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A B S T R A C T

This study introduces the gradient boosted decision tree (GBDT) as a machine learning approach to circumvent
the need for a direct integration of the typically stiff system of ordinary differential equations that govern the
temporal evolution of chemically reacting species. Stiffness primarily relates to the chemistry integration and
here, hydrogen/air systems are taken to train and test the ensemble learning approach. We use the LightGBM
(Light Gradient Boosting Machine) algorithm to train GBDTs on the time series of various self-igniting mixtures
from the time of ignition to equilibrium composition. The GBDT model provides reasonable predictions of the
species compositions and thermodynamic states at the next time step in an a priori study. A much more
challenging a posteriori study shows that the model can reproduce a full time–history profile of the igniting
H2/air mixtures, as the results agree very well with those obtained from a direct integration of the ODEs. The
GBDT model can be deployed as standalone C++ codes and a speed-up by one order of magnitude has been
demonstrated. The GBDT approach can thus be considered as an efficient method to represent the chemical
kinetics in the simulation of reactive flows. It provides an alternative to deep artificial neural networks (ANNs)
that is comparable in accuracy but easier to couple with existing CFD codes.
1. Introduction

The ordinary differential equations (ODEs) that describe the tempo-
ral evolution of the composition space due to chemical reactions tend
to be stiff and their integration can be computationally expensive. This
issue is exacerbated by the constantly increasing size of the state-of-
the-art chemical mechanisms that can contain thousands of reacting
species with ten thousands of chemical reactions. Strategies to reduce
the computational burden include chemistry reduction, tabulation and
– more recently – machine learning approaches. Especially the latter
has been of growing interest and an increasing number of studies
has been directed towards the exploitation of deep artificial neural
networks (ANNs) to reduce the cost of solving the time evolution of the
species’ compositions. The attempt to use ANNs for chemical kinetics
started with the pioneering work of Blasco et al. [1] where shallow
ANNs were used to reproduce the temporal evolution of a reduced
hydrocarbon mechanism. With the rapid progress of deep learning
techniques and the advent of powerful open-sourced frameworks like
TensorFlow [2], this methodology has been extended to numerous
applications in combustion modeling where ANNs have been widely
used to address the necessity of directly solving the systems of ODEs.
For example, the ANN method has been used for chemistry tabulation
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or direct integration of the chemical source terms where the numerical
solvers were replaced by ANN-based solutions to compute the species
compositions and corresponding reaction rates [3–10]. In the latest
studies [11–14] various architectures of ANNs, such as the convolu-
tional neural networks (CNNs) [15] and the residual neural networks
(ResNets) [16], have been introduced for a potential reduction of pre-
dictive errors. Also, there is a trend to combine the principal component
analysis (PCA) with ANNs [17,18], where a high-dimensional space
consisting of the species compositions and thermodynamic states is
mapped to a low-dimensional manifold for the reduction of dimensions
of the input layer in ANNs. Also, clustering techniques such as the
self-organizing map (SOM) [19] were introduced in Refs. [4–6] to
partition the composition space into sub-zones and each sub-zone is
then associated with an individual ANN to ensure accuracy.

Although not being as popular as deep learning approach for com-
bustion modeling, ensemble learning and decision tree based models
are considered to be as powerful and flexible as deep learning and
witnessed similar rapid advances in recent years as ANNs. Chung
et al. [20], for example, used decision trees to find the optimal combus-
tion models at different locations of the computation domain. Instead
of using the finite-rate chemistry or the flamelet method [21] over
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the entire domain, the local chemical kinetics were represented by
a corresponding combustion model determined by decision trees to
achieve a trade-off between accuracy and efficiency. Ensemble learning
and decision trees have also been used in the presumed probability
density function (PDF) method for LES of reacting flows [22]. In our
previous study [23], the state-of-the-art ensemble learning algorithms
were introduced for the closure of the PDF and conditional scalar
dissipation rate of mixture fraction in turbulent sprays, and found to be
a promising technique for combustion related modeling. As a machine
learning technique that differs considerably from deep ANNs, ensemble
learning poses certain properties that make it advantageous. First of
all, ensemble learning is highly optimized for parallel computing using
central processing units (CPUs), whereas ANNs rely heavily on graphics
processing units (GPUs). Considering that the majority of computa-
tional fluid dynamics (CFD) codes run on CPUs and that the power of
ANNs is fully unleashed on GPUs, the hardware requirements for using
ensemble learning in CFD codes are much more favorable. Besides, the
ensemble learning algorithm is found to be more robust to outliers,
less insensitive to transformations of inputs, and higher computational
scalability for large datasets [24]. In light of the above, ensemble
learning shall be considered for expanding the scopes of machine
learning applications in combustion modeling, and our study is the
first attempt to demonstrate the possibility of representing the chemical
kinetics efficiently using ensemble learning and its implementation in
a standard CFD software package.

