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Abstract

One of the United Nations’ 17 Sustainable Development Goals is to “ensure access to affordable,
reliable, sustainable and modern energy” with a target to “increase substantially the share of
renewable energy in the global energy mix” by 2030 [UN15]. Essential for achieving this target
is the construction of new power plants of various types, among those are large-scale (offshore)
wind and (open-field) solar power plants. These power plants share a general layout idea:
Many decentrally placed generators harvest the renewable energy source and the generation
is transmitted via a system of cables to transformers. From there the electricity is supplied to
consumers. Historically many of these cable systems have been planned and layouted manually
with the help of predefined templates. More recently, algorithmic support comes into focus in
view of the growing sizes of the power plants.

In this doctoral thesis, we focus on bringing together the design of installation-cost-optimized
cable layouts in wind and solar farms and a classical notion from Theoretical Computer Science:
Network Flows.

At the core of these cable layout optimization problems is a special cost function that originates

from the assumption that for any connection one of several available cable types as to be chosen.

Each cable type comes with a cost per unit of length, so that the resulting cost function looks
like a flight of stairs and is therefore called step cost function. Thus, both optimization problems

considered here can be interpreted as Minimum-Cost Flow Problems with a Step Cost Function.

We provide theoretical results on our optimization problems: We show strong NP-hardness
and an analogon to the well-known Integer Flow Theorem. Those results both connect our

problems to and set them apart from classical Minimum-Cost Flow Problems with linear costs.
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iv

For cable layouts in wind farms, we engineer an algorithm based on Negative Cycle Can-
celing and evaluate its performance both theoretically and empirically, the latter by means of
simulations on synthetic benchmark instances from the literature in comparison to existing
solution approaches. We also show how our algorithm can be incorporated into a framework of
Iterated Local Search. The evaluation of this extension is based on the synthetic instances, as
well as on a case study on one of the biggest offshore wind farms in the world, the Hornsea One
Wind Farm. Since the optimization problem we employ is rather simplistic compared to other
models from the literature, we conclude our elaborations on wind farms with a structural and
electrical analysis of the cable layouts computed by our algorithms. The goal is to investigate
potential shortcomings of the simpler model, so that interested wind farm planners more easily
judge the implementability of our cable layouts.

For cable layouts in solar farms, existing literature is surprisingly scarce compared to literature
on wind farms. In order to facilitate future research in this field, we introduce one of the first
problem formulations for the design of (installation-)cost-optimal cable layouts in solar farms.
This formulation provides a multitude of possibilities for further extensions to cater for solar
farm planners’ needs. It also bears resemblance to various more classical optimization problems
which may serve as inspiration for the development of algorithmic approaches. To support this
development, we propose a framework for the generation of synthetic benchmark instances and
populate this framework by parameters from real-world solar farms. The resulting instances are
publicly available. Additionally, we state a MIXED-INTEGER LINEAR PRoGRAM formulation,
evaluate it on our instances and provide the results as a baseline for yet-to-be engineered
algorithms.
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Introduction

Fortune is guiding our affairs better than we could have wished; for you see
there before you, friend Sancho Panza, some thirty or more lawless giants with
whom I mean to do battle.

—Don Quijote de la Mancha [Cer15, p. 75][Cer61, p. 61]

What sounds like famous last words, is but an introduction to one of many adventures of Don
Quijote de la Mancha in Miguel de Cervantes Saveedra’s masterpiece. Ignoring all of his friend’s
warnings that the giants are merely windmills, Don Quijote, mounted on his horse Rocinante
and armored with shield and lance, charges at the giants. With the wings of the windmills
turning in the wind, the lance is shattered into pieces and both rider and horse are flung to the
ground, leaving them “very much battered indeed” [Cer15, pp. 75-76][Cer61, pp. 61-62]. Thus
was born the idiom “tilting at windmills” to describe the pursuit of a vain goal [Amm?97].

Tackling the climate crisis is not like tilting at windmills." In fact, windmills—or rather
wind turbines—are considered part of the solution: The European Commission has set a goal
of 60 GW of installed offshore wind energy capacity by 2030 and of 300 GW by 2050, estimated
to cost up to 800 billion euros [EC20]. As of 2020, a total of 12 GW of offshore capacity is in
service in the EU-27 states and another 10 GW in the United Kingdom (UK). By the end of
2022, additional 2.8 GW and 2.5 GW are expected to be commissioned in the EU-27 and the UK
respectively [Tel+20].

IThere are actually two meanings to “tilting at windmills”, the other being “fighting an imagined enemy” [Amm97],
which is closer to the origin in Cervantes’ masterpiece. It goes without saying that the climate crisis is real.
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Introduction

The fastest growing renewable energy source however is Photovoltaic (PV) [Cha+22]. In
March 2022, the cumulative installed PV capacity reached 1 TW,? worldwide. The European
Union contributes approximately one sixth of the total installed capacity with 165 GW, at the
end of 2021, seeing a 25 % increase in newly installed capacity (26 GW) compared to the year
before [Cha+22]. Photovoltaic power stations come in different scales and forms such as tiny
systems powering a road sign via small rooftop systems on private homes to utility-scale solar
farms. The world’s biggest solar farm (as of February 2020) is the Bhadla Solar Park with a
capacity of more than 2.2 GW [San20].

Utility-scale solar farms and offshore wind farms are conceptually surprisingly similar: A
multitude of decentralized generators provide electrical energy that is transmitted to a central
point (e.g. an offshore substation) from where it is fed into the electrical grid to be made
available for consumers. Responsible for the transmission is a system of cables with potentially
additional electrical equipment.

The focus of this work is on the optimization of the layout of such a system of cables. We
consider the high-level scenario that for each connection of any two devices, a planner of such
a decentralized power station can choose one cable from a set of cable types. Each cable type
has a thermal capacity and a per-unit cost and the costs of a cable layout arise solely from the
cumulated costs of all cables across all connections.® This yields a step cost function when we
consider the costs as a function of transmitted power. Such a step cost optimization function is
algorithmically challenging.

The overarching motivation of this dissertation is to bring Energy Informatics and Theoretical
Computer Science closer together: The goal is to solve cable layout optimization problems with
the toolbox centered around network flow algorithms.

We engineer an algorithm based on Negative Cycle Canceling, which is a classical minimum-
cost flow algorithm, to tackle the cable layout optimization in wind farms, and we show that
our algorithm is well-suited to deal with the challenges arising from the aforementioned step
cost function. For solar farms, we provide one of the first problem definitions for cable layout
optimization in order to facilitate future algorithmic research in this field.

More details on the contribution of this dissertation are provided in Chapter 2 following
descriptions on the inner workings of wind and solar farms as well as an extensive review of
the literature.

ZWatt-Peak (Wp) is a non SI-unit which describes the rated power of a solar module under so-called Standard Test
Conditions [Mer19, p.15].

3While this may sound restrictive, there is actually some flexibility on what can be represented by the costs of
such cable types, see our discussion in Section 4.10.
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In Chapter 1 we mentioned that “utility-scale solar farms and offshore wind farms are concep-
tually surprisingly similar” in the sense that the output of decentralized generators must be
transmitted to a central point. In this chapter, we shed light into the differences by explaining in
more detail, how these power plants work. For both types, we give an overview of algorithmic
research and state the contribution of our work. As such, this chapter is divided into two main
parts: Section 2.1 on offshore wind farms and Section 2.2 on solar farms. Section 2.3 gives an
overview of optimization problems that are similar to the cable layout problems in wind or solar
farms or that have been tackled using similar techniques as the ones applied in this work. The
chapter concludes in Section 2.4 with an outline how the remainder of this thesis is structured.

2.1 Offshore Wind Farms

In a wind farm, the decentralized generators are wind turbines, which convert wind energy into
electrical energy. Between these turbines, a system of cables (referred to as internal cabling, inter-
array cable routing or simply cable layout) transmits the generated power to one of possibly
multiple substations. These substations are the gateway to feed the generated power into
the electrical grid where it is available to consumers. In the case of offshore wind farms, a
high-capacity export cable connects the offshore substation(s) to an onshore grid point.

The planning process of a new wind farm consists of multiple phases and includes, among
others, the placement of turbines, the design of the turbine foundations, and the design of the
cable routing. The placement of the substation(s) and the connexion to the grid point may
also be part of the process or it may be already be established [FP19]. The survey [Hou+19]
mentions two works on co-optimization but seems rather critical. Due to the complexity in
each phase alone, research focuses mainly on one phase at a time [VSA14].
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For literature on the optimal placement of turbines (micro-siting), we refer the interested
reader to the survey [Hou+19]. In this phase, planners face a dilemma: While more turbines
closer together increase the nominal output of a wind farm, in reality turbines placed downwind
from other turbines experience reduced wind speeds and therefore lower energy yields. This is
known as the wake effect [Hou+19, Sec. 3.1].

To learn about the design of turbine foundations, the reader may want to refer to [FP19].

We focus on the design of the internal cabling, as this is the topic of this work. Historically,
planners choose from one of several standard patterns for the cable layout. These patterns can
be evaluated under various technical aspects [QAAMO7] and the planner picks the best layout
according to their priorities.

With the emergence of algorithmic approaches in wind farm planning, the set of turbines
and substations are modelled as vertices of a graph embedded into the Euclidean plane with
edges representing possible connections between them. Anecdotally, the edge set is frequently
assumed complete, meaning that any two vertices can be connected in the cable layout. A
variety of exact, heuristic and metaheuristic optimization approaches have been developed to
find the best possible layout with respect to different cost functions or constraints included in
the respective optimization problem. A recent survey [PC19] gives an overview of different
approaches, highlighting the differences in objective functions and constraints being accounted
for in the literature. The authors note that roughly half of the papers in their consideration
employ metaheuristics, so our overview starts with those as well:

On the metaheuristic side, Genetic Algorithms are the most used technique (34 % of all litera-
ture surveyed in [PC19]). To name but a few examples: They are used to find the best radial
layout (i. e, the layout consists of disjoint paths originating at a substation) under minimal in-
vestment costs for cables and substations [Dah+15, GWRT12] or to find the best branched layout
with a non-predetermined positions of the substations [Sed+16]. Particle Swarm Optimization
involving Minimum Spanning Tree computations has been employed to find a tree-layout in
which no cables may cross [HHC16]. In this setting, multiple cables between two turbines are
allowed at the same time. To the contrary, only one cable is allowed between any two turbines
in [LRWW17] and cable crossings are allowed. The authors propose to use Simulated Annealing
(SA) to compute arbitrary layouts and evaluate their algorithm against a MIXED-INTEGER
LiNEAR ProGrAM (MILP) formulation on their own set of synthetic benchmark instances
with up to 500 turbines using cable types based on a real-world wind farm. The use of syn-
thetic instances enables the authors to evaluate their approach on instances bigger than any
existing wind farm. Real-world instances are used for the evaluation of a Large Neighborhood
Search in [CP22] where the focus of the optimization model lies on avoiding obstacles and
ensuring that branches rooted at substations connect approximately equal number of turbines.
A computational study comparing various metaheuristics is provided in [CFF20] for a model
involving one substation only but including various constraints: tree-structure!, avoidance of
cable crossings, and a limit on the degree of the substation.

IStrictly speaking, forests in case of multiple substations. For simplicity, however, we stick to the word “tree”.
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The cable types used in [LRWW17] stem from the proposed Black Nubble Wind Farm in
Maine, USA [DO11] and have been translated into a suitable cost function in [BVMO11]. These
papers lead us to heuristic and exact approaches: Dutta et al. [DO11] propose multi-level
clustering to group the wind turbines according to their Euclidean distance. In each level,
turbines within a cluster are connected by a star layout to the respective cluster’s representative
turbine. The approach is evaluated on a wind farm with 22 turbines and one substation. Berzan et
al. [BVMO11] propose a hierarchical decomposition depending on the number of substations and,
in the case of only one, the number of cables connected to it. Their model also includes maximum
capacities at substations but does not mention cable crossings. When only one cable type is
available, the subproblems arising from the decomposition are related to other optimization
problems for which exact and heuristic algorithms already exist. A sequential heuristic for the
highest-level problem (“Full-Farm Problem”) is evaluated on instances with up to 1000 vertices.
For the case that multiple cable types are available, the authors propose a Divide-and-Conquer
algorithm and an Integer Linear Program to solve the “Circuit Problem”, i. e., finding a cost-
minimal tree-cable-layout among a set of turbines, out of which only one is connected directly
to the single substation. While the solution must be a tree, the Integer Linear Programm does
not seem to include any constraints to enforce this layout. It is noted that the Integer Linear
Program is “too slow beyond” eight turbines [BVMO11, p. 12]. Bauer et al. [BHMP00] compute
radial layouts without crossings by a reduction from the Planar Vehicle Routing Problem and by
Integer Linear Programming with only binary variables. Cerveira et al. [CBP14] use a problem
formulation that translates into a Capacitated Minimum Spanning Tree and establish an MILP
formulation that includes both the number of turbines in a subtree as well as the resulting
electric current. The simulation on a 25-turbine wind farm is terminated after 14 hours with
a gap of 5.6 %2. The computational difficulty of large MILP formulations is overcome in [FP18]
by combining heuristic steps with an MILP solver to find close to optimal solutions for the
“Full-Farm Problem” on real-world based instances with up to 100 turbines. Their model includes
constraints to enforce a tree-structure, a maximum number of cables connected to any substation,
and the absence of cable crossings. The model also includes Steiner vertices, i. e., vertices that
are neither turbines nor substations, which are used to avoid obstacles on the seabed.

To add an element of reliability to the layout, some literature considers finding cable layouts
with loops, see the survey [PC19, Chapter II, Section A.4]. For the most part, however, the focus
in the literature lies on tree-layouts, as we have outlined above.

While several of the works on tree-layouts implicitly model the flow inside a cable (e. g.,
[FP18, CBP14]—the first measures flow based on arbitrary but fixed turbine productions, and the
second with electric current proportional to the number of turbines connected via that cable),
the flow is uniquely determined due to the tree-structure. As such, the task of designing a cable
layout can also be interpreted as a classical Minimum-Cost Flow Problem (albeit with possibly
non-classical cost functions or side constraints), which opens a toolbox of many well-researched
classical algorithms. The interpretation as a Minimum-Cost Flow Problem, in which the cost

2We define the notion of MIP gaps in Section 4.3
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function is a “stair-case” can also be found in [LRWW17] but their flow problem is solved
using Simulated Annealing and an MILP formulation. We are not aware that the adaptability of
classical flow problems to compute cable layouts in wind farms has been investigated—be it
theoretically or by experimental evaluation.

Contribution 1. We adapt the Minimum-Cost Flow Problem formulation from [LRWW17] and
prove both strong NP-hardness® and an adaptation of the well-known Integer-Flow Theorem.

Contribution 2. We engineer an algorithm based on the classical Negative Cycle Canceling
(NCC)-technique and investigate its performance both theoretically and by experimental evaluation.

We give a thorough explanation of this fundamental technique in Section 3.3. One key
theorem in the theory of Negative Cycle Canceling is a characterization of (cost-)optimal flows:
A flow is optimal if and only if no negative cycles exist in a suitable auxiliary graph (Theorem 1).
NCC has been applied in non-classical Minimum-Cost Flow settings. In some settings the
optimality criterion remains true [OMO00], in other only a local version can be shown [MS07,
SMGO08]. In [SMGO08], NCC is thus enhanced by strategies to deal with local minima. The
cost functions in those works differ from our step cost function and thus, it is not clear if the
optimality criterion holds in our setting.

Contribution 3. We describe and investigate the challenges arising from our cost function and
find that the classical optimality criterion does not hold anymore. We show how to deal with these
challenges by running the negative cycle detection algorithm on the linegraph of the input graph.

The evaluation of our algorithm on the synthetic instances from [LRWW17] shows that
our algorithm finds competitive solutions compared to an MILP solver within tens seconds on
instances with up 500 turbines—in most cases even faster.

It is noted on [CFF20, p. 1] that in “practical applications involving preliminary what-if
analyses, however, one is mainly interested in finding reasonably good (not necessarily optimal)
solutions in very short computing times”. Our algorithm fits this description nearly perfectly.
A crucial point here may be, that the model in [CFF20] includes further technical constraints,
mainly the tree-structure and the ban of cable crossings. Cable crossings are possible but need
better insultation and higher maintenance cost in case of failures [BHMPOO0, p. 1]. Along similar
lines, further electrical parameters might make the cable layouts computed by our algorithm
unsuitable for real-world implementation.

Contribution 4. We analyse the cable layouts computed by our algorithm under topological and
electrical aspects. This brings the necessity to translate the cable layouts into electrical models,
for which we propose a workflow that is also able to determine electrical input parameters from
abstract input instances and cable types.

3To be precise, Lehmann et al. [LRWW17] claim that the resulting Minimum-Cost Flow Problem is NP-hard due to
the “stair-case” cost function. The connection to the referenced literature that would allow a straightforward
reduction, however, is not imminently clear. Thus, we provide a self-contained proof.
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Section 2.2

The analysis shows that only one in approximately 56 layouts contains cycles and one in
approximately 13 layouts contains cable crossings. The electrical parameters are in line with
reference values from the literature, which gives evidence that the layouts computed by our
algorithm may be suitable for electrical implementation.

The experimental evaluation reveals that while our algorithm computes competitive solutions
in short amount of times, it also get stuck in local minima from which it cannot recover.

Contribution 5. We embed our Negative-Cycle-Canceling-based algorithm into a framework of
Iterated Local Search (ILS). For this ILS we develop strategies to escape local minima. The framework
is again evaluated on the synthetic benchmark instances from [LRWW17].

Contribution 6. We also carry out a case study to evaluate the ILS. This study involves an instance
resembling one of the biggest offshore wind farms in the world: Hornsea One.

The evaluation and the case study show that the additional computation time is well invested.
The share of instances from the ILS with better solutions than the MILP is greatly increased
compared to our NCC algorithm, while still using less overall computation time than the MILP.
Additionally, the number of instances with cable crossings in the best solutions found is reduced.

The evaluations of both our algorithms, the algorithm based on Negative Cycle Canceling as
well as its incorporation into Iterated Local Search, prove that flow-based algorithms are indeed
approaches to finding wind farm cable layouts worthwhile their consideration.

2.2 Solar Farms

As outlined in Section 2.1, in a wind farm the turbines are connected to each other with an
eventual connection to a substation. In solar farms, the cable layout is more hierarchical with
more than only two meaningful types of components as we explain in the following. The
description of solar farms and the subsequent overview of the literature is based on joint work
with Dominik Stampa and Matthias Wolf [GSW22b]. Further details on solar farms can be found
in [ABB19, Mer19].

In a solar farm, the decentralized generators are solar cells, which convert sunlight into tiny
amounts of electric current. The cells are connected forming a PV module. These modules, in
turn, are connected in series to form a string which is mounted on a rack. For our purposes, we
consider PV strings as the smallest building block, since we are mainly interested in optimizing
the cable layout. The strings supply electricity in form of Direct Current (DC), which is converted
to Alternating Current (AC) in inverters. Strings can have their own inverters (string inverters,
connected to one or at most to a few strings) or a larger number of strings is connected to only
a few central inverters. In general, inverters have more functions than only conversion. They
are used for monitoring and safety purposes and generally also incorporate control elements
such as maximum power point trackers, by which the DC voltage in the connected components
is adjusted according to environmental conditions to maximize electric power harvest.
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Solar farms typically operate at low-voltage levels (the DC side is usually aimed at a maximum
voltage of 1kV or 1.5kV), so that step-up transformers are needed to feed the generated power
into the grid. Since inverters have only a finite number of input circuits, additional devices are
installed between strings and inverters. These devices have different names, depending on the
monitoring and safety equipment installed in them and on the components they connect. Y-
connectors are the most simple device. They normally connect just two strings with no additional
equipment (except maybe for fuses [Eve16]). Combiner boxes connect a larger number of strings
(or Y-connectors) and have additional safety and monitoring equipment. Recombiner boxes have
the same equipment as combiner boxes but connect combiner boxes instead of strings. Which
kind of components, in particular between strings and inverters, are used ultimately depends
on a decision by the solar farm planners. In any case, the components need to be connected
by cables. For electrical reasons the cable layout should be balanced to some extent, e. g. to
avoid reverse current. In particular, the layered structure should be respected, for example,
connecting a recombiner box (to which multiple strings are connected) and a single string to an
inverter should be avoided. This layered structure is visualized on an abstract level in Figure 5.1.

With all those restrictions in mind, solar farms appear to be mostly constructed on flat ground
following one (of maybe several) pre-specified templates. However, there are exceptions: The
Monte Mele photovoltaic plant is situated on the slope of a hill on Sicily, Italy, and has irregular
distances between its strings [Alp22]. For a solar farm of the size of the Monte Mele plant
with its capacity of 718 kW, drawing a cable layout by hand might be feasible. For larger solar
farms (as mentioned before, the world’s largest stands at 2245 MW as of February 2020 [San20]),
algorithmic approaches computing near-to-cost-optimal cable layouts might be the way to go.

Various aspects of solar farms have been a target for optimization in the literature. Solar cells
can be manifactured from different so-called photovoltaic absorber materials that influence
the performance of a cell, for a review see [KR18]. The efficiency of transformers can be
influenced by using appropriate control methods, which are realized in a prototype [Liu+19].
Shifting the focus to the overall electrical system of a solar farm and its operation, a variety of
maximum power point tracking techniques can be employed to maximize the power output
of the farm [BMB20]. Concerning the early stages of the planning process, a fuzzy Analytic
Hierarchy Process has been proposed to find an optimal site for a solar farm [TSMA17].

A more holistic view on solar farm design is employed at Siemens Energy [BEPS14]: In a
multi-criteria decision support system a set of pre-computed designs for a given site can be
compared and investigated by planners visually and with respect to different “key performance
indicators” so that planners “obtain an overview on the whole solution space” [BEPS14, p. 338].
The designs are computed using several (unspecified) heuristics in a three-stage process involv-
ing three subproblems: placing service ways, placing strings in the area between ways, and
inverter placement. Given the positions of strings and inverters, a cable layout is computed in a
“single-objective manner, [minimizing] cable cross sections such that specified losses are not
exceeded” [BEPS14, p. 337]. The exact optimization problem is not stated.



Similar Problems

Section 2.3

Using a different setting, a formalization of the optimization problem of finding a cost-minimal
cable layout is given in [Luo+21]. Computing cable layouts and the placement of combiner boxes
assigned to a single inverter is modelled as a generalized Capacitated Minimum Spanning Tree
Problem and solved by a branch-and-price-and-cut algorithm. In this setting, strings are placed
on a grid and edge lengths are given by the £; metric. A capacitated spanning tree connecting
strings and the inverter yields a cable layout in which a combiner box is placed at each child
string of the inverter such that the capacity of the combiner box is not exceeded. As such, all
strings are also candidate positions for the placement of combiner boxes. The costs arise from a
linear-cost flow on edges between any two strings and from a step cost function (similar to the
“stair-case” cost function arising from cable types in wind farms) between combiner boxes and
inverter. This step cost function models the installation costs of the combiner boxes.

As seen above, there are further types of components that a solar farm planner may want to
install. For those cases, a more general formulation of the optimization problem is needed.

Contribution 7. We introduce the SOLAR FARM CABLE LAYouT PROBLEM (SoFaCLaP), a
problem formulation that accounts for multiple types of electrical components in solar farms.

SoFaCLaP is based on a network flow on a layered graph where each layer corresponds to
one type of component. The solution space entails both the cable layout itself as well as the
choice where to place the electrical components from a set of candidate positions. The problem
formulation also includes cable types (as seen in the wind farms) and capacities for all types of
components. The cable layout is enforced to be a forest such that the hierarchical structure of
the components is observed: Any vertex may only have at most one outgoing connection and
this connection must be to a vertex of the next layer. There is a high degree of flexibility for solar
farm planners on modelling decisions, including but not limited to the types of components to
include.

Contribution 8. We propose an MILP formulation for SoFaCLaP to provide a first solution method
that can serve as a baseline for other algorithms proposed later.

Contribution 9. We describe a framework to generate synthetic benchmark instances and provide
a set of instances based on parameters from real-world solar farms. These instances are used to
evaluate the MILP formulation and can be used for the development and evaluation of further
algorithmic approaches. Both the set of instances as well as the results from the evaluation are
publicly available [GSW22a, GSW22c].

2.3 Similar Problems

In this section, we name further optimization problems that bear some resemblance to the cable
layout optimization problems in solar and wind farms, as well as corresponding literature. In
particular for solar farms, this references may be the starting point for further research, to
which this thesis provides the problem formulation and means for the experimental evaluation.
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In solar farms, the combination of a tree-layout with a set of optional vertices that can be
used for routing the strings’ generation to transformers bears resemblance to the Steiner Tree
Problem on graphs. If the graph is directed and rooted, this problem is known as the Steiner
Arborescence Problem on graphs [Lju21]: In a directed graph with given arc weights, given
terminals, and a given root, find a directed subtree that connects all terminals to the root
(arborescence) in a cost-minimal manner where the cost of a solution is given as the sum of all
the weights of the arcs in the arborescence. The most obvious difference is that the cost of an
edge does not depend on the number of terminals connected to the root via this edge. Special
cases of Steiner Trees with costs depending on the transmitted flow have been considered as
early as [Gil67]: A set of points in the plane shall be connected by straight lines forming a tree
and the cost of a line arises from a given global function that maps flow to cost per unit of length.
Separate structural results are provided for affine and convex cost functions. A special case with
multiple sources and one sink (which is closer to solar farms) is considered in [Vol+13] where
it is named the GILBERT ARBORESCENCE PROBLEM. The problem is defined on general
Minkowski spaces with special consideration given to cost functions of the form w(t) = d + ht“
withd,h > 0 and a € (0, 1].

The layered structure of solar farms can be found in Multi-Level Facility Location Problems.
A survey is provided in [OCL18]. Customers on the lowest level need to be connected to
facilities on the next level, which in turn need to be connected to facilities on the level after that.
The question arises which facilities to open and how to connect the open facilities. Generally
speaking, costs can arise from opening facilities and connections (fixed) and linear transportation
costs (variable). The authors make no mention of any work that considers more than two levels
and capacities at the facilities, which is the case in our solar farm model. For the case of two
levels with both upper and lower bounds at the facilities, several approximation and bicriteria
approximation algorithms exist, see the survey [Rez22].

While the literature on wind farms mentioned in Section 2.1 consider offshore farms, there is
also literature for the onshore case [Her+17]. In that model, the edge set of possible connections
contains separate subsets for connections above- and underground. Tree-layouts are enforced
but multiple cables of the same type may connect the same vertices. The authors propose a
Quadratic Program and an equivalent but bigger Integer Program to model power losses into
the cost function.

An emerging type of offshore wind farms are floating wind farms [Tel+20]. Such wind
farms, in which cables “have a dynamic section that moves with the floating substructures [i. e.,
turbines and substations]” are considered in [LDM21]. The authors propose a metaheuristic to
find cable layouts in a setting with stochastic wind speeds and directions. We come back to
these two variants of wind farms in Section 4.10 to discuss to what extend our algorithm may
be able to handle the aforementioned models.
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A conceptually similar problem to the design of cable layouts of wind farms is the design of
collector systems for offshore production of natural gas: The production from several offshore
gas fields needs to be transported through pipelines to a delivery point on the shore [Rot+70].
The optimization problem enforces a tree-structure and the variables represent how drilling
platforms are connected by which capacity the installed pipeline has. This is in line with the
cable types used in wind farms. Brimberg et al. [Bri+03] formulate an MILP and employs both
exact and metaheuristic solution approaches. A more extensive MILP formulation is provided
in [Zha+17]. It includes for example facilities that increase the pressure in the pipelines.

Another conceptually similar problem is the design of water distribution networks: Vertices
with water supplies and demands are connected by edges and for each edge one type of
pipe out of several available ones must be chosen [DS16]. Contrary to wind farms, pipes
must be installed on all edges. The model in [DS16] also includes the “energy conservation
law”, similar to Kirchhoff’s voltage law in electrical circuits. The design problem of choosing
installation-cost-optimal pipes to satisfy all supplies and demands is solved by an Iterated Local
Search. Further metaheuristic approaches are referenced in [DS16] as well. Exact approaches
have also been proposed in the literature, for example involving a Mixed-Integer Non-Linear
Program [CCCR21].

Two more general problems in which production from many decentral vertices must be routed
to a central sink are the MULTILEVEL CAPACITATED MINIMUM SPANNING TREE PROB-
LEM and the SINGLE-SINK BUY-AT-BULK NETWORK DESIGN PROBLEM. In the former,
the layout must be a tree and costs arise from installing one out of several available capacities
on each edge. The objective is to minimize the total amount of installed capacity [GRG03]. The
latter problem uses multiple cable types (as in our solar and wind farm cable layout problems),
whose costs follow economies of scale [Rez22]. It is mentioned that this problem is also known
under the names SINGLE-SOURCE NETWORK LOADING PROBLEM and LocAL ACCESs
NETWORK DESIGN PROBLEM. Models exist for both the splittable and unsplittable case,
the latter meaning that the flow from one source must be routed along a single path to the
sink. This category of network design problem can be combined with facility location problems
so that decisions on which facilities to open and how to route demand to them have to be
made. Again, we refer the interested reader to the survey in [Rez22]. We are not aware of
any algorithmic approaches employing Minimum-Cost Flow Algorithms to tackle any of the
problems mentioned in this paragraph.

11
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2.4 Thesis Outline

Chapter 3 introduces our notation and fundamental concepts on which we build in the re-
mainder of this dissertation.

