow coin.toss(w) \parallel \text{Returns } \bot \text{ if round}(w, 1) \text{ vertex of chosen process is not in } DAG$
30. if $v = \bot \lor |\{u | u \in DAG[\text{round}(w, 4)]: \text{strongPath}(u, v)\}| < \lceil \frac{n}{2} \rceil + 1$ then return \> adjusted quorum size
31. leadersStack \leftarrow new stack; leadersStack.push(v)
32. for $w \leftarrow w - 1$ down to decidedWave + 1 do
33. $u \leftarrow coin.toss(w')$
34. if $u \neq \bot \land \text{strongPath}(v, u)$ then
35. leadersStack.push(u); $v \leftarrow u$
36. decidedWave $\leftarrow w$
37. while $\neg leadersStack.isEmpty()$ do
38. $v \leftarrow leadersStack.pop()$
39. verticesToDeliver $\leftarrow \{u | u \in \cup_{r' \geq 0}DAG[r'] : \text{path}(v, u) \land \neg u.delivered\}$
40. for $u \in verticesToDeliver$ in deterministic order do
41. $u.delivered \leftarrow True; \text{deliver } (u.block, u.round, u.source)$
42. upon clientRequest(t)
43. transactionsToPropose.enqueue(t)
p_k of $\text{round}(w, 2)$ or p_l sends no vertex (or an invalid one) but p_k sends a valid vertex for $\text{round}(w, 2)$. As there are at least $\lceil \frac{n}{2} \rceil + 1 \leq n - f$ correct processes, each row of A contains at least $\lceil \frac{n}{2} \rceil + 1$ ones and A contains at least $n(\lceil \frac{n}{2} \rceil + 1)$ ones. Since there are n columns, there must be a column j with at least $\lceil \frac{n}{2} \rceil + 1$ ones. This implies there is a vertex v_l by process p_l in $\text{round}(w, 2)$ s.t. $\exists V_3 \subseteq \text{DAG}_i[\text{round}(w, 3)]: |V_3| \geq \lceil \frac{n}{2} \rceil + 1 \land \forall v_l \in V_3: \text{strongPath}(v_l, v_l)$. As at most f vertices in V_3 belong to faulty processes that may commit send omission faults for $\text{round}(w, 3)$ and $\lceil \frac{n}{2} \rceil + 1 \geq f + 1$, by quorum section at least one vertex of V_3 is received by any correct process $p_j \in P$ before it sends its vertex for $\text{round}(w, 4)$. Thus, every valid vertex in $\text{DAG}_i[\text{round}(w, 4)]$ has at least one strong edge to a vertex of V_3. Since v_l must be valid and thus has a strong edge to each vertex of a set $V_1 \subseteq \text{DAG}_i[\text{round}(w, 1)], |V_1| \geq \lceil \frac{n}{2} \rceil + 1$, any valid vertex of rounds $r \geq \text{round}(w, 4)$ has a strong path to every vertex, including V_1, reached by v_l via strong paths. Please note that the construction of the set V_1 is valid for all correct processes that complete the wave and, thus, represents the ‘common core’. □

We believe that the “one-pager” algorithm of DAG-Rider and the ease of adaption for TEEs make it a perfect textbook example for TEE-based ABAB as well as a good starting point to explore TEE-based versions of DAG-Rider follow-ups and related approaches.

References

