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Abstract
Asynchronous Byzantine Atomic Broadcast (ABAB) promises simplicity in implementation as well as
increased performance and robustness in comparison to partially synchronous approaches. We adapt
the recently proposed DAG-Rider approach to achieve ABAB with n ≥ 2f + 1 processes, of which f

are faulty, with only a constant increase in message size. We leverage a small Trusted Execution
Environment (TEE) that provides a unique sequential identifier generator (USIG) to implement
Reliable Broadcast with n > f processes and show that the quorum-critical proofs still hold when
adapting the quorum size to ⌊ n

2 ⌋ + 1. This first USIG-based ABAB preserves the simplicity of
DAG-Rider and serves as starting point for further research on TEE-based ABAB.
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1 Introduction

Atomic Broadcast primitives play a crucial role for Byzantine-fault tolerant (BFT) State
Machine Replication (SMR). A prominent example for BFT SMR in the partially synchronous
model is PBFT [6]. By use of small Trusted Execution Environments (TEE) that generate
and sign unique sequential identifiers on each process, called USIGs, Veronese et al. [13]
showed that PBFT’s communication complexity can be reduced and the fault tolerance can
be increased to n ≥ 2f + 1 while still tolerating Byzantine faults. The authenticity/integrity
of TEEs can be verified remotely and, thus, TEEs are assumed to only fail by crashing.
However, as shown by Miller et al. [12], Asynchronous Byzantine Atomic Broadcast (ABAB)
outperforms approaches based on the partially synchronous model particularly under faults
and tends to show a simpler design. While it is known that any asynchronous crash fault-
tolerant algorithm can be compiled to withstand Byzantine faults using TEEs [3, 7], the
proposed compilers show either a polynomial or an exponential overhead in runtime. We
are interested in a simple and straightforward design of a USIG-enhanced ABAB that does
not add further message rounds and only adds a constant number of bits to each message
(essentially a counter value and a signature). To this end, we adapt DAG-Rider [10] to
provide ABAB with n ≥ 2f + 1 processes. We give a quick recap on DAG-Rider and explain
the adaption TEE-Rider. Besides using TEE-based Reliable Broadcast and changing the
required quorums from 2f + 1 to ⌊n

2 ⌋+ 1, we leave DAG-Rider unchanged. We show that
the quorum-based arguments of DAG-Rider still hold for TEE-Rider.
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2 Let It TEE

2 TEE-Rider: Transforming DAG-Rider to n ≥ 2f + 1

We make use of the following definition of Atomic Broadcast for a set of processes P, n := |P |.
The processes communicate over authenticated point-to-point links with eventual delivery.

▶ Definition 1 (Atomic Broadcast). Each process pi ∈ P receives client transactions t

via events clientRequest(t). Correct processes deliver tuples (t, r, pi), where t is a client
transaction, r ∈ N0 a round number, and pi ∈ P the process that initially received t, satisfying
the following properties:
Agreement: If a correct process pi ∈ P delivers (t, r, pj), then every other correct process
pk ∈ P, k ̸= i eventually delivers (t, r, pj) with probability 1.
Integrity: For each round r ∈ N0 and process pj ∈ P , a correct process pi ∈ P delivers
(t, r, pj) at most once.
Validity: If a correct process pi ∈ P receives an event clientRequest(t), then every correct
process pk ∈ P eventually delivers (t, r, pi) with probability 1.
Total Order: Let m1 and m2 be any two valid tuples that are delivered by any two correct
processes pi, pj ∈ P . If pi delivers m1 before m2, then pj delivers m1 before m2.

2.1 Changes in Assumptions, Building Blocks, and Setup

In addition to the assumptions of DAG-Rider, we assume that each process is equipped with
a USIG [13] that may only fail by crashing. It implements a signature service that binds a
unique counter value to each signature it produces. The USIG is used for Reliable Broadcast
with a fault tolerance of n > f as, e.g., implemented in [8, Algorithm 1]: it is a ‘single echo’
algorithm with USIG-signed messages and attached counter value. Correct processes relay
a message once and reject messages with invalid USIG signatures or with counter values
already received which prevents equivocating messages for the same counter. An instance of
the Reliable Broadcast abstraction has two functions: broadcast(r, m) to reliably broadcast
exactly one arbitrary message m for round r to all processes in P , and delivered() which
returns all messages that were received by the instance since the last call to delivered(). We
expect the Reliable Broadcast abstraction to fullfil the following properties:

▶ Definition 2 (Reliable Broadcast). A sender ps ∈ P, n := |P | can call broadcast(m).
Correct processes deliver (c, m) where c ∈ N0 and m an arbitrary message satisfying the
following properties:
RB-Agreement. If a correct process pi ∈ P delivers (c, m), then every other correct process
pk ∈ P, k ̸= i eventually delivers the same (c, m).
RB-Integrity. For each c ∈ N0, a correct process pk ∈ P delivers (c, m) at most once.
RB-Validity. If a correct sender calls broadcast(m), then every correct process pi ∈ P

eventually delivers (c, m).