Chapter 4 presents our research on the WinDp FARM CABLING PROBLEM (WCP), covering
Contributions 1 to 6. WCP is formally stated as a Minimum-Cost Flow Problem in Sec-
tion 4.1, with strong NP-hardness and the analogon to the Integer Flow Theorem proven
in Section 4.2 to complete Contribution 1. Our NCC algorithm is explained in Section 4.4
where we also discuss and address the challenges imposed by the step cost function as
mentioned in Contributions 2 and 3. The second part of Contribution 2, the experimental
evaluation, is provided in Section 4.5. We compare our algorithm to an MILP formula-
tion (presented in Section 4.3) solved by the commercial solver Gurobi and an approach
using Simulated Annealing from the literature. Our NCC algorithm is embedded into
an Iterated Local Search in Section 4.6 and subsequently evaluated in Section 4.7, which
covers Contribution 5. The case study on the Hornsea One wind farm as mentioned
in Contribution 6 can be found in Section 4.8 and the analysis of cable layouts under
topological and electrical aspects as promised in Contribution 4 is presented in Section 4.9.
Following a discussion of our findings in relation to past and possible future research
in Section 4.10, we conclude with a brief summary and outlook in Section 4.11.

Chapter 5 presents our research on the SOoLAR FARM CABLE LAYOUT PROBLEM, covering
Contributions 7 to 9. We introduce SoFaCLaP in Section 5.1 in accordance with Contribu-
tion 7 and provide complexity results in Section 5.2. The MILP formulation alluded to
in Contribution 8 is presented in Section 5.3 and the experimental evaluation is given
in Section 5.5. The benchmark instances we generate for the evaluation and the generation
process itself are presented in Section 5.4.2, which fulfills Contribution 9. Again, we
conclude with a discussion of our model in Section 5.6 and an outlook for future research
in Section 5.7.

Chapter 6 provides a short summary of this dissertation.



3 Fundamentals

Let us continue by introducing our notation and basic concepts the reader may find helpful to
understand the elaborations in the following chapters.

3.1 Graph Theory

For our purposes, a (directed) graph G is a tupel (V(G), E(G)) (or simply (V, E) if the context is
unambiguous) consisting of a set V called vertices and a set of edges E C VXV \ {(u,u): u € V}.
A subgraph of a graph G is any graph (V’, E’) such that V' C V(G) and E’ C E(G). Given an edge
e = (u,v) (or simply e = uv) we call u the startvertex and v the endvertex of e and say that u and
v are connected by e. The edge € = (v, u) is called the reverse edge of e = (u,v) if both exist. A
vertex u is incident to an edge e if u € e. The out-/in-degree of a vertex u is the number of edges
for which u is the start-/endvertex, respectively. Two edges ey, e; are adjacent if there is a vertex
that is incident to both and two vertices are adjacent if there is an edge that is incident to both.

A walk is a sequence of edges W = (e, . .., ex) with k € IN such that for each i € [k — 1] =
{1,...,k — 1} it holds that the endvertex of e; is the startvertex of e; ;. We call k the length of
W and say that W starts at the startvertex of e; and ends at the endvertex of ex. A walk W in a
graph G gives rise to a subgraph of G with edge set E’ = {ey, ..., ex} and vertex set consisting
of exactly the vertices incident to edges in E’. We call a walk closed if the endvertex of ey is the
startvertex of e;. A cycle is a closed walk in which no two edges share a startvertex; it is usually
denoted by C. A path P = (ey, .. ., ex) is a walk in which no two edges share a startvertex and
in which the endvertex of e; and the startvertex of e; are distinct.

Given a directed graph G, the line graph £(G) is a representation of the adjacency of edges.
It is defined by V(£(G)) = E(G) and an edge (ey, e3) exists in £(G) if and only if the endvertex
of e; is the startvertex of e; in G.

13
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3.2 Network Flows

Our definition of flows in graphs is a mixture of the definitions in [AMO93, Weg20] tailored
to our needs. We will give a short overview of the changes from [AMO93], as we build on
algorithms presented there.

Let G be a graph. We assume that the graph does not include anti-parallel edges, i. e., (u,v) € E
implies (v,u) ¢ E, and that it is weakly-connected, i. e., between any two vertices there is a
sequence of consecutively adjacent edges.

Network flows are a handy notion to model how abstract or material things are moving
or are being moved through a graph, like people walking in a pedestrians’ zone, goods being
transported between factories, data being sent via the internet or, in our case, electrical power
being transmitted from generators to substations. In all of these cases, a certain thing (a person,
a package of data, a unit of power) originates at a source (a restaurant, a computer, a generator)
and is routed to a target (a bus-stop, another computer, a substation), possibly via other entities
of the graph (a certain junction of streets, a third computer, an electrical bus).

We regard a subset of vertices V1 as source vertices with a “production” function p: V1 — N
representing how many entities leave a vertex or, in our electrical setting, how much power is
generated. For our purposes, the production of different source vertices need not be distinguish-
able (unlike people walking in the street), so we refer to the electrical power more generally as
(generated) output. Another subset of vertices V! with V1 N VT = 0, called the target vertices,
serve as destinations. They have a capacity function capy, : V! — N limiting the amount of
output from the sources that can “exit” the graph at the target vertices. All other vertices neither
generate additional output nor can take output out of the graph. In the literature, they are
referred to as “transshipment nodes” [AMO93, p. 5].

How the generated output from the source vertices moves through the graph to the target
vertices is modelled by a function f: E — R. By our assumption that any two adjacent vertices
are connected by only one edge, the sign of f(u, v) represents if there is movement from u to v
or vice versa. If for an edge (u,v) we have that f(u,v) > 0, we say that f(u,v) units of output
go from u to v. Analogously, —f(u,v) go from v to u if f(u,v) < 0. For notational ease, we may
alias f(v,u) = —f(u,v) for an edge (u,v) even though the left-hand side is not defined by the
function f.

Given such a function f, we define the movement through a vertex by its net flow

fra@= D fowuw)= > fluw). (3.1)

(w,u)€eE (u,w)€eE

To limit the movement through the graph, edges may have capacities for either direction. For
each edge (u,v) we have capacities capg(u,v), capp(v, u) € Ny so that not more than cap(u,v)
may go from u to v and not more than capy(v, u) may go from v to u.
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Now, we can define what a flow is. Given a graph as defined in this section with source and
target vertices with their respective output and capacities, as well as capacities for the edges,
we say that f: E — Ris a flow on G if all source vertices’ productions are injected into the
graph, i.e.,

Fret®) = —p(u) Vue v, (3.2)
if the capacities of target vertices is not exceeded, i. e.,
Foet(®) < capy(u) Vu e Vi, (3.3)
if transshipment nodes work as neither sources nor targets, i. e.,
foet@) =0 YueV\(VTuvh, (3.4)
and if capacities on edges are respected, i.e.,
—capg(v,u) < f(u,v) < capg(u,v) VYuv € E. (3.5)

We refer to Equations (3.2) to (3.4) as the flow conservation constraints.

Remark. Our definition of flows deviates from the classical definition in [AMO93] in order
to facilitate our use of Negative Cycle Canceling in a very crucial point. Yet, it is equivalent
for our purposes. The definition in [AMO93] assumes that the graph contains both directed
edges (u,v) and (v, u) whenever u and v are adjacent, i. e., the graph is bidirected. Flow values
on edges must be non-negative. To convert to our flow definition, the difference of the two
flow values is computed. However, if the flow values on both (u,v) and (v, u) were positive, our
algorithm would have problems with reducing this redundant flow Section 4.4.3. The other and
less consequential difference is that target vertices in [AMO93] have a fixed demand while ours
have a capacity. The remedy to convert our model into theirs is to add another vertex connected
to all target vertices with proper demand and edge capacities. We allude to the equivalence in
the construction in the proof of Theorem 2.

Next, we associate costs with flows. Let cost: E X R — Ry(. We say that the cost to send x
units of flow from u to v along the edge (u,v) is cost((u, v), x), keeping in mind the convention
on how to interpret negative flow values. With that, the cost of a flow f is defined as

Cost(f) = ) cost(e, f(¢))

ecE

and the goal of the MiNIMUM-CoST FLow PROBLEM is to find a flow of minimal cost on a
given graph (with given output and capacity functions).

In our setting, cost is the product of edge lengths and the step cost function arising from cable
types. Classically, the cost function is cost(e, f(e)) = | f(e)| - c. for some non-negative constant
ce. With the aforementioned model in [AMO93] using edges in both directions, this yields a
linear cost function and many efficient algorithms exist. One such algorithm is Negative Cycle
Canceling (NCC).

15
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3.3 Negative Cycle Detection and Canceling

We describe the fundamentals of the NCC algorithm in its classical setting with linear cost flows
according to [AMO93].

For the moment, we go back to the flow model on graphs with bidirected edges as outlined
in the remark in Section 3.2. Given a bidirected graph G with a flow f on G, the residual graph
Ry with respect to f is defined by V(Ry) = V(G) and E(Ry) = {(u,v), (v,u): (u,v) € E(G)}. The
edge (u,v) in Ry has cost ¢, and a so-called residual capacity ry, = capg(u,v) — f(u,v) with
cyy and capg(u,v) as defined in Section 3.2. For the reverse edge (v, u) we define ¢,,, = —c,, and
rvu = f(u,v). Edges with zero residual capacity are removed. The residual capacities state by
how much the flow can be increased (“augmented”) in the direction of the respective edge so
that the flow does not violate any edge capacities in the original graph.

Given a cycle C = (ey, ..., ex) in some residual graph Ry with associated costs c., we say
that C is negative if )}, .- ce < 0. These negative cycles are of particular importance for the
optimality of a flow:

Theorem 1 ([AMO93, Thm. 9.1] Negative Cycle Optimality Conditions). A flow f is an optimal
solution to the MINIMUM-CoST FLow PROBLEM if and only if the corresponding residual graph
Ry does not contain any negative cycles.

This yields what is called the cycle-canceling algorithm [AMO93, p. 317]: Starting with some
flow in the graph, repeatedly find a negative cycle C in the residual graph and augment the
flow on that cycle by as much as the residual capacities of edges on the cycle permit, namely by
min{r, : e € C}. This augmentation step is called canceling a negative cycle. Terminate once no
negative cycle exists in the residual graph corresponding to the current flow. By Theorem 1,
the resulting flow is optimal.

Given bounds on the edge capacities and costs, say cap, < U and ¢, < C, this algorithm
needs O(UC - |E|) iterations. This bound can be reduced to a polynomial bound by carefully
selecting which cycles to cancel. We refer the reader to the discussion in [AMO93, pp. 319, 342].

Negative cycles can be detected by means of the (Moore-)Bellman-Ford algorithm, attributed
to [Mo0059, Bel58, For56], shown in Algorithm 3.1. Its original purpose is to compute shortest
paths in graphs. Our presentation follows [KV00, CLRS09]. Let G be a graph with a weight
function c: E — R and s € V be a designated starting vertex, from which shortest paths to all
other vertices should be computed.?

The update of a distance label in Line 5 is also called relaxation of edge (u,v). The traversal
of parent pointers in Line 8 reveals a walk containing a negative cycle.

Obviously, Algorithm 3.1 runs in time O(|V| - |E|) which yields a running time of the cycle-
canceling algorithm of O(UC - |V| - |E|?). Straightforward observations yield speed-ups of the
algorithm, albeit not in a worst-case analysis: Not all edges need to be considered in Line 3.

n the reference, this graph is called the residual network [AMO93, p. 298].
2To be precise, only negative cycles reachable from s can be found but this is covered by our connectivity
assumptions.
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Algorithm 3.1: Bellman-Ford algorithm

Input: Graph G with edge weights c and starting vertex s
Output: Distance labels dist(u) and parent pointers parent(u) for all vertices
1 dist(s) = 0, dist(v) = oo forallu € V \ {s}
2 foralli=1,...,|V|-1do
3 for each (u,v) € E do
4 if dist(v) > dist(u) + c(uv) then
5 L dist(v) = dist(u) + c(uv)
6 parent(v) = u
7 if dist(v) > dist(u) + c(uv) for some edge (u,v) then
8 | G contains a negative cycle. Traverse parent pointers backwards from u.

More precisely, an edge (u,v) in Line 3 only needs to be considered if the label at u has been
updated since the last consideration of (u,v) [M0059]. Consequently, the algorithm can be
aborted early if no changes have been made to distance labels within one iteration of the outer
loop [Mo0059]. We will make use of these observations in our NCC algorithm (Section 4.4).

Other speed-up techniques by which the number of iterations of the outer loop can be reduced
by constant factors: At most [IV|/2] iterations can be achieved by fixing a linear order on the
vertices and partitioning edges according to the order of the incident vertices [Yen70][CLRS09,
Problem 24-1] and using a random order yields [1V/3] iterations in expectation [BE12].

We refer the interested reader to a more general discussion on “label-correcting shortest path
algorithms” in [AMO93, Sec. 5.3] and historical discussions in [AMO93, p. 156] and [Sch12]. A
presentation and experimental evaluation of other detection algorithms for negative cycles can
be found in [CG99].

3.4 Binomial Sign Test

This section is based on Appendix A of the arXiv version of joint work with Torsten Ueckerdt,
Dorothea Wagner, Franziska Wegner, and Matthias Wolf [Gri+19].

The algorithms presented in this work are built in a way that allows different strategies to
be used at various key steps. One can think of it as trying to find the way out of a maze, one
strategy would be to always turn left, another one to alternate between turning left and right.
The goal of a statistical evaluation would be to find statistical evidence whether one strategy is
better than the other. A corresponding algorithm that uses these strategies is to start walking
until one encounters a junction. At the junction, turn as the strategy commands and continue
walking to the next junction.

In our experimental evaluation, we compare different sets of strategies, to which we refer as
variants of our algorithm to find cable layouts. One building block of our evaluation are statistical
tests, in particular the (one-sided) Binomial Sign Test for two dependent samples [Shell, p. 303].
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We explain this test in a general setting here and specify how we apply the test in more detail
below. Generally speaking, we compare k variants of an algorithm. We apply each variant to
each instance. For every instance m, we denote the total cost of the resulting flow computed by
variant i on instance m by Xﬁ,i,).

For any ordered pair of two variants (i, j) running on a fixed instance m, we calculate its
solution difference D = X,(,? - Xg) and increment—depending on the sign of D—either n; or
n; where, for example, n; counts the instances in which i performed strictly better than j. If
both variants were equally good, then n; ~ Bin(n; + nj,0.5), i. e., n; is binomially distributed
on n; + n; trials and probability 0.5.

We perform k(k — 1) tests, one for each ordered pair of variants, and always test the null
hypothesis Hy: 8 = 0.5 against the alternative hypothesis Hy: 6 > 0.5 where 6 is the probability
in the underlying hypothesized distribution n; ~ Bin(n; + n;, 0). The resulting p-values are
Bonferroni-corrected by the number of tests. In this setting, we interpret rejecting Hy as
algorithm variant i performing better than algorithm variant j.

While this test does not give any indication how much better a variant is over the other, its
undeniable advantage lies in the fact that its only prerequisites are of rather straightforward
nature and not difficult to comply with. For more details, we refer the reader to the elaborations
in [Shel1].



4 The WIND FARM CABLING PROBLEM

The first renewable power plant with decentralized generators we consider in this work are
(offshore) wind farms. In Section 2.1 we have given insights into the structure of wind farms,
outlined the planning process, and reviewed the literature with a focus on cable layout optimiza-
tion. In this chapter, we build on a Minimum-Cost Flow Problem for cable layout optimization
from the literature. In this problem statement, the positions of turbines and substations are
fixed, as well as the export cable(s) from the substations to an onshore grid point.

The definition of the cable layout optimization problem comes next (Section 4.1) followed
by theoretical results on the problem complexity and on integral solutions in Section 4.2. We
describe an MILP formulation as one solution approach in Section 4.3. In Section 4.4 we present
our algorithm based on Negative Cycle Canceling and analyse it from a theoretical perspective.
An experimental evaluation on synthetic benchmark instances follows in Section 4.5. With
the lessons learned in the evaluation, we propose extending our NCC algorithm to an Iterated
Local Search in Section 4.6 and evaluate all algorithms experimentally in Section 4.7 and by
a case study (Section 4.8). An analysis of the cable layouts computed by our algorithms with
respect to structural and electrical properties is provided in Section 4.9, followed by a thorough
discussion of the model, our algorithms, and possible adaptations to other settings from the
literature in Section 4.10. We conclude with a summary and an outlook in Section 4.11.

4.1 The Optimization Problem

In this section we define the WiND FARM CABLING PROBLEM (WCP) as an optimization
problem involving network flows and give theoretical insights into its structure. These elabora-
tions are based on joint work with Torsten Ueckerdt, Dorothea Wagner, Franziska Wegner, and
Matthias Wolf [Gri+18, Gri+19]. The problem statement is in essence due to [LRWW17].

19
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We consider the planning step in which positions of turbines and substations are fixed and the
goal is to determine a suitable internal cable layout. Given this setting, let V1 and Vs be the sets
of turbines and substations, respectively. We define a vertex set V of a graph by V = V7 U Vs. For
any two vertices u and v that can be connected by a cable in the wind farm, we define exactly
one directed edge e = (u,v), where the direction is chosen arbitrarily. We obtain a directed
graph G = (V, E) with

V=VruVs, EQ(VXV)\(V5XV5)

such that (u,v) € E implies (v, u) ¢ E. There are no edges between any two substations since we
only consider the internal cabling and assume that the cabling from substations to the onshore
grid point has been determined. The substations are the target vertices in our flow model
(Section 3.2) and the turbines are the source vertices. We assume uniform generation across all
turbines, i.e., p = 1.

Substations have a capacity capg,,: Vs — IN representing the maximum amount of turbine
generation they can handle. Edges have a (uniform) capacity capy € Ny U {oo}, which we set to
the maximum cable capacity (Equation (4.6)), and a length given by len: E — Ry, which may,
but not need to, represent the geographic distance between the respective endpoints of the edges.

On such a wind farm graph G, a flow according to the definition in Section 3.2 is a func-
tion f: E — R that satisfies the so-called flow conservation constraints at both turbines and
substations (Equations (3.2) to (3.4))

fet) = -1 Yu € Vr, (4.1)
Fnet) < capgyp(v) Vv e Vs,
that does not exceed the capacities on edges, i. e.,
|f(e)| < capg(e) Ve € E, (4.3)
and that allows no outflow from substations, i. e.,
f(u,v) 20 Y(u,v) €E:v e Vs,
flv,u) <0 VY(v,u) € E:v e Vs,

where the net flow f ., at a vertex u is defined as in Equation (3.1). The last three inequalities
can be obtained from Equation (3.5) by suitable adjustments of the edge capacity function. Equa-
tions (4.4) and (4.5) represent the idea that once power reaches a substation, it is transmitted
from that substation via the export cable to the onshore grid point.

For an edge (u,v) we continue to understand f(u,v) > 0 (resp. < 0) as f(u,v) units of flow
going from u to v (resp. —f(u, v) units going from v to u). Thus, a negative net flow at a vertex
as seen in Equation (4.1) means that more flow leaves a vertex than enters it.!

INote that in [Gri+18, Gri+19] a flow was defined as any function on the edges of a graph and a flow was defined
as feasible if Equations (4.1), (4.2), (4.4) and (4.5) hold. Here, feasibility is included in the very definition of “flow”.
The edge capacity constraint (Equation (4.3)) was only modelled in the cost function: A feasible flow would
have finite cost if and only if its absolute value is bounded by the maximum cable capacity. We believe that the
definitions used here are more straightforward as unhelpful distinctions are dropped.
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Along each edge we may place a single cable, whose type is chosen from a finite set of
cable types. Each cable type k is uniquely determined by its capacity capg(x) € INy U {co}
and its cost per unit length cx(x) € INy. We therefore identify each cable type k with the
pair (capg(k), ck(x)) and define the set K of all allowed cable types represented by these pairs.
For notational consistency we assume that K also contains the two special cable types (0, 0)
and (oo, co) called trivial cable types. The former represents the case that no cable is built along
an edge and the latter the case that no cable has sufficient capacity. The maximum cable capacity

sup{capg(x): (capg(x), ck(k)) € K, cx(x) < oo} (4.6)

is the highest capacity of any cable type with finite cost. Based on the cable types we define a
cost function ¢: R — Ny U {co} by

c(x) = min{ck(k) : (capg(x), ck(x)) € K, |x| < capg(x)} Vx € R, (4.7)

i.e., we choose the cheapest cable type that has sufficient capacity to transport |x| units of
flow. We refer to c as a step cost function due to Proposition 1. But first, we may impose further
assumptions on the set of cable types without losing generality by artificially introducing an
order on the cable types: Let K = {x1,...,k g/} such that capy(k;) < capy(xi+1). We may
assume that the capacities are indeed pairwise different and that cx(k;) < cx(k;+1). Otherwise
there would be a cable type that never realizes the minimum in Equation (4.7) and that can
therefore be removed from K.

Proposition 1. Let ¢ be defined as in Equation (4.7). Then, the restriction of ¢ to R is piecewise
constant, non-decreasing, and left-continuous and it holds that c(0) = 0.

Proof. Since K includes the trivial cable type (0, 0) and since the per unit cost of cable types is non-
negative, it holds that ¢(0) = 0. By definition, c is constant on the intervals (capy(k;), capg(ki+1)]
for any i € [|K|—1] and these intervals span Rs¢. Let x, y € R>¢ with x < y. For any cable type
with |y| < capg(x) it also holds |x| < capg(kx) and thus c(x) < c¢(y). Hence, c is non-decreasing
on Ryg. Let (x,)nen be a sequence of non-negative reals converging from the left to some
x € Ryg,i.e.,x, @ xasn — oo and x, < x for all n € N. Then, |x,| < |x| and |x,| — |x| as
n — oo. Since c is piecewise constant, we have that c¢(x,) = c(x) for sufficiently big n, implying
left-continuity. O

Given such a step cost function obtained from cable types, we define the cost of a flow on a
wind farm graph as

Cost(f) = Y c(f(e)) - len(e). (4.8)

ecE

With that, given a wind farm graph and a set of cable types, the WinND FARM CABLING
PrRoOBLEM consists of finding a flow on the wind farm graph of minimal cost.
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4.2 On the Complexity of WCP and Integral Solutions

In this section we establish complexity results on WCP and link them to complexity results for
standard Minimum-Cost Flow Problems, in which the cost function c is linear. In particular, we
show that WCP is strongly NP-hard (Theorem 3). We also provide a proof that the so-called
Integer Flow Theorem (e. g. [AMO93, Thm. 9.10]) remains true in the setting of WCP. The latter
result facilitates the engineering of heuristic solution methods.

Theorem 2. It is possible to determine in polynomial time, if there is a flow on a given wind farm
graph with a given set of cable types.

Proof. We provide a reduction from the Maximum FLow PrRoBLEM [AMO93, p. 168]: Note
again that their flow model is different to ours as described in Section 3.2. Let G’ = (V(G"), E(G"))
be abidirected graph, i. e., (u,v) € E(G’) implies (v, u) € E(G’), with non-negative edge capacities
capg(e) € Ny, and let x,y € V(G’) be two distinguished vertices, called the source and the
sink. Maximize the flow value y such that there is a flow f’ with f,,,(x) = —f,(y) = —u
and f (u) = 0 for all other vertices, as well as 0 < f’(e) < capg(e) for all e € E(G’).2
The MaxiMmuMm FLow PROBLEM can be solved in polynomial time [AMO93, Thm. 7.10].

We modify a given wind farm graph as follows: Add all reverse edges and set their capacity to
the maximum cable capacity. For all edges of the form (u,v) with u € Vg set the capacity to zero.
Add a source vertex x and insert all edges between x and any turbine u, with capg(x,u) =1
and capg(u, x) = 0. Add a sink vertex y and insert all edges between y and any substation v,
with capy(y,v) = 0 and capg(v, y) = capg,, ().

The maximum flow value in this network is at most |Vr|, since the edges of the form (x, u)
induce a cut of capacity |Vr| [AMO93, Property 6.1]. The maximum flow value is therefore
exactly |Vr| if and only if a flow exists in the wind farm graph:

Given a witness f”’ to the maximum flow value of |Vr|, we obtain a flow f on the wind
farm graph by f(u,v) = f'(u,v) — f’(v,u) for all (u,v) € E(G). Equations (4.1) and (4.2) follow
from the capacities on edges incident to the source and the sink, respectively, Equation (4.3)
holds as f’ respects the maximum cable capacity, and the constraints forbidding outflow from
substations (Equations (4.4) and (4.5)) hold because the respective edges have zero capacity in
the modified graph.

Given a flow f on the wind farm graph, define f’(u,v) = f(u,v)and f’(v,u) = 0if f(u,v) > 0
and define f’(v,u) = —f(u,v) and f’(u,v) = 0 otherwise. Furthermore, define f’(x,u) = 1 and
f'(u,x) = 0 for all turbines u and f’(v,y) = f,.(v) and f’(y,v) for all substations v. Then, f’
yields a flow value of exactly |Vr|. O

However, if cost-minimization is taken into account, the problem becomes hard. This is
a key difference to linear-cost flow problems, which can be solved in strongly polynomial
time [AMO93, Section 10.5].

2The definition of the net flow follows our definition in a straightforward way. Note that the sign is inverted when
comparing to the original definition [AMO93, Equation (6.1b)].
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Figure 4.1: Visualization of a WCP instance constructed from a 3-PARTITION instance.

Turbines are placed as 3m paths, each containing s; turbines for the respective i € [3m]. The
last vertex of each path has edges to each substation v; for j € [m]. Ellipses indicate the inner
vertices of the paths and the edges between turbines and substations.

Theorem 3. WCP is strongly NP-hard, even if edge lengths and substation capacities are uniform,
and there is only one non-trivial cable type, which has infinite capacity.

In Theorem 3 we interpret WCP as a decision problem: Given an instance and a threshold
value, does there exist a flow of cost below the threshold.

Proof. We reduce from the strongly NP-complete 3-PARTITION problem [G]79, SP15]:
Letm,T € Nandlet S := {sy,..., 3} be a multiset of natural numbers such that T/s < s < T/2
foralls € Sand }.;cgs = mT. Can S be partitioned into triplets Si, . .., Sy such that 3 cg s =T
foralli=1,...,m?

Given an instance of 3-PARTITION, we construct a wind farm graph as follows and as
visualized in Figure 4.1: For every i € [3m] there is a path P;: u; 1, . .., u; s, of turbines. Let there
also be substations vy, .. .,Vv,,, each of which has a capacity of T. In addition to the edges in
the paths, the graph includes the edges u; s,v; for all i € [3m], j € [m]. All edges have a length
of 1 and the only non-trivial cable type is (capg(k), ck(k)) = (o0, 1). This cable type implies that
c(x) = 1if x # 0 (and ¢(0) = 0). Thus, the cost of a flow on the wind farm graph equals the
number of edges with non-zero flow.

We show that the instance of 3-PARTITION is a yes-instance if and only if there is a flow
on the wind farm graph of cost at most mT.
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Given a yes-instance with tripels S; (j € [m]), we define a flow as follows. On the paths P;
define f(u; ju; j4+1) = jforalli € [3m] and j € [s; — 1]. Furthermore, let f(u; 5,v;) = s; if s; € S;
and f(u; 5,vj) = 0 foralli € [3m] and j € [m]. It is straightforward to check that Equations (4.1)
to (4.5) hold, hence f is a flow. There is exactly one edge with outgoing flow for each turbine,
hence the flow has a cost of exactly >’;c(3,,) si = mT.

Let f be a flow on the wind farm graph of cost at most mT. By induction, it holds that
f(uijuijs1) = jforalli € [3m], j € [s; — 1] using Equation (4.1). These are };¢(3,n)8i — 1 =
mT — 3m edges with non-zero flow. Thus, each vertex u; 5, has exactly one outgoing edge and
the flow on this edge equals s;. For every j € [m], let S; be the set of the numbers such that the
turbine u; 5, is connected to substation v;. By Equation (4.2) it holds that ;5,5 < T for all
Jj € [m] and equality holds since )\ s s = mT. Thus, the assignment of turbines to substations
yields a 3-partition. O

Corollary 1. WCP is strongly NP-hard, even if edge lengths are uniform, there is only one non-
trivial cable type, and there is only one substation, which has infinite capacity.

Proof. We only state the changes in the construction from Theorem 3: Each substation is
replaced by a turbine and all of these turbines are connected to all turbines from the previous
construction and to the substation. The only cable type has capacity T + 1 and cost 1. The
instance of 3-PARTITION is a yes-instance if and only if there is a flow on the wind farm
graph of cost at most m(T + 1). In this case, the way how inflow arrives at the newly added
turbines is a direct representation of the 3-PARTITION instance. O

In the classical case with linear costs, a central structural result is the Integer Flow Theo-
rem [AMO93, Thm. 9.10]. It states that if a flow exists and if all edge capacities and vertex
balances (similar to the right-hand sides of Equations (4.1) and (4.2)) are integers, then there
is a cost-minimal integer flow, i. e., a cost-minimal flow that has integer values on all edges.
The values in WCP that represent vertex balances, namely turbine generations and substation
capacities, are natural numbers by definition. It is also needed that the cable capacities are
defined as natural numbers to obtain the following analogon to the Integer Flow Theorem:

Theorem 4. If a wind farm graph and a given set of cable types admit a flow, then there is a
cost-minimal integral flow.

Proof. Suppose f is a (possibly non-integral) flow of minimum costs. We define another flow
network on the same graph by setting the capacity capy(e) of every edge e to [|f(e)|]. Each
turbine requires a net flow of —1. We model the substation capacities by adding a new vertex s
and edges from all substations to s with capacities equal to the substation capacities. The net
flow shall be 0 at all substations and |Vr| at s. We further define zero costs for flows on all edges.
By the integrality property of Minimum-Cost Flow Problems with linear cost functions (e. g.
[AMO93, Thm. 9.10]) there is a feasible integral flow f’ in this network. Due to the construction
of the flow network, f” satisfies the constraints in Equations (4.1) to (4.5).
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Figure 4.2: An example instance in which all integer flows are not cost-optimal. (a) The instance
consists of three turbines and a substation with edges as depicted. All edge lengths are set to
1. The available non-trivial cable types are (1.5, 1) and (2, 3). (b) Since the edge capacity is 2
there is only one integer flow (up to symmetry). The labels show the values of the flow on the
edges and the arrows resemble the direction of the flow. This flow has a total cost of 5. (c) This
non-integer flow has a total cost of 4.

