2305.06123v1 [cs.DC] 10 May 2023

arXiv

Let It TEE: Asynchronous Byzantine Atomic
Broadcast with n > 2f 4+ 1

Marc Leinweber & ®
Institute of Information Security and Dependability (KASTEL), Karlsruhe Institute of Technology
(KIT), Germany

Hannes Hartenstein 8@
Institute of Information Security and Dependability (KASTEL), Karlsruhe Institute of Technology
(KIT), Germany

—— Abstract

Asynchronous Byzantine Atomic Broadcast (ABAB) promises, in comparison to partially synchronous
approaches, simplicity in implementation, increased performance, and increased robustness. For
partially synchronous approaches, it is well-known that small Trusted Execution Environments
(TEE), e.g., MinBFT’s unique sequential identifier generator (USIG), are capable of reducing the
communication effort while increasing the fault tolerance. For ABAB, the research community
assumes that the use of TEEs increases performance and robustness. However, despite the existence
of a fault-model compiler, a concrete TEE-based approach is not directly available yet. In this brief
announcement, we show that the recently proposed DAG-Rider approach can be transformed to
provide ABAB with n > 2f + 1 processes, of which f are faulty. We leverage MinBFT’s USIG to
implement Reliable Broadcast with n > f processes and show that the quorum-critical proofs of
DAG-Rider still hold when adapting the quorum size to [%] + 1.

2012 ACM Subject Classification Security and privacy — Distributed systems security

Keywords and phrases Byzantine Fault Tolerance, State Machine Replication, Trusted Execution
Environments, Asynchrony

Funding This work was supported by funding from the topic Engineering Secure Systems of the
Helmbholtz Association (HGF).

1 Introduction

Atomic Broadcast primitives play a crucial role for Byzantine-fault tolerant State Machine
Replication (SMR). A prominent example for Byzantine-fault tolerant SMR is PBFT [4].
PBFT operates in the partially synchronous timing model while tolerating f faulty processes
in a set of n > 3f + 1 processes in total. Its seminal contribution is the introduction of a
timer-based view change. Veronese et al. [9] found that, by implementing a signature service
that assigns a unique counter value to each signature it produces in a Trusted Execution
Environment (TEE), PBFT’s communication complexity can be reduced and the fault
tolerance can be increased to n > 2f 4+ 1 while still tolerating Byzantine faults. TEEs are
hardware extensions that are assumed to only fail by crashing and their integrity can be
verified remotely. However, as shown by Miller et al. [8], the partially synchronous timing
model has inherent limits and view change-based algorithms tend to be quite complex to
implement. While it is known that any asynchronous crash fault-tolerant algorithm can be
compiled to withstand Byzantine faults using TEEs [2] 5], there is no concrete TEE-based
Asynchronous Byzantine Atomic Broadcast (ABAB) algorithm directly available yet and the
performance benefits of TEEs for the asynchronous case can only be assumed. In this brief
announcement, we transform DAG-Rider [7] to provide ABAB with n > 2f 4 1 processes.
DAG-Rider uses n Reliable Broadcast instances to disseminate process messages and to
construct a directed acyclic graph (DAG) that captures the communication history of all
processes. In a second step, each process derives consensus on the order of transactions using a

mailto:marc.leinweber@kit.edu
https://orcid.org/0000-0002-9638-8526
mailto:hannes.hartenstein@kit.edu
https://orcid.org/0000-0003-3441-3180

Let It TEE

Common Coin, e.g. as proposed in [3]. We give a quick recap on the core ideas of DAG-Rider
and explain the adaption TEFE-Rider. Besides using TEE-based Reliable Broadcast and
changing the required quorums from 2f +1 to |] 4 1, we leave DAG-Rider unchanged. We
show that the quorum-based arguments of DAG-Rider still hold for TEE-Rider.

2 TEE-Rider: Transforming DAG-Rider to n > 2f + 1

We make use of the following definition of Atomic Broadcast for a set of processes P,n := |P|:

» Definition 1 (Atomic Broadcast). Fach process p; € P receives client transactions t
via events clientRequest(t). Correct processes deliver tuples (t,r,p;), where t is a client
transaction, v € Ng a round number, and p; € P the process that initially received t, satisfying
the following properties:

Agreement. If a correct process p; € P delivers (t,r,p;), then every other correct process
pr € Pk # i eventually delivers (t,r,p;) with probability 1.