Additionally, we assume an asynchronous common coin, e.g. as defined by Cachin et al. [5],
that produces a uniformly distributed common random number p out of {p | p ∈ N0 : p < n}
for all correct processes and a name i ∈ N0 as soon as f + 1 processes invoked toss(i);
repetitive calls with same the i yield the same p. We further assume a trusted setup of the
common coin and the USIGs using a public key infrastructure (to set up the common coin’s
threshold signature scheme, dealerless variants [4] and those with an asynchronous setup [1]
exist).
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Figure 1 Example DAG for n = 5 processes of which at maximum 2 may be faulty. Shown is the
‘global’ state of the graph, i.e., after every process eventually received every vertex. For simplicity, all
vertices are valid and weak edges are left out. The direct commit rule is not fulfilled for any process
for wave w; it is fulfilled for processes p3, p4, and p5 for wave w + 1. The green coloring highlights
the effect of the direct commit rule as proven in Lemma 3. The direct commit rule ensures that a
correct process can commit a wave retrospectively if it was not able to commit when it finished the
wave. Since the leader vertex of wave w + 1 has a strong path to the leader vertex of wave w, wave
w will be committed retrospectively.

2.2 The Algorithm

DAG-Rider uses n Reliable Broadcast instances to disseminate process messages and to
construct a directed acyclic graph (DAG) that captures the communication history of all
processes. In a second step, each process derives consensus on the order of transactions
using a Common Coin based on the graph structure. The adapted DAG-Rider algorithm
executed by a correct process pi ∈ P is shown in Algorithm 1. Utility functions are listed in
Algorithm 2. The core of the approach is the construction and interpretation of a (local)
DAG that captures received transactions and the observed communication sequence between
processes. The DAG is structured in rounds and a round contains at maximum one vertex
per process, i.e., n vertices. Rounds are addressed in an array style and the local view of a
process pi on the DAG is indicated by an index i. The very first round DAGi[0] is initialized
with n hard-coded “genesis” vertices. A vertex in round r has two types of edges: strong
edges point to vertices of round r−1 and weak edges point to vertices of any round r′ ≤ r−2.
As soon as pi received ⌊n

2 ⌋+ 1 valid vertices for a round r, i.e., ⌊n
2 ⌋+ 1 vertices referencing

⌊n
2 ⌋+ 1 vertices of round r − 1 as strong edges (v.strong, l. 11), for which it also knows its

predecessors (l. 15), pi will complete round r and transition to round r + 1. Now, as soon as
pi receives a client transaction, it will become the payload of a vertex v which is created and
broadcast by pi for round r + 1 (ll. 44 and 21-27). The vertex v connects to all vertices pi

received for round r (l. 23). If pi received vertices u for older rounds that are not reachable
from the newly created vertex using the transitive closure of strong and weak edges (a ‘path’),
u will become a weak edge of v (v.weak, l. 26). The new vertex is broadcast using Reliable
Broadcast instance i to all processes (l. 27). Every fourth round a so-called wave, consisting
of four rounds, is completed (l. 19) and the DAG structure is used to derive a total order
on the transactions (ll. 28-42). Each wave w has exactly one wave leader v which is chosen
calling coin.toss(w) from the vertices of w’s first round(w, 1). The random number is used
to select the process whose vertex is to be used as wave leader. If v was not (yet) received or
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there are no ⌊n
2 ⌋+ 1 vertices in the w’s fourth round(w, 4) that have v in their transitive

closure of strong edges (a ‘strong path’), i.e. the direct commit rule is not fulfilled, the wave
cannot be committed (l. 30). If wave w can be committed, process pi checks first if there are
wave leaders of waves w′ between the last wave that was committed (variable decidedWave)
and the current wave w that were received in the meantime and are connected to the leader
of the wave w′ + 1 (retrospective commit, ll. 33-36). The wave leaders are used as the root
for a deterministic graph traversal to determine the total order of transactions (ll. 38-42).
An example for a resulting graph with n = 5 processes, i.e. f ≤ 2, is shown in Figure 1.