Since the cost function c is non-decreasing, it holds for all e € E that c(x) < ¢(|f(e)|) forallx €
[0, |f(e)]]. By the other properties of ¢ stated in Proposition 1, we also have c(x) = c¢(|f(e)])
for all x € [|f(e)|, capg(e)]. It holds in particular that c¢(|f’(e)|) < c(|f(e)|). Thus, Cost(f’) <
Cost(f) and f” is optimal in the original network. O

Figure 4.2 gives an example to show that Theorem 4 would not remain true if there were non-
natural cable capacities even though the edge capacity, defined by the biggest cable type of finite
cost, is integer. This justifies the model assumption that cable types must have integer capacities.

4.3 MILP Formulation

WCP can be formulated asa MIXED-INTEGER LINEAR PROGRAM (MILP) that can be tackled
using commercial or non-commercial solvers. We use this MILP formulation as a competitor to
which we can compare our algorithmic solutions to WCP such as our heuristic based on Negative
Cycle Canceling (Section 4.4). While standard Minimum-Cost Flow Problems can be modelled
using only continuous variables, the incorporation of cable types calls for the use of binary
variables. We state the MILP formulation next as given in joint work with Dorothea Wagner
and Matthias Wolf [GWW20] and give a formal proof of its correctness afterwards.

Let G be a wind farm graph and K a set of cable types as defined in Section 4.1. Each cable
type k € K has a capacity capg(kx) on the amount of turbine generation that can be transmitted
through it, as well as a cost per unit length cx(x) for laying a cable of type k. Here, we omit the
trivial cable types (0, 0) and (o0, o) to decrease the size of the MILP. We use binary variables
x € {0, 1}FK where E are the edges of the underlying wind farm graph and interpret x(e, k) = 1
as a cable of type k being installed on edge e. We further use variables f € RE that (by abuse of
notation) represent the flow in the wind farm graph.?

3With our Integer Flow Theorem (Theorem 4), we could have enforced in the MILP that flow variables be integers
as well. However, by rule of thumb, it is advisable to prefer real over integer variables in MILPs.
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The MILP formulation for WCP we used in our experiments is as follows:

min Z Z cx(k) - x(e, k) - len(e) (4.9)
e€E keK

s.t foe(w) = -1 Yu € Vr, (4.10)
fnet(v) < CapSub(V) Vv € Vs, (4.11)
fle) < Z x(e, k) - capg (k) Ve € E, (4.12)

k€K
—f(e) < Z x(e, k) - capg(x) Ve € E, (4.13)

k€K
Z x(e,x) <1 Ve € E, (4.14)

k€K

fu,v) <0 Y(u,v) € E: u € Vs, (4.15)
f(u,v) =0 Y(u,v) e E:v € Vg, (4.16)

where f ., denotes the net flow defined in Equation (3.1) using the flow variables f of the MILP.
Equations (4.10) and (4.11) are the same as the constraints given in Equations (4.1) and (4.2).
Equations (4.12) and (4.13) are equivalent to

f(@)] < ) x(e, ) - capy(x)

keK

for all e € E and ensure that there is sufficient cable capacity installed on every edge for
the respective flow, while there is only one cable type on that edge due to Equation (4.14).
Equations (4.15) and (4.16) correspond to Equations (4.4) and (4.5) and ensure that no flow leaves
any substation.

Lemma 1. The following assertions on the connection between WCP and the MILP formulation

hold:

e For every flow in the wind farm graph there is a feasible solution to the MILP with equal
cost which extends the flow.

« Every feasible solution to the MILP gives rise to a flow in the wind farm and the value of the
MILP solution is at least the cost of the flow.

* The optimal values of WCP and the corresponding MILP formulation are equal.

Proof. Starting with a flow in the wind farm graph, we observe again that Equations (4.10),
(4.11), (4.15) and (4.16) trivially hold. For every edge e with non-zero flow the edge capacity
constraint Equation (4.3) in conjunction with the maximum cable capacity Equation (4.6) implies
that there is a cable type of sufficient capacity to support the flow. We set x(e, x) = 1 if and only
if k realizes the minimum in the cost function Equation (4.7), i. e, k is the cheapest cable type
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with sufficient capacity. For edges with zero flow, we set x(e, k) = 0 for all cable types . Thus,
at most one cable type is used, so Equation (4.14) holds. Consequently, the right-hand sides of
Equations (4.12) and (4.13) collapse to 0 for edges with zero flow and, elsewise, to capy(x) for
the cable type realizing Equation (4.7). As for the costs, . cx ck(x) - x(e, k) - len(e) collapses
analogously and equals ¢(f(e)) - len(e) from Equation (4.8).

Starting with a feasible solution to the MILP, we see that constraints in the definition of
a flow (Equations (4.1) to (4.5)) follow directly from the constraints of the MILP. Thus, the
flow variables define a flow. On each edge, the chosen cable type from the binary variables
(which may be the (0, 0) cable type if all decision variables are zero) is one of the cables types
from which the minimum over all unit costs is taken in Equation (4.7). Thus, the MILP may
overestimate the costs of the flow on each edge and, consequently, the overall costs as well.

The third assertion follows immediately from the previous ones. In an optimal solution, the
cable types on each edge will be chosen according to Equation (4.7). O

A fundamental notion to determine the progress of optimization in MIXED-INTEGER
LINEAR PROGRAMMING are MI(L)P gaps (or relative gaps). In the case of minimization
problems, a solver (i. e., a program that solves MILPs) has two goals: Find a feasible solution
and determine that no better solutions exist. On the one hand, any feasible solution a solver
finds gives an upper bound (ub) on the optimal value. On the other hand, a solver tries to prove
lower bounds on the optimal value (Ib). Those bounds can be combined to the MIP gap ub-Ib/ub.

By definition, MIP gaps take values in the unit interval and give information on how far the
solution value might be off from the (unknown) optimal value. A MIP gap of 0 (or in practice a
gap below a certain threshold close to zero) implies that the best solution that the solver has
found (also called incumbent solution) is indeed optimal. A positive gap, however can mean two
things: that the incumbent solution is not optimal or that it is optimal but not yet proven to be.

In our evaluations we will also adapt the MIP gap by using the lower bound from a solver
and the upper bound as the best solution value as computed by another algorithm.

4.4 Negative Cycle Canceling for WCP

With the presentation of the MILP in the previous section, we have seen one competitor of our
heuristic based on Negative Cycle Canceling. We proceed to present our algorithm. The NCC
algorithm for linear cost flows is described in Section 3.3 including the residual graph and the
Bellman-Ford algorithm to detect negative cycles. In Section 4.4.1 we define our adaptation of
the residual graph. Section 4.4.2 states our algorithm on a high level and explains the difficulties
arising from the step cost function. More details on the changes to the Bellman-Ford algorithm
are provided in Section 4.4.3 and how it is employed in our NCC algorithm is explained in
Section 4.4.4. The elaborations in this section are based on joint work with Torsten Ueckerdt,
Dorothea Wagner, Franziska Wegner, and Matthias Wolf [Gri+18, Gri+19].
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Figure 4.3: Residual Costs and Canceling a Negative Cycle. (a) A wind farm graph G with
two turbines u;, u; and two substations vy, v,. Edge uyv; has a length of 3, all other edges have
a length of 2. Substation capacities are 2. The values on the edges show a flow, which has a
cost of 5 using the cable types depicted in (b). (¢) The residual graph R of G with residual costs
obtained from the flow in (a) and A = 1. Note how infinite residual costs are used to ensure
that Equations (4.1), (4.2), (4.4) and (4.5) hold. There is no visualization for the edge capacity
constraint Equation (4.3). The bold red edges show a negative cycle. (d) The flow obtained from
canceling the negative cycle. The cost of the flow changed by exactly the value of the cycle.

4.4.1 The Residual Graph

Given a wind farm graph G we define the residual graph R of G with vertices V(R) and edges E(R)
by V(R) = V(G)U{s}and E(R) = {e,& : e € E(G)} U{(v,s),(s,v) : v € Vs} where é is the reverse
of e. The new vertex s, the super substation, is a virtual substation without capacity, that is
connected to all substations. The edges to and from s are used to model the substation capacity
constraints and to allow the generation of one turbine to be reassigned to another substation.
Note that in line with the classical definition in Section 3.3 we have replaced each edge with
two directed edges in opposite directions.

For A € N and a given flow f in G, which by definition has finite cost, we further define resid-
ual costs, which represent by how much the cost for the edge changes if the flow on the edge is in-
creased by A (cf. Figure 4.3 for an example). Note that for negative quantities of flow this implies
that the absolute value of the flow may be reduced or even the direction of the flow on an edge
may change. More formally, we define y: E(R) — Rby y(e) = (c(f(e) + A) — c(f(e)) ) - len(e)
for all e € E(R) that are neither incident to s nor start at a substation where we alias f(&) = —f(e)
for all e € E(G). By this definition the residual costs are infinite if c(f(e) + A) = oo, i. e., if the
edge capacity of e is exceeded. For u € Vs and v € V7 that are adjacent in G, we set y(u,v) = oo
whenever f(v,u) < A because sending f(u,v) + A units from u to v would otherwise imply
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that flow leaves a substation. On edges into s, we set y(u,s) = 0 if f(u,s) + A < capg,,(u)
and y(u,s) = co otherwise. On edges leaving the super substation, we set y(s,u) = 0 if
f(u,s) = A and y(s,u) = oo otherwise to prevent flow from leaving the substation.

In the classical setting, the cost changes are only computed for A = 1 and the residual
capacities determine by how much the current flow is augmented. We address the problems
with a straightforward adoption of this approach in Section 4.4.2.

On the residual graph with associated residual costs obtained from a flow f, we search for
negative cycles to cancel. For the moment, let us assume that a cycle does not include an edge
and its reverse edge. Given a negative cycle C with edges E(C), canceling C means constructing
anew flow f’ from f by sending A units of flow along the edges of C. More formally, we define

f’ by

fu,v)+ A4, if(u,v) e ECC),
f'u,v) =19 f(u,v)—A, if(v,u) € EQC),
f(u,v), if (u,v), (v,u) ¢ E(C).

for any (u,v) € E(G). By definition of the residual costs, it holds that

Cost(f’) = Cost(f) + Z y(e). (4.17)

e€E(C)

The reason for our assumption that we only consider cycles without both an edge and its reverse
can be seen in Figure 4.3 (c): The cycle uyv,u;, has total residual costs of —2, but sending one unit
of flow from u; to v, and one unit of flow from v; to u; does not change the flow, so the cost
should not change either. In this case, one of the residual costs does not accurately represent
the change in costs.

4.4.2 NCC in a Nutshell and Challenges on Wind Farms

In the language of Section 4.4.1, the cycle-canceling algorithm in the original setting of Minimum-
Cost Flow Problems with linear costs (cf. Section 3.3) works as follows: Given a flow, the residual
costs are computed for A = 1 and if a negative cycle exists in the residual graph, it is found for
example by means of the Bellman-Ford algorithm. Then, this cycle is canceled not only with
A = 1, but with an amount equal to the least residual capacity over any edge of the cycle, i.e.,
the smallest amount of additional units of flow, such that the flow hits zero or the edge capacity
on any edge of the cycle. By linearity, the change in cost equals the value of the negative cycle
multiplied by the least residual capacity. Iterating this approach exhaustively yields an optimal
solution, as we have stated before:

Theorem 1 ([AMO93, Thm. 9.1] Negative Cycle Optimality Conditions). A flow f is an optimal
solution to the MINIMUM-CosT FLow PrRoOBLEM if and only if the corresponding residual graph
Ry does not contain any negative cycles.
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Figure 4.4: Example of a wind farm for which it is necessary to consider more than one value
for A. (a) shows the adapted wind farm graph from Figure 4.3: Turbine u can only be connected
to u;. We assume that the production from u is routed via u; directly to v;. The substation
capacities are increased to 3. All edges have a length of 2 for all edges except (u;,v;) which has
length 3. (b) The cable types remain unchanged. (c) The residual graph for the flow from (a) for
A = 1. (d) The residual graph for the flow from (a) for A = 2. The cycle (u1,v1, s, V2, 41) is not
negative for A = 1 but for A = 2.

For wind farms, Negative Cycle Canceling is less straightforward, since key properties used
for the original algorithm do not hold: Canceling the same negative cycle up to the residual
capacity is not consistent with the residual costs, higher values for A may be necessary, and the
optimality condition does not hold any more. We explain all of these three problems in more
detail in the following.

Assume a negative cycle (that does not contain an edge and its reverse) has been found for
A = 1. Then, in general, Equation (4.17) cannot be applied multiple times if more than one unit
of flow is sent along the cycle, because the residual cost may also change after the first (and any
subsequent) cancelation. Thus, it is sensible to recompute the residual costs after a cancelation.

Furthermore, only considering A = 1 may not suffice: Let us modify the instance shown
in Figure 4.3 by adding a turbine u that is only connected to u; and by increasing the substation
capacity to 3 as shown in Figure 4.4 (a) with the same cable types as before. Assume that the
generation of u is sent along (u, u;,v,). Then, the residual costs on the cycle (u1,v1,s,va, u1)
sum up to 2 for A = 1 (the cycle should not be canceled, Figure 4.4 (c)) and to —1 for A = 2
(the cycle can sensibly be canceled, Figure 4.4 (d)). Thus, not only one value of A should be
considered for the computation of residual costs. Obviously, this observation can be extended
to other values for A by adding a path of turbines and adjusting the cable types and capacities.
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While the maximum value for A can be bounded by twice the maximum cable capacity,
considering all possible values for A does not yield an optimal solution.

In fact, Theorem 1 does not hold in our setting: On the one hand, there are optimal solutions
with negative cycles. While these cycles, which we call short cycles, necessarily consist of only
two edges, namely an edge and its reverse, a standard Bellman-Ford algorithm would still find
them. An example for an optimal solution with negative cycles can be seen in Figure 4.3 (d): In
the residual graph for A = 1, the cycle (uz, v, u2) is short and its residual costs sum up to —2.
This negative cycle is visualized in Figure 4.3 (c). Note that the residual costs on this cycle have
not changed, since the flow on the edge (u;, v;) has not changed.

On the other hand, the absence of long negative cycles (cycles with at least three edges, in
particular without an edge and its reverse) for all possible values of A does not imply optimality.
Consider Figure 4.5: The flow in (e) has a cost of 10, the flow in (g) costs 9. Thus, the flow in (e)
is suboptimal. Yet, the residual graph for the flow in (e) (shown in (f) for A = 1; for other A all
residual costs are positive) does not have a negative cycles for any value of A. In particular due
to the lack of an optimality criterion, we propose a heuristic approach to WCP.

This heuristic, which by abuse of name we also call the (or our) Negative Cycle Canceling
(NCC) algorithm, is shown in Algorithm 4.1. It is designed to overcome the challenges outlined
above. In a nutshell, it works as follows: Starting with an initial feasible flow and some value
of A (Line 1), it computes the residual costs (Line 3), and runs the shortest path computations in
our adaptation of the Bellman-Ford algorithm (Line 4, corresponding to Algorithm 3.1 Lines 2
to 6). The crucial difference is that the extraction step in Line 7 does not yield a desired long
negative cycles but a set of cycles which may contain what we are looking for. The details of
this step are explained in Section 4.4.3.

If the algorithm finds a long negative cycle in this set of cycles, it cancels the cycle, i.e., it
changes the flow by adding A units of flow on all (residual) edges of the cycle (Lines 10 and 11).
Then this procedure is repeated with the new flow and some value of A which may but not need
to differ from the previous one. If no long negative cycle is found, a new value of A is chosen
and new residual costs are computed (Line 14). This loop is repeated until all sensible values
of A have been considered for a single flow (Line 2), which is then returned by the algorithm.
This flow is of integer value, since the initial flow will be designed to only have integer values
and we solely consider natural values for A. Without loss of generality we can restrict ourselves
to integer flows according to Theorem 4, even though our algorithm does not necessarily find
an optimal solution to WCP. In the following sections, we provide further details on different
steps in Algorithm 4.1: Section 4.4.3 explains our adaptation of the Bellman-Ford algorithm
and Section 4.4.4 details how this adaptation is incorporated into the NCC algorithm. How an
initial flow is computed and how different values for A are chosen is explained in Sections 4.4.5
and 4.4.6.
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Figure 4.5: Examples of flows and corresponding residual graphs to underline the absence of
the optimality condition from Theorem 1. (a) shows a wind farm graph. Edges between turbines
are of length 2, edges between the substation v and any turbine are of length 3. (b) depicts a
cost function induced by two cable types. (c) displays a flow. Dashed lines do not carry any
flow, on other edges the label states the flow value and the arrow the (effective) direction of the
flow. The thickness of solid lines represent the necessary cable type to carry the respective flow.
(d) is the residual graph for the flow in (c) and A = 1. The super substation is omitted for ease of
presentation. There are three negative cycles: (v, uy,v), (v, uz, uq,v), and (v, us, us,v). (e) shows
the flow obtained by sending one unit of flow along (v, us, uz,v) in (c). (f) is the residual graph
for (e) and A = 1. (g) depicts the flow obtained by sending one unit of flow along (v, uz, u1,v) in
(c). (h) displays the residual graph for (g) and A = 1.
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Algorithm 4.1: Negative Cycle Canceling

Input: Wind Farm Graph G, cable types K
Result: A flow fin G

1 f := InitializeFlow(G,len), A := InitialDelta
2 while A # null do

3 (R,y) := ComputeResidualGraph(G,ck, [, A)
4 RunBellmanFord(R,y)

5 found := false

6 for each e € E(R) do

7 W := FindNegativeClosedWalk(R,e)

8 C := DecomposeWalkIntoCycles(W)

9 for each C € C do

10 if |C] = 3and y(C) < 0 then

11 L f := AddFlowOnCycle(f,C, A)
12 found := true

13 | if found then break

14 | A := NextDelta(A, found)
15 return f

4.4.3 Detecting Long Negative Cycles

Preliminary experiments have shown that the standard Bellman-Ford algorithm applied to wind
farm graphs tends to report short negative cycles even if long negative cycles exist. The reason
allegedly is that negative residual costs on an edge are repeatedly used if the cost of the reverse
edge is, say, zero. In that case, the negative residual cost strongly influences the distance labels
on close vertices and overshadows long cycles. An example can be seen in Figure 4.5 (d): The
negative residual costs on the edge vu; can influence the label at v—roughly speaking—every
two iterations with a total change of —3 if edge u,v is relaxed or every three iterations with a
total change of —2 if the edges uyu; and u;v are relaxed. It is evident that traversing the parent
pointers will yield the short negative cycle vu,v.

One solution is to prohibit propagating the residual cost of an edge over its reverse edge.

To this end, we employ the Bellman-Ford algorithm on the subgraph L of the line graph of R
which we obtain from the line graph £(R) by removing all edges representing “U-turns”, i. e.,

edges of the form (e, €) for e € E(R). We define the residual cost of an edge (eq, e;) in L as y(ez).

At every vertex e of L we maintain a distance label dist(e) initialized as y(e). Note that we
change the initialization compared to Algorithm 3.1: There, labels represent the distance from a
certain vertex s. Here, we use an implicit starting vertex connected to all other vertices. Thus,
throughout the Bellman-Ford algorithm, dist(e) represents the length of some walk in L starting

at any vertex of L (namely the first vertex on the walk after the implicit vertex) and ending at e.

By construction of L, the label dist(e) also stands for some walk in R which ends at the endvertex
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of e and which does not traverse an edge of R directly after its reverse. Consequently, a cycle C
in L corresponds to a closed walk W without U-turns of the same cost in R. In particular, W is
not a short cycle, which is what we wanted. It may still occur, however, that W includes an edge
and its reverse. In that case, W consists of more than one cycle each of which may be negative.
Therefore, we decompose the closed walk W into cycles, which, in turn, can be canceled one
after another. For more details, refer to Section 4.4.4.

As |V(L)| = |E(R)|, running the Bellman-Ford algorithm on the line graph without U-turns
has the downside that more distance labels have to be stored and updated. When naively
implemented, this increases the worst-case running time to O(|V(L)| - |E(L)|).

We present how to implement an algorithm that directly works on R, that is equivalent to the
Bellman-Ford algorithm on L, and that has the same asymptotic running time as the original
Bellman-Ford algorithm on R. To this goal, we use the special structure of L to analyze what
the steps of the Bellman-Ford algorithm on L mean for R. When running the Bellman-Ford
algorithm on L, there is one label per vertex of L. Each of those labels gives rise to a label
on an edge of R. The labels at incoming edges of v € V(R) are used to compute the labels at
outgoing edges of v. Let (v, w) and (v, x) be two edges leaving v. Let us assume that (x, v) has
the smallest label of all edges entering v. Then, (x,v) is used to relax (v, w). But it cannot be
used to relax (v, x). To do so, we need the second smallest label of all edges entering v. This
yields the following observation.

Observation 1. For each vertexv of R only the two smallest labels of incoming edges of v are
required to correctly update the labels on outgoing edges of v.

We call these labels relevant. Consequently, throughout our modified version of the Bellman-
Ford algorithm, we maintain two distance labels dist;(v) and dist,(v), and two parent pointers
parent;(v) and parent,(v) for every v € V(R), respectively. As above, dist;(v) with i = 1,2
stand for the length of a U-turn-free walk whose first edge is arbitrary and whose last edge
is (parent;(v),v). That means that the parent pointers hold the edges that have been used to
build the values of the distance labels. The algorithm ensures that parent;(v) # parent,(v)
and dist;(v) < disty(v) for every v € V(R). In every iteration of the Bellman-Ford algorithm,
each edge of R is considered for relaxation: For an edge e = (u,v) take dist(u) = dist;(u)
if parent;(u) # v and dist(u) = dist;(u) otherwise. Then, check if dist(u) + y(e) yields a new
relevant label at v. If, during a relaxation step, several incumbent labels and a newly computed
candidate label have the same value, we break ties in favor of the older labels. This is in
accordance with the standard Bellman-Ford algorithm, in which labels are only updated, if
the new value is strictly smaller than the incumbent. For each edge, checking if it yields a
new relevant label at its endvertex can be done in constant time. With Observation 1 we
show reduced bounds for the number of iterations and the overall running time compared to a
straightforward implementation on L.

Theorem 5. There is a negative cycle in L if and only if after 2 - |V(R)| iterations there is an edge
that allows reducing a label.
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Proof. Let there be a negative cycle in L. We show a stronger statement: In every iteration, there
is a label that is updated by the algorithm. To this end, we observe that a standard Bellman-Ford
algorithm on L updates at least one label per iteration, since there is a negative cycle. We claim
that in every iteration, one of updated labels is relevant. Consider all labels at V(L) at the end of
some iteration k + 1. By traversing parent pointers, we find a label on some e = (u,v) € V(L)
that has been updated in iteration k + 1 and this update has used a label on some e; € V(L)
from iteration k. The label on e; has been updated in iteration k, since the label on e is from
iteration k + 1. Furthermore, the label at e; is the smallest among all vertices in L of the form
(w, u) with w # v, otherwise it would not have resulted in the label on e in iteration k + 1. Thus,
the label at e; is relevant at vertex u at the end of iteration k. By Observation 1 this label on e;
is correctly updated by the algorithm, which completes this part of the proof.

Let n = |V(R)| and suppose ez,,+1 is an edge that allows reducing a label after 2n iterations. We
iteratively construct a walk backwards starting from e;,+; by repeatedly applying the following
procedure. At an edge e; = (v, w) we define e;_; as the incoming edge of v other than (w,v)
with the smallest label. If there are several possibilities, we pick the edge with the oldest label
among them—in particular, if dist;(v) = disty(v), use dist;. The label at e;_; is relevant by
definition. We stop when an edge would be repeated. At this point, the walk contains a closed
subwalk W = (eg, . .., e;) for suitable k,! € Z with k < [ < 2n + 1. By Observation 1 there are
at most 2n edges with relevant labels. Hence k > 1.

Since the label at e3,+; can be updated after 2n iterations, the label at e;, must have been
updated in iteration 2n. Repeating this argument inductively shows that for i > k the label at e;
was updated in or after iteration i. Therefore, all labels of edges in W were updated after the
initialization. By the way the labels are computed, we therefore have

dist(e;—1) + y(e;) < dist(e;)

for all edges e; on W where we alias ex_; = ej.
If one of these inequalities is strict, i. e., dist(ej_1) + y(e;) < dist(e;) for some j € {k,...,I},
then summing over the inequalities for all edges in W will give

Z (dist(e) + y(e)) < Z dist(e),

ecW ecW

Z y(e) < 0.

eeW

which can be simplified to

Hence, the total costs of W will be negative, which will complete the proof.

It remains to show that there is indeed some edge e; = (v, w) for which the inequality is
strict. To this aim let e; be the edge with the oldest label among edges in W. The label dist(e;)
was computed from the label dist’(e) of an edge e = (u,v) with u # w, which may or may not
be e;_;. That means

dist’(e) + y(e;) = dist(e;) (4.18)
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where dist denotes the labels after the algorithm finishes and dist” denotes the labels when dist(e;)
is computed. Note that the label at e may have been updated afterwards, i. e., dist(e) < dist’(e).

For the sake of contradiction assume dist(ej_;) > dist’(e). Then, dist’(e) > dist(e) >
dist(ej—;) > dist’(e) where the first inequality holds since labels at the same edge do not
increase during the algorithm and the second inequality follows from e being an incoming
edge of v. Hence, all these labels are equal. The first equality implies that the label on e
was not updated after the point in time when dist(e;) was computed and that dist(e) is older
than dist(e;). Using the second equality, we distinguish two cases: If e = e;_;, then dist(e;_;)
is older than dist(e;), which contradicts the choice of e;. If e # e;_;, then e should have been
included in W instead of e;_;. Thus, the assumption of dist(e;j_;) > dist’(e) is wrong and it
holds that dist(ej_;) < dist’(e). Combining this inequality and Equation (4.18) completes the
proof. O

Both implications can be combined to efficiently extract negative cycles, if they exist, by the
procedure in the second half of the proof. This yields the following corollary stating that our
adapted version of the Bellman-Ford algorithm has the same asymptotic running time as the
original.

Corollary 2. A negative cycle in L can be computed in O(|V(R)| - |E(R)|) time if one exists.

Note that Corollary 2 refers to cycles in L, not in R. In the upcoming Section 4.4.4 we describe
how these cycles in L translate to cycles in R.

4.4.4 NCC Algorithm in Detail

The previously described Bellman-Ford algorithm on L is encapsulated in Algorithm 4.1, which
we describe in more detail here. We first compute some initial flow (Line 1) using one of eight
initialization strategies presented in Section 4.4.5. In Line 3 we compute the residual graph R
using a given flow f and a given A and run the modified Bellman-Ford algorithm (Line 4). After
termination of the Bellman-Ford algorithm, we consider one edge after another and check in
Line 7 if it can be relaxed (again). In that case, we extract a closed walk W in R with negative
costs by traversing parent pointers backwords from that edge. However, canceling W as a
whole may not improve the costs of the flow as W may still contain an edge and its reverse.
By construction, every vertex in W has equal in- and out-degree with values of 1 or 2 due to
traversing only parent pointers. We can therefore decompose W into a set of simple cycles C in
Line 8 and cancel each cycle independently if it is long and has negative costs (Lines 9 to 12,
cf. Figure 4.6 (a)). Note that even though W has negative costs, it may happen that only short
cycles in C have negative costs and all long cycles have non-negative costs (cf. Figure 4.6 (b)).
In this case we search for another negative cycle in L (Line 13). If no negative cycle in the
current graph R is canceled, a new value for A is determined according to the delta strategy (cf.
Section 4.4.6) in Line 14 and new residual costs y are computed. Line 14 also checks if every
possible value for A has been used without improving the solution after the last update of f. If
so, f is returned.
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(b) No cycle is canceled.

Figure 4.6: Two examples of a negative closed walk and the decomposition into cycles.

We apply the well-known speed-up techniques attributed to Edward Moore as outlined
in Section 3.3: Firstly, if one iteration does not yield any update of any label, then the computation
is aborted and no negative cycle can be found in the current residual graph. Secondly, after
sorting edges by startvertices, we track whether the labels at a vertex v have been updated since
last considering its outgoing edges. If not, then there is no need to relax the outgoing edges.

By Theorem 4, there is a cost-minimal integer flow if any flow exists in the wind farm
graph. Thus, we design our algorithm to maintain an integer flow at all times. We define our
initialization strategies in a way that they will only output integer flows. Then, in the course of
our cycle-canceling procedure, we only consider natural values for A as returned by our delta
strategies. It is the focus of the next to sections to explain how our strategies are defined.

4.4.5 Initialization Strategies

Before we can start searching for and canceling negative cycles, we need some initial flow. To
obtain such a flow, we consider eight strategies, which all roughly work as follows. We pick
a turbine u whose generation has not been routed to a substation yet. We then search for a
shortest path P from u to a substation v with free capacity using Dijkstra’s algorithm [Dij59].
The search only considers edges on which the generation of the turbine can be routed, i.e., it
ignores congested edges. We then route the generation of u along P to v.

The initialization strategies differ along three dimensions: the metric for shortest paths, how
turbine generation is collected, and the target substation. As for the metrics, we either use
the lengths defined by len (cf. Section 4.1) or we assume a length of 1 for every edge. Turbine
generation can either be routed to a nearest or a farthest (in the sense of the respective metric)
substation with free capacity. There are two ways in which the flow is updated: The simpler
variant routes only the generation of u along P, i. e., the flow along P is increased by 1. The
other variant greedily collects as much generation from u and other turbines on P as possible
without violating any capacity constraints.
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The resulting flows are integral since the substation capacities and the maximum cable
capacity are natural numbers. If no flow is found during the initialization, the algorithm returns
without a result.