2. Tree models and ensemble learning

The concept of ensemble learning is that a strong and high predic-
tive model can be generated by combining multiple base learners, i.e., a
decision tree is built. Note that the decision tree is significantly different
from the Euclidean minimum spanning tree (EMST) [25], which is used
to determine the neighboring particles of an interacting particle. In
contrast, the decision tree works as a general regression function and is
similar to the ANN model for an arbitrary function 𝑓 (𝒙;𝝎, 𝒃) = 𝒙T𝝎+𝒃,
where 𝝎 and 𝒃 are trainable parameters. Similar to the ANN, a decision
tree is rule-based but the output is computed by conditional statements
and not by mathematical functions. Fig. 1 provides an example where –
for the sake of simplicity – we assume the temperature to be predictable
by the concentration of species. The decision tree starts from a single
root node and grows by splitting the training samples (input–output
pairs) based on the input variables. In real applications, the decision
tree will continue to grow in depth.

For the present study, the input variables will be the species com-
position (in mass fractions), pressure and temperature at time 𝑡, and
the output will be the new composition state to which the chemical
system moves forward during the time step 𝛥𝑡. When the tree grows,
internal nodes or branches are created to hold subsets of the training
samples. The decision tree will continue to grow in search for the best
splitting policy until every training sample is assigned to a terminal
node or leaf where a prediction is made by averaging the output of the
subset training samples on the terminal leaf. It should be pointed out
that every time the tree splits, all input variables are taken into con-
sideration. From them, one is selected that provides the best splitting
strategy. In other words, an input variable can appear multiple times
in the conditional statements. Eventually, the decision tree is trained
to learn an auto-regressive function of [𝑇 , 𝑝, 𝑌𝑖]𝑡 → [𝑇 , 𝑝, 𝑌𝑖]𝑡+𝛥𝑡. For
ANNs there should not be just one but multiple layers and numerous
neurons in each layer in order to build a complex model that satisfies
the concepts of deep learning. By the same token, it is hard to make
accurate predictions if there is only one decision tree. We therefore
need to grow a number of trees and there are a family of algorithms
to determine how those trees are gown and organized, typified by
the bootstrap aggregating (or Bagging for short) and gradient boosting
2

techniques.
Fig. 1. Schematic of decision trees and tree-based ensemble learning.

The conventional ensemble learning framework, Random Forests
[26], uses the bootstrap aggregating technique. It draws a random
subset from the training dataset (sampling with replacement) for the
training of each decision tree. Each decision tree is trained inde-
pendently. The ensemble model then makes predictions by simply
aggregating the predictions of all base learners (see Fig. 2), i.e., it
takes the average of all (independent) predictions or uses a majority
voting rule. In contrast, the boosting algorithms, i.e. XGBoost (eX-
treme Gradient Boosting) [27] and LightGBM (Light Gradient Boosting
Machine) [28], train decision trees in a sequential manner, meaning
that each tree grows after the other sequentially, as shown in Fig. 2.
Specifically, a subsequent learner will learn to minimize the residual
errors (the errors between the prediction and the true value) made by
its predecessor. Such types of decision trees are called gradient boosted
decision trees (GBDTs).

Similar to the training algorithm of ANNs, which updates the
trainable parameters to minimize a loss function, the boosting al-
gorithm [27] grows the decision trees by minimizing the following
objective

(𝜙) =
∑

𝑖
𝑙
(

�̂�𝑖, 𝑦𝑖
)

, (1)

where 𝑙 is the loss function that measures the mean squared error
between the prediction �̂� and the true value 𝑦. GBDTs use a greedy al-
gorithm to search for split candidates that is equivalent to the reduction
of (𝜙).

LightGBM and XGBoost follow the same principle except that Light-
GBM uses a leaf-wise policy to grow GBDTs, which splits the tree
only on the best nodes that can bring maximum reduction of the loss
function, whereas XGBoost implements a level-wise policy that leads to
a symmetrical tree structure (as illustrated in Fig. 2(b)). GBDTs grow
much faster using the leaf-wise policy, and with the extra help of tech-
niques offered by LightGBM, i.e., gradient-based one-sided sampling
(GOSS) and exclusive feature bundling (EFB) [28], the speed of training
is highly accelerated. We therefore select LightGBM to train the GBDT
model.