3 Correctness Argument

Lemmas 1 and 2 of the original DAG-Rider publication [10] are crucial for Total Order and
Agreement and rely on quorum intersection arguments. The following Lemmas 3 and 4 show
the corresponding results for a quorum size of ⌊n

2 ⌋+ 1. Results for Integrity and Validity
simply follow from the original paper.

▶ Lemma 3. If a correct process pi ∈ P commits the wave leader v of a wave w when it
completes wave w in round(w, 4), then any valid vertex v′ of any process pj ∈ P broadcast
for a round r ≥ round(w + 1, 1) will have a strong path to v.

Proof. Since pi commits v in round(w, 4), the direct commit rule is fulfilled (l. 30): ∃U ⊆
DAGi[round(w, 4)] : |U | ≥ ⌊n

2 ⌋+ 1∧∀u ∈ U : strongPath(u, v). A valid vertex must reference
at least ⌊n

2 ⌋+ 1 distinct vertices of the previous round with a strong edge (l. 11). Thus, a
process pj ∈ P broadcasting a valid vertex vj for round(w + 1, 1) selected at least ⌊n

2 ⌋+ 1
vertices of round(w, 4) as strong edges for vj . Any two subsets of size ⌊n

2 ⌋+ 1 of a superset
of size n intersect at least in one element. Thus, every valid vertex of a process broadcast for
round(w + 1, 1) must have at least one edge to a vertex of U , and, via U to v. As every valid
vertex of round(w + 1, 1) has a strong path to v, and every valid vertex of round(w + 1, 2)
connects to at least ⌊n

2 ⌋+ 1 vertices of round(w + 1, 1), by induction, any valid vertex v′ of
any process pj ∈ P broadcast for a round r ≥ round(w + 1, 1) has a strong path to v. ◀

▶ Lemma 4. When a correct process pi ∈ P completes round(w, 4) of wave w, then ∃V1 ⊆
DAGi[round(w, 1)], V4 ⊆ DAGi[round(w, 4)] : |V1| ≥ ⌊n

2 ⌋ + 1 ∧ |V4| ≥ ⌊n
2 ⌋ + 1 ∧ (∀v1 ∈

V1,∀v4 ∈ V4 : strongPath(v4, v1)).

Proof. By use of Reliable Broadcast and validity checks in ll. 11 and 15, faulty processes
are limited to omission faults. Thus, the get-core argument of Attiya and Welch [2, Sec.
14.3.1] still holds [2, Sec. 14.3.3]: Let A ∈ {0, 1}n×n be a matrix that contains a row for
each possible vertex of round(w, 3) and a column for each possible vertex of round(w, 2). Let
A[j, k] = 1 if the vertex of process pj of round(w, 3) has a strong edge to the vertex of process
pk of round(w, 2) or pj sends no vertex (or an invalid one) but pk sends a valid vertex for
round(w, 2). As there are at least ⌊n

2 ⌋+1 ≤ n−f correct processes, each row of A contains at
least ⌊n

2 ⌋+ 1 ones and A contains at least n(⌊n
2 ⌋+ 1) ones. Since there are n columns, there

must be a column l with at least ⌊n
2 ⌋+ 1 ones. This implies there is a vertex vl by process pl

in round(w, 2) s.t. ∃V3 ⊆ DAGi[round(w, 3)] : |V3| ≥ ⌊n
2 ⌋+ 1 ∧ ∀v3 ∈ V3 : strongPath(v3, vl).

As at most f vertices in V3 belong to faulty processes that may commit send omission faults
for round(w, 3) and ⌊n

2 ⌋+1 ≥ f +1, by quorum section at least one vertex of V3 is received by
any correct process pj ∈ P before it sends its vertex for round(w, 4). Thus, every valid vertex
in DAGi[round(w, 4)] has at least one strong edge to a vertex of V3. Since vl must be valid
and thus has a strong edge to each vertex of a set V1 ⊆ DAGi[round(w, 1)], |V1| ≥ ⌊n

2 ⌋+ 1,
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Algorithm 1 TEE-Rider pseudocode for process pi ∈ P, n := |P |, n ≥ 2f + 1

1: state DAG : array of sets of vertices, DAG[0] initialized with “genesis” vertices
2: state r : N, initialized with 1
3: state decidedWave : N0, initialized with 0
4: state transactionsToPropose : queue of client transactions t, initialized empty
5: state buffer : set of vertices, initialized empty
6: state rb : array of n Reliable Broadcast instances with delivered() and broadcast(r, m)
7: state coin : common coin instance with toss(w)
8: while True do
9: for k ← 0 up to n− 1 do