This yields eight initialization strategies, which we name as follows. The base part of each
name is either BFS if unit distances are used or Dijkstra (abbr. Dijk) if the distances given by
len are used. This part is followed by a suffix specifying the target substation: Any (abbr. A)
for the nearest and Last (abbr. L) for the farthest substation. An optional prefix of Collecting
(abbr. C) means that the generation is greedily collected along shortest paths. For example,
CollectingDijkstralLast (abbr. C-Dijk-L) iterates over all turbines and for each turbine u it
finds the substation v such that the shortest path given by len from u to v is longest among all
substations. Along a shortest path from u to v, turbine generation is collected greedily.

4.4.6 Delta Strategies

The delta strategies determine, in which order the different values for A are used to compute the
residual costs. A delta strategy consists of two parts: an initial value for A and a function that
returns the value of A for the following iteration. We discuss eight delta strategies. The simplest
one starts with A = 1 and increments A until a negative cycle is canceled. Then, A is reset
to 1. We call this strategy Inc (as in increasing). Similarly, Dec (as in decreasing) starts with the
largest possible value for A, which is twice the largest cable capacity. Then, A is decremented
until a cycle is canceled and reset to the largest value. The third strategy IncDec behaves like
Inc until a negative cycle is canceled. Then, it decrements A until A = 1 and behaves like Inc
again. To improve performance, all A can be skipped during incrementation up to the last
value of A for which a negative cycle was canceled. The fourth strategy Random returns random
natural numbers between one and the maximum possible value for A. Between any two cycle
cancelations, no value is repeated.

For each strategy, we consider the following modification: After canceling a negative cycle,
we retain the current value of A, recompute the residual costs with the new flow, and run the
Bellman-Ford algorithm again. We repeat this, until A does not yield a negative cycle. In that
case, A is changed according to the respective delta strategy. We call the strategies after the
modification StayInc, StayDec, StayIncDec, and StayRandom (or S-Inc, S-Dec, S-IncDec, and
S-Random for short).

4.5 Experimental Evaluation of Negative Cycle Canceling

In Section 4.4, we have introduced a heuristic with various strategies for WCP. We first use
statistical tests to evaluate these strategies and identify the best ones (Section 4.5.1). We compare
the best variant (i. e., best combination of initialization and delta strategy) of our NCC algo-
rithm with different baseline approaches for WCP namely solving an exact MILP formulation
(Section 4.5.3) and a Simulated Annealing (SA) algorithm from the literature [LRWW17] (Sec-
tion 4.5.4). In preliminary experiments (Section 4.5.2) we determine which of the MILP solvers
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Table 4.1: Cable types from [BVMO11] used in the evaluation given by their capacity in number
of turbines and their cost per unit of length.

Cable Type a b ¢ d

Capacitycapy 5 8 12 15
Cost cx 20 25 27 41

Gurobi and CPLEX works better for WCP to establish which solver we compare our NCC algo-
rithm to. The evaluation can also be found in our joint work with Torsten Ueckerdt, Dorothea
Wagner, Franziska Wegner, and Matthias Wolf [Gri+19]; Section 4.5.2 is only contained in the
arXiv version. The underlying data can be found in [Cak+23].

For our evaluation we use the five benchmark sets A';-N5 for wind farms from [LRWW17]
consisting of wind farms of different sizes and characteristics: small wind farms with exactly
one substation (N1: 10-79 turbines), wind farms with multiple substations (N : 20-79 turbines
and 2-7 substations, \5: 80—180 turbines and 4-9 substations, A/ 4: 200-499 turbines and 10-39
substations), and complete graphs (N's: 80—180 turbines and 4-9 substations). We use the same
cable types used for the evaluation in [LRWW17], which are originally from [BVMO11]. The
cable types are shown in Table 4.1. Our code is written in C++14 and compiled with GCC 7.3.1
using the -03 -march=native flags. All simulations are run on a 64-bit architecture with four
12-core CPUs of AMD clocked at 2.1 GHz with 256 GB RAM running OpenSUSE Leap 15.0.
All computations are run in single-threaded mode to ensure comparability of the different
algorithms.

4.5.1 The Best Variant of our Algorithm

The first goal of the evaluation is to establish which of all variants of our NCC algorithm works
best. We use a two-stage process: Determine the best delta strategy across all initialization
strategies. With the best delta strategy fixed, find the best initialization strategy for this delta
strategy.

For the first stage, we randomly select 200 instances per benchmark set and run our algorithm
on each instance with every pair of delta and initialization strategies. The first eight rows of
Table 4.2 show the minimum, average, and maximum running times for each delta strategy
across all initialization strategies, separated by benchmark set. We first observe that all variants
are fast, with running times between tenths of milliseconds to 4.5 minutes on large instances
in the worst case. We see that Dec is always the slowest strategy on average, which can be
explained by the fact that Dec often tries large values for A, for which negative cycles are rarely
found. The other strategies all roughly terminate in the same time on average. It seems to be
slightly faster to repeat the same A. However, for our purpose all variants have small enough
running times. We therefore base our decision which variant to choose solely on their solution
qualities.
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Table 4.2: Minimum, average and maximum of running times in milliseconds of different variants. Running time measurement
starts before the initial flow is computed and ends with the termination of the algorithm prior to outputting the solution. The
first eight rows represent running times across all initialization strategies per delta strategies and benchmark sets. The best
delta strategy in terms of solution quality is marked in green; minimal values per column are marked in yellow. The last row
represents the algorithm variant IncDec, CollectingDijkstraAny.

Delta N N N3 Ny N
Strategy min avg max min avg max min avg max min avg max min avg max
Dec 1.10 811 535 525 1421 857 282 1.8k 113k 4.4k 597k 272k 24k 30.8k 216k
Inc 045 462 361 269 780 531 174 1.2k 84k 3.0k 49.1k 213k 1.8k 16.2k 131k

IncDec 045 459 433 2.67 77.7 539 174 1.2k 8.2k 3.0k 487k 212k 1.9k 16.2k 117k
Random 0.62 439 288 3.50 773 443 176 1.0k 59k 3.2k 326k 137k 1.9k 16.6k 143k
S-Dec 076 622 461 3.76 1114 725 210 1.4k 9.1k 3.5k 474k 206k 19k 14.7k 133k
S-Inc 046 422 295 2.70 72.8 438 171 1.0k 6.6k 28k 36.2k 147k 1.8k 144k 97k
S-IncDec 045 422 310 2.68 727 437 171 1.0k 6.3k 2.8k 36.0k 154k 1.8k 144k 120k
S-Random 0.57 44.1 333 3.25 79.1 486 193 1.1k 6.0k 3.0k 351k 147k 1.7k 14.1k 106k

BestVar 048 36.2 217 351 52.6 257 174 706 3.1k 3.0k 27.0k 926k 1.9k 134k 82.6k

wildoud ONIT9V) WHV{ aNIp\ 3yl +49ndey)



Experimental Evaluation of Negative Cycle Canceling

Section 4.5

Table 4.3: Comparison of delta strategies over all initialization strategies. An entry in row i
and column j shows on how many instances strategy i produces better solutions than strategy j.
Values are marked by a star if they are significant with p < 1072 and by two stars if p < 107,
The best strategy is marked in green.

Inc Dec IncDec Random S-Inc S-Dec S-IncDec S-Random
Inc — 60.6 %2**  48.4% 60.2%**  54.2% 59.4%**  50.7% 56.5 %*
Dec 39.4% — 38.9% 46.7 % 40.8 % 48.4 % 40.6 % 41.2%
IncDec [51.6% 61.1%** - 59.9%** 54.0% 60.1%** 50.8% 57.3 %*
Random [39.8% 53.3% 40.1% - 42.4% 52% 42.7% 43.4%
S-Inc 45.8% 59.2%**  46.0% 57.6 %* — 58.1%** 46.9% 54.7 %
S-Dec 40.6 % 51.6 % 39.9% 48.0 % 41.9% — 41.7 % 41.9%
S-IncDec|49.3% 59.4%** 49.2% 57.3%* 53.1% 58.3 %** — 55.4 %
S-Random|43.5% 58.8%** 42.7% 56.6 %* 45.3% 58.1%** 44.6% —

To compare the variants in terms of solution quality, we compute for each delta strategy i
and instance m the mean X ,(,il) of the solution values over all eight initialization strategies. This
gives us 1000 data points per delta strategy. For delta strategies i, j we perform a Binomial Sign
Test as described in Section 3.4 counting instances with X,(,? < X,(,’;) and X,(,{) < Xﬁ,? (Section 3.4).
Table 4.3 summarizes the results of all tests after Bonferroni-correction by 112 (the number of
tests from both delta and initialization strategies). The percentage given in an entry in row i and
column j states on how many instances i performes strictly better than j after averaging over
all initialization strategies. Note that entries (i, j) and (j, i) need not represent 1000 instances, as
two variants may return equal solution values.

In the row IncDec, all values are above 50 %, three of which are significant at the 107*- and
another one at the 1072-level. The smallest value (50.8 % in column StayIncDec) stands for 460
instances on which IncDec performs better than StayIncDec. To the contrary, there are 446
instances on which StayIncDec yields better solutions (cf. entry 49.2 % in row StayIncDec and
column IncDec). While the differences between the four delta strategies involving Inc and
IncDec are not statistically significant, IncDec does seem to have a slight advantage over the
others. Hence we consider IncDec as the best delta strategy.

In Figure 4.7 (a) we show the average costs by delta strategy in relation to the IncDec strategy:
For example, for the dark green curve all instances are ordered by X ﬁandom) /X ﬁ“wec) in ascending
order. For a given value « on the abscissa, the curve shows the relative cost factor of the instance
at the ¢-quantile in the computed order. The other curves work accordingly. The minimum
ratios range between 0.870 (Random) and 0.947 (Inc) and the maximum ratios are between 1.027
(Random) and 1.104 (StayIncDec). We see, for example, that IncDec works strictly better than
StayInc on 49.6 % and equally on 8.1 % of all instances and on 4.5 % of all instances IncDec

outperforms Inc by at least 0.5 % in cost ratio.
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Figure 4.7: Comparison of our NCC algorithm using different strategies. For each strategy and
for each instance, the ratio of the best solution value found by that NCC variant to the best
solution value found by the reference variant (marked in red) are computed. They are shown in
increasing order. The dashed lines represent the 25 % and 75 % quantiles of the instances.

Table 4.4: Comparison of the initialization strategies when the delta strategy IncDec is fixed. An
entry in row i and column j shows on how many instances strategy i produces better solutions
than strategy j. Values are marked by a star if they are significant with p < 1072 and by two
stars if p < 107*. The best strategy is marked in green.

Dijk-A BFS-A C-Dijk-A C-BFS-A  Dijk-L BFS-L C-Dijk-L C-BFS-L
Dijk-A - 55.8% 49.5% 54.9% 55.6% 53.7% 53.9% 56.5 %*
BFS-A 44.2 % - 42.7% 46.5% 47.6 % 51.1% 46.7 % 49.3%
C-Dijk-A{50.5% 57.3%* = 55.3% 56.5% 56.5% 54.4% 56.3%
C-BFS-A |45.1% 53.5% 44.7 % - 51.2% 54.5% 49.3% 55.4%
Dijk-L |44.4% 52.4% 43.5% 48.8 % - 50.4 % 48.1% 51.7%
BFS-L 46.3 % 48.9 % 43.5% 45.5% 49.6 % — 47.7% 53.7%
C-Dijk-L|46.1% 53.3% 45.6 % 50.7 % 51.9% 52.3% — 53.1%
C-BFS-L |43.5% 50.7 % 43.7% 44.6 % 48.3% 46.3 % 46.9 % -

4Note that in [Gri+19], this plot erroneously included the mean values across all delta strategies.
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Next, we want to find the best initialization strategy after fixing IncDec as the delta strategy.
We pair each initialization strategy with IncDec on the same 1000 instances and summarize
the results of all pairwise tests after Bonferroni-correction with factor 112 in Table 4.4. We see
that both initialization strategies using Fuclidean distances and routing turbine generation to
the nearest free substation, i. e., DijkstraAny and CollectingDijkstraAny, seem to work best.
In particular, these two initialization strategies stand out by providing better solutions more
often than not compared to any of the other initialization strategies. Furthermore, these are
the only initialization strategies that show some significant advantage over other strategies.
In Figure 4.7 (b) we depict ratios of solution values compared to CollectingDijkstraAny. The
minimum ratios are between 0.886 and 0.923 for all strategies other than DijkstraAny (0.974).
The maximum ratios range between 1.054 and 1.085. For the main part there is hardly any
difference between collecting strategies and their non-collecting counterparts. The figure shows,
e. g., that on roughly 22 % of all instances CollectingDijkstraAny is better than BFSLast and
CollectingBFSLast by 0.5 %. CollectingDijkstraAny has a slight but not significant advantage
over DijkstraAny, the other initialization strategies fall behind quite remarkably. We therefore
declare CollectingDijkstraAny paired with IncDec as our best variant.

The last row in Table 4.2 shows the running time characteristics of CollectingDijkstraAny
paired with IncDec. Running times range between tenths of milliseconds and 93 seconds.

4.5.2 Comparing MILP Solvers to Establish Baseline Solver

We conduct preliminary experiments to determine which MILP solver we use as a baseline for our
algorithm. To this goal, we randomly choose 35 instances each from benchmark sets A/;, and AV
and 70 instances each from benchmark sets A3, A4, and 5. We compare Gurobi 8.0.0 [Gur18]
and IBM ILOG CPLEX Optimization Studio v12.8 [IBM17] with a running time of one day per
instance and solver using the MILP formulation from Section 4.3. Since computing an optimal
solution to the MILP takes too long in almost all instances, we restrict the solvers to different
maximum running times. Each solver uses one thread per instance and node files are written
to disk after the solver uses more than 0.5 GB of memory to store node files. Other than that,
default values are used.

During the experiments, we consider three time stamps: one hour, twelve hours, and one day.
For each solver, instance, and time stamp we record the value of the best incumbent solution
and the MIP gap (as explained in Section 4.3). If a solver terminates with a proven optimal
solution before time stamp ¢, then the respective values during termination are assigned to time
stamp ¢t and all subsequent time stamps.

The results of the experiment are depicted in Figure 4.8 for the quality of the best solution
found by the respective solver and in Figure 4.9 for a comparison of MIP gaps. In Figure 4.8 the
boxplots represent one data point for each instance and time stamp. The value on the abscissa
stands for a normalized difference in solution values, i. e., (s0lgurobi—S0lcPLEX)/max(solgyrobi» solcprex). This
yields a value in [—1, 1], which is negative if and only if Gurobi finds a better solution than
CPLEX.
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Figure 4.8: Comparison of solution values found by MILP solvers CPLEX and Gurobi after
different running times. For each instance and running time the abscissa shows a normalized
difference in solution values, i. €., (s0lgurobi=s0lcPLEX)/max(solguronis solcprex). After a running time of one
hour, there are twelve instances from N5 with a value between -0.29 and -0.49 and another
three instances from N5 with a value less than -0.99. Four instances from N5 are infeasible and
not included in this figure.

Figure 4.9 shows the MIP gaps computed by CPLEX and Gurobi for each instance and time
stamps. This value is in the unit interval and gives information on how “bad” the solution value
can be compared to the (unknown) optimal value.

Evidently, Gurobi performs better across all benchmark sets and time stamps, except for A/,
after a running time of one day where CPLEX has an ever so slight advantage. While there
is evidence that the best incumbent solutions computed by Gurobi and CPLEX become more
similar the longer the experiments run, we also see that Gurobi seems to work better than
CPLEX the bigger the instances become. We therefore use Gurobi as the MILP solver to compute
the baseline to which we compare our Negative-Cycle-Canceling-based algorithm.

4.5.3 Comparing our Best Variant with Gurobi

We compare our NCC algorithm in its best variant, i. e., CollectingDijkstraAny with IncDec,
with Gurobi on the MILP formulation in Section 4.3. We randomly select 200 instances per
benchmark set from the benchmark sets in [LRWW17], independently chosen from the previous
experiments. To increase readability, we identify the MILP formulation and Gurobi solving this
formulation.
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Figure 4.9: Comparison of MIP gaps for solutions computed by CPLEX and Gurobi separated
by benchmark sets after different maximum running times. Each subfigure stands for a different
maximum running time, after which the respective best upper and lower bounds are used to
compute the MIP gaps. Each data point represents one instance; the ordinate states the MIP gap
computed by Gurobi, the abscissa the gap computed by CPLEX. The four infeasible instances
from N5 are omitted.

Before we talk about the solution quality, let us quickly revisit the running times of our NCC
algorithm. The running times quite closely match those shown in Table 4.2. Of biggest interest
is probably the maximum running time across all instances: There is one instance from A5
with a running time of 97.4 s, all other instances, in particular all from N4 are smaller than 90 s.

In Figure 4.10 we plot the ratio of the best solution value found by our algorithm to Gurobi’s
best solution at running times of two seconds, one hour, and one day for each benchmark set
separately. These running times represent both interactive and non-time-critical planning. Since
our algorithm terminates in under 100 seconds, the comparisons in Figures 4.10 (b) and 4.10 (c)
use the solution our algorithm provides at termination. While discussing the plots, we also
discuss an adaptation of the MIP gaps ub-Ib/ub we introduced in Section 4.3. For each instance,
we use the lower bounds from the one-day MILP experiments. For each instance, each maximum
running time and for both the MILP and the NCC algorithm take the best solution value (ub)
found at the maximum running time. We refer to the relative gaps as MIP gap and NCC gap,
respectively, and show them in Figure 4.11.

After two seconds (Figure 4.10 (a)) our algorithm outperforms Gurobi on all benchmark sets
as it finds better solutions on 89 % of all instances with the lowest percentage on benchmark
set A4. On NV the NCC gaps are on average 14.1 % with a maximum of 24.8 % compared to
MIP gaps of 16.9 % on average and at most 43.1 %. For V'3, the NCC gaps are on average 27.6 %
with a spread of only seven percentage points, compared to a mean of 34.6 % and a maximum
of 45.4 % for the MIP gap. The values for A, range between those for A'; and 5. The ratios of
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Figure 4.10: Comparison of our NCC algorithm to Gurobi on 200 instances per benchmark set.
For each instance and three different maximum running times, the ratio of the best solution
value found by NCC to the best solution value found by Gurobi are computed and shown in
increasing order along the ordinate. The dashed lines represent the 25 % and 75 % quantiles of
the instances.

solution values range between 0.699 and 1.019 for A1, N5, and N'5. On N4, which contains
the largest instances, our algorithm computes better solutions on 62 % of the instances. On
six instances Gurobi does not find a solution. The instances on which Gurobi is better are on
average larger than the other instances in V4. There are 18 instances on which the ratio of
solution values exceeds 1.1 with a maximum of 1.228. On those very large instances, detecting
negative cycles takes longer and fewer iterations are performed in two seconds. The NCC gaps
spread between 31.6 % and 57.4 % with an average of 42.6 %. The MIP gaps are even worse
with a mean value of 48.3 % and 18 instances above 88.5%. On the complete graphs of N,
our algorithm produces solutions that are at least 75 % cheaper than Gurobi’s on all but one
instance (which has a ratio of 0.411). The gaps are on average at 53.6 % for the NCC algorithm
and at 92.3 % for Gurobi.

Within one hour (Figure 4.10 (b)) Gurobi finds better or equivalent solutions compared to our
algorithm on a majority of the instances in benchmark sets A1, N, and N'3. On 25 % of the
instances from V1, on 18.5 % of the instances from /5, and on one instance from A5 the solution
values are equal. On N4 and N5, our algorithm still yields better solutions on 87.5 % and 52 %
of the instances, respectively. Our algorithm is within 0.5 % of Gurobi’s best solution on 81.4 %
and within 1% on 91.3 % of all instances. Only on six of 1000 instances (all in \5), the ratio
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Table 4.5: Running time characteristics for those instances, on which Gurobi finds equal or
better solutions than the NCC algorithm. Columns 2 and 3 count instances, the remaining
columns give an overview of the running times.

Set  Instances: Gurobi Better Running Time Characteristics in Seconds

total Gurobi Also Faster —min 1% Quartile median 3™ Quartile  max
Ni 179 0 0.10 5.61 31.7 288 51516
N, 172 0 0.11 20.3 107 872 70293
N3 147 0 12.6 585 1299 3751 46 237
Ny 140 0 44.9 5274 14614 31757 81968
Ns 150 0 10.9 612 1975 7357 63904

exceeds 1.10 with a maximum of 1.165. That means, while the NCC algorithm is comparable to
Gurobi in solution quality on small instances, it proves better on larger wind farms. Furthermore,
our algorithm is much faster since it terminates in under 100 seconds—compared to one hour of
maximum running time for Gurobi.

After running times of one day (right plot in Figure 4.10), while our algorithm is at least as
good as Gurobi only on between 25 % (N5) and 38.5 % (N;) of the instances, it is within 1%
of Gurobi’s solution on 87.7 % of all instances. Again, there are only six instances with a ratio
worse than 1.10 with a maximum of 1.169. Our algorithm does not profit from long running
times since it gets stuck in local minima. Thus, the MILP solver is the better choice if more time
is available. Between running times of one hour and one day, the gaps look vastly the same
and there is hardly any difference between NCC gaps and MIP gaps. They range between zero
and 25.0 % on A4, clot around 28 % for A3 and N4 and around 34 % for A5 with seven outliers
to the worse by the NCC algorithm.

For those instances on which Gurobi computes worse solutions than our NCC we can conclude
that our algorithm yields better solutions in shorter amount of running times. For the other
instances, it is interesting to compare the running times Gurobi needs to find at least equivalent
solutions compared to our algorithm. Gurobi might find those solutions faster or it might need
much more running time to do so. In the latter case, our algorithm trades a bit of solution
quality (cf. Figure 4.10) for substantial savings in running time. Table 4.5 gives an overview of
the running time Gurobi needs to outperform our NCC algorithm. For each benchmark set, we
show the number of instances on which Gurobi finds solutions of equal or better value and the
number of instances for which it does so faster (left part of the table). For all instances with
at least equivalent Gurobi solutions, we show the sample characteristics of the running times
at which Gurobi reaches or overtakes the NCC algorithm in solution quality for the first time
(right part of the table). We see that even when Gurobi is better, it is never faster. Thus, our
NCC algorithm computes slightly worse solutions in shorter running times. In particular on
the two smallest benchmark sets, the running times as a matter of milliseconds (cf. last row
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Figure 4.12: Comparison of NCC algorithm to the Simulated Annealing algorithm on 200 in-
stances per benchmark set. For each instance and two different maximum running times, the
ratio of the best solution value found by NCC to the best solution value found by SA are
computed and shown in increasing order along the ordinate. The dashed lines represent the
25% and 75 % quantiles of the instances.

of Table 4.2) are a lot faster than Gurobi is. On the other benchmark sets, already at the first
quartile of instances, does Gurobi need roughly ten minutes to find equivalent solution. On
the biggest instances, i. e., set \V4, this time rises to approximately one and a half hours. In the
median, Gurobi needs more than 20 minutes, while our algorithm terminates after one and a
half minutes (and often a lot faster).

In summary, these experiments show that our NCC algorithm is a viable option compared to
Gurobi. If only a short amount of time is given, our algorithm outperforms Gurobi. After longer
running times, the solution quality of our algorithm remains competitive, while it maintains
substantial savings in running times.

4.5.4 Comparison to Metaheuristic Simulated Annealing

We compare our best algorithm variant with the best variant of a Simulated Annealing (SA) al-
gorithm [LRWW17]. We run the SA algorithm and the NCC algorithm on 200 randomly selected
instances per benchmark set (independently selected from other experiments). We compare the
best solutions found after two seconds and one hour (Figure 4.12). Considering a running time
of one day is not sensible since our algorithm terminates within tens of seconds and the SA algo-
rithm has only been considered for short running times of at most half an hour [LRWW17, p. 206].
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After two seconds, the NCC algorithm performs at least as good as the SA algorithm on all
instances from N3 and on 74.5 % and 90.5 % on N'; and \/,, respectively. The minimum ratios
of solution values are 0.381 for N, 0.911 for N5, and 0.875 for N5 with one instance in N/,
where the SA algorithm does not find a solution. The maximum ratio on those benchmark
sets is at most 1.034. On the larger instances of N4 and s, our algorithm presumably cannot
perform sufficient iterations, as the SA algorithm is better on 71 % of those instances. Yet, the
SA algorithm does not find feasible solutions on 38.5 % of instances from 5. The ratios have
a wide spread: from 0.203 to 1.261 for N4 and from 0.838 to 1.480 for N5 (not taking into
consideration the instances without a solution from the SA algorithm).

After one hour, the SA algorithm provides better solutions than our algorithm on 67.5 %
and 80 % of instances from N, and N3, respectively. Our algorithm, however, stays within 1%
in solution quality on 84.2 % on the benchmark sets N';-A\3. Again, our algorithm seems to be
stuck in local minima. On N4 and N5, our algorithm performs better than the SA algorithm
on 86 % and 74.5 %, respectively. Apparently, the SA algorithm needs more time to explore
the solution space. The minimum ratios of solution values are as low as 0.716 for N'; and
between 0.905 and 0.995 for the other benchmark sets. The maximum ratios are at most 1.057
for all benchmark sets except A5 (1.159).

This supports our findings from the MILP experiments that our algorithm is competitive to
other approaches to solving WCP within very short amounts of time. In view of an interactive
planning process, it stands out that the SA algorithm struggles to find solutions quickly in dense
graphs.

4.5.5 Lessons Learned

The evaluation has shown that our NCC algorithm is able to compute solutions competitive to
an MILP formulation solved by Gurobi to a solution approach using Simulated Annealing. It
achieves these solutions in shorter running times than its competitors: On the smallest instances
our algorithm terminates within milliseconds; on the biggest instances it needs on average half
a minute with worst-case running times of around one-and-a-half minutes. The MILP, to the
contrary, needs more than four hours to compute equivalent solutions in the median case. Thus,
our algorithm is well-suited to compute good cable layouts in short running times. This can be
used, for example, in preliminary planning steps when an estimate for cable layouts for various
placements of turbines and substations is needed.

We have also seen from the combination of short running times and slightly worse solution
quality compared to the MILP that our algorithm runs into local minima from which it cannot
escape. To adress this, we develop strategies to perturb solutions in a way that further cycle
canceling is possible. This yields an Iterated Local Search built upon our Negative Cycle
Canceling algorithm which we discuss in the next section.
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4.6 Negative Cycle Canceling in an Iterated Local Search

The evaluation of our Negative Cycle Canceling adaptation has shown that the algorithm
yields competitive solutions within tens of seconds compared to, for example, an MILP with
a maximum running time of one day. Even in those cases when Gurobi finds better solutions
than our algorithm, it needs substantially more time to do so, as we have seen in Table 4.5.
While NCC terminates quickly with competitive solutions, it also gets stuck in local minima
from which it cannot escape. We can spend some of the running time advantage to find more
(and hopefully better) solutions. While we could simply start with different initializations (and
we have a bunch of these!), it is more sensible to change a locally optimal solution ever so
slightly that NCC can proceed in order to find a different (and hopefully better) locally optimal
solution and thereby escape the previous minimum. One way to combine a heuristic algorithm
with strategies to escape local minima is known as Iterated Local Search (ILS) and it is said to
be “much better than random restart” [LMS19, p. 136]. ILS has successfully been applied to a
Fixed-Charge Transportation Problem [BRT14] and to a Water Distribution Network Design
Problem [DS16].

In this section, we give an introduction into ILS presenting its main building blocks. In Sec-
tion 4.6.1 we describe how we populate these building blocks and what our strategies for
escaping local minima are. The experimental evaluation can be found in Section 4.7. The
elaborations from Sections 4.6.1 and 4.7 are based on joint work with Dorothea Wagner and
Matthias Wolf [GWW20].

We start by giving an overview of Iterated Local Search, following the description in [LMS19].
The general layout of ILS is depicted in Algorithm 4.2.

Algorithm 4.2: Iterated Local Search [LMS19, Algorithm 1]

so = GenerateInitialSolution()
s* = LocalSearch(sg)
repeat

1
2
3
4 s’ = Perturbation(s*, history)
5
6
7

s’* = LocalSearch(s’)
s* = AcceptanceCriterion(s*,s’*, history)

until termination criterion met

At the core of ILS there is a heuristic algorithm (also referred to as a Local Search algo-
rithm, even though it need not be one). After one invocation of the Local Search algorithm
(Line 2), a first local optimum s* is found. Then, the solution s* is changed in a certain way
(“perturbed”, Line 4) yielding “an intermediate [solution] s”” [LMS19, p. 134], which is used
as a starting point for another invocation of the Local Search (Line 5). The resulting solution
s”* may or may not replace the previous incumbent solution s*, depending on an acceptance
criterion (Line 6). This sequence of perturbation and Local Search is iterated until a certain
termination critierion is met (Line 7).
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Iterated Local Search yields a sequence of locally optimal solutions. Both the perturbation
step and the acceptance criterion may depend on previous solutions in this sequence. The
authors of [LMS19] identify two advantages of an approach using ILS over random restarts of the
Local Search algorithm: Not only do local searches “usually execute much faster on a solution
obtained [from] a small perturbation” of a locally optimal solution than on a random solution
[LMS19, p. 142] but also the sampling of solutions by Local Search will return solutions whose
values “arbitrarily peak” around “a fixed percentage above the optimum” [LMS19, Section 5.2.2],
which can be overcome by ILS. In particular with the perturbation step, algorithm engineers
have to thread the needle: If a solution is perturbed too much, ILS looses the advantage in
solution values over restarts of the Local Search; if the perturbation is not strong enough,
the subsequent Local Search will not be able to obtain a new solution [LMS19, p. 139]. In
the upcoming Section 4.6.1, we explain how we populate the ILS framework with our NCC
algorithm and suitable perturbations.