Integrity. For each round r € Ny and process p; € P, a correct process p; € P delivers
(t,r,pj) at most once.

Validity. If a correct process p; € P receives an event clientRequest(t), then every correct
process p, € P eventually delivers (t,r,p;) with probability 1.

Total Order. Let m; and my be any two valid tuples that are delivered by any two correct
processes p;,p; € P. If p; delivers my before my, then p; delivers my before mo.

TEE-Rider adapts DAG-Rider [7] to implement asynchronous Byzantine Atomic Broadcast
for a set of n > 2f + 1 processes of which at most f may deviate arbitrarily from the protocol.
The processes communicate via messages over authenticated point-to-point links. Each
message sent will eventually be delivered. Each process is equipped with a TEE that
implements MinBFT’s unique sequential identifier generator (USIG) [9]. The USIG is used
to implement Reliable Broadcast (informally: Atomic Broadcast without the Total Order
property) with a fault tolerance of n > f as, e.g., defined in [6]. An instance of the Reliable
Broadcast abstraction has two functions: broadcast(r,m) to reliably broadcast exactly one
arbitrary message m for round r to all processes in P, and delivered() which returns all
messages that were received by the instance since the last call to delivered(). Additionally, we
assume a common coin scheme, e.g. as defined by Cachin et al. [3] using threshold signatures,
that produces a uniformly distributed common random number p out of {p | p € Ny: p < n}
for all correct processes and a name i € Ny as soon as f + 1 processes invoked toss(i);
repetitive calls with same the i yield the same p. We require for the setup of the common
coin and the USIGs, i.e., remote attestation and key exchange, synchrony and a public key
infrastructure. We note that, for the common coin’s threshold signature scheme, dealerless
variants and those with an asynchronous setup exist. To guarantee liveness, i.e., validity, an
infinite stream of client request events at each correct process is required.

The adapted DAG-Rider algorithm executed by a correct process p; € P is shown in
Algorithm[I} Quorum size changes are highlighted with a comment. The core of the approach
is the construction and interpretation of a (local) DAG that captures received transactions
and the observed communication sequence between processes. The DAG is structured in
rounds and a round contains at maximum one vertex per process, i.e., n vertices. Rounds
are addressed in an array style and the local view of a process p; on the DAG is indicated by
an index 4. The very first round DAG;[0] is initialized with n hard-coded “genesis” vertices.
A vertex in round r has two types of edges: strong edges point to vertices of round r» — 1 and
weak edges point to vertices of any round r’ < r — 2. As soon as p; received |5 | + 1 valid

M. Leinweber and H. Hartenstein

vertices for a round 7, i.e., | §] + 1 vertices referencing |4] + 1 vertices of round r — 1 as
strong edges (v.strong, 1. 11), for which it also knows its predecessors (1. 15), p; will complete
round r and transition to round r 4+ 1. Now, as soon as p; receives a client transaction, it
will become the payload of a vertex v which is created and broadcast by p; for round r 4 1
(1. 44 and 21-27). The vertex v connects to all vertices p; received for round r (1. 23). If p;
received vertices u for older rounds that are not reachable from the newly created vertex
using the transitive closure of strong and weak edges (a ‘path’), u will become a weak edge
of v (v.weak, 1. 26). The new vertex is broadcast using Reliable Broadcast instance i to all
processes (1. 27). Every fourth round a so-called wave, consisting of four rounds, is completed
(1. 19) and the DAG structure is used to derive a total order on the transactions (1. 28-42).
Each wave w has exactly one wave leader v which is chosen calling coin.toss(w) from the
vertices of w’s first round(w, 1). The random number is used to select the process whose
vertex is to be used as wave leader. If v was not (yet) received or there are no [5| + 1
vertices in the w’s fourth round(w,4) that have v in their transitive closure of strong edges (a
‘strong path’), the wave cannot be committed (1. 30). If wave w can be committed, process p;
checks first if there are wave leaders of waves w’ between the last wave that was committed
(variable decidedWave) and the current wave w that were received in the meantime and are
connected to the leader of the wave w’ + 1 (1. 33-36). The wave leaders are used as the root
for a deterministic graph traversal to determine the total order of transactions (1l. 38-42).