10: for m = (r′, v) ∈ rb[k].delivered() do
11: if |v.strong| < ⌊n

2 ⌋+ 1 then continue
12: v.source ← pk; v.round ← r′; v.delivered ← False
13: buffer .add(v)
14: for v ∈ buffer do
15: if v.round > r ∨ ∃u ∈ v.strong ∪ v.weak : u ̸∈ ∪r′≥0DAG[r′] then continue
16: DAG[v.round].add(v)
17: buffer .remove(v)
18: if |DAG[r]| < ⌊n

2 ⌋+ 1 then continue
19: if r mod 4 = 0 then waveReady( r

4 )
20: r ← r + 1
21: wait until ¬transactionsToPropose.isEmpty()
22: v ← new vertex
23: v.block ← transactionsToPropose.dequeue(); v.strong ← DAG[r − 1]
24: for r′ ← r − 2 down to 1 do
25: for u ∈ DAG[r′] do
26: if ¬path(v, u) then v.weak.add(u)
27: rb[i].broadcast(r, v)
28: function waveReady(w)
29: v ← getWaveLeader(w) ▷ ⊥ if round(w, 1) vertex of chosen process is not in DAG
30: if v = ⊥ ∨ |{u | u ∈ DAG[round(w, 4)] : strongPath(u, v)}| < ⌊n

2 ⌋+ 1 then return
31: leadersStack ← new stack; leadersStack.push(v)
32: for w′ ← w − 1 down to decidedWave + 1 do
33: u← getWaveLeader(w′)
34: if u ̸= ⊥ ∧ strongPath(v, u) then
35: leadersStack.push(u); v ← u

36: decidedWave ← w

37: while ¬leadersStack.isEmpty() do
38: v ← leadersStack.pop()
39: verticesToDeliver ← {u | u ∈ ∪r′>0DAG[r′] : path(v, u) ∧ ¬u.delivered}
40: for u ∈ verticesToDeliver in deterministic order do
41: u.delivered ← True; deliver (u.block, u.round, u.source)
42: upon clientRequest (t)
43: transactionsToPropose.enqueue(t)
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Algorithm 2 Utility functions pseudocode

1: function path(v, u) : boolean
2: return exists a sequence of vertices (v1, v2, ..., vk) ∈ ∪r′≥0DAG[r′] such that
3: v1 = v ∧ vk = u ∧ ∀i ∈ [2, k] : vi ∈ vi−1.strong ∪ vi−1.weak

4: function strongPath(v, u) : boolean
5: return exists a sequence of vertices (v1, v2, ..., vk) ∈ ∪r′≥0DAG[r′] such that
6: v1 = v ∧ vk = u ∧ ∀i ∈ [2, k] : vi ∈ vi−1.strong

7: function getWaveLeader(w) : vertex or ⊥
8: pj ← coin.toss(w)
9: if ∃v ∈ DAG[round(w, 1)] : v.source = pj then return v

10: return ⊥
11: function round(w, i) : N
12: return 4(w − 1) + i

any valid vertex of rounds r ≥ round(w, 4) has a strong path to every vertex, including V1,
reached by vl via strong paths. Please note that the construction of the set V1 is valid for all
correct processes that complete the wave and, thus, represents the ‘common core’. ◀

4 Discussion and Conclusion

DAG-Rider shows the power of causal order broadcast to implement consensus. The adaption
for TEEs preserves the simplicity of DAG-Rider while increasing its fault tolerance and
reducing the communication effort (i.e., from ‘double echo‘ to ‘single echo‘ Reliable Broadcast).
The ease of adaption of DAG-Rider for TEEs make it a perfect textbook example for TEE-
based ABAB. Follow-up work to DAG-Rider, Tusk [9], addresses a major deployability
issue, namely garbage collection, shortens the wave length, and replaces the underlying
Reliable Broadcast with a communication scheme that leverages the graph structure to
achieve linear communication complexity in the happy case. Additionally, to the best of our
knowledge, there exists no TEE-based, dealerless, and asynchronous common coin primitive.
In summary, investigating a TEE-based dealerless setup as well as transforming the follow-ups
of DAG-Rider for empirical studies to investigate the assumed superiority of asynchronous
TEE-based approaches, e.g., in comparison to MinBFT [13], is a promising line of research.
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