4.6.1 ILS: Negative Cycle Canceling with Neighborhood Heuristics

In the following we call our Negative-Cycle-Canceling-based algorithm presented in Section 4.4
the/our (standard) NCC algorithm or NCC algorithm without escaping. This algorithm is the
Local Search algorithm for the purpose of the ILS which we present here. As mentioned before,
the goal of perturbations is to escape a local minimum computed by the standard NCC algorithm.
We therefore call the different perturbations we propose the escaping strategies or neighborhood
heuristics since the strategies enforce rather local changes. The resulting ILS algorithm is
referred to as the NCC algorithm with escaping or simply as our ILS. We assign a weight to each
escaping strategy, so that, whenever a solution needs to be perturbed, our ILS picks one strategy
out of all available ones randomly according to the weights.

Drawing again connections to the general framework presented in Algorithm 4.2, our ILS
works as follows: Our ILS starts by initializing a flow on the wind farm as specified by the
standard NCC algorithm. This algorithm then performs its “local search” until no further
negative cycle can be canceled (Lines 1 and 2). While the standard NCC algorithm terminates
at this point, our ILS picks one of its available escaping strategies randomly according to the
specified weights and applies it to the current flow (Line 4). If this strategy changes the flow
(no matter if to the better or worse), another round of Negative Cycle Canceling is run until no
more negative cycles are found (Line 5). This round of Negative Cycle Canceling is subject to
adapted residual costs as explained below in detail for each strategy. This adaptation helps to
prevent the fall-back to the previous solution during the ensuing NCC run. and is replaced by
another adaptation once an escaping strategy successfully changes the flow.> If an escaping
strategy is not able to change the flow, another escaping strategy is picked and the unsuccessful
strategy will not be picked again until the current flow has been changed. We refer to one
pick of an escaping strategy with the ensuing NCC run (in case of changes) as one iteration

SThere is a certain resemblance to Tabu Search [GP19] here since the adaptations try to lead the search away from
the previous solution, even though it is not strictly forbidden in our case.
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Figure 4.13: Visualization of the Deal with Bonbon strategy. A negative closed walk without a
long negative cycle has been found. For each edge with negative residual costs, a shortest path
(marked by dashed gray edges) is computed. If the shortest path and the walk form a negative
cycle, that cycle is canceled.

of the ILS. As for the acceptance criterion (Line 6), the search always continues on the latest
output from the standard NCC algorithm, s"*, but the overall best solution is recorded and given
as the output solution upon termination. The ILS terminates if no escaping strategy is able to
change the current flow anymore or if a given time limit is exceeded.

The three escaping strategies we propose are:

Free Upgrade (U). This strategy identifies all edges using a saturated cable type, i. e., edges
with a non-zero flow such that adding one additional unit of flow incurs the need for a bigger
cable type. The strategy then performs a single run of the NCC algorithm with A = 1 in which
all residual costs are computed normally except for the aforementioned edges. Their residual
costs are set to zero instead of a finite positive residual cost, meaning that the bigger cable type
can be used without incurring additional costs. If a cycle is canceled, all residual edges with a
previously saturated cable type on that cycle are identified. For these edges, the residual costs
for the remainder of the iteration are adjusted to reflect the free upgrade, i. e., the costs for the
new cable type and all cable types with more capacity are reduced by the cost for the upgrade.

Move Leaf (L). This strategy identifies all leaves, i. e., turbines without incoming flow. It
iterates over all leaves one-by-one and checks if they have a shorter outgoing edge than the one
that transmits the current turbine’s generation. In that case, one unit of flow is rerouted via the
shorter edge to a substation with free capacity using only those edges whose flow is non-zero
and less than the maximum cable capacity—if such a path exists. Then, for the remainder of
this iteration, the residual costs of the leaves’ new outgoing edges are adjusted in the sense that
the cost for the cheapest cable type is given for free.

Deal with Bonbon (B). The adaptation of the Bellman-Ford algorithm used in the stan-
dard NCC algorithm may also identify negative sets of cycles in the residual graph which do
not improve the flow when being canceled (cf. Section 4.4.4). The reason for those sets is that
negative cycles consisting of two edges only may exist. Even if the negativity suggest a decrease
of the total costs, canceling such a two-edge cycle does not change the flow at all. The drawing
of such a set of cycles in Figure 4.13 inspired the name bonbon for such a set of cycles.
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The Deal with Bonbon strategy is specifically designed to overcome the aforementioned
downside of finding “unhelpful” sets of cycles by capitalizing on such sets. This escaping
strategy makes use of such an unhelpful set of cycles as follows: It first identifies all negative
residual edges on the bonbon. Then it tries to find paths in the residual graph that close a
negative cycle when merged with a negative edge (and possibly other edges) from that bonbon.
These are indicated by dashed, gray edges in Figure 4.13. The strategy therefore runs again
the Bellman-Ford algorithm with the same setting (including the adapted residual costs from
the previous iteration if applicable) for which the unhelpful bonbon was initially found. For
each negative edge on the bonbon it considers each incoming edge in the graph. From there it
traverses the parent pointers computed by the Bellman-Ford algorithm until a cycle is closed. If
the cycle is negative, then it is canceled and the escaping strategy terminates. Otherwise, the
search continues. This strategy does not change the standard residual cost computation for the
following NCC run.

4.7 Experimental Evaluation of the Iterated Local Search

We provide an experimental evaluation of the ILS presented in Section 4.6.1: The goal of Sec-
tion 4.7.1 is to determine which set of escaping strategies is the most fruitful. In Section 4.7.2 we
investigate the improvement ILS provides over the standard NCC algorithm and in Section 4.7.3
we compare the solutions computed by the ILS to solutions from the MILP. As with our standard
NCC algorithm, we also provide a comparison of ILS and SA (Section 4.7.4). The evaluation
can also be found in joint work with Dorothea Wagner and Matthias Wolf [GWW20]; for the
underlying data refer to [Cak+23].

The ILS is implemented in C++14 and compiled with GCC 8.2.1 using the -03 -march=native
flags. All simulations run in single-thread mode (to ensure comparability) on a 64-bit architecture
with four 12-core AMD-CPUs clocked at 2.1 GHz with 256 GB RAM running OpenSUSE Leap
15.1. As with the evaluation of standard NCC algorithm in Section 4.5, we use the cable types
and benchmark instances from [LRWW17].

4.7.1 Comparing Sets of Escaping Strategies

In a first step, we want to compare different sets of escaping strategies to see how they perform
in helping the NCC algorithm to move away from local minima. We consider seven different
sets. The sets are given by the three escaping strategies from Section 4.6.1 with each escaping
strategy having either weight 0 or 1. The all-zero set is not considered. We refer to the sets by
the letters from each strategy in the set with weight 1. Hence, the set referred to as UB uses
the strategies Free Upgrade and Deal with Bonbon with a weight of 1 each but does not use the
strategy Move Leaf. For the simulations, we randomly select 200 instances from each of the five
benchmark sets in [LRWW17].
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Table 4.6: Number of instances where escaping strategies yield better solutions than the NCC
algorithm without escaping.

B U ©UB L LB UL ULB
87 297 327 434 460 580 603

Table 4.7: Comparison of sets of escaping strategies. An entry in row i and column j shows on
how many instances setting i produces better solutions than setting j. Values are marked by a
star if they are significant with p < 1072 and by two stars if p < 10™* according to the Binomial
Sign Test. The best set of strategies is marked green.

B L LB U UB UL ULB
B — 8.9% 0% 17.8% 8.5% 439% 0.3%
L 91.9 %** - 23.3% 70.6 %**  65.7%** 14.9% 14.2 %
LB 100 %**  76.7 %** — 74.8%**  71.9%** 23.0% 16.9 %
U 82.2%** 29.4% 25.2% — 1.8% 1.0% 2.7%
UB 91.5%** 34.3% 28.1% 98.2 %** — 6.5% 4.0%
UL 95.7%**  85.1%** 77.0%** 99.0%** 93.5%** — 36.1%
ULB | 99.7%** 85.8%** 83.1%** 97.3%** 96.0%** 63.1%*

Each set of strategies is run on each instance with a time limit of 15 minutes and the best
solution value for the combination of strategy set and instance is recorded. In the terminology
of Sections 4.4.5 and 4.4.6 we use CollectingDijkstraAny as the initialization and IncDec as
the delta strategy. Those have been identified as the best strategies for the standard NCC
algorithm (see Section 4.5.1).

Table 4.6 shows the numbers of instances out of the selected 1000 on which ILS using one
of the aforementioned sets of escaping strategies yields a better solution to WCP than the
standard NCC algorithm. For the Deal with Bonbons strategy this count equals the number of
instances where there was a change to the flow at all. The other two strategies rely on the
respective ensuing run of the NCC algorithm to find better solutions. In particular, for those
strategies, a change to the flow does not necessarily yield an improvement to the best solution.
The numbers in Table 4.6 show that Deal with Bonbons and Free Upgrade seem to have the most
problems to allow finding better solutions with improvements on 9 % and 30 % of all instances,
respectively. Move Leaf on its own allows finding better solutions on more than 43 % of the
instances. But only in conjunction with the other escaping strategies, better solutions can be
found on approximately 60 % of all instances.

These numbers only show whether a given set of escaping strategies improves the best
solution in comparison to the NCC algorithm without escaping. They do not state how the
best solutions compare between different set of escaping strategies. Therefore, we go back
to the Binomial Sign Test as stated in Section 3.4: We count for each ordered pair (i, j) of
set of strategies the number of instances n; and n; where the best solution found by i (and j,
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respectively) is better than the one found by j (and i, respectively). If i and j were equally
good, then n; ~ Bin(n; + n;,0) with & = 0.5 for each set of randomly and independently
chosen instances. For each ordered pair we perform the one-sided Binomial Sign Test: We test
the null hypothesis Hy: 8 = 0.5 against the alternative hypothesis H;: 6 > 0.5. We apply a
Bonferroni-correction by the number of tests, i. e., 42. We interpret rejecting the null hypothesis
as setting i performing better than setting j. In Table 4.7 we show the ratios 7i/n;+n; in % and
the corresponding significance levels. Note that as before, symmetric entries need not represent
all 1000 instances since instances are omitted if both strategies find best solutions of same value.

The set of strategies which looked most promising in quantity according to Table 4.6 also
turns out to provide better solutions than all the other sets. The difference between ULB and
UL, however, is quite small: Only on 295 out of 1000 instances the best solutions are of different
value. It may be somewhat surprising that UL yields better solutions on roughly one third
of these instances, even though it does not employ Deal with Bonbons (which cannot worsen
the best solutions). This can be explained by different trajectories in the order how escaping
strategies are picked. Clearly, the results from Tables 4.6 and 4.7 show that ULB is the best set of
strategies among those we considered in our simulations. We therefore use this set of escaping
strategies when we compare our ILS to other approaches to WCP.

4.7.2 Improvement over Standard NCC

From the construction of our ILS it is obvious that it does not perform worse than our standard
NCC algorithm since the output solution of ILS is the best solution found at any time in the
course of the search. We want to see to what extent our ILS improves the solutions from the
algorithm without escaping. To this end, we randomly draw 200 instances from each of the
five benchmark sets, independently from previous selections. We run our standard algorithm
on each of those instances. As stated in Table 4.2, the standard NCC algorithm terminates
in approximately one and a half minutes on the biggest instances. We also run our ILS with
escaping strategies ULB on each instance five times with different random seeds and a time
limit of 15 minutes each. Performing multiple runs with different random seeds allows us to
account for different trajectories of picks of escaping strategies.

From each of the five runs, we record the best solution found. From these five data points,
we can isolate the worst and the median values and use them for the comparison to our NCC
algorithm. The worst solution value can be interpreted as a “worst-case” analysis (even though
by the literal meaning, it is not) and the median value can be seen as a “usual” run of ILS.
Table 4.8 shows the number of instances from each of the five benchmark sets on which the
worst and median solution values from the five ILS runs is better than the best solution from
the NCC algorithm by a certain margin in percent. The > 0 % column therefore displays the
number of instances on which the respective ILS run yields a better solution than NCC. On
the smallest instances, ILS better solutions only on about one in three instances for both the
median and worst run. This number increases the bigger the instances become to about seven
out of eight for /4. The numbers do not differ much between worst and median ILS solutions.
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Table 4.8: Number of Instances for which the worst and the median of five ILS runs yield
improvements of more than x % over the standard NCC algorithm

Set Instances with Improvement
Worst ILS Run Median ILS Run
>0% >1% >5% >0% >1% >5%
Ny 73 23 0 81 30 0
N, 65 3 0 74 4 0
N3 138 5 0 148 7 0
N, 170 14 1 179 20 1

N5 143 24 17 153 26 17
all 589 69 18 635 87 18

One might therefore think that running our ILS once suffices because the difference between
a good and a bad ILS run is only marginal. We look into this more later when we include the
MILP solutions as a reference solution.

It also stands out, that the number of instances with better solutions from ILS than from NCC
rapidly decreases once we take certain margins of improvement into account, cf. the “> 1 %”
and “> 5% columns from Table 4.8. While this may seem disappointing, it is not unexpected:
We have seen in the comparison of our standard NCC algorithm and the MILP in Section 4.5.3,

in particular Figure 4.10, that the margins between NCC and MILP are already quite small.

Still, a notable improvement on some of the instances from A5 (the complete graphs) can be
identified. This is also in line with Figure 4.10 where we have seen a tail of instances from A5
with surprisingly high solution values compared to the MILP solutions. We talk about one of
those instances in the next part.

Another thing we see in the data obtained from this experiment (and all remaining ones
as well) is that for most of the instances the sequence of locally optimal solutions is either
very short or eventually periodic. This can be attributed to the implementation of the escaping
strategies as deterministic algorithms. That means that each escaping strategy will always do
the same thing on a given instance with a given locally optimal flow. While this is clearly a flaw
in the implementation (and we address this in our elaborations of future research directions
in Section 4.11), it cannot only be remedied by improving the implementation, but also does it
strenghten our interpretation: Only a couple of applications of escaping strategies are needed
to obtain the results we see and, with a bit more variety in the execution of the strategies, the
performance of the ILS is likely to improve further.

57



Chapter 4

The WIND FARM CABLING PROBLEM

58

1.03 1.03
_Nl
N,
(7] (7]
g 1.02 N g 1.02
o Ni o
> 1.01 Ns S 1.01
=] =)
= =
L T e el e i b Bl Lo Y S S S U S PR
) [3)
& 1.00 - & 1.00
)’ /r
0.99 ‘/ 0.99
0 20 40 60 80 100 0 20 40 60 80 100
Instances in % Instances in %
(a) Worst of five ILS runs (b) Median of five ILS runs

Figure 4.14: Comparison of ILS to Gurobi on 200 instances per benchmark set. For each
instance, the ILS is invoked five times. The median and worst solution values out of these five
runs is recorded for each instance and set in relation to the best solution value found by Gurobi.
These ratios are shown in increasing order along the ordinate. The dashed lines represent the
25% and 75 % quantiles of the instances.

4.7.3 Comparing the ILS to the MILP

Next, we want to see how our ILS compares to MIXED-INTEGER LINEAR PROGRAMmMiIng.
To this end, we use Gurobi 9.0.0 [Gur18] on the formulation from Section 4.3 with a maximum
running time of one day for each of the 1000 instances from Section 4.7.2.

We compute the ratios of the worst and the median ILS solution values to the best solution from
the MILP for each instance, sort the ratios in increasing order and depict them by benchmark set
in Figure 4.14. A value less than 1 in Figure 4.14 (a) means that all five ILS runs provided a better
solution than Gurobi. In Figure 4.14 (b), accordingly, a value less than 1 means that at least
three out of five runs yield a better solution than the MILP. For each instance, we identify the
worst of the five separate best solutions after 15 minutes and use this value for the comparison
to Gurobi. Picking the worst of the five solutions relates to a worst-case analysis of our ILS.
We compute the ratio of this “worst-case value” to the best solution found by Gurobi at the
conclusion of its one-day running time. A value less than 1 means that in all five runs of our
ILS the best solution found is better than the solution given by Gurobi. Figure 4.14 shows these
ratios in increasing order separated by benchmark set. The following outliers are not shown:
in Figure 4.14 (a) 1.0362 from N5, 0.9846 from N1, and 0.9797 from N4, as well as 1.0362 from
N5, 0.9846 from N, and 0.9837 and 0.9758 from N4 in Figure 4.14 (b).
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A side-by-side comparison of Figure 4.14 (a) and Figure 4.14 (b) shows hardly any changes
in the course of the plotted lines. One can see, however, that for the median runs the lines
are shifted down, so that some improvement is indeed obtained from considering the median
over the worst run. The most notable advantage of our ILS can be seen on instances from A/,
where we observe the best solution ratios across all benchmark sets. On more than 79 % of those
instances, all five ILS runs outperform Gurobi. This number increases to over 84 % when we
compare the median run to Gurobi. We can also see that the tail of instances from N5 we have
seen in Figure 4.10 disappeared, so the ILS is able to help out the standard NCC algorithm.

To take another look at the improvement the ILS brings over our standard NCC algorithm,
we compare the solution ratios in relation to the MILP in Figure 4.15. Separated by benchmark
set, each data point corresponds to one instance: On the x-axis we display the solution ratios
from Figure 4.14. On the y-axis the ratios of the standard NCC algorithm to the MILP are
depicted. Values above the diagonal represent instances on which the escaping strategies
yields better solutions than NCC without escaping. The annotations in the small tables on the
bottom-right of each block count the instances according to the solution ratios: In the first
three quadrants, we see the number of instances, on which our ILS finds better solutions than
our NCC algorithm. The first quadrant stands for instances with NCC ratio and ILS ratio at
least 1. The second quadrant counts instances where the ILS ratio is less than 1 but the NCC

ratio is at least 1. The third quadrant represents instances for which both ratios are less than 1.

Thus, quadrants 1 to 3 correspond to the quadrants in the plots marked by the red lines. The
numbers in the fourth quadrant are the number of instances for which the ILS does not yield
an improvement. These numbers correspond to the numbers in Table 4.8 and the data points
corresponding to those instance lie on the diagonal.

Again we see that, in particular on the bigger instances corresponding to N3 through A,
our ILS is able to improve the NCC solutions on a vast majority of the instances. While on
N, it is not able to surpass the MILP on many of those instances, the results on A5 and (even
more so) on A/ are compelling: On nearly one fourth (A5) and one third (\V4) of all instances,
the median run of our ILS outperforms the MILP when our NCC could not. Additionally, in
those cases when our ILS cannot outperform the MILP except one, it is within 1 % of the MILP

solution quality—despite the shortcoming in the implementation we mentioned in Section 4.7.2.

A total of 24 data points (5 from N1, 1 from N4, and 18 from N5) are not depicted in Figure 4.15,
all of which are due to the fact that the standard NCC solution yields a ratio bigger than the
imposed upper limit of the ordinate. In all those instances the ILS provides strictly better
solutions in its worst run than the standard algorithm. For the instances from N, the worst
of five ILS solutions per instance brings the ratio down to values between 1 and 1.0304. In
the single instance from N\, the ILS is even able to outperform the MILP in all five runs. All
standard NCC ratios for the instances from A5 but one are between 1.0644 and 1.1707 with
corresponding “worst-case” ILS ratios between 0.9944 and 1.0362 (six of which are smaller
than 1). The single remaining point has an NCC ratio of 1.9937, which reduces to 1.0014 (in the
worst run) after applying escaping strategies.
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Figure 4.15: Ratios of best solutions computed by NCC algorithms to best solutions found by
Gurobi separated by benchmark sets. Ratios on the x-axis show solutions from the ILS (worst of
five runs in the left column, median run on the right) and ratios on the y-axis show solutions
from our standard NCC algorithm. The numbers on the bottom-left of each figure count the
instances according to the solution ratios; the exact definition can be found in the main text.
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The last instance is an interesting outlier, since it reveals possible situations in which the
standard NCC algorithm may have problems: In that instance the total substation capacity is
very close to the number of turbines. Visual inspection of the cable layout computed by the
standard NCC algorithm shows that it consists of stars centered at the substations. Due to the
tight capacity, some turbines are connected to distant substations via very long edges. Our
cycle detection delivers such a long edge and its reverse as well as two positive cycles at either
end as a negative walk. Canceling these cycles does not help. What does help, however, is our
escaping strategy Deal with Bonbons. It can reroute the flow from these long edges and enables
the normal cycle canceling to resume its work. As such, it may be wise to use that escaping
strategy by default: It helps in situations with tight capacities and it maintains the sense of a
local search algorithm that only accepts better solutions.

Interestingly, we will see this instance again in Section 4.9.4 when we talk about reactive
power injection.

4.7.4 Comparing the ILS to Simulated Annealing

As with the standard NCC algorithm, we also want to compare our ILS to the Simulated
Annealing approach from [LRWW17]. To this end, we again select 200 instances from each of
the five benchmark sets. As before, we perform five runs of our ILS per instance for 15 minutes
each with different random seeds. We also run the Simulated Annealing approach on each
instance with a maximum running of one hour in its best setting according to [LRWW17].

In Figure 4.16 we show the results from those simulations. As before, we record the best
solution from each of the five runs of our ILS and identify the worst and median of those five
solutions. We divide these solution values by the best solution found by the Simulated Annealing
approach. The resulting ratios are ordered increasingly and displayed on the ordinate. Again,
values smaller than 1 stand for instances on which the NCC algorithm with escaping performed
better than Simulated Annealing in all (respectively in three out of) five of its runs. It stands
out that the benchmark sets separate in two categories: those with few edges (N1, N5, and N3)
and those with many edges (V4 and A5). On the smaller instances, Simulated Annealing
performs better than our ILS: On A, Simulated Annealing finds better solutions on 47.5 %
of the instances when considering the worst ILS solution. On N, and N3 this holds on 63 %
and 62 %, respectively. There are a total of 122 out of 600 instances in those benchmark sets on
which both approaches yield equal solutions. Even though Simulated Annealing performs better
on instances from the three benchmark sets with smaller instances, in all but four instances our
worst ILS solutions are at most 2 % worse than the solutions provided by Simulated Annealing.
These numbers do not change when we consider the median ILS runs. We suspect that this can
be mostly attributed to the fact that escaping often does not improve the NCC solutions on
these small benchmark instances. At the other end of the solution ratios for the worst ILS runs,
there are also five instances from N'; with ratios between 0.8984 and 0.9689. The smallest ratio
here is a pretty remarkable improvement the ILS yields over Simulated Annealing. Looking at
the benchmark sets whose instances have many edges, we see that the NCC algorithm with
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Figure 4.16: Comparison of ILS to Simulated Annealing on 200 instances per benchmark set.
For each instance, the ILS is invoked five times. The median and worst solution values out of
these five runs is recorded for each instance and set in relation to the best solution value found
by Simulated Annealing. These ratios are shown in increasing order along the ordinate. The
dashed lines represent the 25 % and 75 % quantiles of the instances.

escaping strategies outperforms Simulated Annealing. In both the worst and the median runs, it
provides better solutions on 95.5 % (N4) and 93 % (N's) of the selected instances. On more than
half of these instances, our algorithm is better than Simulated Annealing by a margin of 1 %.
On between 15.5 % and 18.6 % this margin is even bigger than 3 % across both benchmark sets
and ILS variants (not depicted in Figure 4.16).

We conclude that the answer to the question whether NCC with escaping or Simulated Anneal-
ing performs better heavily depends on the size of the input instance: On smaller instances the
“worst-case” of our ILS cannot quite keep up with Simulated Annealing (and so did the standard
NCC algorithm, cf. Figure 4.12 (b)), probably due to not being able to improve the NCC solutions.
On larger instances, our ILS is able to extend the lead it already had over Simulated Annealing.

4.7.5 Lessons Learned

We have seen in the evaluation that on small instances our ILS is not able to improve the best NCC
solution on roughly two out of three instances, possibly due to a lack of variety in the application
of each escaping strategy. In those cases, when the ILS finds better solutions, it is more likely to
remain behind its competitors in solution quality. Thus, on the small instances it may be more
advisable to use our NCC algorithm instead of the ILS. On the bigger instances, we see that our
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ILS is able to greatly improve the NCC solutions and that it needs not much more time, since the
allotted 15 minutes are hardly needed. Here, it is recommendable to use our ILS over NCC and
its competitors, in particular on the biggest instances from N4, unless short running times is
essential, in which case our NCC algorithm should be preferred. Furthermore, after addressing
the aforementioned shortcomings, our ILS should be able to extend its lead even further.

4.8 Case Study: Hornsea One

In the previous evaluation we have seen that the ILS using the NCC algorithm yields very good
solutions compared to two other approaches from the literature. These evaluations, however,
make use of synthetic benchmark instances. We want to see how our algorithms work on
real-world data. To this goal we do a case study on the formerly largest offshore wind farm in
the world: Hornsea One off the coast of Great Britain [Zia19]. This section is based on joint
work with Dorothea Wagner and Matthias Wolf [GWW?20].

We extract the geographical coordinates of the wind turbines and substations of Hornsea
One from Open Street Map [OSM20]. From there, we create a complete graph (except for edges
between pairs of substations as stated in Section 4.1). This results in a graph with 174 turbines,
three substations and a total of 15573 edges. In reference to the benchmark sets from [LRWW17],
such an instance would be one the largest instances from A/5. For simplicity we use Euclidean
distances for the edges instead of orthodromic distances. We continue to use cable types as
specified in Table 4.1, which are based on a planned real-world wind farm [DO11, BVMO11].

The real-world cable layout can be seen in Figure 4.17 (a). It appears that only one cable type
is used. By coincidence, any real-world cable connects at most five turbines, which fits perfectly
to the smallest cable type from the evaluation.

As before, we give Gurobi one day of maximum running time. Our ILS including all three
escaping strategies (with equal weight) runs for 15 minutes each in five runs with different
random seeds. In Table 4.9 we show the ratios of solution values from each of the five ILS runs
and from our standard NCC algorithm to the MILP solution. As before, ratios below 1 indicate
that our framework finds a better solution than Gurobi.

Table 4.9: Ratios of Best Solutions of ILS and NCC algorithm to Gurobi on Hornsea One
Runl Run2 Run3 Run4 Run5 NCC
0.9966 0.9909 1.0015 0.9967 1.0013 1.0314

Our NCC algorithm terminates in 88 seconds, which is in line with previous running times,
but is approximately 3 % worse than the MILP. Our ILS is, as before, able to greatly improve
upon the NCC solution: In three of five runs does it find a better solution than Gurobi. In the
worst of the five runs, the solution given by the NCC algorithm with escaping is less than 0.2 %
worse than the solution from the MILP. The best solution across five runs is nearly 1% better
than the solution computed by Gurobi.
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For the sake of completeness, we mention an approximation of the real costs. In our setting,
with the edge lengths as defined before and the cable types given in Table 4.1, the cost of the
real-world cable layout is 79.061°. The MILP solution, in comparison, costs 64.3724 and the
worst ILS run (run 3) costs 64.4693.7 We do not go further stating a number on potential savings,
since this would rather advocate for using more cable types and will most likely ignore certain
design decisions taken by the wind farm planners.

Instead, we want to visually compare the different cable layouts to see if we can learn more
by that: One by our standard NCC algorithm, one by our ILS, one by Gurobi and the real-
world internal cable layout obtained from [4C20]. For our ILS we choose the cable layout
from run 3, which is the worst of all runs—0.15 % worse than the MILP solution. From top to
bottom in Figure 4.17 we show the real-world cable layout and the cable layouts computed by
the NCC algorithm, by the ILS, and by Gurobi. We color-code the four cables types according
to increasing capacity (green, orange, red, and black).

(a) Real-world cable layout adapted to the cable types from the evaluation

Figure 4.17: Visualization of four internal cable layouts for the Hornsea One wind farm?®

SWith a certain unit which we shall not specify further—but which is also not important.

"For the sake of completeness, the full list of best solutions found by algorithm is: NCC: 66.3944, MILP: 64.3724,
ILS runs 1-5: 64.1514, 63.7847, 64.4693, 64.1623, and 64.454.

8We should point out that there is some degree of distortion in the edge lengths depicted here. Consider, for
example, the turbines at 7 and 8 o’clock from the right-most substation in Figure 4.17 (d), each connected by
a red cable to the substation: The turbine at 8 o’clock appears closer to the substation than the turbine at 7
o’clock. The opposite is true, however, when we look at the edge lengths in the graph used for the computations.
The reader may, just from looking at the figure, understandibly but wrongly assume that in Figures 4.17 (b)
and 4.17 (c) those two turbines and the substation form a negative cycle in the residual graph for A = 11.
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(d) Cable layout computed by Gurobi

Figure 4.17: Visualization of four internal cable layouts for the Hornsea One wind farm
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Figure 4.18: A bonbon in the cable layout for the Hornsea One wind farm computed by our
standard NCC algorithm. It consists of three cycles: A positive cycle consisting of 13 edges,
including edges to and from the super substation, a positive cycle consisting of three edges, and
a negative cycle consisting of two edges, marked with an ellipse in the background. The bonbon
corresponds to a negative closed walk in the graph L (constructed as a subgraph of £(R)) for
A = 1. However, none of the three cycles can be canceled in order to improve the solution quality.

It stands out that all algorithmic approaches yield cablings with large proportions of radial
layouts. Turbine generation tends to be collected from the radial layout bits to make use of
cable types with higher capacity the closer the nearest substation gets. From looking at different
solutions it seems hard to identify parts of a solution which are particularly good compared
to other solutions. There seem to be, however, some parts in particular near the boundary of
the wind farm, where multiple solutions coincide. It could prove helpful to the algorithmic
approaches to fix those parts in the solutions to some extent to facilitate finding the best
solutions possible in the given running time.

As a side-note, let us look again at the standard NCC layout: This layout includes a bonbon
for A = 1 as visualized in Figure 4.18. This bonbon is identified by traversing the parent pointers
from the Bellman-Ford algorithm as explained in Sections 4.4.3 and 4.4.4. The two turbines
marked by the ellipse constitute a short negative cycle. The negative residual cost on the edge
between those two turbines directed upwards, which we denote by e, is propagated along the
cycle of three edges, back along é, and then along the cycle of 13 edges, on which it passes the
super substation. Overall, the negative residual costs from e and from two more edges, one on
either long cycle, outweigh the additional costs. However, if A = 1 units of flow were sent along
the bonbon, the actual cost of the flow would increase, since the residual costs on e do not count.