3 Correctness Argument

Lemmas 1 and 2 of the original DAG-Rider publication [7] are crucial for Total Order and
Agreement. The following Lemmas [2 and [3| show the corresponding results for a quorum size
of | 5] 4 1. Results for Integrity and Validity simply follow from the original paper.

» Lemma 2. If a correct process p; € P commits the wave leader v of a wave w when it
completes wave w in round(w,4), then any valid vertex v’ of any process p; € P broadcast
for a round r > round(w + 1, 1) will have a strong path to v.

Proof. Since p; commits v in round(w, 4), the direct commit rule is fulfilled (1. 30): 3U C
DAG;[round(w,4)]: |U| > [5] +1AVu € U: strongPath(u,v). A valid vertex must reference
at least || + 1 distinct vertices of the previous round with a strong edge (1. 11). Thus, a
process p; € P broadcasting a valid vertex v; for round(w + 1, 1) selected at least [5] + 1
vertices of round(w, 4) as strong edges for v;. Any two subsets of size | 5] + 1 of a superset
of size n intersect at least in one element. Thus, every valid vertex of a process broadcast for
round(w + 1, 1) must have at least one edge to a vertex of U, and, via U to v. As every valid
vertex of round(w + 1,1) has a strong path to v, and every valid vertex of round(w + 1,2)
connects to at least [5] + 1 vertices of round(w + 1, 1), by induction, any valid vertex v’ of
any process p; € P broadcast for a round r > round(w + 1, 1) has a strong path to v. <

» Lemma 3. When a correct process p; € P completes round(w,4) of wave w, then 3V; C
DAG;[round(w, 1)], V4 C DAG;[round(w,4)]: [Vi| > [§] + 1A [V4] > [5] + 1A (Vo1 €
V1, Vuy € Vy: strongPath(vg, v1)).

Proof. By use of Reliable Broadcast and validity checks in 1l. 11 and 15, faulty processes
are limited to omission faults. Thus, the get-core argument of Attiya and Welch [I], Sec.
14.3.1] still holds [1, Sec. 14.3.3]: Let A € {0,1}"*" be a matrix that contains a row for
each possible vertex of round(w, 3) and a column for each possible vertex of round(w, 2). Let
Alj, k] = 1 if the vertex of process p; of round(w, 3) has a strong edge to the vertex of process

Let It TEE

Algorithm 1 TEE-Rider pseudocode for process p; € P,n :=|P|,n > 2f 4+ 1

state DAG: array of sets of vertices, DAG[0] initialized with “genesis” vertices
state r: Ny, initialized with 0
state decided Wave: Ny, initialized with 0
state transactionsToPropose: queue of client transactions ¢, initialized empty
state buffer: set of vertices, initialized empty
state rb: array of n reliable broadcast instances with delivered() and broadcast(r, m)
state coin: common coin instance with toss(w)
while True do

for k<~ Oupton—1do

for m = (+',v) € rb[k].delivered() do
if |v.strong| < |5 + 1 then continue > adjusted quorum size

v.source < pi; v.round < r';v.delivered < False
buffer.add(v)

for v € buffer do
if v.round > rV Ju € v.strong Uv.weak: u ¢ Uyr>9DAG[r'] then continue

DAG[v.round].add(v)
buffer.remove(v)

if |[DAG[r]| < [§] + 1 then continue > adjusted quorum size
if » mod 4 = 0 then waveReady(})

rr+1
wait until —transactionsToPropose.isEmpty()
v < new vertex
v.block < transactionsToPropose.dequeue(); v.strong < DAG[r — 1]
for ' + r —2 down to 1 do
for u € DAG]r'] do
if —path(v,u) then v.weak.add(u)
rb[i].broadcast(r, v)
: function waveReady(w)
v < coin.toss(w) > Returns L if round(w, 1) vertex of chosen process is not in DAG
if v=_1V|{u|u € DAG[round(w,4)]: strongPath(u,v)}| < |3] 4+ 1 then return
> adjusted quorum size
leadersStack < new stack; leadersStack.push(v)
for w' < w — 1 down to decided Wave + 1 do
u + coin.toss(w’)
if u # L AstrongPath(v,u) then
leadersStack.push(u); v <— u

decided Wave +— w
while —leadersStack.isEmpty() do
v < leadersStack.pop()
verticesToDeliver <— {u | u € U 5o DAG]r']: path(v, u) A —u.delivered}
for u € verticesToDeliver in deterministic order do
u.delivered < True; deliver (u.block, u.round, u.source)