3. Results and discussion

3.1. Datasets and GBDT model

A standard hydrogen mechanism which consists of 9 species (H2,
O , O, OH, H O, H, HO , H O , and N ) and 19 reactions [29] is
2 2 2 2 2 2
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Fig. 2. Schematic of ensemble learning algorithms.
adopted for the generation of the training data. The time-evolution
of the ignition of H2/air mixtures is obtained from the simulation
of constant pressure reactors using Cantera [30]. For simplicity and
without loss of generality, the initial pressure is not treated as a variable
in our numerical experiment and set to 𝑝 = 1.5 atm; instead, training
samples are generated by initializing the temperature 𝑇0 in the range
of 1300 and 1500 K, and the fuel-air equivalence ratio 𝜙0 between
0.5 and 2. A total of 330,000 training samples are generated from
800 reactor simulations by discretizing 𝑇0 and 𝜙0 space into 40 and
20 evenly spaced bins, respectively. Benefited from the GOSS and EFB
techniques [28], it only takes about 2.8 s for LightGBM to train the
current model on a 48-core machine (Intel Xeon Platinum 8275CL @
3.00 GHz). The trained GBDT model needs about 729 KB of memory
for storage.

In this study we focus on presenting the GBDT method as a new
approach to the representation of chemical kinetics, thus the initial
conditions cover a relative narrow range. However, the scope of initial
conditions can be extended according to the applications, and the GBDT
model can also be coupled with machine learning techniques such as
SOMs and PCA to improve the accuracy over a wide range of scenarios.
As machine learning models are data-based, the implementations of
ANNs [5,8,12] and GBDTs for chemical kinetics both require the use of
a constant time step. In this study we use the same paradigm, but it may
be possible to overcome this constraint by introducing sub-iterations to
adapt to varying time steps. Also, in the recent study [10], a different
framework is proposed where a constant time step treatment is not
needed. Mass fractions of species are pre-processed by logarithmic
normalization, a procedure that has been commonly used [1,31] to
avoid numerical issues due to the radical species concentrations that
are highly skewed towards zero.

The database will then be split into two subsets, the training and
test datasets, and the accuracy of the trained model can be established
if it results in a reasonably small error on the test dataset. That said,
a resampling technique called 𝑘-fold cross validation (𝑘-fold CV) is
suggested to guarantee a more comprehensive assessment [32]. This
approach divides the whole database into 𝑘 equal-size subsets or folds.
While one fold is kept as the validation dataset to compute the test
error, the other 𝑘− 1 folds will be used for training, and the procedure
will be repeated 𝑘 time as illustrated by Fig. 3.

There are two primary hyper-parameters that determine the struc-
ture of a GBDT model, the number of trees (or rounds) and the number
3

Fig. 3. Scheme of 𝑘-fold validation.

of leaves on each tree related to its depth. GBDTs grow exponentially
with the maximum depth 𝐷𝑚, that is, the number of leaves equals
2𝐷𝑚 for a level-wise structure. For a leaf-wise GBDT, however, the
total number leaves is much lower than 2𝐷𝑚 due to the selection of
best nodes to split, a strategy that results in a decision tree with
asymmetrical structure. In the present study, the full GBDT model
consists of 9 sub-models to account for the 9 species. Since LightGBM
adopts a leaf-wise policy, the number of leaves is set to 16 without
limiting the maximum depth (will be larger than 4). Thus the GBDTs
will stop growing after there are 16 terminal leaves on the tree. This is
guided by the recommended setup of the library [28].

The number of decision trees of the sub-models for the species is set
to 30, meaning that a total of 30 GBDTs will grow in a sequential man-
ner. For the prediction of temperature, a sub-model is created in which
the number of leaves increases to 64 and the total number of GBDTs
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Fig. 4. Ensemble learning framework for the chemical kinetics.
Fig. 5. 𝑘-fold validations for bootstrap aggregating and gradient boosting models.

to 50 to ensure high accuracy given the importance of temperature in
determining the current thermochemical state (see Fig. 4).