In summary, our case study supports the findings of the evaluation on the synthetic instances
that our ILS computes solutions of very similar values compared to other approaches. An
essential part of the applicability of our cable layouts to real-world wind farms, however, lies
not only in the solution values but also in its behavior under electrical aspects.
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4.9 Analysis of Layouts under Electrical Aspects

In the experimental evaluations in Sections 4.5 and 4.7 we have seen that our NCC algorithm with
or without escaping strategies finds competitive solutions compared to an MILP formulation
solved by Gurobi and a Simulated-Annealing-based algorithm. A wind farm planner may
therefore be tempted to realise cable layouts computed by our algorithms in their wind farms, in
particular since the speed of our standard NCC algorithm allows the computation of good layouts
for various slightly different turbine placements in a reasonable amount of time. The underlying
optimization problem as given in Section 4.1 and our NCC algorithm, however, do not make
any promises about possible desired properties (like absence of cycles) or about the real-world
performance in transmitting the turbine generation to the substations. Possible questions a
wind farm planner may be interested in are “Does a cable layout include cable crossings?” or
“Is the amount of power losses during transmission within reasonable boundaries?”.

To shed light upon such questions, we present a workflow to evaluate cable layouts under
electrical aspects. This results in a new coupling for graph algorithms for WCP and power
system analysis. In short, cable layouts from cable layout optimization algorithms such as
our NCC algorithm are converted to power flow models, which are simulated in the Energy
Systems Analysis, Simulation, Modeling, Optimization and Visualization (eASiMOV) software
framework [KCKH17, CKKH18]. The evaluation of the power flow simulations under electrical
metrics show that the cable layouts perform very well under electrical aspects on a vast majority
of input instances. For the remaining minority we are able to identify structures in the solutions
that result in a worse performance. These observations can be used as possible directions for
future improvements to the algorithms. This section is based on joint work with Hiiseyin
Cakmak, Pascal Mehnert, Torsten Ueckerdt and Veit Hagenmeyer [Gri+21].

The workflow is presented on a high-level in Section 4.9.1. We explain the structure of our
power flow models in Section 4.9.2 and explain how we obtain them from the abstract algorithm
in- and output in Section 4.9.3. We analyse the cable layouts and the resulting power flow
models with respect to various structural and electrical aspects in Section 4.9.4 and conclude
with lessons to be learned from the analysis in Section 4.9.5.

4.9.1 Workflow in a Nutshell

An overview of the proposed workflow is shown in Figure 4.19 and explained in the following.

The workflow invokes the NCC algorithm or an MILP to compute an optimized cable layout
(Step 1) or it uses a precomputed cable layout in GraphML-format [Bra+02]. In Step 2, the
cable layout is converted into a power flow model that can be processed by the eASiMOV. This
framework uses the open-source simulation package MATPOWER [ZMT11] to simulate the

power flow models (Step 3). In Step 4, a range of metrics are obtained from the simulation results.

While there are more powerful models to simulate power systems, we believe the power
flow model is a most suitable link between the complexity of power systems in real-world wind
farms and the simplifying network flow model in WCP.
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Figure 4.20: Schematic representation of the components of a power flow model for wind farms

The whole workflow is realized by a suite of Python3-scripts referred to as Wind Farm
Model Processor. Multiple input instances can be processed in a single invocation. A command-
line interface (CLI) provides fine-granulated control over all processing steps and facilitates
extensions to all functionality that is provided in the Python-APIs of external software (or the
CLI provided by the C++-code for the NCC algorithm).

4.9.2 General Structure of the Power Flow Models

In this section, we explain what a power flow model in our workflow looks like and what
technical parameters need to be specified for all the components. To the contrary, Section 4.9.3
specifies how we populate these values—as far as possible from the algorithm output.

Figure 4.20 shows a wind farm as a power flow model with all electrical components. Turbines
are modelled as a generator that is connected via a Low-Voltage (LV) generator (PV) bus and
a step-up transformer to a Medium-Voltage (MV) load (PQ) bus. For the generator, the rated
power and active power injection must be specified. The voltages at the buses correspond to
the operating voltages of the generator and the internal cabling, respectively.

Substations are modelled as an MV load (PQ) bus connected to the internal cabling, a trans-
former and a High-Voltage (HV) slack bus. The voltage of the MV bus coincides with the
voltage of the internal cabling and the voltage of the HV buses can be set independently. The
transformers in turbines and substations are defined by rated power, short-circuit impedance,
and X /R ratio. Note that the HV slack buses can also be replaced by load buses connected via
external cables to a single common HV slack bus with an external grid.

Internal cables are modelled by a single 7 transmission line each that connect two MV buses.
For the cables, resistance, reactance, and capacitance must be specified, all of which can be set
as a per-unit-of-length value, as well as rated apparent power and the length of the line.
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4.9.3 From Algorithm Output to Power Flow Models

For the electrical analysis of output from our NCC algorithms and the MILP, the computed
solutions need to converted into power flow models as outlined in Figure 4.19 Step 2. As seen
in Section 4.1, not much of the necessary pieces of information are given by the underlying
instance or a solution. Most notably, the turbine generation is given as a virtual unit and both
substation and cable capacities follow this unit. In an ideal setting, for example if a wind farm
planner decides to use our NCC algorithm, it is known what kind of turbines, substations and
cables are available and the necessary parameters are specified by the manufacturer. In our
non-ideal setting, we only know the cable capacities (in abstract units of turbine generation)
and nonetheless need to populate all parameters.

As a rough outline, we achieve that goal as follows: Starting with a suite of real-world cables
with different cross-sections, we compute for each cable the apparent power per turbine if this
cable were used at full capacity as each of the four input cable types from Table 4.1. With this,
we are able to choose a suitable power rating for our turbines and choose four cables that fit to
our four cable types. The remaining electrical parameters are then given by the manufacturer’s
specification. Similarly, we find a real-world example of a turbine with the chosen power rating
and can then look up the parameters. For the substation, the rated apparent power is computed
from the rated power of the generator in a turbine. As a final step, we need to copy the cable
layout itself. In this step, we infer the lengths of transmission lines from the positions of turbines
and substations, which are given on an arbitrary scale.

Recall that the cables types used in the evaluation stem from a proposed wind farm operating
with an internal cabling at a voltage of 33 kV [DO11, BVMO11]. We use this voltage for our wind
farm as well. As a suite of real-world cables, we choose a selection of 3-core, XLPE-insulated
submarine cables manufactured by Nexans [Nex08] with different cross-sectional areas and
their rated currents as seen in Table 4.10.

By means of Equation (4.19) we compute the highest apparent power per turbine Sty, that is
allowable under the rated current of the conductor for any particular cable type « if the cable
type was used to full capacity capg(x) according to Table 4.1.

St = \/5 -33kV - RatedCurrent/CapK(K) (4.19)

The results are shown in Table 4.10. Consider, for example the conductor with a cross-section
of 95mm? in the first row. If such a cable were used on a transmission line to which five
turbines are connected, then the rated current of 291 A yields that a maximum of 3.33 MVA
apparent power for the five turbines would be admissible for safe operation. In the last column,
corresponding to the biggest of the four input cable types, we see that the highest admissible
apparent power for a turbine is at 3.25 MVA if 15 turbines were connected. Thus, we choose
3 MW as the power rating of the generators, even though nowadays much bigger power ratings
are being used (in 2018, the average rated capacity of an offshore wind turbine in Europe
was 6.3 MW, up from 3.7 MW in 2015 [Tel+20]). With the rated apparent power per turbine
computed from the biggest cable type, this choice yields sufficient capacity for a plausible power
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Table 4.10: Apparent power per turbine for each cable type from Table 4.1 used at full capacity
and conductor sizes of the Nexans cable suite [Nex08]

Cross-Section Rated Current App. Power per Turbine
(mm?) (A) for x Turbines (MVA)

5 8 12 15

95 291 333 2.08 1.39 1.11
120 330 3.77 236 1.57 1.26
185 411 4.70 294 1.96 1.57
240 470 537 336 2.24 1.79
400 627 7.17 4.48 2.99 2.39
500 699 7.99 499 333 2.66
630 777 8.88 5.55 3.70 2.96
800 852 9.74 6.09 4.06 3.25

factor of 0.92. For each of the four input cable type capacities, we choose the Nexans cable of
smallest cross-sectional area that allow 3 MW generators. The respective cables are underlined
in Table 4.10. We obtain the corresponding values for resistance, reactance, and capacitance
from [Nex08].

As a wind turbine generator with 3 MW rated power we use an offshore version of the V112
by Vestas, which has a rotor diameter of 112 m. We use 690 V/33 kV step-up transformers with
a rated apparent power of 3.45 MVA, i.e., 1.15 times the rated active power of the wind turbine
generator. From an example offshore wind farm in DIgSILENT PowerFactory [DIgl6] we obtain
a short-circuit impedance of the transformer of 6 % with an X /R ratio of roughly 12 : 1.

For the offshore substations, a typical transformer with a primary voltage of 230kV and a
short-circuit impedance of 3 % is used. The impedance of the transformer is assumed to be
purely reactive. Contrary to transformers at the turbines, the rated apparent power must be
infered from the capacity of the substation capg,;,, which is given by the input instances. The
rated apparent power of a substation is calculated as Ssy, = capg,, - Prrp - (cos ¢)_1 where
Py, is the rated active power of the wind turbine generators and an assumed power factor
of cos ¢ = (1.15)7 ~ 0.87.

Thus, we have specified all electrical parameters needed in the power flow models. The
power flow model itself is constructed from the computed cable layout by replacing all turbines
and substations by the respective building block from Figure 4.20. Any edge with non-zero flow
is replaced by a transmission line between the MV busses of the respective endvertices. Edges
with zero flow are discarded. The length of all transmission lines is computed from the input
instances by a scaling factor such that the minimum turbine distance is 700 m, i.e., 6.25 times
the rotor diameter. With that, Step 2 in Figure 4.19 is complete and the power flow models can
now be simulated to obtain the desired performance metrics.
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4.9.4 Analysis of Algorithm Output

All analyses in this section use the cable layouts of the 1000 benchmark instances randomly
selected for the comparison of the MILP and the NCC algorithm with and without neighborhood
heuristics in Sections 4.7.2 and 4.7.3. In the following, we mainly focus our analysis on the cable
layouts computed from the MILP and the NCC algorithm without neighborhood heuristics
(refered to simply as the NCC algorithm).

The analysis is structured as follows: We start with structural observations from the layouts,
looking in particular at additional constraints to WCP from the literature: the enforcement of
tree-structures and avoidance of cable crossings. Using the simulation results, we continue by
looking at average and maximum line loadings, which serves in part as a validation that the
electrical parameters from Section 4.9.3 have been chosen sensibly. The remainder of the analysis
is dedicated to active power losses, reactive power injection and voltage stability. Whenever
possible, we draw comparisons to reference values from the literature. Outliers are inspected
more thoroughly to investigate the reasons for the deviations, so that recommendations for
future considerations by algorithm engineers working on WCP can be drawn.

The underlying data can be found in [Cak+23].

Structural Observations

The first set of analyses concerns the structural properties of the graphs induced by edges with
non-zero flow in the solutions. That means we only look at the edges on which cables are
indeed installed.

We start by comparing the usage of the different non-trivial cables types. Table 4.11 shows
the average number of times each cable type is used across all 1000 instances.

Table 4.11: Number of cables using each cable type averaged over all 1000 cable layouts obtained
from NCC and MILP

Cable Type (5,20) (8,25) (12,27) (15,41) Total

NCC 114.1 5.10 5.42 0.077  124.697
MILP 114 4.93 5.68 0.033  124.643

For both approaches, a vast majority of cables is chosen from the smallest cable type. This is
not surprising as all turbines need to be connected and a capacity of 5 is sufficient to collect
large parts of the outer areas of the wind farms. Both algorithms also use the bigger cable
types but to a much smaller extent and without any readily meaningful difference. It stands out,

however, that the biggest cable type is used more than twice as often by the NCC algorithm.

One could think that turbine generations are streamlined more by the NCC algorithm due to
the cycle cancelations but this is highly speculative. Further analysis would be needed and
the decreased usage of the second biggest cable type in the NCC algorithm might already be
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evidence to the contrary. The total across all cable types suggests that the NCC algorithm uses
more cables than the MILP. Reasons could be that the MILP uses more connected components
in the graphs (which would be unproblematic) or that there are (more) cycles in the NCC cable
layouts (which may be problematic for electrical reasons). We look into this next.

By means of a simple graph search, we can determine whether there are cycles in the cable
layout. We find that 18 out of 1000 cable layouts computed by our NCC algorithm and six
out of 1000 computed by the MILP contain cycles. The underlying instances are all from the
benchmark sets A/; and A4 (NCC: 14 from N1, four from N4; MILP: four from N5, two from
N,). All but one of the instances for which the MILP computes a cable layout with a cycle also
have a cycle in the NCC cable layout. A tendency can be observed that the instances yielding
cycles are among the biggest in their respective set of benchmark instances. These observations
suggest that cycles may be a result of the dimensioning of different parameters: Generation
from many different turbines accrues at a particular turbine, from which no cable type may
have sufficient capacity or it is cheaper to split the flow along different paths. We have seen
such a situation in the NCC and ILS cable layouts for the Hornsea One wind farm (Figure 4.17).
It may be interesting to investigate whether cycles also occur with other cable types or with a
higher number of substations such that turbine generation cannot “pile up”. It should be noted
that simply increasing the capacity of the largest cable type does not solve the problem: If
the biggest cable type is comparatively expensive, flow will already split when the capacity of
smaller cable types is reached.

We take a quick look at how the number of cycles changes after applying the escaping
strategies of our ILS. To keep it quick and simple, we only look at the results of one of the five
ILS runs. Here, the number of instances with cycles reduces to nine from N} and one from Ay,
all of which also had cycles in the NCC solution. Our ILS has been able to improve the NCC
solution in all but one of those instances. Thus, our escaping strategies seem to help to some
extent to avoid cycles, even though there are not specifically designed to do so.

Cycles are indeed forbidden in various works in the literature on wind farm cable layout
optimization, for example in [BVMO11, FP18]. Our numbers, however, point out that cycles
occur indeed only rarely, which opens the possibility that this constraint may be relaxed to
some extent for the sake of faster or simpler algorithms.

Another constraint is the explicit ban of cable crossings (e. g. [FP18]) due to higher mainte-
nance cost [BHMP00]. Using a geometric argument, we can determine whether a cable layout
includes crossings: For any pair of non-adjacent edges, check whether the straight line through
the endvertices of one edge separates the endvertices of the other edge and vice versa. Out of
the 1000 instances, NCC algorithm computes cable layouts with crossings on 78 instances (N ;:
21, No: 1, N3z 2, N4z 27, N's: 27). The MILP yields crossings on 20 instances (N1: 5, N': 4, N3
4, N'y: 1, N's: 6). It is surprising that there is no clear cut on from which benchmark sets the
instances with crossings come. NCC struggles with the biggest and the complete instances, the
MILP does not seem to have problems with the biggest instances. It is clear though that there is
a noticeable increase in numbers compared to counting the number of solutions with cycles.
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Given the importance of avoiding cable crossings according to the literature, it might be worth
to investigate if they can be incorporated into the flow model in WCP. Another remedy might lie
in extending the Iterated Local Search. In our case study, the NCC cable layout (Figure 4.17 (b))
includes two crossings, both of which are not present any more in the depicted ILS layout
(Figure 4.17 (c)). In fact, in each of the five ILS runs mentioned in Section 4.7.3, the number of
solutions with crossings is at least halved—without any explicit avoidance of cable crossings.
We look again at the same ILS run as in our investigation on cycles: A total of 39 cable layouts
include crossings. Separated by benchmark sets, the distribution is AV/j: 13, Na: 1, NV3: 2, Ny
16, N5: 7. This is a remarkable improvement over the numbers for the standard NCC cable
layout, in particular on the instances from N's. A total of seven cable layouts have more than
one crossing, with as much as five crossings in one layout. In all but one of those, there is one
edge that is involved in all pairs of crossing edges. These edges could be considered as the point
of attack for an escaping strategy with the sole purpose of resolving crossings in order to lazily”
enforce a non-crossing constraint.

In conclusion of our analysis on structural properties of the cable layouts computed by the
NCC algorithm and the MILP, we have seen that cycles in the cable layout occur only rarely.
We have also seen that cable crossings occur more often, in particular in layouts from our NCC
algorithm, but that incorporating NCC into an ILS already brings the number of crossings down
(in addition to improving the costs of the solutions as well).

Average and Maximum Line Loading

After the structural observations we look into the results of the power flow simulations, starting
with line loading. The loading of a transmission line is defined as the ratio of the current on
that line according to the simulation to the rated current of that line.

The average line loadings, i. e., the average of the loadings across all edges with non-zero flow
within an instance, are between 34 % and 62 % for the MILP and between 18 % and 61 % for NCC
across all instances, with about 98 % of all cables between 40 % and 60 %. These small percentages
arguably arise from a big amount of cables from the smallest type which connect the outer
turbines. The mean average line loading across all instances is 0.58 percentage points smaller
for the NCC algorithm than for the MILP. The difference seems neglectibly small, in particular
since for the NCC, the instance with 18 % average line loading is a single outlier. In this instance,
no optimization took place yielding an NCC ratio of 1.9937 as adressed in Section 4.7.2.

An overwhelming majority of instances (934 for NCC and 966 for MILP) show a maximum
line loading, i. e., the highest line loading on any edge within an instance, between 90 % and 91 %.
In these cases, at least one cable is fully saturated to its capacity in the network flow. Twelve
instances for NCC and eleven instances for MILP have a smaller maximum loading. The
maximum loading of eleven cable layouts from NCC and four from MILP exceeds 95 % (maximum
values of 153 % and 107 %, respectively). Those extremely high loadings are worrisome.

%In this context, “lazily” should be understood as “use such an escaping strategy only if the cable layout does have
crossing cables.”
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Figure 4.21: A cycle in a power flow model causes an overload. Annotations to lines show
the absolute loading in the network flow model in units of flow and the line loading in the
power flow model as percentage values. The latter is also color-coded. The arrows indicate the
direction of active power flow.

Further inspection of those cable layouts reveals that all share one of two properties: The
cable layout includes a cycle or a turbine has paths to different substations. In both scenarios,
there is a turbine where the incoming flow is split up. With the graph-theoretic flow, any split
is allowed. This does not hold for electrical flow. Thus, electrical flow and network flow can
take different values, which may result in the observed overloads. However, not all layouts
with cycles or connected substations yield excessive line loadings: Only for about half of those
instances (9 out of 18 with cycles, and 2 out of 3 with connected substations) does the maximum
line loading exceed the aforementioned threshold of 95 %. Those scenarios are included in the
recommentation to the algorithm engineers in Section 4.9.5.

Figure 4.21 shows an example of an overload in a cycle. On each transmission line, a tuple
states the absolute loading in the graph-theoretic flow model and the relative loading in the
power flow model. From turbine T2, 20 units of flow are split up between the connection to
turbine T3 (five units on a cable with a capacity of 5) and the connection to the substation (15
units on a cable with a capacity of 15). In the power flow model, this split is not maintained.
Instead, more current flows on the transmission line incident to the substation. This causes
an overload, while the graph-theoretic flow respects all cable capacities. Nonetheless, as seen
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Figure 4.22: Comparison of total losses in NCC and MILP generated cable layouts. For each
algorithm, the loss ratios of all instances are sorted ascendingly. Loss ratios are computed as the
difference between active power injected at transformers in turbines and active power received
at external grids in substations, normalized by the total active power injection at transformers
in turbines. The horizontal line gives a possible reference value of 0.548 % [AGUZ17].

above, such overloads occur only very rarely and the presence of cycles or connected substations
is not sufficient for overloads either. For a vast majority of instances both algorithms yield
cable layouts with satisfactory line loading, which affirms that our procedure of determining
electrical parameters is sensible as far as can be checked by the line loading.

Active Power Losses

In this section, the active power losses along the transmission lines are investigated. As the
absolute losses of the transmission lines we consider the difference between the active power
injected by the transformers in the turbines into the internal cabling and the active power
received at the external grid in the substations. To ensure comparability across all instances, we
use ratios: absolute losses divided by turbine transformer active power output. Notably, losses
inside the transformers are not considered. The losses at the turbines do not depend on the
layout but are a constant depending on the parameters of generators and transformers. The
impedance of transformers in substations was set as purely reactive (cf. Section 4.9.3).

Figure 4.22 shows the losses in the cable layouts computed by our NCC algorithm and the MILP.
For both approaches, the losses are computed for all 1000 instances and sorted increasingly.

NCC and MILP produce very similar results with a mean difference of only 0.0033 percentage
points in favor of NCC. The comparison to a reference value is more helpful: The horizontal line
aty = 0.548 % shows a reference value from the literature for losses in a case study on an offshore

wind farm with 95 turbines at a rated power of 4 MW with a tree-like cable layout [AGUZ17].
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Table 4.12: Distribution of power factors at substations per instance

Quantiles max median 75% 90 % min

Smallest power factor per instance

NCC 0.9951 0.9879 0.9872 0.9862 0.9734
MILP 0.9927 09879 0.9871 0.9864 0.9840
Average power factor per instance
NCC 0.9952  0.9893 0.9886 0.9876 0.9840
MILP 0.9927 09892 0.9886 0.9876 0.9840

In comparison, NCC and MILP provide cable layouts with fewer losses on approximately 77 %
of all instances. Both algorithms yield a loss ratio of less than 0.75 on 97 % of all instances. The
maximum loss ratios are 0.98 % for both MILP and NCC.

Thus, the optimization algorithms perform similarly with respect to active power losses and
show a reasonable performance compared to a case study from the literature.

Reactive Power Injection

There are two main factors influencing the reactive power injection in the power flow models:
transmission lines and transformers. We measure reactive power injection by the power factors
at the external grid connected to each substation. For each algorithm and each instance we
obtain the smallest and average power factor among the substations and report those results
in Table 4.12. For example, the (NCC, 75 %)-value in the upper part of Table 4.12 is the biggest y
(rounded to four digits) such that the power factors at all substations in 750 out of 1000 cable
layouts computed by NCC are at least y. The inner quantiles for both algorithms are virtually
the same and the maximum values are very close. Only the overall smallest power factors
for both algorithms show a notable difference, which is investigated below. In the literature,
an average power factor of 0.9983 has been reported for a 17.56 MW experimental wind farm
with 24 turbines and an internal cabling at 20 kV [DCCA07]. While a direct comparison should
be taken with a grain of salt due to different equipment, this reference suggests that cable
layouts from NCC and MILP show sensible power factors.

Further inspection of the NCC layout with the overall smallest power factor reveals that this
layout includes two connected substations and an exceptionally long cable (7.3 km, i.e., 10.4
times the minimum turbine distance) to the substation with the smallest power factor. The
simulation shows that on this line a disproportionate amount of reactive power (356.4 kvar)
is injected into the system, whereas the average reactive power injection on all transmission
lines of this wind farm is 42.29 kvar. With this observation in mind, we computed this ratio of
maximum absolute reactive power injection and average absolute reactive power injection over
all transmission lines for all cable layouts and both algorithms.
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Figure 4.23: Comparison of NCC and MILP cable layouts with respect to maximum cable
length and highest amount of reactive power injected on transmission lines. The points (one
per instance) show the length of the longest installed cable type (in multiples of the minimum
turbine distance) on the abscissa and, on the ordinate, the ratio of the highest amount of reactive
power injected on any line to the average amount of reactive power injection over all lines.

For each algorithm, Figure 4.23 shows 1000 points; one for each cable layout. The abscissa of
a point is the length of the longest cable in that layout and the ordinate represents the aforemen-
tioned ratio. For both algorithms we see a strong concentration of cable layouts with a length
factor of at most 4 and a reactive power ratio of at most 2.5. However, for the NCC algorithm we
observe several outliers with a high cable length factor and a high reactive power injection on
at least one transmission line. We verified on a small sample that both values originate from the
same transmission line. This was expected since reactive power injection increases as line length
increases. We cannot explain the two apparent tendencies within the outliers. However, to keep
reactive power injection low, algorithm engineers should aim for avoiding excessively long
connections. This coincides with the intuition that transmission lines in wind farms connect
close-by turbines, as seen for example in our study on the Hornsea One wind farm (Section 4.8).

We take again a quick look at the cable layouts from the same ILS we have already looked
at in our section on structural observations. The reactive power injection ratios are greatly
reduced from the NCC cable layouts: All but one instance have a ratio below 2.5 and a length
factor smaller than 3.9. The remaining instances, which has a ratio of 7.4 and a length factor of
7.8, is also the instance with the highest number of cable crossings. It may well be that this long
edge is the same edge that is involved in all five crossings. Therefore, an escaping strategy with
the purpose of avoiding long edges or with the purpose of removing crossings may also remove
this outlier.
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Voltage Stability

For an investigation of voltage stability in the cable layouts, we consider the deviation of
voltage levels from their nominal values in the corresponding power flow model. We use a
per-unit-measurement; the unit is the nominal voltage level at each bus. For the LV buses in the
turbines and the HV buses in the substations we expect a measurement of 1p. u. since they are
generator and slack buses, respectively. Our expectation was verified by the simulations. Across
all instances, the lowest voltages are 0.9946 p. u. for NCC and 0.9957 p. u. for MILP. The highest
voltages are 1.019 p. u. for NCC and 1.011 p. u. for MILP. Those values are sufficiently close
to 1 p. u. so that no negative impact to the complete system is to be expected after a meaningful
grid is attached to the substations.

4.9.5 Lessons Learned for Algorithm Engineers

In Section 4.9.4 we have evaluated cable layouts from our NCC algorithm and the MILP with
respect to structural and electrical characteristics obtained from power flow simulations in
eASIMOV. We have learned that cycles do occur, albeit rarely, and that they result in unexpect-
edly high line loadings in approximately one in two cases. Cable crossings occur approximately
four times as frequently as cycles in the cable layouts from the standard NCC algorithm. This
number is already halved for cable layouts from the ILS but it may still be worthwhile to check
for crossings explicitly and have a dedicated escaping strategy if one wants to avoid crossings
completely. Investigating the maximum line loadings showed that cycles and connected substa-
tions can result in overloads since the split of outgoing power along two edges at a turbine need
not coincide with the split of network flow as it was computed by the algorithms. An evaluation
of the length of installed cables and reactive power injection showed that in some NCC cable
layouts have exceptionally long cables. Not unexpectedly, those instances also showed a high
reactive power injection on at least one transmission line. Algorithm engineers should therefore
find ways to avoid excessively long cables. These long cables may be a target for our escaping
strategy Deal with Bonbons, be it by implicit application of the strategy or by targeting those
long cables explicitly in a similar fashion to the bonbons. Since the length of longest cables
is greatly decreased for cable layouts from our ILS, a possible remedy for long cables might
already have been found in one of those neighborhood heuristics.
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4.10 Discussion

To close this chapter and our elaborations on the applicability of Negative Cycle Canceling to the
WiIND FARM CABLING PROBLEM we discuss various aspects of the model, the algorithm and
our evaluation, with a particular focus on points of emphasis we have found in other research.
The reader may want to revisit our literature overview in Sections 2.1 and 2.3 before continuing.

Our evaluation is based on the synthetic benchmark instances from [LRWW17] and the
Hornsea One wind farm. At the time of writing the underlying papers [Gri+18, Gri+19, GWW20],
we were not aware of the benchmark instances mentioned in [FP18]. We believe that extending
our evaluation on these instances may provide further insights into the performance of our
algorithms.

In our wind farm model, turbines and substations have a distance given by the function len.
In our evaluation, we assumed Euclidean distances based on the coordinates of arbitrary scale in
the synthetic instances. There is, however, no reason why edge lengths could not represent other
“distances”. Edge length may incorporate other offsets, for example to account for buoyancy of
cables as seen in floating wind farms [LDM21] or to represent certain trajectories of cables on
the seabed in order to avoid obstacles. In the literature, Steiner points have been used to route
cables around obstacles [FP18]. It seems within the realm of possibility, to precompute certain
trajectories for various connections around obstacles with their real length and include them,
possibly as multiedges, into the model. Still, we do not know to what extent our algorithm
could deal with multiedges. In theory, there is no problem with multiedges since they would be
considered as different entities in our Bellman-Ford algorithm, but in practice our algorithm
might find more “bonbons” than expected.

Multiedges could also be a way to deal with over- and underground cable systems from
onshore wind farms [Her+17]. Two turbines (for the sake of the example) can be connected
by one edge that represents a potential underground cable with a length equal to, for example,
the Euclidean distance of the two turbines, and by another edge that stands for an overground
cable with a length corresponding to the road distance between the two turbines. Such an
interpretation is facilitated by the fact that neither our model nor our algorithm need uniform
cable types across all edges. There may well be two sets of cable types, one for overground and
one for underground cables, each inducing their own cost function ck.

These non-uniform cost functions may also prove helpful if one were to consider the expansion
problem of a wind farm: Assume that a wind farm has already been built and is fully operational.
Then, additional turbines are to be build around the wind farm and connected to the existing
cable layout. Some cables might have to be replaced by cables of higher capacity to account for
the additional load. The new cable layout should extend the previous with minimal cost for all
necessary changes. An adaptation of the cost function could reflect the costs of updating the cable
layout. In practice, however, it may very well be that this is a rather unrealistic scenario, since
new wind farms seem to be built with a high degree of independence to existing ones nearby.
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In its literal meaning, our cost function represents the installation cost of cables without con-
sidering operational cost over the lifetime of the wind farm. An adaptation of the cost function
has been proposed in the literature to account for the long-term cost of power losses [FP18]. In
that approach, one cable type has different costs depending on the flow it carries. This can be
interpreted as having more steps in our cost function (possibly one step per unit of flow), even
though the conductor is the same. As such, the proposed adaptation of the cost function is well
within the capabilities of our algorithm. In fact, the comparison to its competitor, in particular
the MILP might look a lot better: On the one hand, more steps yield more binary variables in
the MILP formulation which might yield more time-consuming computations. On the other
hand, more (or rather: smaller) steps reduce the number of negative short cycles, in particular
since the losses (and therefore the costs) increase quadratically with the current [FP18]. Thus,
the savings by reducing flow on a given edge by a fixed amount are outweighted by the costs
for the same amount of additional flow—at least as long as the same conductor is used.