: upon clientRequest(t)
transactions ToPropose.enqueue(t)

M. Leinweber and H. Hartenstein

pi of round(w, 2) or p; sends no vertex (or an invalid one) but p; sends a valid vertex for
round(w, 2). As there are at least | 5] +1 < n— f correct processes, each row of A contains at
least [%] + 1 ones and A contains at least n(| 5] 4 1) ones. Since there are n columns, there
must be a column [with at least |3 | + 1 ones. This implies there is a vertex v; by process p;
in round(w, 2) s.t. 3V3 € DAG;[round(w,3)]: [V3| > || 4+ 1 A Vo3 € V3: strongPath(vs, v;).
As at most f vertices in V3 belong to faulty processes that may commit send omission faults
for round(w, 3) and [%] +1 > f41, by quorum section at least one vertex of V5 is received by
any correct process p; € P before it sends its vertex for round(w, 4). Thus, every valid vertex
in DAG;[round(w, 4)] has at least one strong edge to a vertex of V3. Since v; must be valid
and thus has a strong edge to each vertex of a set Vi € DAG;[round(w,1)], (V1] > [§] +1,
any valid vertex of rounds r > round(w,4) has a strong path to every vertex, including V4,
reached by v; via strong paths. Please note that the construction of the set V; is valid for all
correct processes that complete the wave and, thus, represents the ‘common core’. <

We believe that the “one-pager” algorithm of DAG-Rider and the ease of adaption for
TEEs make it a perfect textbook example for TEE-based ABAB as well as a good starting
point to explore TEE-based versions of DAG-Rider follow-ups and related approaches.

—— References

1 Hagit Attiya and Jennifer L. Welch. Distributed computing - fundamentals, simulations, and
advanced topics (2. ed.). Wiley, 2004. doi:10.1002/0471478210.

2 Naama Ben-David, Benjamin Y. Chan, and Elaine Shi. Revisiting the power of non-equivocation
in distributed protocols. In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM
Symposium on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages
450-459. ACM, 2022. doi:10.1145/3519270.3538427.

3 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople:
Practical asynchronous byzantine agreement using cryptography. J. Cryptol., 18(3):219-246,
2005. |[doi:10.1007/s00145-005-0318-0.

4 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 20(4):398-461, 2002. doi:10.1145/571637.571640.

5 Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues. On the (limited) power
of non-equivocation. In Darek Kowalski and Alessandro Panconesi, editors, ACM Symposium
on Principles of Distributed Computing, PODC ’12, Funchal, Madeira, Portugal, July 16-18,
2012, pages 301-308. ACM, 2012. doi:10.1145/2332432.2332490!

6 Miguel Correia, Giuliana Santos Veronese, and Lau Cheuk Lung. Asynchronous byzantine
consensus with 2f+1 processes. In Sung Y. Shin, Sascha Ossowski, Michael Schumacher,
Mathew J. Palakal, and Chih-Cheng Hung, editors, Proceedings of the 2010 ACM Symposium
on Applied Computing (SAC), Sierre, Switzerland, March 22-26, 2010, pages 475-480. ACM,
2010. doi:10.1145/1774088.1774187.

7 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is DAG. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21:
ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,
2021, pages 165-175. ACM, 2021. |doi:10.1145/3465084.3467905.

8 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of BFT
protocols. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, Proc. 2016 ACM SIGSAC Conf. on Computer and Communications
Security, Vienna, Austria, 2016, pages 31-42. ACM, 2016. doi:10.1145/2976749.2978399.

9 Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and
Paulo Verissimo. Efficient byzantine fault-tolerance. IEEE Trans. Computers, 62(1):16-30,
2013. |[doi:10.1109/TC.2011.221.

https://doi.org/10.1002/0471478210
https://doi.org/10.1145/3519270.3538427
https://doi.org/10.1007/s00145-005-0318-0
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/2332432.2332490
https://doi.org/10.1145/1774088.1774187
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1109/TC.2011.221

	1 Introduction
	2 TEE-Rider: Transforming DAG-Rider to n2f+1
	3 Correctness Argument