3.2. Prediction and validation

For comparison purposes, the Random Forests library [33] is used
to train bootstrap aggregating models, where the hyper-parameters,
i.e., the number of trees and leaves, are set to be identical to those
of the GBDT model. Fig. 5 shows the cross-validation results between
the GBDT and bootstrap aggregating models created by LightGBM and
Random Forests, respectively. Note that we repeat the training 𝑘 = 5
times for each method thus there are 5 trained models for each method.
The results in Fig. 5 are given by evaluating the 𝑘th trained model
over the test data in the 𝑘th validation fold CV(𝑘) where the metric is
the averaged prediction error of the species compositions (logarithmic
scale) of all test samples. As can be seen, the GBDT model outperforms
the bootstrap aggregating models by more than an order of magnitude.
4

Besides, the test errors between the 5 validation folds are found to
be approximately the same, indicating good generality and robust
performance. This is in line with the theoretical analysis that ensemble
learning is a machine learning model with low variance error where the
predictions will not vary much with regard to the noise of the data [32].
For further demonstration, 100 arbitrary time steps are sampled from
the test data and used as model input, and the GBDT model is used to
make predictions for the species compositions in the next time step.
Fig. 6 shows a scatter plot of the mass fractions predicted by the
GBDT and bootstrap aggregating models versus the true values for the
major species of H2 and O2. The predictions are denoted by the points,
and thus the vertical distance from the diagonal line is the measure
of deviation. As can be seen, the majority of GBDT predictions fall
on the line, whereas a large fraction of predictions by the bootstrap
aggregating models are found to deviate considerably from the true
values. The bootstrap aggregating models will therefore not be used
for further analysis in the remainder of this paper. Furthermore, for
the GBDT model, it can be seen from Fig. 7 that the model accuracy
improves significantly when the number of trees increases from 20
to 30 (Fig. 6), which is the current setup, but the benefit becomes
marginal when this number is set to 40 and the prediction is found
to be at the same order of accuracy as that of the current setup.

Thus far, the GBDT model is assessed and found to be able to make
one time-step predictions of the temperature and species compositions
with satisfactory accuracy. For real simulations, however, the objective
is an auto-regressive function [𝑇 , 𝑝, 𝑌𝑖]𝑡 → [𝑇 , 𝑝, 𝑌𝑖]𝑡+𝛥𝑡 for the time-
integration of chemical systems of ODEs. For that, an accurate model
should be able to reproduce the full time–history of all species and tem-
perature from the ignition to the final (near equilibrium) conditions. A
long-term accuracy assessment is thus conducted by running the GBDT
model iteratively and only the initial conditions are given as input. In
this case, the predictions of the species composition and temperature
at time 𝑡 are stored, and subsequently used as input for the predictions
of a new state at the following time 𝑡 + 𝛥𝑡, until the near equilibrium
condition has been reached. For demonstration, two initial conditions
of the fuel-lean and fuel-rich scenarios are sampled for assessment.

Fig. 8 compares the GBDT predicted time-series with the numerical
ODE solutions computed by Cantera under a constant time step of
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Fig. 6. Comparison between Random Forests and LightGBM models (Num. Trees = 30).
Fig. 7. Sensitivity of the number of trees on GBDT model’s accuracy.
Table 1
Mean squared errors and 𝑅2 scores for mass fraction predictions of species.

𝜙0 = 0.5, 𝑇0 = 1357K 𝜙0 = 1.5, 𝑇0 = 1389K

MSE 𝑅2 MSE 𝑅2

H2 1.49e−07 99.57 4.80e−06 96.79
O2 4.84e−05 98.21 2.69e−05 99.68
O 9.20e−07 98.10 1.27e−06 91.16
OH 2.25e−07 99.55 3.61e−06 96.41
H2O 8.75e−06 99.58 2.40e−04 97.31
H 3.34e−08 91.22 3.68e−07 90.64
HO2 8.78e−12 98.34 3.19e−11 95.55
H2O2 4.43e−13 98.52 5.57e−13 94.87

1 × 10−6 s. As can be seen, the GBDT predictions are in good agree-
ment with the numerical solutions except for some deviations near the
equilibrium. This is a general issue that also arises when deep ANNs
are used [13]. For example, if we let the case of 𝜙0 = 0.5, 𝑇0 = 1357K
in Fig. 8 continue to run for a longer period of time, it can be seen that
the predictions towards the equilibrium turn flat and the minor changes
of the mass fractions and temperature cannot be well captured (see
Fig. 9). This issue could get worse if a smaller time step is considered,
e.g., 5 × 10−7 s or 1 × 10−7 s, and thus the capability of the GBDTs
(e.g., the size or depth of trees) needs to be enhanced. It could also be
mitigated by adding a correction step to the prediction to enhance long-
term stability. For example, Wan et al. [8] added a secondary ANN to
their main ANN model, which was specifically trained on a subset range
of the data and then switched to work when the reacting rates of flames
were slow. Likewise, in real applications sub-models of GBDTs can be
added and activated based on the progress variable. It is also noted that
the prediction for certain species, such as H2O, is not yet optimal, thus
increasing the numbers of leaves and trees of the associated sub-model
may be needed. Besides, the accuracy of the GBDT model needs to be
further improved for the cases with initial conditions on the bounds
5

of the parameter ranges, i.e., 𝑇0 = 1300 K or 1500 K, and 𝜙0 = 0.5
or 2.0. The mean squared error and 𝑅2 score for the mass fraction
prediction of each species are summarized in Table 1. For the fuel-lean
and fuel-rich cases, the time–history yields overall mean squared errors
of 1.5 × 10−5 and 5.0 × 10−6, respectively, between the predicted time
series and the numerical solutions for species compositions, and the
temperature deviates by 1%–3% from the correct solutions.