As we have noted on various occasions, the non-crossing constraint is widely used in the
literature. Our model ignores this constraint but we have experimentally determined how often
they occur in cable layouts computed by our algorithms. We have seen that approximately one
in thirteen NCC cable layouts has at least one crossing and that this number is approximately
halved by the ILS. Relatively recently, there has been research on Minimum-Cost Flow Problems
with edge conflicts: Conflicts relating to actual crossings have been considered in [AAST19] on
a layered graph embedded into a grid. The same set of authors provide a more general model
with arbitrary conflicts [SAA21]. In both cases, they prove NP-completeness and provide MILP
formulations. In the latter work, the non-crossing constraint is the same as in [FP18]. Two
exact algorithms are proposed for the General Minimum-Cost Flow Problem with Edge Con-
flicts [SAA21]. Yet, their model employs the classical linear cost function, so that the question
remains to what extent their results may transfer to our cost function.

Negative Cycle Canceling is only one of many algorithms to compute minimum-cost flows in
the classical setting; a presentation of many of these can be found in [AMO93, Chapters 9-11]. In
their Bachelor’s Thesis, co-supervised by this author, Jenne [Jen20] considered several of them.
They conclude that “the Primal-Dual Algorithm, the Out-Of-Kilter Algorithm and the Relaxation
Algorithm [face] serious problems [...] due to the non-linear step cost function” and that an
adaptation of “the Successive Shortest Path Algorithm [...] is suitable” [Jen20, p. 49]. They find
by means of experimental evaluation that their Successive Shortest Path Algorithm is faster
than NCC but that it cannot keep up with it in terms of solution quality. Thus, we deem our
NCC algorithm to be the currently best adaptation of a Minimum-Cost Flow Algorithm to WCP.

Our proposal to use Negative Cycle Canceling for the WinD FARM CABLING PROBLEM
has been picked up in the literature: The author of [Pér22] combines NCC with structural
constraints. They enforce a tree-structure at all times, repair cable crossings if possible and
then run NCC. Their version of NCC is restricted in the sense that cycles are only canceled if
the tree-structure and the absence of crossings is not violated. The evaluation shows that NCC
improves solutions in 64 % of the considered instances and that the solutions can effectively be
used as warm-start solutions to a branch-and-cut solver.
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4.11 Conclusion

We have considered the optimization problem to design cost-minimal cable layouts in (offshore)
wind farms as a Minimum-Cost Flow Problem with a Step Cost Function. We have analyzed this
problem theoretically, proving strong NP-hardness and an analogon to the Integer Flow Theorem.
We have engineered an algorithm based on the classical Negative Cycle Canceling-technique and
incorporated it into an Iterated Local Search. An extensive evaluation on synthetic benchmark
instances and a case study on the Hornsea One wind farm have revealed that our algorithms
are able to find solutions within tens of seconds and that they are competitive compared to
a MIXED-INTEGER LINEAR PROGRAM formulation and Simulated Annealing. We have
analysed the cable layouts computed by our NCC algorithm with respect to structural and
electrical parameters by means of a power flow analysis. The electrical parameters are within
reasonable boundaries. The structural observations show that frequently used constraints from
the literature are only rarely violated and that the violations on cable crossings can effectively
be addressed by our ILS.

In terms of future research directions we see possible further improvements to the perfor-
mance of our algorithms. There are further speed-up techniques in the literature to decrease
the number of iterations in the Bellman-Ford algorithm [Yen70, BE12] which could be con-
sidered for incorporation. Our ILS might benefit from the usage of dedicated frameworks for
metaheuristics and special-purpose escaping strategies may help to lazily enforce additional
constraints. Further theoretical improvement could possibly achieved by being able to cancel
more complex structures than only cycles. The theory of flows shows that two flows differ
in a set of cycles (in a suitable flow model) and that the cost difference of the flows is exactly
the cost of the cycles [AMO93, Thm. 3.7]. In our setting, the assertion on the costs does not
hold, see Figure 4.3 (e) and (g). The issue is that the edge vu, must be traversed twice but at
different cost. The ability to efficiently detect the overlapping cycles to improve the solution
could greatly improve the solution quality of our algorithms. Alternatively, a dedicated escaping
strategy could be developed around canceling overlapping cycles.

To broaden the scope of our algorithms, the adjustments to other problem settings such as
floating wind farms could be evaluated as we have outlined in Section 4.10. There may even be
additional optimization problems with similar cost functions where our adaptation of Negative
Cycle Canceling may prove helpful.
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The SoLAR FARM CABLE LAYOUT
PROBLEM

The second renewable power plant with decentralized generators we consider in this work are
solar farms. In Section 2.2 we have explained how solar farms are structured. In this chapter,
we translate this structure into a graph-theoretic model and formulate the task of designing
a cable layout as an optimization problem. We assume that the positions of PV strings are
already determined and that the solar farm planner can choose both the positions of all other
components from a set of candidate positions and the cable types used for their interconnection.

We define the SoLAR FARM CABLE LAYoUT PROBLEM (SoFaCLaP) in Section 5.1 and give
insights into its complexity in Section 5.2. SoFaCLaP is translated into an MILP formulation
in Section 5.3. In order to evaluate the MILP we propose a framework to generate synthetic
benchmark instances in Section 5.4 and populate this framework with parameters based on
real-world solar farms. The evaluation itself can be found in Section 5.5 and is followed by a
discussion of the model, the MILP and the benchmark instances in Section 5.6. We conclude
with a summary and an outlook in Section 5.7. This chapter is based on joint work with Dominik
Stampa and Matthias Wolf [GSW22b]. The proof of Theorem 7 is unpublished. Its idea goes
back to [Sta22] but has been reworked in crucial points.

5.1 The Optimization Problem

The SoLAR FARM CABLE LAYOUT PROBLEM is a Minimum-Cost Flow Problem on a directed
layered graph G = (V, E). The vertex set consists of the strings Vs that need to be connected,
as well as of the potential Y-connectors Vy, combiner boxes V¢, recombiner boxes Vg, (central)
inverters V;, and transformers Vr. Edges have a length len: E — Ry, and only exist between
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Figure 5.1: An example instance of SoFaCLaP showing the layered graph and the capacities
of all layers (left) and—assuming that there is a cable type with sufficient capacity—a feasible
cable layout (right). The flow values on the edges are omitted in this visualization. They are,
however, uniquely determined, since the cable layout is cycle-free, and can be computed by
counting the strings in the respective subtrees of the layout.

one layer and the next, i. e.,

V=VsUVyUVoUVRUV;UVrp, (5.1)
ECVexVyUVy XVeUVeXVRUVR X VUV X Vr. (5.2)
For easier reference, the layers are enumerated from V; = Vs to Vg = Vr. Vertices from
layers V3, . .., Vs have an upper capacity u; € Nfori = 2,...,6 on the amount of strings that

can be routed via these vertices. Inverters also have a lower capacity £5. We may refer to the
capacity bounds of a layer by a vertex of that layer, e. g. u; = u(v) for any v € V,. The left-hand
side of Figure 5.1 shows an example of layered graph with capacities as given by a SoFaCLaP
instance.

The inverters split the instance into an AC-side with the transformers and a DC-side with
the strings. Denote the edges on the AC-side by Eac = {(i,j) € E: i € Vi,j € Vr} and by
Eg4c = E\ Eac the edges on the DC-side. For either side, there is a set of possible cable types Kac
and Kpc. Each cable type k has a thermal capacity capg(x) and a cost per unit of length cx(x).
For easier notation, the subscripts AC and DC are omitted. The cable types include a dummy
cable type of capacity and cost 0.

We define the flow in accordance with our definition in Section 3.2: The strings are the source
vertices and we assume uniform generation, i.e., p(v) = 1 for allv € V. The transformers are
target vertices with their respective capacity capy, = us. All other nodes are transshipment
nodes and we can model their (upper) capacities as edge capacities on their outgoing edges:
Consider an edge e = (v, w) with v € V; and w € V;,; for some i € [5]. Let, by abuse of notation,
capg(e) be the maximum cable capacity of any cable type that can be chosen for e. Then, the
edge capacity is defined as

capg(v, w) = min{u(v), capg(v, w)}.
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Since electric current must be transmitted from a vertex to the next layer, we define cap(w,v) = 0
for all (v, w) € E. The additional constraints that the cable layout must be a forest and that the
lower capacities at inverters must be respected, if they are used, do not readily translate into
any of the Equations (3.2) to (3.5).

The goal of SoFaCLaP is to find a minimum-cost flow on G, i. e., a function f: E — R subject
to the flow conservation constraints

fretw) = -1 Yu e Vs,
Fre®) < capy (1) Vu e vy, (5.4)
Foet() =0 YueV\(VsUVp), (5.5)
the edge capacity constraints
0 < f(u,v) < capg(u,v) Yuv € E, (5.6)
the lower capacities at inverters
Z Flu,v) > 0= Z fu,v) > €5 Vv eV, (5.7)
(u,v)€E (u,v)eE
and subject to each vertex having at most one outgoing edge with positive flow
Z X{fwv)>or <1 YueV\Vr (5.8)
(u,v)€eE

of minimal cost

Cost(f) = Z c(f(e)) - len(e). (5.9)

ecE

Here, y is the indicator function, which is 1 if the corresponding statement is true and 0
otherwise. The net flow is defined in Equation (3.1) and c(f(e)) is the same as for wind farms
(Equation (4.7)) accounting for possible differences between AC and DC cable types. As before
we may assume that the cable types are defined so that any type may realize the minimum
in Equation (4.7) (cf. the assumptions leading up to Proposition 1).

There is obviously room for expanding this formulation to incorporate further aspects. We
discuss some of them in Section 5.6 but mention one already here as it will be necessary
for Section 5.4: Strings can be understood as having multiple connection points (outlets), out of
which only one is chosen for the cable layout. Each outlet may have different Y-connectors it
can be connected to. The model above already covers this variant: For any pair of string and
Y-connector, only the connection point closest to the Y-connector could possibly be used in
an optimal solution. Therefore, all outlets of a string can be contracted into a single one (and
therefore identified with the string itself). The edge lengths from the string to Y-connectors are
then adjusted to reflect the actual distance between Y-connector and closest outlet. The synthetic
benchmark instances proposed in this work employ this variant using three connection points
per string.

In Section 5.3 we show how SoFaCLaP can be modelled by an MILP formulation. But first,
we look into the complexity of SoFaCLaP.
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5.2 On the Complexity of SoFaCLaP

SoFaCLaP is a computationally difficult problem as we show in this section. We prove that is
already strongly NP-hard to determine if a feasible solution, i. e., a flow, exist (Theorem 6) and
that it remains strongly NP-hard if we apply simplifications to the problem. These simplifications
represent a more applied setting of SoFaCLaP by using Euclidean distances and by assuming that
any two vertices in neighboring layers can be connected by a cable. For this proof, however, we
need to make use of the solution value. We conclude with a conjecture stating that determining
feasibility is allegedly possible in polynomial time and explain our evidence why we believe the
conjecture to be true.

Theorem 6. It is strongly NP-complete to decide if an instance of SoFaCLaP has a feasible solution.

Proof. A candidate for a feasible solution to SoFaCLaP can be provided by specifying the flow
values on the edges. To verify feasibility, it must be checked that flow conservation holds and
that all vertex and cable capacities are respected. This is possible in polynomial time. Thus,
membership in NP is shown. Note that it is not necessary to compute the costs, which could
involve computations with real numbers.

The proof uses a reduction from the strongly NP-complete problem 3-ParTIiTION [G]79,
SP15]: Let m, T € N and let S := {sq, ..., 3} be a multiset of natural numbers such that 7/4 <
s < T/aforalls € Sand },;cgs = mT. Can S be partitioned into triplets Sy, ...,S, such
that };cq, s =T foralli=1,...,m?

In the reduction, the Y-connectors represent the elements of the multiset and the combiner
boxes the triplets. The edges between strings and Y-connectors force an outflow from the Y-
connector equal to the respective element of the multiset. So given an instance of 3-PARTITION,
we construct an instance of SoFaCLaP with 3m Y-connectors yy, . . ., ¥3m, each with capacity T/2,
and mT strings such that the s; strings have an edge only to y; for alli = 1,...,3m. The
instance has m combiner boxes ¢y, . . ., ¢y, each with capacity T. Recombiner boxes, inverters
and transformers are not needed for this reduction, and neither are cable types, so there is
one of each, with capacity mT. All layers are fully connected except for the string layer as
mentioned above. This graph has mT + 3m + T + 3 vertices and mT + 3mT + m + 2 edges. Thus,
the construction is possible in polynomial time since we may assume that T is polynomial in
the size of the input.

We show that the instance of 3-PARTITION is a yes-instance if and only if the SoFaCLaP
instance has a feasible solution. If the instance of 3-PARTITION is a yes-instance, then we
connect a Y-connector y; to a combiner box c; if and only if s; € S;. The edges between the strings
and the Y-connectors yield that y; has an outflow of exactly s; < T/2 = u(y;). Since 2;c5; s = T,
the capacity of ¢; is not exceeded either. Thus, we obtain a feasible SoFaCLaP instance.

On the other hand, let the constructed instance of SoFaCLaP be feasible. By means of 7/4 < s,
it follows that each combiner box has at most three Y-connectors connected to it. If one combiner
box had only two Y-connectors, another one would have four. Thus, each combiner box is
connected to exactly three Y-connectors. Since the total capacity of all combiner boxes is
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exactly mT, the inflow at each combiner box equals T. Thus, the assignment of Y-connectors
to combiner boxes gives an assignment of the elements of S to m triplets with the desired
property. O

Note that we have used the same NP-hard problem for the hardness proofs for WCP (Theo-
rem 3) and for SoFaCLaP. For SoFaCLaP the fact that we enforce a forest layout simplified the
proof so that even the feasibility problem is hard. For WCP we have to use the solution value to
count the number of edges and thereby obtain a forest layout.

We have shown that already finding a feasible solution is a difficult task, at least in the most
general setting of SoFaCLaP. One might hope that the whole problem becomes a lot easier with
additional simplifications. On the positive side, we suspect that finding a feasible solution is
easy (Conjecture 1). On the negative side, it can be shown the optimization remains difficult:

Theorem 7. It is strongly NP-hard to decide if a SoFaCLaP instance admits a solution with a value
below a given threshold, even if the instance respects all of the following:

e Vertex positions are given by points in Q* and no two vertices have the same positions.
e Edge lengths are given by the Euclidean distance of the endvertices.

 All layers are fully connected.

e There is only one cable type, which has unlimited capacity.

 Lower vertex capacities do not apply.

Before we come to the proof of Theorem 7, we need some auxiliary results. For the reduction,
we use a variant of the 3-PARTITION Problem. We refer to this variant as 3-PARTITION
WITH BOUNDS AND DISTINCT NUMBERS:

Let m,T € NandletS := {s1,...,83,} be a set (!) of natural numbers (i.e., s; # s; for
all i # j)such that T/4 < s < T/2for all s € S and };cgs = mT. Can S be partitioned into
triplets Sy,...,Sm such that },;cq. s =T foralli =1,...,m?

Contrary to the 3-PARTITION variant used in the proof of Theorem 6, we now require
the elements of S be distinct. It has been shown that this variant is strongly NP-hard without
the T/4 < s; < T/2 constraint [HWWO08]. It is straightforward to see that from any such instance
without bounds an equivalent instance can be constructed that observes the bounds: Let

a =1+ max{2maxs; — T,T — 4mins;, 0}.

Furthermore, define T’ = T + 3a and s; = s; + aforall i = 1,...,3m. Then it holds that 7'/s <
s; < T'/2for all i and

’ ’ r_ 7 ) ) o
Siy tsp, s, =T & Siy +si, +55, = T.
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Thus, 3-PARTITION WITH BOUNDS AND DISTINCT NUMBERS is also strongly NP-hard.
We observe that s; > T/4 > 3m by combining the bounds and the fact that 3m different number
must fit between 7/4 and 7/2.

In the proof of Theorem 7 we construct a solar farm instance from an instance of 3-
PARTITION WITH BOUNDS AND DISTINCT NUMBERS. Some of the vertices are placed
using the following proposition.

Proposition 2. LetC € Q% and letp € N and ¢ € Q. Let

T(t) -t +C
= |—,——
141271+ t2

and lett; = =1+ 2i/p-1 fori = 0,...,p — 1. Then, I'(ty), ... ,I(t,_1) are p points on a half-circle
of radius ¢ around C such that

1. all points have rational coordinates,

2. the coordinates are polynomially bounded in C, p, and ¢, and

3. the distance of any two such points is at least 2¢/[/p?—ap+5.
Proof. A straight-forward computation shows ||T'(¢) — C|| = e forall t € R. Let t; = —1 + 2i/p—1
fori = 0,...,p — 1. The p points I'(#;) have rational coordinates. Since the respective first

coordinates are all non-negative, all points lie on a half-circle. For any i = 0,...,p — 1 it holds
that

1-t2 24
I(t;)=¢ L2 |+cC
(®) (1+ti2 1+ 12

\2 :
1—(—1+ZT‘) 2(—1+ZT‘)
p-1 p-1
o\27 o\ 2
1+(—1+2—_’) 1+(—1+2—_’)
p-1

:g((P—l)z—(Zi—(P—l))2 2p-1)2i-(p-1))
(P-D*+@i-(p-1)* (p-1*+2i—(p-1)>

Each numerator and each denominator is in absolute values bounded by 10p?. Thus, the
coordinates are polynomially bounded in C, p, and .

We observe that the minimum distance between any two points is realized by two consecutive
points. Thus, we consider the auxiliary function f,: R — R? given by

fp(®) = IIT(t + Zp-1) = T(®)]°
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Using A = 2/(p-1), thorough computations yield

2e 2

O Hu TGEr )18
(2t+ A + (2 + At —1)°
1+ (t+ A2 - (1 +12)?

(=2t — A, 1 —tA - t?)

4¢* N

and after derivation

2
f(t) = —é*(2t + A) - (2t + A)° +4 — A

2(1+ (t+A)2)%- (1 +12)?

where it was used that 4(t* + tA — 1) = (2t + A)* + 4 — A%. We observe that fp(t) has a global
maximum at ¢t = —4/2, and that it is strictly decreasing for t > —A/2 and strictly increasing
for t < —A/2. Thus, the minimum distances between any two points are realized between the
first two, as well as between the last two points.

Again by thorough computations, we obtain

20?
1) =g —=
V= G
8
— 2. (p-1)? '(P_l)zzgz_ 4
(p_‘ll)z_ﬁ""z (p_l)z P2_4P+5

O

With that, we have all ingredients for the main proof, except for one not-so-exciting techni-
cality which we prove afterwards.

Proof of Theorem 7. Let (S, T) be an instance of 3-PARTITION WITH BOUNDS AND DIS-
TINCT NUMBERS (in the following refered to as 3-PArRTITION Only). We construct a solar
farm instance, in which vertices are placed in half-circles around other vertices. For the half-
circles, we use radii of 1, £ := 1/36m?, and § = ¢/T. The placement of vertices on a half-circle is
according to Proposition 2.

We construct an instance of SoFaCLaP as visualized in Figure 5.2: Place a recombiner box
with capacity mT at the origin. On a half-circle of radius ¢ around the origin place m combiner
boxes of capacity T. On a half-circle of radius 1 around the origin place 3m Y-connectors of
capacity |T/2]. On a half-circle of radius § around the i-th Y-connector place s; strings (with
respect to those strings, the Y-connector is called the intuitive Y-connector). Finally, place
an inverter of capacity mT at (2,0) and a transformer of capacity mT at (3, 0). Proposition 2
and Lemma 2 include proofs that no two vertices have the same coordinates and that the
coordinates are polynomially bounded. The single cable type is defined to have a cost of 1 per
unit of length and it has unlimited capacity by the statement of the theorem.

89



Chapter 5

The SoOLAR FARM CABLE LAYouT PROBLEM

90

V[ VT

Figure 5.2: Visualization of a SoFaCLaP instance constructed from a 3-PARTITION in-
stance WITH BOUNDS AND DISTINCT NUMBERS. Strings, Y-connectors and combiner
boxes are placed on half circles marked by gray lines, some of the strings are omitted. The
dashed lines show the radii of the half-circles. Adjacent layers are fully connected by assumption.
In the second group of strings from the top, two edges are included: The black edge shows an
“intuitive” connection, the dotted blue edge is an “unintuitive” connection.

The claim is that the 3-PARTITION instance is a yes-instance if and only if the SoFaCLaP
instance has a solution of value at most

mTé + 3m + 4me + 3. (5.10)

Assume that the 3-PARTITION instance is a yes-instance. Let S; be the triplets of equal
weight that partition S. Consider the cable layout in which the Y-connectors are connected
exactly to the strings on the circle around them and in which the i-th Y-connector is connected
to the j-th combiner box if and only if s; € S;. The capacities of mT at the recombiner box, the
inverter, and the transformer are respected since there are exactly mT strings. The capacities at
the combiner boxes are not violated since 2scs, s = T and the capacities at Y-connectors are
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respected since s < T/2 for all s € S. The cable layout constructed from the 3-partition has total
costs of at most

mTé+3m(l+¢)+me+2+1=mTd+3m+ 4me + 3. (5.11)

The summands of the first sum are (in this order) for the connection of strings to Y-connectors,
Y-connectors to combiner boxes, combiner boxes to the recombiner box, recombiner box to
inverter, and inverter to transformer. Thus, we constructed a feasible cable layout of sufficiently
low costs as desired.

For the other direction, assume an arbitrary feasible cable layout. All mT strings have exactly
one outgoing edge. Since the combiner box capacities sum up to mT, all combiner boxes are
used. Thus, all feasible cable layouts differ only by the number of Y-connectors used or by
the connections used between strings and Y-connectors as well as Y-connectors and combiner
boxes. We show that only those cable layouts which use all Y-connectors and in which strings
are connected to the respective Y-connector around which they are placed (i. e., all strings are
connected intuitively) have costs at most (5.10). But first, we show some inequalities which we
need later in the proof. A single string connected to a non-intuitive Y-connector instead of the
intuitive one incurs a cost difference of at least

2 5-6> 2 _gs=2 1
JBm)? = 4(3m) + 5 3m 3m  18Tm?

>0 (5.12)

by Proposition 2, since 12m > 5, and by the definition of §. In Equation (5.12), one delta
originates from cost of the intuitive layout and the other from estimating the distance to another
Y-connector. Furthermore, by using the definitions of § and ¢ we can even show

G2 meme= o m e = > 0, (5.13)

If the j-th Y-connector is not used, we save costs of at least 1 — ¢ from the connection to a
combiner box. Since all strings around this Y-connector need to be connected unintuitively, the
combined cost difference for all s; strings is at least

sj(%—Z(S)—(l—s)

(25 ) 4 (e — 265))
= 3m £ S]

6m
>|——-1|+0>6me>0 (5.14)
3m

plugging in the definitions of ¢ and § and using that 3m < s; < 7/2 from the 3-PARTITION
variant.

Going back to the arbitrary feasible cable layout, let ] C {1,...,3m} be the set of indices of
Y-connectors that are not used in the cable layout and let k > 3 ;¢ s; be the number of strings
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that are not connected intuitively. We show that if J # 0 or k > }};c; s;, then the total costs of
the layout exceed (5.10). The total cost of this layout is greater than

k(i— 5)+(mT—k)-5+(3m—|]|)(1—5)+m5+2+1
3m

2

:k(3——25)+mT§—2m£+3m—|]|(1—£)+3 (5.15)
m

The summands in the first line are (in this order) for the unintuitive and intuitive connections

of strings, the connections of Y-connectors to combiner boxes, the connections of combiner

boxes to the recombiner box, and for the connections to the inverter and the transformer. The

difference to the threshold value from Equation (5.10) is

(5.15) — (5.10) = k (i _ 25) _ 6me — |J|(1 - ¢)
3m

2 2

= |k - il|——-20|—-6me+ > —(1—¢&)+s;|——-25].

( Zs]) (3m ) me Z 1=+ (Sm )
JjeJ jeJ

We distinguish cases on how the arbitrary cable layout differs from an intuitive one. If J # 0,

we use that the first summand is non-negative by Equation (5.12) and obtain

(k—zsj) (%—25)—6mg+Z—(1—g)+sj(%—25)

JjeJ JjeJ
2
-6 -(1- (= -2
m£+z ( €)+s](3m 5)>O
Jje]
by Equation (5.14). If | = 0, the sum at the end of the line equals zero and we have k > )¢ s;
by assumption. Thus

[ R TR

JjeJ JjeJ

v

2
Z(——Z&)—6m€>0
3m

by Equation (5.13).

With these estimates, we have shown that in a cable layout for the constructed SoFaCLaP
instance of cost at most (5.10), all Y-connectors are used and all strings are connected to the
respective Y-connector around which they are placed. In such a cable layout, the i-th Y-connector
has a total inflow of exactly s;. Since all Y-connectors together provide an outflow of mT and
there are m combiner boxes of capacity T, all combiner boxes need to be connected and used
to their full capacity. To provide exactly T units of flow to a combiner box, exactly three
Y-connectors are needed since T/+ < s < T/2 for all s € S. So, in the cable layout of cost at
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most (5.10), each combiner box obtains flow from exactly three Y-connectors and no Y-connector
can supply two combiner boxes. Thus, for the 3-PARTITION instance we obtain triplets S;
by assigning s; to S; if the i-th Y-connector is connected to the j-th combiner box and it holds
that > ;s s = T as this is the flow value into the combiner boxes. O

One lemma is missing in order to complete the proof.

Lemma 2. Let G be the solar farm graph constructed in the proof of Theorem 7. Then, no two
vertices have the same coordinates.

Proof. To show that no two vertices have the same coordinates it remains two show that no
two half-circles intersect as well as that the inverter (and thus the transformer) is farther from
the origin than the farthest possible position for a string. The distance from the origin to any
string is at most

36Tm? + 1
1+6="————
36Tm?

Thus, the strings cannot be co-located with the inverter. As for the half-circles, we show that
two half-circles of strings do not intersect each other and that a half-circle of strings does not
intersect the half-circle of combiner boxes. By Proposition 2, the minimum distance of two
strings on different half-circles is greater than

2
V(Bm?2) — 4(3m) + 5

-26>0 by Equation (5.12).

The distance of a string to the origin is at least

36Tm?2—-1 1 1

1-6= >—>—
36Tm? 2 36m?

=&,
which is the distance of the combiner boxes to the origin. Thus, no two vertices are co-
located. O

Thus, we have completed the proof of Theorem 7 showing that SoFaCLaP remains strongly
NP-hard even under more realistic or simplifying assumptions. However, we do believe that it
is easy to find feasible solution in that case.

Conjecture 1. In the setting of Theorem 7, a feasible solution can be computed in polynomial
time.

The idea for this conjecture goes back to discussions with Thomas Blasius and Matthias Wolf
in early 2022. The crucial observation in the setting of Conjecture 1 and Theorem 7 is that the
vertices within a layer need not be distinguished for the sake of finding a feasible solution. This
may yield a dynamic program as follows: A solution may be described by a sequence of numbers,
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each entry determines the number of vertices used within a layer. As an example, consider
the right-hand side of Figure 5.1. The depicted solution may be encoded as (11,6, 5,3,2,1) as
it connects eleven strings via six Y-connectors, five combiner boxes and so on. This solution
may be put together from the sequences representing the trees rooted at the inverters, namely
(6,3,3,2,1) and (5, 3,2, 1, 1), and at this step the vertex capacities of the last layer have to be
checked. One way for the dynamic program to be run is to collect all non-dominated solutions
corresponding to the number of layers from the bottom and the number of strings connected,
where a solution is dominated if there is another solution that uses not more vertices of any
layer (and less vertices in at least one layer). The difficulty here is to ensure that the number of
solutions corresponding to a number of layers and a number of strings does not increase too
much. The vertex capacities and their interactions may come into play here in order to bound
the number of solutions.

If Conjecture 1 is true, this will allows us to efficiently compute initial solutions which
can then be improven (meta-)heuristically. The resulting heuristics can then be evaluated in
comparison with the MILP formulation of the next section.

5.3 MILP Formulation

SoFaCLaP can be formulated as an MILP using variables f(u,v) > 0 for the flow on (u,v) € E

and binary variables x,,, stating whether cable type « is used on edge (u,v). Here, the zero-

capacity cable type is omitted. This way of modelling the cable types is the same as we have

seen for wind farms Section 4.3. The following formulation is based on the standard variant

of SoFaCLaP with the implicit inclusion of string connection points as outlined in Section 5.1.
The goal of SoFaCLaP is to minimize the total installation cost

min Z Z Xuvic * Ck(K) - len(u,v). (5.16)
(u,v)€E k€K

The total flow leaving each string is the production of the string

Z Flu,v) =1 Vu € Vs, (5.17)
(u,v)eE
and flow must be conserved at intermediate vertices
> fwvy= Y fv,w) Vv eV \ (Vs U V). (5.18)
(M,V)GE (V,W)EE
The capacities at the vertices must be respected
Z Fu,v) < uv) Vv eV \ Vs, (5.19)
(u,v)€eE
Z f(u, v) > L5 - Z Z Xuvk Vv eV, (5.20)
(u,v)€EE (u,v)€E k€K
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whereas lower capacities only apply if a vertex is indeed used.
For all vertices except transformers, only one outgoing edge may have flow

Z Z Xuve < 1 VueV\Vr, (5.21)
(u,v)eE k€K
and thereby non-zero capacity, which also implies that only one cable type is used per edge.
This cable type must have sufficient capacity to hold the flow

f(u,v) < Z Xyvie - capg (k) Y(u,v) € E. (5.22)

keK

It is easy to see that the MILP formulation is correct. We will, however, point out that we
translated the enforcement of vertex capacities from outgoing edges in Section 5.1, in partic-
ular Equation (5.6), to the incoming edges (Equation (5.19)). This also includes transformer
capacities which we needed to enforce separately in Section 5.1 Equation (5.4).

In total, this linear program has O(|K| - |E|) binary and |E| real variables as well as O(|V |+ |E|)
constraints.

5.4 Generation of Benchmark Instances

An evaluation of the MILP formulation from Section 5.3 on example instances shall give the
reader insights into the performance of the MILP and thereby establish it as a (first) solution
method to SoFaCLaP. Since we have not been able to obtain suitable real-world instances! to
evaluate the MILP, we resort to generating synthetic instances as described in the following.
The benchmark instances use the GraphML format [Bra+02] and are available from [GSW22a],
where a thorough specification of the format can be found as well.

If the benchmark instances are sufficiently variable to cover a wide range of plausible inputs
to the solution approaches, the use of synthetic instances has multiple advantages. First, a larger
number of different instances can be generated so that tendencies in the comparison of two
approaches are less likely to be a result of statistical noise. Second, the solar farms in consid-
eration can include more strings than any currently existing solar farms. Thus, the applicability
of the algorithms for a future increase in solar farm sizes can already be investigated now.

5.4.1 Framework for Benchmark Generation

We describe the general approach we propose for the generation of benchmark instances on a
high level in this section. The next section is dedicated to breathing life into the framework by
describing the process in more detailed steps with concrete values for the parameters. These
values are based on real-world examples of devices used in solar farms as evidenced by Tables 5.1
and 5.2 in Section 5.4.2.

Note that it does not suffice to merely have the positions of the strings and other devices in an existing solar farm.
We rather need all potential positions of devices. This represents an intermediate step in the planning process
which is, understandibly, not publicly available.
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The first steps in the framework deal with placing the strings. For synthetic instances we opt
for randomly sampling the strings with a minimum distance. Next, the location of vertices of
higher layers are determined, starting at the Y-connectors. We let the number of vertices in a
layer depend on the number of vertices in a previous layer. We assume fully connected layers,
which leads to the maximum number of possible connections between layers. After the graph
is determined, vertex capacities are set. We choose these randomly with bounds based on the
minimum capacity necessary to connect all strings. Lastly, cable types are included which we
derive from real-world photovoltaic cables.

Users of the proposed framework may want to alter any intermediate step to realize certain
additionally desired properties on the solar farm instances. For example, users could prespecify
all the string positions or fix the number of vertices within a layer. They may want to change
the sampling process, for example to have all recombiner boxes close to each other. The edge
set can be thinned out if, for example, cables should not exceed a certain length. Users can
define their own cable types.

5.4.2 Generating Benchmark Instances

For our purposes, the framework introduced in the previous section is used as follows. Bench-
mark instances are generated in three categories: Small (120-180 strings per instance), Medium
(500-750 strings), and Large (1200-1500 strings). We describe the process of generating an
instance: First, a rectangle is fixed that simulates the area of the solar farm. One of the corners is
defined as the origin giving rise to a coordinate system. The (virtual) unit of length is irrelevant
since SoFaCLaP solution values scale with the underlying unit of length. Next, an angle « for
the orientation of the strings in relation to the coordinate system is chosen randomly. The
total number of strings is drawn from the intervals above and, one after another, the strings
are placed in the rectangle: A random point P is sampled from the rectangle serving as one of
the connection points of the string. For the purpose of describing the process, we refer to this
point as the base of the string. If P respects a globally specified minimum distance from the
bases of all previously successfully sampled strings, the connection points are defined. On a ray
starting at P with angle « to the coordinate system’s x-axis two more connection points are
placed equidistantly, with the distance being the same for all strings. If, however, P is too close
to another base, a new base P is sampled. If the process of placing a string fails too often, the
whole instance is discarded and a new rectangle is chosen.

With all the strings placed, the higher layers of vertices are randomly placed, starting with
the Y-connectors. For each layer, a ratio according to Table 5.1 is chosen randomly and the
number of vertices on the next layer is defined as Vgt = [Vreference/ratio |. The ratios are chosen in
a way to ensure decreasing sizes of layers. For the small instances, the number of transformers
and inverters is fixed as 1. Y-connectors and combiner boxes are placed in close proximity to
string connection points. Recombiner boxes are placed close to combiner boxes. Inverters and
transformers are placed on random points in the rectangle, respecting minimum distances to
the string bases as well as previously placed inverters and transformers. The reasoning is that
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Table 5.1: Design parameters for graph layer sizes

Layer Category
in consideration reference Small Medium Large
Vs 1 120 -180 500 -750 1200 - 1500
Vy Vs 1.5- 3 1.5- 3 1.5 - 3
Ve Ve 10 - 20 10 - 20 10 - 20
Vk Ve @ 3 - 8 3 - 100 3 - 100
Vi Vs Vi| = 1 200 =300 200 - 300
Vr Vi Vr| = 1 1 - 39 1 - 3¢9

() In the example solar farm by ABB [ABB19, Annex B], each combiner box
connectes 13 or 14 strings. A combiner box by LS Electric has possible
inputs of 12, 16, or 20 [LS21]. Combiner boxes by SMA connect up to 32
strings, but no recombiner boxes are used [SMA20].

@ based on the recombiner boxes in [Sol]

®) 10 or (26 — ratio V¢ : V), whichever is lower, based on the idea that
parallel connections of many strings in both combiner and recombiner
boxes yields excessive amounts of electric current

4 Gajda [Gaj16] shows two inverters connected to a transformer.

strings, inverters and transformers are themselves bigger components and need to be more
easily accessible for maintenance.

Picking (upper and lower) capacity values for the different layers can be a delicate issue from
an algorithmic point of view: With very tight capacities, the design questions of picking one
position for a, say, combiner box over another becomes easy: all possible positions have to be
used. Very loose capacities mitigate the algorithmic difficulty of picking a suitable subset of, say,
strings to be assigned to a specific Y-connector. We deem the assumption fair that all vertices of
a layer have the same capacities since planners presumably would not design solar farms with
two different versions of, say, inverters. Given a layer V; a capacity of at least 1b; = [IVsl/|v,]]
is required. For each layer, a random integer between lb; and A - Ib; is chosen, where A = 1.2
for inverters and A = 1.5 for all other layers. The smaller value for inverters is selected with
the idea in mind that solar farm planners will not overly deviate the capacities of inverters
from the capacity best suited for the intended use. For recombiner boxes and inverters only, the
capacity will, however, be at least twice the capacity of the previous layer to ensure that two
fully-used vertices of the previous layer can be connected. The randomly chosen lower capacity
for inverters is at least 0.5 and at most 0.8 times the inverters’ upper capacity.

The edge set is assumed to be complete, i. e., equality holds in Equation (5.2). We have no
reason to prohibit specific edges (although solar farm planners might). Thus, we leave it to the
algorithms to pick the most suitable edges from the complete set.
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Figure 5.3: A toy example of a solar farm, in which all vertex capacities are sufficient but their
interaction implies infeasibility. Due to 30 strings, each inverter needs an inflow of 10 and each
transformer an inflow of 15. But with only one outgoing edge per vertex allowed, inverters and
transformers cannot be connected.

Table 5.2: Cable types used in simulations

Cable Type Specifications as in [Hel21]
costcx  capacity capy ~Ampacity [A] at 60°C  Copper Weight [kg km™]
4 5 55 38.4

34 22 218 336

120 50 488 1152

230 80 775 2304
750 180 extrapolated
2300 400 extrapolated

The cable types for the simulations as shown in Table 5.2 are based on the photovoltaics
cable SOLARFLEX-X PV1-F by HELUKABEL [Hel21]. Four sizes are considered, the forth one
being the biggest size available. The rated ampacity is approximately translated into a capacity
on the amount of strings, where a current of 10 A per string is assumed [ABB19, p. 121]. Since
cost quotations are not readily available, we assumed that the costs are in essence proportional
to the amount of copper used in a cable. The exact unit for the costs is irrelevant since the
optimization function in SoFaCLaP can be scaled arbitrarily. For aesthetical reasons, we opted
for somewhat round values in the bigger cable types. No influence on the performance of
algorithms is expected from those changes. These four cable types are not big enough to be
used in the largest benchmark instances. Thus, we included two artificial cable types to conduct
meaningful experiments on the biggest instances. These cable types were extrapolated from
the smaller cables types, roughly following the motto "Doubling the capacities yields triple the
cost."
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Some of the benchmark instances generated as outlined above may be infeasible. Since
capacities are chosen in a way that the total capacity of a layer is at least the number of strings
and since the edge set is complete, infeasibility can only arise from the interaction of the sizes
and capacities of the layers as a whole. A toy example of such a constellation can be seen
in Figure 5.3. We purposefully keep such instances because it may be a feature of algorithms
developed for SoFaCLaP to be able to detect infeasibility (see also Section 5.5.1).

5.5 Evaluation

The MILP formulation from Section 5.3 is translated into C++14 code. The code uses the
Open Graph Drawing Framework (Catalpa release) [Chi+13] for parsing the benchmark in-
stances and the C++-API provided by Gurobi [Gur18]. For compilation, GCC 10.3.0 is used with
the -0fast -march=native flags. All simulations are run on a 64-bit architecture with four 12-
core AMD CPUs each at 2.1 GHz with the openSUSE Leap 15.3 operating system. The MILP
formulation is solved by Gurobi 9.5.0 in single-threaded mode with a maximum running time
of one day per instance, with 40 instances running simultaneously. For notational ease, we will
use “Gurobi” and “the MILP” interchangibly.

For the simulations, 80 randomly generated instances of each of the three categories Small,
Medium, and Large are considered. An overview of the characteristics of these 240 instances is
shown in Table 5.3.

Table 5.3: Characteristics of instances used in simulations

Category |Vs| V| |E|

min median max min median max min median max

Small 120 145 180 176 224.5 305 5566 10528 20515
Medium 502 632 750 781 966.5 1234 108654 190792 345969
Large 1200 1248 1500 1726 1920 2459 538923 732858 1369140

The ranges for the number of strings are almost fully used. It stands out that the median of
number of strings in the large instances is much smaller than 1350, which is what one would
naively expect. A possible reason is that the process of placing a large number of strings, invert-
ers and transformers, each of which observe a minimum distance to each other, failed too often.
In that case, the instances would be discarded and a new number of strings would be drawn ran-
domly. A possible remedy is to enlarge the initial rectangle for the solar farms for large instances.

The number of vertices is linear in the number of strings with a small coefficient. This is as
expected from the ratios shown in Table 5.1. The number of edges grows fast with over 1.3 million
edges for instances with up to 1500 strings. From a theoretical perspective, a fast increase
is expected: Layers are fully connected and the number of vertices per layer is linear in the
number of strings. Thus, the number of edges grows quadratically with the number of strings.
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The remainder of this section is structured as follows: In Section 5.5.1 we evaluate the MILP
with respect to its ability to determine whether an instance is feasible or infeasible. Some
instances are solved to (proven) optimality and we investigate the running time needed to do
so in Section 5.5.2. In Section 5.5.3 we look at those instances which have been determined to
be feasible and investigate the MIP gaps (cf. Section 4.3) computed by Gurobi. The goal of this
evaluation is to provide baseline results to which future algorithmic approaches to SoFaCLaP
can be compared to. The results of our evaluation are publicly available [GSW22c].

5.5.1 Optimality and (In-)Feasibility

In our setting, Gurobi terminates with one of four optimization statuses: Ideally, an instance is
solved to (proven) optimality (status: optimal). Secondly, Gurobi may find a feasible solution
but fail to prove that it is optimal (status: feasible). In that case, the best proven lower bound (lb)
does not match the solution value (ub), and the feasible solution may or may not be optimal.
Thirdly, Gurobi may be able to prove that an instance does not admit any feasible solution (sta-
tus: infeasible). Lastly, Gurobi may not find any feasible solution but fail to prove infeasibility.
In that case, the instance may or may not be feasible (status: unknown).

In the following, we want to investigate how often Gurobi terminates in each of those states
across the different categories of instances to see what we can learn about the applicability of
the MILP formulation and Gurobi to solve SoFaCLaP.

The upper part of Table 5.4 shows how often Gurobi terminates in the different states at
the end of the maximum running time of one day. Nearly all of the small instances are solved
to optimality within one day. A solution is considered optimal once the MIP gap (defined
in Section 4.3) is below the optimality tolerance of 0.0001 %. Since the number of variables and
constraints in the MILP formulation grow linearly with the number of edges, Gurobi can most
probably not uphold the performance on bigger instances.

Indeed, for the medium instances, the number of instances that are solved to optimality
decreases by a big margin compared to the small instances, but still one in five instances is
solved optimally. About one in seven instances are shown to be infeasible. The fact that Gurobi
does not find any feasible solution on 4 out of 80 instances within one day (optimization status:
unknown) makes us suspect that those instances are infeasible. On instances of those sizes one
would expect that Gurobi would find a feasible solution within one day if a solution existed. We
come back to those “unknown” instances later in this section.

As for the biggest instances, Gurobi is not able to solve any instance to optimality. For more
than one in four instances, Gurobi can neither find an optimal solution nor prove infeasibility.
We speculate that allowing Gurobi more time or simplifying the model can give further insights
into the true status of these instances.

Thus, we run two additional sets of simulations on the remaining “unknown” instances. The
first set is intended to find feasible solutions. We suspect any then remaining unknown instance
to be infeasible. On those instances, we use a more restricted but (in the context of infeasibility)
equivalent MILP formulation which we believe helps Gurobi to prove infeasibility. We describe
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Table 5.4: Amount of instances per optimization status for dif-
ferent stages of MILP simulations. The specifications for the
experiments are in the main text body.

Category MILP (Section 5.3), one day
total optimal feasible infeasible unknown
Small 80 79 1 0 0
Medium 80 16 48 12 4
Large 80 0 50 5 25

MILP (Section 5.3), one cable type, one day

total optimal feasible infeasible unknown

Small 0 — — — —
Medium 4 — 0 2 2
Large 25 — 14 5 6

MILP with Equation (5.23), one cable type

total optimal feasible infeasible unknown

Small 0 — — — —
Medium 2 — 0 1 1
Large 6 — 0 1 5

the two sets of simulations in more detail and see what we can learn about the instances of
unknown status.

To make Gurobi’s life (supposedly) easier on the remaining instances of unknown status, we
allow only one cable type. This greatly reduces the number of binary variables at the start of
the optimization. If the capacity of the cable type is set to a value higher than the maximum
vertex capacity, the simplified instance is feasible if and only if the original instance is, since
the biggest cable capacity exceeds the biggest vertex capacity in all instances in question here.
Again, we give Gurobi a maximum running time of one day per instance in single-threaded
mode. The outcome of these simulations is shown in the middle part of Table 5.4. Gurobi can
prove infeasibility on two additional medium and on five additional large instances. Gurobi
also finds a first feasible solution on 14 out of 25 large instances. Yet, two medium and six large
instances remain unknown.

Given the amount of help we gave Gurobi to find feasible solutions, we believe that the
remaining instances are in fact infeasible. To facilitate Gurobi’s proof of infeasibility, we again
change the MILP formulation. Since the capacities within a layer are equal and layers are fully
connected, we observe that any feasible solution can be transformed into other feasible solutions
by a permutation of the vertices of a layer. In order to prove infeasibility, Gurobi needs to
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outrule all these possibilities. Presumably, this can be facilitated by imposing a fixed order on
the vertices of each layer, in which the inflow into the vertices decreases. In formulae, fix a
layer V’ (other than the strings) and enumerate the vertices inside this layer as V' = {vy, ..., v }.
Then, add the constraints

Vsl2 D) fuw 2.2 Y fuy 20 (5.23)

(u,v1)€E (u,vk)eE

for all layers V’. Additionally, we set the target function to a constant, so that Gurobi terminates
once it finds a feasible solution. With this formulation, we allow Gurobi four threads per
instance and lift the time limit. Surprisingly, these changes do not help Gurobi much. Even
with a total computation time over all threads per instance of more than six weeks, only two
additional instances are proven infeasible (cf. lower part of Table 5.4).

We conclude from these investigations on the optimization status with which Gurobi termi-
nates that Gurobi is very well suited for solving small instances and obtaining feasible solutions
on quite a number of instances representing medium and large solar farms. We also note that
Gurobi is able to prove infeasibility quite often in reasonable time (with a bit of help), even
though our trick with the additional constraints from Equation (5.23) proved less useful than
hoped for. For some large instances, Gurobi cannot find a feasible solution within one day
even though these instances are in fact feasible. While allowing Gurobi more time is always an
option, one could think about other approaches to find a feasible solution (cf. Conjecture 1),
give it to Gurobi as a warmstart and see what Gurobi can do from there.

5.5.2 Running Time

We take another look into the instances that are solved to optimality concerning the time Gurobi
needs to reach this state. 79 out of 80 small instances are solved to optimality. Gurobi reaches
this result within half a minute on 55 instances and within five minutes on 78 instances. The
longest proof of optimality on the small instances needs just under ten minutes. We suspect
that Gurobi has no difficulties on the small instances, since the number of potentially non-zero
binary variables can be greatly reduced by combining the constraints: For string edges it is
never beneficial to use another than the smallest cable type. Also, the biggest cable type is
never used on small instances since the second biggest suffices. More sophisticatedly, the small
number of strings and therefore small number of vertices in further layers limits the number of
cable types that can be used to due the vertex capacities. For example, consider a solar farm
with 180 strings and 60 Y-connectors. By the formulae outlined in Section 5.4.2, Y-connectors
can only have a capacity of 3 or 4. In both cases, the smallest cable type also suffices for the
edges between Y-connectors and combiner boxes. For all these reasons, we believe Gurobi is
able to cut off many suboptimal solutions very easily, which results in short running times.
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One medium instance is solved to optimality within one hour (within 20 minutes actually)
and seven more within four hours. The longest time for a proof of optimality here is 18 hours.
Clearly, with more running time, the number of instances solved to optimality would increase
further. Unfortunately, it cannot be known how long Gurobi needs. So it is more insightful to
look into the worst-case deviation of a best solution from the (unknown) optimal solution value.
For this, we look at the MIP gaps in the following section and in Figure 5.4.
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Figure 5.4: MIP gaps sorted in ascending order for instances from two of three categories.
Almost all small instances are solved optimally. Depicted are 64 medium and 50 large instances,
including those solved to optimality. The upper figures show the gaps for all instances, the
lower figures are zoomed in for better view.
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5.5.3 Solution Quality

We look into the quality of the solutions Gurobi has found within one day using the origi-
nal MILP formulation. By the upper part of Table 5.4, the instances in consideration are all with
status optimal or feasible. These are 80 small, 64 medium and 50 large instances. There is not
much to say about the small instances; they are almost all solved to optimality. The remaining
instance has 180 strings (the maximum) and 11749 edges. On this instance, Gurobi terminates
with a MIP gap of 0.0161 %. That means between the best solution found is at most 0.0161 %
worse than the optimal solution which is very close to being optimal.

In the other two categories, there are a lot more feasible but not optimal instances. Figure 5.4
depicts the gaps sorted increasingly for the medium and large instances. Note that these
instances include all instances for which Gurobi has found a solution, whether these solutions
have been proven to be optimal or not. All but one medium instance are solved with a gap of
less than 5 %, that means that the best solution found by Gurobi is at most 5 % worse than the
optimal solution. A gap of less than 1 % has been computed for 53 out of 64 instances and a gap
of less than 0.1 % for 29 instances. On the large instances, the gap remains bigger than 10 % on
twelve instances. A gap of less than 5 % has been proven for 30 instances and of less than 1 %
for 17 instances. The smallest gap on the large instances is at approximately 0.13 %.

One may reasonably expect that the bigger the instances, the more difficult it is for Gurobi to
prove optimality or infeasibility. While this is certainly true when comparing medium with
large instanceas (evidence shown in Figure 5.4 and Table 5.4), it is not clear when only somewhat
similarly sized instances are considered, e. g. only the medium instances. Since the number of
provably infeasible and of “unknown” instances is very small, we will not address that relation in
the context of infeasibility. Any observation on such a small data set might be pure coincidence.
Concerning the proof of optimality, however, we depict the MIP gaps as a function of the number
of edges for the aforementioned 64 medium and 50 large instances in Figure 5.5. For the medium
instances it stands out is that the smallest instance in terms of edges has the second highest gap
and that the three biggest instances have very small gaps, including the fifth lowest. Looking
at the bulk of the instances, no tendency between MIP gap and number of edges is apparent.
In the large instances, the gaps are more spread but also no pattern can be seen. With these
pieces of evidence, we conclude that the number of edges cannot solely explain the different
performance of Gurobi within the categories of instances. Presumably, the interaction of layer
sizes with vertex and cable capacities also plays a role here.

As a side note: Figure 5.5 shows only a small number of instances at the upper end of the
edge set sizes. We have made a similar observation concerning the number of vertices of large
instances in the discussion of Table 5.3 in the introduction to Section 5.5. We believe that the
problem that many of the bigger instances in the category large are discarded in the process of
placing strings, inverters, and transformers also persists for the medium instances (and maybe
even for the small instances).
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Figure 5.5: The MIP gap as a function of the number of edges on medium and large instances.

Depicted are 64 medium and 50 large instances, including those solved to optimality. Be aware
of the differently scaled y-axes.

Comparison to the Gaps from WCP. Having small MIP gaps provides certainty that the
best solution found is close to the optimal. As we have seen, Gurobi delivers this certainty on a
vast amount of instances across all categories. To contextualize these numbers, we compare
them to the MIP gaps computed from the MILP formulation in Section 4.3, which we have
reported in Figure 4.11.

The main differences between WCP and SoFaCLaP lie in the layered structure of solar farms
including vertex capacities and the tree-structure enforced by Equation (5.21). The benchmark
instances for WCP have a number of edges approximately linear in the number of vertices,

since an approach employing k-nearest neighbours is used to define the edge set [LRWW17].

To the contrary, the edge sets of the solar farm instances proposed here grow quadratically in
the number of vertices. One benchmark set A5 of wind farm instances has between 80 and 180

turbines per instance and is therefore a bit smaller but still comparable to our small instances.

The N4 set of wind farms has between 200 and 499 turbines. These wind farms are a lot smaller
than our medium instances. The MIP gaps reported for these wind farm benchmark sets are
roughly between 25 % and 30 % with no outliers after a running time of one day per instance. In
comparison, all but one small solar farm have been solved to optimality and all but one medium
solar farm have a MIP gap below 5 %. Even for the large solar farms, the MIP gaps look better, at
least as long Gurobi finds a feasible solution. To be fair, the experiments underlying Figure 4.11
have used Gurobi 8.0.0, while we use Gurobi 9.5.0 for solar farms. Still, this cannot explain the
remarkable difference in the MIP gaps. The reason for the low MIP gaps probably lies within
the structural properties of SoFaCLaP and the corresponding MILP formulation. Again, a lot
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of variables are probably easily dealt with by Gurobi, as we mentioned earlier in this section.
Furthermore, the layered structure of the graph yields MILP constraints that only involve a
local part of the graph. Thus, the matrix combining the variables into constraints may have a
more block-like structure, which may also help the solver.

5.6 Discussion

Before we come to a conclusion, let us discuss various aspects of the model, the MILP and our
benchmark instance generation, some of which may be of interested to solar farm planners
interested in adapting our model and algorithmic approaches built upon it.

As we have mentioned in Section 5.1, our model already incorporates the idea of strings
having multiple outlets: For each string, one outlet has to be chosen to connect the string to
the next layer, but different outlets may not necessarily be connected to the same Y-connectors
and the distances may also differ. We have seen that we can contract all outlets of a string
into a single outlet and thereby identify it with the string itself. The edge lenths have to be
recomputed to account for the shortest distance between a Y-connector and one of the outlets
of the strings.

This obviously relies on the fact that edge lengths need not represent Euclidean distances;
any “distance” function can be represented. A solar farm planner may decide that only “vertical”
and “horizontal” cable layouts are allowed, so edge lengths could be measured in the £; metric
(“Manhattan metric”, as in [Luo+21]). The edge lengths may also include constant additive
offsets to account for necessary cables used inside the various components or they may represent
actual distances in rough terrain. A planner may also decide to prohibit certain connections in
the solar farm by removing the corresponding edges from the edge set.

Solar farm planners have further degrees of freedom in the ways to adopt our model: They
may wish to use a different set of components, for example they may choose not to use Y-
connectors at all. In that case, one layer can be removed from our model. The order of layers
can also be changed, for example to account for string inverters instead of central inverters. In
that case, the inverters will be represented by a lower layer in our hierarchy.

The use of cable types is again very flexible, even more than with wind farms. The distinction
between DC- and AC-cables is arbitrary. One set of cable types may be used for all edges, or
each edge may have “its own” set. This can be used to account for power losses (as seen for
wind farms) or for prizing different degrees of loads in cables, but also to incorporate installation
costs for intermediate vertices. The latter may be more applicable to solar farms than to wind
farms, since in wind farms the turbines need to be built anyway.

Not only may the various parts of the model be reinterpreted, but one may also extend the
model to incorporate further decision decisions. The literature on wind farms provides some
hints: A balancing constraint has been considered in [CP22] which enforces that subtrees must
be of roughly equal size. One may also consider using the non-crossing constraints, e. g. [FP18],
even though its importance for solar farms has not been addressed. It may even be plausible
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that some crossings are allowable since some cables may be installed on racks and others dug
into the ground.

The framework to generate benchmark instances also offers a high degree of freedom to adjust
parameter and design decisions: Our placement of strings is knowingly chosen to generate
somewhat irregular looking instances to model irregular solar farms such as Monte Mele. It
is entirely possible, though, to enforce strings being placed in a regular grid. The parameters
from Table 5.1 can be also chosen in different ways and different set of cable types may also be
considered.

5.7 Conclusion

We have presented one of the first optimization problems to find cost-minimal cable layouts
in large-scale solar farms. Our model, SoFaCLaP, is built around a hierarchy of different
components used in solar farms. It involves a step cost function obtained from considering a set
of cable types from which a solar farm planner may choose and includes the design question
where to place the components from a set of given candidate positions. This model generalizes
a model previously introduced [Luo+21]. We have shown that SoFaCLaP is strongly NP-hard
even under various assumptions. We have translated our model into an MILP formulation and
have reported performance results of the MILP solver Gurobi on a set of benchmark instances
so that the MILP approach can serve as a baseline for future algorithms. These benchmark
instances have been created from a framework proposed in this work with parameters based on
real-world components of solar farms. The MILP finds optimal solutions on the smallest of our
instances within minutes but struggles to find feasible solutions on the biggest instances within
one day of running time. The instances we used in the evaluation, as well as the experimental
results are publicly available [GSW22a, GSW22c].

The obvious direction of future research is to develop algorithms to tackle the SoLAR FARM
CABLE LAYoUuT PROBLEM, after all, that is the whole purpose of defining the model and
providing a baseline algorithm. In their Bachelor’s Thesis under the co-supervision of this author,
Wabhl proposes to use Variable Neighborhood Search as a metaheuristic approach [Wah22]. It is
noted that this approach “was for the most part not better than the MILP in terms of solution
quality [but] it achieves solid solutions” and provides the best known solutions on some of the
largest instances [Wah22, p. 41]. Further inspiration for algorithmic approaches to SoFaCLaP
may be found in our overview in Section 2.3 of various (classical) optimization problems that
bear some degree of resemblance to SoFaCLaP.
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6 Summary

We have considered two types of utility-scale power plants with decentralized generators based
on renewable energy sources: (offshore) wind farms and solar farms. For both, we address the
optimization problem of designing a cost-minimal cable layout to connect the generators to the
transformers from where generated power is fed into the transmission grid.

Our literature overview has revealed that the research on cable layout optimization in solar
farms is scarce at best. In an attempt to facilitate further algorithmic research, we have proposed
an optimization problem based on a layered graph that represents the hierarchy of electrical
components in solar farms. We have generated publicly available synthetic benchmark instances
and evaluated a M1XED-INTEGER LINEAR PROGRAM formulation solved by Gurobi on these
instances. The results are also publicly available so that any future algorithmic research can build
the evaluation on this baseline. Our research on solar farms is complemented by a discussion of
design parameters of our optimization problem and the benchmark generation.

Our literature overview has also revealed that wind farms have received a lot of attention in
algorithmic research in general but none from a viewpoint of Minimum-Cost Flow Algorithms.
Based on a theoretical analysis of the underlying Minimum-Cost Flow Problem to highlight
the theoretical complexity and the challenges arising from the characteristic step-cost function,
we fill this gap with an adaptation of the classical Negative Cycle Canceling (NCC)-technique.
By means of an experimental evaluation on synthetic benchmark instances from the literature,
we show that our NCC algorithm is able to provide competitive solutions to approaches using
MiIXED-INTEGER LINEAR PROGRAMmMmIng and Simulated Annealing, with running times
ranging between milliseconds on wind farms with up to 80 turbines and tens of seconds on
wind farms with up to 500 turbines. We present how our algorithm can be incorporated into
a framework of Iterated Local Search to trade a bit of running time for an improvement in
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solution quality. The experimental evaluation is complemented by a case study on the Hornsea
One wind farm. Structural and Power Flow Analyses on the cable layouts computed by our
NCC algorithm suggest that the cable layouts are suitable for real-world implementation. A
discussion of the underlying assumptions in the optimization model and of key steps in our
algorithm provides further insights into the applicability of our algorithm to different settings
seen in the literature.

With this, we have brought Energy Informatics and Theoretical Computer Science a bit closer
together. As it turned out, network flow algorithms can deal with modern day wind turbines
more effectively than a courageous knight and a lance can with their medieval counterparts.
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