For the scenarios of low temperature conditions (LTCs), such as 𝑇0 =
800 K–900 K, additional treatments may be required. Due to the multi-
scale characteristics of species concentrations and reacting rates, it is
very challenge to use a global GBDT model to predict both the long igni-
tion delay period and the rapid exothermic reactions afterwards. In this
case, the GBDT model should be implemented with, for example, the
SOM technique [4–6] to divide the composition space into sub-domains
or with the PCA [17,34,35] to map the high-dimensional composition
space to lower-dimensional manifolds. On the other hand, for the LTC
cases, a much larger time step of integration is allowed during the long
ignition delay period (Fig. 10) (and towards the equilibrium), meaning
that the stiffness of the ODEs is much less serious and numerical ODE
solvers can be switched on during these periods as a supplement to the
GBDT model.

3.3. Code integration and performance

As we aim to use the GBDT model to avoid the need of direct
integration of the stiff ODE systems, the speed-up performance is of
great concern when the models are implemented to CFD codes. The
LightGBM library, as the name implies, is a lightweight library that
gives ensemble learning an inbuilt advantage over deep learning. The
GBDT model can be readily exported as dependency-free C/C++ codes
with the help of the Model 2 Code Generator (m2cgen) [36]. The latter
can then work as a stand-alone prediction routine without the need to
install the LightGBM library. Readers are referred to the supplementary
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Fig. 8. Time-series prediction of the ignition of H2/air mixtures (markers for the GBDT predictions and solid lines for the numerical ODE solutions).
material of our previous study [23] where examples and a user manual
are offered. That said, the trained GBDT model is converted into C++
codes and compared with the numerical solver in OpenFOAM [37] for
the simulation of a one-dimensional freely propagating flame. The re-
sult suggests that the GBDT model is on average one order of magnitude
faster than the numerical solver (Fig. 11). These numbers are obtained
6

without further optimization and therefore demonstrate the potential
of the GBDT model to reduce the computational cost of solving the
stiff ODE systems in reactive flow simulations. The prediction of the
fuel distribution is also presented, but this test case is mainly used
to evaluate the computation efficiency of the GBDT model; for better
accuracy the model needs to be further optimized.
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Fig. 9. Behavior of GBDT predictions towards the equilibrium (𝜙0 = 0.5, 𝑇0 = 1357K). The plots draw every 6th points for clarity.
Fig. 10. Ignition of LTC cases (𝑇0 = 900 K) with fixed (1 × 10−6 s) and varying (1 × 10−4 s and 1 × 10−6 s) time steps (Cantera solutions). H2O2 with an initial mass fraction of
0.046 is seeded to accelerate ignition.
Fig. 11. Speed-up performance of the GBDT model in simulating a one-dimensional
freely propagating flame.
7

4. Conclusions

Ensemble learning is introduced as an efficient machine learning
method to reduce the computational cost of solving the stiff ODE
systems that are characteristic for many simulations of reactive flows
with detailed chemistry. The GBDT model is trained on a database of
H2 oxidation with a detailed H2/O2 mechanism using the LightGBM
library. A comparative study shows that the gradient boosting algo-
rithm performed by LightGBM exhibits superior performance to the
bootstrap aggregating algorithm typified by Random Forests. The GBDT
model is used to reproduce the entire time–history profile of hydrogen
combustion from ignition to equilibrium composition. Here the GBDT
model makes predictions iteratively to generate a full time series of a
reacting H2/O2 mixture using initial conditions as the only input for the
trained model. The results are compared against the solutions computed
by a standard solver. It is found that the GBDT model predicts the
species compositions and temperature with reasonable accuracy that
is also comparable to published deep learning results using ANNs. The
GBDT model implementation into C++ codes demonstrates a reduction
of the computational cost of solving the ODEs by one order of magni-
tude when compared to a conventional (optimized) ODE solver. There
is no need to couple the LightGBM library with the CFD code which
makes the method promising alternative to ANNs when in search of
machine learning methods for the reduction of computational cost for

the integration of a stiff ODE system.
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